
Im perial College of Science, Technology and M edicine
(University of London)

D epartm en t of Com puting

A Generic Logic Environment

by

William Mark Grant Dawson

A thesis presented to the University of London

in partial fulfilment of the requirements for the degree of

Doctor of Philosophy (Ph.D.)
and the

Diploma of Imperial College (D.I.C.)

in
Computing Science

3

A bstract

The thesis presents a framework for the development and manipulation of a wide

variety of logical systems. The approach is original in its aim of providing tools to

assist the construction of logics, and the framework has been realised on a computer

workstation as a logic development environment. Both the framework and the design

and implementation of the prototype environment are described.

The definition of a logical system is taken to have two components: the language from

which the syntactic elements—including judgements—of the system are constructed;
and a deductive part, in which the judgements can be interpreted as relations,

expressed using inference rules. A method is given for transforming different syntactic

presentations of logical systems into the all-introduction style required. This method

is applied to Axiomatic and Natural Deduction presentations of several systems,

including intuitionistic, relevance, linear, classical, modal and many-valued logics. It
is shown that the framework is sufficiently expressive to capture presentations of

these systems.

A number of tools are provided for the analysis of systems presented within the

environment. One of these checks whether a judgement holds within a given system,
by constructing a derivation using inference rules. As it is intended that the

environment be used during the development of logical systems, a simple strategy

language is provided to select between inference rules.

A second tool allows a user of the environment to conduct case studies which

reveal relationships between connectives. In particular, it is shown how the distinct

modalities of some classical and intuitionistic modal systems can be found, and their

inter-relationships discovered.

A third, and more fundamental, type of analysis is also discussed. When a new

inference rule is added to a system, it may not allow anything new to be proved.

When this is the case, the new rule is said to be derived with respect to the other

rules. If a property of a judgement is expressed as an inference rule, and this rule is
found to be derived with respect to the other—more computationally useful—rules,
then the property was previously implicitly present. Such knowledge can be used to

give results about the presentation of the system as a whole, for example whether

the system is consistent.

To my parents

Tom and Jane

5

Contribution of the T hesis

The thesis makes several contributions to the study of proof theoretic presentations

of logical systems made in the spirit of Gentzen’s sequent calculi.

A new, simple, but expressive framework is presented that supports the presentations

of such systems in a natural way. This is done in Chapter 1, with aspects concerned

with quantification treated in Chapter 4. The framework can also be readily

implemented on a computer as is shown in Chapter 7.

The next aspect of our contribution is a systematic study which shows how a variety

of other, proof theoretic, presentations of logical systems can be transformed into

a form suitable for the framework. This forms Chapter 2 and the first part of
Chapter 3. Of particular interest is the way in which our approach reveals the

nature and manipulation of assumptions in a system, and thereby which structural
properties are required in the framework. The methodology is applied Classical and

Intuitionistic logic in Chapter 2, where Linear and Relevant systems are also briefly

discussed. The analysis is extended in Chapter 3 to a number of modal systems. A

way of Gentzenising many-valued systems is also shown, as well as examples that

illustrate how the framework treats hypersequents and defeasible systems.

The final aspect of our contribution is an environment implemented on a computer

workstation which supports the framework. The environment provides its users

with access to a number of activities concerned with the manipulation and analysis

of systems. The environment’s interface has novel aspects that are described in
Chapter 6. The environment supports a user’s preferred syntactic presentation
directly, and derivations made in a system are shown graphically as proof trees.

One of the activities that is supported by the environment is the construction of

a derivation in a system. The environment translates the user’s representation of

a system into an efficient internal form that is used to construct such derivations.

Chapter 7 gives details of this translation.

The activity of making many such derivations in a structured way is illustrated in

the second part of Chapter 3 for the case of Modal systems, where the relationship

between strings of modalities is often of interest. We illustrate this analysis by

showing how the environment was used to discover modalities in Modal systems

based on Classical and Intuitionistic logics.

Finally, Chapter 5 presents a novel discussion on the role of derived rules in a

system presented using the framework. The argument made there yields a systematic

search for schematic proofs that can replace derived rules. Examples are given of the

application of this approach.

6

A cknow ledgem ents

First and foremost I would like to extend my heartfelt thanks to my supervisor

Krysia Broda. Krysia has shown great patience, and given me much advice and

assistance throughout my studies. I am greatly in her debt.

It is a pleasure to have worked with Martin Sadler when he was at Imperial College.

Martin’s influence was pervasive here, and he was always a source of inspiration and

encouragement throughout the GENESIS project. I hope his influence can be seen in

this thesis as well.

I would like to thank Tom Maibaum and Samson Abramsky for their continuing

support and encouragement. Friends, colleagues and students of the Department

of Computing have been a constant source of stimulation. Paul Taylor deserves

particular thanks for writing his excellent T^X macros that have greatly improved the

presentation of the Thesis, as has his dedication to the task of providing a modern

TgX environment at Imperial College. Special thanks must go to Jan-Simon Pendry

for his work converting oj-prolog to C++, writing its module language and introducing

many enhancements. David James’ TEXpertise fathomed major difficulties with the

technology used to print the figures without scissors and glue. Mark Ryan, Krysia,

Tom, Martin, Paul and David have kindly read drafts of this thesis and made many

thoughtful comments and corrections; needless to say, any errors that remain are

mine. My thanks go to them all, and to the many other people at the College who

have helped me in one way or another.

C ontents

1 Introduction 13

1.1 Logics in Computer Science... 15

1.2 Thesis .. 18

1.3 The Framework.. 19

1.4 A ctivities.. 29

1.5 The environm ent...33

1.6 Structure of the th e s is ... 33

2 M ethodology 34

2.1 Introduction.. 34

2.2 Axiomatic Presentations..35

2.3 Natural Deduction Presentations..38

2.4 From Axioms to Natural Deduction Rules .. 40

2.5 Introduction and Elimination Presentations..42

2.6 ; From Natural Deduction to Sequents ..43

2.7 All-introduction Sequent R u le s ...48

2.8 From Sequents to All-introduction R u l e s ... 49

2.9 Equivalence of Axiomatic and Sequent P resentations.............................. 57

2.10 Conclusion..62

7

8 CONTENTS

3 N on-standard logics 64

3.1 Introduction... 64

3.2 Modal L o g ic s ..65

3.3 Determining Modalities..80

3.4 Logics of Knowledge and Belief..91

3.5 Three and more valued log ics.. 94

3.6 Hypersequents..104

3.7 Defeasible R easoning...109

4 Quantification 112

4.1 Introduction... 112

4.2 Representation of quantification... 116

4.3 Deduction using b in d ers.. 119

4.4 Examples of quantification r u le s .. 120

4.5 A type inference sy ste m .. 124

5 D erived R ules 128

5.1 Introduction... 128

5.2 D efin itions.. 130

5.3 Verifying Simply Derived R u les..144

5.4 Verifying Recursively Derived R u le s .. 149

5.5 Cut Elimination...150

5.6 Explicit Structural R ules.. 158

5.7 Rule involving patterns .. 159

5.8 Consistency of a System .. 162

5.9 Expressing Properties...163

5.10 Conclusions ... 164

CONTENTS 9

6 T he Environm ent 165

6.1 M otivation..165

6.2 An Overview ... 166

6.3 Widgets ... 172

7 Inside the E nvironm ent 175

7.1 Introduction...175

7.2 The M etalanguage..176

7.3 Defining a System ... 180

7.4 Defining a L anguage.. 183

7.5 Defining R ules... 195

7.6 Heuristics ..212

7.7 Constructing Derivations..217

8 C onclusions & Future W ork 222

Bibliography 224

List o f Figures

1.1 Language of intuitionistic log ic ...23

1.2 Explicit structural ru le s ..27

1.3 Implicit structural ru le s .. 27

1.4 Intuitionistic R u les..29

1.5 Derivation T ree.. 30

3.1 Language of Classical Modal System s..67

3.2 Extensions of K 68

3.3 Modal A x io m s .. 68

3.4 Conditions and their first-order constraints on R ... 68

3.5 Summary of Classical Normal Modal R u le s ... 77

3.6 Some modal strategies... 79

3.7 S4 m odalities..81

3.8 Modalities dialogue ...81

3.9 Modalities generated to depth t w o ... 83

3.10 Modalities search for classical S 4 .. 84

3.11 Interderivability of modalities for classical S 4 ..84

3.12 Modality Diagram for S 4 ...85

3.13 Classical S 5 ... 85

3.14 Rules for intuitionistic modal family .. 86

3.15 Modalities search for modal system IS4...87

10

LIST OF FIGURES 11

3.16 Interderivability search among modalities in the system IS 488

3.17 Modality diagram for IS 4 .. 89

3.18 Modality diagram for IS 5 .. 90

3.19 Classical two-valued truth-tables... 95

3.20 Kleene’s three-valued l o g i c ...96

3.21 A logic of non-termination... 99

3.22 Rules for non-termination logic ... 99

3.23 Ternary sequent rules for Kleene’s 3-valued lo g ic ... 100

3.24 Lukasiewicz’s three-valued logic ... 101

3.25 Negated Kleene R u le s ...103

3.26 Formation rule for the Hypersequent category ... 104

3.27 Formation rules for Hypersequent exam ple..106

3.28 Hypersequent rules for the modal systems T, S4 and S 5107

3.29 Example derivation of the Euclidean A x io m ...107

3.30 Modalities derived for hypersequent presentations of S4 and S 5 108

3.31 Defeasible system’s lan gu age..109

4.1 Mid-sequent of a p r o o f 115

4.2 Rules for a type inference sy ste m .. 126

4.3 Type inference involving the let con stru ct..127

4.4 Type inference involving circular t e r m .. 127

6.1 The Environment at Start-up ...167

6.2 Example Logics M enu...168

6.3 Logic Presentation................................ 169

6.4 Systems B o x ... 170

6.5 A Proof D ialog..170

6.6 A P r o o f ... 170

12 LIST OF FIGURES

6.7 Identifying a Proof R u l e ...171

6.8 Inspecting a P ro o f..171

6.9 Proof E lis io n ..171

6.10 Sequent Widget Layout Strategy ...173

6.11 A Decorated Child of the Mover W idget... 174

7.1 Schematic diagram of the environm ent...176

7.2 Storage representation of a family of sy ste m s..180

7.3 Presentation of a lan gu age..184

7.4 Language of intuitionistic log ic ... 184

7.5 Extended BNF description of language...194

7.6 Intuitionistic R u les..195

7.7 BNF for rules .. 196

7.8 Derivation T ree.. 212

7.9 BNF for heuristics..213

Chapter 1

Introduction

It is a truth universally acknowledged, that
a Computer Scientist in possession of a

good problem, must be in want of a logic.

(with apologies to Jane Austen)

This thesis describes the motivation, design and implementation of an environment
which supports the manipulation of a wide variety of logical and formal systems on

a computer workstation.

This work has been motivated by the desire to bring together a large number of

logical systems within a single framework for study and analysis. By providing a clear

account of the framework’s relationship with other presentations of logical systems,
it is hoped that the environment will be a useful tool for devising and developing

new logics. The objective of the environment is to use a computer: to explore the

immediate consequences of a logic, to expose combinatorial relationships that may

exist between logical operations in a system and to verify that properties hold of the

system as a whole. The last two aspects can be used to elicit meta-mathematical

properties of the system.

The framework described here allows a logical system to be formulated in a

natural way. Logical systems are presented as a collection of inference rules in an

all-introduction style. These rules can be given a computational interpretation such

that theorem proving within a system can be carried out largely automatically from

its definition.

The environment is designed to be usable by people who may not be completely

familiar with computer systems. To achieve this “ease of use,” there is a graphical

interface that provides a controlled dialogue between the user and the environment.

13

14 CHAPTER 1. INTRODUCTION

The logical systems themselves are easily formulated, and the environment supports

a concrete syntax which allows users to describe systems in a natural way. To this

end, Roman, Greek and mathematical symbols are made directly available.

A second class of user - the “meta-user” - can make use of the u-prolog meta-language

to increase the functionality of the environment. Such new facilities are then available

to users via the graphical interface. A meta-user can provide tools that allow

ordinary users to conduct analyses of a system. There are two distinct types of tool

considered here: one constructs a series of related object-level judgements and uses

their derivability to guide its search; the other puts the rules of the system together

at the meta-level.

An example of the first type of analysis is the procedure used to determine the

interderivability of a collection of formulas. Another example is the discovery of

distinct modalities in a modal system. These tools assist a user by exposing

relationships between the logical operators of a system.

The second type of tool can be used to verify that a logical system has its intended

properties. An inference rule can be thought of as expressing a property, or relation,
over the syntactic structures used in a system. For example, that the consequence

relation is transitive or monotonic. However, these rules, unlike the all-introduction

rules, are very general and have little computational content to a theorem prover.

Rather, the interest in them arises from the properties they express: if the rules are

(implicitly) present they may lead to meta-mathematical results about the system.

An inference rule is a derived rule with respect to the other rules of the system when

it can be expressed in terms of them in some uniform way. The goal here is to show

that these general inference rules are derived rules with respect to the computationally

effective rules, and thereby that the system has the required properties. To show

that a rule is derived requires an inductive argument over the structure of possible

derivation trees in the system. Such an argument is very sensitive to the formulation

of the logic, and may be upset by slight changes in its presentation which subtly

change the ways in which the rules can interact. Frequently, a large number of cases

must be considered, and these can be tedious to check manually. Such combinatorial

theorems are good candidates for mechanisation when it is possible to identify the

necessary sub-cases and there are heuristics available for solving them. The study

of derived rules is the second type of tool present in the framework/environment

described here.

The overall objective of this work is to provide an environment in which a user

can model the logic underlying particular classes of reasoning, or problem solving.

1.1. LOGICS IN COMPUTER SCIENCE 15

The resulting system describes the user’s intuitions about the problem, and the

environment allows the user to.refine the system until it has the required consequences

and necessary overall properties.

The benefits of the environment can be summarised as:

1. it provides a mechanical theorem prover which allows the user to conduct

derivations within a system;

2. the user may undertake ‘case-studies’ about a system using procedures that
attempt many small object-level derivations within it;

3. it can be used to establish the status of derived rules, and thereby

meta-mathematical properties of a system.

1.1 Logics in Com puter Science

There is a tendency throughout Computer Science towards the adoption of logics

that reflect the type of reasoning appropriate to a specific problem domain. This

trend is fairly recent and perhaps grows partly from the long tradition of producing

programming languages tailored to problem domains. Also influential is a move away

from the monistic dogma of First Order Predicate Calculus, towards instrumentalism

and pluralism[Haa78]. There are many examples of the application of different logics

to different branches of Computer Science including:

Program m ing languages whose study has been given a logical basis through the

work of Tony Hoare[Hoa89]. His program logics formalise the treatment of

assertions about the behaviour of programming language constructs. Each

programming language construct gives rise to one or more inference rules that

state the construct’s effect on the assertions surrounding it, e.g. the Hoare

triples {<p}p{ip}, read as “if the condition y> is satisfied before executing the

program fragment p, then the condition ^ is satisfied afterwards”. Dynamic

Logics, developed by Pratt [Pra80] and Goldblatt [Gol82], are more general.
They contain modalities indexed by program fragments, e.g. [p]i/>, read as “the

condition ^ must hold after executing p”. In a Dynamic Logic there is a

correspondence between the possible states of the computer and the possible

worlds of the modal system. A world contains assertions that characterises

a possible configuration of the computer. Execution of the program then

corresponds to transitions between worlds. In the context of Dynamic Logic a

Hoare triple is <p—►[p]̂ -

16 CHAPTER 1. INTRODUCTION

D om ain T heory which is traditionally given in model-theoretic terms such

as Information Systems[Sco82] has been placed in a logical setting by

Abramsky[Abr87]. His framework allows the production of logics tailored to

particular domains, e.g. for concurrency, or the A-calculus.

C oncurrency where the notion of time and causality are important, e.g. temporal

logics [Gol87], the transition systems of the Calculus of Communicating

Systems[Mil89] and Hennessy-Milner’s modal logic for characterising bisimulation

in such systems. Another example is the calculus of Communicating Sequential

Processes[Hoa78, Hoa81] in which Hoare provides a proof theory of process

expressions.

T ype Inference S ystem s have become an integral part of a number of programming

languages to check or infer the type of programming language constructs. The

functional programming language ML has a polymorphic type system which is
used to infer the most general type for functions and expressions [DM82].

Specification languages arose from the need to specify the intended behaviour

of programs. One influential approach is Cliff Jones’ Vienna Development

Methodology, VDM, which uses a special three-valued logic, the Logic for

Partial Functions[Che86], to model the possibility of undefinedness of programs

for some inputs.

Another type of specification is offered by Per Martin-Lof’s Constructive Type

Theory[Mar72]. Here, specifications are types in the type theory. A proof that
a type is well-constructed gives rise to a functional program as its “witness”
through the propositions-as-types paradigm (see below). This shows that there

is a precisely defined relationship between the specification and a program

satisfying the specification. The algorithms and structure of the program depend

on how the specification is derived. An adaptation of this Type Theory aimed

more towards the abstract data types used in Software Engineering is given by

Querioz[dQ88].

A utom ated T heorem Proving has been steadily developed since Herbrand’s results

and the introduction of the Unification algorithm by Robinson in 1965[Rob65].

The programme uses a reduction of classical first-order logic to clausal form

and the resolution method. Subsequent improvements in this technology have

led to theorem proving systems capable of proving new results in some branches

of mathematics[W+84].

M echanical T heorem Proving also has a long tradition. Much effort sprang

from a desire to mechanise Dana Scott’s Logic of Computable Functions.

1.1. LOGICS IN COMPUTER SCIENCE 17

This led to Stanford then Edinburgh LCf[GMW79] and Cambridge LCF[Pau88].
As other logics were put forward, the ML-based technology of lcf theorem

provers was deployed, e.g. [Pet82]. A generalisation of this approach is the

Isabelle system[Pau89] which uses Higher-Order Logic as the meta-language for

formalising many object-logics.

Logic program m ing characterised by the Prolog language[Kow74, CKPR73] is the

application of a special case of the resolution method used by the automated

theorem proving community. Clauses are restricted to a having a single positive

literal. When Horn-clauses are combined with a predictable search strategy the

theorem prover behaves like a programming language.

A rtificial intelligence has many applications of modal logics of knowledge and

belief for modelling the reasoning of individuals. Non-monotonic systems are

also used for handling belief revision or reasoning with defaults. A system is

called non-monotonic when a conclusion that holds at one point may not hold

once additional information is available. For an overview, see the works of

Genesereth and Nilsson [GN87] and Turner [Tur84].

Several formal systems have been constructed for the purpose of formalising parts of

mathematics. An early example is that of the automath project [dB80] which arose

from a desire to check parts of mathematics on a computer. This was done for

Landau’s Grundlagen[Jut77]. Other systems have been built with similar objectives in

mind. Theirry Coquand and Gerard Heut’s Calculus of Constructions[CH85] provides
a more recent version of the AUTOMATH concept. In the propositions-as-types

paradigm[How80], the types of a typed lambda-calculus are identified with the

propositions of a logic and the terms of the calculus are identified with derivations

that justify the propositions. This has provided the inspiration for a number of

Constructive Type Theories. For example, Robert Constable’s group at Cornell has

integrated the Type Theory of Martin-Lof with their earlier Proof Refinement Logic

(PRL) to. produce a new system Nuprl[C+86]. This has been used to formalise parts

of constructive mathematics. In these examples, the effort is focused on supporting

theories representing bodies of mathematics, rather than on the presentation of any

underlying logical systems.

The Isabelle system [Pau89] is an example of a system designed for the formal

representation of a variety of logics within a single meta-logic. The meta-logic used

is Higher-Order Logic; a set of axioms in this defines an object-logic. Deductions in

an object-logic are formalised as equivalent deductions in the meta-logic.

18 CHAPTER 1. INTRODUCTION

The approach adopted in this thesis is to represent object-logics in a less formal
way, but a way that directly reflects the proof-theoretic nature of the presentation.

If the meta-logic approach were followed for the framework described here, the

representation of inference rules (and their structural properties) would indeed be

theories in the meta-logic, but the relationship would not be as elegant as it is in

Isabelle.

1.2 T hesis

This thesis presents an framework that is designed for the development and

manipulation of a wide variety of logical systems. This approach is original in its

aim of providing tools to assist the construction of logics: the framework has been

implemented on a computer workstation as a logic development environment.

The definition of a logical system is taken to have two components: the language from

which the syntactic elements, including judgements, of the system are constructed, and

a deductive part, where relations over the judgements of the system are expressed as
inference rules. A method is given for transforming different syntactic presentations of

logical systems into the all-introduction style required. This is applied to Axiomatic

and Natural Deduction presentations of several systems, including: intuitionistic,

relevance, linear, classical, modal and many-valued logics.

It is shown that the framework provided by the environment is sufficiently expressive

to capture presentations of these systems with the inference rules alone. The

prototype environment has been used to construct presentations of Classical Logic;

Intuitionistic Logic; Type Inference Systems; the Classical Modal Logics: K, T, K4,

S4, S5 (in various styles of presentation); some of their Intuitionistic counterparts;

the Deontic Systems: D, D4; some Modal logics of Knowledge and Belief; Temporal

logics; Linear Logic; Three-valued logics; and some other finite many-valued logics.

A number of tools aie provided for the analysis of systems presented within the

environment. One of these checks whether a judgement holds within a given

system by constructing a derivation using inference rules. As it is intended that

the environment be used for the development of presentations of systems, a simple

strategy language is provided to select between inference rules.

A second tool allows a user of the environment to conduct case studies which reveal

the relationships between connectives. In particular, it is shown how the distinct

modalities of some classical and intuitionistic modal systems can be found and their

inter-relationships discovered.

1.3. THE FRAMEWORK 19

A third, and more fundamental, type of analysis is also discussed. For example, when

a logical system is extended by the addition of a new inference rule, it may not be

possible to prove any new theorems. When this is the case, the rule is said to be

derived with respect to the other rules of the system, and is not computationally

useful. If a property of a judgement is expressed as an inference rule and the new

rule is found to be derived with respect to the other, more computationally effective

rules, then the property was previously implicitly present. This knowledge can be

used to give results about the presentation of the system as a whole, for example

whether the system is consistent.

This thesis has also been written to explain aspects of the environment to a potential
user. This is part of the motivation for exploring the types of transformations required

to produce suitable presentations of systems for the framework. A secondary objective

is to provide a reasonably coherent explanation of the prototype environment’s inner

workings, should someone wish to extend or maintain it. In some respects, these two

interests are unlikely to coincide in a single individual and so the reader’s indulgence

is sought in advance.

1.3 T he Framework

The framework allows the specification of the two principal components of a logical
system. The first of these is the set of linguistic structures that are required to

construct the syntactic entities of the object-logic’s language. The second part is

a specification of the deductive properties of the object logic. The language of a

system consists of a declaration of the syntactic categories that are involved. Of

these categories one or more are designated as judgements. The judgement categories

are the conveyors of meaning for a system and define the relations between other

syntactic categories within it. For example, the relation may be regarded as holding

when some formula is a consequence of some other formulas. However, other

interpretations of judgements are possible. Nor is a system restricted to a single type

judgement. The precise form of the judgement is left open; which is an important

aspect of the flexibility of the framework.

The meaning of the judgements is given by their definition as inference rules in the

deductive part of the definition of a system. Inference rules capture the meaning of
the other syntactic entities in the language by showing how they relate to each other,
and the precise conditions under which they can be used. Often, the judgement of a

20 CHAPTER 1. INTRODUCTION

system is a consequence relation. The inference rules take the form

J\ ■•• Jn

J

where n > 0 and each of the «/, belongs to a judgement category. The judgements

forming an inference rule are allowed to contain schematic variables that act as

placeholders for actual elements of the categories they represent.

If the language of a system is denoted by C and its deductive part by # , then a

system can be stated as the pair

S = (£ , R)

Before launching into a detailed discussion of how a system is defined, it is appropriate

to digress briefly to give a short review of consequence relations. Consequence

relations are a typical example of the type of judgements the framework is designed

to support.

1 .3 .1 L ogica l C o n seq u en ce

The framework provides a way of formulating presentations of logical systems in

terms of their consequence relations.

Suppose that the language of a system, £ , defines the syntactic category called

‘formula’ that consists of propositions and some logical operators such as: A, V, -i,

— and that the set of all formulas that can be written down in this category is U.

Then, given a collection of assumptions taken from this set, { < ^ > i CM , the

set of all conclusions that can be reached from the assumptions using the deductive

power of the system is given by a function Cn : YU —► PU. So C n ({ ^ i , . . . ,^ n})

stands for the set of inferences that are derivable from the assumptions. The relation

Cn has a fixed point such that C n(C n(5)) = Cn(5); Cn can be defined inductively

by:
Cn0(S) = S

V i * • ‘ V n
C nji+ i^) = Cnfc(S') U {v?|-------------£ R and (pi 6 Cn/t(5')}

V

At about the same time as Tarski’s Cn was proposed, Hertz introduced the relation

‘b’ between finite sets (or rather sequences) of formulas and their consequences in

the following way:

1.3. THE FRAMEWORK 21

i p i , . . . , (p n \ - i f f iff i p e Cn({y?i,...,y>n})

Hertz’s notation was later extended by Gentzen to allow multiple conclusions:

I"
The interpretation given to such an expression is that the conjunction of p>i has the
disjunction of the rf>j as a logical consequence. Or, put differently, that the truth of
all of the assumptions entails the non-falsity of at least one of the conclusions.

A consequence relation over finite sets of formulas can be defined as T b A ’ where

T, A C U and <p E li. A convenient shorthand is used to obviate the need for braces:

T,A = T U A

r,v> = ru{v?}
Using this notation, some of the properties of b can be stated as: reflexivity (R),
monotonicity (M), and transitivity (T); and presented as follows:

(R) r h A if r n A / 0

r h a

r , r ' b a , a '

r b 9 , A r , b A

r b a

The conditions R, M, and T, may or may not be present in a consequence relation of

a system. If their presence was insisted upon, then this would exclude several families

of logics that the framework should support. Certainly, monotonicity does not hold

in some of the systems we wish to represent, for example Linear Logic, Relevant

Logics, and non-monotonic logics to do with defaults and defeasible reasoning. Linear

Logic restricts the use of assumptions in the proof; an assumption must be used

in the proof precisely once whereas monotonicity would allow an assumption to

be introduced without it being used. Relevance Logics similarly require that an

assumption be used at least once in a proof. Non-monotonic logics are popular

in Artificial Intelligence for reasoning about systems which model the accumulation

of knowledge. Here, increasing knowledge can lead to the rejection of previously

acceptable inferences. It is possible that neither reflexivity nor transitivity will hold

where a relation is between different kinds of objects. Avron calls consequence

relations with (R) and (T), simple in [Avr87].

22 CHAPTER 1. INTRODUCTION

What is termed a logic in the framework varies according to the nature of the

consequence relation being defined. Sometimes the more neutral term system is

preferred to logic. For many systems, it is enough to take (R) and (T) as desired

properties of the relation. However, in order to be pluralistic, the framework does

not take a rigid view of what constitutes a consequence relation in this sense.

When a system is presented over a (multiply conclusioned) consequence relation the

inference rules in the deductive part of the system take the form:

i hbA! ... rn h A n
rh a

where n > 0.

If a judgement of the form T h A ’ is interpreted as the argument “assuming that
all the assumptions T hold then at least one of the conclusions A holds”, then the

inference rules can be seen as governing what is and is not admissible as a valid

argument. The condition of reflexivity states the self-evident fact that an assumption

entails itself. In this way an inference rule can, depending on the number of
antecedents present:

= 0 introduce an obviously valid argument;

= 1 transform a valid argument into another valid argument; or else

> 2 combine several valid arguments into a single valid argument.

1 .3 .2 G en era l P r o p e r tie s

There are however two important properties, finiteness and uniform substitution, that

are built into the framework.

F in iteness or compactness. If some argument holds then it requires only a finite

number of assumptions.

(F)
ri- a

-------------- n,m finitern h Am
U niform substitu tion If some argument holds then so does the corresponding

argument obtained by systematically replacing some the schematic variables in

it for other instances of the categories they represent.

T h A
------------9 is a substitution(U)

T9 \- A9

1.3. THE FRAMEWORK 23

Finiteness is forced by the framework; rules cannot have more than a finite number

of antecedents. Uniform substitution is likewise built into the way in which the

framework performs substitution, and is always present in a system which does not
use negative judgements1.

We now return to the discussion of the framework.

1 .3 .3 L an gu age

The language of a system is defined by its syntactic categories. Categories define

classes of syntactic entities such as Formulas, Terms, Sequents. Corresponding to

each category is at least one formation rule. Formation rules say how the elements

of the category are constructed, either in terms of other categories, or in terms of

primitive syntactic units. It is also possible to use operators to form collections of
categories with particular properties, e.g. Sets, Bags, Lists. The definition of the

language for propositional intuitionistic logic is shown in figure 1.1.

Categories: Sequent Formula[<£>̂ 0] SetOf(Formula)[rA0] ;

Judgements: Sequent;

a:SetOf(Formula) *K c:Formula —► SEQ(a,c):Sequent
a:Formula 'A' b:Formula —► AND(a,b):Formula

a:Formula 'V' b.Formula —► OR(a,b):Formula

a:Formula b:Formula —► IMPLIES(a,b):Formula
a:Formula b:Formula —► IFF(a,b):Formula
'-i' a:Formula —*■ NOT(a):Formula

'_L' —► BOT.Formula

t:'[abc]' —► ID(t):Formula

Figure 1.1: Language of intuitionistic logic

1.3.3.1 C ategories

There are just two categories required: Formula and Sequent.

*A negative judgement allows a system to be introspective, and enables the outcome of a proof
to depend on the non-derivability of its components. Clearly, substitutions may change these
components, and hence the outcome of the proof. The defeasible system in §3.7 illustrates the
use of a negative judgement.

24 CHAPTER 1. INTRODUCTION

1.3.3.2 M etavariables

The names of schematic, or metavariables, axe declared at the same time as the

categories are introduced. A metavariable declaration gives the root names of variables

that act as placeholders for elements of the category to which the metavariable

belongs. They are used to make the definition of rules schematic and by declaring

them as part of the system’s language, avoid the need to declare schematic variables

in the deductive part.

The declaration [pipO] indicates that the metavariables for the category of Formula

have the form <p, Vb V'cb 0Oi • • • Only the first character of the variable
name is indicated.

It is not necessary to declare metavariables for categories that are not ‘talked about’

by inference rules.

1 .3 .3 .3 Judgem ents

The judgement category, Sequent, is declared separately.

Judgements: Sequent;

Judgements are ‘external’ categories. Other categories are ‘internal’ to the language

and are not permitted to form the basis of queries or appear by themselves in rules.

Judgements are not restricted to the single form of consequence relation defined

above and more elaborate relations than the usual binary relation ‘h ’ can be used.
Examples are ternary or n-ary relations which may be used to represent many-valued

systems. In some cases ‘hypersequents’ (or sequences of sequents) can be used for

the presentation of some modal, many-valued, and relevance logics. The issues of

representing non-standard logics are discussed in chapter 3.

1 .3 .3 .4 Form ation R ides

Each category has at least one formation rule. The formation rule for the Sequent

category is defined by

a:SetOf(Formula) 'K c.Formula —► SEQ(a,c):Sequent

1.3. THE FRAMEWORK 25

An element of the category of Sequents is ‘SEQ(a,c)’ when ‘a’ and ‘c’ are elements

of the categories ‘SetOf(Formula)’ and ‘Formula’ respectively. The declaration provides

the abstract syntax of the element for internal use. It also gives a pattern that
can be used to parse an element of the category and build the internal abstract

representation. Similarly, the declaration is used to reconstruct the familiar concrete

syntax of the element from the internal form.

The logical operations, or connectives, in the category of Formulas are defined in

similar way. For example the following introduces the operation ‘A’ (and).

a:Formula 'A' b.Formula —+ AND(a,b):Formula

1.3.3.5 C onstants

The propositional constants are defined to be words starting with the roman letters

‘a’, ‘b \ or ‘c’:

t:'[abc]’ —► ID(t):Formula

where ‘[abe]’ is a regular expression in the sense of UNIX and formal language theory.

1.3.3.6 C ollections o f a C ategory

The expression ‘a:SetOf(Formula)’ introduces a collection of Formulas. The collection

forming operations are a convenient way of packaging the comma convention described

in §1.3.1. For example, using the metavariable declarations given above, the following

abbreviations are possible:

for {y>,^}
r,y?AV>,A for r U U A

for 0

The effect of collections is to make writing inference rules less clumsy and more

convenient. An extension of this notation is supported: It is permissible to write -iT

and TAA; these stand for the set of formulas that have the form -iy? and y>A ,̂ etc.
The collection variables T and A are used to refer to the appropriate subformulas of
the matching formulas. If the pattern is “~ir ,r '”, then the division of formulas is as

follows:
“ia,-i(6Ac), d, -icAe

r= {o ,6 A c} r '= {(i,-icA e}

Patterns are particularly convenient for presenting the rules of modal systems.

26 CHAPTER 1. INTRODUCTION

The second aspect of the definition of a system is its deductive part, presented as a

collection of inference rules.

1 .3 .4 In feren ce R u le s

Inference rules give meaning to the syntactic structures of a system by showing the

ways in which the structures interact. The inference rules present in a system can

be divided according to their intended use, by the structures they operate on, their

suitability for backwards reasoning, and so forth. Rules should be given names that
reflect these considerations. In the environment some of these characterisations are

made by the framework, whereas others are given by a user defining a system.

The structure of a rule can be simply stated as

Ji J2 • • • Jn
----------------------------side-condition

J
where each J s is an instance of judgement categories, usually containing schematic

variables. The side-condition is optional, and when present acts as an additional

guard on the applicability of the rule. The name of a rule in the environment is a

list of identifiers, separated by dashes (-). Each identifier indicates a property of the

rule that is important to the user, and should by convention suggest the rule’s use.
Several rules can be selected at once as part of a simple strategy language by using

the presence or absence of their constituent names. The following is an example of

a rule governing the introduction of A on the right-hand side of the intuitionistic

sequent:
T\~<p T
---------------------- A N D - r i g h t

T b < p A i >

The label indicated to the right of the rule gives the rules name. (In the thesis

this is often written in symbols, e.g. AND-right becomes bA.) The rule can be

read as constructing an argument justifying <pAip from the two individual arguments

justifying <p and ip separately, but from the same set of assumptions.

The rules defining a * consequence relation can be divided into three kinds: basic,
structural and logical.

1.3.4.1 Basic rules

Basic rules are those that follow unconditionally and allow the introduction of

arguments that are valid without further justification - axioms, e.g.

which admits a trivial argument.

1.3. THE FRAMEWORK 27

1.3.4.2 Structural rules

Structural rules detail the manner in which assumptions can be manipulated. They

can act to allow an individual assumption to be freely introduced into the argument,
or permit several occurrences of the same assumption to be reduced to fewer

occurrences of that assumption. Structural rules also act on groups of assumptions

for example allowing them to be reordered. Depending on the nature of the logical

system it may require any of these, or other structural properties.

The use of collection categories in the definition of language can avoid the need for

explicit structural rules in many cases.

Structural rules can often be absorbed into definition of a system’s language. In this

framework there are essentially two ways of giving the structural rules for the logic.

a:ListOf(Formula) *b' c:ListOf(Formula) —> SEQ(a,c):Sequent

r,v?,v>,r'ha r b a ,v?,v>,a#
r'Fa rFA,^9,A'

f a r i - a , a '
r' f a r b a ,^,a '

Figure 1.2: Explicit structural rules

Perhaps the traditional way, certainly for the sequent calculus, is to treat the left and

right-hand sides of the consequence relation as sequences. Sequences are here termed

lists and rules are then written to manipulate these lists. These rules are referred to

as structural rather than logical, as no logical operators are affected. Structural rules

have a meaning in the sense that they specify the way in which assumptions can be

considered (in sequence, or in any order), and indicate whether assumptions may, for

example be duplicated (or, according to the reading, contracted). Figure 1.2 shows

the declaration required for a sequent with explicit structural rules.

a:SetOf(Formula) 'b ' c:SetOf(Formula) —► SEQ(a,c):Sequent

Figure 1.3: Implicit structural rules

In this framework structural rules may be given implicitly by using, as part of

the language, collections of categories with properties that allow rearrangement or

duplication (e.g. sets, bags). Figure 1.3 shows the sequent defined using sets rather

than lists.

28 C H A P T E R 1. IN T R O D U C T IO N

The advantages of the second approach over the first are that:

• the proofs are shorter, as structural steps are absorbed by the framework when

conducting proofs in the logic;

• the theorem prover has greater control over the proof procedure, as properties

of collections can be used when they are needed rather than in a disorderly

fashion.

1.3.4.3 Logical rules

Logical rules give meaning to the logical operations. As an example of this consider

the following two rules:

<p,^,rha r b a,<̂ r h a,v>
----------------Ah and ----------------------------hA
<pAip, T b A r b A, (pAij?

These two rules give the meaning of the ‘A’ operator when it occurs in an assumption

(Ab) and when it occurs in a conclusion (bA). The first rule allows us to form the

‘and’ of any two assumptions. The second rule allows us to conclude l(p and ip' only

when we can conclude both and independently. This form of definition of

the behaviour of a connective is an all-introduction presentation - the rules show

the conditions which must pertain before the connective can be introduced as an

assumption or conclusion of the sequent. When a system is presented in this way, it

is more suitable for backwards reasoning.

1.3 .4 .4 Side-conditions

Side-conditions are essentially guards on the applicability of the rule and are decided

from the instantiated form of the judgements in the rule. In this sense they

are observable properties; they can be determined ‘at a glance’. Side-conditions

provide additional syntactic capabilities for the rule and may, for instance perform

a specialised pattern recognition, or check for the existence of free/bound variables.

But, whatever the function a side-condition provides, it must be effectively decidable

from the actual form of the judgements when the rule is used.

To illustrate the importance of the decidable aspect of a side-condition, consider the

behaviour of the theorem prover using rules in a backwards or bottom-to-top sense.

Before a rule may be used, all of its side-conditions must be satisfied using only the

information available in the concluding judgement of the rule. If it is not possible

to decide the side-condition, or if the antecedents of the rule are used before the

side-condition is satisfied, the theorem prover may attempt to find a derivation for

an ill-formed judgement; this can cause it to enter an internal loop.

1.4. A C T IV IT IE S 29

In many cases where a side-condition could be used, it can usually be replaced

by a more refined choice of syntactic categories, or else by a pattern or a binder.

Experience with side-conditions prior to the introduction of patterns and binders was
that unavoidable use of side-conditions pointed to useful extensions of the framework.

In this sense they can have a positive role as design heuristics.

1.3.5 E xam ple S ystem

When taken together figures 1.1 and 1.4 give a presentation of Intuitionistic

propositional logic.

A ll-introduction R ules for Intuitionistic Logic

basic v\-<p r,v>i- 0

r,^h v?

h 0------ Ah|
T, (pAip h 9

v ,p \ - 9 Y ^ v - e

r, k 9

rh v?

vh

T, h 9 r h (p—

T\ - <P T \ - i >
--------------------- h|Ar h ip Alp

t y <p rh^
------------- hiVa --------------hiV6r h (pvip r h pW'ip

r, -i</? h ^
r,yh l
r i—

Figure 1.4: Intuitionistic Rules

1.4 A ctiv ities

Once a system has been presented in the framework, it can be put to a number of
different uses. These are divided into two distinct types: proofs within a logic, and

proofs about a logic.

1.4.1 P roofs w ith in a Logic

Proofs are conducted by the environment with respect to a logic and a particular

strategy which specifies which rules are involved and the order of their application.

30 C H A P T E R 1. IN T R O D U C T IO N

The proof procedure makes use of the form of rules to decompose a judgement

into successively smaller and smaller judgements. This is aided by the sub-formula

property and an all-introduction presentation of the system. The sub-formula property

requires the size of the antecedents of a rule to be no greater than the size of

its conclusion. The all-introduction presentation ensures that that the definition of
each connective is achieved through its occurrences in the conclusion of the rule

alone. Derivations are conducted in this ‘backwards’ sense guided by a strategy.

The strategy divides the derivation tree into regions according to the choice of rules

available. This results in the ‘layering’ of the derivation tree illustrated by figure 1.5

where the arrowed line indicates a branch through the derivation tree from its root
to a leaf. The nodes of the tree are applications of inference rules.

Figure 1.5: Derivation Tree

Strategies also convey information about the ‘force’ of a region. The force can affect

the shape of the final proof. Two forces are provided: eager and lazy. Eager regions

attempt to be as large as possible, whereas lazy ones grow only when they must -

that is when it is not possible to complete the derivation beyond them. A third type

of region inserts an occurrence of a single rule.

Strategies can also affect the choice of logic by specifying precisely which rules are

used at each stage of the derivation. So a strategy can for instance ignore a number

of rules. This is useful for developing a family of related systems as a single

collection of rules. A global constraint can be given that places bounds on the depth

of the derivation, or the number of times certain rules are used in a branch. Further

details of strategies are given in Chapter 7.

The proof tree is constrained further during its construction so that every extension

of it is irredundant. This simple technique acts as a loop checker.

Since strategies are free to ignore rules, they could be thought of as part of the

specification of the logic. Proofs and the derivation of properties are usually done

relative to strategies.

1.4. A C T IV IT IE S 31

1.4.2 P roofs abou t a Logic

Given a presentation of a new system, one of the first questions that a user of an

environment will ask is: “what properties does it have?” This might be refined further

by asking how the connectives interact one with another. Are there normal forms?

Is the system based on a consequence relation? Depending on the applications of the

system, these may or may not be important questions to answer. An environment of
the type described should provide tools that support activities like these.

1.4.2.1 N orm al form s

The search for normal forms takes various forms depending on the system. For

classical logic it is possible to place formulas in prenex-form, whereas this is not
possible for an intuitionistic system. Similarly a system may allow all formulas to be

written in disjunctive or conjunctive normal forms.

A type of analysis that is particularly useful for presentations of modal system is the

identification and relationship between modalities. This involves an examination of

the combinatorial relationship between the unary operators in the language, typically

-i, □ and O. This example is explored further in §3.3 for several interesting modal

systems.

1.4.2.2 D erived rules

Inference rules state ways in which syntactic elements of a system can interact. It

is sometimes convenient to formulate inference rules that state general properties of

the system. Often, these rules are not useful to the theorem prover described here,

as the rules are not suitable for backwards reasoning. However, it is often possible

to show that the rules which are useful to the theorem prover capture the general

properties which were required. In this case, the new rules are described as derived

with respect: to the other rules.

To show constructively that a rule is a derived rule, one must find a number

of translations such that irrespective of where the derived rule might occur in a

derivation, its occurrence can be replaced by an equivalent derivation that does not

depend on the derived rule. If a rule can be replaced in this systematic way by

other rules then the effect - or meaning - of the derived rule is implicitly present in

the other rules.

32 C H A P T E R 1. IN T R O D U C T IO N

By its nature, the structure of a derivation or proof tree gives rise to a large

number of possible contexts in which the rules may occur. Each such case must

be considered, and a transformation found. Consequently, the structure of possible

proof trees is sensitive to the ways in which rules can interact with other rules and

axioms. The construction must therefore be rechecked whenever any of the axioms

or rules present in the system are changed. This type of activity is considered to

be a candidate for tool support in the environment. The nature of derived rules is

discussed in Chapter 5.

Consider the task of checking that the consequence relation of the example of figure

1.4 is a reflexive and transitive. For reflexivity, it is necessary just to inspect the

rules to find one of the appropriate form.

(ph (p
is subsumed by the rule

--------------- basic
r , < p h < p

The case of transitivity is more complicated. The transitivity condition is expressed

by a “cut” rule such as2
T h <p A,<phi/>

r , A h ip
which is not well behaved from the point of view of the inference engine described

above. The reason for this is that the rule eliminates the formula ‘<£>’ from the

conclusions of the top two proofs Y b (p and A, p> h to form a new proof of T, A h ^

which contains fewer occurrences of the formula V ’ (usually no occurrences). As the

proof procedure works in a ‘backwards’ manner (using the rules from bottom-to-top),

when it uses the cut rule, it has to guess a suitable formula to substitute for ‘<p\

This guess may be inappropriate and the procedure may never find the correct

choice. Fortunately Gentzen’s great insight when formulating the sequent calculus was

to observe that a system of rules may contain the effect of the cut rule implicitly.
The cut rule may therefore be a derived rule with respect to the other well-behaved

rules in the system. This result is related to Gentzen’s Hauptsatz.

If the transitivity property can be verified, it can give rise to a number of important

corollaries depending on the other connectives present. It can be verified that the

proof procedure is complete, in the sense that it will work for all judgements that

are derivable. In some cases, when there are clear bounds on the size of the search

space, a decision procedure is obtained. For some logics, the Hauptsatz leads to

consistency results, and for others it leads to the disjunction property and the

interpolation theorem3.

2 although the precise formulation varies from logic to logic

3The Interpolation Theorem has been found to have important applications in the theory of

1.5. T H E E N V IR O N M E N T 33

1.5 T he environm ent

A prototype environment to support the framework has been constructed by the

author. A number of illustrative graphics from this, and a discussion of its user

interface are included in Chapter 6; also, graphics illustrating results for modalities

are included in Chapter 3.

1.6 Structure of th e thesis

The remainder of the thesis is structured as follows: In Chapter 2 a methodology

for constructing systems of rules for the environment from other presentations is

presented. Chapter 3 extends this methodology to treat a number of non-standard
logics and gives the presentations used in the environment. Logics treated there

include many modal logics and their applications together with some many-valued

systems. The derivation of results about the distinct modalities in some modal

systems is also shown. Chapter 4 discusses the issue of quantification. Chapter 5

describes the details of the technique for showing the status of derived rules and

gives examples of how this leads to other useful meta-theorems. The environment’s

interface is discussed more fully in Chapter 6 and aspects of the implementation are

presented in Chapter 7. Conclusions and a discussion of future work are given in

the final chapter.

Specification where it is necessary to preserve conservative extensions of specification theories when
they are Implemented in terms of another theory. It is the basis of the modularity result in
[Sad84].

Chapter 2

M ethodology

This chapter provides a user of the environment with guidance on

formulating a logic within the environment, and provides techniques which

may be used to relate different presentations of logical systems.

The chapter also justifies the use of all-introduction sequent presentations

of systems in the environment. This is done by demonstrating how

other proof theoretic presentations of systems can be transformed into an

appropriate, equivalent, all-introduction presentation of the system.

2.1 Introduction

Three techniques for formalising the deductive process are examined: the Axiomatic,

Natural Deduction and Sequent calculi. Each technique can be seen to capture the

consequence relation of the particular logical system under consideration, but each

uses a different syntactic presentation of the system. Consequently, each technique has

advantages and disadvantages over the others in its ability to present different classes,

or families, of logics. Similarly, each technique gives more or less computational
insight into the deductive process of a system and arguably, therefore its suitability

for automation on a computer.

As the deductive formalisms are surveyed, the progression from a presentation of

a system in one formalism to a presentation of an equivalent system in the next

is shown. Throughout this chapter three example systems are used as a guide

through this process: Minimal Logic based on a single implication connective,

Intuitionistic Logic and Classical Logic. Discussion of other logics and issues to do

with quantification are deferred until Chapters 3 and 4 respectively.

34

2.2. A X IO M A T IC P R E SE N T A T IO N S 35

2.2 A xiom atic Presentations

The axiomatic school is rooted in Frege’s seminal Begriffsschrift of 1879[Fre67]. The

tree-like notation for logical connectives used there was found too expansive for most
people and so the axiomatic school is founded in notational terms by Hilbert and

Bernays[Hil67], although the turnstile symbol (b) originates with Frege.

An axiomatic presentation of a system consists of:

1 . a syntactic category of formulas built over a category of propositions containing

the connective over formulas; additional connectives are often used. For

example, “If p is a proposition and e and / are formulas then p , -ie, eA/ , eV/,

e—►/ are formulas. Nothing else is a formula.”;

2 . metavariables over formulas, l<p' lip' ‘0’;

3. a judgement category, ‘bt^’;

4. a number of formula schemas called axioms; and,

5. a rule of proof called Modus Ponens.

b (p b
---------------- Modus Ponens

bV>

A presentation may have several rules as well as Modus Ponens when quantifiers

or modal operators are present in the category of formulas (chapters 3 and 4).

The judgement category designates formulas that are consequences of the axioms

under the rules of proof. Axioms are schemas and stand for all the formulas that can

be obtained by making consistent1 substitutions of the axiom’s schematic variables

with different formulas. A category of judgements is defined by all the instances of
axioms together with all the deductions possible from them by way of the rules of

proof.

A proof of a formula in this ‘pure’ axiomatic framework is a tree formed by taking

leaves to be instances of the axioms (e.g. the axioms A l-9 below). The following

type definitions give an example of the structure of a pure axiomatic proof.

Ja consistent substitution is one in which each occurrence of a particular schematic variable in
the axiom or rule is made to stand for the same formula.

36 C H A P T E R 2. M E T H O D O L O G Y

Tree(a, (3)

Axiomatic-proof-iree

Leaf (a)
Node((3, Tree (a, (3) list)

Tree(Axiom, Rule-of-proof)

Axiom
Rule-of-proof

Conclusion

Formula
Conclusion list —► Conclusion
Formula

The Axiomatic-proof-tree is a specialisation of the Tree type whose leaves are Axioms

and whose internal nodes name the Rule-of-proof to be used at that point in the tree.
The rule can then be thought of as a function which takes a list of conclusions of
the proofs above it and returns a new conclusion. For backwards proof construction,
the other direction - from the conclusion to the antecedents - is more useful. The

application of the rule constructs a formula that is the conclusion of the proof. This

example data-structure will be refined to illustrate the structure of proofs in the later

examples.

The following displays show the axiomatic presentations which are to be used for

or three example systems: Minimal logic in which there is a single implication

connective; Classical logic with conjunction, disjunction and negation in addition to

implication; and Intuitionistic logic in which there is a restriction on the nature of
the negation. These axiomatic presentations are widely used and appear to be due
to Kleene ([Kle52], p. 82).

A xiom s for M inim al Logic

A1

A2

A xiom s for C lassical Logic

A1-A2 +

A3 v5- KV’— Aip)
A4a ipA^—xp A4b ip Alps'll}

A5a ip-*ipVty A5b ift—HpVlj)

A6

A7

A8

2.2. A X IO M A TIC P R E SE N T A T IO N S 37

A xiom s for Intu ition istic Logic

A1-A7 +
A9 <£—>(-192-+^)

An ‘impure’ axiomatic system is an extension of a pure system so that the Leaves of

the proof can contain arbitrary formulas as well as axioms. The conclusion of an

impure proof can be stated as ‘y>i,. . <pn h -0 ’ using a sequent where the cpi are the

non-axiom formulas present in the proof. The deduction theorem provides a means

of transforming an impure proof into a pure one.

2.2 .1 D ed u ction T h eorem

Suppose there is a proof of V , <p\ , . . .,y>n h VV then the Deduction Theorem says that
a proof of V i , . h y>— may be obtained, and hence, by repeated application,

a proof of the form ‘h (<pn—►------►(<£—►VO * * *)’• The proof of this meta-theorem is
given by induction over the structure of the axiomatic proofs.

For the leaves of the proof, each assumption and axiom must survive the

transformation from xp to <£—►V7* Each rule in the body of the proof must survive

the passage from
V>1 ’ ‘ • V>n

0

t0 I I

(p—>9
which will be shown for the case of modus ponens - but must be verified for each

rule if other rules are present.

A systematic procedure is defined that transforms a proof of the form , ipn F V>

to a proof of the form <£>1 , . • h <-p—► '0 - and by repeated application to a pure
proof. The proof is an induction on the structure of the initial impure axiomatic

proof.

1 . 0 is a leaf of the proof. Now 9 is either an instance of an axiom or else an

assumed formula.

(a) 9 is an axiom or an assumption not equal to <p. Construct a new leaf with

an instance of axiom A1 and modus ponens:

9 9->(<p->9)

(p—>9

38 C H A P T E R 2. M E T H O D O L O G Y

(b) If the 9 is equal to <p replace the leaf with the following derivation2 of

A l A 2/"
A l

xp xp—>9
2. is an internal node. Recursively transform the proofs of xp and ip—*6

9
to (p—np and <p->(ip-+9) respectively, and construct the new proof

ip—*-xp (p—>(ip—>9)

ip—>9

as follows

A2

<p->(ip^>9)

tp—*9

The Deduction Theorem will be of considerable use in the following sections.

2.3 Natural D eduction Presentations

Natural deduction removes a great deal of the clutter from the axiomatic style.

Originally developed by Gentzen in his seminal paper [Gen69], Natural Deduction

has been refined by the work of Prawitz [Pra65], and is increasingly popular in

Computer Science as a formal framework for conducting proofs of properties of

specifications (e.g. [Jon86]). Rather than having numerous axioms, natural deduction

uses a number of rules of inference. Assumptions may be introduced at any stage,

and may be discharged by certain of the rules. The discharge of assumptions is not

local to the application of an inference rule, but may affect the proofs above it.

ND-proof-tree Tree(Assumption, Rule-of-inference)

Assumption ::= Formula
Rule-of-inference ND-proof-tree list —► (Assumption list, Conclusion)

Conclusion ::= Formula

2 The precise details of the proof vary according to the choice of axioms. The ones used
here correspond to the types of the combinators K (axiom A l) and S (axiom A2). Also <p—>-ip
corresponds to I = SKK.

2.3. N A TU R A L D E D U C T IO N P R E SE N T A T IO N S 39

A proof tree in the natural deduction framework is illustrated above. Here the leaves

are assumed formulas rather than axioms. The internal nodes are applications of rules

of inference that take the proofs above it to a pair consisting of the undischarged

assumptions and the conclusion of the proof. In this way, a rule may adjust the

assumptions appropriately.

In Natural Deduction presentations, the rules of inference are divided into two classes:

introduction and elimination. For each connective there is an introduction rule and

an elimination rule (and often more than one of each).

N om enclature: A natural deduction rule that introduces (eliminates) a connective
x is called ‘xX' (‘xS’).

N atural D eduction R ules for M inim al Logic

. p p —tlj}
: ----------------.£

^ V*---- vj
< p^lj)

Taking the rules for minimal logic where there is just one connective (—»•), there

are two rules. Assumed formulas are written in square brackets and their discharge

is indicated with a superscript. The index of the superscript is shared with the

conclusion of the rule responsible for the discharge of the assumptions. So in our

example of Minimal Logic the — rule may cause the discharge of (any number of)

instances of the assumption [<p] in the derivations of leading to tj}. The following

illustrates the derivation of axiom A2 above.

[y>_»(0_*0)]2 [<̂]i [(p -+ i>]3 [p] 1
------------------------------. £ ---------------------- .£

i p ^ Q1

Note that the topmost instance of the inference rule —>-J discharges two applications

of the assumption p (both indexed with 1).

40 C H A P T E R 2. M E T H O D O L O G Y

It is worth remarking that the rule —*T does the essential work of the Deduction
r

M r

Theorem in that it allows us to go from a proof of ^ to a proof of p —*tp. We can

build on this observation through the use of the sequent notation.

2.4 From A xiom s to N atural D eduction R ules

Heuristics are now given which, by considering each axiom in turn, translate a system

presented with axioms into an equivalent Natural Deduction presentation.

The axioms A 1 and A2, together with the rule of proof modus ponens, define the

meaning of the implication connective through the transformation embodied in the

deduction theorem (for which they are essential). The rule introducing an implication

can therefore be viewed as an application of the deduction theorem. Similarly, the

rule eliminating an implication can be seen to be given directly by modus ponens.

The remaining axioms can be combined with arbitrary occurrences of the modus

ponens rule to derive their natural deduction, introduction and elimination rules. In

cases where the application of modus ponens leaves an argument of the form lp -* 0 \

an occurrence of the rule —*•£ may be inserted to allow the new rule to discharge

the assumption ‘p \ should this be required.

Take axiom A3 [p^ (ip -*pA0)] and two applications of Modus Ponens

<p A3

ip —t p A ip ip

p A ip

From which is derived the rule:
-------- AT
<pA ip

Similarly for axiom A4a , [p A ip - + p] and axiom A4b [p A ip —>ip]

p A ip A4a (fA ip A4b

<P

results in
<pA'ip

A£ a and

iP

pA'ip
A£b

p xP

Also for axiom A5a [p —> p V ip] and axiom A5b [ip -^ p y ip]

p A5a ip A5b

pyxp pM ip

2.4. F R O M A X IO M S TO N A TU R A L D E D U C T IO N R U L E S 41

arriving at V ia and V I6

(p 0
------via and -------vlb¥?V0 <̂ V0

Also interesting is axiom A6 [(<p—np)-+(('ip-+0)—>(p\/,ip->O))]. Applying modus ponens

twice gives
(p—>9 A6

('0—*0)—► (<̂ V0—<>0) 0 —>6

<p\/ip-+9
Cutting this once more with <^V0 produces

0 —>9

(p\/\p—*9 v?V0

0

Applying —*X (derived above) to <p—>9 and 0 —>9 the following rule is obtained

M w

6 9

<p-*9 i p — * 9 p N i p

9

This may be simplified to the rule

M W

9 9 v?V0---------v£
9

Applying a similar analysis to axiom A7 [(<£>—>-0)—*k((<rJ—>,-10)

(p—̂ 0 A7

((£>—>■■“10)—►-l(̂ (p—►—10

applying —>£ twice gives

-i<p

[¥>] M

V5)]

0 -10 ---- -»x

The axiom A8 [—•— —►y?] is straightforward

-i—xp A8

<P

42 C H A P T E R 2. M E T H O D O L O G Y

giving

<P

Likewise axiom A9 [<p— tip)] becomes

¥> -"P------------ s
x/j

These rules are summarised in the following tables. Assumptions that may be

discharged by a rule are indicated in square brackets.

N atural D eduction R ules for Classical Logic

Minimal Logic +

p t}> V?A0 y?A0
---------- AT ---------A£a ---------ASb
<£>A0 <P 0

V 0
W\ M

---------V ia ---------V J6 ; ;
V?V0 V?V0 e e V?V0

Iv) M

0 -i0
-------------------,T

9

—i-i tp

<p

----------v £

N atural D eduction R ules for Intu ition istic Logic

Classical Logic — -i-i£ +

<P ~'<P
----------- €

i

2.5 Introduction and E lim ination Presentations

A disadvantage of the use of Natural Deduction is that its mechanism for the

discharge of assumptions is global to the subproofs of a rule. However, the discharge

of assumptions can be made local (and explicit) by the use of sequents. The

locality arises from the rule’s ability to indicate the discharge of assumptions by the

2.6. F R O M N A TU R A L D E D U C T IO N TO SE Q U E N T S 43

manipulation of sequents rather than subproofs. The use of sequents to reason about

the assumptions used in an argument has already been discussed. Writing T b -0’

means that 0 follows from the assumptions T. Sequents represent arguments and

sequent rules transform one or more arguments into another argument, preserving, it
is hoped, the validity of the new argument with respect to the system concerned.

The natural deduction rules given above can be recast to use sequents. Recall that

the notation T b p is used to mean that the proof of p depends on the assumptions
r

r or as has sometimes been written: p. Inference rules using sequents can now

make the manipulation of assumptions local (no :’s required); this is more convenient

and importantly, more expressive, as it allows greater control to be exercised over

mechanisms concerning how and when assumptions can be introduced or eliminated.

Moreover, this can be done without adjusting the basic infrastructure as would be

necessary if a Natural Deduction presentation were adopted. The localisation of
assumptions also simplifies data structures used in the environment.

2.6 From N atural D eduction to Sequents

Armed with the Deduction Theorem, the Natural Deduction rules may be recast as

follows. A proof of p in the Natural Deduction setting becomes a proof of the

sequent T b p by collecting together all the assumptions on which the proof of p

rests and calling them T. For example

M M

0 9 p\/tp--------- ve
9

I \ y?b0 A, 0 b 9 0 b y>V0
becomes ---vh£

I \ A , O b 0

N om enclature: A sequent style introduction (elimination) rule for the connective
x is called ‘zbX' (‘zb £ ’).

An assumption can be introduced in a natural deduction proof and then used

immediately:

44 C H A P T E R 2. M E T H O D O L O G Y

which can be captured by the basic sequent

--------- basic

h </?-►¥>

Returning to the illustration of the form of the proof tree required for this formalism,
it can be seen that a proof tree in this sequent framework has leaves consisting of

sequents with varying structures, whose details are given below:

Sequent-proof-tree (y)
Sequent-rule(y)

Tree(y, Sequent-rule (y))
Sequent-proof-tree(y) list —*■ y

Classical-proof-tree
Intuitionistic-proof-tree

Linear-proof-tree

= Sequent-proof-tree(Formula set # Formula set)
= Sequent-proof-tree(Formula set # Formula)
= Sequent-proof-tree(Formula list # Formula list)

The internal nodes are again applications of the sequent rules of inference which

rewrite the proofs above them into a sequent representing the conclusion of the

proof. The definition of Sequent-proof-tree and Sequent-rule is parameterised by an

appropriate choice of the sequent structure.

A Natural Deduction rule derived from the axiomatic basis considered so far

allows an inference rule to discharge any number of occurrences of the assumption

simultaneously. Consequently, it is permissible, in the new sequent setting, to make

as many copies of the assumptions as are required; all the copies can be discharged

in a single step. This observation allows all the assumptions to be shared (TUAUO)

among all the sub-proofs of the sequent form of the rule. When this is done, the

following slightly simplified presentation of the rule can be obtained for ME above

r , (pb 0 v \~ (pMip
FTi?

If assumptions are shared among sub-proofs in this way, they must be introduced

into the branch of the proof at some stage. This can be at the leaves or inside the

body of the proof. For the first alternative, it is necessary to adjust the definition of
a basic sequent to be

--------------- basic
(p ,T \-< p

rather than

(p \ - y
as our means of introducing assumptions. The other alternative, which is more in

keeping with the spirit of the use of assumptions in the natural deduction setting, is

2.6. FR O M N A TU R A L D E D U C T IO N TO SE Q U E N T S 45

to keep the basic sequent, but to add a rule specifically to allow the introduction of

assumptions into the body of the derivation:

r b <p
---------------- thinhr,̂ i- <p

From a theorem proving viewpoint, in which rules are used to decompose a goal to

a number of subgoals, it is better to adopt the first strategy over the second as it

is harder to decide when an assumption is no longer required for the proof of the

judgement.

2 .6 .1 S tru ctu ra l R u le s

The use of structural rules in the sequent calculus may further be motivated by

re-examining the earlier discussion of the Deduction Theorem3. In the earlier section

it was seen that to discharge an assumption using the particular axiomatisation of

classical logic it had to be shown that:

1 . each axiom of the system could be transformed from ip to y?— for an

arbitrary y?, and

tpl • • • \pn i • • • (p—tlpn
2 . each rule could be transformed from ------------ to ---------------------------- .

$ (p-+9

Consider however, the following presentation of linear implication in [Gab89].

A xiom s for Linear Im plication

LI y?—i-y?

L4 (y?-^)

For linear implication, the intention is that an assumption must be used precisely

once.

A xiom s for R elevant Im plication

Linear Implication +

R1 (< ^ (^ -+ 0))-+ ((v? - ^ H (v :’- ^))

3Although this discussion relates to non-standard logics of the next chapter

46 C H A P T E R 2. M E T H O D O L O G Y

For relevant implication, the intention is that an assumption cannot be discharged

unless it is used, but it can be used repeatedly as permitted by axiom R l. Hence,

neither system allows weakening, or monotonicity as it was called before.

To see how these axioms give rise to a Deduction Theorem the conditions given

above are recast slightly:

1 . the assumption being discharged can be transformed from ip to for an

arbitrary <p, and

1p\ • • • 1pn
2 . that each rule could be transformed from ----------- to

9

*P\ 'Pn

<P—>9
for precisely one arbitrary i for the case of linear implication, and to

’ <P^>Pn
<p—>9

for an arbitrary number of antecedents in the case of relevant implication.

There is only a single rule of proof, Modus Ponens, for the Linear and Relevant
systems. Condition 1 is satisfied by an appropriate instantiation of axiom LI. For

condition 2 there are three subcases:
ip ^ 9

60 P <p->(p-+0)
(b)

ip—up (p—+(ip^6)
(c)

cp—*9 ip—>-6 ip—>9

of these, the last is not valid for linear implication as it allows ip to be used twice

(axiom Rl is required). Each has the following justification:

p —>9 axiom L3

{ip—up)—>(<p—>9) ip—*ip

ip—>-9
(«)

ip—>(p—>9) axiom L2

p p-*(ip-*9)

<p—+9
(b)

ip—*ip axiom L4 ip—>{$-*9) axiom L2

{ ^ { 9 ^ e)) - ^ { ip - ^ { ip ^ 9))_____ $ - > { ^ 9)
ip-*{ip—>9) axiom Rl
--- (c)

ip—*9

The restrictions Linear and Relevant logics place on the use of assumptions is
translated directly in the sequent calculus to conditions on the manipulation of

assumptions:

2.6. F R O M N A TU R A L D E D U C T IO N TO S E Q U E N T S 47

Exchange
r>,^,r'bA
r^^.r'bA

r b A,<p,Vb A'

T b A,$,<p, A'
axiom A2 axioms L2-4

Contraction
r,y>,y>,r#b A r b A, ¥>,¥>, A'

axiom A2 axiom R1
r,p, r'l- a r h A, <fi, A'

Weakening
Tb A rb a

axiom A1
v>,r b a rby?,A

So the choice of structural rule depends on the logic.

Weakening Contraction Exchange systems

V • j v Most logics

X v ' V Relevance logic

X X V Linear logic

X X X Type inference

This is an important observation, as it gives greater expressibility of sequent
presentations over the number of families of logics that can be supported without
resorting to additional (global) controls on the manipulation of assumptions.

There are two approaches to the treatment of weakening in the cases of Classical

and Intuitionistic logics:

1. At each rule, the assumptions may be rearranged to match the assumptions

each sub-proof requires (e.g. T, A ,0 above). This is preferable for top-down

proofs or forward reasoning.

2. The assumptions used by each sub-proof may be made uniform by sharing all

the assumptions amongst each sub-proof. In general this leads to redundant

assumptions. These assumptions are harmless and can be absorbed by

generalising the notion of basic sequent. This is preferable for bottom-up proofs

or backwards reasoning.

The three tables below show the application of the second alternative to the Natural

Deduction rules above.

Introduction & Elim ination R ules for M inim al Logic

basic
r b

►hi rby> rf-
rb

►l-£

48 C H A P T E R 2. M E T H O D O L O G Y

Introduction & Elim ination R ules for C lassical Logic

Minimal Logic +

rb</> rb^-------- aHTT b

r b y > v \ - i p
------------- VhTo ---------------VhT6r b (pW'ijj r b (p v ip

r,< pb ip r , < p \—------------- ,hrr i— \̂ p

r b (pAij) r b <pA\jj
-----------------A\-£a -----------------Ah£br b <p r b ^

T , < p \ - 0 T , 4 > \ - 0 Y\-<pVi}>----------------- vhfrb#
r i—i-î ?

r b y ?

Introduction Sc E lim ination R ules for Intu ition istic Logic

Classical Logic — — ibS +

r b ip T I— up
------------------------ , \ - £

rbv»

2.7 A ll-introduction Sequent Rules

Although the sequent versions of the introduction and elimination rules presented

above clarify the discharge of assumptions, they do not completely predict the

structure of the proof. What is required are rules that can be used in the backwards,

or bottom-to-top, sense by the computer theorem prover. That is, in order to decide

whether some judgement (here sequent) holds, the rules decompose the judgement into

a number of smaller judgements. These judgements may themselves be (recursively)

decomposed until they are small enough to be trivial (or basic). Fortunately, the

sequent introduction and elimination rules presented in the previous section may be

transformed into a form suitable for this purpose. The subformula property plays an

important role in providing guidance through this process.

N om enclature: A rule introducing the connective x on the left-hand (right-hand)

side of a turnstile is named ‘xbs’ (‘bsar’), where S is the name of the system to

which the rule belongs. When it is clear from the context which S is being used,
the subscript is omitted.

2.8. F R O M SE Q U E N T S TO A LL-IN T R O D U C T IO N R U L E S 49

2.7.1 Subformulas and the Subformula Property

The subformulas of a formula are given by 5F(y?), defined as follows:

SF{<p)

SF(-t(p)

SF(cpA

SF((pVif>)

SF(<p-+i!>)

{^}, if <p e $

{-’¥>} U SF((p)

{pAip} U SF(if) U SF(fl>)

{(pW'ip} U SF((p) U SF('ip)

{<p—>-0} u SF(<p) U SF('tp)

where $ denotes the set of atomic propositions. The definition is lifted to

single-conclusioned sequents h as follows

S F { i p b <p) SF{<p) U U S F (f i)
.1 = 1

A similar lifting is made for multiply-conclusioned sequents:

S Fulfil, . . ., iftn b U SF (*)
.1=1

u U SF M
.1=1

A general formulation of the subformula property is given in §5.2.13, but the

definition here is sufficient for the present.

An inference rule is said to enjoy the subformula property when all formulas occurring

in sequents above the horizontal line belong to the set of subformulas of the sequent
occurring in the conclusion of the rule below the line. That is the rule

Ti h V’l • * • rm b rj>m

T \ - < p

has the subformula property when S F (T b </?) D S F (T i b ^i)

2.8 From Sequents to A ll-introduction R ules

Reviewing the introduction and elimination rules above, it can be seen that all but

one of the introduction rules already enjoy the subformula property but not all of the

elimination rules do. Taking the elimination rule V-E as an example of one such rule

50 C H A P T E R 2. M E T H O D O L O G Y

r,(p\~o T,ip\~o r f------------------ Vh£
r \ -e

we note immediately that this rule does not have the subformula property since, for

example, the conclusion of T b (pS/ip is syntactically separate from the conclusion of

the rule T b 9.

But this rule may be reformulated in the following way: Assume that the assumptions

are rather than T. This can be done by weakening (using the rule ‘£/imb’

above); the rule then becomes:

r , < p h 9 r , ,t p \ - 9
-------------------------- thinh -------------------------- ihinh ---------------------------- thinh
r,y>V^,y>H 0 T, (pVij), I- 9 T, (p\hp ip\/^

r, b 9

Since T , <p\Zil) b <^V ’̂ is a basic sequent, the original proof of T b (pVip may be ignored

completely. Instead of showing that was a consequence of the assumptions T
the new rule insists that this consequence is already explicitly an assumption. This

is precisely what is required for a more directed search strategy. The new rule

simplifies to:
r , y ? b 0 I \V>b0
---------------------------- Vh

r, cps/'ip b 9
This rule now enjoys the subformula property as required.

2.8 .1 T he cut rule

The cut rule is derived from —>bS by an application of the —>bT rule as follows:

r,v?b 0-------►hrrby? r b </?—------------ ►hf
r b

giving

T b <p T, <p b rjj
------------------------------- cutrb^

2.8. FR O M SE Q U E N T S TO A LL-IN T R O D U C T IO N R U L E S 51

2.8 .2 G eneralising rules

In most cases the technique described above produces suitable all-introduction sequent
rules, as it is here for the rules Vb and Ah. Occassionally however, it is necessary to

generalise a rule slightly in order to make it more widely applicable. This amounts

to building in one or more applications of the cut rule. Taking —>-h£ as an example

of this

Thy? T h (p—np ----------- >^£

Weakening both sides with p —nj) produces

Thy? T h
-------------------- ihinh --------------------------- thinh

(f T, p — b
r, b if)

and hence

T\- <p
------------ bad-*hr, (p -^ ip b tjj

but this rule is not sufficiently general as SF(p-^'ip)f) SF('tp) ^ 0 and consequently it
can only be used in a restricted number of circumstances. For example the derivation

of axiom A2 quickly becomes stuck:

stuck!
______________________ ?
<£, <p-^’(‘lP—*8), (P~+i> b 8

(p-+('il)—+0), (p-+ij) b <p—>9

and cannot proceed using 6ad-»b without resorting to the cut rule. The objective is

to avoid the cut rule as it introduces an element of indirection in the proof (and

it does not enjoy the subformula property). By incorporating an instance of the

cut rule in the rule bad—vb a rule can be obtained that avoids this restriction of

overlapping .subformulas and still gives a syntactically determined path through the

proof. The result is the more general rule:
T b <p

r, <p—* if) b ij) r,v>b0
T, <p— b o

which simplifies to r h<p r,v>b0
r, <p—*ij) b o

This again enjoys the sub-formula property as required. It is easy to see that this

rule specialises to bad—>>b when ip = 8. Notice that the application of the cut rule

52 C H A P T E R 2. M E T H O D O L O G Y

did not introduce a spurious cut-formula into the rule. ‘Spurious’ means a formula

which is not a sub-formula of the consequent of the rule. The proof of axiom A2

above may be continued using b—► as follows:

ip b ip 9 b 9---------►h
ip , i p —>9 b 9

i p , f - > { i p - + 6) , (p \ - 9-------------►h
stuck!

2 .8 .3 C om b in in g R u les

In some cases, several of our original elimination rules may be combined to get
a single simpler rule that captures the effect of applying both of the originals
simultaneously. Here, Ab£a and Ab£6 are used as our example:

r b < pA ip r b < pA ip
-----------------A h£a and ------Ah £br b <p r b ip

and by the following argument
r, pAip b pAip
--------------------------- A h£aT, (f A ip b f

T, (f A ip b (f A ip
----------------------------A\-£bT, (f A ip b ip
r, y>, (f A ip b 9
-------------------------- cutr, (f A ip b 9

r,v>,̂ b e
-------------------- cut

we obtain
r , < p , T p \ - o

--------------------- AhT, < fA ip b 9
This is really just for economy as it was possible to stay with two separate rules:

T , (f A i p , (f \ - 9 T , (f A i p , i p \ - 9-------- and --------r,<̂ AV>b0 v , < p A i p \ - 9

which has to keep (f A ip as an assumption in case ip (resp. (p) was required later in
the proof. The rule Ab allows formula (p A ip to be discarded once and for all during
the proof of T , (f A i p \ - '9 . The result is a shorter proof.
If there are sets of formulas on both sides of the turnstile (b), a similar argument
may be given for V using VbXa and VbJfr:

IW'bVbA
---------------------- VhT6r b <p, a r, ip b <pvip, a r, <p b a

--- cut --------------------------- V h la
T\-<p,<pVip,A T,<p\-<p\Jip, A
-- cujr b fWip, a

but this rule does not hold for Intuitionistic Logic, as will be shown below.

2.8. FR O M S E Q U E N T S TO A LL-IN T R O D U C T IO N R U L E S 53

The rule —>hl already enjoys the sub-formula property as does the rule ‘basic'.
Combining these with —»b above produces the table of rules for minimal logic below:

A ll-introduction R ules for M inim al Logic

basic -------------------------
r,^b
r hr,<?b <p T , ip—>iff b 6

54 C H A P T E R 2. M E T H O D O L O G Y

2 .8 .4 N e g a tio n

As they presently stand, the introduction and elimination rules for negation (-ibX,
and -ib£) do not have the sub-formula property.

r,y>i— iip r b ̂ r i— up r i—------------ -ihT---------- > \ - £ ------
r i—i <p r \ - i p r b <p

It is necessary to find satisfactory all-introduction forms of these rules: the first and

second for Intuitionistic logic and the first and third for Classical logic.

A satisfactory form of -ib£ may be obtained by making -up an immediately available
assumption:

T\-<p T I— i p
-------------- thinh ------------------- thinh
r, -i b p r, -i<p i— i<p
-- , \ - £

r, -up b ip

This simplifies to the derived rule:

r b <p

r, -up b ip

The rule -ibX derives -up on the basis that assuming <p leads to a contradiction

(both ip and -tip are derivable). So, letting ± stand for the contradictory formula

lipA-iip\ the rule:
r,¥> b±-----------1—,
r i—i (p

can be seen to derive -ibJ as follows:

r ,< p \ - i p r, (p i— iip
--------------------------------b A

T, <p b ipA-np
-------------------- iefn.r,y? b±---- b̂

r i— up

However the rule I—i does not satisfy the sub-formula property as it was stated

earlier, since _L is not a sub-formula of the conclusion. Since the sequent T bJ_’ has

the same interpretation as T b ’, the definition of SF(<p) is extended to include JL

S F 'M = { X } U SF(<p)

With -ib and I—i there are sufficient rules to cover the axiomatic presentation of

Intuitionistic logic. The rules for the Intuitionistic fragment are summarised below:

2.8. FR O M SE Q U E N T S TO A LL-IN T R O D U C T IO N R U L E S 55

A ll-introduction R ules for Intuitionistic Logic

Minimal Logic +

F,<p,i/>h9
------------------------ A h i

T, <pAip b 9

T,<p\-9 T,^>b0

r, cpwip i- 9

Thy?

vh|

r, -~xp h ^ —>j- i

rb<? v \~ i>
r b ipAip

Thy?

H i A

r h

r,v? hx

h |V a

r h 0
r b h i V6

rb-up hi-i

There is still a need for an explanation for the classical axiom A8 and its

corresponding rule —i—ibS which replace the intuitionistic axiom A9 and rule -ib£.

Without this rule, the derivation of the classically valid formula <pV-np is not possible

using the Intuitionistic rules alone, e.g.

stuck!

<r>
b <pv-«p

stuck!

<p b_L

1— i <p

b (pV—i(p

The problem arises because the rules for V introduction on the right (b|Va and

b|V6) force us to decide which of ip or -«p is provable. Once the decision has

been taken, there is no opportunity to revise it. In contrast, the effect of -i-ib£,

in combination with the other rule for -ibJ, in a classical presentation is to blur

this clear decision, by allowing the use of whichever of the disjuncts is convenient.

Therefore, a mechanism is needed that can record the different choices that are

available. One way of doing this is to use the restart rule.

2 .8 .5 R e s ta r t R u le

The restart rule permits a proof to be restarted when it gets stuck with the

original sequent and any assumptions accumulated earlier in the proof. The restart

rule requires an extension to the linguistic structures given at the beginning of the

chapter. The category of formulas is extended with a new operator ‘[T b <p]\ and

rules are provided for introducing and eliminating the restart rule. The former is

used to remember the initial sequent, and make it available for “restarting” later in

a derivation. The restart rule is due to Gabbay[Gab91].

56 C H A P T E R 2. M E T H O D O L O G Y

“If p is a proposition and e and / are formulas and T is a set of formulas

then p , —ie, eA/, eV/ , e—► / , [r h e] are formulas. Nothing else is a

formula.”

Initial sequents of the form Thy? are transformed to T, [r b tp\ h <p by the rule

r,[ri-dhv>
--------------------------start

T h < p

The start rule does not have the subformula property and its use is constrained by

an appropriate ‘once’ segment in a heuristic, see §7.6.1. The rule restart provides a

means of returning to the original sequent if necessary:

a , r, [r h y>] i- v>
-------------------------------- restart

A , [r i - d K L

Using these two rules it is now possible to derive <pV-i<p as follows:
ip t - <p Hi Va

<p h <pV-xp

b-h
I— iip

^r<pV-yip\ h pV~ip

h ipV-np

restart

Hi V6
start

In this proof, the lower part uses the rule h|V6 to conclude -yip. The proof then

becomes ‘stuck’ and the restart rule is used. The upper part of the derivation then

uses the other rule hVa, to make a different choice, and now derives the basic

sequent. It is because the restart rule allows the theorem prover to make several

attempts at the derivation, while accumulating their assumptions, that classical logic

can be obtained from the intuitionistic rules. But the restart rule gives lengthy

proofs. A more elegant way of achieving the same end is to use sets of formulas on

both sides of the sequent.

2 .8 .6 S y m m e tr ic S tru c tu re for S eq u en ts

The rules for classical logic can be arrived at when it is noticed that Classical

Logic admits a more general form of sequent: T h A where T and A are both sets

of formulas. The intended interpretation of the sequent is that when all of the

members of T are true then at least one of the members of A is true. That is

<pi,.. ipi , .. .,1pm iff (v?iA • • • Av?„)—>-(V>iV • • • V^m). A rather computational view
of this is that the right-hand side can be thought of as providing a storage area

for the alternatives. Compare this with the restart rule which provides a means of

making a different set of choices but of keeping intermediate results (assumptions).

2.9. E Q U IV A L E N C E O F A X IO M A TIC AN D S E Q U E N T P R E SE N T A T IO N S 57

It will sometimes be convenient to regard the multiple conclusioned sequent introduced

above as a single conclusioned sequent. This may be done by writing all but a single

occurrence of the right-hand formulas as negated formulas on the left side. This can

only be done for systems in which have negation.

r b 0 , A ------

rearrangement

r
(v?iA • • • A^nA-i^iA • • • A-i^m)-> ^ ----- -r ,- iA h $

A ll-introduction Rules for C lassical Logic

— basic
r,v? b cp, A

i- a
------------------------- A h / -

T, (f A i p b A

I \ y>bA I \ ^ b A
--- V h rr , ^ h A

r.^hA
r , ^ h A c

T \ - < p ,A
----------------l|_cI\-iy>hA

rby>, A r b ^ , A
------------------------------ hf-A

T b (p/\Tp, A

r b a
------------------ hr V
r b v ? v ^ , A

r,<^b ^ , a

r b c ~*

r , ^ b A
-------------- •"C-1fb-i^A

2.9 Equivalence o f A xiom atic and Sequent Presentations

In the above case studies, Minimal Logic was extended by adding axioms to generate

axiomatic presentations of Intuitionistic and Classical logics. It was shown how these

presentations could be recast in the Natural Deduction style, using introduction and

elimination rules. The Natural Deduction style could then be converted to sequents,
and hence a suitable all-introduction sequent presentation could be derived.

However, the question remains as to whether the above translation actually does

capture the system.

To verify this the equivalence of the two presentations must be proven: axioms with

Modus Ponens, and the all-introduction presentation using sequents.

58 C H A P T E R 2. M E T H O D O L O G Y

2 .9 .1 A x io m a tic im p lie s S eq u en t

Assuming that there is an axiomatic proof of T b tp; it can be shown that this proof

can be translated into a sequent proof of the same judgement. The proof proceeds

by induction on the structure of the axiomatic proof.

For the base cases, transform the leaves as follows: If the leaf, 0, is an instance of
an axiom then take a sequent proof of the axiom and instantiate it appropriately.
Alternatively if 6 is an assumption, replace it with its corresponding basic sequent

e \ - e .

For the inductive case, transform the internal nodes as follows: If the rule is an

instance of Modus Ponens
p p —±ip

$
then by the induction hypothesis it is safe to assume that the translations of p and

p-+tp are A h (p and 0 h p ^ tp respectively. Let T = A U 0 and combine them as

follows

A h p
---------- thinningh*rt-<̂ tj) 0 h p —* ^
---►h ---------------- thinningh*

T, p — h tp T h p - * t p
---Af .p .

ri-0
If the sequent version of Modus Ponens is a derived rule with respect to the other

sequent rules, then all occurrences of it in the proof constructed by the above

induction may be replaced by other rules in the presentation of the system (see §5.5).

2 .9 .2 S eq u en t im p lie s A x io m a tic

For the other direction, suppose that there is a sequent proof of V h A, for some

r u A / 0 . It can be shown by induction on the structure of the sequent proof that

a corresponding axiomatic proof may be obtained. The deduction theorem is used

to handle the manipulation of assumptions. Two-sided multiple conclusioned sequents

can be recast, using the observation in §2.8.6 as an ‘impure’ axiomatic proof. The
r

-.A

proof uses the following notation: T h y>, A ’ is written as p where ->A stands for
r

{^ p \p € A}; T h ’ is written as J_ where _L stands for a contradictory formula as

before. This ‘vertical’ notation comes into play for rules which combine several

sequents together.

2.9. E Q U IV A LE N C E O F A X IO M A TIC AN D SE Q U E N T P R E SE N T A T IO N S 59

B ase Case

In the base case, the basic sequent has the form T, tp h <pt A for which the following

argument holds:
r
¥>iA

since <p follows by axioms A 1- 2 .

Inductive Cases

There is one inductive case for each rule. Some of these have sub-cases depending on

whether A can be empty, i.e. if the right-hand side of the sequent does not contain

an explicit formula. For the case when A is empty, the conclusion of the sequent 7

can be taken to be _L and the negated conclusions A to be 0 . Otherwise, when A

is non-empty it is possible to split A into 7 and the remaining formulas A.

Each case is presented by showing how the impure axiomatic proofs of the antecedents

of the rule, which are obtained from the induction hypothesis, can be transformed

into an impure axiomatic proof representing the conclusion of the rule. The only

steps used involve applications of the available axioms and the rule Modus Ponens

to component parts of the sequents. The cases are written in a left-to-right sense

as follows: the antecedents, or upper sequents, of the rule are written in a box on

the left; a construction that justifies the conclusion is written between arrows; the

conclusion or lower sequent of the rule is written in a box on the right.

Consider the rule Ahc

r ,v? ,^ h a
case Arc: ----------------

T, (pAip h A

r
~iA

<pA ip A4a
r

-iA
<P

<p
(fA'tp A4b r

-.A
(pA'ip

7 — ► 7 — ► 7

in which the two assumptions (p and 0 of the upper sequent are converted to pAip

by applications of the axiom A4a and the axiom A4b.

60 C H A P T E R 2. M E T H O D O L O G Y

case KcA:
rby>,A rhv>,A

r b pA A

r r r r-iA -iA iA -•A
, , ri : : -lA
(f and ip *■ <p A3 . * p A i p

'tp^pArp ip

<pAip

case Vbc:
r,v?bA r,^bA

T, <p\hp b A

r r
nA -iA

7 and 7

r-iA
;f

i

<p~* 7 A6

A6'

r-.A

i

ip—tj

r
-.A

<pVip

7

(fVip—+ 7
7

Tb^,^,A
case bcV: ----------------

r b A

r
7<p-iAr - iA

- iA V
""P ip A5a -i(V?V0) - iA

(pVip . •
Tp — ►-------

(̂cpVip)
(pVip-i (p—xp\Jip A7

* A7' “i <p—+~'(<pV'ip)
- i-k/j A8

y? A5b

(pVip

rbv?,A r,^bA
case —>bc:

T, <p—>ip b A

2.9. E Q U IV A L E N C E O F A X IO M A T IC A N D S E Q U E N T P R E SE N T A T IO N S 61

case

case

case

r r r r
-.A -.A -iA nA
_l7 _l7
(p and 7 7

7

r,c^h a

r b A

r
--A r

-.A

r
iA

v> — ► : — ►

bca:
r, -i<p b_L

JL

r

_L

’bĉ : rb^,A
r , -i (p b a

A7

riA
-up

7

1-17 A8

7

62 C H A P T E R 2. M E T H O D O L O G Y

r ,< p h i
case r c -1̂ : ----------rh -up

r
V7
_l

r

_L
► -L A7

A7'

-i _L
<p—+-y _L

“V

r

"V

case bc“>&:
T,(pb A

r i— 1(̂ , a

r r r
i A -iA -.A
V - .7

•
I

7 — ► 7 : — ►

<p—*7 A7 -17

A7/ (p—t-yj

□

R em a rk s

Only a few cases require the axiom A8 for classical negation. These are -ibc (but
only when A is not empty) and bcV. However, the proof of -ibc goes through using

axiom A9 when the right-hand side is restricted to a single formula. Similarly, bcV

does not hold intuitionistically when more than a single formula is permitted on the

right-hand side. Hence, for the intuitionistic case, two rules are needed:
T\-<p

------------ and ------------
r b (ps/ip r b <p\/ip

These can be verified * using axiom A5a and axiom A5b respectively.

2.10 Conclusion

This chapter has shown a way of developing a presentation of a logic from a

collection of axioms, or Natural Deduction introduction and elimination rules, into an

all-introduction presentation. This presentation is suitable for the environment and

techniques for verifying that the transformation preserves the meaning of the logic

have been demonstrated.

2.10. C O N C LU SIO N 63

An all-introduction presentation of a logic is preferred over the others described in

this chapter as this type of presentation:

• transforms arguments rather than sentences;

• is backwards directed;

• provides for localised discharge of assumptions;

• allows for the structural properties to be varied.

These features give the potential of encoding a variety of non-standard logics, as was

seen briefly in §2.6.14 Presentations suitable for modal and many-valued logics will

be shown in the next chapter.

4Although Intuitionistic logic is sometimes considered to be non-standard, when non-standard is
taken to mean ‘not classical’

C h ap ter 3

N on-standard logics

This chapter develops the argument about the suitability of all-introduction

presentations of logics, by discussing how a number of non-standard

logics can be presented in the environment. The systems discussed here

are modal and many-valued logics. The presentation of each system is

shown and related to the presentations of other styles as was done for

Intuitionistic and Classical logics in the previous chapter. Techniques for

the derivation of properties of modal systems within the environment are

also included. A simple non-monotonic system is also given.

3.1 Introduction

The chapter is structured as follows: The normal modal logics based on the modal

system K are examined, and suitable all-introduction presentations are developed. It

is shown how composite systems can be constructed which combine the properties

of simpler systems. Then, in §3.3, a procedure is described which has been used

to discover the distinct modalities of a modal system. This is used to look at the

modalities for several * classical and intuitionistic presentations of modal systems. An

example of an epistemic system in §3.4 demonstrates how a modal operator can be

indexed by individuals, giving a multi-modal system. In §3.5 it is shown how finite,

many-valued systems can be encoded using all-introduction presentations. In §3.6 the

treatment by the environment of logics presented using hypersequents is discussed.

Finally, in §3.7 a system containing a defeasible operator ‘unless’ is presented.

64

3.2. M O D A L L O G IC S 65

3.2 M odal Logics

Modal logics make distinctions between contingent and necessary truths. For example

if fa = “Margaret Thatcher is Prime Minister” then at the time and place of writing

fa is true, but probably not for much longer, and so fa is not necessarily true. In

contrast, if fa = “The Earth is the third planet of the Sun” then fa is necessarily

true, written Ufa. There are many other interpretations that have been given to U p
depending on the application and properties of the modal system. Examples are: it
is necessarily true that p; it will always be the case that p; it ought to be true

that p ; it is known that p; it is believed that p\ it is provable that p; and, when

the program terminates, <p will hold (see [Gol87]). Possibility is written as O and is
defined as Op = — It gives rise to a corresponding variety of readings1.

3.2 .1 Sem antics

Although this thesis is primarily concerned with proof theoretic presentations of
systems it is instructive to look at the traditional way in which modal systems are

given a semantics. This is because there is a close correspondence between the

axioms in a Hilbert presentation of a modal system and aspects of its possible world

semantics.

The semantics of modal logics is generally given by the possible worlds interpretation

due to Kripke[Kri59]. In this interpretation, the set of possible worlds is taken to be:
all possible configurations, states of knowledge or belief, points in time, etc. Worlds

are related by a relation R that defines whether a world is accessible from another.

So for □yj-to be ‘globally’ true p, must be true in each of the possible worlds,

whereas for O p to hold just one possible world will suffice. Relative to a particular

world w, the formula U p holds iff p holds in all worlds accessible or reachable from

w. The reachability relation R between worlds becomes a focus for study, as different

modal axioms force R to have particular properties.

V aluations

To see the relationship between conditions of the accessibility relation R and the

axioms of a modal system, a valuation on formulas relative to a possible world is
introduced. In this definition, a valuation on propositions returns the set of worlds

1 Although either □ or O can be taken as primitive and the other defined in terms of it, □ is

taken as primitive here.

66 C H A P T E R 3. N O N -STA N D A R D L O G IC S

at which the proposition is true: V(p) C W. The expression w ||- p (read as “w

forces p ”) means that p is true at a world w.

H I- p if w £ V(p)

w |[- -up if w t y - p

w |[- pAift if w |(- p and w \\- ip

w |f- if either w |f- p or w |f- ^

w |f- (p—*\fj if w \\- p implies w \\- ip

w |f- Up if Vw'.wRw' implies w' |f- p

w ||- Op if 3w'.wRw' and w' |f- p

A model M of a modal system S is given by a triple (W, R , V) where W is a set of
possible worlds, R is a relation between worlds R C W X W, and V is a valuation

$ P(W).

A formula p is true in a model M iff £ W.w \\- p. A frame F of a modal system

S is a pair (W, R) where W and R are as before. A formula <p is valid in a frame
F iff it is true in all models produced from F by adding an arbitrary valuation.

bsy? is written to mean that p is a theorem of the system S.

The modal logics examined here are normal. A normal modal logic is one in

which all the possible worlds are considered equal in status, and in which none is

distinguished or set apart from the others. Each normal modal logic is an extension

of the smallest normal modal logic K, which we will examine first.

3 .2 .2 A x io m a tic p resen ta tio n

The modal logic K is usually presented axiomatically as an extension of propositional

classical logic (of §2 .2).

The additions are to its language are the two unary modal operators □ and O

over formulas. Figure 3.1 illustrates the language of a presentation used in the

environment.

In addition to the the axioms and the inference rule Modus Ponens given in the

presentation of the classical system, there is an axiom stating the distribution of □

over —►
b □(</?—np)—*(np—*Oip) distribution

and an additional rule of inference:

--------- necessitation
b a<p

3.2. M O D A L L O G IC S 67

Syntactic categories are: Sequent, Formula. The judgement is Sequent.
Formula

a: Formula ‘A’ 6:Formula —► AND(a,6)

a:Formula ‘V ’ 6:Formula —► 0R(o,6)

a:Formula ►’ 6:Formula —y IMPLIES(a,6)

a:Formula 6:Formula - IFF(a,6)

‘- i’ a:Formula - NOT(a)

a:Formula -► BOX(a)

‘O ’ a:Formula —V DIA(a)

[a - z] $ - ID (0

Sequent

a:SetOf(Formula) ‘h ’ 6:Set0f(Formula) —> SEQ(a,6)

Figure 3.1: Language of Classical Modal Systems

Normality is preserved in the sense that if <‘ip' is true for an arbitrary world then

is as well. Similarly, if ‘□(y?—>0)’ holds at some world, then by the distributivity

axiom and modus ponens so does ►□0 ’.

3.2.3 O ther norm al m odal logics

There are many modal logics based on the smallest modal logic K. Some of these are

presented in the table 3.2. In that table, a new system S is produced by extending

an existing system T with some axioms A \ ' " A n (see table 3.3). This is written as

S = T + A\ -+• • • • + An.

The relationship between axiomatic presentations of modal logics and their possible

world semantics has been widely researched for the case of normal modal logics; see

for example [HC84]. It was realised that modal axioms correspond to constraints

on the nature of the accessibility relation R , and thereby on the classes of possible

models for the system.

3.2.4 D eduction T heorem

Recall from chapter 2 that the deduction theorem allows assumptions to be

manipulated by allowing the passage from cp,T ip to T b cp-^i>.

The proof given for the deduction theorem in §2.2.1 had two principal cases: one

acting on the leaves of the proof tree and the other acting on the rules forming

body of the tree. For these cases, the following conditions respectively are true:

68 C H A P T E R 3. N O N -STA N D A R D L O G IC S

System Extension Conditions
K4 = K + 4 transitivity
KB = K + B symmetry

T = K + T reflexivity
D = T + D idealisation

D4 = T + 4 idealisation, transitivity
DB = T + B idealisation, symmetry
S4 = T + 4 reflexivity, transitivity
B = T + B reflexivity, symmetry

S5 = S4 + B reflexivity, symmetry, transitivity
or S4 + E

Figure 3.2: Extensions of K

Named After Axiom Condition

T b 0(p—><p reflexivity

D Deontic b n<p—>0(p serial
4 b dip—>□□<£> transitivity
E Euclidean b Oy>— euclidean
B Brouwer b (p—>DO(p symmetric
M McKinsey b QO<p—>Od<p atomicity
G Geach b Od(p—>DO<p directed

Figure 3.3: Modal Axioms

Condition Constraint on R

reflexivity Vs.sRs
serial Vs3t.sRt
transitivity Vs'itVu.(sRtAtRu-+sRu)
euclidean VsVtVu.(sRtAsRu^tRu)

symmetric 'isVt.(sRt—*tRs)
atomicity transitivity -f Vs3t.(sRtAVu.(tRu-+t = u))
directed VsVtVu.(sRtAsRu—>3v.(tRvAuRv))

Figure 3.4: Conditions and their first-order constraints on R

3.2. M O D A L L O G IC S 69

1 . each axiom of the system can be transformed from to for an arbitrary

</>, and

2 . each rule can be transformed from V>1 • * "0n
e

to
p —±9

This strategy is re-examined here for the modal system K which has an additional
rule and another axiom.

The necessitation rule is only applicable if the derivation of p does not depend
on any assumptions. When this is the case, O p may also be concluded from no

assumptions. Were this not the case, then

p b O p

would be a valid argument and the meaning of □ would collapse.

For a given application of necessitation

----- Ne c .□ Ip
it can be deduced from the condition of application of the rule that □ does not
depend on any assumptions in the proof of which it is the conclusion; the proof is
‘pure’ in the sense described in Chapter 2. So, by one application of axiom A2 and

Modus Ponens, we can derive the new formula p — thereby satisfying the first of

the two conditions.

ip A2
----- N e c . /■ -s
O ip □ i f t - ± (p - + 0 ' t p)

-------------------------------------- M . P .
p — tOij;

So although the necessitation rule is a rule it forces the derivation tree above it to

behave like an axiom.

The distribution axiom also satisfies condition 1 above, so the deduction theorem

holds for the system K. The existence of a deduction theorem for the system a

sequent presentation of the system K to be constructed.

3.2.5 An all-in troduction presen tation of K

As described in the previous section, the necessitation rule is only applicable when

there are no assumptions present. To use this rule in an all-introduction presentation

any, assumptions that are present must first be moved to the right-hand side. After

70 C H A P T E R 3. N O N -STA N D A R D L O G IC S

introducing the *□’ on the right, the distribution axiom allows the newly formed

formula to be broken down once again. The following example illustrates this for the

case when there is one active assumption p.

or more concisely

pY- ip

b p —+\p

b
Nec.

--------------- h—♦
0((f— np) b O p — tO'i])------------- H—<•
0(p—>̂), O p b Oxp

----------------------------------- M . P .
O p b Orp

p \ - ip

O p b □ ip
Repeated applications of the distribution axiom suggest that the following is the

general form:
T\-p

---------------K
□r b O p

where OT is a pattern constraining each of the elements of T to take the form Oip.

3 .2 .5.1 Justification

To confirm that this rule is sufficient it must be shown (i) that the distribution

axiom and the necessitation rule follow from it, and (ii) that given the distribution

axiom and the necessitation rule, the rule K can be derived.

(i) The distribution axiom is derived as follows

p b p ip b ip---------- ►H
p-*ip, p\~ ip

---------------------------------- K
, 0 (p —*ip}, Up b □ ip------------- h—

□(y?—>ip) b O p —*oip
--(- _ +

b 0 (p —*ip)—̂ p —+Oip

Note that the rule for K reduces to the necessitation rule when T is empty.

(ii) K is shown by induction on the number of assumptions in I\

r n is written as ip i , . . . , i pn.

In the case when i = 0 the result is immediate by the necessitation rule.

For the case 0 < i < n assume that the rule holds for i — 1 and argue as follows

3.2. M O D AL L O G IC S 71

r«- f-y?
î,r,-_i i- v5-------- h—

rt-i h
□V’t b ̂ nr,-! b >-y?)

□0,-, Oifti—>o<p b n rt_i b o f y —tn ip

D T i b Dtp

I n d . H y p .

D i s t r .

M . P .

The intuitive reading of the rule K is that to conclude Dtp from V one must
strengthen all the assumptions to DT.

3.2.6 Possibility and Necessity

The above analysis is adequate for Intuitionistic sequents, which are restricted to

a single conclusion on the right-hand side. The all-introduction presentation is not
sufficient for a Classical sequent having sets on both sides, because of the rules for

negation in the all-introduction presentation, described in §2.8.4.

Using the standard interpretation of a sequent T b A ’ as ‘/ \T —>\J A' or

‘(VqA • • • A'tpn) —► (y?iV • • • Vpmy and by defining ‘Oy?’ as the assumptions and
conclusions can be separated according to whether the patterns are □-> or □; the

normal rule may be written as two separate rules:

r , -I a b tp r, -I a i— \tp
--------------------- and -----------------------
□ r , n-iA b Dtp n r , n-iA b o-up

Using O-itp—¥-t0(p and the rules for negation, by switching sides, the versions of

these rules are obtained, which treat □ and O together.

r b p, a <^,rb a
------------------- and -------------------
□ r b d v ? , O A O c ^ n r b O A

A presentation is more suitable for the environment when it is possible to suppress

any explicit; thinning rules in favour of generalised basic sequents, adding additional
thinning only to those rules which require it. For example, the patterns in the

conclusion of the first rule above do not match any non-boxed formula on the

left-hand side of the sequent, and consequently, explicit thinning is required at this

point. The following rules, known as K-a and K-b, incorporate the necessary thinning.

r b <p, A p, T b A
---------------------------- K-a and ---------------------------- I<-b
r', n r b Dtp, o a , a ' o tp, n r , r' b o a , a '

See also table 3.5 in which K-a and K-b are labelled as “K, D, T”.

72 C H A P T E R 3. N O N -STA N D A R D L O G IC S

3 .2 .7 E quivalence

A more rigorous justification of the system K is now presented, which extends the

equivalence proof for the Classical presentation in Chapter 2 , using the modal rules

K-a and K-b.

The sequent =>> axiomatic direction was covered in the previous section in the sense

that the sequent rules were used to derive the axioms and rules of the Hilbert

presentation.

For the axiomatic => sequent direction additional inductive cases must be considered

for the K-a and K-b rules. In the following let V’l , represent the assumptions

T U -iA. The proof involves an inner induction on the number of these assumptions.

rh^,A
case K-a: -------------------□r b □<?,<> a

k

—r
r i ’ v □r

->A • - iO A

; I
-----------------N e c .

O c p

---- -+<p)
-- D i a t r .

1-+-- DV>i
--M . P .

0<p

Writing assumptions having the form as -iOrpi gives the -iOA used in the rule.

The rest are collected together as DT.

The construction used in the proof of the rule K-b is similar.

3 .2 .8 P resen ta tion s o f o th er m od al sy stem s

The earliest formulation that the author has discovered of the all-introduction

presentation of K shown above is by Curry in[Cur77]. This is however rather sketchy

3.2. M O D A L L O G IC S 73

especially with regard to the combined treatment of □ and O. A systematic study of
a number of many modal systems is found in Fitting[Fit83] but the treatment there

is mostly concerned with modal tableaux systems which, although related to the

sequent presentations given here, are motivated from a semantic perspective rather

than the axiomatic approach used in this thesis.

The next five sections present derivations of all-introduction presentations of extensions

of the modal system K based on the axioms T, D, 4, B & E. All except T make

use of a slightly more general form of the inductive argument given to justify the

modal rule K. The modal system T is justified first, and then a schematic version of
the induction is provided for the other systems.

3 .2 .8 .1 System T

The axiom representing reflexivity b Op—*p can be seen to be equivalent to the rule:

v> ,r b ^
------------- T
up, r b ip

The rule T entails the reflexivity axiom as follows:

9 ^ 9
------------T
U p b p

------------- |-_+
b U p — >p

Conversely, for arbitrary T, a single instance of the axiom, and an application of cut

derive the rule T:
O p b P P, r b p
---------------------------M.P.

up, r b ip
This rule is independent of the system K. To have a presentation of T (i.e. K -f T)

the rules for both T and K must be included.

System s D , 4, B & E

The following argument relies on the fact that each of the axioms D, 4, B & E for

the other properties can be stated in the form b /3-*Ua.

Suppose that the rule
IT, .. . ,Tn b -if)

---------------------------- R
A i , . . . , Am b Dip

is intended to represent the contribution of the axiom A to the modal system formed

by extending the basic modal system K. The assumptions in the upper-sequent

and the assumptions in the lower-sequent A j may be modal patterns. A modal
pattern is defined to be a sequence of unary operators, including negation, prefixing

a metavariable over a collection of formulas e.g. ‘D-ir’ or ‘A ’.

74 C H A P T E R 3. N O N -STA N D A R D L O G IC S

The proof that the rule faithfully implements the axiom is in two parts.

R => A The rule entails the axiom. Use R to derive A.

K + A =*> R The system K together with the axiom entail the rule. Proceed

by induction on the size of the assumptions, 0 , in the lower-sequent,

e.g. 0 = I T A,-.

1 . When 0 is empty R follows from necessitation.

2 . When 0 is non-empty. Take some $ E 0 and argue by sub-cases according

to the modal pattern it matches:

---------------------------- V a r i o u s
a , r i , . . . , r n h ip------------ b—►

axiom F i , . . . , r n h a —
î --------------------------------------I n d . H y p .

6 h Da Dip b Dip A i , . . . , A m h □ (a —►VO
------------------------------ — --------------------------------------D i s t r .
9, (Oa->Oip) h Dip A i , . . . , A m h Oa—̂Oip
--- M . p .

^, A1 , . . . , A m h D 0

in which, reading from bottom-to-top:

• 6 is a formula matching the pattern A,-.

• Da is constructed using an appropriate instance of the axiom A.

• The conclusion of the rule and Oa are packaged using —>-h and pushed

through with the aid of the distribution axiom and the induction

hypothesis.

• Further steps may be needed before the appropriate form is achieved.

The following sections give examples of this schema when it is applied to the axioms

4, D, B & E.

3.2.8.2 S ystem 4

We show the equivalence of the axiom h Dip— representing transitivity with the

modal rule
□ r b <p

-----------------4
□ r h u p

Note that the rule collapses to the axiom:

□ y? h Op
--------------------4
Hip h UU<p --------h—

h ntp-+no<p

3.2. M O D A L L O G IC S 75

To show the other direction proceed by induction as before. The base case is

straightforward by necessitation. For the inductive case argue as follows:

D p b H U p D ip h D ip

D p , DG^—*Oip b D ip

□yj,nr b ip-------- I-—+□r i- 0(p—*ip
--------------------------- I n d . H y p .

□r b □(□<,?-» v>)
--------------------------- D i s i r .□r b nap-+nip
---------------------------M . P .

b nip

3.2.8.3 System D

For the deontic axiom b Dp-*Op note that this is the same as b □ 1 9 —>-iOp. The

corresponding modal rule is
r,v?b

--------------- D
DT,Dp\-

This derives the axiom as follows:

V b<p------.h
------------------D
□ -1 p, Dp b--------I—1

□ —\p I--- \Dp

For the other

induction:

direction, the rule for K given above is used to save an explicit

v>,rb
----------------------- I - —,

r I *p axiom
----------------- K ,----------- *----------.
□ r b D —i p b □ “ 1 p —
--- M . P .□ r b -iDy?

□ ,̂nr b

D p b D p-------- il-
- i D p b

---------------- - M . P .

But note that the rule for D must be used with the rule for K.

3.2 .8 .4 System B

The symmetric normal modal system B is given by distribution, necessitation and the

axiom b p —>DOp or equivalentlyb p — ->p. These are equivalent to the modal

rule
r , - iD-iA b (p

B□ r,A b Up

76 C H A P T E R 3. N O N -STA N D A R D L O G IC S

This rule allows the derivation of the B axiom
-i <p I— i <p--------K

□ ~iip h D - i tp . I—',->h—l □ —l I-1 □ —l<̂3---------- B
ip h □ —iD - i^---------h—

h <p— iD —\ip

For the other direction argue by induction on the size of 0 = DT U A and by

subcases depending on the structure of the particular 0 E 0 . The base case, when 0

is empty follows from necessitation. To show the case for i + 1, it is sufficient to

assume the rule holds for i.

Case (i) 9 has the form Uip

axiom
lD-iDyj h <p r , - iQ - iA h ip

r, iDnA, -iD-iD<̂ h ip M . P .

axiom
Q (p h D tp h D ip

□ <£>, ► □ '0 h Oip

r,iD-iA I- -ia->nip-+ip
□r, A h □(-!□-.□ (p->tp)

□ r, A h ip- t̂p

I n d . H y p .

D i s t r .

□<̂ ,ar, Ah ip
Case (ii) 6 has some other form <p

axiom
cp h n ~ i D ~\(p □ ip h D ip

(p , □-iD-iy?—t O ip h □ ip

r, - iD-i(p , - iD-iA h ip

r, ~iD—iA 1— i□ —iip—yip

□r, a h
□r, A h n-iD-i(p^aip

I n d . H y p .

D i s t r .

□r,9,Aha^ M . P .

3.2.8.5 S ystem E

The axiom E 1— gives rise to the rule

-icur h ip-------E
-.□r f nip

This rule easily derives the axiom for E:

—iD ip h ~iD ip
---------------------- E
—iD ip h \{3tp

h ~iD ip—► Q - iQ<^

Conversely, by induction on elements in -iDT:

3.2. M O D A L LO G IC S 77

The case when T is empty follows directly from necessitation.

When T is non-empty:

axiom/■' -SI-1 O p —►
b Oxf}----------- h—

-iDT I— iO(p—tOifi
------------------------M . P . --------------------------------
-lUtp b O-iDy? □ \f) b □ ip -iDT b □

—\U(p, □-!Up—>Orp b Otp -.nr b □ - —>Uip

-iD^, —iDT b U t p

I n d . H y p .

D i s t r .

M . P .

Systems □ o

K, D, T
r b<^, A

o r , r' h 0 9 , o a , a '

^ , r b a

O9,or,r't-OA,A'

K4, D4
□ r , r b <p, o a , a

□r,r' b □<£, o a , a '

9 , a r , r b o a , a

o ^ , n r , r ' b O A , A '

T, D, S4, S5
v?,rb a

C V , r b A

r b ^ , A

r b o ^ , A

S4
□r b ip, o a

or , r i- 0 9 , o a , a '

p, n r b OA

O v ? , nr , r ' b OA , A '

S5
□ r , o r ' b v?,d a , o a ' ^ , a r , o r ' b q a , o a '

□ r, o r ', r" b up, d a , o a ', a " Op, n r , o r ', r" b d a , o a ', a "

D
r b a

□ r ,r ' b o a , a '

D4
□ r , r b O A , A

□ r , r ' b O A , A '

DB
r, o r ', o r" t- a , o a ', o a "

□ r ,o r ' , r " b OA , D A' , a "

KB, DB, B
r ,o r ' , o r " h 9 , a , o a ', d a " v?, r , o r ', o r" b a , o a ', □ a "

□ r, o r ', r" b u p , □ a , o a ', a " Op, n r , o r ', r" b □ a , o a ', a "

Figure 3.5: Summary of Classical Normal Modal Rules

78 C H A P T E R 3. N O N -STA N D A R D L O G IC S

3.2.9 C om posite system s

It is possible to construct presentations of hybrid systems having the required
combinations of properties if the rules of the separate systems are combined. The

table 3.5 summarises the rules for the systems: K4, KB, D4, DB, S4, S5.

Axioms may be used together to form composite rules by iterating the construction

of the formula used in the schematic proof shown in previous section. Instead of the
cut formula used there, da-+dtp, take the formula □/?!—►------>dj3n-+dtp, where each

j3i corresponds to an axiom of the composite system as before. The required rule can

be obtained by iterating the use of the distribution axiom, and by using appropriate

rearrangement after the induction hypothesis has been applied. The example given

here is for the case of S4 which combines the rules for K and 4 into a single rule.

3 .2 .9.1 System S4

The modal logic S4 is K extended by the axioms T and 4. The rules for these were

r h p <p, r h tp nr b p

□r h D<p d p , r \ - t p ari-ay?
Combining the effect of K and 4 forms the rule:

r,nri-v>
--------------- K4
□r h u p

with the following justification

d p b d p
------------------- t h i n
p , □ p b d p

------ ;---------- K4
d p b d d p

T h p

r,arb tp
□r b up

t h i n n i n g *

K4

and conversely

axiom
Hip b Otp b dtp

D < p — >d <p □ y?, b d t p

□ y>, d p —+dd<p—+dtp b dtp

dtp, d T b tp

□ T b <p-+d(p—+tp

□r b d(p-+d<p^tp)
□r b d(p—*dd<p—>dtp

h—+X2

I n d . H y p .

D i s t r . X 2

□ V ? ,D T b dtp
M . P .

The rule T is needed as well. To see that T cannot be merged with K and 4, it

is enough to note that K and 4 require that the right-hand side of the conclusion

of the rule is of the form ‘dtp'. As this is more specific than T , which does not

make any restriction, the Tv 4 and T rules are not compatible. The rule for T is

kept apart from the combined rule for K4, and together T and K 4 give S4.

3.2. M O D A L L O G IC S 79

3.2.10 Sub-form ula p roperty

The rules in table 3.5 involving symmetry based on axiom B - namely those for B,
DB, KB and S5 - do not have the subformula property, and are potentially divergent.

Consider the rule B derived above:

r, -iD-iA h (p -------- B
□r, A b D(p

The term - 1CH-1A is not a subformula of the lower sequent. Consequently, repeated

use of this rule will lead to larger and larger terms and potential divergence of the

theorem prover. The intuitive effect of the rule is that what was known to the

current world becomes possible in the next; it is this ‘inheritance’ that leads to the

combinatorial explosion.

A different type of presentation, involving hypersequents has been developed to find

cut-free, all-introduction presentations of symmetric modal systems. Hypersequent
presentations can be modelled cleanly in the environment, and are described in §3.6.

3.2.11 S trategies for M odal System s

It is often convenient to represent a collection of modal systems together as one

system. An example might consist of the language shown in figure 3.1 and the rules

in table 3.5 together with the rules of the propositional core developed in §2.8.6.

The modal rules are named by the systems in which they are applicable. Thus the

strategy “<S4, left,r igh t> [B A SIC]” picks the modal rules labelled as appropriate for

S4 as well as the classical logic core.

System Strategy
K <K, l e f t , r ig h t> [BASIC]
K4 = K + 4 <K4, l e f t , r ig h t> [BASIC]
T = K + T <T, l e f t , right>[BASIC]
D = K + D <D, le f t ,r ig h t> [BASIC]
D4 = D + 4 <D4, l e f t , r ig h t> [BASIC]
B <B, l e f t , right>[BASIC]
KB = K + B <KB, l e f t , right>[BASIC]
DB = D + B <DB, l e f t , right>[BASIC]
S4 = K + T + 4 <S4, l e f t , r ig h t> [BASIC]
S5 = K + T + 4 + B <S5, l e f t , right>[BASIC]

Figure 3.6: Some modal strategies

80 C H A P T E R 3. N O N -STA N D A R D L O G IC S

3.3 D eterm ining M odalities

3.3.1 Introdu ction

Finding the distinct modalities of a modal system gives an indication of its structure.
If the modal system models a temporal logic, then the existence of a finite number of

modalities says that there is no need to iterate tenses beyond certain combinations.
For example, saying “it will be the case that it will rain” is not essentially different

from “it will rain” in English.

Similarly, the modalities may denote sequences of actions, perhaps updates that may

take place in some database system. In this case, the existence of a finite number

of distinct modalities indicates that it is sufficient to focus study on representative

sequences rather than arbitrary ones, with a consequent reduction in the complexity

of the analysis.

The process used for determining the distinct modalities present in a modal system

involves a large number of smaller derivations in the system itself. The success or

failure of these derivations guides the algorithm in its search for the modalities.

This process illustrates the sort of “normal form” result which is desirable about

a logical system being developed in an environment such as this. Other examples

might include disjunctive normal forms for binary connectives, or prenex-forms for

quantifiers. These results show how combinations of logical operations interact and

give the user of the environment valuable insights into the combinatorial complexity

of the system.

3 .3 .2 M od alities

A modality is defined as a string consisting of zero or more occurrences of unary

operators, for example {-!,□ , O}. The zero case is written as the null string, If

the modal system has ->□ = O-i and ->-i = —, as it would if based on classical logic,

then every modality can be written with at most a single negation at the front; not

all systems have this property. Example modalities include: □□ “what will be will

be”, <>□, “what may be will be”, etc. The modal systems discussed below provide

a further source of interpretations.

3.3. D E T E R M IN IN G M O D A LIT IE S 81

3.3.3 Equivalence

Two modalities, m,n, are equivalent in a given modal system iff the result of

replacing m by n (or m by n) in any formula is always equivalent, in that system,
to the original formula. The modalities are otherwise not equivalent or distinct.

If m and n are equivalent in a certain system, and m contains fewer modal operators

than n then n is said to be reducible to m in the system.

3.3.4 Finiteness

Some modal systems such as K have an infinite number of distinct modalities. Others

have a finite number; for instance classical S4 has only the 14 listed in figure 3.7.

Further collections are given in the examples below.

- □ o □0 <>□ □ OD OaO

“1 lO J □ o J o □ -.□On -.ODO

Figure 3.7: S4 modalities

Please complete the following 0 Cancelj

list of unary forms?
□ a, o a, -i a

nullary form?

list of Judgements over two propositions?
a h b b f- a

the two propositions?
a, b

strategy?
<S4JefQight>[BASICl

Figure 3.8: Modalities dialogue

3.3.5 A lgorithm

The environment uses the following algorithm to determine the distinct modalities
for a given modal system. On pressing the Find Modalities button, the user of the

environment is prompted for some details of the system and for a strategy to use

(see figure 3.8 and also chapter 6). The algorithm is parameterised with respect to

the following.

82 C H A P T E R 3. N O N -STA N D A R D L O G IC S

1. Those operators that are to be used to form the modalities. These are usually

□ , O, and -i given above. However, is it useful to have control over whether

negation should be considered. The modalities may be other operators such

as the “i believes or in symbols ‘2?(i)’, see §3.4 below, rather than the

operators box, diamond, etc.

2 . The initial case of the null modality. Unary operators are stated in terms of

this case. For example, suppose ‘a’ was given here then the constructions given

for the first question would be ‘Da’, *0 a’, and S o ’.

3. Judgements that are used to decide when two modalities are equivalent. The

judgement used is often ‘h but other forms of judgement may be

necessary if, for example, the core language does not contain —► or <-+. In this

case, replacing ‘F p^'ip’ with itp F tf>* and li}) F <p* might be appropriate.

4. A strategy for the theorem prover to use.

The algorithm starts by considering a tree of modalities rooted at the null modality

(illustrated in figure 3.9). The null modality is the shortest of all the modalities and

as such is taken as a distinct modality in its own right. The tree is grown to consider

the modalities at the next level. This level is formed by taking any irreducible

modalities from the previous level and forming new modalities by substituting the

unary constructors for the base cases in each of them. For example

{□a, Oa} »-*• {DDa, DOa, CHa, ODa, OOa, O-ia}

Each new candidate modality of the new level is considered with respect to the

distinct modalities that are known so far, using the judgements given by the user.

Suppose that the set of modalities found at some point in the computation is

partitioned into non-empty sets of modalities, each of which is labelled by one of

the shortest modalities contained within it, such that m 6 Mn iff all the judgements

given in the dialogue. hold for appropriate n and m. This will usually be m p \ - nip

and up F nup. So = { —, —i , . . .}; Mu = { □ , □ □ , . . . } ; Mo = {O, OO, ...}; etc.

For each new modality encountered, either there is some n such that m satisfies our

condition, or else the modality is irreducible and so forms a new set M m = {ra},

having itself as a label.

When there are no new modalities discovered at a particular level, then all the

modalities are reducible to some existing (shorter) modality. In such a case there are

no new candidate modalities to check and the search can be closed. The distinct

modalities are taken as the labels of the sets in M.

3.3. D E T E R M IN IN G M O D A L IT IE S 83

Figure 3.9: Modalities generated to depth two

The following sections show the results obtained by applying this type of analysis

to a number of modal systems in the environment. In particular it is shown that

modal systems built over intuitionistic bases have many more modalities, and that

they can be seen to reduce to their classical counterparts under the introduction of

double negation elimination.

3.3.6 Classical S4

Figure 3.10 gives an example of the results produced by the environment for S4. The

listing shows the commentary given on the progress of the algorithm as it executes.

The numbers at the left-hand side indicate the level of the modality tree that is

being considered at that point. The reductions of modalities that are possible at
that level are displayed and, when the analysis of the level has been completed, all

the new distinct modalities that have been found are displayed. The search closes

once a level is found that contains no new distinct modalities.

The relationship between distinct modalities found by the above procedure can be

given further structure by discovering the relationships between the modalities under

the entailment relation (‘h ’) of the system. The Interderivability button is used

for this purpose (figure 6.3 on page 169). The environment prompts for a list of
formulas and constructs a matrix indicating their relationships under derivability.
This is shown in figure 3.11 for the case of S4. The matrix is also displayed as a
graph and can be interpreted as shown in figure 3.12. The diagram splits into two

parts: one for positive modalities and one for the negative modalities.

84 C H A P T E R 3. N O N -STA N D A R D L O G IC S

Modal Logics

1:3 candidates

1: found 3 modalities (4 so far) aa, oa, - it
2:9 candidates
□□a |- Qa oa h oaa ooa(- oa oa |- ooa -ioa H o-»a o-ia h -ioa -ioa h o-ia o-ia h
—ioa - n i f- a a (- - n i
2: found 4 modalities (8 so far) ooa, o-ia, ooa, o -ii
3:12 candidates
□ooa-woa o-ioa^ao-ia D-ioa-wo-ia n - n a w a oooa^ooa o-ioa^oo-ia

3: found 4 modalities (12 so far) oooa, oo-ia, oooa, oo-ia
4:12 candidates
aoooa-»aoaa ooooa f- ooa ooa |- ooooa oo-ioa^ooo-ia oo-ioa^ooo-ia
Do-i-ia^aoa ooooa |- ooa ooa h ooooa ooooa-aoooa oo-ioar»ooo-ia
oo-ioa^ooo-ia oo~na*>ooa
4: found 2 modalities (14 so far) ooo-ia, ooo-ia
5:6 candidates
ooo-ioa^oooo-ia ooo-ioa^oooo-ia ooo-nar+aooa ooo-ioa-aoooo-ia
ooo-ioa^oooo-ia ooo-naraoooa
S: found 0 modalities (14 so far)
S: search closed

modalities for Modal Logics using <S4JefLright>[BASIC] are:
ooo-ia, ooo-ia, oD-ia, oooa, oo-ia, oooa, o-ia, ooa, o-ia, ooa, -ia, oa, oa, a

Figure 3.10: Modalities search for classical S4

Modal Logics

\W
—t--------<S4,leftright>[BASIC]

ab c d e f g h i j k l m n
1 0 0 0 0 0 1 0 0 0 0 0 0 0 a: ooo-ia
1 1 1 0 1 0 1 0 0 0 0 0 0 0 b : ooo-.a
1 0 1 0 0 0 1 0 0 0 0 0 0 0 c : oo-ia
0 0 0 1 0 0 0 0 0 0 0 1 0 0 d: oooa
1 0 0 0 1 0 1 0 0 0 0 0 0 0 e: oo-.a
0 0 0 1 0 1 0 1 0 1 0 1 0 0 f: oooa
0 0 0 0 0 0 1 0 0 0 0 0 0 0 g:o-.a
0 0 0 1 0 0 0 1 0 0 0 1 0 0 h :o o a
1 1 1 0 1 0 1 0 1 0 1 0 0 0 t:o -.a
0 0 0 10 0 0 0 0 1 0 10 0 J: ooa
0 0 0 0 0 0 1 0 0 0 1 0 0 0 k : -.a
0 0 0 0 0 0 0 0 0 0 0 1001: oa
0 0 0 1 0 1 0 1 0 1 0 1 1 1 m: a a
0 0 0 0 0 0 0 0 0 0 0 1 0 1 n: a

a—>a a—>g b—>a b—>b b—*c b—*e b—»g
c—>a c—k: c—►g d—*d d-»l e—»a e—*e
e—>g f-+d f->f f-*h f-»J f-*l g—>g
h—>d Iw h h -d L-»a i—»b 1—*c i-4e
i-»g i—>1 i—A }—k! j—»J j—*1 k—*g k—>k
l-d m-+d m-4f mAh m—>J m-*l
m-wn m-*n n-»l n-*n

Figure 3.11: Interderivability of modalities for classical S4 i

3.3.7 Classical S5

Figure 3.13 shows a similar analysis, derived from the environment, for the system

S5. The system has fewer distinct modalities than S4 of which it is an extension. It

can be shown that the modalities collapse from the diagram given for S4 to that

given for S5 accordingly

Positive Negative

<>□,□<>□ —>• □ OD-i,OOD-i —► D-i

□0,000 —» O □o-i,oao-i —► 0-1

3.3. D E T E R M IN IN G M O D A L IT IE S 85

Figure 3.12: Modality Diagram for S4

Modal Logics
1:3 candidates

1: found 3 modalities (4 so far) aa, oa, -ia
2:9 candidates
□□a h aa aa |- oaa aoa h oa oa h aoa oaa (- aa aa |- oaa ooa (- oa
oa |- ooa —iaa |- o-ia o—ia |- —ioa —ioa |- o—ia a—ia ^ —ioa —r—ia |- a a (- -nl
2: found 2 modalities (6 so far) o->a, o-;a
3:6 candidates
D-iaarK3o-ia n-ioartao-ia o -n a ^ o a o-ioa^oo-ia o-ioa~K>o-ia o -n a ^ o a
3: found 0 modalities (6 so far)
3: search closed

modalities for-Modal Logics using <SS4efUight>[BASIC] are:
o—ia, □—ia, -ia, oa, aa, a

Modal Logics

lY
-»------<S5JefLright>[BASlC]

ab c d e f
10 0 0 0 0 a: o-ia
1 1 1 0 0 0 b : o-.a
10 10 0 0 c : —ia
0 0 0 10 0 d: oa
0 0 0 1 1 1 e: aa
0 0 0 10 1 f: a

a—>a b—>a b—>b b-»c c-»a c—>c
d-»d e—«1 e—>e e—>f f— t—*t

□ a---------► a ---------► Oa

□-ia---------► -i a ---------► O-ia

Figure 3.13: Classical S5

3.3 .8 In tu ition istic M odal S ystem s

Intuitionistic modal systems are constructed in a manner similar to the classical systems

presented earlier; they are however, restricted to single-conclusioned intuitionistic

sequents and intuitionistic rules for negation. The modal rules used are shown in

figure 3.14, and are taken together with the rules for the intuitionistic presentation

86 C H A P T E R 3. N O N -STA N D A R D L O G IC S

given in the previous chapter and summarised on page 54. The classical rule of
double negation elimination does not hold in this system, which means we should

expect a greater number of distinct modalities for the intuitionistic versions of the

classical systems. In fact, this presentation produces a collection of 31 modalities as

shown in figure 3.15. There is also an interesting diagram of the modalities, which is

derived from figure 3.16 and shown in figure 3.17.

Systems Rule

K
r, r' h

□ r , - 1n r /, A h n<p

T, S4, S5
¥>,r b tl>

□v>, r k ip

S4
□ r f <p

□ r , A b □ <p

S5
□ r ,- .a r ' b <p

□ r, -.nr', a b 0 (p

Figure 3.14: Rules for intuitionistic modal family

It is worth noting that if double negation elimination is introduced into the system

the modalities are reducible to the 14 of S4.

Positive Negative
-vn a - -

- i O - iD - iO - ia , O a ,

m 0 —D ^ 0 a ,—»1 0 a □

— i a - o o J

□ —«□ —i a , - 1i □ □ ~i a - □o □ —iD —i- ia ,Q ~ iD a ,

—i —t □ —i □ a , ~' O —i □ - i —> a - □O-i
—iQ —iQ a , - 'D - 'O - i—<a - on - iD - iD - ia -

r□O

□ —i i a , 0 - i Q —iD - i - ia ,

- □On - □On-.

j □ j □ j □ j » - OnO i D i D i O u p O - i D - i D - i i o - oao-i

Similarly, the intuitionistic version of S5 reduces from 13 modalities to the 6 ones of

3.3. D E T E R M IN IN G M O D A LIT IE S 87

Intuitionistic Modal

1:2 candidates

1: found 2 modalities (3 so far) oa, -na
2:4 candidates
ooaj-oa oat-ana
2: found 3 modalities (6 so far) o-ia, - 10a, - n »
3:6 candidates
—iDoa*>—ioa ~ i~ i—ia)-~ia - l a t - m i
3: found 4 modalities (10 so far) o-ioa, o -n a , -iD-ia, - n o a
4: 8 candidates
o-iooa^a-ioa o-n-iat^a-ia -r-iooa-*-r-ioa
4: found 5 modalities (15 so far) o-io-ia, o-r-ioa, -io-ioa, -iD-na, - n a - ia
5:10 candidates
o-r-iODa^o-r-ioa o-r-1o-iaj-o-ia o—ia)-o-r—iO-ia —>o—icoa-Mio—ioa -\o—noa]—ina -ioaJ—ia -n o a —io-i—i~ia-»—io—ia
5: found 5 modalities (20 so far) o-io-ioa, cm o -n a , -lO-iO-ia, -mo-ioa, - n o - n a
6:10 candidates

□—jD—mDa*K3-“iDa Q >□ n ifc*>0“i0“ifc T iC hD O M m C hQ l "nD "nD at>"il iDa —i-nQ— iQ-ia
6: found 4 modalities (24 so far) cmo- iO-h , -lO-io-ioa, -i cm o -n a , -n o -io -ia
7: 8 candidates
o-io-iCMoat-o-ioa o-ioat-o—lO-iCMoa - id—iQ-iOoa-*—io->o—ioa -iO~io—r-ioa-Mio—ioa —io- id- i- r l a n o —iO—ia
7: found 4 modalities (28 so far) o -io -io -n i, —io—id—iD-it, -n o - io —ioa, - n o - io - n a
8: 8 candidates
Q“iQ”*iD“riDar-KT-iQ—id® Q-iO—iO i « ift^OiO-iOia iD~iD~iDnD>‘>"iD-iQ8i "-nO“nO“iOOay'*""r-»Q—)Q—tOS -r-iO—iQ-nDa-t-nD*)Da
"nQnD-mH'-nDnDnl
8: found 2 modalities (X so far) -iQ -io-io-na, -n o -io -io -ia
9:4 candidates
-lo -io - io -n o a n o -to -io a —1O-1O-1O t -i ia*>—iO-io-io-ia - n o —iD-io—lOa-Mno—>oa
9: found 1 modalities (31 so far) - n cm cm o - n a
10:2 candidates
—r-iO—iO-iO—i—iOa*Mi -iO—iO-iOa -nO-iO—iO—m a ^ —r-iQ—iO-iO—ia
10: found 0 modalities (31 so far)
10: search closed

modalities for Intuitionistic Modal using <S4,N0T,THIN>[BASIC] are:
-nO-iQ-iO-na, —r-iO-iO—iQ-ia, -iO-iD—lO-na, -n O iO -n a , —rnO—lO-iOa, -lO—iO—iO—>8, O—lO-iO-r-ia, -1—1O—iO—18, —iO—iO—<—ia,
-io-io-ioa, d- io—io—ia, - n o - n a , —no-ioa , —io- io—ia, o -io -na , o—to-ioa, - n o —ia, —id—n a , —to—10a, o -n o a , o-io—>a, —n o a , —id—ia,
o -n a , o-ioa, - n a , —10a, o—ia, —ia, a a, a

Figure 3.15: Modalities search for modal system IS4

the classical system.

Positive Negative

■»Q—i i—iQ □ m

3 .3 .9 C o n c lu sio n

The modalities search described here, provides considerable insight into the structure

of a modal system, especially when it is combined with a check for interderivability

of the distipct modalities. The information obtained from these searches can build

a user’s confidence that the all-introduction presentation concerned captures some of
the structure required. The interaction of modalities with other connectives can be

explored in an similar way.

88 C H A P T E R 3. N O N -STA N D A R D L O G IC S

Intuitionistic Modal 2

IV
- i --------<S4,N0T,THIN>[BASIC]
9l<P-»V

a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E
1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 *: -mo-io-io-r-i*
0 1 1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 b:-rno-id-iOna
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 c: -iO-iO-.a-r-.a
0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 d:-mo-ich-ma
1 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 e:-i-io-io-ioa
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 f:-io-iD-io-ia
1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 g: o-io-io-r-.a
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 h: -r-.o-.o-ia
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 i: -.o-io-r-ia
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 J: -iD-iD-iaa
0 1 1 1 0 0 0 0 0 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 k: o-.o-.a-.a
1 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 : - n a - n a
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 m: -r-.o-.oa
0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 n:-.o-io-ia
00 1 1 0 0 0 0 0 1 0 0 10 1 0 0 1 0 0 0 0 0 0 10 1 0 0 0 0 o:o-io-i-.a
1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 p: o-io-.oa
0 1 1 1 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 q:-i-,o-.a
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 r:-.o-r-.a
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 *:-.o-ioa
1 0 0 0 1 1 1 1 1 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 t: o-r-.oa
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 u: o-.o-,a
1 0 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 v:-r-.oa
0 1 0 0 0 0 0 0 0 0 w: -iQ-ia
1 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 x: o-r-ia
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 y: o-.aa
0 1 0 0 1 0 0 0 0 0 z: -r-.a
0 1 0 0 0 0 A :-ioa
0 1 1 1 0 0 0 0 0 1 1 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 1 1 1 0 0 B:o-.a
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 C: -.a
1 0 0 0 1 1 1 1 1 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 0 0 1 1 D: oa
0 1 0 0 1 0 0 0 0 I E: a

a—»a a—4 a-4 i a—4 a—»w b—*b b-+c b-»d b—>j b—«n b—m b—»r b—»A c—>c c—»J c—*r cm A d-»c d-nl d-»j d-»m
d-w d-» A e—>a e— c—4 e-*h &-4 e—>s e-vw f -4 f - w g—>a g—4 g—vg g—4i g -4 g—hi g->w h -4 b-»h h - w 1—
1—4 !-»w j-*j A k-4> k->c k-Hl k-»j k-4c k—hh k—m k—>o k-w k-»y k-»A 1—»a 1-4 1—>h 1—>i 1-4 l-*w 1—« m—»j
m—«n h h A n->c dmJ iw n n-w n—>A o—>c o-»d o—»j o-«n o-»o o—«■ o-»y omA p—>a p—>c p—4 p—>g p-4 i p -4
p—>p p-*i p—hi p-*w q-4j q-»c q-*d q-+j q-wn q - » q—hj q-wr q-*A q-»C r-*r h A s—4 i - 4 sms smw t-»a tMe
t— tMg t—4i t—>i t-4 t-*p tMi t - 4 t—hi t—>v tMw t—mc t—« u—4 u—4i u—hi i h w vm s vmc vm! v-4 i vm! v—4
v—>s m v v - w v—« v h w xm* x -4 x-»g x-4 i x -4 x—4 x—hi xmw xmx xmz yMj y—nn y—»y y—»A zmw zmz
A—>A B—*b Bm c B-+d B— B—4c B—hh B—Hi B—io B—hj Bmt B—¥f Bm A B—>B B—>C C—h* Cm A C—>C D—>a
Dm c D—4 D—>g D—4i D—4 D—4 D—»p D -m D—4 D—hi D->v Dm w Dm x Dm z Dm D Dm E E—»w Em z Em E

Figure 3.16: Interderivability search among modalities in the system IS4

3.3. D E T E R M IN IN G M O D A L IT IE S 89

□ iD a ► n O i D o ► iQ -iD -iD a ------------------- —>Oai

O —i O —i —i a '- '»■ —i —i Q —i Q —i —> a * —i Q —i O —i O —i —i a ^ —i O —<—i ak

G - iQ - iQ —ict m D i D i D i a , ------ ►» -iQ -iQ -ia

□-■a iO-ia ia

□ - iD - io iQ-iD-ia .□-.□-iD-ia id-ia

D-iD-iD-i-ia —i—iQ-iO—id—i-ia iD-iD-i-io

□ - i- ia — iO —i-io

□—iO—iGa iG —i-ia iG —iGa

Q —i—iG a iQa

Go

Figure 3.17: Modality diagram for IS4

90 C H A P T E R 3. N O N -STA N D A R D L O G IC S

□~ia -i-iD-ia —'a -iDa

□-i-ia

a

Figure 3.18: Modality diagram for IS5

3.4 . L O G IC S O F K N O W L E D G E AND B E L IE F 91

3.4 Logics of K nowledge and B elie f

Logics of Knowledge and Belief are used to model the reasoning of independent
systems or individuals about themselves and each other. In such systems, a modality

is indexed by the agents that are capable of performing deductions. In this way a

family of related modalities is introduced.

Given a collection of agents or individuals I with sets of beliefs, then the notion of

an individual i believing some fact <p may be modelled as the modality ‘5(a)v?’.

This gives rise to a family of operators indexed by the individuals concerned whose

behaviour is defined to be like ‘D’. Beliefs can be nested; for example, the fact “a

believes that 6 believes may be represented as lB(a)B(b)(p\

The rules shown below will keep the modalities separate although there is no

essential need for them to do so. For example there may be a rule that captures

‘b B(a)<p^B(a)B(a)ip'\ this is a variant of the rule ‘4’ (in §3.2.8.2 above). This

is sometimes called “positive introspection”. Note that the rule must prohibit

‘h B{i)(f^B{j)B{i)(p' for i ^ j , which would have the effect of everyone believing

everybody else’s beliefs.

The definition of a logic of belief is achieved in the environment by providing it a

with language and rules as follows; an additional syntactic category is added to the

language for individuals.

3.4.1 Language of a Logic of Belief

Syntactic categories are: Sequent, Formula, Individual.

Judgement is Sequent.

Formation Rules are
Formula

‘B’ ‘(’ t:Individual *)’ a:Formula
a:Formula ‘A’ 6:Formula

a:Formula ‘V ’ 6:Formula

arFormula .̂Formula

a:Formula 6:Formula

atFormula

fc~[A-Z]$ z:Individual

BELIEVES(i,a)

AND(a,6)

0R(a,6)
IMPLIES(a,6)

IFF(o,6)
NOT(a)

PROP(<,i)

Individual

t‘:~[abc]$ —► ID(z)

Sequent

a:SetOf(Formula) ‘h’ 6:Set0f(Formula) SEQ(a,6)

92 CHAPTER 3. NON-STANDARD LOGICS

3 .4 .2 In feren ce R u le s

In addition to the usual rules for classical logic given in §2.8.6, add the following
rule: Th (f

— ------------J3(t)
r#,B(i)rb 5(i)<p,A

which is a variant of the rule for K given above. The individuals index the modality

B. Informally, this rule says that to conclude that an individual a believes some fact

9 , we must also make any facts - here the T’s - which might entail (p part of a’s

set of beliefs: hence B{a)T.

It is also possible to add the rule:

B{i)T b (p
-------------------------------- B4(i)
T',B{i)T\- B(i)cp,A

which is like rule 4 above. This expresses the axiom ‘b B(i)<p-+B(i)B(i)<p'1 that if i
believes some fact p then i believes he believes it.

3 .4 .3 W is e -m a n E x a m p le

The following example is adapted from [GN87], p. 215, where it is specialised to two

wise-men from many for brevity:

Suppose there are two wise men who are told by their king that at least

one of them has a white spot on his forehead; actually both of them have

white spots on their foreheads. We assume that each wise man can see

the other but not his own forehead. Thus each knows whether the other

has a white spot. Suppose that the first wise man ‘a ’ says “I do not know

whether I have a white spot” then the second wise man V can conclude

that he also has a white spot on his forehead.

Analysing this informal! description of the problem, and allowing that wise-men

reason perfectly and can see all the consequences of a set of assumptions, yields the

following more formal description. lWV is taken to mean that the wise-man called

lV has a white spot on his forehead.

1. If a believes that a does not have a white spot on his forehead then b believes

that a does not have a white spot either. B(a)->Wa—>B(b)->Wa

3.4. LOGICS OF KNOWLEDGE AND BELIEF 93

2 . a and b both know that either one of them must have a spot, so a believes

that b believes that either a or b have a white spot on their foreheads.

B{a)B(b)(WaVWb)

3. b says that he does not know if he has a white spot, and therefore a believes

that b does not believe he has a white spot on his forehead. B(a)->B{b)Wb

4. Conclusion: a believes that he has a white spot on his forehead. B(a)Wa

The following is the proof tree obtained for the above argument when it is phrased

as a sequent in the environment.

W a \- W b,W a----------- ,b
^Wa, Wa b Wb ~^Wa, Wb b Wb ----------------------- vH

WaVWb, ^Wa b Wb B(b)WaWWb, Wa b W a , B(b)Wb
---B (b) ---
B(b)Wa\/Wb, B(b)-iWa b Wa, B(b)Wb B(b)WaVWb b Wa, -^Wa, B(b)Wb

B(b)WaVWb, B{b)Wb, B(b)^Wa b Wa"' B{b)WaVWb, ~^B{b)Wb b Wa, -^Wa 1

->Wa^B(b)^Wa, B{b)WaWWb, B(b)Wb b W a

B{a)^Wa^B{b)^W a, B{a)B{b)Wa\/Wb, B(a)-,B{b)Wb b B(a)Wa ^
S.I. ■ --..... S S. .v...... ̂ v---- ^

1 2 3 4

-vh

Note that there are two applications of the epistemic rule B(i), one for each if a

and b. The proof tree above each of the applications amounts to reasoning done by

a and b using their separate sets of beliefs.

3 .4 .4 C on c lu s ion

The example shows how modalities can be indexed by individuals, allowing

“multi-modal” systems to be expressed within the environment. Modal action logics

can also be presented in a similar fashion. In these there are actions, rather than

individuals, and the actions may have a more complex structure than the constants

used for the individuals above.

94 CHAPTER 3. NON-STANDARD LOGICS

3.5 Three and m ore valued logics

Many-valued logics arose in the 1920s as a means of addressing problems with

“paradoxes”, and the consideration of whether propositions such as should be
universally true - as they are in classical logic. Many arguments have been found for

rejecting the two-valued view that classical logic bestows upon this proposition. For

example, consider the case when the proposition, <£>, is taken to mean “the defendant
is guilty”, and given to a jury in a court of law. Under Scottish law, the jury’s

answer need not be just “yes” or “no”, as it is in England, but may also be “not
proven”. Here, “not proven” is taken to mean that insufficient evidence was given to

decide the guilt (t) or the innocence (f) of the defendant. If a truth-value, i is to

be assigned to “not proven” it will lie between or below the others:

t|
iI
f

Examples of three-valued logics found in Computer Science focus on the possibility

of a computation failing to terminate for some input. The second of the two figures

may be taken to represent the possible outcomes of running a semi-decision procedure

for some property. At some time after the procedure has been started, either the

procedure has terminated having decided the property and returning t or f , or else it

is “still computing” or i. If the observer is Zeus, to whom time means nothing, then

i is a legitimate truth-value, but for earthly observers the process might terminate

at the next moment and so still has the potential on becoming t or f.

Cliff Jones’ version of the Vienna Definition Method (VDM) uses a Logic of Partial

Functions (LPF) [Che86] to address the issue of functions failing to denote values.

LPF is similar to Kleene’s strong three-valued system (see below) plus an operation,

called A, which determines whether a proposition is defined

J f if <p undefined

A(9) = t otherwise

t f

\ /

3 .5 .1 V a lu a tion S y s te m s

Consider the system containing a single category 5 , populated with a number of

constant symbols P, and with formation rules given by a collection of operations

0 = (oi,...,on).
A valuation system V is a triple (M, D,F) where

3.5. THREE AND MORE VALUED LOGICS 95

• M is a set with at least two “truth-values”

• D is a non-empty set of designated truth-values D C M. These are intended to

distinguish those truth values that are “true” from those which are not true,
since we may have gradations of truth in the many-valued setting. For example,

the following choices may be made for the example above:

D =
0 } “definitely true”

“possibly true”

“defined”

• F is a set of functions corresponding to the operators in the language, such

that F — and /,• : M di—>M, where d{ is the arity of the operator
0{. The functions /,• encode the truth tables for their o,-.

Let a : P —*■ M be an assignment mapping propositions to truth values in M. Then

functions in F induce a valuation Va : S —> M on the sentences as follows:

Va(p) = a(p) if P e P

Va(Oi(x\, . . ., ̂dj)) = fi(Va(<3'l)* • • • •>))
The role of D is to determine the validity of a sentence in the language. A sentence

is valid if all assignments of truth-values to its propositions force the sentence to

take a designated value under the valuation

h ip iff Va.Fa(<̂) 6 D

So for the case of classical logic, take M = { t , f } and D — {t} with the familiar

truth tables shown in figure 3.19 for the operators O = (- |,A ,V ,—>) respectively.

t f t f t f

<p - u p <pf\lj) (p V i p

t f t f t t t f
f t f f t f t t

Figure 3.19: Classical two-valued truth-tables

Now suppose that it is wished to model underdetermination in the sense given above.

Take M = { t ,i , f } and D = {t} where i is viewed as truth-value lying below t and

f. The truth tables of Kleene’s strong2 three-valued logic are shown in table 3.20.

In this system, i is intended to represent ‘undecided’ in the sense used in the

introduction.

2the weak version takes the value i whenever i heads a row or a column.

96 CHAPTER 3. NON-STANDARD LOGICS

t i f t i f t i f

<p A i p <p V i p

t f t i f t t t t i f

i i i i f t i i t i i

f t f f f t i f t t t

Figure 3.20: Kleene’s three-valued logic

3.5 .2 M any-valued a ll-in trod u ction sy stem s

The following technique is offered as a means of encoding a finite many-valued system

in the “sequent” all-introduction setting preferred here. The technique presented here

is similar to a tableaux encoding of multi-valued systems in [Car87].

Given such a valuation system, a “generalised” sequent presentation may be formulated

in the following way. Define a generalised sequent as an n-tuple, Ti|F2J • • • |r„, where

n = \M\ and the T’s are sets of formulas in the language. For the case when n = 2 ,
write T b A as before. The intention is that each ‘slot’ T,* should correspond with a

truth-value in M. It is assumed that the correspondence of a truth-value with its

position in the sequent is given by some map g : M —*• n}.

3.5.2.1 A xiom s

Now for each i , j E M, i ^ j let

be an axiom.

Taking a refutational account, the sequent system can be regarded as formulating the

systematic search for a counterexample. In this context, an axiom states that if the

proposition, <p, is simultaneously assigned the two different truth-values - there is no

counterexample in this case (as the induced valuation is not single-valued on ip).

3.5.2.2 Logical Rules

Next the logical rules for each connective o,- may be constructed as follows. Let the

inverse of o,’s associated function /,• be = { (u i , . . . , . . . , = m).

3.5. THREE AND MORE VALUED LOGICS 97

Now consider the behaviour of / 1 at each point m in M. If f i 1(m) is empty then
add the axiom

Ti| • •)>rfl(m) | • • *|r„
This axiom states that it is inconsistent (or “inconceivable”) to have a formula with

such an assignment of truth-values. Certainly, no counterexample can be constructed

when this is the case.

Otherwise, if / ^ (m) = X is not empty, a logical rule is defined whose antecedents,

Si, are generalised sequents formed from the tuples in X .

Si ••• Sixi
I'll * * * • • • i V̂)} ̂(m)! ’ ‘ * l̂ n

Supposing that (u i , . . . , u^) is such a tuple then a generalised sequent, S , is added.

S is constructed by taking those of the u,• which equal m for each m € M and adding

the corresponding </?,• to that part of the sequent indexed by m. This can be restated

as: if Oi(<px,.. .,<Pdi) is to be assigned the truth value m, then each of its constituent

subformulas must be assigned the following truth values. When there are
several permutations of assignments, i.e. |X | > 1 , these are considered ‘in parallel’.

In this way all possibilities of discovering a counterexample are explored.

E xam ple

In the case of classical logic, there are two truth-values, t and f, of which, t is
designated. Therefore a two sided-sequent is sufficient.

The labelling function g takes t ^ 1 and f »-*■ 2, which can be more succinctly written

as f t h Tf. .

To see how the construction of logical rules works, consider the truth-table for

conjunction (figure 3.19). There is one subcase for each truth-value. In this

example these are given by — { (t ,t)} and /A 1 (f) = { (t ,f) , (f ,t) , (f ,f)} . If the
construction presented above is applied to each of these sets of pairs, the following

logical rules'are obtained.

</>,̂ ,rbA
— rrrr-r ̂ ^ r b a

<p,Tb-Tp,A i/),T b<̂ >, A
T b cpAip, A ------- /A*(f)

The first is recognised as the familiar rule Abe, but the second is rather more

complicated than expected. A small observation can be used to simplify the second

rule. By introducing an “intermediate truth-value” called ‘ — ’, = { t ,f } = M, which

stands for either of the other two values, /A 1(f) may be rephrased as { (f , , f)}

as follows

98 CHAPTER 3. NON-STANDARD LOGICS

/ A- 1(f) = { (t , f> ,(f , f> (f , t) , (f , f) }"V 1 1 " V ' J<-.f> <f.->
which gives the rule

T \ - tp ,A ThV>,A
/A*(f)r h A

The intermediate truth-value can be interpreted as saying that the actual truth-value

that is assigned to that component has no effect on the truth-value of the formula

as a whole. Hence, it can be dropped from the corresponding upper-sequent.

3 .5 .3 E x a m p le s o f th e m e th o d

If this analysis is repeated for the remaining classical truth-tables of figure 3.19, the

familiar sequent calculus presentation of Gentzen (developed in §2.8.6) is obtained.

3.5.3.1 A logic o f non-term ination

Table 3.21 captures the behaviour of call-by-value evaluation of boolean formulas. The

system models the case when a formula is evaluated in a left to right manner, and

only those parts that are required to decide whether the truth-value of the formula

is ‘t ’ or ‘f ’ are evaluated. This is often the case in computer languages, where the

use of such a strategy leads to a cleaner coding style by, for example, avoiding the

need for an extra conditional on loops. An erroneous or non-terminating result is
represented by the ‘a;’ truth-value. For example, in these tables ‘tVu> = t ’, rather

than the corresponding ‘to’ in Kleene’s system above. The designated truth-values of

the system are taken to be D = {t}.

3 .5 .3 .2 K leen e’s strong three-valued logic

If the method of §3.5.2 is applied to the 3-valued truth-table shown in figure 3.20

the result is the rules given in figure 3.23. (Some of the upper-sequents have been

stacked vertically to save some width.) The assignment of truth-values to positions

in the sequent is T t|r j|r f.

The two sided sequent T \~ki is defined as holding iff r||y> and T|v?| both hold. i.e.

r||v m

r 'rm v
That is, taking a refutational account, it is not possible to construct a counter-example

which is consistent with the assignment of a designated value to the assumptions and

a non-designated value to the conclusions.

3.5. THREE AND MORE VALUED LOGICS 99

t f t 07 f t 07 f

-Mp <pViJj

t f t o> f t t t t 07 f

o? 07 07 07 07 07 07 07 07 07 07

f t i f f t 07 f t t t

Figure 3.21: A logic of non-termination

¥>, r|¥>,A|0

--------AVJAV>,r|A|0

y,r |A |0 y»,r|A|y,0
v>v̂ ,r|A|0

r|A|y>,0 y^,r|A|0
^ifr,r|A|0

r |A |y , 0

-.¥>,r|A|0

95,r|A|̂ ,0
r|v,A|0 v-.ri^Ai©--------------- Ar|v>A#,A|0

r|y, A|0 r|0,A|y,0
r|v>v0,A| 0 V

r|v>,A|0 9,r|̂ ,A|0

r|v>-v-,A| 0 M
riv».A|0
rhv.,A|0hl

r|v,A|v?,0

r|A|vj, 0 ¥>,r|A| ^ , 0
------------------------------- Ar|A|v5AV.,0

r|A|v»,v>,0

r|A|vv# , 0

y,r |A |^ ,0
r|A|v> - ^ , 0

y.r|A |0
r|Ahv>,0 h

Figure 3.22: Rules for non-termination logic

For example hk i a—h i iff |a—>-a| and ||a—>a is attempted as follows,

a||a a|a| |a| |a|a
| | a —h i | a —>-a|

\~Ki a— hi

but the second derivation does not go through, because |a| is not an axiom, and no

further progress can be made.

This derivation points to a more general property of Kleene’s system, namely that

VV. f-Rl tp
To see this, consider the sequent \<p\. There are four cases depending on the structure

100 CHAPTER 3. NON-STANDARD LOGICS

v>,r|y>, a |o y?,r|A|y>,0 r|^,A| ^ , 0

r|A|y, 0

->(/?,r |A |o
r|y>,A|0 ^r[A[0

r |- .^ ,A |0 ^ r |A H * ,0

r|̂ , a | ^ , 0

y»r|A|0 ^r[Ai0 r|v?,̂ ,A|0

<̂ v̂ ,r|A|0 r|v>,A|v?,0

T\<pVip, A|0

r|A|v>,v>,0

r|A| ^ , 0 V

y?,^,r|A |0--------AVJÂ ,r|A|0

)/>,r|¥>,A|0

r|¥>, ,̂A|0 rjA|y>, 0 r|A|^,e
v ,V \i> ,A \e , , r |A |VAV>,0-------- Ar|^A^,A|0

v?,r|̂ ,A|0

V>»r|A|0 r|A|y?,0 r [< ^ ,A |0
v?-+̂ ,r|A|0 r|^,A| ^ , 0

r | ^ , A |0

y,r|A|̂ ,Q
r|A| ^ , 0

Figure 3.23: Ternary sequent rules for Kleene’s 3-valued logic

of (p: ‘aA&’, ‘aV6’, and i a - ^ b \ In each case, by applying the middle rules of
figure 3.23, the sequent is reduced:

\a\ \ b \a |a,6| a|6| |a|6 |a,6| \ b \a a|6| |a,6| \ a \b

|—ia| |aA&| |aV6| |a—>6|
As each case gives rise to a branch of the form ‘|A|’, there will be a branch that
will never be closed by an axiom. Hence, this system has no theorems of the form
I” K l V -

For a successful derivation, consider a , b \ - j (i a A b

a , b \ \ a a , b \ \ b a , b \ a \ a,6|a,6| a,6|6|a
a, b \ \ a A b

a , b hk i flAb
a, 6|aA&|

3.5. THREE AND MORE VALUED LOGICS 101

3.5 .3 .3 Lukasiewicz’s three-valued logic

Lukasiewicz’s three-valued logic was developed to deal with future contingent
statements. It differs from Kleene’s by its matrix for implication which is shown in

figure 3.24. The leading diagonal is entirely ‘t ’s whence b- îp—xp. The motivation

here is to regard ‘i’ as an intermediate fractional truth value i.e. i = | , whereas

t = 1 and f = 0. Then (p—tip is defined as

I - i<pVip <p > ip
v-'i’ = < ,

I 1 otherwise

where -up = 1 — <p, (pVift = max((p,if)), and (pAift = min(v?, ip).

if t i f

V Ocp O (p

t t i f t t
i t t i f t
f t t t f f

Figure 3.24: Lukasiewicz’s three-valued logic

To adapt the rules for this system, two of the three rules for —► in table 3.23 must

be replaced with the following:

v>,r|A|e r|A|y>,e iy ,y ,,A |e
v>—V»,r|A|©

¥>,r|V>,A|0 F\ip, A| 0 ,0

r|v>-^,A|0

Now b j a — can be derived as follows:

102 CHAPTER 3. NON-STANDARD LOGICS

3.5.4 K leene’s system revisited

Examination of the three-valued matrices for the connectives and their negations

shows that it is possible to find a more elegant set of Gentzen rules for Kleene’s

system, in the spirit of [Avr88].

t i f t i f t i f

V3 p A r f) cp M ty <p - u p

t t i f t t t t i f t f

i i i f t i i t i i i i

f f f f t i f t t t f t

<t> -.((^V-0)
t f i t f f f f i t t f

i i i t f i i f i i i i

f t t t f i t f f f f t

f i t f i t f i t T0

The following table is obtained by reading the above truth-tables with the truth-values

identified as follows:
{f,i} = if {t, i} = —'if

{t} = t {f} = -it
Note that —i—it = if and — iif = t.

E+J j <-K J t if i t i i f t if -it —iif

v A V -
t

if

-it

-nf

t if

if if

-it —i if

—«if —iif

t t

t if

-it -it
-it -i if

t if —iif -it

t —iif —iif —iif

The technique introduced above is next applied to this revised truth-table but making

use of -i to reduce a 4-place sequent to a 2-place sequent. The resulting set of rules

is shown in table 3.25.

By examining the rules introducing connectives on the right-hand side of the sequent

it is clear that once again, no theorems of the form bp will provable using this

presentation. The rules ensure that the ‘parity’ of the sub-formulas of p is always

preserved, i .e. sub-formulas of a formula occurring on the right-hand side are placed

on the right-hand side, similarly for rules introducing connectives on the left. This

means that the basic sequent will never be derivable if all formulas occur solely on

the right-hand side.

3.5. THREE AND MORE VALUED LOGICS 103

(p,̂ <p,T b A

p , r b a r ^ , A

* i , r h A r i— a

v?, V>,r b a r h ^ , A r b V s A

v?a Vs r b A r b tpAip, A

-i<£>, r h a - iVs r i - a r i—'9?, -tip, a

- i(c/?a i />), r h A r i— a

0 , r h a (p,r h a r h <?,Vs a

(pvip, r h a r b <^vVs a

-i <p, - iVs r i- a r i— a r i—'Vs a

-i(<^V0), r b A r i— i (ipvip), a

- i9 , r h a r h a r b - i y) , ^ , A

► Vs r h A r b cp—► Vs a

<y?, -i Vs r h A r b - . v > , A r b < ^ , A

r b — — v̂,)> a

Figure 3.25: Negated Kleene Rules

Lukasiewicz’s implication connective (figure 3.24) cannot be captured in this two-sided

form as there is no means of allowing the central point of the truth-table to be

anything other than ‘i’.

3.5.5 Conclusions

This section has presented a scheme for translating finite many-valued systems

presented through valuation systems and truth-tables into equivalent all-introduction

presentations using generalised sequents. Given such presentations, some properties of
the many-valued system become more perspicuous, although occasionally at the cost

of a more lengthy presentation. Some optimisations of the translation are possible

through the introduction of “don’t care” values, shown in the classical logic example.

104 CHAPTER 3. NON-STANDARD LOGICS

3.6 H ypersequents

3.6.1 In troduction

Hypersequents provide an example where it is useful to be able to nest structural
properties, which is possible using the linguistic structures available in the environment.

Hypersequent systems were introduced independently by Pottinger [Pot83] for the

presentation of cut-free modal systems using symmetry in their reachability relations

e.g. S5. They were also introduced by Avron [Avr88] for the treatment of

Lukasiewicz’s three valued-logic and a relevance logic called RM3.

A hypersequent is simply a collection of sequents. In presentations of hypersequent

systems in the literature, the structural rules are duplicated and divided into internal

and external rules. The external rules act on the hypersequents, and the internal

rules act on the sequents which make up the hypersequents. In the environment,

the use of appropriate implicit declarations makes the presentation very natural and
quite succinct.

This can be illustrated with a reformulation of Pottinger’s hypersequent presentation
of the modal systems T, S4, and S5.

3.6.2 P o ttin g e r’s M odal system s

The presentation defines a new category of hypersequents which become the judgement
category.

f a:Sequents ']’ — HYPERSEQUENT(a)

Figure 3.26: Formation rule for the Hypersequent category

A modal sequent is valid with respect to a class of Kripke frames, C, when it is
true in all models based'on them, i.e.

V?i,.. is valid in C iff V77 G C.\/V.(T, V).\rip\A • • • Ay?„-»^iV • • • V^m

Pottinger extends this be saying that a hypersequent is valid with respect to a class

of frames, precisely when one (or more) of its constituent sequents is valid:

3.6. HYPERSEQUENTS 105

[fi h Ai; • • •; r n h A n] is valid iff 3i.r,- h A t- is valid

The advantage of using a hypersequent representation rather than simple sequents,

is that a form of the subformula property can be obtained. This was not always

possible in the single sequent formulation. In the rules given below, the rule

responsible for S5, S5-BOX of figure 3.28, inserts the modal formula into its upper

sequents. These sequents inherit the formula, and as this is a subformula of the

lower sequent, the subformula property is maintained across the rule. A derivation of
the sequent ‘D-iaVD-id-ia’ is shown in figure 3.29. Figure 3.30 shows the results of
the modality analysis of §3.3 for this system.

3.6 .3 Sum m ary o f th e p resentation o f th e sy stem

• The categories used are : Hypersequent, Formula, Sequent, Sequents.

• The judgement categories are: Sequent, Hypersequent.

• The side-condition ‘hyper £ £ '’ is used to insert a formula into the

left-hand side of all the sequents of a hypersequent and is used in the rule
S5-BOX. •

• The metavariables used are as follows:

Formula <pxj)

SetOf(Sequent) £

SetOf(Formula) TA

• The rule seq is used to form a hypersequent from a single sequent.

• Formation rules for the other categories are shown in figure 3.27.

• The ̂propositional rules have been lifted to hypersequents, e.g.

v>,r h $
becomes

[p.ri- y.,A;£]
[r h ¥>-v>, A; £]

106 CHAPTER 3. NON-STANDARD LOGICS

F o r m a t i o n R u l e s

‘[’ a:Sequents ']’

<z:SetOf(Sequent)a

a:SetOf(Formula) ‘K 6:SetOf(Formula)

‘O’ a:Formula

a:Formula ‘A’ fc:Formula

a:Formula ‘V’ fe:Formula

a:Formula +’ 6:Formula

a:Formula ‘+-+’ 6:Formula

‘- i’ a:Formula

t:~ [a-z]$

“whose elements are separated with a

—► HYPERSEQUENT(a):Hypersequent

—► SEQS(a):Sequents

—► SEQ(a,6):Sequent

—*• BOX(a):Formula

—► AND(a,fe):Formula

—► OR(a,6):Formula

—► IMPL!ES(a,6):Formula

—► IFF(a,&):Formula

—*■ NOT(a):Formula

—*• ID(<):Formula

Figure 3.27: Formation rules for Hypersequent example

3.6. HYPERSEQUENTS 107

------------------------- BASIC
[<p,T\- A ; E]

[IM-A]
n - a

stq

[o r , r ' h A ; o r i- 9 ; ej [o r , r ' 1- A ; r h w e]
---------------------------------------S4-S5-BOX ------------------------------------ T-BOX

[o r . r ' l - O v > , A ; E] [o r , r ' I - O ^ , A ; E]

[9 , □ v ’ . T b A ; E] [<p,0<p, r I- A ; E ']
----------------------------S4-T-BOX ----------------------------- hy p er (CM E E’ S5-BOX

[Ov ,r i-A ;E] [□V’. r I- A; E]

[rt-9 ,A;E] [r 1- A;S]
-- (-A

[r h ifiAip, A ; E]

[v’. t f . n - A ; E]
---------------------------------- A h

r h A ; S]

[ri-y>,V>,A;S]
[r h A; E]Vl"

[y ,n -A ;S] [ip, T h A; S]

[‘r,vV’, r h A; E]

[y,ri-̂ ,A;S]
[r 1- A ; S]

[V>, r I- A ; E] [r I- (p, A ; S]

[v3 “ *■ V’ . T I- A ; E]

[y,n-A;S]
[r I 19, A ; S]

[r I- y , A ; S]

[“ '¥’ >r r A ; E]

Figure 3.28: Hypersequent rules for the modal systems T, S4 and S5

[O ia F ; O -ia, -iab; O-ia, ->al— ia]
---S4-SS-BOX[□-■al— O-iaF; O-ia, -iaF]

-- S4-S5-BOX[1— ia; h; O-ioF]
----------------------- |--,
[I—iD-ia; I—ia; h]
--------------------------- S5-BOX[I— lO-ta; hD-ia]
---------------------------S 5-BOX[hd-iD-ia, D-ia]
[h □ -ia V □ ~i □ —i<x]
--------------------------------- aeqf-D-iaVO-id-ia

Figure 3.29: Example derivation of the Euclidean Axiom

108 CHAPTER 3. NON-STANDARD LOGICS

Hypersequent T. S4 and SS

1 : 2 candidates

1: found 2 modalities (3 so far) pa, -ia
2 :4 candidates
ppa}-pa pa(-ppa -i-iaj-a a|—n a
2 : found 2 modalities (5 so far) o-ia, -ipa
3:4 candidates
n-r-iar*aa - ip p a ^ p a
3: found 2 modalities (7 so far) n-ioa, -iOia
4:4 candidateso-iDna-̂ Q-iDa -lO-nâ -ina
4: found 2 modalities (9 so far) o-id-ia, -lO-ioa
S: 4 candidates
o-io-r-iar»a-iDa i ih o o a ^ io n o a
5: found 2 modalities (11 so far) p-io-ipa, -iO-io-ia
6 :4 candidates
P—iD—iPPa*»P—iQ—iP8 -lQ-tO-nSSnO-iOa
6 : found 2 modalities (13 so far) o-iD-iu-ia, -io-ip-iPa
7:4 candidates
□-iO->D-ioal-o-iaa D-iDaJ-D-io-iO->pa D-iD-iD-na^o-iD-ioa -iP-iP-iPPa'+-nD-io-iPa
7: found 1 modalities (14 so far) -ia-iO-io-ia
8 : 2 candidates
-iP—iP-iP-iPSrt-iP-iPa ->P-iP-iP—I—18"*—iP-iP- iPa
8: found 0 modalities (14 so far)
8: search closed

modalities for Hypersequent T, S4 and SS using (seq)<S4,lefUight>[BASIC] are:
- ip—io-id- ia, —iQ—id~iDa, p—id- io—ta, - ip—io—ia, o—id—ioa, - ip—ioa, d- id- ia, -lP-ia, o—ioa,
-laa, q—ia, —ia, pa, a

Hypersequent T. S4 and S5

1: found 2 modalities (3 so far) pa, -ia
2:4 candidates
poaj-pa pal-ppa -i-ia)-a ah-na
2: found 2 modalities (S so far) o-ia, -ioa
3:4 candidates
o-ipal—iPa -ipal-o-iPa p-rnar»pa-iPpa-»-iPa
3: found 1 modalities (6 so far) -iP-ia
4:2 candidates
-ip—ipa*»-i~ipa -iP-na^-ipa
4: found 0 modalities (6 so far)
4: search closed

modalities for Hypersequent T, S4 and SS using (seq)<S5,lefUight>[BASIC] are:
—\Q—ia, —iPa, p-ia, ia , pa, a

Figure 3.30: Modalities derived for hypersequent presentations of S4 and S5

3.7. DEFEASIBLE REASONING 109

3.7 D efeasible Reasoning

This section illustrates the use of negative judgements to model a simple non-monotonic

system. The system consists of classical logic augmented by a new non-monotonic

operator called unless: the formula i<p j ip' is read as “cp holds unless ip can be

shown”. The negative content of the unless operator is captured by the use of a

negative judgement.

In addition to the usual sequent judgement, ‘b ’, the new judgement ‘b ’ is introduced,
the latter being declared as a negative judgement in the language of the system.
Figure 3.31 gives details of the language declaration used.

Category: Formulaf^] SetOf(Formula)[rA] Sequent NSequent;

Judgement: Sequent;

Negative judgement: NSequent;

a:SetOf(Formula) 'b' b:SetOf(Formula) —► SEQ(a.b):Sequent

a:SetOf(Formula) 'b' b:SetOf(Formula) —► NSEQ(a,b):NSequent

a:Formula 'J.' b:Formula —* UNLESS(a,b)
a:Formula 'A' b:Formula —► AND(a,b):Formula

a.Formula 'V' b.Formula —+ OR(a,b):Formula

a:Formula ►' b:Formula —► IMPLIES(a,b):Formula

'-i' a:Formula —► NOT(a):Formula

a:" [a-z][a-z0-9]*" —► ID(a):Formula

Figure 3.31: Defeasible system’s language

A negative judgement is interpreted negatively when it occurs in the upper part

of an inference rule. The negative interpretation is simply to negate the outcome

of the derivation of the judgement. Thus when a negative judgement leads to a

successful derivation the result is considered to be unsuccessful. Similarly, if a

negative judgement leads to an unsuccessful derivation, then the outcome is considered
satisfactory. • In this way a negative judgement can be used to invert the sense of
derivability. As the outcome of the derivation is inverted, there is no witness to the

successful derivation of such a judgement, and the proof tree simply indicates the

negated judgement in the same way as a basic sequent.

110 CHAPTER 3. NON-STANDARD LOGICS

All-introduction Rules for Defeasible System

Classical rules (from §2.8.6) +

r ^ , A r,9,^i-A r h a
------------------------------------ ---------- neg

r,<p j, 0 b a r ̂A

The inference rules for the example non-monotonic system are shown above. The rule

jb is concerned with the introduction of the unless operator ‘1 ’ as an assumption.
The formula ‘<p J, 0 ’ (read as “<p holds unless it can be shown that ip holds”) can be

introduced as an assumption in an argument of the form T , b A ’, in place of ‘<p’,

when it is known that ‘0 ’ is not provable.

The rule neg does not have a very satisfactory reading, as it appears that Y and

b are the same relation. The reason for this is that the negation of Y is implicit,
and is declared in the language part, rather than in the rules of the system. The

rule neg simply states that ‘l4’ uses the definitions of the judgement ‘b \ Other ways

of expressing this ‘dual’ relationship might be preferable, but it was decided that

the additional syntax required to make the distinction in the definition of the rules,
rather than of the language, might diminish the freedom of a user to choose the

syntactic forms for a system.

Other rules included in the system are taken from the classical system of §2 .8.6 on

page 57.

Exam ple derivations

A frequent example used in the discussion of non-monotonic systems relates to a

bird called tweety [KLM90]. It is common knowledge that birds can fly ‘6—*■/’, and

also that penguins cannot ‘p—►(-|/) ’. The idea that a bird can fly unless it is a

penguin can be expressed as ‘(6—►/) j p’. Given that tweety is a bird, then without

any other knowledge about tweety it is reasonable to assume that tweety can fly ‘/ ’.

However if the additional fact that tweety is a penguin is also available then it is
clear that the conclusion should be that tweety cannot fly S / h Naturally, when this

is the case ‘/ ’ should not be derivable.

The system permits the following derivations for the first two of these three problems.

3.7. DEFEASIBLE REASONING 111

1. It is not known that tweety is a penguin, and since tweety is a bird, it can fly

(by default): ft,(ft-»/) j p,p->(->/) h /

f h f 6 b 6
b y - f , p ft—*/, & b p, / / b / 6 b 6

6, (6—►/) i P I- / 1 y f , p b-*f,p-^~>f, 6 b / ,p

ft, (ft-*/) 1 P, -1/ f" / P—►-«/,** (ft—►/) I P I" /,P

ft> (ft—►/) i P»P—►”•/ ̂ /
2. Adding the additional fact that tweety is a penguin gives a different

outcome. Tweety is a bird and a penguin, entails tweety cannot fly:

ft, (ft-*/) lp ,p ,p -* (-> /)l- -•/

ft, (ft -*■ /) 1 P, P, / , - 'f 1“ P h p

ft,(ft-» /) I P ,P ,P ^ t

ft, (ft-* /) l P ,P ,P “* "■/ *- - 1/

So b is a non-monotonic relation, and the rule

r b a----- Mr,<pb a

does not hold in this system.

3. It is also important that, when tweety is a bird and a penguin and can fly,

6, (6—►/) f p, p,p—*•(-■/) b / is not derivable.

Chapter 4

Q uantification

This chapter shows how quantification is treated within the environment.

Quantification is represented using binders which provide scoping that

enables distinctions to be made between free and bound variables. A

simple extension to the syntax of inference rules is used to formalise

the substitution of arbitrary terms and eigenvariables for the variables

governed by binders.

4.1 Introduction

Predicate logics extend the propositional systems studied in previous chapters by

including quantifiers among their logical connectives. Intuitively, quantifiers introduce

a “universe of discourse” within which propositions become predicates. In this way,

quantifiers may range over individuals denoted by terms, as in first-order calculi.

Predicate variables are introduced in second-order systems, as predicates themselves

become objects in the universe of discourse, and may become the objects of

quantifiers. Also interesting from a Computer Science perspective are type inference

systems which lie between first and second-order logics. In these systems, which make

assignments of types to programs, the types are described by propositions rather

than predicates; these may similarly be the objects of quantifiers and an example of

this is shown below. Types are also used in many-sorted logics where they annotate

variables to restrict the individuals that a variable may denote.

First-order predicate calculus illustrates the additional syntactic machinery required

to add quantification to propositional logic. In particular the following are needed: 1

1 . quantifiers, given as operators [V 3 over variables and formulas;

112

4.1. INTRODUCTION 113

2 . variables, [x, y , . . .] over which the quantification is performed;

3. predicates, [P,Q,. . .] are propositions parameterised by a sequence of terms; and

4. terms, [t ,f i , . . .] the syntactic structures which denote elements in some
appropriate “universe of discourse”

A term is defined as follows:

• a constant symbol [o,6, c , ...] is a term;

• a variable is a term; and

• if t\ • • • tn are terms and / is an n-place function symbol then f { h , . . . , t n)

is a term.

For example ‘Vx.P(a, / (x)) ’ is a sentence when: P is a predicate of arity two, a is
a constant, / is a one-place function, and x is a variable whose occurrence in / is

bound by the quantifier V. (An example of a second-order quantification would be

‘Vx.VP.P(x, a)—*-P(x)’ in which P is quantified over.)

A variable is said to be bound when it lies within the scope of a quantifier which

refers to it. For example \/x.P(x)AQ(y) binds the occurrence of x in the predicate

P. A variable is said to be free when there is no such containing quantifier - as is

the case for y in the example. When a variable lies within the influence of several
quantifiers, the closest one is responsible for the binding.

4.1.1 The sem antic perspective

The treatment of first-order systems using models mirrors the syntactic elements

above in terms of sets and functions. Here, valuations are extended from the

propositional case by adding a (non-empty) set D called the domain, or “universe of

discourse”. Constant symbols are assigned denotations in the domain using a map

C. Similarly, each function symbol is associated with a function by F which maps

its arguments to an element in the domain. Predicates are associated with their

characteristic functions by P so that the resulting characteristic function determines

for which tuples of elements in the domain the predicate holds.

These relationships are packaged as a structure M = (D ,C ,F ,P) . A valuation is

used to specify which individual a term designates in an expression. The valuation,
v, is a map from variables to an individuals in the domain. A first-order sentence

114 CHAPTER 4. QUANTIFICATION

is satisfied with respect to a structure M and a valuation v , written as M ,v (= <p,

precisely when:

M ,v j= p(tu . . . , t n) iff (t i (v) , . . . , t n(v)) 6 P(p)

M , v {= -i<p iff it is not the case that M \= <p
M, v (= tpAift iff M, v f= <p and M, v \= tj)
M, v |= (pVift iff either M ,v \= <p or M, v |= ip

M, v (= cp^'ip iff when M, v [= <p then M ,v |= ^
M ,v |= Vx.ip iff M, v[x/d] |= (f for every d G D

M, v |= 3x.cp iff A/, v[x/d] |= (p for some d G D

where v[x/d] stands for a map which takes x to the element d but otherwise behaves

like v. The effect of the valuation on terms is given by:

x(v) = v(x) c(v) = C(c)

f (t l , " - , t n)(v) = F(f)(t l (v) , . . . , t n(v))

If the formula (p contains no free variables, M }= <p suffices since the initial contents

of v has no bearing on the outcome. The validity of such a closed sentence is given

by its truth in all structures: |= p iff M f= <p for all M.

4.1.2 T he syntactic perspective

Computer based theorem provers for predicate systems use the results of Gentzen

and Herbrand to reduce first-order sentences to propositional form by a systematic

elimination of the quantifiers. Herbrand’s insight was to regard combinations of

constants and function symbols as ‘names’ for their denotations in the universe

of discourse. The validity of a quantified formula could then be translated into

a collection of essentially propositional formulas. Early attempts to do this on a

computer by Davis and Putnam[DP60] and Prawitz et al[PHV60] enumerated these

combinations of ‘names’ directly with all the combinatorial inefficiencies that this

gave rise to.

Robinson’s use of the unification algorithm [Rob65] greatly improved the efficacy of
a search procedure by removing the need to enumerate or guess the names: it

constructs the most general name that is suitable. The introduction of the unification

algorithm went hand in hand with the introduction of resolution, which may be

viewed as a return to axiomatic presentations using a single rule analogous to modus

ponens.

For systems such as classical predicate logic, in which a prenex normal form is

available, the deduction can be divided into two stages. Gentzen’s mid-sequent

4.1. INTRODUCTION 115

n -a

Figure 4.1: Mid-sequent of a proof

theorem shows that a proof of a sequent involving quantifiers can be transformed

into a proof divided into two parts. The lower part contains rules concerned only

with the quantifiers and structural properties such as contraction; the upper part is

free of quantifiers and uses only propositional and structural rules. The dividing line

between these two regions is the mid-sequent (T b A in figure 4.1).

For other systems, such as Intuitionistic logic, this clean separation of quantifiers

from the other logical connectives is not possible. In such systems, all rules must be

considered together during the search for the proof.

To illustrate a typical set of quantifier rules, consider the following rules taken from

a first-order all-introduction presentation of the intuitionistic predicate calculus in

[Dum77].

All-introduction Rules for Quantifiers

T,Vx.(p(x) b if)

r,¥>(y) •" ̂
T, 3x.<p(x) b 0

VI-

31-

r i- <p(y)

r i- V x . < p (x)

r h y(Q
r b 3x.<p(x)

l-V

1-3

C onditions

1 . y is a variable and t is a term and both are free for x in (p(x);

2 . <p(y) and tp(t) result from <p(x) by replacing every free occurrence of x by y

and t respectively;

3. in the rules hV and 3b the variable y does not occur free in T , Va\<£>(x), ^ or

in or T ,3x.(^(x)’ respectively.

116 CHAPTER 4. QUANTIFICATION

R em arks

The first condition ensures that the variable y cannot fall into the scope of a

quantifier within which an occurrence of x may lie. This condition can be achieved

by systematically renaming bound variables. The condition on t seeks to ensure that

none of the variables in t can be captured in the same way.

The second condition formalises the notion of substitution; only the free occurrences

can be changed by the substitution.

The final condition requires that the variable y be distinct from any free variable

already occurring in the sequent. This ensures that the variable y is truly arbitrary

and prevents invalid deductions in which a variable is used more than once.

When the structural rules of the system include the contraction rule quantifiers can

be reused, e.g.
r,Vx.y?(x), (f(t) h ip--------------- vh

T,'ix.(p(x),Vx.(p(x)\- ip
-------------------------------------- c o n t r a c t io n

T,Vx.(p(x) h ip

This is a source of great combinatorial complexity, as no upper bound can be placed

on the size of the mid-sequent (when one exists).

4.2 R epresentation of quantification

This section provides details of the mechanisms used to represent quantification in

the framework. In order to support the observations made in previous sections, a

method must be supplied for defining quantifiers and using them in inference rules.

4.2.1 Extensions to language declaration

Variables which are subject to quantification are introduced to the framework by

declaring a new syntactic category of variables. The variables are then used as the

objects of binders which are in turn used to construct the quantifiers.

In order to use binders it is necessary to extend the technique used to specify

languages which was described in Chapter 1 . Two new operations are introduced in

the language part: •

• an operation ‘Variable(—) ’ denotes a category of variables over a specified

category. Variables constructed in this way can be scoped using a binder.

4.2. REPRESENTATION OF QUANTIFICATION 117

For example, the declaration Variable(Term) introduces variables that range over

the category of terms. Metavariables are often also required, the following

example

Category: Variable(Term)[xyz];

declares that bound variables are to be used over the category of Terms

and defines the names of the metavariables [xyz] which will be used in the

description of rules. An example of a rule using these metavariables is:

r,y(0 h--------- Vh
T,Vx.<p(x) h if)

where t is a meta-variable over the category Term and x(= x) is a meta-variable

in the category of Variable(Term).

In the rule r,v?(y) F ̂
3h

T, 3x.tp(x) h rj;
both x and y are (distinct) met a-variables in the category of Variable(Term).

A means of forming object-level bound variables is also required for which the

following example declaration can be used:

t : “[uvw]” —*• VAR(t):Variable(Term)

This indicates that variables over Terms are written as u, v, w , ul, vl , w 1 ,

This information is used to produce a concrete syntax for the user.

• The colon operator constructs the binding. Suppose v is a variable and

are terms to be bound by v, then the expression lv : (< i , . . . , / n)’ introduces the

appropriate binder. When there is just one £, this can be written lv : t \ The

following examples illustrate how binders are formed:

Quantifiers The quantifiers given in the introduction for predicate logic can be

defined as follows:

'V' a:Variable(Term) V t:Formula FORALL(a:t):Formula

*3' a:Variable(Term) t:Formula —► EXISTS(a:t):Formula

A bstraction (as in the lambda calculus)

‘A’ a:Variable(Term) t:Term —»• ABS(a:t):Term

declares an abstraction operator of the form Ax.t assuming that x is in

the category of Variable(Term) defined elsewhere and that M s a term. In

the element ‘ABS(a:t)’ the ‘a:t’ part declares the binder. The notation also

allows us to define (perhaps perversely) a infix operator e.g. tXx given by

118 CHAPTER 4. QUANTIFICATION

t:Term ‘A’ a:Variable(Term) —> ABS(a:t):Term

Language for P red ica te Calculus

The following example brings together the elements described above to define the

language required for classical predicate logic. The boxed parts show the extensions

required over the propositional logic used earlier.

Category: Formula[ip ip] Sequent Term[t] Variable(Term)[xyz] SetOf(Formula)[rA];

Judgement: Sequent;

a:SetOf(Formula) T ’ b:SetOf(Formula) —► SEQ(a,b):Sequent

'V a:Variable(Term) t.Formula —*• FORALL(a:t):Formula

'3' a:Variable(Term) t:Formula —► EXISTS(a:t):Formula
a:Formula ‘A’ b:Formula —+ AND(a,b):Formula

a:Formula 'V' b:Formula —► OR(a,b):Formula

a:Formula b:Formula —► IMPLIES(a,b):Formula

'—>* a:Formula —*■ NOT(a):Formula
p:" [A-Z][a-z0-9]*" '(' a:ListOf(Term) ')' —► PRED(p,a):Formula

c:" [a-z][a-z]*" —► CONST(c):Term

f:" [a-z][a-z]*” '(' a:ListOf(Term) ’)' —► FUIM(f,a):Term

t:''[uvw]" —► VAR(t):Variable(Term)

The boxed regions deal with, from the top: the declaration of the additional syntactic

categories, the formation rules for the binders, and the formation rules for terms and

their variables.

4.2.2 Rules th a t use binders

The goal is to provide a familiar notation for rules that introduce binders. This

is done to make the framework intuitive to use. The notation used is similar to

that used in the presentation of rules given for intuitionistic system in §4.1.2 above.
Recall that a rule may have zero or more upper sequents and a single lower sequent:

upper sequent(s)

lower sequent

4.2.3 B inder in lower sequent

When a binder for a variable x occurs in the lower sequent of a rule, its use is

indicated by writing ‘(a;)’ after the occurrence of the binder e.g. 4Vx.<^(x)’. The

4.3. DEDUCTION USING BINDERS 119

substituands are indicated in upper sequents by writing ‘(u)’ after occurrences of (p.
Suppose that x is in the category Variable(c), then the mechanism used to interpret

the formula depends on the category of lu \

• If u is a metavariable over the category c, then a brand-new meta-variable in

the category c is substituted for x in <p.

r i- <p(t)

T b 3x.ip(x)

• If u is a metavariable over the same category as x, then a new name for x

is selected and marked as depending on any existing variables in the lower

sequent1.
T b <p{y)

T b \fx.<p(x)

Supposing that metavariables a ,6,c in the category over which x is a variable,

are already used in a derivation, and that the new name for x is u, then the

dependency of u on a, 6, c is written as u^a,b,c\ When no variables have been

introduced, uO is written.

4.2.4 B inder in an upper sequent

A binder can also be introduced in an upper sequent (even if it does not occur

in the lower sequent). This is useful in forming the closure of an expression with

respect to free occurrences of variables within it.

T : Vx.u : v
------------------ G a
T : u(t) : v

The rule is only admissible when there are instances of the free variable t in the

expression u that do not occur in other parts of the judgement e.g. I \ The expression

iyix.u' is the expression u(t) where all occurrences of such a variable, t, have been

replaced by the new bound variable x.

4.3 D eduction using binders

The interpretation of the use of binders in rules is enforced as follows. The condition

(3) in §4.1.2 states that y does not occur free in the lower sequent of the rules
for bV and 3b. The environment enforces this by forming a new constant which is

1This is similar to the approach used by early versions of the Isabelle system[Pau89]

120 CHAPTER 4. QUANTIFICATION

indexed by the free variables in the lower sequent, i.e. n â,6,ĉ above. This amounts

to constructing a Skolem function from the current free variables to the arbitrary

individual in question. The variable lx' which is replaced is sometimes referred to as

the eigenvariable of the rule.

The arbitrary nature of the t used in h3 is represented by a logical variable in the

implementation.

U n ification A lgorithm

It may be useful to state the unification algorithm here for reference. The unification

algorithm takes a set of disagreement pairs S and tries to reduce them. Unify(u,v)

is given as follows:

set S to {(u, v)}

while S is not empty do
remove a pair (u,v) from S

if u is a variable then

if u does not occur in v then let u be bound to v

else report failure

else if u is a function / ($ i , . . . , $ n) and v is a function f (t \ , . . . , t n)

then add {(si, t \) , .. .(sn, tn)} to S

else if v is a variable then add (u, u) to S

else report failure

The algorithm will report failure if it is not possible to reconcile all the disagreement

pairs. If it succeeds, a sequence of bindings will have been made that have the effect

of making u and v syntactically identical.

4.4 Exam ples o f quantification rules

The use of the rules shown above is now illustrated with a few examples.

4.4. EXAMPLES OF QUANTIFICATION RULES 121

E x a m p le 1

Consider the two formulas:

3x.' iy .P(x,y)—>'iy.3x.P(xyy) and ' iy.3x.P(x,y)->3x.'iy.P(x,y)

The former is valid since, if there exists some x such that for all y the property

holds, then certainly there is an x that satisfies the conclusion. However, the second

formula is not valid as the xs may vary as a function of y in the antecedent. To see

how the quantifier rules impose this restriction, consider the following proof trees:

stuck!
P(«<>,<*) h P (M °) PO<a’6>,a) b P (M * a’6>)

P (u ^ ,a) b 3z.P(:r,

V?/.P(n^,y) b 3ar.P(£,
------------------------------------- |-v

P { u ^ b\ a) \ - ' i y . P { b , y) ' V

3x.P(x,a) b Vy.P(b,y)
Vy.P(itU, y) b Vy3x.P(x, y) -- 3j_ 3x.P(x,a) b 3x.Vy.P(x,y)
3x.Vy.P(x, y) b si y 3 x . P { x , y) -- VH

Vy.3x.P(x,y) b 3xNy.P(x ,y)
3xNy.P(x, y) -A jy3x .P(x , y) -- h —

Vy.3x.P(x, y)-^3x.Vy.P(x, y)

The derivation of the first proposition is shown on the left. As the terms a, b are

arbitrary, they are represented as logical variables and bound to their corresponding

eigen variables This is indicated by an appropriate label on the right of the
basic rule, e.g.

-- 75--------75— d>-*U
P{u{},a)\- P{b,v{})

The derivation of the second proposition shown on the right is not successful. As

the eigenvariables are eliminated by 3b and bV, they are indexed by the terms in

use that the time they are created. In this case, x >-+ u^a,b̂ and y v {a-6) by the

rules 3b and bV respectively. This gives rise to the quantifier free sequent

P (^ a-6> ,a)b P (6, ^ ° ’6>)

However,-the unification of with a is prohibited, as is the unification of u^a,b̂

with 6. Each would produce a circular term, and would therefore break the condition

(3) of §4.1.2. This is precisely the role of the occurs check in the unification

algorithm.

E x a m p le 2

Suppose a prenex intuitionistic formula is represented by the sequent

b \/x3y.Vx,3 y ,. A (x y \ x, y)

122 CHAPTER 4. QUANTIFICATION

where A is a quantifier-free formula. Applying the quantifier rules produces the

following derivation
b 6, a)

b 3y'.A(v{a\ y \ u ^ , a)

b Vx'3yf.A(x', y \ a)

b lyA/x' 3y ' .A(x', y \ u®, y)------------------ hv
b ' ix3y. ' ix '3yl.A(xl, y', x, y)

at the top of which is an entirely propositional formula, A(v^a\ b, u^, a), which

admits the following bindings:

1 2 3 4

a v {°) ■y(a)

b y{a) ti<>

Only the first two bindings are valid assignments, since the others produce circular

terms (consider a in 3 and 4). Consequently, only the following two sentential
forms are possible:

1. w^), and

2. A (v ^ , v ^ a\u^,u^).

Only derivations of the quantifier-free part that use these assignments will be

acceptable. As Dummett points out (in [Dum77], p. 150), this observation gives rise

to a decision procedure for prenex formulas of intuitionistic predicate logic without

function symbols, since the quantifiers cannot be reused.

Exam ple 3

When several quantifier rules can be introduced at the same time, as in this example

from classical logic (in [Gal87], p. 349), the order of introduction becomes significant.
Consider the following sequent:

b 3ari.Vyi.-iP(a?i, 2ft), ^x2.'iy2^ Q { z 2, y 2) ^ x 33 y33 z3. (P(x3, y3)AQ(y3, 23))

Initially there is a choice of three candidate applications of quantifier rules out of

a total of 2t5t37 = 210 different reduction paths; of these, just ^ = 6 lead to a

4.4. EXAMPLES OF QUANTIFICATION RULES 123

successful outcome, one of which is shown below.

P (a ,i)< , }) h P (« 0 , c) Q { b , w ^) h Q(c,d)

P(a, v «) , Q(b, ro{a'6>) H c)AQ(c, d)
h A

h-ix2
(-3x2

W3;hV

1- iP (a , n<a>), -.Q(6, tn<a’b>), P(n<>, c)AQ(c, d)

b iP (a , v{a}), -i(5(6, w{a,b}), Sy33 z 3.P(u{\ y3)A<5(y3, z3)

b i? (a ,u {o}), 3x2.Vy2.-i<5(:r2, 2/2), 3y3.3.z3.P(u{},y3)AQ(y3, z3)

b 3xi.V yi.^P (^ i,3/1) , 3z2.Vy2.->(5(22, 2/2) ,Vz3.3y3.3z3.(P(u{},2/3)A<5(y3,^3))

b 3 z i.V y i.-.P (z i,y i),3 z2.Vy2.->Q(*2,y 2),Vz3.3y3.3;?3.(P (23,?/3)A<5(y3,£3))

H3;hV

HV

E x a m p le 4

This example illustrates how the technique treats function symbols when they are

present in a system. The language shown for first-order predicate calculus in §4.2.1

used the formation rule:

f:" [a-z][a-z]*” '(' a:ListOf(Term) ')' —*■ FUN(f,a):Term

for function symbols. The following example illustrates a case where a, 6 are arbitrary

terms which unify successfully:

----------6i-+/(a)
P (/ (a)) b P (6)

P (/(a)) b 3a:.P(a:) H3-------------- Vh
V z.P (/(x)) b 3x.P(z)

But, when 3 is replaced with V, the following situation arises:

stuck!

PU(a)) h P(uU)

Vi .P (/ (i)) H P (u (}) Vl"

Vx.P(f(x)) h Vx.P(x)

The derivation does not go through, as f (a) and fail to unify. (Recall that u is

represented by a constant.) Intuitively, this should be expected as / might otherwise

map all elements in the domain to a single element, and this would be excluded.

E x a m p le 5

In some derivations, intermediate bindings of terms to terms can occur. These

bindings cause a variable to inherit dependencies on terms that may not have existed

124 CHAPTER 4. QUANTIFICATION

at the point of the variable’s introduction in the proof. Consider the following
derivation: --------at-*6 ---}—̂

P (a) h P (b) Q(u<°>) I- (3(6))
I- P (a) —> P (b) h Q(u<a>)-<3(6) |"“
h (P (a) ^ P (b)) A (Q (u ^) ^ Q (b)) ^

I- B z . (P (a) ^ P (z)) A (Q { u ^) - * Q (z)) ^
--- (-VI- V y 3 z . (P (a) - * P (z)) A (Q (y) - > Q (z))

\- 3 x . V y 3 z . (P (x) ^ P (z)) A (Q (y) - * Q (z)) h3
In this example, each of the two branches when examined separately appears to
be consistent. The set of bindings when taken as a whole however, produces
{a h 6,6 r u^}, which is not unifiable, and so the derivation shown above is
invalid. Note that the unification algorithm shown above addresses this transitivity
issue. This ensures that all the bindings throughout the derivation are consistent.

4.5 A typ e inference system

The type inference system described in Damas and Milner’s paper[DM82] provides a
good example of a type inference system suitable for this environment. The system
is second-order propositional, as it allows quantification over types, which can be
regarded as propositions. The role of quantification in the type inference system is to
allow reuse of program fragments with different types of data. Instead of quantifying
over formulas and predicates, quantification is carried out over types within type
expressions.
The t in the following example is a bound variable over the types in the system
and ‘V*. •••$•••’ indicates that the type of t is arbitrary. The following are
examples of quantified type expressions: ‘ V t . t —t f for the identity function; or
N t . t x (t x t - + t) x list(i)—*•£’ for the type of a function, r e d u c e , that applies a function
to the elements in a list, accumulating the partial results.

reduce b f [] = b
b f a:as = f a (reduce b f as)

The type system consists of three categories: Expression, Type, HasType; the last
category is the association of a type with an expression. Of the two judgement
categories, Sequent and Generalise, the first is similar to the intuitionistic sequent
except that it uses l i s t s rather than s e t s; the second category is used to generalise a
type by forming its closure with respect to any free type variables occurring within
it. This is accomplished using the rules G a and G b below. The language for the
syntactic categories is as follows:

4.5. A TYPE INFERENCE SYSTEM 125

Syntactic categories are: Expr, HasType, Sequent, Type, Identifier, Generalise;

Judgements are: Sequent, Generalise;

Formation Rules are

Expr

‘A ’ ^ Id e n t if ie r V e:Expr —*• A B S (u .e)

e:E xpr / :E x p r - A P P L (e , /)

‘f ix ’ e:Expr —► F IX (e)

'le t ' {'.Identifier ' = ' e :E xpr 'in ’ / :E x p r —►

'Pi
1--UJ

’ e :E xpr ‘th e n ’ / :E x p r ‘else’ Expr 'fi' - 1 F (e , / , f i f)

e:Expr ' = ’ / :E x p r - E Q (e , /)

e:E xpr ' + ’ / :E x p r - P L U S (e,f)
e:E xpr / :E x p r —► M IN U S (e , /)

e :E xpr / :E x p r - T I M E S (e , /)

a :n u m b er - N U M (a)

^ Id e n tifie r I D (0

Sequent

a : ListOf(HasType) 'K 6:HasType -+ S E Q (a , b)

HasType

a:Expr 6:Type —► HT(a,b)

_______________Type_______________
‘V’ a:Variable(Type) V u:Type —> GEN(a:u)

u:Type ► ’ tr.Type —► IMP(u,u)

‘int’ INT

‘bool’ BOOL

Identifier

[abcijk] [0-9]*$ -*■ 1 D(i)

Generalise

e:ListOf(HasType) w:Type u:Type —> GEI\l(e,w,v)

The metavariables used are as follows:
ListOf(HasType) T A

Expr efg
Type uvw
Variable(Type) st
Identifier xyz

126 CHAPTER 4. QUANTIFICATION

The binder GEN in the category of types is used to allow generalisation over types,
e .g . ‘V£.u(f)\ Types may thereby be reused with different instances in different
situations i . e . polymorphism. The l e t construct illustrates this, for example:

l e t i = X x . x in i i

Consider the two occurrences of ‘i’ in the body of the l e t construct. Each occurrence
of ‘/’ has a different type and the overall type of the expression is H - + t \ This is
deduced by assigning l V the polymorphic type of which allows the different
instantiations of (a-»a)—>-(a—»-a) and b — >b which are shown in figure 4.3.

---------------- n u m b e r e INT-BASICThe: i n t
-------------- lo okup x : u r VAR-BASICT b X .' U

The: b o o l T b / : u T b g : u--------------------- IFfH/e t h e n f e ls e g f i : u

T \~ e : u — > v F h / : u
--------------------------------------- A P P L

r b e f : v
x : u , T b / : v

--------------------------- A B S
V b Ax . f : u —► v

rhe:a-+M
--------------------- F I XT b f i x e : u

T \ ~ e : u V u :: il ' i : u ' , T b / : v

T b l e t i = e i n f : v L E T
T,e : u l v) ^ ' b / : w

---------------------------------- INST
T, e : Vx.u(x), T7 b / : w

T b e : u T b / : w
---------------------------------EQ

T b e = / : b o o l

r b e : i n t T b / : i n t
------------------------------------- P L U Sf b e + / : i n t

T b e : i n t T b / : i n t
-------------------------------------M I N U ST b e — f : i n t

T b e : i n t T b / : i n t
------------------------------------- T I M E ST b e * f : i n t

T Va>.u :: v

T u (t) :: v G a ----------- Gbr v :: v
Figure 4.2: Rules for a type inference system

The rules used by the system are shown in figure 4.2. The derivation of the type
b —>b for ‘/ef i = X x . x i n i V is shown below in figure 4.3. The structure of the
proof reflects the syntactic form of the expression. The rightmost branch involves
two instantiations of the closed type deduced for i namely ‘Vf.f—►/’, one for each
occurrence of i in the body. The rules G a and G b perform the required closure (in
the example the ‘context’, T, is empty).
The example in figure 4.4 shows the role of the occurs check in type inference. The
sets of bindings { u i-» a, v i-+ a} and { v h-* a —*>a} are inconsistent since the first aliases
v with a and this gives rise to o k a - + a which is a circular term.

4.5. A TYPE INFERENCE SYSTEM 127

----------------- o—*-(6—*6)
i : c —±c b i : (&—►&)—►(&—►&)

--- INST
i : V t . t —>t b i : (6—>-6)—»-(6— 6̂)

T

---------------------- d>- * b

i : d - + d b i : b -^ b
------------------------------- I N S T
i : b i : b —>b
------------------------------- A P P L

b X x . x : a —* a

--------------------------Gb
V t . t - + t :: V t . t - > t

A B S — —— — — — — — Q n
A

a —>a :: V t . t —* t i : V t . t - + t b i i : b —>b
L E Tb l e t i = X x . x i n i i : b —*b

Figure 4.3: Type inference involving the l e t construct

---------------------------- ui— »-a -----------------------hi—»-a—+a
i : a - + a b i : v —* u i : a —* a b i : v
--------------------.--------------—------------------------APPL

i : a - + a b i i : u

Figure 4.4: Type inference involving circular term

Chapter 5

D erived R ules

This chapter discusses derived rules. The notion of a derived rule is
defined. Derived rules are split into two classes: simple and recursive.
The technique for checking whether a rule falls into one of these classes
is described. Some applications of derived rules are presented.

5.1 Introduction

A rule of inference is said to be d e r i v e d with respect to some presentation of a system
when its addition to the other rules of that system does not allow the derivation of
any new judgements. This definition does not give any insight into how a rule can
be checked to see if it is ‘derived’. A more appropriate, and stronger, definition can
be found by focusing on the way in which a rule can be used in a derivation.

Any proof containing a d e r i v e d rule can be algorithmically transformed
into a proof having the same conclusion1 but containing no occurrences of
the derived rule.

This observation can be used to show that a rule is derived, and hence it can also
be said that the rule is c o n s e r v a t i v e with respect to the other rules of the system.

1The conclusion of a proof is taken to be the judgement with which it is rooted; its
assumptions are any unsolved judgements - or proof obligations - on which the proof as a whole
depends.

128

5.1. INTRODUCTION 129

conservative rules

recursively derived rules
simply derived rules

To demonstrate this, it must be shown that the rule can be eliminated from the
proof wherever it occurs, to be replaced by other rules in the system; this may be
carried out in one step, or in stages. This latter point is the basis for the distinction
drawn between simply and recursively derived rules in the above diagram. In general,
the algorithmic approach cannot be expected to identify all conservative rules, but
using the techniques described below, a significant proportion can be identified.
In order to make the formulation of derived rules more precise, definitions must
be provided for a proof, both as a final completed object and as it undergoes
construction. A way of comparing proofs is needed, such that one proof is s i m i l a r

to another when it achieves a similar conclusion from similar assumptions. In this
way, the internal structure of proofs can be disregarded when necessary.
Once the notion of a proof with respect to a system has been established, a notation
for proof substitution is introduced that allows occurrences of specified rules within a
proof to be replaced. With the aid of substitutions on proofs, transformations which
rewrite proofs can be stated.
It is important to be able to show that a sequence of transformations will terminate
in a finite number of steps. This is done by introducing a measure of the size of
a proof, relative to the candidate derived rule; this should always be reduced by
an application of a transformation. The distinction between simply and recursively
derived rules is formalised using these definitions.
The remainder of the chapter is concerned with the type of analysis required to
verify that a candidate rule is either simply or recursively derived.
The analysis of simply derived rules selectively and progressively combines forwards
and backwards use of inference rules together with the judicious introduction of cut
rules. The inference rules are combined schematically.

130 CHAPTER 5. DERIVED RULES

The analysis of recursively derived rules is more involved. When an overall proof
strategy is available for the type rule in question, the transformation needed to
remove occurrences of the rule from a proof can be subdivided into a number of
simpler transformations. These subcases can be enumerated and verified by the
environment. Two example rules are provided, and it is shown how the subcases are
enumerated and validated for each of them. The examples are of a general weakening
rule, and the cut rule. Gentzen’s use of the cut rule to show consistency is discussed
briefly.

5.2 D efinitions

The definitions which follow will be used later in the analysis of derived rules.

5.2.1 Partial proofs

The p a r t i a l p r o o f s P P with respect to the language and rules of a system are defined
as follows:
1. the judgements, whether valid or not, of the system are partial proofs, and
2. R (P \ ,..., Pn, J) is a partial proof, when J is the judgement which results in
the application of the inference rule R to the partial proofs Pi,...,Pn.

Partial proofs are intended to represent proofs under construction. The conclusion of
a partial proof is the conclusion of its outermost rule.
Partial proofs are written as ’' ’ Jn

C

, and distinguished from single rules by their
thicker horizontal lines. The «/, are the unsolved judgements and C is the conclusion.

5.2.2 Completed proofs

A c o m p le t e d p r o o f \ p E C P , is defined as follows:

1. R (P \,.. , , P n , J) is a completed proof, when J is the judgement which results
in the application of the inference rule R to the completed proofs P \ , . , . , P n .

A completed proof is a partial proof with no unsolved judgements. The notation

\ / is used to represent the completed proof whose conclusion is the judgement
C

C . A completed proof may contain a label to help distinguish it from other
completed proofs in the transformation schemas later in the chapter.

5.2. DEFINITIONS 131

5.2.3 Similar proofs

When studying proofs, it is often convenient to concentrate on their conclusions
rather than their internal structure - which may vary according to the strategy
used during their construction. Proofs which achieve similar conclusions from similar
assumptions are called similar proofs. The relation symbol used for similarity is:

5.2.3.1 Similar completed proofs

Two completed proofs are said to be similar, written \ ~ / , when
A B

their conclusions are similar, A ~ B . Similarity between judgements is defined by
the matching algorithm described in §5.2.12, but it can be stated briefly as: A and
B can be made equal, given appropriate substitutions, and using any (structural)
properties that are available by virtue of the categories they are formed from.

Example

a,b\- a, c a, 6 b 6,c

a, b b aAb, c

a, b b (aA&)Vc

aAb b (aA&)Vc

Ha
Hv

AH

aAb b aAb, c

aAb b (aA&)Vc
hv

5.2.3.2 Similar partial proofs

It is useful to extend the notion of similarity to partial proofs that have similar
unsolved judgements, called assumptions here. Proofs that make similar assumptions
should be considered similar. The definition of similarity between partial proofs must
account for; the possibility that an assumption will occur more frequently in one
partial proof than the other. There is no harm in identifying such cases, since once
a proof is found for one occurrence of the assumption, it can be replicated for the
other occurrences. This leads to the following definition.

B rA \ • • • A n B \ Two partial proofs, ■ ■■■... and —
A Bconclusions, A ~ B , as before, and when

., are similar when they have similar

(Vi G n 3 j G m . A { ~ B j) A (V j G m.3i G n . B j ~ A,)

132 CHAPTER 5. DERIVED RULES

Examples

Partial proofs are similar modulo reordering of rules.

---------------------------- |— , -------------------------- Ah

r,v?,V>i— 'OjA ~ a
----------------------------- Ah ----------------------------- I— 'I\v?Â I— '0 , A T,<pA l> \— '0, A

In the following example, the proofs are similar since, although the second partial
proof does not use the unsolved judgement, l T , t p \ - 0 \ the judgement is similar to
‘T, <p h 0’, with the substitution ip <p.

v \ - < p r , ^ h 0 r,v^h0
----------------- h v a ---------------------------------- Vh
r h <p\/ ip r, h 0
-- crtir h 0

rh<^ r,^h0
-------------------------- cutr h 0

5.2.4 Minimal Occurrences

An inference rule, R , has a minimal occurrence in a proof when all of its subproofs
do not contain occurrences of R .

Example

In the following completed proof the uppermost occurrence of hA is minimal:

a, 6, c b a a, 6, c h b
--hA ------------------

a, 6, cb af\b a ,6 ,ch c----------------------hA
a,6,c h (aAb)Ac

-------------------------------- Ah
aA6, c h (aA6)Ac

5.2.5 Proof Replacement

The following diagram illustrates the replacement of a subproof within a larger proof.

5.2. DEFINITIONS 133

where \ K P / anĉ \ q / are two similar completed proofs.
C C

The subproof rooted at C labelled p is selected from the proof P. The result is
the same as replacing the unsolved judgement C in a partial proof with the proof
labelled q provided the selected proof p and replacement proof q are similar. The
similarity of the whole is preserved by the replacement.

Example

The following example illustrates the replacement of a subproof with a shorter similar
proof.

Since

a, b b a, c a, b b b, c-------------- Ha
a, b b aAfc, c

----------------------- Ah
aAb b aAb, c

----------------------------b v
aAb b (aA&)Vc

a, b b a, c a, b b 6, c

a, b b aAb, c
------------------- z\f-
aAb b aAb, c

bA

aAb b aAb, c
----------------------------bV
aAb b (aA&)Vc

aAb b aAb, c

aAb b aAb, c
-----------------------f_v
aAb b (aA&)Vc

a, b b a, c a,b\- b,c
--- bA ^ ------------------------

a,6baA&, c aAb b aAb, c-------- Ab
aAb b aAb, c

5.2.6 Eliminating rules in a proof

Suppose, for the moment, that there is a method of eliminating a single m i n i m a l

occurrence of a rule, R , from a proof. Then if a proof is given in which R occurs n

times it is clear that:

134 CHAPTER 5. DERIVED RULES

1. while n > 0 do
(a) there is a least one minimal occurrence of R .

(b) applying the method to the occurrence removes it from the proof.
2. all occurrences have been eliminated.

This indicates that all occurrences of R can be eliminated from a proof given that
there is a means of eliminating the minimal occurrences of R .

5.2.7 Simply Derived Rules

The notion of a s im p l y d e r i v e d r u l e is illustrated by the following figure. The rule
R shown on the left occurring within a larger proof is replaced with an equivalent
subproof (the inner triangle) on the right:

Irrespective of the context in which the proof rule is used, there is a single partial
A \ — - A nproof that behaves in the same way as the rule i2, so that C ~ A and

A
J i ~ 1 < i < n . This permits occurrences of R to be removed from the proof in
a single step, in favour of other rules in the system.
To show that a rule is simply derived with respect to other rules, a construction
must be found which satisfies this condition. This is done in §5.3.

5.2. DEFINITIONS 135

Example

To illustrate this, consider the derived rule
r,y? b A

---, - . h

r, -i-i b a

and its equivalent partial proof
r,v?b a

----------------------|— ,

r i—■ (p, a
------------------------- ,f-
r, -i-i (p b a

An occurrence of —t—ib can be removed from a proof e .g .

aba 6 b 6
-------------------- —+|-a, a— b b
------------------- |--,a I— i(a—►

------------------------a, ->-i(a—>6) b b

5.2.8 Sizing proofs

The method in §5.2.6 for removing minimal occurrences depended on the ability to
remove such an occurrence entirely. For simply derived rules this can be done in a
single step - as the construction is independent of the context - but for some rules,
the occurrences proliferate before they can be eliminated. For these rules, known
here as recursively derived rules, an additional measure of size is needed that will
ensure that the occurrences can eventually be eliminated.
Consider a minimal occurrence of R in a proof. From the definition of minimality, it
is clear that the subproofs of R do not contain any further occurrences of R . A
transformation applied to such an occurrence will either:

aba 6 b 6
a, a—>6 b 6

a, -i-i(a—►&) b b

• eliminate the rule immediately;
• move the rule h ig h e r in the proof; or,
• replace the rule by several further rules, but any new occurrence of R will be

s m a l l e r than the original in some way.

The notion of size defined here encodes these cases.
The s i z e of a m i n i m a l occurrence of R in p is given by a pair (C r (p) , s (p)) where

136 CHAPTER 5. DERIVED RULES

• s (p) is the number of rules in p :
n

s(J2(pi,...,p„, J)) = X 15(P‘) + 1
i=l

• C r (p) is a measure of the complexity of the occurrence as a function of the
rule. In the case of a cut rule for example, this is a measure of the complexity
of the cut formula. For other rules, such as weakening, it is constant and can
be taken to be zero.

The sizes of occurrences are compared as follows:
c — c ' and s < s '(c,s) < (c ,s) if
c < c '

The s i z e of a completed proof with respect to R can now be written as S r (p) , where
S r (p) is the maximum of the weights assigned to m i n i m a l occurrences of R in p .

Examples

1. R is eliminated.
A \ A 2 C i C 2-----fix --► -----

Bi Bi

(C r (R i) , Q) > <0,0}

2. R is moved up, and perhaps copied.
C r (R i) = C r (R 2) = C r (R 3) = r

Ax A 2 A \ A 2

B \ B 2 — ► B \

A 3 A \
Ft? -----R3

b 2

R i
C i C i

(r, 1) > ((r, 0) = m a x { (r , 0), (r, 0>})

3. R is reduced in complexity, but further occurrences may be introduced.
C r { R i) = r i > r 2 = C r (R 2) - C r (R 3)

A i

A i A 2

B i B 2

C ~
Ri

E B 2 A 2 B 2

R2 — --- Rz
D 1 D 2

C

(n, 1) > ((̂ 2,1) = m a x { (r 2 , 1), (r2,0)})

5.2. DEFINITIONS 137

5.2.9 Proof Transformations

It is now possible to define a transformation which can assist the elimination of a
rule P.
Define an -̂transformation on completed proofs, T r : C P —► CP, such that if
p , q £ C P , the occurrence of R is outermost in p (so p has the form R (p i , . . . , p n , J)) ,

and T r (p) = q then p ~ q and S r (p) > S R (q) .

5.2.10 Recursively Derived Rules

A rule R is called r e c u r s i v e l y d e r i v e d if, for any minimal occurrence of P, say p,
there exists a P-transformation applicable to p such that S r (p) > S r (T r (p)) .

The procedure given in §5.2.6 can now be modified to make use of T r .

If there is a proof in which P occurs n times, it is clear that:

1. while n > 0 do
(a) there is a least one minimal occurrence of P called p .

(b) applying T r to p may introduce additional occurrences of P but they will
all be smaller than the original occurrence. In particular they can be
eliminated by recursively applying the procedure to T r (p) . This eliminates
P from p .

2. all occurrences have been eliminated.

5.2.11 Typed Internal Form

The t y p e d i n t e r n a l f o r m is the representation of inference rules that is used within the
prototype environment. It provides local information about the names of categories
and elements which form the judgements of an inference rule. The language of the
system is often used to assign structural properties to collections. Judgements may
also contain p a t t e r n s (§3.2.8.1), binders and substitutions. These properties - which
are implicit in the user’s view of a judgement - must be made explicit so that rules
may be combined with each other. The object level use of rules is determined by a
translation which is described in §7.5.4. The following section describes the matching
algorithm that is used to combine uninstantiated rules at the “meta-level.”

138 CHAPTER 5. DERIVED RULES

The language component of a system defines a convenient mapping between the
concrete syntax and the abstract syntax of the categories which are manipulated by
the rules of the system. Parse trees in the abstract syntax are annotated to reflect
the categories to which they belong, producing what is known here as t y p e d i n t e r n a l

f o r m (T I F). Typed internal form has an untyped counterpart called c o n c i s e i n t e r n a l

f o r m . Untyped form may be converted to typed internal form by inferring types by
reference to the structure of the language of the system. The reverse conversion may
be made by discarding any type information which is present, see §7.4.10 below.
Typed internal form is:

1. S i(ti,... , t n) for elements;
2. C c (t i,..., t n) for collections;
3. Vc(u) for metavariables;
4. B vc { t \ ,.. .,£n) for binders; and,
5. A c (t i , t 2) for application of a binder to an argument.

where / is the name of a constructor, t,- is a T I F expression, c is the name of a
category, and v is the name of a variable.
Typed internal form is very verbose as the example below illustrates. Its main benefit
is that it localises type information and thus simplifies the description of algorithms
that manipulate expressions.

Example

Consider the language of §4.2.1 and the sequent T h V x . t p (x Y which has the T I F

equivalent of:

£ s e q ,
S e q u e n t ^

'^SetO f(Form ula)U)t

C Set Of (F o rm u la)^ Form ula^Form ula^ Variable(Term)(x) F o r m u l a ic) } <VvariabIe(Term)(x)))

The matching algorithm uses the typed internal form to combine judgements in their
meta-level representations.

5.2. DEFINITIONS 139

5.2.12 Similar Judgements

Given two T I F expressions, J \ and J 2 , denoting judgements, they are s i m i l a r,
J\ ~ J2, when they can be successfully matched.
The matching process can be visualised as

J i
h

since the proof is constructed vertically. The algorithm works in symmetric and
asymmetric modes. In the symmetric mode, J \ and J 2 are treated equally, whereas
in the asymmetric mode (written J 2 Ji) variables in J2 are protected against
substitution. This is useful if the conclusion of a proof is to remain unaffected by
extensions made to its leaves.
The objective of the algorithm is to find some substitution to the variables in J\ and,
optionally, J2 so that the resulting two expressions are syntactically equal modulo
the properties that are present through the collections they contain.
For the case of SetOf, the algorithm implements commutative, associative and
idempotent matching if the mode is asymmetric, or unification if the mode is
symmetric. The case of BagOf is the same as SetOf except that idempotence is lost.
For the case of ListOf, associative matching or unification is used.

J\ ~ «/2 = Sim ilar(J\ , J2, symmetric)

J\ J2 = S im ilar{J\ , J2? asymmetric)

Algorithm*

In the following the m o d e indicates whether the terms are treated symmetrically
(with unification) or asymmetrically (with matching). A variable is only bound to
a term when there are no free occurrences of the variable within the term. The
algorithm can give rise to several unifiers when choices are available, e .g . for ListOf
in the selection of prefixes.
S i m i l a r (J i, J2? m o d e) holds if
Case (<7i, J2) in
(C/(c)(5'),C/(c)(T)) where l is the type of the collection: SetOf, BagOf, ListOf.

Case / in

140 CHAPTER 5. DERIVED RULES

ListOf It is not permitted to change the order of the sequence, or to duplicate
elements or collection metavariables. However collection metavariables can
be bound to appropriate sequences, including the empty-sequence. Variables
in S can only be bound when the m o d e is symmetric.

While S and T are non-empty do
T = t , T ' and S = s , S '

Case {t , s) in
(̂ ListOffcjM’6) then bind u to a (possibly empty) prefix of S and
call the remaining elements S ' .

(Vc(u),££(P)) bind u to the element provided that u does not
occur free within the element.

(Vc(u), V c (v)) bind u to v .

{ £ { { P) , £ { (Q)) apply the algorithm recursively to the arguments
pairwise (p i , q i), 1 < i < n .

(i, VListOf(c)(v)) (symmetric only) bind v to a (possibly empty)
prefix of T and call the remaining elements T7.

(£ { (P) , V c (v)) (symmetric only) bind u to v .

Let S <- S f and T <- T l

BagOf, SetOf Proceed as follows:
1. Split each of the components of S and T into elements and unbound
collection metavariables, (E , M) and (F , N) respectively.

2. Find matches for the elements of E and F by the procedure recursively.
If the / is SetOf, allow elements to be duplicated. Otherwise find a
match for the elements allowing reordering when required.

3. Let E - F (resp. F - E) be the elements of E (resp. F) that fail to
find matches in F (resp. E).

4. Try to find assignments of collection metavariables to unmatched
elements as follows.
If N and E — F are both non-empty then choose a V c (u) from N

and bind it to the collection C/(c)(£' — F , V/(c)(v)) where v is a new
collection variable, and add v to N . Otherwise fail.
If the m o d e is symmetric and M and E — F are both non-empty
then choose a V/(c)(u) from M and bind it to the collection
C l(c) (F - E , V l{ c) { v)) where v is a new collection variable, and add v

to M . Otherwise fail.
5. After the elements have been reconciled, match the collection
metavariables, M and N :

£ 2. DEFINITIONS 141

If \M\ > |iV| and the mode is asymmetric then, by the pigeon hole
principle, two m ’s must be identified, so fail.
Otherwise construct a binding from N to M as follows:
Case / in
BagOf bind each n,- to a m j , and bind remaining m ’s or n’s to the

empty collection.
SetOf if \M\ \N\ then make copies of which ever has the fewer and

bind each n; to a m j .

{ £ { (S) , £ { (T)) Match the arguments pairwise (5,-,/,), 1 < i < n .

(£ { (T) , V c (v)) Fail if the mode is asymmetric otherwise bind the variable v to the
element £ { { T) , provided v does not occur free in £ { { T) .

(V c (v) , £ { (T)) Bind the variable v to the element £ { (T) , provided v does not occur
free in £ { (T) .

(Vc(u), V c (v)) Bind u to v .

Examples

1. Suppose r,A are ListOf(formula) and p , i p is a formula, and p ~ ip . The strategy
for lists applies in this case.

J\ — r i ? r 2 j 2 = i> ,A

1. T i 1—>■ 0; 1—► r*21—► A.

J i A J 2 = ip ,A

but when p / ip and the mode is symmetric, e.g.

J \ = r!,^Av?,r2 J2 = i p ' \ Z p ' , A

1 . F11—► i p ' v p ' a i p A p , r2
J i = ip,v p , , i p A p , T 2 j 2 = i p ' v p ' , i p A p , r2

2. In the following example Fi,r2,A are SetOf(formula) and (p is a formula. In
symmetric mode:

Ji = ri><̂ r2 J 2 = A
{£1,A/1> = (M ; r 1,r2> (E2,M2) = (0; A)

E \ - E 2 — { p } E 2 — E \ = 0
a »-► p , r*i, r2

In asymmetric mode the algorithm would report failure as J 2 is protected against
substitution, and J \ is more specific that J 2 .

142 CHAPTER 5. DERIVED RULES

5.2.13 Subformula property

The definition of T I F above can be used to present a more general formulation of the
subformula property given in §2.7.1. There, the definition was in terms of sequents;
it is now possible to give a definition in terms of judgements. The subformulas of a
judgement J are its T I F constituents S F (J) , defined below:

S F ' { t)

S F (£ j (h , . . . , t n)) '
SF(Ce(tt,...,t„)) •
S F (B vc (t u . . . , t „)) j

S F (V „(»))
S F (A c (s , t))

= {(} U S F (t)

= u S F ' (t i)

1 = 1
= 0

= S F ' (s) U S F ' (t)

A rule has the subformula property when all of the syntactic elements that make
up the judgements above the horizontal line can be found in the judgement that is
beneath the line.

J \ * * * * J n

' To
has the subformula property when

U S F (J i) C S F (J 0)

i = 1

Example
rb <pThe rule -------- can be expressed in T I F as:□r,r'h^

£ S e q u e n t S e t O f (F o r m u I a) i T) F o r m u l a (v))

^ S e q u e n t ^ S e t O f (F ° r m u la-) (^ F o r m u l a ^ S e t O f (F o r m u l a) T)) i V s e t O f (F o r m u l a) U '))> ̂ F o r m u l a ^ F o r m u l a i c)))

Applying S F (-) to the uppermost judgement gives

• { V S t t O j (F o r m u l a) (f)> ^ F o r m u l a (^ p) }

The result of applying S F (-) to the conclusion is:
{ ^ F o r m u l a ^ S e t O f (F o r m u l a) ^ -))i V S t t O f (F o r m u l a) (f*)»

V S c t O f (F o r m u l a) (J -)> ^ F o r m u l a ^ F o r m u l a (V7))? V F o r m u l a i ^ p) }

Clearly, the former is included in the latter, and the rule has the sub-formula
property as required.

5.2. DEFINITIONS 143

5.2.14 Classification of Rules

A number of rule characteristics may be distinguished algorithmically. Questions
which may be answered in this way include:

1. Does the rule have the subformula property? The subformula property requires
that all the syntactic components in the antecedents have occurrences in the
conclusion.

2. Does the rule contain metavariables that have no occurrences in the conclusion?
If metavariables are present in the antecedents but not in the conclusion the
rule might cause the theorem prover to diverge.

3. Is the rule branching? What is its degree? This can be useful when ordering
application of rules.

4. If the judgement type of the conclusion is appropriate, does the rule introduce
a connective?
(a) on the left-hand side, e .g .

v>,V>,rb a
--------------------- Ah

b A

(b) on the right-hand side, e .g .

r I"
----------------- Vhr b (pvij)

(c) both together, e .g .

r h <p
-------------- n o r m a l□r b n tp

(d) Does it have other modal patterns?

In the environment, this information is determined as the rules are d ig e s t e d (§7.5.3)
and is stored with the internal representation of the rule.

144 CHAPTER 5. DERIVED RULES

5.3 Verifying Sim ply Derived Rules

(/ X * * * dnSuppose that ----- R is a candidate simply derived rule. The objective is to
C

A\ • * • Anconstruct a partial proof m ■ ■■ using other rules in the system such that
A

A \ ' • ' A n■ '1 —■ ~ ----- It
A C

To ensure that the partial proof can be used in any context, it must be at least as
general as the rule, hence C A and J,- A,-, 1 < i < n .

The simply derived rules discussed here are simple with respect to an all-introduction
presentation of a system which includes an appropriate form of cut rule.
If the cut rule is not accepted, the strategy given here is restricted to rules that
enjoy the subformula property.
The following examples of simply derived rules are used to motivate the discussion
of our approach to verification.

5.3.1 Examples

1. Consider the following rule which would appear likely to be simply derived.

T, i j) A p b A
T, p A i f) b A

The justification for this is the following proof:

p , ip b if) ip , ij) b (p
P i 'ip b i p A p
----------------------- Ah' T,0Ay>bA pf\i\) b ipAp-------------------- cutT, pAij) b A

HA

The example contains an application of a cut rule whose cut formula is the main
formula of the upper sequent of the derived rule. A cut rule is required here as the
formula in the upper sequent is not a simple subformula of the lower sequent.

5.3. VERIFYING SIMPLY DERIVED RULES 145

2. However, consider the simply derived rule
T h p —+if>,A r h ^ , A

r b p - ^ (' i f) A d) , A

and its derivation

<p b p if) b if) p b p 0 b 9

T \ ~ p - + i f) , A p —>if), (/? b if) r b </?—>8, A y?-+0,y?b0
cw< --- cut

r,v»b a r,v?b0,A
r, ^ b i f) A $, A hA

containing the partial proof

r,v?bt/>,A r ,y>b^,a

r b p —> (if) A 0) , A

r b H ^) , A

r,<£>bi/>,A r,<^b^,A
r,v?b -0A0,A hA

rb vM v>a0),a
whose unsolved judgements become the targets of the cut rules as shown.
3. The sequentised elimination rules of the Natural Deduction presentation developed
in Chapter 2 are also examples of simply derived rules, e .g . —»b£ , Ab£ a , Ab£6, Vb£,
-i~ib£, -ibS .

T b p T b p - + i f)
-------------------------*h£rb^

T b p if) b if)-----------►h
r b p —>ij) r , p - + i f) \ - i f)
------------------------------------ cut

T \ - i p

v , p \ - e T , i f) \ - e r b p - * i f)------------------- Vh5r b 0

v,p\-9 r,^b0----------- Vh
~ r b p v i f i v ^ p M i p i - e

r b e

In these rules, there are occurrences of metavariables contained in the upper
judgements of the rule that have no corresponding occurrences in the conclusion of
the rule. As before, the derivation of the rule requires the insertion of a cut rule.
In each case, the subproof that results from the cut rule is a partial proof, and its
unsolved judgements are similar to judgements in the candidate rule.
These observations lead to the following strategy for checking simply derived rules.

5.3.2 M ethod

The examples given above illustrate aspects of the problem. If the candidate rule
enjoys the subformula property, the task of verifying its status is simplified: a

146 CHAPTER 5. DERIVED RULES

construction that replaces the rule can be found using the all-introduction rules
alone. When a candidate rule does not have the subformula property, there are some
subformulas of its upper judgements that do not belong to the conclusion of the
rule. In this case, it is necessary to proceed indirectly, using appropriately formed
cut rules.
The strategy is to work backwards from the conclusion of the candidate rule, C in
the figure below. The backwards expansion using all-introduction rules in the system
produces a number of target judgements, T. Any upper judgement of the rule J,-
that is similar to a Tj enables the pair (</,-, Tj) to be eliminated from the search,
e.g. (Ji,Ti) in the figure below. After all such pairs have been eliminated, the
remaining J and T can be paired using a cut rule, e .g . the pair (J,-,Tj) are cut
with a new judgement Tj as follows:

T j

The introduction of a cut between J { and Tj is only possible when the </,• contains
a suitable subformula that can act as a cut formula, and lead to the reduction of
the resulting Tj. This is expanded in the same fashion as the original judgement C .

(The judgements that result are shown as S s in the figure below.) The number of
candidate judgements are increased in this way. The backwards expansion of C and
T must be interleaved with the pairing and introduction of cut formulas. This is
because order of application of inference rules is significant: two or more rules may
be applicable at a given point, and different sets of target judgements can result.

Ti

Ji T’j
cut

Jn

... T-L r

C

The examples revisited

The correspondences between this approach and the justifications offered for the
examples above can be seen when their judgements are labelled:
Example 1.

r, y?, 0 b (p A ip , A
T

r, tp^ j) b A
---------------------- Ab
T, < pA ip b AN--- ----<'

c

T, (fAtp b A
cut

148 CHAPTER 5. DERIVED RULES

Expand a target judgement A target judgement T in T is replaced by the
judgements that result from the application of an inference rule, R:

S

T * - T - { T } + { S i , . . . , S p }

The expansion may lead to a reduction in the size of T when p = 0.
A bound may be placed on the size of T so that, after all expansion has been
performed, |T| < 1*71.

Introduce a cut rule Form an application of the cut rule for a pair of judgements
(T, J) € T X J as follows:

A T '----- J A, T B

B

T <- T - { T } + { T ' }

J «- J - {J}

The new target judgement T' is constructed from the other two judgements: a
c u t f o r m u l a , /, is chosen from A . This is inserted, in the opposite side of a
new sequent T f . The sequent is formed by combining of the elements of A — f

and B , e .g .

J = A = T, < pA ip h A T = B = T (p , ip)- A f — (p A ip T 1 = T, <p, ̂ b p A i f i , A

The introduction of the cut rule may allow further expansion of T ' or its
pairing with another J £ J

5.3. VERIFYING SIMPLY DERIVED RULES 147

Example 2.

Ji r,v?hv?, A T, r,v?h^,A r,6>ĥ ,A
r h ^ , A r, <p, i p —>tp f- Vb a r h (p— >9, A r, tp , p —>9 h 0, A

Tj

r ,^ P ^ , a

cut T2
fv̂ Thi, a"

cut

r, y? i- ̂ a#, a
rby>->(^A0),A

l“ A

Example 3. J2 •r*T2
f P ? 1 p \ - Ip

r h (p —*ip r, <^—>ip h ip

rT~0
cut

C:~Ti

Jz\~Tz

rPTi7? T ^ p V e

r (- t p v i p r, t p v t p f- 0
vh

rbj?
C-.~TX

cut

5.3.3 Algorithm

Initial values of J (unsolved judgements) and T (target judgements) are assigned as
follows:

J - {Ju- • -iJn}

r = {C}

The search-space is then given by the non-deterministic application of three rules. A
solution is found when J and T are both empty. The result is a partial proof that
justifies the .candidate rule’s status as a simply derived rule.

Remove a similar pair The components of any pair (T, /) £ T x J for which
J :~: T are removed from T and J respectively:

T * - T - { T }

Such a pair means that T is at least as general as J and the unsolved
judgement J, is required by the partial proof being constructed.

5.4. VERIFYING RECURSIVELY DERIVED RULES 149

5.4 Verifying R ecursively Derived Rules

A recursively derived rule was defined earlier in terms of the application of an
-̂transformation to a completed proof. This section concentrates on identifying
examples of such transformations, and shows how to construct the internal structure
of a transformation from an analysis of the other rules in the system.

5.4 .1 Defining Tweaken

Suppose it is wished to show that the rule
Tb A

-------------- w e a ken
<p , rb a

is recursively derived in a system containing just basic sequents of the form
------------------ basic

< p , A

and the rules bA and Ah (taken from §2.8.6).
An appropriate transformation Tweaken must be applicable in arbitrary proof contexts.
The contexts that are of concern for this rule have the form:

rb A
<p , rb a

The function Tweaken splits into cases depending on the outermost rule in the proof
labelled P . There are three possibilities b a s ic , bA and Ab.

For the first case, suppose an application has the form, tp ^ ip :

------------------ basic
rp , T b ip , A

----------------------- w e a k e n
(p , i p , T \ - i p , A

then w e a k e n can be eliminated immediately and replaced with a new proof:
----------------------- basic
< p , ip ,T b ip , A

If ip = (p then the weakening is redundant
------------------ basic
<p,T b <p, A

----------------------- w e a k e n¥>,<?» r b <p, A

basicand the new proof becomes ¥>,r b <p, A

150 CHAPTER 5. DERIVED RULES

There are two other cases to consider, one each for the logical rules Ah and hA,
respectively. For Ah the proof is:

Th<p,A T h f a A

r h < p A if t , A
0, r h (p A i j) , A

hA

w e a k e n

and for Ah:
r,<^,0 h A

---------------------- AH
T, (pAt j) h A

---------------------- w e a k e n
0 , T, (pA' ip h A

r h ^ A rh^,A
...... ■ ■ w e a k e n ----------------- w e a k e n

9y r h y?, a o, r h A
-- I~A0,T b <̂AVa A

r,v^h A
--------------------- w e a k e n— ► 0 , r ,< p , i/ > hA
-------------------------- Ah#, r, ipAip h A

Each of the four proof transformations reduces the measure ŵeaken when
Cweaken(p) = 0. Using the algorithm of §5.2.10 with Tweaken? all occurrences of w e a k e n

will be eliminated from the proof in favour of broader basic sequents.

5.4.2 Defining T cu t

The next example considers the transformations needed for the cut rule. The
significance of the cut rule lies in its description of the transitivity of the consequence
relation of a system. If the cut rule can be been shown to be a derived rule then
there are many important corollaries.

5.5 Cut E lim ination

The cut rule (or Modus Ponens) allows an assumption <p to be derived and then
used subsequently in the proof of some sequent

rh a ,(/j ^r'hA'
--------------------------------- M . P .

r, r' h a , a '

or the single conclusioned version
Thv? y>,r#h0

r, r' h e
The cut rule allows the proof to proceed ‘indirectly’ through the cut formula <p. In
systems with weakening and contraction, the following simpler forms are sufficient2:

T\-A,<p v , T \ - A V\-tp <p,T\-0

. ri-A F T e

The argument given to Tcut will be a minimal occurrence of the cut rule in a proof
2 Assumptions, or conclusions, can be merged with contraction and introduced when required

with weakening.

5.5. CUT ELIMINATION 151

and will have the form
b

ri h Ai,v? v?,r21- a 2
-------------------------------------- cu tTi,r2 h Ai, A 2

where is the cut formula of the rule.
The argument is minimal, since the proofs a and b are guaranteed to be free of
occurrences of the cut rule. The transformation must reduce the size of the proof
according to the measure S cu t , whilst preserving similarity.
A few further definitions are needed. The r a n k of a cut formula p is the lifetime
of that formula - but not its subformulas - in the proof. The cut formula <p will
have been introduced on the left- and right-hand sides at some point higher in the
proof by rules that introduce the outmost connective of the formula. The rank is
taken to be the sum of the maximum lengths of the left and right branches. The
d e g r e e of a cut formula is the number of logical constants in the formula. Define the
complexity of the cut rule, Ccut such that Ccut(p) = (rank of tp , degree of tp) and
C'cut(pi) < Ccutfe) when

(ri,di) < (r2,d2) iff d \ < d2
d i = e/2 and 7*1 < r2

The action of Tcut depends on the rank and degree of the cut formula, <p, in the
following way.
Case { r a n k , d e g r e e) of <p in

(0,0) The proof will have the following form, when the structural rules are absorbed
into the language.

TihAi,<p <p, r 2 h A2
--- cu tTi,r2 h Ai, A 2

This can be replaced with
------------------------- basic
Ti, r 2 b Ai, a 2

For an intuitionistic system, the cut formula occupying the right-hand side of
the sequent can be introduced by a rule for explicit weakening, e .g .

152 CHAPTER 5. DERIVED RULES

which becomes

Ti hi.
Tih ip HJ.

v , r21- 9

Ti,r2 1- v?

basic

cu t

---------------- w e a k e n in g
Ti,r2 b p

The implications of structural properties are discussed in §5.6.
{ r , d) , r > 0 Reduce the r a n k of the cut formula. The following proof illustrates this

for the formula p where the first rule on the branch is an introduction of a A b

on the right. Assume that p was introduced somewhere in the body of the
subproof numbered 1.

V V
T i b a , p , A i r2 b 5, A2

Ti, r 2 h aAb, <p, A2 Ha
^ , f 3 h A3

c u tri,r2,r3 \- aAb, Ai, a 2, a 3

This becomes (by exchanging the rules and some assumptions)

V/ V/
Ti b a , p , Ai b A3

Ti, r 3 b a , Ai, A3

r1,r3,r2 baA5,Ai,A3,A2

r 1, r 2, r 3 baA6,A i,A2,A 3

The second proof reduces the lifetime of tp by consuming it before the
introduction of a A b . The instance of the cut rule has been pushed one step
out of the proof.

r2 b 6,A2

(0, d) , d > 0 Reduce the d e g r e e of the cut formula. The example below illustrates this

5.5. CUT ELIMINATION 153

when the cut formula is t p A0.

When Ah
becomes

Ti b Ai,<p, 0, A2
Ti b Ai,y>A0, A2hA

2 / \ 3
r 2,</>,r3 b a 3 0 i , 0 , 0 2 b a 4

r2,0i,^A0,r3,02 b a3,a4 Ah

cui
Ti, r2,0i, r3,02 b Ai, a2, a3,a4

and bA is removed in favour of a second application of cut, this

V V
Ti b Ai,v?,0, a2 r 2, ^ , r 3 b a3

r i , r 2, r 3 b Ai, a2,0,a3 c u t 01,0,02 b A4
Ti , r2, r3,01,02 b Ai ,A2,A3, a4

c u t

Ti,r2,0i,r3,0i b Ai ,a2,a3, a4exc k .

5.5.1 Reducing the rank

In the example that was given above, the cut rule was exchanged with the branching
rule that introduced a A b on the right-hand side.
Now consider the following generalisation of this situation, in which a proof rule has
the form: 1-1, , • • • , ̂ m i Ai ••• in, <f?i, . . ., An

--- f (- i n t r o d u c t i o n)
ri,..., Tn, /(l̂, • • •, ̂ m), ̂ 1, • • •, An

where r,-,At- are collection metavariables over the category, c; ..., (pm) represents
the element of c being introduced by the rule; and, <̂i,...,<̂m are the subformulas
that occur in the antecedents of the rule.
For example, in the illustration given above take c = Formula, / = A, m = 2, <pi = a

and (f 2 = 6, so /(<̂i,<̂2) = a A b .

The b’s havq been omitted from the sequents to indicate that it does not matter on
which side of the sequent the individual subformulas, or the introduced formula, fall.
This reduces the number cases that have to be considered. A rule of this form can
be combined with the cut formula on either the left or right of a cut rule. Without
loss of generality, suppose that the cut formula occurs on the right:

154 CHAPTER 5. DERIVED RULES

(5.1) , i p i,..., ipm, Aj, cp ••• Tn, (,pi,..., (pm, An
Ti,.. • i Tn, ..., V m) t Ai,..., An <p, Fn-fi H An|i

r l, • • • i r n-f 1, /(̂ l »***ĵ m)»Ai,..., An-f 1
This can be rearranged to become:

cut

XJ7 ^ 7
(5.2) T j , <p>i, . . . , ^pmi A i , ^ p><i r n+i h A n4-i

--- c u t
r*l 5 Tn+l 5 VT * * ’ Vfn i Ai, A n _̂i ••• r n, tp\, . . . , <pm ■, A n

r 1, • • • i Tn+l j f(<Pl i • ••»V̂ 7,n)iAi,...,An_̂i

The occurrence of the cut rule is now higher in the proof, thereby reducing the
lifetime of <p, as required. The definition of .S'cut gives 5cut(5.2) < 5cut(5.1).
The construction above assumes that it is possible to rearrange the order of
assumptions. For this e x c h a n g e is needed for the collections involved, so SetOf and
BagOf are sufficient here.
Notice that if <p occurs in more than one antecedent of /, the transformation will
be required to introduce more than one occurrence of the cut rule, with consequent
replication of the assumptions Tn+i and An+i. In order to recover the original
conclusion of the proof, several steps of c o n t r a c t i o n are needed, which is implicit if
the collection concerned is SetOf.
For systems which use BagOf, because the number of occurrences of an assumption is
an important factor, the rule / shown above must be responsible for the contraction
itself. Consequently, the problem of replication does not arise.

5.5.2 Reducing the Degree

When the lifetime of a cut formula has been reduced to zero, it stands in the
conclusion of two rules with its subformulas in their antecedents. Thinking of the
cut formula as an intermediate ‘lemma,’ it is clear that one of the rules introduces
it and the other consumes, or eliminates it. This exposes a fundamental relationship
between the introduction rules acting on the left and right-hand side of a sequent,
and leads to a large number of subcases.

5.5. CUT ELIMINATION 155

Determining the subcases

Using the information obtained from the analysis of rules (§5.2.14), and knowledge
about the formation rules for the category, a number of subcases may immediately
be formed. Suppose that for each connective, or pattern, occurring in the conclusion
of rules, there is a matrix representing the introduction of the connective on the left-
and right-hand sides of the sequent; the tick marks indicate the subcases to consider:

/ r i g h t A

<_L hA2

l e f t Ah v '

V hv

Vbi V
Vb2 V

a n o r m a l

n o r m a l V

There may be rules that introduce patterns on one side but not on the other. In this
case, the connective can be considered as a s t r u c t u r a l rather than logical connective,
since it can never occur in a cut formula. An example is the intuitionistic operator
A which is used to represent the absence of a formula on the right-hand side of an
intuitionistic sequent3. (See §5.6 below.) When there is a potential for overlapping
among rules, there is a proliferation of subcases, e .g .

“1 h-. iA 1—'A

-.h v/ -iAh V

which gives the following possible subcases:
“1 1—i 1—'A

-ih \ / V
-tAh V V

and so forth. Each matrix gives rise to a number of possible combinations of rules
for introducing a cut formula which is syntactically distinct from other matrices.

Transforming the subcases

Suppose the initial proof has the form:

Pl / \ Pn

E 1 ? P i ? • • • ? ̂pm.) Aj • • • En, p>\ , • • • 5
r i , . . . , r„, f { (p i , . . . i a ^,. . . , An

ff 1, P\ ? * ’ ’ II;, ̂ 1, . .h/ ---------------— -----;-- /hf 1, • • • i E/, f 11 > • M̂ m))^!, • • • j A;
cut

T i , . . . , r n, I I i , . . . , I I / h A i , . . . , A n, 0 i , . . . , 0 ;

For each subcase there must be a transformation that preserves the similarity of the
proofs and reduces 5cut- This is accomplished by reducing the complexity of the cut

3 Although A is often used to define ->(p as <p—► A.

156 C H A P T E R 5. D E R IV E D R U L E S

rule, as measured by Ccut- This technique is used to remove the original cut rule,

introducing new cut rules acting on the constituents tp\ , . . . , (pm of the cut formula

The strategy used for obtaining a transformation does not affect any of the subproofs,

Pi j • • • ? PniQu • • • ? Qh Instead, a new derivation is constructed from them without using

the logical rules b / and / b, but using cut rules and structural rearrangements of
the proof. The size of all the cut rules used in the new derivation will be less than

the original cut being eliminated because, as the new cut formulas are subformulas

of the original cut formula, they will each have smaller degree.

To see how to construct the transformations required for each of the subcases,

consider the distribution of the subformulas y?i, . . . , <pm in the antecedents of the

rules b / and / b. Let these be called A \ , . . . , A n and B\ , . . . ,B{ respectively.

Let p>' be a counterpart of (p if <p' occurs on the opposite side of a sequent to

and <p = <p'. For the elimination to be successful, all occurrences of <pi,...,<pm in

A i , . . . , A n must have counterparts in J5i,...,J3/, and vice versa.

If this were not the case there would be some that could not be cut from the

proof, and the construction of the transformation would fail.

Suppose there are more occurrences of in A \ , . . . , A n (resp. Bi , . . . , B i) than

there are in (resp. A i , . . . , A n) then, provided contraction is available -
i.e. with SetOf, we can make appropriately more occurrences of in

(resp. Ai , . . . , j4„).

If the collection metavariables are ignored for the moment, then concentrating on the

subformulas in the derivation, it is possible to construct a skeletal proof as follows:

1. Form a list of candidate subgoals G = [4̂i; . . . ; An\ B \ \ . . . ; £?/], adding additional
copies to balance the occurrences of counterparts appropriately. If this is not

possible for structural reasons, report failure.

2. Remove a pair of subgoals, (Ay,Bk), containing a pair of counterparts, from the

candidates available.

3. Form an application of a cut rule from them:

Aj Bk
------------ c u t

c

4. Add the conclusion of the cut rule to the list of candidate subgoals.

5. Stop when G has the form {b}. Otherwise go to step 2.

5.5. C U T ELIM IN A TIO N 157

This algorithm assumes that where choices are possible, the correct choice is made

- daemonic non-deterministism. In practice, this can be achieved through the less

efficient non-deterministism supplied by P r o l o g ’s ability to enumerate the (finite)

search space through backtracking.

As an example of the algorithm, consider the rules given in the example on page

153. In that example the subproofs concluded in:

r i h A i , e , / , A 2 T2,e,r3bA3 © i , / , 0 2 hA4

when collection metavariables are ignored, give the initial candidates for G:

h e , / eh / h

Applying the algorithm described above produces the following steps:

step G (A; B)

1. { h e , / ; e h ; / I - } (h e , / ; eh)

2. { h / ; / h } (h / ; / h)

3. {h } finished.

To replace the original subgoals, it is possible to use implicit structural rules, the

form of the cut rule, and the matching algorithm, to recover the full schematic

version of the proof:

skeleton proof

h e , / eh

he,/ eh
\ ~ f />-

h

W
r i h A i , e , / , A 2 r 2,e, r3 h a 3

i \> r 2 , r 3 h A i , a 2, / , A 3 0 i , / , 0 2 h A 4

r 2,T3,0 i ,0 2 h Ai, A 2, A3, A4

T i , r 2, © i , r 3, 0 x h A i , a 2, A 3 , A 4

Exchange is needed to achieve this. Other systems may require some contraction.
The example was taken from Linear Logic which does not have contraction.

158 C H A P T E R 5. D E R IV E D R U L E S

5.6 E xplicit Structural Rules

The environment favours the formulation of systems with implicit structural rules.
However, it is sometimes convenient to make a structural rule explicit.

5.6.1 Weakening

As noted above (§5.4.1), weakening rules are derived rules in systems with ‘generalised’

basic sequents. In intuitionistic systems, weakening on the right-hand side of a

sequent is only possible when there is no formula present; _L denotes ‘no formula’.

ri-jL v>,ri--L rb<̂
------- b thin ----------I—• -------------- 'h
r h cp r i— t(p - u p , r b_L

In such systems, there are rules that interact with ± and -i: The rule b thin weakens

the right-hand side by introducing an arbitrary formula in place of ±. A negated

formula may be introduced on the right-hand side using an assumption on the left,

provided that there is no formula present. Finally, a _L is introduced on the right by

-ib. Note that _L is not introduced on the left.

There is clear indication that the role of ± is structural, rather than logical, as it

may only be introduced the right-hand side, and therefore cannot be eliminated from

a cut formula.

Consider the elimination of a formula introduced by the weakening rule \~thin, taking

the cut formula to be pAijj:

rbj_----- b<Ain
T b (pAty <pAip, A b 9
-- cutr,Ab0

The left rank of pAij) is zero, and transformation to reduce the right rank is

straightforward, using techniques discussed earlier. Once the right rank is reduced

to zero, the proof transformation required to reduce the degree of the cut formula

depends on its structure. In this case, the formula is ipAip and the transformation

can be taken as follows:

A

r FI

B

T b p A t p

<p, ij), A b 9
\~thin -------------- Ab

<pA Vq A b 9

r,Ab0 cut

A

r P l

7 7 7

A

r F i

b thir
rbv>

r , A b 0

b thin
B

A b 0

<̂ ,r,Ab0 cut

cut

5 .7 .R T JL E I N V O L V I N G P A T T E R N S 159

This transformation suggests an extension to the algorithm outlined above. Specifically,

the rule h thin can be used to obtain an unlimited source of correspondents for

formulas occurring on the left-hand side, and as the following example shows,
derivations of correspondents on the right-hand side can be dropped, e.g. B in the

following:

w w w
t k l Abv? — ► rbj_------ ---------------- .f- ------

r h (p-+ip,A\-8 r b 'll? A,v^b $
--- cu t ------------------------------------ cu t

r , A h 0 r , A M

The effect on the procedure described on page 156 is that when a proof concludes

with a rule that introduces some formula, say . . . , <̂m), with constituents, <pt;,
that do not occur in the antecedents of the rule, the transformation can make

arbitrary instantiations to the tpi without affecting the proof above the conclusion.

5 .6 .2 C o n tra ctio n and E xch an ge

The two structural properties, if not coded implicitly through collections, can be

stated explicitly over ListOf collections:

r,(p, v,, r / b A r h A,^,t/>,A/ r ,^ , y>,r; k a r i - a ,^,^, a '
----------------------- e x c h h ------------------------h e x c h ------------------------ c o n t r h ------------------------h c o n t r
r ,^ ,¥> , r 'hA rbA,v>,<^,A' r , ^ , r ' i - A r b A , ^ , A '

However, when this is done, the transformations become complicated by the need to

treat these structural rules as rules in their own right. Since these rules may occur

at any point in a proof, they hugely increase the number of cases to consider when

constructing transformations which reduce the rank and degree of a cut formula.

Moreover, appropriate combinations of such rules need to be constructed as ‘glue’,
composed of permutations and contractions, depending on the precise structure of
the proof. These two disadvantages are avoided with implicit formulations.

5.7 R ule involving patterns

Rules containing patterns can also be treated; such rules are mostly used in the

presentations of modal logics. The modal rules presented in chapter 3 often include

weakening in their formulation e.g. T', A in the rule

r t- tp
------------------------ n o r m a l
r ' , n r h dy>, a

160 C H A P T E R 5. D E R IV E D R U L E S

This could be restated with explicit weakening as:
rh^

-------------- n o r m a l '□ r b Dtp
------------------------ w e a k e nr',nrb n i p , a

In the context of the environment, the first approach is preferable to the presentation

including explicit weakening. Although this increases the number of cases to consider,

the arguments used in §5.6.1 may be applied to make the task more manageable.

As an example, consider the modal system formed by extending propositional classical
logic with a single rule normal (page 143). For ‘D’ to be treated as a logical operator

occurring within a cut formula, it must be introduced on both sides of the sequent.
The only rule available to do this is normal. Observe that this rule necessarily

introduces on the right-hand side, and may possibly introduce a number of D’ed

formulas as part of the modal pattern on the left-hand side. A cut formula can be

pushed through an application of a pair of normal rules as the following example

illustrates:

A

Ti
□ri,r2hn^,Ai ia l

L
v>,r31- v>

□v>,nr3, r4,i-D0,A2
□r,,r2,Dr3)r4i-Ai,A2,n^

n o r m a l

c u t

is transformed to

A B

T i f- ip y , T 3 \-tp
-------------------------------------- cu tri,r3 h ip

--- n o r m a l□ri,r2,Dr3,r4h A!,a 2,d^

5 .7 .1 R an k red u ctio n

A cut formula cannot pass through the normal modal rule unchanged, as the rule

forms the upper sequent by removing the outermost □ from all assumptions and the

conclusion of the lower sequent.

As an example, consider the following derivation of npAnrp b Dip involving the cut

formula O(pAtp):

h A

p b <p tp b ip

p,ip b pAip

Dip, Dtp b O(pAtp)

ClpAOtp b n(pAtp)

K

A h

P , i p \ - p
------------------- A h

ipArp b <p
U(ipAip) b Dip

K

c u t
O p A n i p b n p

The rank of the right occurrence of the cut formula, n{ipAip), is zero, but the rank

5 J ^ m J L E I N y O L V I N G P A T T E R N S 161

of the left occurrence of the cut formula is one. This is due to the presence of the

Ah rule between cut and K. Here, the rank of the right-hand occurrence is reduced

by pushing the rule Ah beneath the cut rule:

p p tp tp p, tp\- p
------------------------------ t~A ------------------- Af~

p,tp \-pAtp pAtp h p
-------------------------- K ---------------------K
Dp, Dtp h O(pA'ip) D(pAtp) h □ cp------------------------- cui

Dp, Dtp h Hip
----------------------AH
DpADtp h 0<p

Now the degree can be reduced using the strategy given above. The transformation

needed for a rule like K 4 that carries D’d assumptions forward is similar.

r , a r h <p
K 4

□ r , r ' h Dtp, a
An analogous example to the one just given, but for the rule K 4 is:

p,tp,D(pAtp)\- p

<p h <p tp\- tp

This becomes

and then

tp, Dtp, ip, Dip h pAtp

Dp, Dtp h D(pAip)

Ha
K 4

pA^p, D(pAtp) h p

pAip, D(pAip) h Dp

D(pAtp) h DDp

A h

I< 4

I< 4

Dp, Dtp h DDp
cut

p\~ p ip tp

p, Dp, tp, Dtp h pAtp

Dp, Dtp h D(pAtp)

H a

K4

p,tp,D(pAtp)\- p

pAtp, D(pAtp) h p

□ ((^A^) h Dp

A H

I<4

p, Dp, tp, Dtp h Dp

Dp, Dtp h DDp

p\~ p tp h tp

cut

K 4

p, Dp, tp, Dtp h pAtp
H a

p,tp\r p

pAtp h p
Ah

p,Dp,tp,Dtp\r p

p, Dp, tp, Dtp h Dp

cut

K 4

K 4
; Dp, Dtp h DDp

Note that the rank of the right occurrence of D{tpAtp) was zero, although it occurred

throughout the branch. This allows cut to be pushed safely through the second K 4

rule.

5.7.2 Subformula Property

When patterns are interpreted according to the revised subformula property given

above, it is clear that not all the modal rules enjoy the subformula property, e.g.

162 CHAPTER 5. DERIVED RULES

those involving symmetry such as the modal system B. The offending formulas are

shown in boxes in the following table. The use of a strategy limiting the number

of rules not having the subformula property is helpful in such cases. This can be

achieved by adding a global condition to a strategy, for example:

{b=5}<B, l e f t , r ig h t >[BASIC]

sets the maximum number of occurrences of rules not having the subformula property

to 5 in each branch.

5.8 C onsistency o f a System

The result of the analysis of cut given above amounts to showing Gentzen’s Haupstatz

holds for the system in question. Gentzen’s objective in developing his Haupstatz

was to show the consistency of arithmetic. In the same way it is possible to deduce

the consistency of a system presented in the environment as follows.

Consider a system in which the derivability of the empty sequent ‘b ’ can be

interpreted as the inconsistency of the system as a whole. This is the case for a

system with weakening

h
----------------- w e a k e n in g *

n -A
If a system includes a formulation of the cut rule, then the derivation of the empty

sequent must conclude either in one of the stated all-introduction rules of the system

or otherwise through the cut rule.

In the first case, simple inspection of the rules in the system can ascertain whether

this is possible, otherwise it is an occurrence of a cut rule. If the cut rule is known

to be a derived rule, there is a transformation which can be applied to the proof
that will eliminate all occurrences of the cut rule from the derivation of the empty

sequent. This reduces the problem to the first case.

5.9. EXPRESSING PROPERTIES 163

Thus, an inspection of the non-derived rules suffices to show whether it is possible

to construct such a derivation. If it is not possible, then the system can be seen to

be consistent.

5.9 Expressing Properties

If the system contains a judgement encoding a two-place relation, ‘b’, over formulas

or the like, it may be desired to verify some of the properties proposed in §1.3.1.
In particular if ‘b ’ holds between left and right, the following ‘types’ of the relation

may be expected:

right
set bag list singleton

set 1 2
left bag 3 4

list 5 6

The typical uses of these are:

1. classical logics and classical extensions such as modal systems;

2. intuitionistic logics and their modal extensions;

3. relevant and classical linear logics;

4. intuitiqnistic linear logics;

5. multi-conclusioned logics with explicit structural rules;

6. single-conclusioned logics with explicit structural rules,

type inference systems.

Other points in the matrix give rise to intermediate forms.

164 CHAPTER 5. DERIVED RULES

Reflexivity i 2 3 4 5 6

ip V a/ V a/ V V

Monotonicity 1 2 3 4 5 6

r h a Th A
V a/ a/

<^,rb a b A, tp

rbtA r h i
V a/ a/

<p,r h 4> r b p

Transitivity 1 2 3 4 5 6

r b a, (p <p, r h a
FT a

Ti b Ai, ,̂r2 h A2
Ti,r2 b Ai, A2

r h r h Tj)
r h i>

Tih^ <̂,r2h il>
ri,r2h0

“with monotonicity

V V V

v a

V V

5.10 Conclusions

This chapter has provided an approach which can be formulated as part of the

prototype environment and strategies have been described for verifying whether rules

are derived with respect to a system. The distinction has been made between simply

derived rules and recursively derived rules, also, it has been shown that a rule may

be simply derived in the presence or absence of a cut rule in a system. A more

complex, context dependent, analysis was required to verify the status of recursively

derived rules.

Chapter 6

The Environm ent

This chapter gives an outline of the interface provided by the environment
to a prospective user. Aspects of the interaction provided between the

environment and the user are discussed. Details of some mechanisms,
in particular, the specialised widgets that are used in the interface are

presented.

6.1 M otivation

The realisation of the framework outlined in earlier chapters is the prototype

environment described here. The environment is written in a version of the PRO LO G

language[DP89] that allows applications to be constructed using the X window

system[GSN89] and its principal ‘toolkit’ [MAS89]. The portability of the co-prolog

and the X window system, allows the environment to be used on workstations from

a variety of different computer manufacturers.

The interface makes use of the X toolkit graphical objects - known as widgets -
provided by the MIT Athena widget set[Pet89]. Some of the author’s own widgets

(see §6.3) are also used.

One of the major design goals of the environment was that it should be usable by a

wide class of users. The motivation for this came from the author’s involvement in

the G E N E S IS project, ESPRIT 1222(1041) [Har85], in particular the project’s interface

[Wra87].

The G EN ES IS project produced an environment that could be configured to manipulate

a variety of formal systems. The environment was presented with a description

of the concrete syntax of a formal system, in the form of a projection scheme.

165

166 CHAPTER 6. THE ENVIRONMENT

It used this to produce a structure editor for the formal system. A user of the

genesis environment is given the impression of manipulating a ‘typeset’ version of

the text; abstract syntax is maintained internally and is equivalent to the concrete

form presented to the user. Components of the environment have access to the

internal abstract form, and can perform tasks related to semantic elements of the

formal system, such as: type checking/inference, declaration before use, etc. The

genesis environment is implemented in Sun’s Common LISP.

A second source of motivation stems from the interface of the popular Apple

Macintosh computer. The Macintosh supports a consistent and natural pattern of

interaction - which is common to all its application programs. The philosophy behind

the Macintosh user interface, and guidance for application builders, is given in detail

in the “Inside Macintosh” books [Com85].

Using the X system to provide an interface with the quality of the Macintosh is

difficult. This is partly because of the X consortium’s objective that the system

should be “policy free”, and partly because of X system’s comparative immaturity.
Although the “policy free” approach has made the X system general, it is only in the

last year or so that toolkit and widget writers have been able to achieve consistency

in their interfaces approaching the Macintosh. There are now several competing

approaches within the X community.

6.2 A n Overview

The environment is presented to a user as a large workspace (see figure 6.1)

surmounted by a title and a row of command buttons called the control panel. Three

buttons allow the user to Quit from the environment, ask for Help , or interrupt

The remaining two buttons invoke thea computation by asking it to Stop! r

Output Window and the Special Characters

used by the system fqr making remarks to the user, is not shown initially and only

makes an appearance when the user asks for it, or if it is needed to display text.

A pop-up menu contains a list of logical systems that are available to the user. The

menu is structured as a number of overlapping ‘cards’ as shown in figure 6.2. The

menu is activated by pressing the third mouse button1 while the mouse cursor is
directly over the main window of the workspace. Cards that are obscured can be

made accessible by sliding the mouse over them, whereupon they pop to the top of

the pack. A system is chosen by releasing the mouse button while its selection is

aThis is usually the rightmost button, although X permits buttons numbers to be reassigned.

6.2. A N O V ERV IEW 167

Logic Engineering Environment

CouiQCHeipXstopQBBlBHBBMBISBHM

Figure 6.1: The Environment at Start-up

highlighted, as illustrated in the figure. The systems on the cards are located from

libraries specified in the user’s startup script.

Items such as the special character keyboard (shown in the figure) and the output

window can be resized, moved, raised and lowered in the workspace. This is carried

out using the mouse on a small titlebar which extends along the top of each object

inhabiting the workspace, or on special square regions which are placed at its bottom

left and bottom right-hand corners. (See figure 6.11.)

Objects can be hidden from view by clicking on the text in their titlebars

e.g. “Special Characters” in figure 6.1. The object can be retrieved by pressing the

corresponding button in the bar above the workspace.

When there; are many objects of the same kind, such as proofs, these are given

their own button on the control panel, e.g. Proofs . This controls a box of buttons
referring to the individual proofs. The effect is to make the proliferation of buttons

manageable. A user can easily navigate among the objects by locating the type of
object that is of interest, and working from there.

Selecting an entry on the logics menu brings forth a presentation of the corresponding

logic. A logic is presented as a window composed of at least five panes as shown

168 CHAPTER 6. THE ENVIRONMENT

Intuitionistic Logics
Classical Logic______

Hypersequent Systems

Modal Logics
Classical T

Classical S42
Classical S43
Classical S$

Intuitionistic Modal 2
Intuitionistic Modal

Modal Logics
Old Modal Logics

Logic of Belief
Hamblin Example
Temporal exerdse

Modal Logics_______
j: Functional example

i 3-valued logics
_______ Hugo’s logics

_______ Linear Logics

Figure 6.2: Example Logics Menu

by figure 6.3. The panes of the figure are usually coloured to make them easier to

identify.

Each pane can be conveniently thought of as a pane in a sash window. The panes

be made to slide up and down, by using the filled black squares shown down the

right-hand side of the figure. However, the order of the panes cannot be changed.

Taking the panes in the figure from top to bottom the nth pane contains:

1. a brief informal description of the system;

2. its language;

3. rules for the system;

4. examples to try out; and,

5. strategies to use.

6. (optionally) additional panes, e.g. side-conditions.

A pane’s title may also offer various buttons which perform some computation over

its contents. For example, the pane called “Rules” offers SaveSave , Digest and Check

Underneath all of these titled panes, at the bottom of the object, is a pane containing

buttons which initiate actions dependent on the system as a whole.

6.2. AN OVERVIEW 169

Intuitionistic Propositional 1

Description (save)
----t r

. 1nLfntuitiorajtic logic. ■
Language (Save) (Digest)

■

1
»:SetO£(FormulaXr46] TURNSTILE c-.Fonnula—> SEQ(a,c);Se.quent
a:Formula ’a’ b Formula —> AND(a,b):Formula
aiFormuIa V b:Formula -> OR(a.b) Formula
a:Fomiula b:Formula-> IMPLIES(a,b):Formu]a
aFarmulab:Formul« -> I FF(a,b) Formula ■

Rules (Save) (Digest) (Check)
■

r h f vy

a OR-left;
t,r h 0 v,r f 0

t v v. n - e

Examples (Save)

m
a->(b-»c)h(a-*b)—> (a -> c)
a—* (b —»cj, (a -» b), a I- c
a,a-+(b—>c), (a—»b)|- c

■

Strategies (save)

c [<rig}it,left>[BASIC] ■
—

(Show judgement) (Show tableau) (Derive tableau) (Derive rule)
(Find equivalences) (inter-derivability) (Find modalities)

Figure 6.3: Logic Presentation

When a system is first opened, a button called Systems appears above the workspace
and a new box of buttons titled as “Systems” is placed on the workspace. This box

contains a button with the same name as the requested system. In the example in

figure 6.4 this is called Intuitionistic Logic . As further logics are accessed further
buttons are added to the “Systems” box.

Pressing the button Show Judgement invokes the dialog box shown in figure 6.5.

The dialog consists of two questions and spaces for the answers to them. In this case

they are: “Judgement?” and “Strategy?”. As shown both are completed before the

button Ok is pressed. In the figure, the judgement “I— i-i(((a—>6)-*a)-»a)” has been

chosen; together with a strategy “< le f t ,r ig h t >[BASIC]”. Dialogs in the environment

have the same form: a list of questions to be completed, rather like a form.

The ease of supplying answers to the dialogs is enhanced by the ability to copy and

paste text from one place to another using the workstation’s mouse. Pressing the

left mouse button at some position marks it as the start of a selection. Dragging2
the mouse across an area of text selects the region covered. Similarly pressing the

right button extends the start of the selection to the current position. The middle

button is used to insert the current selection; this operation is known as ‘pasting’.

Copying the text is done implicitly when selection is made. Cutting a selected region

2usually taken to mean moving the mouse whilst keeping a button pressed down

170 CHAPTER 6. THE ENVIRONMENT

Logic Engineering Environment

System s

(Intuitionlstie Propositional 1 [ModalLogics 1 [^ s rs e Q u a n t T. S4and SS|

Inluitionistic Propositional

Description (sav e)

IntLrtkrdtfle Icfcjc. _

Language (Save) (piqest)

1

a^etOt(Formul«)[rA8} TURNSTILE c:Farmula— > SEQ(4£) Sequent

e'Farmula V bFortnuU -> AND(*,b):Fenniula
eFormui* V b Fonnuli-> 0*(»,b);Fonaul«
•:ParmuU W bForcmi*-> IMPLIES(i.b):Fertnult
:FarmuL W b:PormuU -> lFP(»,b):ParmuU

| Rules (Save) (Digest) (Check)

T E r v f

■ OR—left:
c ,r E 8 v .r E S

♦ v y, T E #

j Examples (Save)

m

a - + (b - » c) E (» - * b) - » (e - » c)
t - + (b - * c) , (a - » b) , * E c
« ,« -» (b - » c >,(« -* b)E c

| Strategies (Save)

C BASIC] ____

(Show judgement) (Show tableau) (Derive tableau) (Derive rule)

(Find equivalences)(lnter-derivability)(Find modaities)

Modal Logics

Description (Save) ------■ -

Langutge (sa v e) (Digest)
------------■ -

^ C ittto r te i: Sequent Formula! eyfl] S«0t(Fermule)(rA91;

R u ill (Save)(D igest) (Check)
------------ ■

(/ Model m itt

D1A-K-B-T.
t , r e a

o r , r ' i- »a, a'

! > ♦ , A

o r . r 11- o f , oa, a'

Exist p lo t (sa ve)

H o(-(«»!-♦ h
S tr ite9MI (Save)

<IXJdS.r1tM>(BAS[C|
< K B ld t^ tte - (B A S lC)
<DBJeft,rltJit>[BASICJ
<B,leftjijbt>[8ASIC]

(Show judgement) (Show tableau) (Derive tableau) (Derive rule)

(Find equivalences) (inter-derivabHity) (Find modalities)

Figure 6.4: Systems Box

P lease com plete the following

judgement?h -i -i ((a->b)-*a)-»a
strategy?

<r t g h t , l e f t) [BASIC

Figure 6.5: A Proof Dialog

is done with cntrl-W ai the current position. The selected region is indicated by

highlighting the characters within it.

The special character “keyboard” is also available for the entry of greek and

mathematical characters not usually found on standard keyboards. The keyboard

consists of two regions: the upper contains an array of buttons labeled with the

•’ l l (o-*>-m)-«3) E a

- . ((, a, <(r t>) -K] E a (a -R>)-w ,''<<(o-*)-Kp-*a) ,a I- i

,a E (a-d5)-m)no) ,a K b
-i(((o -d » -«)-x i),a E i E (o->0)

, (oX>)-*3 E t

-■(((o-^3>—o)-^3) ,(o-H>)-«a b o
->(<<CHt>)-«a)-Kl) E (((»-t>)-»0)-^)

E i

E ->-<(<<<E*)-K))-«j)___________ _______________________

Figure 6.6: A Proof

6.2. AN OVERVIEW 171

special characters; below these, is a scratch area. When a button is pressed the

character it represents is inserted into the scratch area. The keyboard’s title includes

a button Clear which deletes the contents of its scratch region, and a button Select

that makes the contents of the scratch region the current selection.

■K((o-*)-»a)-*a) ,a,(CM t>)-o t~ a

-|<((o-H >)-«j)->a),a,(<nt>)-*a h a

'(((0-*>)-«3)«C) ,o R ((<o*>-«3)»o>

•'(<(a-e>->o)-*e),a t- i

(<Mto)-«jl-'(((cR,b)-»g)-o>,a R b
<o»o)-«3,-.(((o-a>-*e>-*e) i- (O.B)

-•(< (a -«)-^)-*o),(o -*6>-*o I- i

- i (((a v » < o) -* a) ,<o-*«>-«i R a

i(((<M fe)-»e)-Ki) R ((<t>>6)-Ki)-K3) [

■'(((<m 6)-*3)-«j) I- i Rule U sed
lijt-ictt

Rule U se d

Figure 6.7: Identifying a Proof Rule

The completed proof is shown in figure 6.6. A proof contains additional information

which is stored on pop-up menus associated with parts of it. Names of the inference

rules used in the proof are placed on the pop-up menus. An inference rule’s name is

discovered by pressing the right button over its horizontal rule - see figure 6.7.

-’ (((o - b) ^ o) < a) , a , (o b) - o R o

->((<o-*>)-«3)«o) ,(o» t>)-K i,a R (((o -b)-K >)-« :)

-><((a*b)-*a)-»a),a .(e->e)-*e r a (o-*b)-> a,-'(((o»e)-*a)-*o> ,o R i
-■(((<Mt»-«)-MJ) , a l- ((<o^>)-«a)-*i> (e-*)-w,-i(((CMe)-Ki)-R3) , a R b

-i (< (o-H>)-k i)-w) , a I- i (<Mb)-Ra,-’ (((o-b)-< o)-K j) R ((Mb)

- i (((a - t» H O)^ a) ,<a-*>)-« R i

^ (((a - <)) - «) ^ a) ,(o<b)-K j R a

Control

Strategy used;
a i.jt-t .i-ttHR-^TCJ 1

L
Strategy used;

Logic:

Rule Used 1
Figure 6.8: Inspecting a Proof

The pop-up menu associated with the outermost rule contains information about the

logic and the strategy used, as well as providing a means of hiding or removing the

proof - see figure 6.8.

■•(((a-*b)-K j)-*o),a ,(a -» to)-«a I- a

•’ (((a -* b)-* a)-* a) , a R (((o -*b)-K i)-*a)

-> (((a -* 6)-K i)-> a) ,a R j . •>

i (((O +0)-*0)-KI) , (Q-*tl)-*0 R i

->(((o -> b)-»a)-»a), (o-*b)-*a R a

■■(((o->t))-Ki)-»q) R (((a* fc)-»o)-*o)

- i(((o * b)-* a)-* a) R j.’(((a->b)-Ki)->o)

Figure 6.9: Proof Elision

Parts of a proof can be elided by pressing the left mouse button on their horizontal

172 CHAPTER 6. THE ENVIRONMENT

rules - as shown in figure 6.9. Further details of the proof display widget are given

below.

6.3 W idgets

It was necessary to add two widgets to the Athena widget set, to improve the

interaction possible with the system. The first widget - called a “Mover” widget -
is responsible for the placement of objects on the workspace. The second “Sequent”
widget is responsible for the rendering of proof trees within the environment. The

following sections give a brief description of these widgets.

6 .3 .1 W id g e ts

A widget in the terminology of the X toolkit is a combination of a rectangular

graphical region with some specialised layout or rendering capability. Each of the

objects visible to a user of the environment is a widget in this sense. A hierarchy

of widgets is formed by the ability of some widgets to “manage” others. Both the

widgets described below have this ability.

The P r o l o g language in which the environment is constructed provides easy access

to widgets written in the toolkit, and it is fairly straightforward to add further

widgets if they are needed [DP89]. Some widgets are able to invoke capabilities of
the P r o l o g language by making callbacks. When a suitable event occurs, such as

the pressing a mouse button while the mouse pointer is over a button, the widget

can be programmed to make a callback. The callback is translated into a goal to

be solved by the P r o l o g system. A callback must be previously registered with a

widget before it can be used. An application writer can obtain additional information

by examining the contents of other widgets - typically widgets concerned with the

manipulation of text. In this way there is a simple, controlled, interaction of the

user with the environment.

A widget is an object in the sense of languages like C++. All widgets are subclasses

of the “core” widget class. The core class defines the basic minimum of functions, or

methods, that a widget must possess. Subclassing can increase the stock of functions

available and, in this way the widgets form different lineages according to their

inherited attributes. A widget also contains variables that define its current state.

Some variables are local to the widget, others are made available for inspection

through the toolkit. The toolkit provides mechanisms for setting and examining these

public variables.

6.3. WIDGETS 173

6.3.2 Proof displayer

The proof display widget - otherwise known as the sequent widget - constructs the

layout of proof trees as shown in figure 6.6 above. Its objective is to format the

proof in a readable way, so that horizontal lines are in their correct positions. It
also provides a means of concealing parts of a large proof, and can be used with

other widgets3 to allow a large proof to be viewed comfortably when the display

space available is restricted.

A sequent widget will create and manage other sequent widgets for any subproofs of
a proof, such as that shown in figure 6.10.

Figure 6.10: Sequent Widget Layout Strategy

A leaf of a -proof tree is formatted according to the unparse scheme defined by the

language of the system concerned. An internal node of the proof tree falls into one

of the two cases illustrated in the figure: the subproofs are wider than the conclusion

or they are not. If the subproofs are wider, the text of the conclusion, (formatted

as in the same way as a leaf) is arranged so that is centered with respect to the

representations of the subproofs. Otherwise the subproofs are centered with respect
to the conclusion.

A sequent widget defines two publicly accessible attributes, which correspond to the

dimensions of its left and right indents. These are the Is and rs in the figure.

The indents are used to draw a horizontal line from the left indent of the leftmost

subproof upto the right indent of the rightmost subproof. A sequent widget is used

in this way for each application of an inference rule in the proof.

3 most commonly the viewport widget

174 CHAPTER 6. THE ENVIRONMENT

The display widget toggles its iconisation state when it receives a mouse press in

the region of its horizontal rule, or its icon. Sequent widgets are constructed so

that if one of them changes its size, the size change is propagated to its immediate

neighbours. They in turn pass changes in their size to their neighbours, and so

on. In this way the proof tree as whole, resizes itself when one of its constituents

changes in size.

6.3.3 Workspace manager

The workspace management is performed by the “Mover” widget. This widget

constructs a workspace in which its child widgets are placed. The children of the

mover widget are each decorated with three (optional) mouse sensitive regions as

shown in figure 6.11.

Figure 6.11: A Decorated Child of the Mover Widget

The regions are, from the top clockwise: a horizontal bar across the top of the child

used to move it about the workspace; a square area on the bottom right of the child

that is use to resize the child; and a second square area on the bottom left of the

child that is usually used to remove - or destroy - the child permanently. The top

region can also be used to raise of lower the child respect to the stacking order of

its siblings. The stacking order indicates if a child lies above or below its siblings

for purposes of display. It obscures siblings lower in the stacking order, while it is

obscured by siblings higher in the stacking order. A child may not be visible if it is

unmanaged. The selective management of widgets occupying the desktop is used to

implement their conditional appearance and disappearance.

C h ap ter 7

Inside the Environm ent

This chapter gives details of the implementation of the environment. The

prolog metalanguage in which the environment is written in is described

and details are given of the internal mechanisms responsible for the

construction of internal forms of a system’s language and rules. These are

used to show how, with the aid of heuristics, derivations of judgements

are constructed.

7.1 Introduction

As illustrated in the previous chapter, the environment is constructed with a

straightforward model of interaction that is simple for the user to use. From the

users point of view the focus of attention is the system pane. If the user has

permission, the contents of the system’s panes can be edited directly. Several systems

can be active at any one time. The environment performs actions when the user

makes requests using buttons. Buttons are available at the top of the workspace, or

within systems, they are attached either to the titles of panes or collected on a pane

by themselves at the bottom of the system presentation.

The action of pressing a button in the interface forms a query in the metalanguage.

The result of the query is reflected in the interface by creating a proof, or by writing

text to a new or existing window. If the query arose from a button attached to a

system then the query is given a context that describes the system concerned. When

additional information is required it is collected using a dialogue box containing the

relevant questions (e.g. figure 3.8 on page 81). Only when all the questions are

answered satisfactorily does the action proceed.

175

176 CHAPTER 7. INSIDE THE ENVIRONMENT

The diagram in figure 7.1 shows how the environment can be thought of as divided

into three parts. The environment constructs and manipulates objects existing to a

greater or lesser extent in the internal, interface or storage part of this view. For

example, the representation of a system consists of: (i) the external view presented by

the interface to the user (see figure 6.3 on page 169); (ii) parts of this view providing

a note-pad facility, which are mapped directly onto elements in the storage part; and

(iii) other parts which are translated into prolog modules containing predicates that

constitute a number of internal views of this information. This chapter is mostly

devoted to a description of this last aspect.

U ser

Figure 7.1: Schematic diagram of the environment

7.2 The M etalanguage

The environment is implemented in a variant of the prolog language [DP89] and, as

such, this is the metalanguage of the environment. As some of this prolog code will
be used in examples, a few remarks are required to explain how to read its slightly

unusual syntax.

7.2.1 Clauses

A predicate is defined as a number of clauses and written as

d e f p r e d ic a te : :
argum ent • • • argum ent i f

g o a l argum ent • • • argument &

g o a l argum ent • • • argument
I argument • • • argum ent i f

g o a l argum ent • • • argument &

7.2. THE METALANGUAGE 177

goal argument • • • argument

where I and &: are separators for clauses and goals respectively. The keyword if

separates the arguments, which are terms, from the body of the clause when the

body is not empty.

Exam ple

The predicate append/3, expressing the relationship of concatenation between two

lists, can be stated as

d ef append ::
□ v v

I e:es v e:fs if
append es v fs

query

outcome(s)

append [1 ,2 ,3] [4 ,5] x

x = [1 , 2 , 3 , 4 , 5]

append x y [1,2]

x = [] y = [1,2]

x = [1] y = [2]

x = [1 ,2] y = []

7.2.2 Predicates

Predicates are often distinguished by their arities. This is done by writing

predicate/ arity. When the name of a predicate appears in the body of a clause it is
written as ® predicate / arity. This allows the prolog compiler to replace the predicate

with its fully qualified name (see below).

7.2.3 Variables

Logical variables are written in italic in the program texts here to distinguish them

from their constant counterparts e.g. ‘v’ versus V . In the actual text of a prolog

program, logical variables are declared explicitly using the f o r a l l construct in each

clause.

178 CHAPTER 7. INSIDE THE ENVIRONMENT

7.2.4 Definite clause grammars

A useful means of eliding a particular form of an “accumulating parameter” in a

predicate is provided by the so called “definite clause grammar extension” (d c g s). In

this translation, the last two arguments of a predicate are constructed by the prolog

compiler according to the following pattern:

def predicate =
argument • • • argument if

goal argument • • • argument &
[term] &
{ g o a l’ argument • • • argument } &
goal argument • • • argument

becomes

def predicate ::
argument • • • argument to to if

goal argument • • • argument to t i &
$eq ti term: £2 &
g o a l’ argument ••• argument
goal argument • • • argument <2 <3

9

in which are new variables introduced by the translation. Any goals enclosed

in {} are excluded from the translation (e.g. g o a l’ above) and terms enclosed within

[] are accumulated in the list {e.g. term above). Although this technique originated

with the encoding of grammars in prolog, it can easily be used to construct or

take apart the parameter list. This provides some of the convenience of higher-order

functions in functional languages.

E x a m p le

The predicate nonEmptyCommaSeparatedList/3, shown below, parses a non-empty

comma-separated list, represented by a list of tokens, and returns the underlying list

without the commas. The list of tokens and the empty list are supplied as the initial

and final values of the d c g ’s last two parameters.

def nonEmptyCommaSeparatedList =
[t] if

C t]
I t i t s if

C t ’ , *] nonEmptyCommaSeparatedList t s

The predicate succeeds when given the following parameters

7.2. THE METALANGUAGE 179

nonEmptyCommaSeparatedList [a ,b, c] [a , " , " , b , " , " ,c] []

succeeds

Note that the same predicate can be used to construct, rather than parse, the

“unparsed” comma separated list. D C G s are used in the environment for the parsing

and unparsing of language, rules and heuristic components of systems.

7.2.5 Modules

A module system for u-prolog gives the predicate name space a structure. This is
used to avoid name clashes between predicates in large programs.

The module system employed by this version of prolog operates by encoding the

module hierarchy in the global name of a predicate. Distinct modules can thereby

contain predicates with the same local name but they will not have identical global
names.

Exam ple

Suppose there is a module called ‘a’ with two sub-modules ‘b’ and ‘c’ each of which

defines a predicate ‘p’ of arity 2. Then, the collapsing of the hierarchy means that
‘p’s name is ‘a /b /p /2 ’ and ‘a /c /p /2 ’ in the modules ‘b’ and ‘c’ respectively.

V isib ility

The module system also restricts the visibility of predicates between modules, so

that two modules having the same parent cannot use each other’s predicates without

explicitly making them available through the parent module.

E xporting predicates

A predicate may be exported by “promoting” its name in the name-space in the

following way: suppose module ‘a ’ exports predicate ‘ p ’ from its sub-module ‘ b ’ , (this

is quite legal in this system) then the name of ‘ p ’ changes from ‘a / b / p / 2 ’ to ‘a / p / 2 ’

- thereby giving it the appearance of being defined in ‘ a ’ rather than ‘ b ’ .

180 CHAPTER 7. INSIDE THE ENVIRONMENT

E xternal representation

By convention, the module hierarchy is mirrored in the way the code is laid-out
in the UNIX filesystem. Thus, the file containing the code for module prover would

be called prover.p, and the subdirectory prover would contain code files for its

sub-modules. Further details of the prolog system are given in [DP89].

7.3 Defining a System

The user’s view of a system in the environment was described in the previous chapter

(e.g. figure 6.3 on page 169). There, a system was presented as a collection of, at
least, five panes: (i) a description, (ii) the language, (iii) its rules, (iv) examples, and

(v) strategies. Of these (i) and (iv) are provided for the user’s convenience and the

others (ii), (iii) and (v) we shall describe here.

A system is regarded as a single entity, and this is reflected in its representation as

a collection of files in a single directory whose corresponding internal representation

is a prolog module.

7.3.1 Representation of a system

The environment represents a system as a module together with a directory containing

a number of files. These files hold representations of the language and rules of the

system together with the surface presentations of the panes.

family.p - family of systems

family/ - contents of the family

systeml.p - system module

system 1/ - directory

lang.p rules.p - language and rule submodules

desc etc. - files holding the contents of the panes

system2.p - another system

system2/

Figure 7.2: Storage representation of a family of systems

7.3. DEFINING A SYSTEM 181

7.3.2 System menu

Each of the “cards” making up the menu of systems (shown in figure 6.2 on page

168) corresponds to a module in the metalanguage. This module (‘family.p’ in figure

7.2) contains the systems shown on the card as submodules.

A user indicates the names of the systems which are of interest by defining an

environment variable called LOGICS, before starting the environment. The deck of
cards shown in the earlier example was obtained by making the following assignment

to LOGICS:

setenv LOGICS i n :c la s s ic a l :hyper:modal:fu n ctio n a l:threeValued:hugo:lin e a r

Thus, the internal name given to a system reflects its location in this hierarchy of

modules, as it is structured according to the module’s lineage (§7.2.5)1.

Each module, whether it defines a family or a single system, defines three predicates

called Description/1, Contents/1 and Location/1.

Description/1 The description predicate maps the internal name of the module to the

external name allocated by its creator.

Contents/1 The contents predicate names the sub-logics/families if they exist. The

module is taken to denote a logic when there are no contents defined by this

predicate.

Location/1 The location predicate gives the location of auxiliary files that define the

contents of the panes and other files such as any ET]?X presentations of the

system.

Systems are invoked by constructing the names of these predicates, from the prefixes

given by the LOGICS environment variable. The “autoloading” facility of the prolog

system then finds the definitions of the predicates when these exist. Further details

of the autoloader are given in [DP89].

7.3.3 Submodules of a system

A system contains two submodules corresponding its language and rules. The modules

define a number of predicates as follows:

1 There is no restriction in principle to having families of families of systems and so forth,
however in practice this is not possible because of the two-level nature of the present pop-up
menus.

182 CHAPTER 7. INSIDE THE ENVIRONMENT

lang rules

tokens/3 preds/1

form/4 AND.right/3

metavariables/2 etc.

negativeJudgements/1

judgements/1

equality/2

equality / 3

The module rules defines a predicate for each rule and the predicate rules/1 gives

the names of these predicates. The translations from the surface syntaxes to these

modules are described in the following sections.

7.4. DEFINING A LANGUAGE 183

7.4 Defining a Language

The purpose of the language is three-fold. Firstly it gives a relationship between

the internal and external views of the object language by providing parsing and

unparsing schemes. Secondly, it defines the “parts of speech” used, namely syntactic

categories and judgements. Thirdly, it provides enough syntactic machinery to define

rules over these linguistic structures which it does this by specifying the names of

metavariables for the categories. Metavariables need only be defined for categories

that are referred to directly by rules.

The parsing and unparsing strategies employed provide a simple operator grammar

with the ability to define distfix operators. This has the extra flexibility provided

by the structure of the syntactic categories, and built-in constructions for sets, lists,
and bags, etc. The unparsing scheme makes use of parentheses to clarify the output.
However, the main purpose of the language is to allow the structure of a system to

be defined concisely and easily, and to allow such definitions to be manipulated in

a convenient way. The abstract syntax provided by the language definition is used

internally in either the CIF or TIF forms described elsewhere. Figure 7.5 shows an

extended Backus Naur Form for the syntax of a language description.

The language will be illustrated with the example shown in figure 7.3. Next to the

title of the language are two buttons Save and Digest , which permit the contents

of the window to be saved to the language file, or converted to an internal form.

7.4.1 Digesting

The language of a system must be digested before it can be used. This is done by

pressing the Digest button associated with the language pane. If the language is

changed, it must be digested to reflect the changes.

As the language is digested, a L<T]?X file is produced containing tables which can be

included in documentation associated with the system.

7.4.2 Components of Language

The definition of a language has four parts:

• identification of syntactic categories and their metavariables (line 1);

• identification of judgements (line 3);

• formation rules for syntactic categories (lines 5-13); and,

• description of lexemes (line 15).

184 CHAPTER 7. INSIDE THE ENVIRONMENT

—

Intuitionistic Propositional 1

D e s c r ip t io n (S a v e)

"l_IntulGoniJtic logic. J

Language (s a v e) (D ige st)

Categories: Sequent FarmulafoyS]; “

Judgements: Sequent;

a:SetOf(Formula)! TAO] TURNSTILE e:FaranuU-> SEQ(*.c):Sequent

a:Formula ’a ' b:Formula - > A NE(a,b): Formula
a:Fonnula V b:Formula-> OR(a,b):Fonnula
a:FormulabiFormula - > IMPLIES! a,b):Fonnula
a:Formula b:Formula —> IFF(a.b):Fonnula
’-T i:FormuU - > NOT(a):FormuU
V —> BOT:Formul&

—> ID(t):Formula

TURNSTILE is V {’ t- ’};

R u le s (S a v e) (D ig e s t) (C h e c k)

CR-b-right:
T h y

E xam p le s (S a v e)

S tra te g ie s (S a v e)

(Show judgem en t) (Show tab leau) (D e rive tab leau) (D erive rule)

(F in d eq u iva le n ce s) (in te r-de riv ab ility) (F ind m odalities)

Figure 7.3: Presentation of a language

Categories: Sequent Formula[9?i/>0] ;

Judgements: Sequent ;

a :S e tO f(F o rm u la)[rA 0] T U R N S T IL E c:Formula —► SEQ(a,c):Sequent

a:Formula 'A ' b:Formula —*> A N D (a,b):Form ula

a:Formula 'V' b:Formula —► O R(a,b):Form ula

a:Formula biFormula —► IM PLIES(a,b):Form ula

a:Formula '<-*•' b:Formula —► IFF(a,b):Form ula

a:Formula —*• N O T(a):Form ula

' i . ' —► BOT:Form ula

t:'[a -w]' —+ ID (t):Form ula

T U R N S T IL E is 'P ' { ' P

Figure 7.4: Language of intuitionistic logic

7.4.2.1 Syntactic categories

1

3

5

7

8

9

10

11

12

13

15

Line 1 We need two syntactic categories for the example of Intuitionistic Logic. The

first is Sequent and the second Formulas.

7.4. DEFINING A LANGUAGE 185

7.4 .2 .2 Judgem ents

Line 3 Sequents are judgements here. Judgements are designated syntactic categories.
Their role is to separate out those categories that are external from the remaining

internal ones. Judgement categories have a special role as they are allowed to occur

outermost in rules and to form queries, whereas ordinary categories are not.

Negative judgements can be declared; these are mostly used for modelling systems

of defeasible reasoning §3.7. The declaration is similar to judgements. There are no

negative judgements in the example.

7 .4 .2 .3 Form ation R ules

Lines 5-13 The formation rule for Sequent is shown first:

a:SetOf(Formula)[rAO] TURNSTILE c:Formula —> SEQ(a,c):Sequent

This is read as: if a is a set of Formula (with metavariables starting with TA G)

and it is followed by a lexeme called TURNSTILE and then by a formula c, then

SEQ(a.c) is a Sequent. This defines an infix operator TURNSTILE, which maps a set

of formulas and a formula to a sequent. The environment uses this information to

parse and unparse the phrase, as well to extract its abstract syntax. In addition to

sets, bags and lists are also provided: BagOf, ListOf. These are used to cope with

various types of structural rules.

Formation rules for Formulas are similar. Line 13 t : ’ [a-w] * determines that

identifiers start with a greek letter, (<pipd being used for meta-variables).

7 .4 .2 .4 L exem es

Line 15 provides a map from names to character strings in logeng font - a font

which includes many mathematical and logical characters.

TURNSTILE is V { ' h

indicates that the lexeme TURNSTILE presents the string ‘h ’ for input and ‘ h ’ for

output. The { • • • } is optional and if omitted, input and output tokens are identical.

186 CHAPTER 7. INSIDE THE ENVIRONMENT

7.4.2.5 Metavariables

Metavariables may be declared either when the category is defined or when a

collection is used. The example shows both of these. Line 5 contains:

a:SetOf(Formula)[rAO]

which declares metavariables over a at that point. This is useful in that it makes it

unnecessary to introduce an intermediary category just to record the metavariables.

7 . 4 . 3 Translation of Language

Within the prolog part of the environment, the language of a system is represented

as a tuple consisting of the names of the six predicates defined by the system’s

language sub-module:

(to k e n s /4 , fo r m /4 ,m e ta v a r ia b le s /2 J u d g e m e n ts / l , n e g a tiv e ju d g e m e n ts /1 , e q u a l i ty /2)
N------ ------- ' S-----V-----' S------------- V------------- ' s ' S--------V-------- '

§7.4.4 §7.4.5 §7.4.6 §7.4.7 §7.4.8

The predicates are formed from the language as follows. In the first part of

the translation, the contents of the language window are parsed according to the

grammar of figure 7.5. The parse tree so constructed is restructured and checked for

consistency, before being formed into the definitions of the predicates listed above.

In particular, lexemes are checked for duplicate definition. An input lexeme must not

contain any white space. Categories are collected and at least one category must be

defined. Similarly for judgements, at least one judgement category must be defined,

and this must be valid. Negative judgements can also be declared. Each formation

rule is analysed to check that each variable appears exactly once on both sides of the

definition. All categories that have been used must have been declared. In addition,
there must be at least one formation rule for each category.

7.4.4 Token predicate

to k e n s /4 - are extracted and collated from the formation rules.

d e f to k en s : :
TURNSTILE "h " " h "

7.4. DEFINING A LANGUAGE 187

7.4.5 Formation Rules

All formation rules are collated into a single predicate, form/4. Each clause of the

predicate corresponds to a single formation rule and consists of:

1. the category of the element the clause forms;

2. the class of the formation rule: prefix, infix, constant, etc.;

3. the CIF term generated by the formation rule;

4. a list of conditions that must be satisfied in order to form the element.

The first and third parameters constitute the right-hand side of the formation rule,
The forth parameter corresponds to the left-hand side. The second parameter is used

to guide the parse/unparse algorithm. A list of conditions may be formed from:

token(c) where c is a constant.

lexeme (/) where / is the name of a lexeme.

regexp(re, t) where t is a constant matching the regular expression re.

number(n) where n is a number.

t y p e (c , o , m , 0 where t is an element of the category c, supposing a local choice

of metavariables m and display options o. The metavariables are denoted by

a regular expression as before. The display options allow the element to be

displayed on a named pop-up menu, or ignored. For collections a separator

other than V can be specified.

For the example above form/4 is:

de f rform ::
Sequent in f ix [SEQ,a,c] [type (SetOf (Formula) *[rAO][0-9’]*$" ,a),

lexeme (TURNSTILE) , type (Formula, □ , NONE, c)]
I Formula in f ix [AND,a , 6] [type(Formula,[] .NONE,a),token("A "),

type(Form ula,[] .NONE,6)]
I Formula in f ix [OR,a , 6] [type(Formula,[] .NONE,a) .to k e n ("V "),

type(Form ula,[] .NONE,6)]
I Formula in f ix [IMPLIES, a , 6] [type (Formula, □ .NONE, a) ,token(" —»•") ,

type (Formula, □ .NONE, 6)]
I Formula in f ix [IFF, a, 6] [type (Formula, [] .NONE,a) ,token("<->") ,

type(Form ula,[] .NONE,6)]
I Formula p re fix [NOT,a] [token("-i") .type(Formula, [] .NONE,a)]
I Formula const BOT [token("_L")]
I Formula const [ID,£] [regexp("*[a-w]$" ,0]

188 C H A P T E R 7. IN SID E T H E E N V IR O N M E N T

7.4.6 Metavariable predicate

References to metavariables are extracted and collated from the declarations of
categories to form the predicate metavariables/2. The first argument to this is
the category name and the second is a regular expression constructed to match a
metavariable over the category. When a category has no variables, NONE is written
instead

def metavariables ::
Sequent NONE

I Formula

7.4.7 Judgement predicate

judgements/1 - a single argument consisting of a list judgement categories.

def judgements ::
[Sequent]

When negative judgements are present in a system, the predicate negativejudgements/1

holds for them.
def negativejudgements ::

[NSequent]

7.4.8 Equality Predicate

Each category in a language induces an appropriate notion of equality between its
elements. For example, consider the category of Formulas defined as:

a:Formula ‘A’ b:Formula

a:Formula ‘V' b:Formula

a:Formula ► ’ b:Formula

*-i' a:Formula
m r ina: [a-z]

AND(afb):Formula

OR(afb):Formula

I MPLIES(a,b): Formula

NOT(a):Formula

PROP(a):Formula

For this category, equality of two elements is determined by the following predicate:

7.4. D E FIN IN G A L A N G U A G E 189

def Equ a lity ::
AND [a, 6] l a ’, b ’] if

Equ a lity a a ’ &£

Equa lity b b ’

I OR [a, b] l a ’, b a if
Equ a lity a a ’

Equa lity b b ’

I IMPLIES [a.b] [o ’, b ’] if
Equ a lity a a ’ &c

Equ a lity b b ’

I NOT [a] [a 1 i f
Equa lity a a ’

I PROP [a] [a]

This is essentially structural, as no laws are involved, and this predicate can be more
efficiently implemented by using the unification of the prolog metalanguage directly.
Thus, the above code need not be generated but can be replaced with:

def Equ a lity ::
a n y a a

Where laws do arise, care must be taken to ensure that equality in the category is
correctly implemented:

a:SetOf(Formula) 'K b:Formula —► SEQUENT(a,b):Sequent

The SetOf and BagOf constructions require the use of specialised equality predicates.
In this case, the equality predicate generated looks like:

de f Equ a lity ::
SEQUENT [a ,6] l a ’, b] i f

EqualSets Formula a a ’

Where EqualSets/3 is defined as:

de f EqualSets ::
c a t e g o r y e e ’ if

Containedln e e’ c a t e g o r y

Containedln e ’ e c a t e g o r y

and Containedln/3 depends on the representation of Sets.

190 C H A P T E R 7. IN SID E T H E E N V IR O N M E N T

R em oving explicit equality

The formation rules of a language give rise to a dependency graph that reflects the
use of one category by another through any type conditions for the category.
The equality predicates are computed from an analysis of this dependency graph.
Initially, categories are flagged depending on whether they require explicit or implicit
equality. Categories that make use of SetOf or BagOf collections are marked as
explicit, other categories are marked as implicit. The flags are then propagated
through the graph so that categories that refer indirectly to explicit categories
themselves become explicit. Only categories that remain implicit at the end of this
process are eligible for direct unification.
The equality predicate for the language in figure 7.4 is:

def equality ::
op:a op:b if

$cut &:
equality op a b

I a a

def equality ::
SEQ [a,c] [$a,$b] if
EqualSets a $a Cequality/2 &
equality c $b

I AND $c $c
I OR $d $d
I IMPLIES $e $e
I IFF $ f $ }

I NOT Sg $g
I ID $h $h

7.4.9 Typed internal form

T y p e d i n t e r n a l f o r m (T I F) was first introduced in §5.2.11. There, it was defined as:

1. . . . , t n) for elements;
2. C c { h ,..., t n) for collections;
3. V c (v) for metavariables;
4. B vc (t i , ... , t n) for binders; and,
5. A(*i,*2) f°r application of a binders to an argument.

7.4. D E FIN IN G A L A N G U A G E 191

where / is the name of a constructor, /,• is a T I F expression, c is the name of a
category, and v is the name of a variable.
In the concrete representation used within the environment, further distinctions are
made. . . . , t n) becomes E(c, /, [/i,..., /n]), n>0 and when n — 0, we write
T(c, /). Similarly, Vc(v) is split according to whether c is a collection category or
not. CMV(/, c, v) is written when it has the form /(c), and MV(c, v) otherwise.

7.4.10 Concise internal form

Concise internal form is similar to T I F except it omits the typing information. G I F

is generated directly from the formation rules given for the system. We can define
the translation from T I F to C I F as:

C I F (£ { (t u . . . , t „)) = f (C I F (h) , . . . , C I F (t n))

C I F (C c (t u . . . , t n)) = [C I F (t l) , . . . , C I F (t n)\

C I F { V c (v)) = M e t a v a r i a b l e (v)

where / is the name of a constructor, /,• is a T I F expression, c is the name of a
category, and v is the name of variable.
A T I F expression can be obtained by annotating one in concise internal form using
the language description of the system (in module rules/internal).

7.4.11 Typing concise internal forms

This section describes the conversion of concise internal form to typed internal
form. The predicate lnternaliseJudgement/5 takes three main parameters and, as it
is a DCG, also accumulates occurrences of metavariables on its last two arguments.
The first parameter is a judgement in C I F format (j u d g e m e n t). The resulting T I F

equivalent is placed in the second parameter (T j u d g e m e n t). The language of the
system is passed as the third parameter.

def *InternaliseJudgement =
j u d g e m e n t T j u d g e m e n t l a n g u a g e if

{ JudgementsOf l a n g u a g e j u d g e m e n t s &
member j u d g e C a t j u d g e m e n t s } &

In ternaliseCategory j u d g e C a t j u d g e m e n t T j u d g e m e n t l a n g u a g e

where JudgementsOf/2 selects the names of judgement categories from the language
of the system. Note that the conversion starts from a judgement category. If a
metavariable is found then its occurrence is recorded by the DCG, otherwise the
formation rules of the system’s language are used to discover the name of the
category of the expression.

192 C H A P T E R 7. IN SID E T H E E N V IR O N M E N T

def In ternaliseCategory
cat Metavariable {cat, id) HV(cat,id) language i f

[i d] & / / convert meta-variable and indicate occurrence
{ $con c a t } / I not a collection category

I c a t M etavariab le (l i s t i c a t) , i d) C M V (l i s t , c a t , i d) l a n g u a g e if
[id] I / convert collection metavariable and indicate occurrence

I cat value Tvalue’ language i f
{ FormationRulesOf language cat fixity value details } &:
In te rn a lise D e ta ils details Tdetails terminal language
{ Format ionRulesOf language cat fixity Tvalue Tdetails &:

convert Tvalue Tvalue ’ terminal cat }

In the above code, the predicate FormationRulesOf/5 selects formation rules from the
system’s language, and the convert/4 distinguishes between terminal and non-terminal
elements. A terminal element is one that does not refer to elements of another
category. The variable t e r m i n a l is bound to Nonterminal by lnteraliseDetail/4 only if
a type condition occurs in the condition of the selected formation rule.

def convert ::
MV(ca£, id) tiV(.cat, id) terminal cat

I value T (.cat, value) Terminal cat
1 value E(cat, value) NonTerminal cat

The main work is to determine how the element has been constructed. This is done
by considering each of the conditions in the left-hand side of the formation rule
in turn. The predicate lnternaliseDetails/6 iterates over this list of conditions using
lnternaliseDetail/6 to interpret the meaning of each condition as shown below.

def In te rn a lise D e ta ils
[] [] terminal language

I d: ds Td'.Tds terminal language i f
In te rn a lise D e ta il d Td terminal language &&
In te rn a lise D e ta ils ds Tds terminal language

def In te rn a lise D e ta il
lexeme (lex) lexeme (lex) terminal language

I token(tofc) token(tofc) terminal language
I regexp (re, vat) regexp (re, vat) terminal language
I type (l i s t (c a t) , m i s c , m v s , v a l u e) type (l i s t (c a t) , m i s c , m v s , CUist,c a t , T v a l u e))

NonTerminal l a n g u a g e i f
{ member l i s t [SetO f, L is tO f , BagOf] } & &
In te rn a lise C o lle c tio n value Tvalue list cat language

I type(ccd, misc, mvs, value) type(cat, misc, mvs, Tvalue) NonTerminal language if
In ternaliseCategory cat value Tvalue language

7.4. D E FIN IN G A L A N G U A G E 193

def In te rn a lise C o lle c tio n ::»
[] [] list cat language

I exes Tex Tes list cat language if
In te rna lise ltem e Te list cat language
In te rn a lise C o lle c tio n es Tes list cat language

where {
def In te rna lise ltem

M etavariab leUist(.cat), id) CMV(/isf, cat, id) list cat language i f
[id]

I M etavariab le (cat, id) WJ(cat, id) list cat language i f
C id]

I element Telement list cat language if
In ternaliseCategory cat element Telement language

}

194 C H A P T E R 7. IN SID E T H E E N V IR O N M E N T

Language

Category-decl

Judgement-decl

N-Judgement-decl

Category

Category-name

Formation-rule

Lhs

Rhs

Elt

Binding

Lexeme-decl

Lexeme-name

Metavariables-decl

Misc-decl
M is c-item

Var

- { Category-decl | Judgement-decl | N-Judgement-decl
| Formation-rule | Lexeme-decl } - f

= Categories:
{ Category-name { Metavariables-decl } } - f ;

= Judgements: { Category-name }+ ;

- Negative judgements: { Category-name } * ;

= S etO f(Category-name)
| BagO f(Category-name)
| L istOf(Category-name)
| Variable(Category-name)
| Category-name

= Identifier

= Lhs -> Rhs

- { Var : Number
| Var : Category { Metavariables-decl } { Misc-decl }
| Var : Regular-expression
| Single-quoted-string
| Lexeme-name } +

= Uppercase-identifier { (Elt { , Elt } *) } : Category-name

- Var { : Binding }

= Var
| (Var { , Var} *)

= Lexeme-name is Single-quoted-string { Single-quoted-string } ;

= Uppercase-identifier

= [letters]

= . < Misc-item { , Misc-item } * >
= M en u = Single-quoted-identifier
| S ep= Single-quoted-identifier
| Ignore

= Lowercase-letter

Figure 7.5: Extended BNF description of language

7.5. D E F IN IN G R U L E S 195

7.5 Defining R ules

An inference rule has the following form:

r u l e - n a m e

J i Jn
J

s i d e - c o n d i t i o n

The precise syntax of the judgements naturally depends of the language defined for
the system in question. Figure 7.7 shows the extended Backus Naur Form for rules
and figure 7.6 gives an example of the format of rules taken from Intuitionistic logic.

1 Intuitionistic P ropositiona l 1
D e s c r ip t io n (s a v e)

™|_[nruMoniitic logic.

L a n g u a g e (S a v e) (D ig est)

®[Categarie*: Sequent Formula! ?f0]! __ ■ _
R u le s (s a v e) (D ig est) (C h eek)

-- ■■

OR—b—nght:
t h y

ri-fvf

I
OR-left: TI- 0 r h 8

$ v y, r i- 6

IMPLIES—right:
t.n-y

r h

*E x a m p le s (s a v e)

S t r a t e g i e s (S a v e)

(sh o w judgem ent) (Show tab leau) (D erive tab leau) (D erive rule)

(F ind eq u iv a len ces)(in te r-d erlv ab lllty) (F ind m odalities)

Figure 7.6: Intuitionistic Rules

7.5.1 Rule names

Rules are named using hyphen separated words. This allows rules with similar
properties to be grouped together. For example, in the example system, all the
rules which introduce connectives on the right-hand side of the turnstile are called
c o n n e c t i v e - right, whereas those acting on the left are known as c o n n e c t i v e -left. This
way of naming rules is useful when forming strategies. The names given to modal
rules reflect the system in which they are applicable.

196 C H A P T E R 7. IN SID E T H E E N V IR O N M E N T

7.5.2 Side-conditions

Side-conditions can be attached to rules to restrict their applicability. This is useful
when making an extension to the rule’s semantics. Side-conditions can appear after
the judgements as well as after the horizontal bar. They are written in the prolog
metalanguage except that object language expressions must be enclosed in round
brackets. Predicates intended to be used in side-conditions must be exported from
the module side.

Rule ::= Rule-name :
Antecedents { Side-condition }
Horizontal-rule { Side-conditioi
Consequent { Side-condition }

1 t

Rule-name ::= Identifier { - Identifier }*

Consequent Judgement

Antecedent ::= { Judgement } *

Side-condition ::= : copgoal ;

Horizontal-rule

Figure 7.7: BNF for rules

7.5.3 In ternal represen tation

The module rules for the system defines a number of predicates that represent the
rules of the system. An individual rule is translated to a predicate using the
following strategy. There is an additional predicate, preds/1 which lists the names of
the other predicates. The internal names of the rule predicates are derived from the
names given to them]by the creator of the system, and are unique between systems,
as each has a fully qualified name which includes its parent module:

f a m i l y / s y s t e m /rules/r u l e - n a m e/3

Each such predicate has three clauses indexed by the first parameter: RULE, PROP
and META:

7.5. D E F IN IN G R U L E S 197

RULE provides a translation of the rule that is used by the prover. The second
parameter is a C I F template for the conclusion of the rule and the third
parameter is a list of C I F templates forming the antecedents of the rule. The
body of the clause is a list of prolog predicates that must be satisfied in order
to pass from the conclusion to the antecedents of the rule. The translation that
constructs this clause is described in §7.5.4 below.

PROP gives a summary of the analysis of the rule. The second parameter is a list
of properties:
• the arity of the rule;
• whether the rule has a subformula property;
• whether it diverges;
• what piece of syntax the rule is judged to introduce and
• if the judgement is two-sided indicates then on which side the syntax is
introduced.

This clause also provides a list of the metavariables that occur in properties of
the rule.

META gives the T I F representation of the judgements in the rule. This is used by
parts of the environment that translate or manipulate rules at a “meta-level”.
The second parameter consists of a list of metavariables used by the rule,
followed by a list of T I F expressions corresponding to judgements which starts
with the conclusion followed by the antecedents of the rule from left-to-right.
The third parameter contains a representation of side-conditions if they are
present.

The following example illustrates the translation performed for the rule
V , r J > , T \ - 9

d e f ANDJLeft : :
RULE [SE q,$a,0] [[SEQ ,$6,0]] i f

perm uteA ssum ptions [AND, VO So T &
appendAssumption tp V $c
appendAssumption <p $c $b

I PROP [1 ,A ND,left] [[y> ,^] , NODIV,SFP,LHS(E(Formula, [AND.p.VO))]
I META [[r , , 0] ,E(S equen t, [SEQ, C (SetO f, Form ula, [E (Form ula,

[AND,MV(Formula,<p) , MV (Form ula, i p)]) ,CMV(SetOf .Form ula, D]) ,
MV(Formula,0)]) ,E (S eq u en t,[S E Q ,C (S e tO f.F o rm u la ,[M V (F o rm u la ,,
M V(Formula,^) ,CMV(SetOf .F o rm u la ,D]) ,M V(Form ula,0)])] □

198 C H A P T E R 7. IN SID E T H E E N V IR O N M E N T

7.5.4 T ranslation from ex ternal to internal form

The META form of the rule is obtained by annotating the parse tree obtained for
the rule, using the algorithm detailed in §7.4.11. Details are now provided of the
translation from META to PROP which makes the presentation of the rule suitable
for the theorem prover.
A PROP transformation performs the one-step extension of an object-level proof tree
when the leaf judgement matches the rule’s conclusion. The results of the match
are the new sub-goals. The strategy used by the theorem prover, e .g . depth-first,
breadth-first or iterative-deepening may depend on the contents of the PROP clause.
For example, if r u l e s denotes the names of rules to try at some point, then

def extendOnce ::
rules trace goal rule trace’ subGoals info if

member rule rules & / / choose a rule to use
rule RULE goal subGoals &: / / apply the rule
/ / adjust the tracing information
chooselndex subGoals index
adjustTrace trace rule index info trace’

I

finds the first rule that extends the g o a l, updating the t r a c e information accordingly.
The overall translation is controlled by the predicate TranslateRule/3, which is a DCG
accumulating the translation of the rule. TranslateRule/3 takes a T I F description of
the rule and constructs its corresponding predicate. Most of the work for the PROP

and META clauses has been done by this stage. The predicate TranslateRule/9, also a
DCG, converts the T I F forms of the conclusion (g o a l) and antecedents (s u b G o a l s) of
the rule into corresponding C I F templates (T g o a l and T s u b G o a l s respectively). The
DCG part is used to accumulate any additional predicates which are required to
take apart the conclusion or to form the antecedents of the rule; it also contains any
side-conditions. These predicates are bound to the variable c o n d i t i o n in the following
program.

def TranslateRule : :=*
ruleName(name, metaVars .PROP (pvs, properties) ,goal,

subGoals, sideCondition) if
[/ / rule is translated into a 3-arity predicate:

(rule Name, 3,
[\actualVar3: [RULE, Tgoal, TsubGoals] : condition,

[pus, [PROP, numberSubGoals: name,pvs:properties]] ,
[meta Vars, [META, meta Vars: goal: subGoals, sideCondition]]

])
] &
{ TranslateRule goal Tgoal subGoals TsubGoals

7.5. D E F IN IN G R U L E S 199

sideCondition actualVars metaVars condition [] &£&£
length subGoals numberSubGoals }

I ruleName(name, metaVars,goal,subGoals,sideCondition) if
{ Error ["unable to translate the rule for ", ruleName] }

TranslateRule/10 accumulates the clause’s condition. It first translates the conclusion
(g o a l) , next the side-condition (s i d e C o n d i t i o n) and finally the antecedents of the rule
(s u b G o a l) . As the condition is evaluated sequentially, this ensures that the predicate
will fail if the conclusion is not of the appropriate form, or if the side-conditions are
not satisfied. Only when these two guards have been satisfied are the C I F templates
for the antecedents completed by the remainder of the condition.

def Trans1ateRule
goal Tgoal subGoals TsubGoals sideCondition actualVars metaVars language if

{ VariableNames vs } &c / / collection of possible variables to use
/ / translate the bottom judgement in the IN sense
Translate goal Tgoal IN vs vs’ Sz
TransSideCondition sideCondition &c / / translate the side-condition
/ / translate the top judgements in the O U T sense
TransSubGoals subGoals TsubGoals vs’ vs” language Sz

/ / determine which variables were used
{ VariablesUsed vs vs” actualVars metaVars }

9

Subgoals are translated in the ‘OUT’ sense by TransSubGoals/7. When constructing
a derivation, negative judgements occurring as subgoals are labelled ‘Neg(---)’ to
distinguish them from ordinary judgements. A list of the variables used is assembled
by VariablesUsed/4.

def TransSubGoals ::■
[] [] vs vs language

I subGoal:subGoals TsubGoal: TsubGoals vs vs’ language if
Translate subGoal Tgoal OUT vs vs” &
{ LabelNegatedGoal subGoal Tgoal TsubGoal language } Sz&c
TransSubGoals subGoals TsubGoals vs” vs’ language

where {
d e f LabelNegatedGoal ::

E (category, value) goal He%(.goal) language if
NegativeJudgenentsOf language n:ns &
member category n:ns & /

; I other goal goal language

}

7.5.4.1 Judgements

The translation of a judgement is performed by Translate/7. The translation works in
two senses, according to whether the judgement is being taken apart or constructed.
These are referred to as IN and OUT respectively. The predicate TranslateSubGoals/6

iterates the predicate Translate/7 over the antecedents in the OUT sense.

200 C H A P T E R 7. IN SID E T H E E N V IR O N M E N T

Translation of a judgement proceeds by inspection of the structure of the T I F

expression. The last two parameters v s and v s ’ are a difference list of names of
available variables.

de f Translate
E (.cat, name:arg3) name:Targs sense vs vs’ i f / / element

T ran sla teL ist args Targs sense vs vs’
I T(cat, name) name sense vs vs / / terminal
1 MV(cat, name) name sense vs vs / / metavariable
I C(list, cat, elements) v sense vs vs’ if / / collection containing modal pattern §7.5.4.4

{ ListContainsModalPattern elements list cat }
/ / translate the pattern using t; as the communicating variable
TranslatePattern elements v list cat sense vs vs’

I C(list, cat, elements') value sense vs vs’ i f I f plain collection §7.5.4.2
T ranslateCo llection elements value list cat sense vs vs’

I CUV (list, cat, name) name sense vs vs / / collection metavariable

The translation of a simple metavariable is the metavariable itself. It acts as a
placeholder and becomes a logical variable in the final clause. Similarly terminal
elements stand for themselves T (c , v) . When an element has arguments, E(c,
n a m e : a r g s) , then the arguments are translated by iterating Translate/7 over each of
them in turn, TranslateList/7:

def T ran sla teL ist
□ [] sense vs vs

I e:es Te: Tes sense vs vs’ i f
Translate e Te sense vs vs”
T ran sla teL ist es Tes sense vs” vs’

7.5.4.2 Collections

The translation of collections and patterns is slightly different. Firstly, by using
the predicate ListContainsModalPattern/3 the translation of collections is split into
two cases depending on whether a pattern occurs inside the collection. If it does,
TranslatePattern/9 is used (see below), otherwise TranslateCollection/9 does the work
for these plain collections.
Plain collections are translated as follows. Empty collections become empty
lists. Singleton collections become singleton lists unless the element is a collection
metavariable; if this is the case, the name of the collection metavariable is the
translation. These translations are independent of the s e n s e . For more populated
collections, the translation varies according to the sense.

7.5. D E F IN IN G R U L E S 201

d e f T ra n s la te C o lle c tio n
[] [] list cat sense vs vs

I [e] Te list cat sense vs vs’ i f
T ra n s la te S in g le to n e Te sense vs vs’

I e:f:fs nvs list cat IN vs vs’ i f
T ran sla teG ro u p In e f:fs nvs list cat vs vs’

I e:f:fs nvs list cat OUT vs vs’ i f
T ranslateG roupO ut e f:fs nvs list cat vs vs’

In the IN sense, predicates are added to the condition of the clause according to the
type of the collection. This is done by Element/7 and an intermediate variable (n v)

is introduced to hold the collection being taken apart.

d e f T ran sla teG ro u p In ::=
MV(cat, id) remainder nv list cat nv:vs vs’ i f

Elem ent IN list id rest nv Sc
T ra n s la te C o lle c tio n remainder rest list cat IN vs vs’

I T (cat, value) remainder nv list cat nvxvs vs’ i f
Elem ent IN list value rest nv Sc
T ra n s la te C o lle c tio n remainder rest list cat IN vs vs’

I EC cat, value) remainder nv list cat nvxvs vs’ i f
Elem ent IN list Te rest nv Sc
T ra n s la te E (cat, value) Te IN vs vs” Sc
T ra n s la te C o lle c tio n remainder rest list cat IN vs” vs’

I CWJdist, cat, id) remainder nv list cat nv:vs vs’ i f
A ddC ollec tion IN list id rest nv Sc
T ra n s la te C o lle c tio n remainder rest list cat IN vs vs’

The predicate TranslateGroupOut/9 which acts for the opposite sense is similar.
However, here the predicates in the clause’s condition are formed in a slightly different
order, so that the collection under construction is available when it is needed.

d e f T ranslateG roupO ut ::=
MV(cat, id) remainder nv list cat nv:vs vs’ i f

T ra n s la te C o lle c tio n remainder rest list cat OUT vs vs’ Sc
Elem ent OUT list id rest nv

I T(ca£, value) remainder nv list cat nv:vs vs’ i f
T ra n s la te C o lle c tio n remainder rest list cat OUT vs vs’ &
Elem ent OUT list value rest nv

I EfCcat, value) remainder nv list cat nv.vs vs’ i f
T ra n s la te E(cat, value) Te OUT vs vs” Sc
T ra n s la te C o lle c tio n remainder rest list cat OUT vs” vs’ Sc
Elem ent OUT list Te rest nv

I CMVUist, cat, id) remainder nv list cat nv.vs vs’ if
T ra n s la te C o lle c tio n remainder rest list cat OUT vs vs’ Sc
A ddC ollec tion OUT list id rest nv

202 CHAPTER 7. INSIDE THE ENVIRONMENT

7.5.4.3 Collection management

The following predicates translate the operations of selection, injection, and union
over collections SetOf, BagOf and ListOf. Predicates which finally appear in the
condition are defined in the module side, which also contains the definitions of
side-condition predicates. Other types of collection can be added easily. In addition,
the data structure used to represent the collection can be changed if required.

def Element ::=
OUT type element set result i f

ElementOut type element set result
I IN type element set result if

Elementln type element set result
where {
def ElementOut ::=

SetOf element set result if
[[QappendAssumption/3, element, set, result]]

I BagOf element set result if
[[Q$eq/2, element-, set, result]]

I L istO f element set result if
[[Q$eq/2, element: set, result]]

def Elementln ::=
SetOf element result set if

C [QpermuteAssumptions/3, element, set, result]]
I BagOf element result set i f

[[QpermuteAssumptions/3, element, set, result]]
I L is tO f element result set i f

[[Q$eq/2, set, element: result]]

}
def AddCollection

OUT tijpe el e2 result i f
AddCollectionOut type el e2 result

! IN type el e2 .result i f
AddCollectionln type el e2 result

where {
def AddCollection ln

SetOf setl set2 result if
[[Qappend/3, se tl , set2, result]]

I BagOf bagl bag2 result if
[[Qappend/3, bagl, bag2, result]]

I L istO f listl list2 result if
[[Qappend/3, listl, Hst2, 7'esult]]

>
def AddCollectionOut ::=

SetOf setl [element] result if
[[QaddAssumption/3, element, setl, result]]

I SetOf setl set2 result i f
[[QappendAssumptions/3, set2, setl, result]]

I BagOf setl set2 result if
[[Qappend/3, set2, setl, result]]

I L is tO f setl set2 result i f
[[Qappend/3, setl, set2, result]]

i

}

7.5. DEFINING RULES 203

7.5.4.4 Patterns

If a collection is found to contain a pattern, TranslatePattern/9 is used to perform
the translation.

def TranslatePattern ::=
elements v list cat sense vs vs’ if

{ member list [SetQ f, BagQf]
PatternConstants consts
C la ss ifyP a tte rn elements list cat components const3 consts ’

} &
Proc^ssPattern sense components v list vs vs’

The elements in the collection are classified into three types:
1. plain collection metavariables;
2. patterns involving constructors of elements in the underlying category; and,
3. simple elements of the underlying category.

The first and last types can be translated using the predicates described in the
previous section. The second type requires a modification to that strategy.

def C la s s ify
CKV(list, cat, id) list cat (element, pattern, id'.plain) (element, pattern, plain) i f /

I E(cat, nameiargs) list cat (element, P (vars, template) :pattern, plain)
(element, pattern, plain) if

{ ArgsContainCollectionMetavariable args list cat }
MakeTemplate E(caf, name: args) template vars []

I e list cat (e: element, pattern, plain) (element, pattern, plain)

The pattern is analysed by MakeTemplate/6. Any collection metavariables contained
within it are identified and replaced with a constant in an appropriately formed
template. At the same time, a table is constructed to record pairings of constants
with collection metavariables. The template and table are recorded in the analysis of
the pattern, P(v a r s , t e m p la t e) by Classify.

def MakeTemplate ::=
B (.cat, name: args) name: template vars vars’ if

MakeTemplateArgs args template vars vars’
I T(.cat, name) name vars vars
I MV (cot, id) id vars vars
I CMV(/iat, cat, v) const (.const, v):vars vars if

[const]
where {
def MakeTemplateArgs

[] □ vars vars
I e:es t:ts vars vars’ i f

MakeTemplate e t vars vars”
MakeTemplateArgs es ts vars” vars’

}

204 C H A P T E R 7. IN SID E T H E E N V IR O N M E N T

Once the analysis of elements in the collection has been completed, the conditions
and C I F templates can be generated. This is done by ProcessPattern/7 according to
the sense in which the patterns occur.

IN Remove all elements from the collection. Then remove all elements matching
a pattern (note that more than one pattern may be applicable for a given
element). Finally, distribute the remaining elements to collection metavariables.

OUT Union the collections derived from plain collection metavariables. Add the
elements. Construct new collections according to pattern templates and add
these to form the final collection.

def ProcessPattern ::=
IN (elements, patterns, plain) v list vs vs’ if

RemoveElements elements v v ’ list vs vs” &
DestructPattem s patterns v ’ v” list vs” vs’” &c
P a r t it io n P la in plain IN v” list vs”’ V3’

I OUT (elements, patterns, plain) v list vs vs’ i f
P a r t it io n P la in plain OUT v ’ list vs vs” &c
ConstructPatterns patterns v ’ v” list vs” vs”’
InsertElem ents elements v” v list vs”’ vs’

The predicates {InsertElements, RemoveElements}, {ConstructPatterns, DestructPatterns},

and {PartitionPlain}, corresponding to translations of each of the types classified
above are as follows:

def InsertElements
[] v v list vs vs

I exes v v ’ list nv:vs vs’ i f
Translate e Te OUT vs vs”
Element OUT list Te v nv Sz
InsertElem ents es nv v’ list t/s” vs’

def RemoveElements ::=
[] V V list VS V3

I exes nv v ’ list nvxv3 vs’ i f
Element' IN list Te v nv &c
Translate e Te IN vs vs” &
RemoveElements es v v ’ list vs” vs’

def ConstructPatterns : : *
[] v v list vs V3

I P (vars, template) xps v v ’ list nvxvs vs’ if
Pattern OUT list v vars template nv
ConstructPatterns ps nv v ’ list vs vs’

7.5. D E FIN IN G R U L E S 205

de f DestructPatterns
[] V V list V3 vs

I P (vars, template) :ps nv v ’ list nv:vs vs’ i f
Pattern IN list nv vars template v
DestructPatterns ps v v’ list vs vs’

def Pattern ::=
IN SetOf in vars template out i f

[[fldestructPattera/4, in, vars, template, out]]
I IN BagOf in vars template out if

[[CbagDestructPattera/4, in, vars, template, out]]
I OUT SetOf in [(id, t;ar)] template out i f / / restriction on form of pattern in antecedents

[[ficonstructPattem /5, in, var, id, template, out]]
I OUT BagOf in [(id, var)] template out i f

[[flbagConstructPattem/5, in, var, id, template, out]]

def P a r t it io n P la in ::=
[] sense [] list vs vs

I [p] sense p list vs vs
I id:p:ps sense nv list nv:vs vs’ if

AddCollection sense list id rest nv
P a r t it io n P la in p:ps sense rest list vs vs’

7.5.4.5 Supporting predicates

The predicates destructPattern/5 and constructPattern/4 implement the IN and OUT

senses of pattern processing when a rule is applied during a derivation.

Taking patterns apart

When a pattern occurs in the conclusion, the predicate destructPattern/4 is used to
filter out any occurrences of C I F expressions that match its template. Collections of
subformulas of formulas matching the template expression are constructed.

destructPattem input formal template remainder

Where i n p u t is the initial collection, f o r m a l is a list of correspondences between
collection metavariables and constants in the template. The t e m p la t e is a C I F

expression containing constants which mark points where subformulas are to be
collected, r e m a i n d e r is used to hold the C I F expressions which do not match the
template.

206 C H A P T E R 7. IN SID E T H E E N V IR O N M E N T

The first step of this process, performed by ExtractLogicalVariables/4, analyses the list
of correspondences denoted by f o r m a l . It assembles a list of pairs (p a r t s) . Each pair
in the list has the form ‘(a, x) ’ where ‘a’ is a constant appearing in the template
and V is a new logical-variable. This structure allows matching C I F subformulas
to be collected efficiently by Matches/4. Next, MatchExpressions/4 does the pattern
matching. Lastly, BindCollectionMetavariables/2 collapses the collections as necessary.

def destructPattern ::
input formal template remainder if

Ex tractLogica lV ariab les formal variables parts [] Sc
MatchExpressions remainder input parts template Sc
BindCollectionM etavariables formal variables

def ExtractLogica lV ariab les
□ □

I (id, v) ".formal v’: variables if
C (id, v')] Sc
ExtractLogica lV ariab les formal variables

MatchExpressions/4 iterates over the collection. When the collection is empty the
p a r t s list is terminated. Otherwise an element is checked by Matches/4 to see if it
matches the t e m p la t e . If it does not it is added to the r e m a i n d e r collection.

def MatchExpressions ::
□ parts template [] i f

Term inateLists parts
I e:es parts template remainder i f

Matches template parts e parts’ Sc
MatchExpressions es parts’ template remainder

I e:es parts template e: remainder i f
not Matches template parts e parts Sc
MatchExpressions es parts template remainder

The predicate Matches/4 matches the expression against the template, and if successful
binds the designated subexpressions. If the template contains a non-collection
metavariable, it will be bound and must remain consistently substituted throughout
the match.

def Matches ::
v parts e parts if

$var t; ScSc $eq v e
I op‘.formal parts op: actual parts’ if

MatchArgs formal parts actual parts’
I id parts e parts’ i f

$con id Sc
replace parts (id, e:v) (id, v) parts’

I e parts e parts
where {

7.5. DEFINING RULES 207

de f MatchArgs ::
[] p a r t s [] p a r t s

I a : a s p a r t s a ’: a s ’ p a r t s ’ if
Matches a p a r t s a ’ p a r t s ” &£

MatchArgs a s p a r t s ” a s ’ p a r t s ’

}
def Term inateLists :: / / complete the difference lists

□
I { i d , []) : r e s t if

Term inateLists r e s t

def B indCollectionM etavariables :: / / collapse to sets
C3 []

I { i d , v) : f o r m a l v ’: v a r i a b l e s i f
uniq v ’ v

BindCollectionMetavariables f o r m a l v a r i a b l e s

A ssem bling patterns

The predicate constructPattern/5 assembles a pattern from a stream of subcomponents2.
constructPattern i n p u t e l e m e n t s c o n s t t e m p l a t e o u t p u t

Add the e le m e n t s to the initial collection i n p u t according to the transformation
specified by c o n s t and t e m p la t e . Place the resulting collection in o u t p u t .

def constructPattern ::
o u t p u t [] v a r t e m p l a t e o u t p u t

I i n p u t e i e s v a r t e m p l a t e o u t p u t if
substitu te t e m p l a t e v a r e e ’

addAssumption e ’ i n p u t o u t p u t ’ &c&c

constructPattern o u t p u t ’ e s v a r t e m p l a t e o u t p u t

where {
def sub stitu te ::

v a r v a r e e i f /
I o p : a r g s v a r e o p : a r g s ’ if

/ &£ substitu teArgs a r g s v a r e a r g s ’

* I / v a r e f

! where {
def substitu teArgs ::

[] v a r e []
I a : a s v a r e a ’: a s ’ i f

sub stitu te a v a r e a ’ &

substitu teArgs a s v a r e a s ’

>

}
}

2Patterns in antecedents involving several collection metavariables, such as T a A ’, are not

presently implemented. The reason for this is that they are open to a variety of interpretations

and are not presently required.

208 CHAPTER 7. INSIDE THE ENVIRONMENT

7.5.4.6 Examples

The following examples illustrate the translation described above.
The first two example rules are from a presentation of classical logic. This is derived
from an intuitionistic presentation by adding the rules S T A R T and R E S T A R T . In this
presentation, the S T A R T rule remembers the original sequent. Later in a derivation,
the R E S T A R T rule may be used to recall the original assumptions and conclusion,
whilst keeping other assumptions previously made in the derivation (see §2.8.5).

[r h tp\, r k (p
----------------------S T A R Tr h <p

The rule introduces a single element, 4[r b i p \ \ in the antecedent sequent. This
insertion is done through appendAssumption/3. This predicate is chosen by Element/7

in TranslateGroupOut/9 above. Note that SFP is not present in the property list of
this rule.

def START ::
RULE [SEQ.r.v?] CCSEQ.a.v?]] i f

appendAssumption [RES,r,vT T a

I PROP [1,START] C[],N0DIV]
I META

T ,A h y>
---------------------- R E S T A R T
[r h < p] , A K L

This rule illustrates the- use of a nested collection. The category of formulas in the
restart system includes an element:

'[' a:SetOf(Formula) T ’ b:Formula ']' —» RES(a,b):Formula

which embeds a sequent in the formula category. The T, A in the construction of
the antecedent is performed by appendAssumptions/3.

def RESTART ::
RULE [SEQ.o.BOT] [[SEQ,6,¥>]] if

permuteAssumptions CRES.T.yj] a A Sz

addAssumption [RES,r,<p] A c

appendAssumptions c T b

I PROP [1,RESTART] [[] .NODIV,SFP]
I META •••

7.5. DEFINING RULES 209

The next two rules contain modal patterns.

r ^ , A
---------------------------------B O X - K - D - T

The patterns ‘DT’ and ‘OA’ are taken apart by destructPattern/4. Consider the first
occurrence of this predicate. Its second parameter is a list, ‘[(a,D]’, which uses
placeholders in the template to represent any collection metavariables that occur in
the pattern. Here, there is a single metavariable, T, associated with the placeholder
selector ‘a’. The template is ‘[BOX,a]’. Elements of the collection occurring in the
conclusion are passed into the predicate by the logical variable a . The predicate
removes elements that match the pattern from a and places them, without their
containing pattern, in the collection T. Elements that fail to match the pattern are
bound to the fourth parameter, T'. (Since T' does not occur in any antecedents of
the rule, this collection is discarded.) The second occurrence of destructPattern is
much the same as the first but for the fact that permuteAssumptions removes the
element ‘Dy?’ from b before passing the collection, now called c, to destruct Pattern.

The antecedent of the rule is formed by adding the element ‘y>’ to the collections of
subformulas given by A to form d, the right-hand side of the sequent.

def B0XJ(_D_T ::
RULE [SEQ, a , 6] [[SEq, T , cfl] if

destructPattem a [(a , D] [BOX,a] T' &
permuteAssumptions [B0X,<^] b c &c

destructPattem c [(a ,A)] [DIA,a] A 7
appendAssumption <p A d

I PROP [1,B0X,K,D,T] [[r,A,v>],NODIV,SFP,...]
I META •••

□r h OA
------------------------------ BOX-S4□r,r' h □<£>, o a , a '

The rule * B O X - S 4 is contains examples of patterns in its antecedent sequent. The
predicate constructPattern/5 is used to form collections containing patterns occurring
in antecedents.
The second occurrence of construct Pattern/5 constructs the right-hand collection
‘<̂ ,OA\ The first parameter of this predicate holds the contents of the collection
before construction using the pattern. This will be the singleton ‘ [<̂1 Subsequent
parameters of the predicate are: the merging collection, ‘A ’; followed by its
placeholder ‘a’; the template, ‘[DIA,a]’, which gives the effect of ‘OA’; and the
collection formed by adding the pattern, d.

210 CHAPTER 7. INSIDE THE ENVIRONMENT

de f BQXJ54 : :
RULE [SEQ, a , 6] [[SEQ , d , f U i f

destructPattern a [(a , D] [BOX,a] T' &
permuteAssumptions [BOX,<p] b c &
destructPattem c [(a ,A)] [D IA,a] A ' &
constructPattern [] T a [BOX,a] d &
constructPattern [] A a [DIA,a] e &c

appendAssumption <p e f
I PROP [1 ,B0X,S4] [[r,A,<^] ,N0DIV,SFP, ...]
I META •••

The next example illustrates the translation of a rule involving a parameterised
modal operator.

r h <p

where (or 4[i]r’) means that the individual l V believes or knows some proposition
(or collection of beliefs T ’).

def Be lieves ::
RULE [SEQ, a ,6] [[SEQ.T, [<£>]]] i f

destructPattem a [(a , D l [BELIEVES,!,a] T'] &
permuteAssumptions [BELIEVES, i,y>] 6 A

I PROP [1,Be lieves] [[r , i,<p] ,N0DIV,SFP,
MODAL(E(Formula, [BELIEVES, i , H)) ,
RHS(E(Formula,[BELIEVES, i,p]))]

I META •••

The choice of ‘i’ is non-deterministic but once chosen, must be consistent throughout
the application of the rule.
The following example illustrates the translation of a rule that uses a negative
judgement. The rule introduces on the left hand side of a sequent (§3.7).

T P i p , A T, (p h i p , A

A

This is translated to the internal form:
def UNLESSJLef t :: ’

RULE [SEQ,a, A] [Neg([NSEQ,T, 6]) , [SEQ.c.efl] if
append T [[UNLESS,^, i p D a &£

appendAssumption ip A b &:
appendAssumption ip V c

appendAssumptions ip A d

I PROP [2 .UNLESS, le f t] i i i p , p '] , NODIV, LHS (E (Formula, [UNLESS ,<p , i p]))]
I META •••

The negated judgement T P i p , A '* is labelled by enclosing it with ‘Neg(--0’. This is
enough to distinguish it from the positive judgements when constructing a derivation.

7.5. DEFINING RULES 211

7.5.5 Side-conditions

Side-conditions are sometimes required to make special syntactic constraints on the

applicability of a rule. A side condition is written to the right of the horizontal bar

of a rule. The hypersequent rules shown in figure §3.28 provide an example of a

side-condition
[y > ,n y > ,n - A ; S T
---------------------------- : hyper (a<p) E E ' ; S 5 - B O X

[□(^,r h A; S]
The parentheses are required around complex terms. A side-condition is translated

to a predicate of the appropriate arity in the module side. The translation for the

example shown is “Qhyper/3 [B0X,</?] £ Complex terms are replaced by their

corresponding C I F expressions.

212 CHAPTER 7. INSIDE THE ENVIRONMENT

7.6 H euristics

The heuristic language must be introduced before discussing the way in which
derivations of judgements are constructed. The heuristic language guides the selection
of rules in the proof procedure by breaking the derivation into distinct regions.

Figure 7.8: Derivation Tree

In the figure above, the proof is broken into horizontal regions. The structure of
the path shown through the derivation is specified by the heuristic. The horizontal
regions correspond to s e g m e n t s of the heuristic.
There are three different types of segment: eager ‘[•••]’, lazy and once
‘(•'O’- An eager segment grows to be as large as possible, whereas lazy segments
grow only when necessary. A segment of type ‘once’ produces a region containing a
single application of a rule. Each segment contains rule specifiers that select some of
the rules in the system. The selected rules are used to grow the segment.
Figure 7.9 gives the syntax of heuristics. The operations on R u l e - s p e c i f i e r s are:
(intersection), (union), (difference). The operator stands for all currently
selectable rules. Integers are used to select rules with a particular degree of branching,
and round brackets can be used to construct complex selections.

7.6.1 Exam ple heuristics

<left,right>[BASIC]
<l&(left.right),left,right>[BASIC]
{d=20,(not,and)=3><left,right>[BASIC]

7.6. HEURISTICS 213

Heuristic ::= { Global-constraint } { Segment } +

Segment ::= < Rule-specifiers >
| (Rule-specifiers)
| [Rule-specifiers]

Rule-specifiers ::=

Global-constraint

Condition

Rule-subname
integer
*

C Rule-specifiers)
- Rule-specifiers
Rule-specifiers & Rule-specifiers
Rule-specifiers , Rule-specifiers
Rule-specifiers - Rule-specifiers

:= { Condition { , Condition } * }

:= d = integer
| b = integer
| Rule-specifiers = integer

Figure 7.9: BNF for heuristics

E x p l a n a t i o n

In the first example, the eager segment ‘ [BASIC] ’ forces the end of every branch to
be an application of a b a s i c rule. Other rules used on the branch derive from the
lazy segment ‘<left ,right>\ The growth of a proof using this heuristic is governed
by the test-generate cycle which is produced by the interaction of the lazy and eager
segments. The lazy first segment is subordinate to the eager second segment.
The second • example is similar to the first except that amongst rules with the names
l e f t and r i g h t , those with a single sub-goal are considered first. This reduces the
branching in the proof. It is worth remarking that a rule is only considered once in
any single use of a segment.
The third example is again similar to the first, except that it uses a global constraint,
containing counters to limit the resources used. Proofs are restricted to a depth
of 20 inferences (d=20), and the number of rules concerned with and and not is
limited to a maximum of 3 in each branch. The number of rules not possessing the
subformula property can be restricted by setting the b counter. Global constraints
are useful for analysing wayward rule sets.
Figure 3.6 on page 79 illustrates some modal heuristics. The heuristics used for the
restart example of §2.8.5 on page 55 provide a good illustration of an initial ‘once‘
region for the s t a r t rule:

214 CHAPTER 7. INSIDE THE ENVIRONMENT

(start)<left,right,restart>[BASIC]

7.6.2 Expansion of a heuristic

Heuristics must be expanded, using ExpandHeuristic/3, before they are suitable for
use in constructing derivations. The process of expansion converts the contents of
each segment in the heuristic to the ordered list of rules that the segment designates.

def ExpandHeuristic ::
paths logic paths’ if

RuleNamesOf logic possibleRules &
ExpandHeuristic ’ paths possibleRules paths’
UnparseExpandedHeuristic paths’ toks []

where {
/ / Expand each try list into a list of rules that satisfy the conditions
def ExpandHeuristic ' ::

□ possRules []
I GLOBAL (info) : others possRules GLOBAL (info 0 : others’ i f

ExpandGlobal info possRules info' &&:
ExpandHeuristic’ others possRules others’

1 effort(ruleDesc) : others possRules effortirules) : others’ if
ExpandRuleDesc ruleDesc possRules rules
CheckExpansion rules &
ExpandHeuristic’ others possRules others’

A check is made to remind the user if the expansion of a segment yields no matching
rules.

def CheckExpansion ::
□ i f

Error ["One of the segments is empty"]
I rules

}

Expansion of counters in the global declaration is performed by ExpandGlobal/3

def ExpandGlobal ::
[] possRules □

I Counter (.desc,n) :rest possRules Counter (rules, n) : rest’ iff
ExpandRuleDesc desc possRules rules &
CheckExpansion rules &c&c
ExpandGlobal rest possRules rest’

I other: rest possRules other: rest’ if
ExpandGlobal rest possRules rest’

t

The abstract syntax of the rule specification is used to construct an ordered list of
matching rules as follows:

7.6. HEURISTICS 215

def ExpandRuleDesc ::
A l l possible possible

I Pattern(p) possible matching i f
i te r possible CmatchesPattern/3 [p] matching rejected

I RuleName(r) possible matching if
i te r possible Omember/3 [r] matching rejected

I SubGoals(n) possible matching if
i te r possible Qmember/3 [n] matching rejected

I NOT(p) possible negated if
ExpandRuleDesc p possible matching Si
f i l t e r matching possible negated

I LESS(pl,p2) possible negated if
ExpandRuleDesc pi possible matching Si
ExpandRuleDesc p2 possible matching’ Si
f i l t e r matching’ matching negated / / negated = matching — matching'

I OR(pl,p2) possible disjunct if
ExpandRuleDesc pi possible matching Si
ExpandRuleDesc p2 possible matching’ Si
append matching matching’ disjunct’ Si
uniq disjunct’ disjunct

I AND(pl,p2) possible conjunct i f
ExpandRuleDesc pi possible matching Si
ExpandRuleDesc p2 matching conjunct

matchesPattern/3 and member/3 are the predicates that are given to iter/5.
def matchesPattern ::

r types p if
member t types Si
re p t

def member ::
r types p if

member p types

iter/5 partitions the list of rules according to the success or failure of its predicate.
de f ite r ::

□ pred args [] □
I rule: rules pred args rule: sat nsat i f

RuleName rule types Si
META pred rule: types: args Si
i te r rules pred args sat nsat

I rule: rules pred args sat rule: nsat if
i te r rules pred args sat nsat

7.6.2.1 Example

The heuristic <left,right>[BASIC], used in the context of the Intuitionistic
Propositional system, is first parsed to give a list of segments from its underlying
t o k e n s .

216 CHAPTER 7. INSIDE THE ENVIRONMENT

ParseH euristic [L A Z Y ([[le ft] , [r ig h t]]) ,EAGER([[BASIC]])] t o k e n s []

The segments are next expanded according to the above rules giving the following:
ExpandHeuristic [LAZY([[le f t] , [right]]),EAG ER([[BASIC]])] l o g i c

[
LAZY([in/prop/AND_left/3, in/prop/ORJ.eft/3,

in/prop/ANDj:ight/3, in/prop/0R_right/3, . . .]) ,
BASIC([in/prop/BASIC/3])

]

7.7. C O N ST R U C T IN G D ERIV A TIO N S 217

7.7 C onstructing Derivations

This section describes the procedure used to construct derivations with heuristics.
The procedure uses the heuristic to constrain branches of the derivation tree,
dividing them into layers which correspond with the segments of the heuristic. This
correspondence means that a region contains only applications of rules allowed by
the heuristic segment. Branches of the derivation are also forced by the derivation
procedure to be irredundant. A redundant branch is one containing a judgement that
can be subsumed by a judgement below it in the derivation. Subsumption means
that there is some substitution, which if it is applied to the lower judgement, makes
it the same as the higher judgement. The predicate SawGoal/5 ensures that branches
are irredundant.
The interface between the prover module and the remainder of the environment is
through the predicate HeuristicSatisfiesJudgement/5 which takes five parameters as
follows:

H e u r is t ic S a t is f iesJudgement heuristic judgement premises proof language

The initial judgement is treated as the only leaf in an existing proof; the predicate
extendTip/7 takes this leaf and attempts to find a derivation that satisfies the
heuristic. The derivation constructed has the form:

derivation ::= P rem ise (premisej
| rule ̂ conclusion, antecedents^

where p r e m i s e and c o n c l u s i o n are judgements, and a n t e c e d e n t s are derivations
corresponding to the rule’s antecedents.

def HeuristicSatisfiesJudgem ent ::
heuristic judgement premises proof language i f

In it ia lly S e e n seen & / / initialise seen to []
In it ia lT ra c e trace heuristic heuristic’
extendTip judgement heuristic’ [] seen premises proof language

The predicate below initialises the t r a c e with counters which record the resources
available for use in the branch. The predicate select/4 either extracts the user’s
definition or sets a default value.

def In.it ia lT race ::
[ruleidepth: baddies: counters')] heuristic heuristic’ i f

se lect GLOBAL {info) GLOBAL ([]) heuristic heuristic’
se lect Depth (.depth) Depth(40) info info’ &
se lect Baddies (.baddies) Baddies (10) info’ counters & /

where {

218 CHAPTER 7. INSIDE THE ENVIRONMENT

de f se lect ::
pattern default in out i f

remove pattern in out & /
I default default list list
I

}

The predicate extendTip/7 extends a leaf of the derivation using the heuristic as a
guide. This terminates if the judgement is subsumed by a premise, but in most
cases, no premises are provided initially. In this case, the first segment of the
heuristic is used to extend the leaf. If the goal is negated, then the success of the
derivation is inverted. No proof is recorded for negative judgements. The inversion is
done by n o t i . e . negation by failure.

def extendTip ::
judgement heuristic trace seen p:ps Premise(judgement, []) language if

member premise p:ps &£.
EqualityOf language premise judgement

I Neg(judgement) hungerirules): heuristic trace seen premises
NegatedCjudgement, []) language if

not extendUsingBlock hunger rules heuristic trace
judgement seen premises proof language

I judgement: args hunger(rules) '.heuristic trace seen premises
proof language i f

extendUsingBlock hunger rules heuristic trace
judgement: args seen premises proof language

What happens next depends on the “hunger” of the segment. There are three cases
to consider according to the type of hunger. The predicate extendOnce/7 is used to
apply a single rule to the leaf:

ONCE An occurrence of a rule in this segment must appear at this point in the
proof. Use extendOnce to insert the rule. If successful, recursively extend each
of the subgoals. If no extension is possible then f a i l .

EAGER For an eager -segment, try to extend the current leaf. If this is successful,
then use the same segment to extend subsequent leaves. Otherwise, continue
with the next segment.

LAZY Defer the present lazy segment until no extension of the present leaf using the
next and subsequent segments is possible.

def extendUsingSegment ::
ONCE rules heuristic trace goal seen premises rule(goal,proofs) language i f

extendOnce rules trace goal rule trace’ subGoals {goal,seen)
SawGoal subGoals goal seen seen* language &
/ / carry on with the rest of the heuristic

7.7. CONSTRUCTING DERIVATIONS 219

extendConj subGoals heuristic trace’ seen’ premises proofs language
I EAGER rules heuristic trace goal seen premises rule (.goal, proofs) language if

extendOnce rules trace goal rule trace’ subGoals (goal, seen)
SawGoal subGoals goal seen seen’ language &
/ / carry on being eager
extendConj subGoals EkGEK(rules) ’.heuristic trace’ seen’ premises proofs language

I EAGER rules heuristic trace goal seen premises proof language if
extendTip goal heuristic trace seen premises proof language

I LAZY rules hunger (rules’) ’.heuristic trace goal seen premises proof language if
extendUsingSegment hunger rules’ heuristic trace goal seen premises proof language

I LAZY rules heuristic trace goal seen premises rule(goal, proofs) language if
extendOnce rules trace goal rule trace’ subGoals (goal,seen) &
SawGoal subGoals goal seen seen’ language &£
/ / carry on being lazy once more
extendConj subGoals LAZY (rules) ’.heuristic trace’ seen’ premises proofs language

Extend a conjunction of subgoals by extending them separately using the same
heuristic. Adjust the trace to record the number of conjuncts remaining and the
depth of the search; this is done for control and diagnostic purposes.

def extendConj ::
/ / conjunction is satisfied
[] heuristic trace seen premises [] language i f /

I goal:goals heuristic trace seen premises proof:proof’ language i f
extendTip goal heuristic trace seen premises proof language Sz
changeTrace trace trace’ ic
extendConj goals heuristic trace’ seen premises proof’ language

where {
de f changeTrace : :

rule(depth, index) '.trace rule(depth, index) '.trace if
succNumber index’ index

}

Perform a one-step extension of the proof. Find all possible extensions of the goal
by enumerating them using backtracking. The successful application of a rule is
conditional on satisfying the global conditions. Global conditions are represented in
each part of the trace by a vector of counters. The first two elements correspond to
d and b, while any remaining elements are indexed by the counters they represent.
The trace takes the form of a list

r u le C d e p t h : b a d n e s s : c o u n t e r s) : r u l e ’ G ••):•••

where the r u l e is the current rule application and r u l e ’ is the previous one, e t c .

def extendOnce ::
rules trace goal rule trace’ subGoals info i f

member rule rules &
Ru leD e fin it ion rule goal subGoals &c
adjustTrace trace rule trace’

220 C H A P T E R 7. IN SID E T H E E N V IR O N M E N T

where {
def GoodRule ::

rule if
RuleProperties rule properties
member NODIV properties &c
member SFP properties &c /

%
def adjustTrace ::

rule(depth:bad: counters) : trace rule
r(depth’: bad’ '.counters’) :rule(depth: bad: counters) '.trace if

prevNumber depth "d" depth’ & // limit length of a branch
adjustBadness bad rule bad’ & & // limit number of bad rules on a branch
adjustCounters counters rule counters’

I
def adjustBadness ::

bad rule bad if
GoodRule rule

I bad rule bad’ if
prevNumber bad "b" bad’

f

def adjustCounters ::
□ rule []

I Counter (ru/es, n) : counters rule Counter (rules, n7) : counters’ if
member rule rules & &
prevNumber n "c" n’
adjustCounters counters rule counters’

I other: counters rule other: counters’ if
adjustCounters counters rule counters’

%
}

Perform loop checking. A goal has been seen before if it occurs on the present
path. Goals are compared using the equality predicate defined by the language of

the system.

def SawGoal ::
[] goal seen goal: seen language

I subgoal: subgoals goal seen seen’ language if
not HaveSeen subgoal: subgoals goal: seen language

where {
def HaveSeen ::

subgoal: rest seen language if
SeenGoal subgoal seen language

I subgoal'.xest seen language if
HaveSeen rest seen language

def SeenGoal ::
goal previous: rest language if

EqualityOf language goal previous
I goal previous: rest language if

SeenGoal goal rest language

}

7.7. C O N ST R U C T IN G D ER IV A TIO N S 221

R em a rk s

The procedure as a whole is effective, as strategies are easily interpreted. Further,

using the internal form of rules, it is possible to decide quickly whether a rule is

applicable. In this way, the interpretation overheads associated with the use of rules

are kept down.

A number of optimisations were tried in an attempt to improve the effectiveness

of the search procedure. In particular, failed judgements were memorised and used

to prevent replicated searching, but the overheads of storing and checking these

judgements outweighed the benefits.

Chapter 8

Conclusions &; Future Work

The framework described in this thesis differs from other systems such as Edinburgh’s
Logical Framework, which is based on the propositions-as-types paradigm and the

typed lambda calculus. Our motivation was less theoretical, and, as our early ideas

were formed in the context of the g e n e s i s project1, slanted towards the development

of a usable interface.

The linguistic framework has nevertheless proved to be capable of supporting a wide

variety of logical systems in the all-introduction style. Although such presentations

can reasonably be expected to support logics with truth-functional connectives,

they are surprisingly versatile at supporting non-truth functional systems such as

Intuitionistic logic, Modal logics, and so on. However, it should be noted that not
all systems can be presented in this way (e.g. when arbitrary axioms are present),

and some of the presentations are more natural than others.

There are still many avenues left open for exploration:

• Quantification is still relatively poorly supported by the environment, further

work is required to provide interactive proof construction (rather than just a

strategy driven one). An idea here is to explore the close relationship between

sequent-style presentations and tableaux ones. Tableaux presentations are useful

as they tend to minimise the clutter related with large sequents. But, it is

not clear how to relate all forms of rules that are the possible in the current

framework into a suitable generalisation of a tableau setting.

Some of the basic graphical user interface structures needed to support the use

of tableaux have already been devised, and a prototype tableau widget has

been developed. But more work is required.

^ h e author was employed as a research assistant on the GENESIS project, ESPRIT 1222(1041),
from April 1986 to July 1989.

222

223

• The formulation of new systems continues to provide insights into the

development of the environment. In particular, some are discussed in Chapter

3, namely modal patterns and negative judgements. These have proved very

useful. A pragmatic approach is adopted to deal with the introduction of new

facilities into the description of language and rules of a system. The objective

being to minimise the use of side-conditions. Several research students in the

department have used to environment to clarify their ideas about logics of

Commitment and Dialogue, e.g. [FRS89].

Bibliography

[Abr87] S. Abramsky. Domain theory in logical form. In Symposium on Logic in

Computer Science, pages 47-53. IEEE Computer Society, 1987.

[Avr87] A. Avron. Simple consequence relations. Technical Report ECS-LFCS-87-30,
LFCS, Department of Computer Science, University of Edinburgh, 1987.

[Avr88] A. Avron. Foundations and proof theory of 3-valued logics. Technical

report, LFCS, Department of Computer Science, University of Edinburgh,

April 1988.

[C+86] R. L. Constable et al. Implementing Mathematics with the Nuprl Proof

Development System. Prentice Hall, 1986.

[Car87] W. A. Carnielli. Systematization of finite many-valued logics through the

method of tableaux. Journal of Symbolic Logic, 52(2):473-493, 1987.

[CH85] T. Coquand and G. Huet. Constructions: A higher order proof system for

mechanizing mathematics. In Proceedings of EUROCAL ’85, Linz, Austria,

1985.

[Che86] J. H. Cheng. A Logic of Partial Functions. PhD thesis, Department of

Computing, University of Manchester, 1986.

[CKPR73] A. Colmerauer, H. Kanoui, R. Pasero, and P. Roussel. Un systeme

de comunication homme-machine en francais. Technical report, Groupe

[Com85]

Intelligence Artificielle, Universite d’Aix Marseille, Luminy, 1973.

Apple Computer. Inside Macintosh. Volumes I, II and III. Addison Wesley,

1985.

[Cur77] H. B. Curry. Foundations of Mathematical Logic. Dover Edition, 1977.

[dB80] N. de Bruijn. A survey of the project AUTOMATH. In Seldin and

Hindley [SH80], pages 579-606.

224

B IB L IO G R A P H Y 225

[DM82]

[DP60]

[DP89]

[dQ88]

[Dum77]

[Fit83]

[Fre67]

[FRS89]

[Gab89]

[Gab91]

[Gal87]

[Gen69]

L. Damas and R. Milner. Principle type-schemes for functional programs.

In POPL, pages 207-212, 1982.

M. Davis and H. Putnam. A computing procedure for quantification

theory. Journal of the ACM, 7:201-215, March 1960.

M. Dawson and J.-S. Pendry. u;-prolog reference manual. Technical report,

Imperial College, University of London, 1989.

R. J. G. B. de Querioz. A proof-theoretic account of programming and

the role of reduction rules. Dialectica, 42(4), 1988.

M. Dummett. Elements of Intuitionism. Clarendon Press, Oxford, 1977.

M. Fitting. Proof Methods for Modal and Intuitionistic Logics. D. Reidel

Publishing Company, 1983.

G. Frege. Begriffsschrift, a formula language, modeled upon that of

arithmetic, for pure thought. In van Heijenoort [vH67], pages 1-82.

H. Fuks, M. Ryan, and M. Sadler. Outline of a commitment logic for legal
reasoning. In Proc 3rd International Conference on Logics, Informatics and

Law; Florence, November 1989.

D. M. Gabbay. LDS - labelled deductive systems. Technical report,

Department of Computing, Imperial College, November 1989.

D. M. Gabbay. Elements of algorithmic proof. In Handbook of Logic in

Computer Science, volume 1. Oxford University Press, 1991.

J. H. Gallier. Logic for Computer Science: foundations of automatic

theorem proving. John Wiley & Sons, 1987.

G. Gentzen. Investigations into logical deduction. In M. E. Szabo, editor,
The Collected Papers of Gerhard Gentzen, chapter 3, pages 68-129.

North-Holland Publishing Company, 1969.

[GMW79] M. J. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: a

mechanised logic of computation. Springer-Verlag, 1979.

[GN87] M. Genesereth and N. Nilsson. Logical Foundations of Artifical Intelligence.

Morgan Kaufmann Publishers, Inc, 1987.

[Gol82] R. Goldblatt. Axiomatising the Logic of Computer Programming, volume

130 of Lecture Notes in Computer Science. Springer-Verlag, 1982.

226 B IB L IO G R A P H Y

[Gol87]

[GSN89]

[Haa78]

[Har85]

[HC84]

[Hil67]

[Hoa78]

[Hoa81]

[Hoa89]

[Ho\v80]

[Jon86]

[Jut77]

[Kle52]

[KLM90]

[Kow74]

R. Goldblatt. Logics of Time and Computation. CLSI Lecture Notes

Number 7, 1987.

J. Gettys, R. W. Scheifler, and R. Newman. Xlib - C language

X interface. Technical report, Massachusetts Institute of Technology,
Cambridge, Massachusetts, 1989.

S. Haack. Philosophy of Logics. Cambridge University Press, 1978.

W. Harwood. The Genesis project: Technical annex. Technical report,

Imperial Software Technology Ltd., 1985.

G. Hughes and M. Creswell. A Companion to Modal Logic. Methuen, 1984.

D. Hilbert. Foundations of mathematics. In van Heijenoort [vH67], pages

464-479.

C. A. R. Hoare. Communicating sequential processes. Communications of

the A.C.M ., 21(8):666—77, 1978.

C. A. R. Hoare. A calculus of total correctness for communicating

processes. Science of Computer Programming, 1:49-72, 1981.

C. A. R. Hoare. An axiomatic basis for computer programming. In C. B.
Jones, editor, Essays in Computing Science. Prentice Hall International,

1989.

W. Howard. The formulae-as-types notion of construction. In Seldin and

Hindley [SH80], pages 479-490.

C. B. Jones. Systematic software development using VDM. Prentice-Hall,

1986.

L. Jutting. Checking Landau’s Grundlagen in the AUTOMATH system.

PhD thesis, Technische Hogeschool, Eindhoven, 1977.

S. C. Kleene. Introduction to Metamathematics. North-Holland Publishing

Company, 1952.

S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic reasoning,
preferential models and cumulative logics. Artifical Intelligence, 44:167-207,

1990.

R. Kowalski. Predicate logic as a programming language. In IFIP, pages

569-574, 1974.

B IB L IO G R A P H Y 227

[Kri59]

[Mar72]

[MAS89]

[Mil89]

[Pau88]

[Pau89]

[Pet82]

[Pet89]

[PHV60]

[Pot83]

[Pra65]

[Pra80]

[Rob65]

[Sad84]

S. Kripke. A completeness theorem in modal logic. Journal of Symbolic

Logic, 24:1-14, 1959.

P. Martin-Lof. An intuitionistic theory of types: predicative part. In H. E.
Rose and J. C. Shepherdson, editors, Logic Colloquium ’73. North-Holland,

1972.

J. McCormack, P. Asente, and R. R. Swick. X toolkit intrinsics. Technical

report, Massachusetts Institute of Technology, Cambridge, Massachusetts,

1989.

R. Milner. Communication and Concurrency. Prentice Hall International,

1989.

L. C. Paulson. Logic and Computation - Interactive Proof with Cambridge

LCF. Cambridge University Press, 1988.

L. C. Paulson. The foundation of a generic theorem prover. Journal of

Automated Reasoning, 5:363-397, 1989.

K. Petersson. A programming system for type theory. Technical report,
Programming Methodology Group, Department of Computing Sciences,

University of Goteborg, Chalmers University of Technology, Sweden, 1982.

C. D. Peterson. Athena widget set - C language reference. Technical
report, Massachusetts Institute of Technology, Cambridge, Massachusetts,

1989.

D. Prawitz, Hakan, and Vogera. A mechanical proof procedure and its

realisation on a computer. Journal of the ACM , 7.T02-28, 1960.

G Pottinger. Uniform, cut-free presentations of T, S4 and S5 (abstract).

Journal of Symbolic Logic, 48, 1983.

D. Prawitz. Natural Deduction: A Proof-Theoretical Study. Almqvist &

Wiksell, 1965.

V. Pratt. Applications of modal logic to programming. Studia Logica,

39:257-274, 1980.

J. A. Robinson. A machine oriented logic based on the resolution principle.

Journal of the ACM , 12(1):23—41, January 1965.

M. R. Sadler. Mapping out specification. Technical report, Imperial

College, London, 1984.

228 B IB L IO G R A P H Y

[Sco82]

[SH80]

[Tur84]

[vH67]

[W+84]

[Wra87]

D. Scott. Domains for denotational semantics. In ICALP, Lecture Notes

in Computer Science 140, pages 577-613. Springer-Verlag, 1982.

J. Seldin and J. Hindley, editors. To H. B. Curry: Essays on Combinatory

Logic, Lambda Calculus and Formalism. Academic Press, 1980.

R. Turner. Logics for Artifical Intelligence. Ellis Horwood Ltd, 1984.

J. van Heijenoort, editor. From Frege to Godel: A Source Book in

Mathematical Logic. 1879-1931. Harvard University Press, 1967.

L. Wos et al. Automated reasoning: introduction and applications.

Prentice-Hall, 1984.

M. Wray. The genesis interface. Technical report, Genesis Project, 1987.

