
L E A R N I N G W I T H D E L A Y E D R E I N F O R C E M E N T
IN A N E X P L O R A T O R Y

P R O B A B I L I S T I C L O G IC N E U R A L N E T W O R K

A th es is su b m itted fo r th e d eg ree o f
D octor o f P h ilo so p h y

a n d the
D ip lo m a o f Im p e r ia l C o llege

Catherine E. Myers

D ep a r tm e n t o f E lec tr ica l E n g in eerin g
Im p e r ia l C o lleg e o f Sc ien ce , T ech n o lo g y a n d M ed ic in e

T h e U niversity o f L ondon

September 1990

2

ABSTRACT

This thesis is concerned with neural network learning systems which:

• learn from the results of their actions, without a distinct training phase

(exploratory learning)

• require only global evaluations of success (reinforcement learning)

• can cope with reinforcements which arrive only after some delay (delay learn

ing)

First, the thesis develops a node model based on Aleksander’s Probabilistic Logic

(PLN) node, and which can be used for exploratory reinforcement learning. Like

the PLN, it has a training algorithm which requires only a global evaluation of the

success of a network output, rather than explicit provision of what the optimal action

would have been. Unlike the simple PLN, it allows the training algorithm to be

incremental. Therefore behaviours may be shaped gradually and on-line, and

separate train and run phases are not required.

Next, Attention-Driven Buffering (ADB) is introduced as a means for perform

ing delay learning. ADB systems can learn to predict results which occur over inde

finitely long delays while maintaining a small number of past states buffered locally

at the nodes. The principal idea is that states should be allocated buffer space based

not only on recency but also on unpredictability. Unpredictable inputs are assigned

a high "Attention", and this increases their ability to compete for buffer space. An

ADB system applied to a state traversal task can learn the results of actions in a

given state; it can also learn not to enter states with immediate positive reinforce

ment, but which lead inevitably to negative reinforcement.

Finally, an ADB system has been constructed to perform delay learning tasks

resembling those to which an animal such as the octopus can be trained. The sys

3

tem, OVSIM (for Octopus Vulgaris SIMulation), is shown not only to exhibit similar

capabilities, but to share several features of its learning processes with the octopus.

Further, when various functions are damaged, the changes in behaviour or learning

ability are comparable to those exhibited by an octopus with removal of various

brain regions. The ADB mechanism, it is argued, therefore takes on some credibil

ity as a hypothesis of how brains accomplish delay learning. This hypothesis is

strengthened by current theories that the mammalian hippocampus and amygdala

perform buffering and novelty-detection, which an ADB mechanism would require.

ERRATA (j^)

Added after Examination 30.11.90

page 24: The second and third paragraphs should be written as:

There are numerous methods for training these nodes to perform desired

input-output mappings. Many derive from the Hebbian formalism which is another

simplification of observed bviological behaviour: "When an axon of cell A is near

enough to excite a cell B and repeatedly or persistently takes part in firing it, some

growth process or metabolic change takes place in one or both cells such that A ’s

efficiency as one of the cells firing B is increased" [Heb49, p.50]. Formally, if ypj is

the output of node j in some context p, and if wji is the weight to it from node i,

then:

^pwji a y^yPj (2.3)
This rule strengthens weights between nodes that are frequently coactive. It

does not encourage nodes to perform some desired mapping, as it makes no mention

of a desired mapping — only of coactivity between nodes.

page 33: The comparison between R A M net capacity and weighted-node net capacity

is made by Wong and Sherrington in [WoS89].

page 183: The bibliography should contain the following reference:

[RGV88] Rosen, B; Goodwin, J.; Vidal, J. (1988) Learning by state recurrence

detection. In, Neural Information Processing Systems (ed. D. Anderson).

American Institute of Physics, New York, p.. 642-651.

4

ACKNOWLEDGEMENTS

I would like to express my deepest thanks to everyone who has given me support

and advice throughout the completion of this thesis. In particular, my supervisor

Prof. Igor Aleksander has been unfailingly helpful, encouraging and insightful. I am

also very grateful to everyone who has been associated with the Neural Systems

Engineering Group at Imperial for their friendship and discussions. Finally, thanks

and love to the family and friends who all helped in so many ways, most of all by

their unflagging encouragement.

This research was funded by the National Science Foundation (USA) under an NSF

Graduate Fellowship.

5

TABLE OF CONTENTS

ABSTRACT.. 2

ACKNOWLEDGEMENTS... 4

TABLE OF CONTENTS .. 5

TABLE OF FIGURES... 9

TABLE OF TABLES .. 10

LIST OF SYMBOLS .. 11

CHAPTER I. Introduction ... 14

1.1. Problem Description ... 14

1.2. Statement of Thesis Goal ... 17

1.3. Applicability of Neural Networks ... 17

1.4. Overview of Solution and Results... 19

1.5. Organisation of the Thesis ... 20

CHAPTER II. Probabilistic Logic Nodes .. 22

2.1. Introduction .. 22

2.2. Weighted-Sum-and-Threshold Models ... 22

2.3. RAM-based Models ... 29

2.4. The Probabilistic Logic Node (PLN) .. 33

2.5. The Multivalued PLN ... 40

2.6. The Design of MPLNs ... 47

2.6.1. 1 - The number of inputs to a node ... 47

2.6.2. <E> - The output probability function ... 49

2.6.3. co — The cardinality of the stored value alphabet............................ 50

2.6.4. MPLN Parameters — Conclusions... 52

2.7. Summary of Chapter 2 53

CHAPTER HI. Related Learning Systems .. 55

3.1. PI: Exploratory Learning .. 55

3.1.1. Learning by trial and error ... 55

3.1.2. Learning by doing ... 57

3.1.3. Evaluation of exploratory learning techniques................................. 59

3.2. P2: Reinforcement Learning ... 60

3.2.1. Learning with global reinforcment signals.. 60

3.2.2. Constructing the desired output pattern .. 65

3.2.3. Evaluation of reinforcement learning techniques 66

3.3. P3: Delay Learning ... 67

3.3.1. Mapping onto a pattern association task .. 67

3.3.2. History maintainance .. 69

3.3.2.1. History buffers .. 69

3.3.2.2. Eligibility traces... 70

3.3.3. Prediction-driven learning .. 75

3.4. Summary of Chapter 3 and Conclusions .. 81

CHAPTER IV. A Model to Satisfy P3 - Attention-Driven Buffering 83

4.1. Introduction .. 83

4.2. The ADB Model .. 85

4.3. Implementation Issues ... 90

4.4. Analysis of the ADB System: Delay and Buffer Size 93

4.5. Constructing MPLNs for the ADB System .. 97

4.6. Construction of Network Topology.. 100

4.7. The Food-finding Creature ... 103

4.8. Conclusions and Summary of Chapter 4 ... 109

6

7

CHAPTER V. A Model of the Visual Attack Learning System of Octopus
vulgaris .. 113

5.1. Introduction .. 113

5.2. The Visual Attack Learning System of Octopus v u lg a r is 115

5.2.1. Trainable discriminations ... 116

5.2.2. The functional organisation of the visual learning system 118

5.3. Details of OVSIM — The Octopus simulation 121

5.3.1. Stimuli... 122

5.3.2. Classifying cells in the optic lobe .. 125

5.3.3. Memory cells in the optic lobe .. 126

5.3.4. Output generation and assignment of attention................................ 127

5.3.5. Attack and Reinforcement.. 129

5.3.6. The Unspecific Effect parameter... 130

5.3.7. Simplifications in OVSIM .. 131

5.4. Trials with the simulated Octopus ... 132

5.4.1. Discrimination tasks ... 133

5.4.2. Fall in delay to attack.. 134

5.4.3. Relearning ... 135

5.4.4. Transfer of discrimination learning .. 137

5.4.5. Multiple discrimination tasks ... 139

5.5. Damage Experiments with Octopus and OVSIM............................... 142

5.5.1. Damage to the optic lobe .. 143

5.5.2. The Unspecific Effect and vertical lobe damage 144

5.5.3. Simulating vertical lobe ablation .. 147

5.5.4. Overcoming loss of UE- and the ADB buffer 149

5.6. Conclusions and Summary of Chapter 5 .. 151

5.6.1. Potential improvements to OVSIM .. 152

5.6.2. Maldonado’s model of O cto p u s .. 154

5.6.3. Predictions made by the OVSIM model .. 157

CHAPTER VI. Summary and Appraisal .. 160

6.1. Summary of the Thesis Contributions .. 160

6.2. Appraisal of Physiological Relevance .. 163

6.2.1. Objectives .. 163

6.2.2. Methods ... 165

6.2.3. Mechanisms .. 169

6.4. Future Work ... 170

REFERENCES... 173

APPENDICES .. 189

Appendix A. Inputs and state transitions for Section 4 .7 189

Appendix B. Set of stimulus patterns for OVSIM 190

Appendix C. Sample attack sequences for OVSIM..................................... 191

Appendix D. Input patterns for OVSIM Classifying Cells 192

Appendix E. "Easier" and "harder" OVSIM attack sequences.................... 194

Appendix F. Published papers .. 195

8

9

LIST OF FIGURES

1.1 Systems considered in this thesis .. 15

2.1 Weighted-sum-and-threshold node ... 23

2.2 A typical perceptron... 26

2.3 A logical or RAM-based node model .. 30

2.4 A probabilistic logic node... 34

3.1 Barto and Sutton’s food-finding creature ... 64

3.2 Multi-layered A^_p network .. 65

3.3 Learning in Barto and Sutton’s classical conditioning system.............. 72

3.4 The Associative Search Network .. 77

4.1 Interaction of environment and learning automata 86

4.2 A learning automaton based on associative network............................ 86

4.3 Training set for example of Section 4.2 .. 89

4.4 Results of training on data of Figure 4.3 ... 90

4.5 ADB system with external or internal buffers 92

4.6 Influence of buffer size on ADB learning ... 97

4.7 Probability of accept as function of initialisation value 100

4.8 Passes through training set required as function of initialisation
value ... 10 1

4.9 The system implementing the food-finding creature 105

4.10 Example solutions found by food-finding creature 107

5.1 Visual attack learning system in Octopus .. 119

5.2 The OVSIM system.. 123

5.3 OVSIM output-generating and attention-assigning functions 128

5.4 Learning discrimination tasks .. 134

5.5 Fall in delay to attack a positive stimulus ... 135

5.6 Learning with interspersed blocks of trials .. 136

5.7 Transfer of learning ... 138

5.8 Multiple discrimination learning in Octopus ... 139

5.9 Multiple discrimination learning in OVSIM ... 140

5.10 Effect of U E +, UE- on delay to attack .. 146

5.11 Rejection learning in damaged OVSIM, continuous and separated trials
 150

5.12 Maldonado’s model of Octopus visual attack learning system 155

LIST OF TABLES

5.1 Time to converge and responses in OVSIM: normal vs. damaged...... 143

5.2 Responses in OVSIMs before and after damage to MCs 144

10

11

*xy

a

a'

attrti

B

P

P + , P"

pj

A PwJi

E

E p

n w)

/

<D

FREQUENTLY-USED SYMBOLS

1 BFor pattern x = { x x • • • xB) and y= • • • yB), —2 (* = *)
B i-1

Maximum assignable attention for items in ADB buffer

Maximum number of cycles an element might stay in ADB buffer,

The current attention of the ith item in the ADB buffer, O^attn^l

(or simply attn for a 1 -element buffer)

Number of bits in the external input

The amount by which an MPLN stored value is incremented on rein

forcement; p + on positive reinforcement or p ” on negative

The average reinforcement to an MPLN stored value associated with

a psitive (P+) or negative (P“) element in the ADB buffer

Delay between action and arrival of reinforcement

Desired or target output of node j to pattern p

Change to weight after presentation of pattern p

The amount by which attention of a buffered item decays with each

time step

Total error of the network over all training patterns

Error of the network in response to pattern p

Number of functions computable by an I-level pyramid of /-input

PLNs

Attention-generating function in ADB: /(x) = [0,a]

Output function for PLN: $(/)€{0,l}

Output probability function for PLNs: Q p(z) € [0,1]

The threshold function of node j

Number of inputs to a node

Index of a node

Number of bits to encode attention parameter in ADB buffers

In a pRAM, the influence of node i firing r time steps ago on the

current activity at node j

Number of levels of a network (typically a pyramid topology)

The set of training patterns; M + € M are those associated with a posi

tive reward, Af“ €M are associated with a negative reward, and |Af|,

|M +\ |Af~l are the cardinalities of these sets

The size of the buffer in a delay learning system

The number of nodes in a network

The i t h training pattern presented to the network (consists of B bits)

The predicted output of node j , under input i (In Yeung’s system,

which constructs the desired output pattern, is the probability that

node j under input i outputs a 1 ; p is the constructed desired p jf)

The number of MPLNs in the ADB learning subsystem which must

output 1 in order for the system output to be "act" or "accept the

input pattern"

Response of ADB learning system to input at time /; system output

generated by output-generator on the basis of this

Reinforcement signal, scalar to the whole network: rG{—1,0,+ 1}

In the ASE/ACE system, the internal reinforcement constructed by

the ACE and used to train the ASE

13

£

svx

svx *

SVERR j

U

U

Vi

Vu

V

<o

n

Xi or Xji

x ji

X

M

y jor yPj

y?j

The value to which MPLN stored values are initialised before train

ing

A value stored in j th PLN at address X

The value of svx at the nearest solution

A value at location ERR such that svx *

The unknown value in a PLN, where $ p(u) = 0.5; in an MPLN, the

element of ft such that <&p(vu)~0.5

An untrained pattern

The /th element of ft,

The element of ft such that 3>p(v„)~0.5

The total number of votes (i.e., "1H outputs) from OVSIM’s MCs in

response to an input pattern

The cardinality of ft

The alphabet of possible stored values in an MPLN:

ft=(v0 * * ‘ vu_i)

The /th input to node j , O ^ i ^ I —1

Trace of the past activity of input Xjf

An address to node j , X=(x0 * • • x/_j)

The cardinality of the set of possible input patterns X

Response or output of node j to pattern p

Trace of the past activity of output ypj

14

CHAPTER 1: INTRODUCTION

1.1. Problem Description

Foraging animals, computers learning to play games, and adaptive robot con

trollers actually have a great deal in common. Consider the following three exam

ples:

• An animal, exploring, comes across two unfamiliar types of mushroom, one

red and one yellow. The red is tasty and nutritious, while the yellow is tasty

but causes indigestion. The animal, after only one or two meals, learns to con

tinue eating red, but avoid yellow.

• A computer learning to play chess, without any instruction from a human pro

grammer as to strategy, concludes after several successive losses that sacrificing

a knight to take a pawn is self-defeating.

• A robot must accelerate to travel up a wedge-shaped incline, but after a few

unsuccessful attempts, adjusts its program to decelerate rapidly at the top

rather than be carried over the edge by momentum.

The most obvious similarity between these three learning systems is that all are

adaptive learning systems which interact with their environment in a mutually depen

dent way, as shown in Figure 1.1.

An implication of this is that the adaptive system must keep pace with the

environment — the animal must recognise and decide to stalk its prey before the

prey wanders off, and the computer chess-player must decide on a move before its

human opponent wanders off.

The next important similarity relating these three systems is that they learn by

reinforcement, or signals from the outside world which serve to alter the behaviour

of the system. In the case of the animal, reinforcement is taste or pain; for the

15

Figure 1.1 . The systems o f interest in this thesis are adaptive learning machines which
receive input from the environment which is dependent in some way on their own
previous outputs.

chess-player it is notification of win or loss; for the robot controller it may simply be

sensor information that a servo has gone out of bounds, or it may be more dramatic

sensory information following a crash. Each of these systems learns by trial-and-

error: an action is selected and executed, and then the reinforcement associated with

that action in the current environment is received. Learning is contingent on actions

being made: no reinforcement will ever arrive if no responses are made. This type

of learning is often termed exploratory learning, and is distinct from passive learn

ing, where the system is shown a variety of pre-selected training examples and told

how to respond to each. 1

By its nature, this reinforcement is non-specific. The chess-player is told

whether a move was a good one, but not what the optimal move would have been.

This reinforcement may be binary (win/lose) or it may be an overall estimation of

the goodness of the system response (whether the animal feels satiated or merely

less hungry after consuming something). This paradigm is often called reinforcement

learning. One alternative is supervised learning, in which the system response can

1 Lawrence Hunter goes further to suggest that passive learning is not learning at all, in the usual sense
of the word: "Learning, loosely stated, is die improvement of an organism’s ability to achieve its goals on
the basis of its experience. Clamping the input and the output of the system to a desired state is not what
is traditionally meant by experience." [Hun88]

16

be compared with a "optimal” desired response. This presupposes that there is some

meta-system available which knows the optimal responses already, and often this is

simply not true. Another alternative learning paradigm is unsupervised learning , in

which no reinforcement from the environment ever arrives, and the system is left to

classify experiences into categories in any way it sees fit. This may be how areas of

human visual cortex self-organise into line-detectors and the like, but is not

appropriate for learning how to respond to an environment.

A final important commonality between the animal, chess-player and robot

controller is that reinforcement to them only arrives at certain points — the tasting

of the food after its acquisition, the end of the game, the failure of a control

sequence, etc. This means that the chess-player, for example, receives one reinforc

ing signal which it must interpret in terms of a game which included perhaps several

dozen system responses (moves). Worse, it is possible that other reinforcements,

relating to other responses may arrive in the meantime. For example, the animal

may have eaten several types of mushroom, and experienced the pleasurable taste

reinforcement from each, by the time that the first pangs of indigestion are felt.

This situation is often termed the credit assignment problem : determining which of

previous system outputs are responsible for reinforcement. There are several levels

on which this question may be addressed, of which the most abstract involves an

understanding of structural cause-effect relationships, and as such it is beyond the

scope of the simple systems considered here. Because of that, the term credit assign

ment is deliberately avoided in this thesis. Instead, the term used is taken from

psychology — delay learning — and refers to associations formed even when results

of actions are not available immediately, and when other actions and results may

intervene.

17

1.2. Statement of Thesis Goal

According to the argument of the previous section, machines which solve this

sort of learning problem must have (at a minimum) three basic properties:

PI. They must perform EXPLORATORY LEARNING - reinforcement from the

external environment results from the system’s own output, and this must be

dealt with in an on-line manner rather than in batch learning mode.

P2. They must perform REINFORCEMENT LEARNING — the reinforcement

from the environment does not take the form of providing the specific optimal

output from each unit in the system. Rather, it will be a scalar indicating rela

tive success or utility of the overall system output.

P3. They must be capable of DELAY LEARNING — the reinforcement resulting

from a system output may not arrive immediately. Other system outputs may

occur in the meantime, and other environmental reinforcements may also occur

in the meantime.

This thesis presents a class of machine, consisting of Multi-valued Probabilistic

Logic Nodes performing Attention-Driven Buffering, and shows that they can satisfy

PI, P2 and P3.

1.3. Applicability of Neural Networks

The machines constructed in this thesis to satisfy PI, P2 and P3 are learning

machines conforming to the artificial neural network (ANN) paradigm. Neural net

works are composed of processing units which send and receive subsymbolic mes

sages to one another, and which alter their behaviour as a result of a training rule

which requires knowledge only of their own inputs and outputs.

One advantage of using ANNs, and the one of most concern within this thesis,

18

is that the systems find representations or rules governing their behaviour without

provision of these by a programmer. For this reason, ANNs are often applied in

domains where the rules are prohibitively complex or undefined. They are generally

robust, meaning that the system can survive malfunction of some fraction of the pro

cessing units, which makes them suitable for real-world problems such as vehicle

control. A neural network should also be able to handle some degree of noise in its

inputs, and should be able to generalise from known information to new examples

and even new concepts.

There are however a variety of learning paradigms besides ANNs, and there

fore other ways in which properties PI through P3 could doubtless be addressed.

For example, one of the earliest and most famous learning systems, Samuel’s check

ers player [Sam63] is given a set of rules, and adapts the weightings of these rules to

find an optimum strategy. Non-ANN strategies can be quite successful at learning

particular tasks. It is worth noting that the system developed in Chapter 4 to satisfy

P3 is actually sufficiently general to deal with any learning machine which satisfies

PI and P2, whether it be a neural network or not.

Having said that, it is still the case that ANNs provide a very natural way for

addressing problems of exploratory reinforcement learning. They do not require,

ideally, any pre-formed set of representations, but form representations automati

cally. It can even be argued that neural networks are more suitably used for this

sort of task than for supervised passive learning, where :

"...some agency must supply a rich set of training examples from which
the required control can be formed. ... When it is available, such
knowledge can be sufficient for one to implement the control rule in any
number of different ways, many of which are easier than training an asso
ciative memory network." [Bar85]

ANNs start with a minimum of initial knowledge, and many can learn when the only

information from the environment comes as a scalar reinforcement signal. Most

other types of learning system require careful initialisation and require explicit

19

information on how to interpret external feedback and update their behaviour (c.f.

[Sam63], [Dor68], [B0088], etc.).

1.4. Overview of Solution and Results

The solution to the thesis goal has taken two distinct parts. The first is to

design a neural network model which can satisfy PI and P2, and the second is to use

this model in a system which satisfies P3.

The neural network model designed is the Multi-valued Probabilistic Logic

Node (MPLN), and is based on Aleksander’s (3-valued) PLN. The PLN is a RAM-

based node which learns by storing responses to input patterns in a lookup table,

rather than by adjusting weights after the fashion of many conventional ANN

models. Because it does not use weights, the PLN can often learn faster than other

models. More to the point, it learns quite well with a training algorithm that imple

ments reinforcement learning: the entire network updates on the basis of a binary

reward/punish signal. This satisfies PI.

The MPLN allows storage of a range of values in the lookup table, each of

which represent the probability of outputting a response, rather than only storing the

response itself. This results in a node which can be trained quite easily in an incre

mental fashion, and in networks which can be trained on-line by a gradual shaping

of behaviour. Because of this, MPLN networks perform well in exploratory learn

ing situations: where the network makes a guess as to the appropriate response, is

informed of the consequences, and alters its behaviour slightly in preparation for the

next time that situation arises. MPLN networks therefore can satisfy P2.

MPLN networks can be used in systems which also satisfy P3. In particular,

the systems which are developed in this thesis perform Attention-Driven Buffering

(ADB). This involves keeping a trace or buffer at each node of some of its recent

20

input patterns. When reinforcement arrives, each node adjusts its response to each

of those patterns accordingly and uniformly. The use of a measure of attention to

each stored pattern ensures that those input patterns which are most unfamiliar or

most unpredictable are most likely to remain in this buffer for the longest, and will

thus be most likely to still be there when reinforcement arrives. In this way, learn

ing is related to the predictions, or more accurately, to the inability of prediction,

about the results of acting in response to an input state.

The chapters of this thesis which discuss the MPLN and ADB present some

small experiments to justify the theoretical discussions of the systems. The principal

results of this thesis take the form of simulations with OVSIM, a joint MPLN/ADB

system, which learns discrimination tasks mimicking those to which Octopus vulgaris

has been trained. The simulations show first, that OVSIM is capable of mastering

similar tasks, and that several characteristics of its learning are similar to those

observed in the animal as well. Second, after various functions in OVSIM are dis

abled, the system exhibits behavioural changes comparable to those seen in Octopus

after damage of the brain regions believed to be responsible for delay learning.

OVSIM may therefore have some claim to modelling the workings of the octopus

brain.

1.5. Organisation of the Thesis

The remainder of the thesis is organised into five chapters. Chapter 2 first

deals with the MPLN, covering its motivation, its precursor the 3-state PLN, and

some simple experiments that show its utility as a neural network model. The

MPLN is proposed as able to satisfy PI and P2 simply.

The next two chapters are dedicated to systems exhibiting P3. Chapter 3

reviews related research. In Chapter 4, Attention-Driven Buffering (ADB) is intro

duced; its parameters are examined, and a small example is used to show that such a

21

system can learn when reinforcements are delayed and when contradictory signals

arrive in the meantime.

Chapter 5 contains most of the experimental results in the thesis. It describes

the octopus, an animal which can be trained to do operant learning which involves

PI, P2 and P3. OVSIM, an MPLN/ADB system which simulates learning the same

behaviours is described. The bulk of the chapter is concerned with experiments with

OVSIM meant to mimic those in the octopus, and the similarities in patterns of

learning and in the deficits which appear after similar sorts of damage to learning

mechanisms.

Chapter 6 summarises the thesis, and argues that ADB may have some validity

as a physiological model, particularly as the hippocampus and amygdala in mammals

seem to be performing functions required by ADB. Future directions in which this

work may proceed are also described.

22

CHAPTER 2 - PROBABILISTIC LOGIC NODES

2.1. Introduction

The problem posed in the previous chapter had three requirements: learning

should be exploratory (PI), it should require only global feedback (P2), and this

feedback should not need to be immediate (P3). If the solution is to take the form

of a neural network, the first two requirements seem to be properties of the neural

model and learning algorithm, while the third might logically be met at the level of

the network architecture or control system.

Necessarily, the starting point for this thesis is a brief exposition of some artifi

cial neural network (ANN) learning paradigms usually used in addressing problems

such as PI, P2 and P3. Most of these center around the Weighted-Sum-and-

Threshold model, which is most often trained via Error Back-propagation. Next,

this model is compared with RAM-based models, and specifically with the Proba

bilistic Logic Node (PLN). Once this is done, the multi-valued PLN (MPLN) can be

introduced and analysed as the first contribution of this thesis. It is claimed that net

works of MPLNs can satisfy both PI and P2 simply and naturally.

This chapter is also meant to prepare the way for the discussions which follow,

by presenting accounts of the node models which are used in the systems described

in Chapters 3 and 4.

2.2. Weighted-Sum-and-Threshold Models

In 1943, McCulloch and Pitts made an observation to which much ANN

research can be traced [McP43]. They started with the common simplification that

neuron output is "all-or-none" (firing or not firing), and went on to suggest that neu

rons could be treated as performing propositional logic on their inputs. Each neuron

was normally quiescent (outputting binary 0) until a certain minimum number of its

23

inputs were activated, in which case it would fire (output binary 1). There were also

inhibitory inputs whose activity could prevent the neuron from firing. McCulloch

and Pitts showed that the behaviour of any network of these neurons could be

described as a disjunction of logical minterms, and that any such proposition could

be computed by some network.

These neurons are gross simplifications of real neurons (c.f., [CrA86], [Sej86],

[Sel88]), but they have the advantage of being much easier to study and to construct.

It is an open and controversial issue exactly how much biological realism may be

sacrificed before the important information processing capabilities of real neurons

are lost as well.

The common generalisation of McCulloch and Pitts's concept is the weighted-

sum-and-threshold node shown in Figure 2.1.

■*- y.
J

Figure 2.1 . A weighted-sum-and-threshold node. Node j computes the weighted sum o f
its inputs, and fires by outputting 1 i f this sum exceeds some threshold 0j.

Node j receives inputs from some I sources. Associated with each input xf is a

weight, Wji, and the node outputs according to the formula:

y j = 1 i f f (2 .1)
i

where Bj is node f s threshold.

In practice, the node is often designed to be capable of taking analog input and

outputting an analog value, in which case the output function might be:

yj = ^Wj i - Bji
Typically, the weights wji are restricted to a range [0,1] or [-1,1].

(2.2)

24

Nodes where binary or analog inputs are weighted and summed and compared

with a threshold to determine a binary or analog output will be called Weighted-

Sum-and-Threshold (WST) nodes.

There are numerous methods for training these nodes to perform desired

input-output mappings. Many derive from the Hebbian formalism which is another

simplification of observed biological behaviour: "When an axon of cell A is near

enough to excite a cell B and repeatedly or persistently takes part in firing it, some

growth process or metabolic change takes place in one or both cells such that A’s

efficiency as one of the cells firing B is increased" [Heb49, p. 50]. Formally, if dpj

is the response desired from node j to pattern p, and xpi is the i th input to j from

pattern p ,

A p W j i a d p j X pi (2.3)

This rule strengthens weights between nodes that are frequently coactive. With

repeated application, the node will learn to output yPj = dpj for every pattern p, if the

p are orthogonal. Orthogonality requires that no xpi is activated by two patterns

with differing dpj. It does not encourage nodes to perform some desired mapping,
(f

as it makes no mention of the desired mapping — only of coactivity between nodes. ^

One useful learning rule, developed by Widrow and Hoff in 1960 [WiH60],

and known variously as the Widrow-Hoff Rule, Delta Rule, or Least-Mean-Square

(LMS) rule, simply adjusts the Hebbian rule to incorporate the node’s current output

ypJ as well as its desired or training output dpji

^ p w j i ~ *n (d pj ~ y pj) x p i (2 * 4)

With repeated applications, ypj will approach dpp provided the input vectors are at

least linearly separable. The training set is linearly separable if, when all /-

dimensional input vectors are plotted in /-space, a single / —1 -dimensional hyper-

plane can separate those patterns with dpJ= 0 from those with dpj= 1 .

25

The LMS rule is shown to perform gradient descent by Nagumo and Noda

when 2>*q>0 [NaN67]. The proof defines the total error E over all training pat

terns:

E = 2 e p < Ep= ± - 2 (d p r ypJ)2 (2.5)
P 1 J

and then shows that E will decrease with each weight change according to 2.4.

The node defined by Equations 2.2 and 2.4 is often termed an ADALINE

(ADAptive LINear Element, c.f. [WWB88]).

Rosenblatt’s perceptions are effectively supersets of the ADALINE [Ros58,

Ros62]. Perceptions are a class of adaptive node as shown in Figure 2.2, typically

used for pattern recognition. The binary input pattern feeds into Association Units,

which are hardwired to compute logical threshold functions of their inputs. These

Association Units are often handcrafted feature detectors. The next layer contains

Response Units, which are connected to the output of the Association Units via

modifiable weights, and compute the weighted sum of their inputs. The Response

Units are connected together in a winner-take-all fashion: that unit with the highest

weighted sum is taken to "classify" the input as belonging to its class.

It will be noted from Figure 2.2 that the ADALINE is a perceptron where the

Association Units are collapsed to have single-inputs and to perform the unity func

tion, and where there is only a single Response Unit.

Perceptrons are trained according to a rule like Equation 2.4, where each

Response Unit is treated as a separate node. Block, in the perceptron convergence

theorem, showed that this training will terminate in finite time, and that the
per form al

perception’s response to each will be correct given that the problem is 'leamable- by

the perceptron [Blo62].

In fact, there are several important classes of problem which this perceptron

will be unable to solve. Minsky and Papert showed that if the inputs to the

26

Figure 2 .2 . A typical perceptron. The binary input pattern feed s into fixed-logic
Association Units, which in turn feed into Response Units via adaptive weights. The
Response Unit with the highest weighted sum o f its inputs ”classifies" the input pattern.

Response Units are limited in number (i.e., no one node can see all of the input pat

tern), the perceptron will be unable to determine connectedness or number of

regions in the pattern [MiP69]. Furthermore, they claimed (and still claim in the

edition of their book which appeared in 1989) that even if a network of perceptron-

like nodes can solve a particular problem, the solution found will not scale up.

Finally, they made the important point that the perceptron learning algorithm per

forms gradient descent, and as such is susceptible to associated problems: namely,

that the correct direction in the short term may not be correct in the long term, and

the system may settle into a local solution rather than a global one.

Minsky and Papert levelled some criticisms against the capabilities of the per

ceptron which hold only in its simple form shown in Figure 2.2. If the nodes are

arranged in multiple layers, so that the output from one node becomes input to the

next level up, networks do exist which can be trained to perform classifications

based on connectedness, parity, etc.

However, for a multi-layer network, Equation 2.4 is no longer sufficient as a

27

training rule. In a multi-layer network, dpj , the desired response of each node jf, is

only available for those nodes at the highest level — output nodes. For the nodes at

lower levels — hidden nodes — which pass output to nodes at higher levels, dpj is

not defined.

A solution to this problem was outlined by Rosenblatt [Ros62]: to propagate

error backward from the visible output units to the hidden units which feed those

output units and therefore helped to cause the error.

The Generalised Delta Rule, or Error Back-Propagation (EBP) was formalised

independently by Rumelhart, Hinton and Williams [RHW86a,b], and several others

([Wer74], [Par85], [LeC86]). EBP allows the training of hidden nodes, but requires

a feedforward topology — i.e., a node output must never be passed as input to nodes

on the same or lower layers. It also requires a non-decreasing differentiable output

function f j , making the node output rule:

y Pj = f j ^ w jix p i j (2*6)

where xpi may be external input or output from a node in the previous layer. Then

if j is an output node (i.e., its desired response dpj is defined),

A w k = ■n [d p j - y Pi) f

and if j is a hidden node,

2 W j i x p i I x p i (2.7)

Awji = T)SpJxpi where SpJ= f (2 *8)

To train such a net, weights are initialised to small random values. Each pat

tern p in the training set is applied and the actual change to wj* is the net change

resulting from the calculation of equation (2.7) or (2.8) on each pattern. This is

repeated until error on the training set is eliminated or sufficiently small. Alter

nately, may be noted after each pattern is applied, and the net changes made to

the weights after each complete presentation of the training set.

28

EBP guarantees a decrease in error with each weight change made. It performs

gradient descent in error space, and as Minsky and Papert pointed out decades ear

lier [MiP69], this may be descent to a local minimum rather than to a true solution.

Rumelhart, et. al. claim this is not a problem in practice [RHW86a].

There are several other difficulties with the EBP methodology.

• EBP is very slow. Even one of the smallest possible problems, learning to com

pute the exclusive-or of two input bits, in a net of two nodes (one hidden and one

output) takes 558 sweeps through the four-pattern training set for a total of 2200

training steps [RHW86a]. Learning discrimination of a "T" and "C" pattern on a

3x3 grid, where the patterns may be rotated into any of four orientations, takes

5,000 to 10,000 presentations of each of the 8 patterns [RHW86a].

• Typically, each of the hidden nodes sees all of the input, while each output node

sees all of the hidden layer output. This requires huge connectivity for any sizeable

problem, and hence EBP nets often only seem practicable to construct in simulation.

• The error-assignment (Equations 2.7 and 2.8) requires a backward information

flow, from output nodes back towards the input layer. As yet, there is no evidence

that anything of this sort could occur in biological systems. Stork does show how a

slightly more complex cluster of simple processing nodes can implement EBP in a

more plausible way [Sto89]. Churchland and Sejnowski also note that while EBP

can not be a literal model of learning at the neuronal level, it might be plausible as a

systems-level description of learning in a net with feedback connections [ChS89].

• Parameters such as the learning constant, t) , are problem-dependent and must gen

erally be tuned empirically [ChV89]. A great deal of time at recent ANN confer

ences is devoted to work which centers on fine-tuning EBP to increase speed of

learning (c.f., Proceedings UCNN-90-WASH, 1990).

• EBP is restricted to feedforward networks: special adjustments must be made to

handle feedforward and feedback loops as well as lateral inhibition on the same level

29

(c.f. [RHW86a], [WiZ89]).

Nonetheless, EBP seems quite well-suited to many problems where the learning

is off-line (and hence may take indefinitely long). One such problem is the learning

of text-to-phoneme translation by Sejnowski and Rosenberg’s NETtalk [SeR86].

EBP has also been applied with moderate success to such domains as speech recogni

tion (c.f. [McE86]) and classification of sonar returns [G0S88].

There are other methods of training WST nodes within the supervised learning

paradigm, but EBP and its variations are by far the most prevalent at present.

There are also several methods for training WST nodes in unsupervised networks

(e.g., Kohonen [Koh88], Grossberg [CaG87]). Unsupervised learning is not really

appropriate for exploratory learning with delayed reinforcement — where the

environment does provide some feedback. There are also methods for using WST

nodes for reinforcement learning (e.g., Widrow [WiS64], Barto and Sutton

[BSA83]). These methods are discussed in more detail in Chapter 3.

2.3. RAM-based Models

In the original specification of McCulloch and Pitts [McP43], no actual mention

was made of weights on the inputs or of what changes should be made to the node to

enact learning. Viewing nodes as executing logical propositions, it is equally valid

to define learning as a change in the logical proposition executed, without any refer

ence to weights. In this way, the node is more of a lookup table, in which a pattern

on binary input lines addresses some location in the table, and the output of the

node is dependent on a value stored at that location. A simple example of such a

node is shown in Figure 2.3. Austin has shown how the paradigm may be extended

to include grey-level (non-binary) inputs [Aus88].

In such a node, the logical proposition computed is the disjunction of all input

30

x

X

x 1
2

I

X1 x 2 XI yj

0 0 0 0

0 0 1 0
0 1 0 1

0 1 1 0

1 1 0 1

1 1 1 1

y.j

Figure 2.3 . A logical or RAM -based node model. Inputs form an address into a
lookup table memory, and the output o f the node is the value stored at that location.

patterns for which the node will fire. The node has learned to respond correctly

when it has stored the correct value for each possible input pattern at the associated

address. An important feature of this kind of node is that no generalisation occurs:

the node must store the appropriate response for every possible input. On the other

hand, it can learn to execute any of the 22‘ binary function of its I inputs, whereas

the WST nodes are restricted to learn linearly separable functions.

The logical node traces its roots back to the n-tuple sampling machines of Bled

soe and Browning [B1B59], where the n inputs to the node form the n-tuple which is

used to address node memory. Later, Aleksander and Stonham noted that the node

memory addressing was analogous to that in a random-access memory (RAM), and

therefore the nodes could be implemented in a straightforward way in existing tech

nology [A1S79].

The WISARD pattern recognition machine, prototyped in 1981 [ATB84],

makes use of these RAM-nodes in learning to classify images from a television cam

era. The binary image pixels are randomly assigned to n-tuples, each of which pro

vides input to a RAM-node. Enough of these RAM-nodes so that the entire picture

31

is covered, plus a summator, form a discriminator. The machine contains one

discriminator for each class of pattern to be recognised. The nodes in a discriminator

sire initialised to contain 0 at all locations; as each image to be learned is shown, the

n-tuples address locations (one in each node) and these are set to contain 1. Then

when an unknown image is shown, it addresses one location in each RAM-node, and

the value found there is passed to the summator. If many of these addresses were

accessed during training, the sum will be high. The discriminator with the highest

sum wins, and the image is classified accordingly.

WISARD in one sense performs a simple Hamming distance comparison

between trained and novel images. But it can also generalise, even though no single

RAM-node is capable of generalisation itself. As a simple example, consider that a

discriminator has been trained on two images, A and £, and is now shown a novel

image U . U overlaps with A at a RAM-nodes, and therefore a l ’s will be passed to

the summator. But if U also overlaps with B at b nodes, and if some of these nodes

are not the same as those overlapping with A, more l ’s will be passed to the summa

tor. Thus it is possible for the discriminator to give a higher response to U than

would arise merely from its overlap with a single training pattern.

The WISARD has been implemented as a commercial machine, which can train

on or classify 512x512 pixel binarised television images at a rate of 25 per second.

Tattersall, et. al. also used a WISARD architecture (but the LMS training rule) to do

speaker-independent recognition of utterances of the names of alphabetic characters

[TFL89].

Recently, other workers have used RAM-nodes for a variety of tasks. Vidal

has used RAM-nodes arranged in tree structures to do moving edge detection, track

ing, and detecting patterns of some minimum size in the input data [Vid88]. Allin-

son, et. al. have used nodes with lookup tables to self-organise as an image classifier

which, once trained, can classify video images at video speed [ABJ89]. Aleksander

32

and Wilson showed that RAM-nodes trained to be edge-detectors can perform at

least as well as Sobel and Laplace transforms on a binary image, and are faster and

less sensitive to noise distortion [A1D85].

Patarnello and Carnevalli have trained RAM-node networks with simulated

annealing - in which outputs are initially subject to a large degree of noise (the

"temperature") which is gradually "cooled" to zero. This method is slow but pro

vides one way of reducing the chances of settling into a false minimum. They kept

the node contents fixed and optimised over the connections between nodes. Their

systems can perform addition of two 8-bit numbers after exposure to only 0.003% of

the possible examples [CaP87]. They also apply their learning method to a problem

in which a "bug” learns to roam a simulated world in search of food [PaC90]. Inputs

are provided by one sensor which fires if food is in the location directly ahead and a

second which fires if food is in one of the other three immediately adjoining loca

tions; the bug then outputs a decision to move ahead, turn left or right in place, or

do nothing. Through training, the net learns a strategy such as: if the first sensor

signals food directly ahead, move ahead; else if the second sensor is signalling, turn

left; otherwise move ahead. Again, the learning regime is successful, but takes an

extremely long time to accomplish its goal.

So, weightless RAM-nodes have had notable success in a number of applica

tions. They also have several advantages over the weighted-sum-and-threshold

approach. First, as the image and speech recognition systems cited show, learning

can be very fast and even take place in real-time. Second, the nodes are implement-

able in currently available RAM technology. Third, RAM nodes often lend them

selves to analysis by virtue of their logic basis. Fourth, a RAM node is able to

implement any of the 22/ functions of its 7 inputs, whereas a weighted-sum-and-

threshold node can only implement linearly-separable ones. Finally, the number of

connections necessary tends to be low, certainly in comparison with weight-using

33

paradigms which are often either fully connected (e.g., [Hop82]) or else involve full

connections between layers (e.g., [RHW86a]). This high interconnectivity poses a

problem in VLSI design; optical implementations (c.f., [AbP87] and [PPH88]),

which may be able to handle massive interconnectivity, are still themselves a

research topic.

There is also a perceived advantage in the use of RAM nets as associative

memory in terms of their storage capacity. Wong and Sherrington [WoS89] consider

a randomly connected net of RAM nodes, each storing and outputting (-1,1) rather

than (0,1), and define a cost function over the P patterns:

Cj = - 2 dpjypj (2.10)
P = 1

They then show that this cost function is minimised by a "majority" learning rule:

each storage location is assigned the value of the output required by the majority of

the patterns addressing it. If a storage location is not addressed by any training pat

tern, it takes the value assigned its nearest neighbour in the lookup table — where

neighbours are defined on the basis of close Hamming distance in address space.

Using this training scheme, Wong and Sherrington show that the storage capa

city for associative retrieval in RAM nets scales as 2V/2. This compares quite

favourably with weight-using nodes, arranged in the same topology, which can store

a maximum of about 0.64/ patterns [DGZ87], or about 0.15/ if they are arranged in

the standard Hopfield (fully-connected) topology (c.f. [Hop82], [New88], [AbS85])

in which every node receives input from every other node.

2.4. The Probabilistic Logic Node

The probabilistic logic node (PLN) represents an attempt to augment RAM

nodes in such a way as to retain their desirable properties and improve upon them

[KaA87, Ale88]. The PLN consists of a RAM-node augmented with a probabilistic

34

output generator. As in a simple RAM-node, the I binary inputs to a node form an

address into one of the 2l RAM locations. Simple RAM-nodes then output the

stored value directly. In the PLN, the value stored at this address is passed through

the output function which converts it into a binary node output. Thus each stored

value may be interpreted as affecting the probability of outputting a 1 for a given

pattern of node inputs. Figure 2.4 shows a PLN.

Figure 2.4 . A probabilistic logic node (PLN). The node is a RAM -node augmented so
that the value addressed by the current input is passed to a probabilistic transform
which converts it into the node’s binary output.

In its most basic form, the alphabet ft of stored values contains three elements:

{0,1,u}, and the output function $ is defined as:

*(1) = 1
$ (0) = 0 (2.11)
* (u)= 0 ,l with equal probability

This PLN may be implemented with RAM that addresses stored values occupying

two-bit words. In this form of PLN, training becomes a process of replacing us with

Os and Is so that the network consistently produces the correct output patterns in

response to the training pattern inputs. At the start of training, all stored values in

all nodes are initialised to u, and thus the net’s behaviour is completely unbiased.

In a fully converged PLN net, every addressed location should contain a 0 or a 1,

and the net’s behaviour will be completely deterministic.1

1 There may be PLN locations which are never addressed, e.g. addresses to nodes in the input layer
which represent n-tuples not present in the training set, or to nodes in higher layers if some combinations
of lower node outputs never occur. These unaddressed locations may contain u without affecting the
status of the net as converged. It is also possible for an unconverged network to behave deterministically,
e.g., if all locations in all top layer nodes contain 1, but us remain in the lower levels. However, by

35

There are a number of training regimes for this type of network, of which the

simplest and slowest is a random walk through possible combinations of stored

value; a standard one is described by Aleksander [Ale88]. To train a PLN where to,

the number of elements in ft, is 3 ({0,l,u}):

1. For all nodes j , for all addresses X , svXj = u.

2. Choose an input pattern p .

3. Allow values to propagate through the net: each node forms an address

X =(jc1,x2, • * * xj) from the values on its input lines, accesses a stored value

svXj, and outputs ypj = &(svXj) = 0 or 1, according to the output rule in Equa

tion 2.11.

4. When values appear at the output nodes, judge the output pattern "correct”

(r = +1) or "incorrect" (r = — 1).

4.1. If r= + 1, do for each node j: If svXj= u , svXj - y pj. This ensures that current,

successful behaviour will be repeated.

4.2. If r = - l , repeat from step 3., in hopes that some us may be transformed into

different values which yield a more successful output.

4.3. If r= — 1 after several applications of steps 3 and 4, a reset operation occurs.2

For each node j : If svXj i^ u f svXj*-u. This returns the stored values to random.

5. Loop to step 2 until the network has achieved satisfactory responses to all pat

terns in the training set.

There are several important points to make about this algorithm:

• It is a reinforcement learning algorithm — in which the only reinforcement signal

is a global scalar applied to the network as a whole. It does however involve the

Aleksander’s training algorithm, this state is transient and all addressed locations will be set to 0/1 even if
the setting is immaterial.

2 If the net contains N nodes, and all were to address a u , there will be possible combinations of
outputs y i * * * yjy. This is an upper bound on the number of attempts to generate correct output which
may be allowed.

36

network making several attempts to maximise this reinforcement signal (steps 4.2

and 4.3). Because no mechanism such as back-propagation is needed, the updates

are simple, local, and may be executed in parallel.

• It makes no topological restrictions - the net may be feedforward, recurrent, fully

connected, etc.

® Because learning is not done by gradient descent and instead has a probabilistic

component, local minima are escapable, and learning may be expected to be faster

on the problems such as those defined "hard" by Shapiro [Sha89a] where the error

surface is flat and gradient descent degrades to random walk. 3

• All memory locations are initialised to randomness, and thus the net starts off in a

completely unbiased state. In contrast, in a weighted network, Kan and Aleksander

[KaA87] note that the initial setting of the weights provides a pre-existing state

structure which must be disrupted before training to the desired stable states can

even begin. Learning in PLNs consists of, where possible, adjusting u values only

— exploring uncommitted regions of function space. Only when the stored

knowledge is inconsistent with the needs of the current training pattern does a

"reset” routine disturb the stored knowledge, and return locations to the pool of

unbiased memory.

In addition to this generic training algorithm, Aleksander has also defined a

canonical form for PLN topologies [Ale89]. His canonical net is one in which all

nodes have the same number of inputs, /; a pyramid topology is defined as a tree

like feedforward structure. Enough bottom-layer nodes are used to cover every bit

3 Shapiro [Sha89a] considered 2-input simple BAM nodes, arranged in a tree structure, like that
suggested by Aleksander (e.g., [Ale89]), and initialised to contain random Os and Is at each location.
Then, defining the error as the proportion of patterns generating incorrect output, he trained by gradient
descent: choosing a random location, calculate the error change if that value is flipped. If the error change
is negative, the flip becomes permanent, if it is positive the value is left unchanged, and if there is no net
error change, the location is set randomly. He found that the "hardness” of a problem, related to a low
proportion of solution states among the possible states of a net, increased exponentially with the Minsky-
Papert order - i.e., the number of inputs to a node required for the problem to be solvable.

37

in the input pattern once, and then additional layers are added to result in a single

topmost output node. For a given size of the input pattern, there is only one param

eter, 7, needed to describe the topology. Enough pyramids are then used to generate

the desired number of output bits, each of which may then be dependent on the

entire input scene, as necessary.

Use of a topology such as the pyramid reduces the number of functions com

putable. If there are B bits in the input pattern, then there exist 2Z" possible func

tions mapping them to a single output bit. However, in a net of N RAM nodes,

there are at most implementable functions, and even then not all of them are

distinct. For example, any function in which the topmost node is completely filled

with Is is exactly equivalent to any other function with the same event in the top

most node.

For the regular pyramidal topology, it is relatively straightforward to deter

mine the number of functions computable for low 7. Myers [Mye88] gives the

number for an L-level pyramid of 2-input nodes as:

F(0,2) = 4

F(£,2) = 2 + 2p + ~ p 2 (2.12)

where p = F (L —1,2) —2
Similarly, for an L-level pyramid of 3-input nodes, the number is given as:

F (0,3) = 4

F (L , 3) = 2 + 3p + y p 2 + (2.13)

where p = F (L — 1,3)— 2
Al-Alawi and Stonham [A1S90] extend this to a network of nodes with arbitrary 7.

While the use of such a topology dramatically reduces the number of functions

executable by the system, as compared with a single, huge, B -input node, it is this

very reduction which gives rise to generalisation. A single RAM-node cannot gen

eralise, but a net of such nodes can no longer store a specific response to each input

pattern, and thus must group similar patterns together in the same response class.

38

Shapiro [Sha89a] argues that the pyramid may be overly restraining as a topol

ogy. In a pyramid, there is only one path from any input bit to the single output

node, yet of the 16 functions implementable by a 2-input node, only 10 are depen

dent on both inputs. If any node in the pyramid implements one of the other 6 func

tions, all of the inputs below it will be ignored. This suggests that a pyramidal

topology will fare badly on higher-order problems - ones which depend on many

inputs. He found that for the highest-order problem, the computation of parity,

most changes to stored values result in no change in the error measure. Therefore,

during much of training, the system is doing a random walk. Learning time in this

case will be polynomial in the number of nodes but exponential in the number of

bits in the input patterns. On the other hand, Aleksander’s training algorithm

differs from Shapiro’s in that in the former several stored values are accessed simul

taneously, and may be set or reset en masse. This attention to coherence between

node settings may result in somewhat faster behaviour than Shapiro predicts.

Aleksander [Ale88] showed that a 3-node tree of 2-input PLNs, learning parity

over a 4-bit input string, could converge in an average of 32 input presentations —

or 2 sweeps through the training set. A net trained via EBP, with four hidden nodes

and one output node, learned the same task in 2,825 cycles through the complete

16-pattern training set — i.e., some 45,000 input presentations [RHW86a]. Myers

and Aleksander [MyA88] showed that PLN nets compared favourably with EBP nets

in terms of speed on a variety of similar small problems.

Bisset, et. al. [BFF89] trained several nets of to recognise a training set of 300

machine-printed examples of each alphanumeric character4 digitised and displayed

on a 16x24 retina. Their PLN pyramids did not learn well, mainly because they

used nodes with /= 2, arranged in a 12-layer net. This arrangement allows overgen-

4 The set consisted of 34 elements, A-Z, 0-9, with no distinction being madt» between I and 1 or
between 0 and O.

39

eralisation and lack of specificity - while 22** ~ lO3*10*14 functions of the input exist,

the network can implement only something on the order of 103*103 functions, a van

ishingly small fraction of the possibilities. (In contrast, the EBP nets which Bisset,

et. al. examined were constructed with 10 or 30 hidden nodes, each fully connected

to all 384 input bits.) Still, the PLN nets in this experiment exhibited one quite

desirable property: that of reaching peak performance within about one pass

through the complete training set, even though this peak performance was low.

Other training algorithms for PLN nodes exist.

Wang and Grodin [WaG89] describe a training algorithm which is slightly less

powerful than Aleksander’s. Each stored value consists of two bits, the value to

output and a flag indicating that that value should not be changed. Flags are set

when correct output behaviour has been produced, so that the behaviour will be

repeated. If incorrect output is generated, then a search is made of the unflagged

locations in the net, and different stored values are tried. Once a flag is set, the

value can never again be changed. This is the principal contrast with Aleksander’s

use of u, as the inability to error-correct makes Wang and Grodin’s algorithm very

dependent on both the initial output stored values and also the ordering of the train

ing set.

Al-Alawi and Stonham [A1S90] describe a related algorithm which, on error,

initiates a depth-first search of all u states currently accessed, and tries to find a suc

cessful solution by systematically trying all possible combinations of instantiations

for those ms. Only if the error still persists does the hard reset (step 4.3 in

Aleksander’s algorithm) occur. They give results for the parity problem which are

only slightly worse than those in Aleksander [Ale88]: requiring three passes through

the training set to Aleksander’s two.

PLNs appear to learn more quickly than WST nodes trained via EBP, at least

for topologies involving a small number of nodes. This is attributable first to the

40

linear independence of a RAM-node’s stored values: in a weighted-sum-and-

threshold net, changing a weight affects the node’s response not only to the current

input pattern, but to any number of others. A second reason for the gain in speed is

the use of the u value to help restrict changes to the areas of function space where

they will have the minimum possible effect on other previously stored data.

Aleksander [Ale90] has proposed an extension of the PLN, the gRAM, which

once trained, spreads stored information to those neighbouring locations which still

contain us. In this way, it is hoped that the nodes can be made less susceptible to

noise (small variations in the input patterns which change the addresses to a node by

one or two inputs) and also make them more able to generalise (by making the

responses to patterns similar in address space more alike).

Even in their simplest, three-state forms, PLNs satisfy one of the three proper

ties set forth in Chapter 1, P2: that learning occur with only a global scalar rein

forcement signal. A slight extension of the PLN concept is developed in the

remainder of this chapter and shown to immediately satisfy a second required pro

perty, PI: exploratory learning without a distinct training phase.

2.5. The Multivalued PLN

The simple PLN, with n={0,l,u}, trained with Aleksander’s algorithm, per

forms a type of reinforcement learning: it makes use of a global scalar reinforce

ment signal. However, learning is not exploratory. The system should not enter the

minor loop described in steps 3 and 4 of the algorithm, where it tries several times

to generate correct output. Instead, the system should simply generate an output

and experience the results.

Additionally, in Aleksander’s algorithm, the network output is compared with

the desired output, and in a true reinforcement learning paradigm, such desired out

41

put would not be provided. The only information from the outside world should

come via the reinforcement signal r= {-1,0, +1}.

However, these changes would also result in a system which was much more

prone to experience resets. Reset in the PLN is a drastic affair: each node j will

have its currently addressed stored value s v Xj reset to u. Since each s v Xj was

changed from u in order to store a previous training pattern, the reset of these

values will cause loss of information. Sometimes this will be unavoidable. But it is

also possible that most of the s v Xj ought not to be changed.

For a given network learning a solvable problem, there exist one or more solu

tions in function space, and the net is said to converge when it reaches one of them.

At any point during training, the net will be closest to one (or equidistant from two

or more). If the net is closest to just one, then there is a value svXj* for each stored

value which is the value of svXj at solution. (If there are two or more equidistant

solutions, then either svXj * exists, being the same in each solution state, or else svXJ*

is undefined — meaning that a solution is equally close whichever value svXj takes.)

Then it is possible that at the time of generation of a reset, every stored value

accessed is already set to svXj* except for one, svEREj, and that that one svEREj is suf

ficient to cause error at a network level. Then if there are N nodes in the net, N — 1

stored values will be lost, while only 1 erroneous one is reset.

As an example [Mye87], 100 PLN networks, each containing 3 2-input nodes

arranged in a tree, were required to learn to detect parity of the 4-bit input string.

For this task, 4 of the 212 possible network states were solution states, and during

training the closest to any net could be determined. Each net was frozen after its

first error generation (22% of the nets learned the problem without ever generating

an error and were discarded from further analysis). The 78 nets each contained 3

s v Xj due to be reset, for a total of 234 s v Xj-. Of these, for 53.42% s v Xj = s v Xj * y and

hence resetting these bits was actually a loss of valuable information. For only

42

20.09% did svxj^ svxj* and therefore warrant reset. For the remaining 26.49%,

svxj* was undefined. Thus in only about one-fifth of the cases was total reset actu

ally warranted; in over one-half of the cases it actually served to erase necessary

information.

In a network operating under Aleksander's training algorithm, this is

apparently not very harmful, and the networks still learn quickly.

However, for an exploratory, reinforcement-learning system, such erasure of

error is crippling: no sooner will the system have begun to approach one solution,

than a minor error may divert it into a wildly different region of function space. If

the algorithm is changed so that the minor loop (whereby the system tries to avoid

reset) is eliminated, resets will become even more frequent, and the learning algo

rithm may well degrade to uninformed random exploration of function space.

Perhaps the obvious way to ease this situation is to make the reset operation

less drastic. This is the goal behind the multivalued PLN (MPLN), first published in

1988 [MyA88], and the first contribution discussed in this thesis.

The MPLN is simply an extension of the PLN (henceforth the 3-state PLN)

which allows a>>3, Cl = {v0,vi, • • • v^-i) :

<E>(v,) = 1 with probability p (vj) 2.15

♦ '(V ,)------------ ---------- 2.16tt(—2—— 1)
1+ e 0,-1

This describes an MPLN (or co-state PLN) in which there are co possible values (v,)

to store in each node location, and the node will output 1 with a probability related

to the value’s ordinality (i).

One result of extending the 3-state PLN to the MPLN is that the RAM-node

locations may now store output probabilities which are more finely gradated than in

the 3-state PLN — for example, it is possible that a node will output 1 with 3% pro

bability under a certain input. This might be desirable in an exploratory system

43

which should occasionally deviate for the purposes of exploring.5

The second result of the extension is that Aleksander's learning algorithm may

now be adapted to allow incremental changes in stored values. In this way, it is pos

sible that no one reset erases much information, but that erroneous information is

discarded only after a series of errors. Similarly, new information is only acquired

after a series of experiences indicate its validity. Such a learning algorithm is the

following [MyA88]:

1. For all nodes j , for all addresses X, s v Xj = v Uf where vM is the element of ft such

that $ p(vu) = 0.5 (or nearest approximation if no such element exists).

2. Choose an input pattern p .

3. Allow values to propagate through the net: each node forms an address

X=(x!,x2, • • • X/) from the values on its input lines, accesses a stored value

svXj, and outputs ypj = & (svXj) - 0 or 1. denotes the probability that

ypj— 1*

4. When values appear at the output nodes, judge the output pattern "correct"

(r= + l) or "incorrect" (r= -1).

4.1. For each node j , with jv̂ = v,-: Define i' = Kr*r.

4.2. For each node j where ypj= 1: s v Xj - v i + i <.

4.3. For each node j where ypj= 0: s v XJ *■ v/_/».

5. Loop to step 2. until the network has achieved satisfactory responses to all pat

terns in the training set.

It will be noticed that steps 4.2 and 4.3 allow i+ i ' and i — V to grow beyond the

range of O..co-1; this can be resolved simply by clipping.

This training algorithm involves a linear change to the stored values and a sig-

5 The pRAM of Gorse and Taylor goes further to allow for continuous JV values; see discussion later in
this section.

44

moidal output probability function such as that of Equation 2.16. Alternatively, if o

is large, it is possible to define a sigmoidal change to the stored values and a linear

output function:

4>£(v,)------co — 1
svXJ= vr , V 2 =

1+ e

2.17

2.18

where x= i + K r if yPj — 1 and x= i — Kr if ypj — 0.

These two cases are equivalent, since <1>p(v/+<«) = ̂ >f(v/+/<2). Therefore, any

behaviour obtainable by a net with sigmoidal output function and linear stored value

change is obtainable by a net with linear output function and sigmoidal stored value

change, and vice versa. For the remainder of the thesis, then, only the case given by

Equations 2.15 and 2.16 is considered.

An earlier report [MyA88] shows small networks of MPLNs trained on several

problems such as detecting parity or symmetry of a string, encoding a string, and

addition with carry of two 2-bit numbers. The MPLNs were found to learn faster

than 3-state PLNs, which in turn took less time to train than the error back-

propagation networks applied to the same problems by Rumelhart, et. al.

[RHW86b].

Martland [Mar88] describes an MPLN training algorithm which is meant to

mimic EBP. He considers each stored value sv as representing the probability that

the node outputs a 1 when that value is addressed. Then, the learning rule can

implement gradient descent:

A jv = sv — t]dError/dsv (2.14)
where t) is a learning constant. On problems of 4-bit and 8-bit parity, his regime

performed about 100 times slower than that in [MyA88], but still faster by several

times than an equivalent EBP learning algorithm operating on WST nodes.

45

Speed of learning and ease of implementation in hardware are characteristics of

the PLN-type nodes which are important but not of primary concern to this thesis.

It is more relevant that the MPLN, with the learning algorithm defined above, per

forms exploratory, reinforcement learning, and therefore satisfies both PI and P2.

While the MPLN was being developed in 1987-1988, Taylor and Gorse were

simultaneously and independently developing the pRAM (probabilistic RAM)

model. The pRAM is also an extension of the PLN, and it is similar in many ways

to the MPLN.

Taylor has developed a model of a noisy neuron (summarised in [G0T88])

which presents equations which incorporate and formalise many known properties of

living neurons. Gorse and Taylor have shown the evolution of this model to be for

mally equivalent to that of a network of noisy RAMs or pRAM nodes [G0T88].

The pRAM in its simplest form is a lookup table in which each address stores a

value jr€[0,1]; the pRAM will output a 1 (spike) with frequency related to the s

addressed. Each pRAM receives NT inputs: showing the activities of the N neurons

in the last T time steps. One output function is given in Clarkson, et. al. [CGT90]:

P ro b (j fir e s \x t • • • x ^) = (l - y j) 2 S K f i r /> + (!“ >/)vp) 2.19
/= lr = l

y rj indicates the activity of the yth node at time t — r , where t is the current time; K ^r

indicates the influence of the activity of the ith input of the j th node at time t — r .

Then (v^r) represents the expected contribution from deterministic (spontane

ous) transmitter release into the synapse from i to j at time t — r .

The inputs to the pRAM can then be chosen so that a location is addressed

which stores j , such that s = P ro b (j fires \xl • • • x^).

A hardware implementation of a 2-node network of 2-input pRAMs has been

constructed successfully [CGT89].

46

Recently, the pRAM output function has been simplified [GoT90]:

P ro b (j fires\x ! • • • xNS) = 2 J*II (Xix i + (l - * /) (l - */)) 2-20
X /-l

where the X=(Xj • • • X ^) are possible addresses into pRAM memory.

Alternatively, if the pRAM is augmented to contain an integrating register (the

integrating- or i-pRAM), output can depend on activity over the last T time steps as

[GoT90]:

P ro b (j fire s {recent input < x >) =

f 2 W/X x Prob(X addressed in last T time steps') — 0 2.21

/ may be a sigmoid. If T = 1 and P rob(X addressed) € {0,1}, this is the MPLN

model. With T > 1 and with Prob(X addressed) € [0,1], the pRAM model is much

more complex, and this is the principal difference with the MPLN: the pRAM can

output frequencies truly dependent on the probabilities of accessing different s .

A secondary difference is that the stored values in the MPLN are selected from

a finite range (cardinality o>), while those in the pRAM are continuously valued.

But to may be arbitrarily high, while in the implementation of a pRAM, finite word

lengths will be used and so the values must be discretised (to <o = 232 for a 32-bit

word length).

Section 2.6 suggests that, for the problems considered in this thesis, a> small

(5^o)^15) suffices. However, by using a theoretically continuous range, Taylor

and Gorse can derive training rules for pRAMs from traditional supervised, unsu

pervised and reinforcement learning paradigms [GoT90]. Their reinforcement train

ing rule is derived from Barto and Sutton and has the form:

A-4 = p ((y j - w ld r + *>((!- y j) - w k) p) 2-22
where wfr is the value stored in location X of node j , where p and \ are learning

rates, and where r and p are the positive and negative reinforcement signals, respec

tively. Using this rule, Taylor and Gorse have matched some of the experiments

47

performed by Barto and Sutton [GoT90].

The work of Barto and Sutton is sufficiently related to this thesis to merit its

own discussion in Chapter 3, and Gorse and Taylor’s adaptation of it is mentioned

further there in that context.

Meanwhile, much of the analysis of the MPLN in the next section may also be

applied to the pRAM and to some extent to the 3-state PLN.

2.6. The Design of MPLNs

There are three variables to consider when instantiating an MPLN: /, the

number of inputs to the node (and hence 2l , the number of stored values in the

node); ft, the stored value alphabet, or merely co, the cardinality of this alphabet;

and <&p, the output probability function.

2.6.1. I - The number of inputs to a node

In any PLN, I has a direct influence on the memory requirements (2/log2o> is a

measure of the size of the lookup table of the node), also on the tradeoff between

generalisation and memorisation. For a single-layer network of 3-state PLNs, for

example, if one pattern PI has been trained, and the correct response dPij has been

learned at node j , then if a new pattern U is presented, the probability of eliciting

dpij is

Prob(yP1j= d p ij) = (Ap1I/)/+ (A p j ^) 7) = ~ + y (A p 1£/)/ (2.23)

where A^ is the proportion of pixels in common between patterns x and y — the

overlap. Equation 2.23 is an immediate extension of the formula given in [A1D85]

for deterministic RAM nodes, and it states that the probability that yu j= yP\j is equal

to the probability that the n-tuple from U is sited entirely in the overlap between PI

and U plus the probability that it is not, but that the value addressed (u) is converted

48

into yPij anyway.

By extension of this (and by comparison with [A1D85]), if patterns P I • * * P k

are trained to produce output 1 at node j , and if patterns Q1 • • * Ql are trained to

output 0, then the probability that node j produces a 1 in response to U is:

Prob{yUj= 1) = £ (- l) ‘ + l P P (i) (2.24)
1 = 1

i - 2 (- i) '+," (o] f i - 2 (-i)'+1i>e(0
i = l

where P P (x) is the probability that the n-tuple is sited in any overlap between x

trained patterns and U :

P P (x) = '2 [a p lp2 . . . p m) ' for all jp l,p2, • • • p * je |p i,P 2 , ■ ■ ■ P k j (2.25)

Similarly for P Q ,

P Q (x) = '2 l [A qlq2 • qdj] for al1 ^1 ,^ 2 , * * * jg l ,g 2 , * * * f i/ j (2.26)

Defining generalisation in terms of the likelihood of outputting to pattern U in

the same way as to a similar trained pattern, it will be seen that for a given training

set, the generalisation of this (single-layer) net is wholly dependent on /. In particu

lar, generalisation decreases as I increases, while specificity (ability to memorise

responses to larger or more similar training sets) increases with 7. This is true for a

3-state PLN; for an MPLN, the term in equation (2.24) becomes dependent on

<DP, but the dependence on 7 remains. Similarly, as more levels are added to the

network, the formulae become more complex, but the basic dependence on 7

remains.6

6 Kan [Kan88] has designed a 3-state PLN system to maintain low 7, and hence low memory
requirements, but increase specificity and therefore memory capacity. He achieves this by transforming
non-orthogonal inputs to address a different node location for each different output required. No
disruption of previously trained states by new conflicting ones then occurs, since every new write is only
made to a location not previously addressed. In specific, he amplifies the Hamming distance between
patterns, using layers of nodes which repeatedly generate new addresses after a fashion not unlike hashing.
After a few layers, similar inputs become quite differentiated in Hamming terms, and thus can be stored
without conflict.

49

2.6.2. 4>p — The output probability function

The output function, O, is a rule by which the node determines its output,

given a certain pattern on its input lines. It is governed, for a non-deterministic

node, by the output probability function Q p : Prob(<t>{x) = 1) = 4>p(x). In the case

of PLNs, it is the mechanism whereby stored values are interpreted as affecting the

probability that a 1 is output at that node. In particular, is the probability

that <I>(v,)= 1.

In equational form, the output of a 3-state PLN is determined by:

* f’(vo) = ®,'(0) = 0
0 p(vj) = 0 P(u) = O.5 (2.27)

4>,'(v2) = 4>?(1) = 1.0
or simply, <E>p(v/) = y .

In an MPLN, typically one element of ft, v„, assumes the role of u, so that

<P(vM) = 1 with probability of 1/2. Two possible are:

*£(v,)-- (2.28)co— 1

®£(vi) = l» if *>»

= 0.5 if i = u

= 0, if i< u (2.29)

is a step function approximating a linear output function. Because of the mutual

independence of the stored values svxj within a single node, the MPLN is not res

tricted to linear functions, and may execute any arbitrary (non-monotonic, non

smooth, non-differentiable, etc.) output function. $ £ is a step function which

approximates a very steep sigmoidal curve. These two, <&£ and may be viewed

as creating maximally different output functions: the first is very "soft" - if i l~ i2 ,

<&p(/l)s=<I>/>(/2); the second is "hard" - <&p(vu_1) is maximally different from

<£P(vh+i)* Of course there exist an infinite number of curves between these two

50

extremes which may approximate.

A likely criterion for choice of Q p is its effect on the speed of convergence of

the network. Myers [Mye89a] shows theoretically and experimentally that speed can

be maximised, under certain conditions, when &p approximates a very steep sig

moid. Wong and Sherrington also show that with a steep &p , and with <0 = 11, the

net is much more robust with respect to training noise than it is at lower co, and also

that there is a greater storage capacity [WoS89].

The result is intuitively satisfying: it suggests that once a node location is

"committed” to an output, i.e., that it has been reinforced even once away from vu

and toward 0 or 1, it should output that value consistently. This allows other loca

tions in the net to organise around one another with some confidence that all are

behaving as they expect to behave when fully trained.

It is also possible to anneal an MPLN system. This would involve "cooling"

the system by gradually changing from a linear to a steep one. This has the

same effect as changing from a high temperature (high noise) to a low one (low

noise) in a WST system. It is to be expected that this strategy, like for WST nodes,

would help avoid the system settling into local minima, but that it would take an

extremely long convergence time.

2.6.3. <o - The cardinality of the stored value alphabet

The final major variable in the MPLN is O, or simply <o, the cardinality of SI.

The advantage of <o>3 (and thus of the MPLN over the 3-state PLN) is that

after several reinforcements of a xvXj h* one direction — so svXj stores v,-, i~0 or

/~<o —1 it can be hard to erase that knowledge: in fact, it will take an equal number

of negative experiences to return it to v„. Errors may occur due to mis-set stored

values elsewhere in the net, but during which svXj happens to be addressed, and svXj

51

will be negatively reinforced since the error signal is global and indiscriminate. If co

is high, and v{ is far from vu, svXj will be pushed back towards vM but only by

and the probability of outputting a 1 when svXj is addressed need only change very

little — particularly if <I>? is a steep sigmoid. In a network where co = 3, in contrast,

as discussed above, a single error arising anywhere in the net results in one location

in each node being reset to vu, and thus a great deal of knowledge is erased, regard

less of whether any individual node is responsible for the error.

Increasing to has its costs. The first is that an order of log2co bits will be

required to store each v, €fl, making the RAM needed in each node scale as 27log2co.

The equation is exponential in 7, the number of inputs to the node, and this may

dominate the cost for moderate co.

Also, with a svXj which stores vh i ~ 0 or co —1, high co means that it will be

very difficult to return svXj- to vM when this is required. Noisy data or an unfortunate

ordering of training examples could push a location’s value very far from vu and

away from svXj *, and an equal number of error cycles will be required to reset it.

Kohring [Koh90] has shown that for WST nodes also, storage is more efficient

(by up to 25 times) when synapses have a finite number of states than when they are

continuously ranging. He makes the point: "... given the noisy character of the indi

vidual neurons, it is implausible that an arbitrarily small change in the neuron firing

rate is meaningful. Rather, if two different firing rates are to be significant, then

the difference between the two firing rates must be greater than that resulting from

noise. ...this naturally leads to the concept of neurons with only a finite number of

firing states." In an MPLN, the firing rate is derived from the stored values, and

hence these also have a limited number co.

Ideally, co must be chosen to balance protection against mistaken erasure versus

ability to erase when this is necessary. Myers [Mye89a] indicates that a co larger

than 3, but still relatively small, leads to good convergence speed: in particular, the

52

rule 5so)^15 is suggested. Experiments reported there support this result: for

example on several problems nets with to = 11 converge faster than nets with <o = 6 or

co = 20.

2.6.4. MPLN Parameters - Conclusions

Several assumptions are implicit in the choice of and co~ll. The analyses

consider feedforward pyramids, being trained on problems for which convergence is

possible, via a training schedule which involves a random ordering of training pat

terns. This is a constrained class of topology and task, but one which is still quite

powerful.

Given these assumptions, an MPLN net may be designed which will tend to

converge as fast as possible: namely, its nodes contain stored values selected from a

5-15 element alphabet, and which are interpreted according to a threshold-like out

put function. The experiments described in support of these claims (in [Mye89a])

are small both in terms of the number of nodes involved and also in terms of the

size of state space relative to the number of solutions available. They are useful

however since a small number of distinguishable solutions exist and since the parity

problem in particular is arguably the "hardest" of the hard learning problems.

It is not the case that the co and defined in [Mye89a] are universally

optimal; it is not clear in the first place that speed of convergence is a necessary cri

terion to judge the "success" of a network — although it is probably the most fre

quent. There are occasions when a soft output function, for example, will be desir

able despite its slowness. One obvious example involves a state space with abundant

and deep local minima (false solutions), where probabilistic noisy outputs are neces

sary; in effect, a network using a steep output function forms quick and binding

opinions, whereas a network with a more linear output function makes conservative

ones, which still allow occasional lapses into the opposite output. This ability would

53

prove important in simulation of an automaton existing in a changing environment,

where convergence per se is not possible, and where a net might be more successful

if some of its nodes, say, output a 1 most of the time, and occasionally output a 0 to

test the effects in the current environment.

Appropriate choice of parameters is therefore highly dependent on the size,

shape and complexity of the problem space, and also causes subtle changes in the

way the net organises to solve the problem — particularly in terms of the speed with

which nodes commit to a particular output in response to some address. No values

of (o and $>p can therefore be purported to be optimal under all conditions, merely

as especially useful, and as good first approximations for later fine-tuning as neces

sary.

In later chapters, oi = l l and a steep sigmoid are not always used, as dif

ferent problem classes require different design strategies. But the analysis of /, oj

and <£p (here and in [Mye89a]) allows informed selection of these parameters to suit

the problems under consideration.

2.7. Summary of Chapter 2

This chapter covered some ANN paradigms including the Probabilistic Logic

Node (PLN), a RAM-based node with a probabilistic operator which transforms

stored values into probabilities of firing. This type of node is able to learn any

boolean function of its inputs, its use in a pyramidal topology requires only low

interconnectivity between nodes, and it has exhibited faster learning than nets

trained with error back-propagation, on some small problems.

Sections 2.5 and 2.6 contain the main theoretical contributions of this chapter.

First, the multi-valued PLN (MPLN) was introduced and discussed; MPLNs have

shown faster learning than 3-state PLNs, and also allow for an incremental rein

54

forcement learning algorithm. Use of MPLNs introduces several additional variable

into the network design phase, as compared with the use of PLNs. These variables

include the alphabet of possible stored values (cardinality to), the function for updat

ing stored values upon reinforcement, and the output probability function to convert

stored values into firing probabilities (<£?). It was shown that judicious choice of

9 P allows the stored value update function to be simplified to a linear function — so

that the values can be changed by a constant amount Kr on receipt of reinforcement

r. The rule relating /, the number of inputs per node, to network generalisation

capability of a network of simple RAMs was extended to the PLN case for single

layer nets; and it was mentioned how this rule could be further extended to MPLN

networks of arbitrary depth. Finally, it has been shown by analysis and experimen

tation that use of a steep sigmoid for the output probability function and use of a

stored value alphabet with 5:£a)^15 can speed learning.

MPLN networks with the training algorithm listed in Section 2.5 allow explora

tory reinforcement learning.

It remains to show how a system involving a network of MPLNs can also be

made to satisfy P3 and perform delay learning. The next chapters describe how

some alternative approaches to this task have been made, and examine a system

based on an MPLN network which satisfies P3 as well as PI and P2.

55

CHAPTER 3 - RELATED LEARNING SYSTEMS

This chapter reviews a selection of artificial learning systems which exhibit at

least one of the properties PI, P2 and P3. There is considerable overlap — for

instance, many systems which perform delay learning are within the reinforcement

learning paradigm. The final section of this chapter discusses features of this previ

ous work which are incorporated into the system presented in the next chapter.

Some rule-based approaches have been included in this survey for complete

ness, but systems may be assumed to be ANN-based unless otherwise specified.

3.1. PI: Exploratory Learning

E x p lo r a to r y le a r n in g was defined in Chapter 1 as involving an automaton

interacting with an environment. The automaton selects and executes an action, and

the environment provides reinforcement or feedback based on this action. In the

opposite situation, p a s s iv e le a r n in g , the automaton is repeatedly shown sample

input/output pairs from a preselected training set.

There are basically two ways in which exploratory learning can be performed.

The automaton can le a r n b y tr ia l a n d e r r o r . The system responds to an input,

and the response is then compared with the desired or predicted response. Rein

forcement is dependent on the difference between actual and desired responses.

Alternatively, the system can le a rn b y d o in g . Here, the automaton simply

responds to inputs and observes what results follow — but no supervisor exists to

provide the desired output for comparison.

3.1.1. Learning by trial and error

Trial and error learning is frequently used in adaptive control of robot arms

56

(e.g., [KuR89], [MKS88], [deC86]). Higher level control, or a random pattern gen

erator, selects a desired target position. The system produces commands to move

the arm, and sensors return information about the actual arm position reached.

Error is calculated as the difference between target and actual position, and the sys

tem is trained to minimise this error by an algorithm such as error back-propagation.

In a control system, the output must pass through a complex "plant" or actuator

before the commands affect the environment. In this case, the visible output from

the plant is not connected in a simple way with the desired output from the control

system. Following Psaltis, et. al. [PSY87] and treating the plant as a fixed layer,

error may be backpropagated through the plant to derive error at the output of the

control system, and then the control system may be trained using this derived error.

Saerens and Soquet use this technique to train an exploratory ANS to drive simu

lated 2-dimensional arms or windows tracking moving targets [SaS89]. Their system

also successfully learns the inverted pendulum problem: where a hinged pole rests

atop a cart which moves along a finite one-dimensional track. The task is to balance

the pole upright by small left and right movements of the cart on the track.

Shepanski and Macy have built a system to control a car moving around a

simulated racetrack, which must keep safe distances from cars ahead of it, and which

must learn when and how to change lanes and pass other cars [ShM88]. This system

is trained in several stages; exploratory learning is used to teach how to follow a

pace car which varies its speed at random. The system can output a decision to

maintain current speed or to increment or decrement its own speed, and is trained by

error backpropagation, where the desired output is one which results in the optimal

following distance to the car ahead. After some 1,000 steps, the system maintains

this optimal following distance and responds quickly to changes in the speed of the

pace car.

Another use of multi-stage training occurs in Nguyen and Widrow’s truck

57

backer-upper, which learns to back a simulated cab-trailer rig so that the rear of the

trailer is aligned to the dock [NgW89]. The system is first taught the kinematics of

cab-trailer interaction by error backpropagation. Given the location and angle of the

cab and the trailer with respect to the loading dock and a steering signal (left or

right), it learns to predict the resulting new locations and angles. Next the system

learns by trial and error how to back the rig into the desired location opposite the

loading dock. The truck backs under system control until it hits the loading dock

wall. An error signal is generated based on how far the rear of the trailer is from

the dock, and this is used to train each of the moves in the sequence by error back-

propagation. When learning is complete, the system can learn to manoeuver the

truck successfully even if the starting position is jackknifed.

3.1.2. Learning by doing

Learning by doing refers to exploratory learning situations in which no desired

output is provided. It is more appropriate than learning by trial and error in situa

tions in which the target is not defined or not known.

An early system of this type was built by Widrow and Smith and learned the

inverted pendulum problem [WiS64]. It consisted of an ADALINE which received

information about the pendulum angle and velocity and about the cart location and

velocity, and output a decision to move the cart left or right. When a human

observer judged that a recent sequence had been notably better (worse) than usual, a

positive (negative) reinforcement was generated, and applied to each move in the

sequence. The optimal sequence — or the amount by which the actual sequence

deviated from optimal — was not provided.

A frequent task put to ANNs which learn by doing is that of simulating the

movements of creatures seeking food in a two-dimensional world. Usually, the

world consists of a grid, with some moves that contain food, and the creature con

58

trolled by the learning system moves from cell to cell "eating” whenever it enters a

food-containing cell. The goal is for the system to maximise the frequency with

which it finds food.

Cecconi and Parisi designed a such a creature [CeP89]. It can output a decision

to turn to the left or right, to move one cell forward, or to do nothing; its inputs

consist of the distance to and angle with the nearest food. The creature initially

wanders at random; when it happens to enter a cell containing food, the system stops

and is returned to its state of 8 time steps previously. Then it wanders again, but at

each step the previous action at that step is used as a training signal — since that pre

vious action led to food. In this way, the system creates its own desired output pat

terns, and can be trained via error backpropagation, even in the absence of desired

output provided by the environment. This system has been shown quite successful

in learning to maximise the amount of food found.

Another food-seeking creature was constructed by Patarnello and Carnevalli

[PaC90]. It differs from the other systems described so far in that it consists of

fixed-function RAM nodes, and optimises over the connections between them. Its

outputs are the same as in Cecconi and Parisi’s system - turn right or left, move

ahead, do nothing - but its inputs are much more restricted. It has only two sen

sors, one which fires if the creature is next to and facing a cell which contains food,

and one which fires if there is food in any of the other neighbouring cells. The

creature is trained by simulated annealing (as described in Section 2.3). Several

worlds are generated with the same characteristics (e.g., a high density of food near

the center), and the creature is allowed to live for a while in each. The amount of

food eaten is then taken as the variable to be optimised.

Doran’s rule-based system simulates a creature which — rather than seeking

food — learns to find its way to a burrow in a static maze-like world [Dor68]. The

creature wanders, keeping a detailed history of each move it makes. When placed in

59

a new position, after training, it performs a minimaxing operation on this informa

tion to generate an efficient path back to its burrow.

The environment confronting Ackley and Liftman’s simulated creature is com

plex: containing multiple autonomous creatures, ambulatory predators, impassable

walls, and sheltering trees (to hide from predators) as well as food objects [AcL90].

Their creatures receive input about objects up to 4 cells away in each of the four

directions; the creatures explore the world, and are trained by a reinforcement learn

ing algorithm to maximise food (and minimise damage from hitting walls or from

attacks by predators). Creatures are then spawned by genetic evolution: a creature

which learns well is more likely to pass on its genes (as represented by its start

state) than one which does not learn so well. After several generations, some

creatures managed to survive for more than one million time steps.

The MPLN learning algorithm presented in Section 2.5 also performs explora

tory learning. In it, the network selects an output, and this output is evaluated with

respect to the environment: the optimal output is not provided, merely its appropri

ateness. If the environment is one which depends on the MPLN output, e.g., if the

problem being learned involves inverted pendulums or food-seeking creatures or

motor control, then the MPLN network will learn by doing.

3.1.3. Evaluation of exploratory learning techniques

The first type of exploratory learning, by trial and error, is very close to pas

sive learning in the sense that the desired output is still provided, and the training

regime is usually supervised learning (e.g., EBP). The explicit provision of a

desired output means that these systems violate P2, reinforcement learning, and

therefore are not suitable for the purposes of this thesis.

The systems which learn by doing are much more appropriate to this thesis.

60

They do not involve use of an externally-provided desired output pattern, only a glo

bal error signal, and therefore they to some extent perform reinforcement learning.

Further, the systems described in Section 3.2.2 all receive this error signal only at

the end of some sequence, and they must then recall their previous outputs and asso

ciate them with the error signal. This is of course delay learning (P3). However,

most must keep long histories of past actions. The clearest example of this is

Doran’s system which maintains a history of all of its past actions.

3.2. P2: Reinforcement Learning

The defining characteristic of reinforcement learning is that there is no provi

sion of an optimal or desired output pattern, merely an evaluation of the output pat

tern produced by the learning system. In supervised learning, this desired output is

provided and the system learns to mimic it; while in unsupervised learning , there is

no feedback from the external environment at all.

Reinforcement learning does not necessarily entail exploratory learning, and

there are reinforcement systems which learn simply by passively noting the

input/output training pairs shown to them.

Two sorts of reinforcement learning are covered here: global reinforcement

systems, in which network weights are changed proportionally to the global error

signal, and systems which use the global error signal to construct a desired output

pattern, which the net then learns to mimic.

3.2.1. Learning with global reinforcement signals

The simplest type of reinforcement learning system is one in which the

environment supplies a reinforcement signal r (r = + 1 for reward, r = — 1 for punish

ment, and possibly r = 0 for no reinforcement), and each active weight is changed as

a function of r:

61

A w ^ a x t y j r 3.1
It is worth noting that when the networks involved consist only of a single node with

binary output, this error signal is exactly equal to the desired output of that node,

and so the learning is really supervised. For this reason, it only makes sense to talk

about reinforcement learning in the context of a network of multiple nodes or when

the same reinforcement signal is applied to each element of a sequence of actions.

Several systems already mentioned employ this technique: the inverted pendu

lum balancer of Widrow and Smith (Section 3.1.2 [WiS64]), the food-seeking

creature of Cecconi and Parisi (Section 3.1.2 [CeP89]), and the MPLN learning algo

rithm (Section 2.5).

Windecker uses such a system to learn to play matching pennies [Win88]: the

system tries to match the output of its opponent (Mheads" = l, "tails"=0), who is

assumed to play a fixed strategy. The system selects the output 1 when at least half

of its nodes output a 1. When the system chooses the same output as the opponent,

it wins and r= + l; otherwise r = - l . Windecker notes that the network quickly

adapts so that at least half of the nodes output the correct (winning) value most of

the time, and so the system generally wins. But once winning becomes frequent,

there will be a small population of nodes which are usually wrong, but which are

rewarded due to the overall system win. His strategy is to recognise this

phenomenon and train this leftover population explicitly (which is of course recourse

to supervised learning).

The problem is also noted by Widrow et. al [WGM73]. In a system in which

there is some element of chance or noise, such as a game, the optimal decision under

certain conditions is not always guaranteed to lead to positive reinforcement. For

example, in Widrow et. al’s blackjack player [WGM73], there is an optimal strategy

which involves heuristics about when to request another card; yet this optimal stra

tegy may not always win, and a non-optimal strategy may sometimes win simply by

62

good luck. In this way, r may be a source of confusion. The blackjack playing sys

tem learns by a rule similar to Equation 3.1, applied at the end of a game to all

input/action pairs encountered during that game. Particularly when the effects of

reward are stronger than those of punishment, the system approaches the perfor

mance of the optimal system after playing a few thousand games.

However, in any approach of this sort, even without the addition of chance or

noise, reinforcement learning takes considerably longer than supervised learning

because the reinforcement to any one node is proportional to the system response,

rather than to its own output.

The BOXES system of Michie and Chambers [MiC68] works along similar

lines. It contains one "box" or demon for each state. In effect, the system is a large

AD ALINE with one weighted input line associated with each possible state. It is

also equivalent to a single large RAM node: a box is addressed by the input pattern

in the same way as are stored values in a RAM node. As each box is entered, it

chooses the system output and records its choice. When reinforcement arrives, each

recently-entered box adjusts the probability of repeating its last output according to

whether it participated in a successful sequence.

BOXES was applied to several problems including tic-tac-toe: each box

recorded, for each possible next move, the number of subsequent wins and losses

when that move was selected in the past. It then selected the move which most fre

quently led to wins. This strategy works well for tic-tac-toe, which has a large but

not unimaginable number of possible board states; it would be nearly impossible to

apply it to a task where the number of states is immense, such as chess.

The tic-tac-toe strategy is also inadequate for the inverted pendulum task; as all

left-right moves eventually lead to failure, each box would find the number of

failures after selecting an output exactly equal to how many times that output was

selected. Instead of this failure statistic, BOXES stored the expected life for each

63

move — that is, it selected the move which, in the past, was followed by a greater

time until the crash occurred. It updated by punishing each move made on a trial,

but with decaying eligibility, so later choices were punished most. In this experi

ment, input was highly quantised, and so the number of input states was only 225;

for problems with greater input space, BOXES quickly becomes impractical.

Some of the most famous work in reinforcement learning has been done by

Barto and Sutton and their colleagues. One learning rule which they have produced

is the Adaptive Reward-Penalty (A*_p) algorithm, which is characterised by the fol

lowing equations [BaA85]:

/
y j = 1 ^ + *n > 0 3.2i= 1

I
Pji = P rob('2 t wjixi + ti>0) 3.3

i = i
(p (y j-P j i) xi if r = 1

A w Ji ~ |x .p (l-y ;— if r = 0 3,4

By Equation 3.2, the AR- P node is a WST node with random added noise i); Equa

tion 3.3 defines the probability that the node output y;- will be 1. The weight change

rule, 3.4, causes then node to be more likely to produce y j when next the input x{ is

presented, if the reinforcement r is positive, and less likely if it is negative.

Barto and Sutton have used a network of these elements to learn to behave as a

food-finding creature [BaS81]. The network topology, as shown in Figure 3.1, con

sists of several nodes and a single reinforcement signal. The output rule for these

nodes is:

i
Pji~ 0.5 if $>/«*» = 0i = i

/
Pji> 0.5 if 2 wjixi > 0

i = i

/

P ji< 0.5 if 2 wfixi < 0 3.5
/=!

The environment in this problem consists of a two-dimensional world containing 4

landmarks, each of which emit a distinct odour which decreases in strength with

64

Figure 3.1 . A network o f AR- P units used as a food-finding creature [BaS81J.

distance. The strengths of these four smells serve as the input to the automaton.

The automaton has four output lines, each of which signal that the creature should

move in one of the four compass directions (combination moves, such as north-east

are possible). There is a fifth, attractant location, which also emits an odour; the

creature receives reinforcement proportional to changes in the strength of the attrac

tant smell.

The task of this creature is to maximise the probability of positive reinforce

ment, and therefore to approach the attractant, even though it receives information

about the attractant’s location coded in terms of the landmark odours. Once it has

learned this, if the creature is placed in a new position within the environment, it

heads directly for the attractant.

Barto also describes a multi-layered ANS, with topology as shown in Figure

3.2 [Bar86]. It learns to produce output identical to its input patterns, using only a

global reinforcement signal, but takes some 15,000-20,000 training steps. This slow

learning is due to the fact that some output nodes will be correct when r= — 1 or

incorrect when r= + l, and therefore many nodes may receive reinforcement which

is actually misinformation. Barto and Sutton have worked on complex extensions of

65

y l = x l

y2 = x2

y3= x3

Figure 3 .2 . A multi-layered network o f Ar - p units, learning to reproduce its inputs
[Bar 86].

the A p -p algorithm for delay learning problems, and discussion of these is post

poned until Section 3.3.3.

3.2.2. Constructing the desired output pattern

One way around this difficulty is to have the system use the reinforcement sig

nal to generate a "desired" response, which the system can then be trained to mimic.

This is the approach taken by Yeung [Yeu88], who constructed a system consisting

of two adaptive components. One, the Associative Learning Network (ALN) learns

to map signals from the environment to probabilities p fi that each node j will output

a 1. A second adaptive network, the Non-associative Learning Network (NALN),

receives the reinforcement signal r€{0,l}, and the output of the ALN, and generates

a "desired" probability vector: pji* = A p ji + p ^ , where if r= 1 :

A p j i= $ i (l—Pji) i f j was the action chosen

Apji = — pji i f j was not the action chosen 3.6
and where if r = 0:

^ P ji~ — p2Pji i f j was th* action chosen

Apji = p2*j— — Pji i f j was not *he action chosen 3.7|X|— 1
p i> 0 and 02> O are learning constants, and |X| is the cardinality of the set of possi

ble environmental inputs. Given this vector of "desired" outputs the ALN is

then trained by backpropagation on the difference Pji* — Pp.

66

Yeung calls this "Linear Reward-Penalty", in comparison with Barto and

Sutton’s Adaptive Reward-Penalty learning. The AR- P has only two outputs; when

more are needed and AR- Ps are combined into the ASN, each element learns

independently according to a global reinforcement signal, and this was shown above

to lead to very slow learning. Yeung’s system can have many outputs and can learn

more quickly because each node receives a specific error signal.

3.2.3. Evaluation of reinforcement learning techniques

All of the reinforcement learning systems discussed accomplish learning of

specific responses with non-specific feedback from their environments. In some

cases, this reinforcement is simply a binary signal indicating the presence or absence

of success. The usual approach to learning under these conditions is to apply

changes to the nodes proportional to this reinforcement, and hope that after many

cycles, the correct actions will have been those which most often resulted in positive

reinforcement, and will therefore be the most strongly learned. Even Yeung’s sys

tem, which constructs a "desired” output pattern uses this strategy to construct that

desired output. However, particularly in the case of noisy reinforcement (such as

experienced by Widrow et. al’s blackjack player), this can result in very long learn

ing times.

Le Cun et. al. note that while reinforcement learning is inefficient due to the

provision of low-quality feedback, it is also easier to implement than supervised

learning techniques such as error backpropagation, since the feedback information is

usually a measure of error at the output layer, rather than a computation of this

error at each node, and it is broadcast to every node alike [LGH89].

Reinforcement learning may therefore be desirable from the point of view of

implementation; it is essential if learning is to involve domains where the desired

output patterns are simply not available (as in some control problems) or not

67

defined (as in some game playing).

3.3. P3: Delay Learning

Delay learning in the context of this thesis refers to a restricted form of credit

assignment: the association of actions, undertaken in a particular environment, with

their results or reinforcement; even if that reinforcement is delayed and even if rein

forcement from other actions intervenes.

There are basically three ways in which delay learning has been approached in

the ANN literature: by mapping to a pattern association task, by maintaining his

tories, and by use of successful prediction as a reinforcer. These are discussed next.

3.3.1. Mapping onto a pattern association task

Neural networks are inherently pattern associators: given a certain combina

tion of inputs, they produce a combination of outputs. This process may be stochas

tic, iterative, recursive, etc. But every neural network learning task, from optimisa

tion to pattern classification to pattern storage, may be reduced to an associative

mapping.

Therefore, perhaps the simplest way in which to use ANNs in conditions of

delayed reinforcement is to translate the problem to be learned into a straightfor

ward pattern association task. That is, for every input, the system simply memorises

the correct output. It does not need to be aware of the complex timing system by

which reinforcement may be arriving.

The car-driving system of Shepanski and Macy discussed in Section 3.2.1

[ShM88] is of this sort. It learns an association problem: given a distance to the pace

car, it should output the correct velocity change. When the ANN makes a decision,

it is rewarded or punished immediately. This is a simplification from the problem

apparently being learned: where reinforcement would be delayed until a series of

68

incorrect outputs would result in a crash into the car ahead.

A similar approach is used in the backgammon player built by Tesauro and

Sejnowski [TeS88]. In a game environment, reinforcement ordinarily only arrives at

the end of a game (winning-positive or losing-negative). The backgammon player,

however, learns by being shown examples of a database of game positions, together

with the best possible move for each. It learns to mimic the decisions of the data

base by error back-propagation, and eventually can generalise to the myriad game

states not explicitly represented in the database.

Tolat and Widrow [T0W88] updated the inverted pendulum system of Widrow

and Smith [WiS64] to include "visual’' input. Instead of the four variables of pendu

lum angle, pendulum velocity, cart location and cart velocity, its input consists of

two 5x11 pixel frames showing the current and immediately previous state (velocity

can be deduced from the two static pictures). They provide reinforcement in the

form of a skilled human’s decisions about the correct output in each state, and the

AD ALINE simply has to learn to associate the input patterns with the correct output

actions.

There are additionally several systems which teach robot arms to execute tra

jectories using this method (e.g., [KuR89], [MKS88], [deC86], etc. — discussed

further in Section 3.1.1).

Systems of this type abound and are quite successful at their required tasks.

But the truck-backer and robot arm controllers perform supervised learning: outputs

are compared with the predefined desired outputs, and the network is then trained

by error back-propagation. The backgammon player compares network output with

a carefully constructed evaluation function. Mapping a delay learning problem onto

a pattern association problem can be expected to work well where one of these two

techniques are possible.

69

3.3.2 History maintinance

An obvious way in which to bridge the gap in delay learning between the out

put and the arrival of results is simply to keep a history or trace of the outputs gen

erated at each step. When the results arrive, each decision can be "re-played", and

rewarded or punished according to the results. This history can take the form of an

explicit buffer, or it may be maintained locally and implicitly by an eligibility trace

at each node.

3.3.2.1. History buffers

Several of the systems mentioned in previous sections have used history buffers

to do delay learning. Cecconi and Parisi’s food-finding creature (Section 3.2.2,

[CeP89]) was trained by storing past input/output pairs. When food was encoun

tered, the creature was moved back eight steps, and the decision made at each of

those eight steps was rewarded. The truck backer (Section 3.2.1, [NgW89]) and the

blackjack player (Section 3.3.1, [WGM73]) both save entire sequences until the truck

hits the loading dock wall or the game is finished. Then each move in the sequence

is rewarded or punished depending on this final result. Widrow and Smith’s

inverted pendulum balancer (Section 3.2.2, [WiS64]) performs exploratory learning,

but remembers its sequence of movements; when the external observer judges a

string of moves worthy of (positive or negative) reinforcement, each of the moves in

that string is recalled and reinforced.

There are also a few examples of this sort of learning which do not involve

ANNs per se. One is Langley’s rule-based system which learns to solve the towers

of Hanoi task [Lan85]. In this task, there are three poles and a number n of disks of

different radius. The disks start on one pole, stacked in decreasing size. The task is

to move the disks one at a time so that they finish in the same order on a different

pole, with the constraint that a disk may not be placed on top of another disk with

70

smaller radius. His system constructs rules which are generalised with success and

specificated with errors, and notes complete solution paths (as well as loops, dead

ends, and negative conditions), which may then be reinforced.

The use of a history buffer is successful in limited domains (such as games,

one-dimensional movements, and the like). Its chief shortcoming is that it requires

the buffer, which is of size n. If n is too low, the system will not be able to learn a

problem which involves delays of n + 1 or greater. However, as n grows, the space

needed to store the buffer also grows. Worse, the number of actions reinforced

each time a result arrives also grows; there will be unnecessary (and possibly harm

ful) reinforcement of states which occurred many steps ago and which are unrelated

to the actions giving rise to the results.

3.3.2.2. Eligibility traces

These considerations have lead some workers to adopt eligibility traces rather

than buffers to maintain histories. Each input and possibly output is given its own

trace: which is a value that increases when the input (output) is active, and decreases

to zero with time in the absence of further activity. Then, when reinforcement

arrives, each synapse is adjusted as a function of its eligibility — those which were

active most recently will be affected the most strongly. These traces do not consti

tute a buffer, because re-occurrence of the same input will overwrite an earlier trace.

Space requirements are constant (and linear in the number of variables keeping

traces); the longest possible trace depends not on the space used but on how long it

will take for an eligibility to decay to zero.

The idea of using eligibility traces goes back at least as far as to Mitchie and

Chambers’s BOXES system (Section 3.2.1, [MiC68]). In that system, each possible

state maintained its own eligibility, which was increased each time that state was

entered, and otherwise decayed to zero. On reinforcement the last move made in

71

each state was (positively or negatively) reinforced, proportional to that state’s eligi

bility.

Witten’s controller for Markov environments is similar [Wit77]. Each possible

environment maintains a list of potential actions, and the expected eventual rein

forcement obtained if each action is selected (discounted by how long it will be until

the expected reinforcement arrives). When reinforcement arrives, the expectation is

updated proportional to the strength of the reinforcement as well as how long it took

to materialise; this is simply the same as rewarding each state according to a decay

ing eligibility.

Examples of this approach are found in the work of Barto and Sutton on

modelling classical conditioning (CC). In CC, an unconditioned stimulus (UCS)

exists which when applied elicits a response R. During training, a conditioned

stimulus CR is repeatedly presented just before UCS. Eventually, the CR alone will

evoke the R: it has become a predictor of the UCS, and hence of R. For example, a

dog’s innate response R to the sight of food (the UCS) is salivation. If a tone

repeatedly precedes the UCS, the tone becomes a CS and the dog will salivate in

response to the tone, even if no food is then given.

CC involves delay learning when the CR precedes the UCS, which may be

thought of as the reinforcer r in an ANN context, by some time interval.

Barto and Sutton use equations like the following (e.g., [SuB81]):

/
y / 0 = 2 w*xj»

1=1
3.8

Xji (0 = a x j i (f - l) + Xji (t ~ 1) 3.9

1)+ (l- P)y /t-1) 3.10

AW ji(0 = c [y /f - 1) - y j (t - 1)] xfi(t - 1) 3.11

x and y are traces of the input and output activities respectively. When an input x^

is active, it is "tagged" for some time after with a decaying eligibility x ^ . If

y}(0 = y./(*“ l)> then y/(0~y)(0 *s non-zero whenever node output changes. The

72

result is that if yj changes while x# is non-zero, then the weight relating them ()

changes — more depending on how recently was active.

Then the reinforcement to the system may be defined as:

^ (0 = [y;(0-y}(o]jc>(0 3-12
This provides negative feedback in the form of y}(0> which is a weighted average of

jf’s past output [SuB81].

This becomes a classical conditioning model when the input xjq in this model is

defined as the UCS, and it has a fixed efficacy wjq which is sufficient to produce the

CR y j. The development of the conditioned response R to a CS is equivalent to pro

duction of y j when some x^ is present (/=£()). Such learning is shown in Figure 3.3.

(a)

time

(b)

* 0(UCS)

x l (CS)

x i

y

y n

- J

J 1

m‘>‘ time

Figure 3 .3 . The responses o f Barto and Sutton’s system on the fir s t pairing o f CS and
UCS (a), and on a later pairing (b) — showing the development o f a conditioned
response in a single node j . The weight changes each time y —y > 0; but when
y — y < 0 these changes are not undone because the eligibility icj- has decayed to zero.

Using this model, Barto and Sutton can also generate blocking, selective learn

ing of most reliable or earliest predictors of the UCS, conditioned inhibition, and

higher-order chaining of associations [BaS82].

Klopf’s model of conditioning is related to that of Barto and Sutton — in

essence, it is a compromise between maintaining buffers and eligibility traces, in that

73

it saves the last few input/output pairs, and assigns a decaying eligibility to each.

His weight-adjustment rule is [KI086]:

An^(f) = 2 a z |w j i (^ - z) | [x ^ (t - z) -x ^ (r - z - l)] 3-13
z-Tmin L J L J

where x# and y j are input and output frequencies and where Tm ax is the longest

inter-stimulus interval (ISI) 1 over which conditioning is known to be effective

(perhaps 3 seconds, in .5 second intervals [KI088]); a z is the learning rate constant,

proportional to the efficacy of conditioning when ISI=z (az> a I_1). Only positive

changes to x$ are considered.

Weights are considered to be bounded so that they never cross 0; if it may be

necessary for an input to be represented by both excitatory and inhibitory weights,

two synapses are provided for that input — one of each kind.

System output is given by:

y j(0 = 2 * j i (0 x j i (0 - 0 j . 3.14
1

where 0j is the node threshold.

Klopf [KI086] compares this model with Hebbian learning and also with the

Barto and Sutton model, and shows how it more closely models observed classical

conditioning data in delay conditioning with various timings of CS duration. Also,

while the change to a weight tends to be linear in Hebbian learning, and negatively

accelerated in the Barto and Sutton model, Klopf’s weights show a learning curve

which is first positively accelerated and later negatively accelerated, which is also

more like the biological situation.

The model reproduces a range of classical conditioning effects involving length

and intensity of conditioned and unconditioned stimuli, and their timing with respect

to one another [KI088]. A delay between the CS offset and UCS onset results in

1 The ISI refers to the time between the start of the CS and the start of the UCS. Effectiveness of
conditioning tends to decrease as ISI increases, and is at a maximum when UCS follows the CS very closely
in time.

74

slower and weaker learning in the model, as in animals, since the UCS is not only

paired with the CS going on but also with it going off.

Like the Barto and Sutton model, the node itself supervises its own learning by

detecting changes in the environment. No specific external reinforcement is needed.

In this case, the UCS pathway provides a sort of external reinforcement: when the

UCS is present, the node is forced to fire by the strong weight on that input line,

and this is then the objective event with which the predictions (as evidenced by

recent output) can be compared.

The major difference with Barto and Sutton is that explicit traces are kept in

the xx{t — z), whereas Barto and Sutton keep only an average, x l{ t). This allows

Klopf’s model to succeed on delay conditioning tasks with timing eccentricities such

as CS going off before the UCS comes on, where the Barto and Sutton model would

fail. By doing so, Klopf’s model manages delay learning as a matter of course,

whereas Barto and Sutton enable their model to do delay learning only by providing

the extra mechanism of prediction-driven learning (Section 3.3.3).

McAuley used Klopf’s model to implement a system which learns to track mov

ing objects across a two-dimensional screen [McA88].

Taylor and Gorse have also used a learning rule including eligibility traces to

train i-pRAMs [GoT90]. The rule includes eligibility traces which represent correla

tion between activity at address X in node j and activity (e X j) or inactivity (J Xj) at

the node output:

A ji= a[(yJ- 4)r + P (l-y J—^) (l - r)] [eXJyr f XJ(l - y j)] 3-15

where e Xj- and f Xj replace the x,- in Equation 3.4:

+ 1) = 7«x,(0 + (1 - y)y;X(0

fx j i? + !):= 'ifxji.O + (i - 7) (i - y /) x (0
As usual, is the value stored in pRAM j at address X .

3.16

75

This is basically the same as the other rules except that it is adapted to train

stored values rather than weights, and the positive and negative reinforcements as

well as the active and inactive outputs are treated separately.

Gorse and Taylor have applied a system of 4 i-pRAMs using this learning rule

implement a food-finding creature operating in the world specified by Barto and Sut

ton (Section 3.2.1, [BaS81]). It learns to move efficiently to the attractant, given

only information about the distance of the landmarks, within some 300 training

cycles [GoT90].

3.3.3. Prediction-driven learning

Eligibility traces and history buffers, such as those used in the sections above,

work well in domains where the reinforcement is frequent (so that buffers are small

or only a few states are eligible) and where there is a balance between positive and

negative reinforcement.

Unfortunately, many interesting problems are not that simple. For example,

the inverted pendulum problem described in Section 3.1.1 has been dramatically sim

plified by some of the systems so far which claim to solve it: it has been mapped

onto a non-temporal problem [SaS89], or else a human observer has been allowed to

reinforce strings of moves [WiS64]. The BOXES system tackles the full problem

[MiC68]: reinforcement only comes at the end of a potentially very long sequence,

and it is only ever negative in sign (indicating that the pendulum has fallen over or

that the cart has overrun its track). The penalty for this completeness is that learn

ing in BOXES is very slow, taking at least several hundred trials before balancing is

maintained for any length of time [BSA83].

An alternative is to reinforce the system on the basis of a feedback signal

which is available at every single cycle, even if proper external reinforcement is not.

Such a feedback signal can be defined as the system’s "prediction" or "expectation"

76

of future reinforcement.

The technique dates back to Samuel’s checkers player [Sam63]. That system

executed a move, and the resulting new board state was evaluated. This new evalua

tion was then used to modify the evaluation of the previous board — i.e., to update

the expected game outcome from that point. A sequence of moves is rewarded if its

immediate or near-immediate successors have a positive evaluation, and punished if

they do not. At each move, the current board score is compared with that from

before the move, and the difference between the two is noted. If the score has

changed, the earlier score may be corrected: "we are attempting to make the score,

calculated for the current board position, look like that calculated for the terminal

board position of the chain of moves which most probably will occur during actual

play" [Sam63].

Barto et. al. have proposed a rule which calculates reinforcement based on

r (t) — p (t — 1), where p (t — 1) is the system’s prediction of r (t) [BSB81]:

They then use a separate predictor node, as shown in Figure 3.4, which learns to

output p i t) and provides that prediction to all of the other nodes. Then, weights are

changed not when a change in r co-occurs with a change in yy, but when a prediction

p is proven wrong. The network shown in Figure 3.4 is termed an Associative

Search Network [BSB81], and the learning method is often termed Adaptive Heuris

tic Critic (AHC) learning [Sut88].

A famous instantiation of this is the inverted pendulum balancer [BSA83],

which consists of two nodes, the predictor - the Associative Critic Element (ACE)

— and a single node to learn the proper output — the Associative Search Element

(ASE). The problem is simplified in that the environmental information is passed

through an encoder, so that each possible input state activates a unique ASE and

ACE input, and thereby has its own associated weight.

3.17

77

Predictor Node

Figure 3 .4 . The Associative Search Network [BSB81]. The predictor node (P) learns
to output p i t) , a prediction o f r (t+ 1), and the remaining nodes use this to update their
weights according to Equation 3.17.

The ACE learns mappings from input plus movement to predictions of future

reinforcement. ACE weights are updated according to:

* wACEi = P [r(0 + 73’AC£(0“yAC£̂ “l)]5i(0 3.18
where p and 7 are learning constants. r(f) is the reinforcement signal, which is

always equal to 0 except when the pendulum falls or the cart crashes, whereupon

r(r)= —1. x] is the usual input trace. The ACE compares current with previous

predictions, and updates its weights when these predictions are in error.

Meanwhile, f(t), the reinforcement signal to the ASE, is computed as:

f(*) = r(t) + <*yACE(t)-yACE(t-l) 3-19
The ASE learns mappings from the input space to 1}, representing right

and left moves of the cart; and ASE weights are changed as:

3.20
Each input has an eligibility trace , which is set to the ASE output when that

input xt is active, and which decays to 0 thereafter.

ASE weights are negatively reinforced when predictions of the ACE are

78

wrong, not when explicit failure occurs. If r(f) = 0, then if the last move holds a

better prediction of reinforcement than the current one (meaning

yACE(t ~ ^) > yACE(t))» then the ASE is punished for its last output; while if the

current prediction is better (meaning yACE(*~l)< yACE(]t))> t^en the ASE is

rewarded. If r(f)= — 1, then f (t) = - l-y^c^C* _ 1): if the failure was fully predicted

then no punishment occurs; otherwise recent actions are punished proportionately to

their eligibility xj-(f).

Barto et. al. report that within 100 trials, the ASE/ACE system usually

manages to balance the pendulum upright for more than 500 000 time steps,

equivalent to nearly 3 hours of simulated real time [BSA83].

Rosen et. al. showed that by the addition of some domain-specific heuristics

(namely, encouraging moves which cause the system to traverse a cycle through state

space, and encouraging short cycles more than long ones), the ASE/ACE system can

be made to learn much faster than that - within 100 trials.

ASE/ACE systems have been applied with success to problems such as main

taining a submarine at a constant distance from an irregular ocean floor [PoC90],

finding a set of actions to solve the towers of Hanoi problem [Che90], and imple

menting an adaptive setpoint controller [GuM90].

The idea of prediction-driven learning is extensible to the idea of learning by

Temporal Differences (TD) [Sut88]. In this case, learning is not based on the differ

ence between the predicted and actual outcome, but on the difference between the

current and last predictions themselves. Weight change is based on a rule such as:

A w ji(t) = a (p j (t + l) - p j (t)) '2 l \ , - kVw jiPj(k) 3.21
* = i

Here, p j(t) is the predicted output of node j at time t . V w jiP j(t) is the partial

derivative of the prediction at time / with respect to a change in weight and the

X.,_* are learning constants.

79

Sutton justifies this approach on the grounds that there are several situations

which this system could handle which an AHC system could not [Sut88]. One exam

ple is a world where a state N is usually followed by negative reinforcement with

probability of 90%. A novel state A is entered, which leads to N, and on this

instance N is followed by positive reinforcement. The AHC will (incorrectly) posi

tively reinforce the move from A to N. The TD system will (correctly) assign some

negative reinforcement to A based on the expected reinforcement following state N.

On the other hand if the transition from A to N is followed by negative reinforce

ment, the AHC system will assign a 100% expectation of negative reinforcement to

state A; whereas the TD system will, correctly, assign merely a high likelihood of

negative reinforcement to state A.

Sutton also lists some situations where TD will fail [Sut88]. If there is a situa

tion where state N entered from A brings positive reinforcement, but the entry of N

from any other state leads to negative reinforcement, the TD methods will always

assign expected reinforcement to A based on the usual expected negative reinforce

ment from state N.

Several other workers have constructed systems using variants of AHC and TD

methods.

Williams’s REINFORCE algorithm implements weight changes proportional to

changes in reward and eligibility of the weight [WiP89]; he notes that this and the

AHC can both be generalised to a canonical form of delay reinforcement learning

[WiP89]:

Aw^(0 = a p (0 ^ (0 -S w ji(r) 3.22
where p(f) = r (f)-r (r -1) + 0, and there is a trace of the reinforcement

r (t) = y r (t - l) + (l - y) r (t) .

Schmidhuber has extended AHC learning to deal with a recurrent network, in

place of a single-layer or feedforward action-outputting network [Sch90a]. Like in

80

AHC, a critic network learns a mapping from the state of the action network to

prediction p of reinforcement. It is trained by EBP on the error p(0 — r(0> if rein

forcement arrives at time f, else simply on p (f)-p (f + l). The recurrent action net

work then learns its mapping from external input to node outputs y j on the basis of

the learning rule:

A w ji(t) = \€ (t) y i(t - l) y J(t) 3.23
The system is shown to do delayed exclusive-or detection and the inverted pendulum

problem [Sch90b].

Werbos has worked with systems in which the critic network is trained (by

supervised learning) separately and first, which speeds later learning in the action-

producing network [Wer90].

The idea of learning by comparing changes in predictions also has some sup

port in psychological data; Hull in particular suggested the idea of reverse chaining,

whereby an animal learns first about states which lead to reinforcement, and then

about earlier states which lead to those states, and so on [Hul32]. Through a

phenomenon known as secondary conditioning, states which are known to lead to

reinforcement can themselves becomes inherently reinforcing. Fulcher has con

structed a system which does reverse chaining to accomplish delay learning [Ful89].

The system consists of a action-generating network which learns mappings from

input states to moves, and a second network which learns to recognise secondary

reinforcers — by mapping from input states to a prediction of reinforcement. When

this second net recognises a reinforcing state has been entered, it causes a reward to

be given to the last move of the action-generating network. The similarities with

AHC are obvious: in both, one net learns to output the correct actions, while a

second module learns to predict external reinforcement, and provides internal rein

forcement to the action-generating network. Fulcher’s system was shown to be able

to solve simple maze traversal tasks. By making reinforcement values decrease with

81

distance in time from the primary reinforcer, the system could find the shortest path

through the maze or handle multiple goals.

Finally, it is worth noting that there are systems which do not involve neural

networks but which use prediction-driven reinforcement. An example is Booker’s

rule-based food-seeking creature, which uses verification or falsification of its pred

ictions as a feedback signal [B0088]. The system operates by trying to improve its

predictions, rather than by explicitly trying to find food; motivators such as hunger

as used however to determine the relative effectiveness of stimuli in eliciting

behaviour.

3.4. Summary of Chapter 3 and Conclusions

The two basic means of satisfying PI are learning by trial and error and learn

ing by doing. It was shown that the former is thinly-disguised supervised learning,

while the latter generally involves reinforcement learning.

Reinforcement learning strategies include the use of a global reinforcement sig

nal (or use such a signal to construct a "desired" output). Their principal shortcom

ing is very long training times, compared with supervised learning systems, because

the feedback information is less rich.

The MPLN learning algorithm presented in Section 2.5 is a reinforcement

learning algorithm which learns by doing, satisfying both PI and P2. It was noted in

Chapter 2 that, due to its RAM-based nature, learning is also quite fast. For this

reason, MPLNs have been selected as the vehicle for the current study.

Delay learning may be accomplished by mapping onto a pattern association task

— but only for a limited or simplified problem class. It may be done by history

maintenance using buffers or eligibility traces, or by use of prediction-driven rein

forcement. Use of buffers of size n renders the system unable to learn over delays

of length n + 1 ; but as n grows so do space requirements and the probability of

82

reinforcing an irrelevant state from the distant past. Use of an eligibility trace

requires a fixed amount of space but if the same state is entered twice before rein

forcement arrives, the two events will be confounded. Worse, systems using simple

eligibility traces do not work very well if delays are long or if reinforcement pat

terns are skewed. Such a problem arises in Barto and Sutton’s inverted pendulum

balancer [BSA83]. For this reason, they and others, have turned to prediction-

driven reinforcement: where nodes learn according to signals assessing the (possibly

long-term) consequences of actions. These systems are more powerful and quicker

to learn. However, there are some basic tasks which they cannot master, such as the

following:

action A follow ed by action B - positive reinforcement 3.24
BUT action C followed by action B - negative reinforcement

The type of problem posed by Equation 3.24 is of interest to this thesis. Section 1.2

defines P3 to include situations where reinforcement may be delayed and where

other outputs and reinforcements may arrive in the meantime: i.e., intervening states

and reinforcements may have to be ignored. Yet neither a history-maintaining

approach nor a prediction-driven approach can solve such a problem.

Accordingly, the system presented in the next chapter represents a compromise

between the history-keeping and prediction-driven methods. It maintains a history

buffer, but the states saved in this buffer are selected as a function of the network’s

predictions about their (possibly long-term) consequences.

It will be shown that in such a system, the buffer size n can be small and yet

reinforcement can be delayed by more than n time units and the system can still

learn. The system uses predictions to guide which states receive this reinforcement,

but it can solve problems such as that in Equation 3.24 which prediction-driven (and

simple history-maintaining) systems cannot.

83

CHAPTER 4: A MODEL TO SATISFY P3 - ATTENTION-DRIVEN BUFFERING

4.1. Introduction

In the first chapter of this thesis, three properties were required of the system

under construction:

PI. That it be an exploratory automaton, capable of learning without a training

phase.

P2. That it learn according to a global error signal or evaluation of its behaviour,

rather than requiring provision of a desired optimal behaviour pattern which it

then would try to mimic.

P3. That it be able to learn even when that global error signal is not immediate,

and when other results may arrive in the intervening time.

Chapter 2 introduced the probabilistic logic node (PLN), and developed its

extension, the multi-valued PLN (MPLN). It was claimed that an MPLN network

could be constructed which exhibited properties PI and P2. It remains to design an

MPLN-based system which satisfies P3.

In chapter 3, several approaches were discussed relevant to this issue.

Use of an history trace (Section 3.3.2) is suitably general-purpose, but may

require a great deal of memory to store past states. In cases where the history is a

list of some n previous states, this paradigm disallows the system learning an associ

ation of order n + 1. The advantages of this approach are that it requires little

apriori design knowledge, and that it has been successfully used on problems illus

trating P3. As such, this method is drawn upon in the model described later in this

chapter.

A second strategy, prediction-driven learning (Section 3.3.3), is also a primary

influence on the model. In this approach, the net makes predictions about future

84

world states (as reflected in the net’s subsequent inputs). Positive reinforcement

occurs when this prediction proves accurate; negative reinforcement comes when the

predictions differ from what is experienced. These nets learn by minimising surprise

rather than by maximising some external reward - and may therefore be described

as curiosity-driven models. However, learned response to a state is inextricably

linked with the responses to the states which precede or succeed it in time. Yet one

of the conditions of P3 is that the system should be able to learn a response indepen

dently of intervening events and reinforcements.

The system proposed here, attention-driven buffering (ADB), does keep an

explicit history — a buffer - of past states. Because of space constraints, this his

tory is constrained to be of finite size: only a few previous states may be buffered at

any one time. The machines discussed in Section 3.3.2, buffering only the n

immediately previous states, are restricted to learn associations of order n or less: if

the results of an action occur n +1 time steps later, they will never be paired with the

correct state.

For this reason, in ADB, the retained states are not necessarily the n immedi

ately previous ones. Rather, they are those involving the n most unfamiliar recent

stimuli. A state is placed into the buffer when its outcome is more unpredictable

than that of some state currently stored, and it will then oust that state and take its

place. Simultaneously, the longer a state has been in the buffer, the more likely it is

to be ousted by a new state. If the effects are predictable with great certainty, it is

unnecessary that the new state enter the buffer - in fact, its entry might be harmful

in that it might oust an state whose effects need to be learned.

This buffering on the basis of expectation (attention) rather than on the basis

of chronological ordering is the cue which ADB takes from the concept of

prediction-as-reinforcement. The predictions themselves are not explicitly rein

forced, as in prediction-driven learning, but rather indirectly determine whether a

85

behaviour receives reinforcement by determining whether a pattern is still in the

buffer when the associated results arrive some time after — even if the delay in

arrival is longer than the size of the buffer.

In the remainder of this chapter, the ADB model is fully explained, and a sim

ple example is used to show that the system can learn associations when the delay

between response and reinforcement is longer than the size of the buffer — and thus

a simple history trace would be insufficient. Attention is paid to how an ADB sys

tem might be implemented in hardware rather than in software simulation. Some

analysis of parameters influencing the behaviour of the system is undertaken, and a

series of machines implementing food-finding creatures show that the system actually

works on larger problems.

4.2 The ADB Model

Define an automaton as a 5-tuple { J ,F ,Q yT>G} [LeM89], where

J = {0,1}B is the input set
F = the finite set of states of the automaton
Q = the finite set of output actions of the automaton
T : F x J-*F = the state transition map
G : F-*Q = the output map

Then the environment in which an exploratory learning system operates is an auto

maton itself.

The learning system is describable as a learning automaton, which is a 6-tuple

{J*FyQ yT yG yZ }y where Z is a learning rule to update probabilities of production of

various elements of a [LeM89]. It is also convenient to think of the input set of a

learning automaton as /={0,1}5[J R , where R is the set of possible reinforcement

signals included in the output of the environment automaton and the input of the

learning automaton. The interaction of an environment automaton with a learning

automaton is often as shown in Figure 4.1.

86

Figure 4 .1 . The interaction o f an environment automaton with a learning automaton.

If the learning automaton is a reinforcement learning system, then R consists of

some subset of possible reinforcements {-1,0,+1}, and its learning rule T should

adapt output probabilities so that positive reinforcement is maximised and negative

reinforcement is minimised.

Figure 4.2 shows the learning automaton considered in this chapter.

ACTION

Figure 4 .2 . A learning automaton which generates actions based on proposals o f an
associative network.

Input from the environment automaton is converted into a binary-pixel input pattern,

and this is passed to an associative memory which generates a proposed appropriate

output for the learning automaton. This proposal is then passed to an output

generating subsystem, which translates this proposal into the actual learning

87

automaton outfit, by selecting from the automaton’s output alphabet. There is also
A

input from the environment automaton which serves as a three-valued reinforcement

signal, indicating positive, negative, or no reinforcement. The learning automaton

updates its output map, by adjusting probabilities of generating various proposals,

on the basis of this reinforcement signal.

The system output is based on the proposal made by the learning automaton’s

associative memory. If the output alphabet is binary, then the outputs may be inter

preted as "act" and "don’t act" commands or as decisions to "accept" or "reject" the

current input pattern. The proposal may be interpreted as a measure of the strength

or sureness with which the associative memory predicts action is desirable in the

current state. A strong proposal indicates an action is likely to result in positive

reinforcement, a weak one indicates negative reinforcement is likely, and an inter

mediate one suggests no clear prediction is possible and the learning automaton out

put will have to be a guess.

To satisfy the demands of P3, delay learning, the learning automaton must be

able to cope when the reinforcement signal is delayed and interleaved with other

feedback. To accomplish this, a buffer is provided within the automaton to store

past states until reinforcements arrive. Because the buffer is of bounded size, past

states are not kept indiscriminately.

The entry of eligible states into the buffer is governed by an attention parame

ter, assigned to each state as it is entered. This attention is at a minimum when pro

posal strength is highest or lowest, and at a maximum when proposal strength is in

the middle of its range. In effect, it indicates how "predictable" (positive or nega

tive) reinforcement is in response to an action in the current state.1

1 Use of the term attention to reference unpredictability or surprise follows from die work of Gross berg
and Carpenter on Adaptive Resonance Theory (ART) [Gro80, CaG88]. ART deals with unsupervised
learning — categorising inputs rather than associating them with external reinforcements. But it involves
attention parameters. An input pattern generates a categorisation which then generates a prototypical
pattern: in effect, it reports what it expects that the input looked like since it generated that categorisation.
If the actual and prototype input patterns are sufficiently different, there is an attentional reset, and a
different category is tried (or constructed). In ART, then, attention is used to refer to a condition

88

If the attention for the current state is higher than for at least one currently

buffered element, that element is ousted and its place is taken by a new element

representing the current state, and consisting of the input pattern, the current atten

tion, and the proposal produced. If the associative memory is a neural network, its

proposal may take the form of an output pattern. With each time step an element

remains in the buffer, its attention decays toward zero.

When reinforcement arrives, each element in the buffer is accessed. If the

attention is non-zero, the input pattern is reapplied to the associative network, and

the decision to act is reinforced positively or negatively as the reinforcement signal

indicates. This will encourage or discourage the automaton to repeat its previous

response when next the input pattern appears.

Therefore, at any given time, the elements in the buffer represent the most

recent, most unpredictable states entered. In this way, a compromise is made

between history maintenance (which has high space requirements and limited trace

length) and prediction-driven reinforcement (which cannot separate continuity in

time from contingency). This form of learning is termed Attention-Driven Buffering

(ADB), and is capable of associating input patterns with appropriate output actions

when reinforcements occur with some delay, and if other reinforcements intervene;

it is also able to learn across delays which are longer than the size of the buffer.

This is shown in a small example.

A system was posed the problem of learning to accept all of the patterns in Fig

ure 4.3 except the last, which it should "reject" or fail to accept. The patterns were

presented to the system as input in sequential order, so that the negative pattern

appeared every eleventh time step. This would not be a particularly taxing problem

involving novel inputs to which the system is not sure how to respond, and it causes the current response to
be suppressed and a new one tried. In ADB, attention is also used to refer to a condition involving inputs
to which the system does not know how to respond, and it causes the current input and response to be
buffered to await reinforcement information.

89

(the average Hamming distance between patterns is 0.430), but for the reinforce

ment schedule: following an acceptance, the results arrive three time steps after.

The buffer used was of size n = 3, and so without use of attention-driven buffering,

three later states would have filled the buffer before the results arrived and could be

associated with the appropriate input pattern.

M i l l] I3]l3](3ll3]
0
0 0 0
0

B 8 mm
13]m

00
3 0 0

mm ■ B
NB ■ B
mm ■ f l

a_
_E

mm 0
[3lfl 0
mm 0

0
k) 0
0 000

Ejim H
0 0

|3](30l30^]

0 0
0 0
0 0

0 0

Figure 4 .3 . The training set fo r the example o f Section 4.2.

The associative memory used contained twenty 4-input MPLNs as described in

Chapter 2; each output "1" as a vote to accept or "0" to reject. The proposal was

thus a rating from 0 to 20 for acceptance, and the output generator caused the sys

tem to output an accept decision if the proposal scored at least 18. During reinforce

ment, the buffered input patterns were reapplied, and addressed locations in the

MPLNs were then adjusted by £ + = 0.05 (positive reinforcement) or P“= — 0.25

(negative reinforcement). Negative reinforcement was weighted more heavily

because the negative pattern only occurred once in every 11 pattern presentations.

The system was considered to have learned successfully when 5,000 time steps

elapsed without further negative reinforcement being encountered (or about 455

sweeps through the eleven-pattern training set); this 5,000 was not included in the

calculations of learning time.

The results of training (averaged over 10 experiments) showed the system

could, in fact, learn not to accept the negative element within an average of less than

4,000 time steps (std. dev. >5,000) or less than 400 sweeps through the training set.

90

Figure 4.4 shows that this data is heavily skewed: over half of the trials finished

within less than 1,000 time steps, and only two trials took over 3,000 time steps.

% trials finishing

<500 <1000 <2000 <3000 <15000
Training steps to Converge

Figure 4 .4 . Results o f training with delayed reinforcement on the data o f Figure 4 .3 by
an M PLN-based ADB system.

An alternative measure of learning speed is the number of negative reinforcements

encountered overall, and this averaged 21.3 (std. dev. 26.0).

Not all nets trained learned to accept all 10 positive elements, however. In

particular, since the patterns always appeared in sequence, patterns A, C and F were

always more recent than X when the negative reinforcement arrived. 60% of the

nets trained did learn to accept all positive patterns, A, C and F included, and thus

solved the problem perfectly; overall, the nets averaged a consistent acceptance of

9.1 of the 10 positive patterns - or an average of less than one falsely rejected.

This shows quite satisfactory learning of a reasonably difficult problem: learn

ing with delayed reinforcement even when the delay length is larger than the buffer

size.

4.3 Implementation Issues

David Marr [Mar82, p.24-27] divided the task of understanding an

information-processing system into three levels:

91

• Computational Theory: What is the overall goal, independent of any imple-

mentational issues?

• Representation and Algorithm: How can the theory be implemented (in algo

rithmic terms)?

• Implementation: How can the algorithm be implemented physically?

Marr argued that all three levels were equally important; although thus far this thesis

has concentrated on overall goal (PI, P2, P3) and algorithm (Chap. 2-4), it is worth

making a departure at this stage to consider the possibility of physical implementa

tion of an ADB system.

There are two strategies for implementing an ADB system such as that shown

in Figure 4.2: external and internal buffering. There is no difference between the

performance of these two kinds of implementation, and two automata differing only

in the location of their buffers have equal learning ability.

Figure 4.5a shows a system with external buffering. Each input pattern passes

through the associative memory, and is eventually assigned an attention if action is

taken. If this attention is greater than some element in the external buffer, the

current input and attention replace that element. On reinforcement, each input pat

tern stored in the buffer with non-zero attention is reapplied to the associative

memory. Each node in the memory takes its input from this pattern and reinforces

itself accordingly. The space required for an external buffer scales as n(B + k) , for

buffer size n, a fl-bit external input pattern, and an attention coded in k bits.

A system with internal buffering is shown in Figure 4.5b. Here, the associa

tive memory nodes consist of (for example) /-input MPLN nodes each augmented

with its own n(/+£) buffer. Once attention is calculated, each node compares this

new attention with those of the elements in its internal buffer; if the new attention is

higher than some resident element, a new element is constructed of the current I

node inputs and attention, and this overwrites the resident element. Reinforcement

92

Reinforcement Input
(B bits)

I-inputs
Figure 4 .5 . An ADB system with (a) external or (b) internal buffers.

causes each node to re-apply the /-bit buffered patterns (with non-zero attention) to

its input lines, and update accordingly. Space requirements for an N -node net will

be N n (I+ k); for a single layer net, where B ^ N I , this will be considerably larger

93

than the requirements of the system with external buffering.

By maintaining an internal buffer at the node level (rather than externally at

the system level) updating — putting elements into the buffer and also retrieving

them and reinforcing the nodes — may be done locally and therefore the operation is

massively parallel. If the updates are done on a system level, the operation in the

best case will be constrained by the number of layers in the associative memory.

While the implementation would not necessarily be trivial, it is an encouraging

feature of the ADB model that it can be implemented in this massively parallel,

local, and distributed fashion.

In this thesis, mention will generally be made of "the buffer" to simplify dis

cussion; such usage does not preclude the existence of many internal buffers at the

implementation level.

4.4 Analysis of the ADB System: Delay and Buffer Size

The ADB systems considered in this thesis can be formally described as fol

lows:

• Define an input regime which cycles through the training patterns

P \,P 2 > ' ' * Pd - K pattern P i is accepted by the system, reinforcement r occurs

just before presentation of PD. Then input P i is reinforced with delay D (and

a delay D = 1 implies immediate reinforcement).

• The time t is incremented following each sweep through the entire training set.

• Presentation of input pattern Pt elicits response R ,(t) from the network,

• Define the attention-generating function /(/?,•(*))= [0,a], where for all /:

/(* ,- (0)) = oc

/ (0) = 0

/(1) = 0

94

and where /(*) is non-decreasing 0=sx^i?,(0) and non-increasing P,(0):S;c^l

(f may however be a constant function).

• At time t , when input P,- is presented,

if i= 1, then s tm - i and attn*-f(R i(t)) .
else if f (R i(t))> a t tn , then stm*-i and a t tn - f(R t(t)) .
else if a ttn > 0, then a ttn -a ttn — b, 0^8:Sl.

The maximum attention a will then decay to 0 within m = time steps.

• When r arrives, if attn> 0,

!)-*,.»(')+P (0== *„„(<+!)s i)
P,(f + 1)*-P,(f), for all i ^ s tm

This is the simplest interesting ADB system, in that there is only one non-

neutral input (Pi), and the buffer size is n = l.

First of all, it is easily shown that such a system can learn with delay D, even if

D > n .

Result 1. The maximum delay over which learning is possible is independent o f buffer

size, but dependent on the attention-assigning function f and on the memory increment

8 .

Proof. P i will be in the buffer (stm = 1) if

forall i, l< i< D , f(R i(t))< f(R !(t))-(/-1)8 4.1
and

f(R i(t)) - (D -l)8 > 0 4.2
For Pi(f) ever to be changed from Pi(0) (and hence for any learning about Pi to

take place), Equation 4.2 must hold at least for f=0. Similarly, Equation 4.1 must

hold for every i up to f = Z> — 1, at least when for all l< i< D , f(Ri(t))=0. Then

these conditions may be rewritten as:

f (R i(0)) - (D -1)8 > 0 4.3
This defines the maximum D over which learning can occur in terms of / and 8,

95

with n as small as 1.

Example. Consider f (R i(t)) = sim rRi(t) , -R/(0) = 0.5, and 8 = 0.1. Then by Equation

4.3, D<11.

Thus, it is possible that in an ADB system with n as small as 1, indefinitely

long delays may be bridged using suitably constructed attention-assigning function /

(and memory increment 8).

This is a simpler demand than showing that Pi(°°)-*r, i.e., that the response to

pattern Pj is not only changed, but converges to the optimal response. In fact, this

convergence can only take place if D is more constrained.

Result 2. The maximum delay over which response /^ (f)-! (or to -1) is independent o f

buffer size, but depends on f and 8.

Proof. Consider r= + l (the argument is symmetrical if r = - l) ; and again assume

that all /(J?,-(f)) = 0, l< i< D . During training, response Pj will be reinforced some

m times before f (R \ (t)) falls so low that Equation 4.2 is no longer satisfied and no

more changes to Pi(/) occur. In order for Pi(°°)-*1, R1(°o) = R1(0) + mf}2:l, or

. Pj must then generate sufficient attention (f) after m — 1 reinforce

ments to generate still one more:

/ (P 1(0) + (m - l)p) - (D - l)8 = /(P i(0) + (m - l)P) - (D - l)8 > 0 4.4

Example. Given the same system as above, f(R/(t)) = 8in'irR/(t), R1(0) = 0.5,

 ̂+ = 0.1 and 8 = 0.1, then by Equation 4.4, 4.

If reinforcements occur to more than one element, and particularly if both posi

tive and negative reinforcements occur, the situation is more complicated, and the

maximum D under ideal conditions may not be obtainable in practice. In particular,

if pattern P,- is in the buffer when a reinforcement arrives, its response will be

affected, even if that reinforcement was actually elicited by response to a different

l-*i(0)
m p

96

pattern. In the worst case, if Pt is associated with several negative reinforcements

elicited by patterns close to it in time, may drop sufficiently that the exploratory

ADB system never again accepts Pt and the mistaken response will be unchangeable.

Alternatively, the decreased R{ may lower /(!?,•) enough that, even if Pt is accepted,

it will be unable to enter the buffer, and nothing further will be learned about that

pattern. In the example of Section 4.2, for example, the negative pattern was always

eventually consistently rejected, but the positive patterns which occurred close to it

in time occasionally were rejected after convergence.

This is similar to the continuity/contingency separation problem encountered by

a simple buffer-maintaining or eligibility-using system, as mentioned in Chapter 3.

However, at least in an ADB system, it is possible that these conditions can be over

come — although this cannot be guaranteed.

The problem considered in Section 4.2 (data as in Figure 4.3) was applied to

ADB systems with n ranging from 1 to 5.2 Figure 4.6a shows that there is a trend of

decreasing learning time with increasing n, as each reinforcement can affect more

stored patterns at once. Figure 4.6b shows learning speed in terms of the total nega

tive reinforcements required before convergence; this decreases with larger n, as the

negative pattern is more likely to still be resident in the buffer after D cycles if the

buffer has larger capacity. Figure 4.6c shows that with increased n, the likelihood

of positive patterns becoming associated with negative results drops to zero. This is

due to a larger buffer allowing each element to remain resident longer, and therefore

each positive pattern in the buffer will be positively reinforced up to n times, if the

n — 1 patterns which follow it are also positive.

2 The remaining system parameters were: N (number of MPLN nodes) = 20,/ (MPLN fan-in) = 4 ,19
MPLNs outputting 1 needed for a system "accept", MPLN stored values initialised to 0.8, P + = 0.05,
P“ = 0.25, D = 3, 8=1, $>p (x) = x , f a step function as shown in inset of Figure 4.6.

97

Figure 4.6 . Influence o f buffer size n on (a.) learning f(x)
tim e, (b.) number o f negative reinforcements before 1.0 • /----- y
convergence, (c .) average positives rejected after .8 ■ / \
convergence. Each point is average o f 20 trials. InsetX
shows attention function f used. U.U .5 1.0

4.5. Constructing MPLNs for the ADB System

In the examples above, values of p + = 0.05 and p = — 0.25 were used to update

the stored MPLN values.

A location addressed by a negative pattern receives average reinforcement

denoted p- , which should be less than 0, to ensure that the node output tends

toward zero for that input pattern. The longest a pattern can remain in the buffer is

a cycles, during which the probability of a negative reinforcement arriving is

Jp-p, and of a positive reinforcement is At the a'th cycle, if the element is
\M\ \M\

still resident, it will receive its own (negative) reward. Therefore, the average rein

forcement to a negative pattern should be:

r = (a '_1)^ f p++(a'“ 1)J& p"+p" < 0
For a positive pattern, the average reinforcement should be:

4.5

98

p + = (a ' - l) - l ^ ^ P + + (a '- l)- l7 7 7 T p -+ P + > 0 4.6
\M\ ' ' \M\

In the above examples, ct' = 5, and there are |Af+|=10 positive and |Af“ |=1 negative

elements for a total |Af |= 11. was set to 0.25. Solving Equations 4.5 and 4.6 for

0 + yields 0.020:£ 0 + ̂ 0.09; in fact 0 + = O.O5 was the value used.

This implies that the maximum number of possible values for an MPLN stored

value is o)~20, which is higher than the value g>~11 suggested in Chapter 2. How

ever, use of a smaller <o (and hence of a larger 0 +) would have required a huge 0 “,

and so was not practicable.

Another MPLN parameter, £>?, in these experiments deviated from the value

suggested in Chapter 2; it was &p (x) = x , rather than the steep sigmoid suggested

theoretically in Section 2.6.2:

$>p(.rv) = 0, if jv<0.5 4.7

= 1, if jv>0.5
= 0/1 random ly , if jv = 0.5

Such an output function would mean that the response of a node to a given

input is deterministic except in the case where the stored value is exactly equal to

0.5. Then, once a network has learned to reject all negative patterns, training effec

tively ends, except insofar as current acceptance of positive patterns will converge to

probability of 1. If at this point, any positive patterns are not being accepted, there

is no way for the network to recover from this state.

Alternatively, by providing the nodes with a softer, more probabilistic output

function, it is possible that a pattern which has received negative reinforcement only

once or twice, by virtue of appearing close in time to a negative pattern, will still be

occasionally accepted. In this way, although learning may take some time longer to

conclude than with a steep limiter, it is possible that the network can recover from

failure to accept a positive pattern.

For this reason, the output functions used in most of the simulations which

99

appear in the remainder of this thesis are linear or approximations to linear func

tions.

A final MPLN parameter to consider is £, to which stored values in the nodes

are initialised at the beginning of learning. The probability of an untrained node

outputting a one in response to a random input is <DP(£).

Because the machine being constructed is an exploratory automaton, it will

never experience any reinforcement unless it outputs a decision to act. This argues

that stored values in the MPLN nodes should be initialised to a value such that

<E>P(£) is close to 1. At time t = 0, the probability that a random pattern will be

accepted by the ADB system is:

N
Prob(acceptance) = 2 0 ,^ (0 p(■?))'(!— (Q P(£))N~‘ 4 .8

i'=4»
where there are N nodes and at least nodes must output "1" for the system to

accept the input.

If, for example, Op(x) = x, O.O^x^l.O, then the probability of accepting a ran

dom pattern at time 0 is as shown in Figure 4.7, as a function of £ and of t{», with

N = 25. The figure shows that, particularly for high values of \|/, a high £ is needed

if the system is ever likely to generate any accepts.

For the case where <£p is a steep sigmoid, the situation is even more dramatic:

for £<0.5, the probability of acceptance is 0.0 for all tj/; for £>0.5 it is 1.0 for all i|i.

In this case, £ must be greater than 0.5 for any accepts ever to occur.

However, using a high £ means that more negative reinforcements will be

required before the system learns to stop accepting negative patterns. After one

negative reinforcement to a stored value, s v t in the average case:

j v 1 = £ + p “ 4 . 9

while after m such reinforcements,

svm = £+m[p_] 4.10

100

Prob(Accept)

Figure 4 .7 . Probability an untrained system accepts a random pattern, as a function
o f S, fo r several i|/. N = 25; <bp linear.

Since convergence requires jvm̂ 0,

m *-J=
p-

Using Equation 4.5 and the values a = 5, Jp L= 10 _]lJ_= _i _
\M\ 11’ |Af | 11’

4.11

P + = 0.05,

3 = — 0.25, this becomes:

4.12

This is shown graphically in Figure 4.8. m grows linearly with £: implying that

higher values of § will result in more complete passes through the training set

needed before the network is likely to converge. In simulations, § is often used as

0.8, as a compromise between the drives to increase § and to reduce it.

4.6. Construction of Network Topology

The remaining parameters in the ADB system are N , the number of nodes, /,

the number of inputs to each node, and t]i, the number of votes needed for a system

acceptance to occur. These are dependent on the problem to be learned: specifically

101

m 6

5

4

3
2

1

0.2 0.4 0.6 0.8 1.0 8

Figure 4 .8 . The relationship between m (indicating passes through the training set
required before convergence) and £. Shaded area: m > 6 .28£.

1^+1
on the percentage —j- of positive patterns in the training set, or the probability of

\ M \

a positive reward in response to accepting an arbitrary pattern. As such, it is

independent of the delay learning parameters such as D and n, and of the training

algorithm, as characterised by p + , P“ and 8.

Consider a training set, M , consisting of M ~ Q M negative patterns and M +C M

positive patterns. To learn the problem, no more than t|i-l MPLNs may vote for any

v€M“, while at least i|i must vote for each \l € M +. That is, each v€M” will address

one location in each MPLN, and at least N-tJ/ + l of these must not be addressed by

any p,€M+; simultaneously, each p,€M+ must address locations in at least i|i MPLNs

which are not shared by any v€Af". These criteria are stricter than they would need

to be in a multi-layer net because a single layer network is liable to oscillation of

values if a location must be set two ways.

First, consider one v € M and one MPLN, j:

Prob(y addresses the same location in j as at least one p,€Af+)
= A(v)

|P|
= 2 (- l) ‘ + 1̂ (^v) 4.13i = i

where P(/,v) is as defined in Aleksander and Dobree-Wilson [A1D85], as the proba

bility that an n-tuple of v is sited in the overlap of exactly / elements of Af+:

102

J’O'.v) = 2 (n ^ . v) fo r a l l \a lyaly • • • aI|ax€Af+| 4.14

In this equation, AXtV is the proportion of pixels x and v share.

The probability that this occurs in at most tji —1 nodes, and hence that pattern v is

leamable is:

Prob(y learnable) = ̂ 2 C ^ A (v) x(l - A (v)) N- x 4.15
z=o

The probability that all negative patterns v€M“ are learnable is:

\N\ «j/-l
Prob(M ~ lea rn a b le)= Y [2 C^A(v)x(l—A(v))^“x 4.16

v - l x a 0

The analysis for leamability of the positive training patterns is similar. First, con

sider one p,€M+ and one MPLN, j:

P ro b fo addresses the same location in j as at least one v€M~)

= n(p.)
\l \

= 2 (- l) ' +I* -(«» 4.17/-I
where

= 2 (l l * f i fo ra ll^a lya2y * • * 4.18

The probability that this does not occur is l-(II(p.)); the probability that there is no

such overlap between p, and an element of M ~ for at least nodes, and hence that

pattern p, is learnable, is given as:

P rob(p, learnable)= 2 C^(l—II(p))xII(p,)w x

The probability that all jx€M+ are learnable is therefore:

\P\ N
P rob(M + learnable) = JJ 2J Cx (l —II(p.))xII(p)^"

H“ 1 z=v|»

4.19

4.20

To learn all of M correctly, the net should be constructed so that both Equations

4.16 and 4.20 approach 1.

103

For a given M, both A(v) and Il(p.) increase as I increases. However, as I

increases, the net size increases exponentially, and it is therefore not usually practi

cal to set / very high. On the other hand, as i|i increases, A(v) increases but II(fi)

decreases.

For systems with a large number of training patterns or nodes, it may not be

trivial to solve Equations 4.16 and 4.20, even with the aid of a computer. However,

an exact solution to these formulae is probably not necessary in the general case: the

contribution of this section is more likely to be the understanding of how the param

eter t|i affects likelihood of success of a given net on a given problem. In specific, if

the system seems unable to learn to reject negative training patterns, 4* should be

raised; if it does not consistently accept all of the positive training patterns, i|i should

be lowered.

4.7. The Food-finding Creature

The proceeding sections of this chapter have described the design of a machine

which is claimed to satisfy PI, P2 and P3: an exploratory automaton, which learns

from a scalar reinforcement signal, and which can extrapolate from results which

occur only at the end of a series of actions.

The classic testbed for exploratory learning automata is, by analogy with

animals, a simulated creature which travels around its environment in search of posi

tive reinforcers and avoiding negative reinforcers. This section considers such an

ADB system.

The variant of the food-finding creature problem considered here differs from

those mentioned earlier in this thesis in that the world is not a square or toroidal

grid, but a state transition matrix. This means that knowledge of the current state

can be used to predict future ones, in a manner which is impossible if the world con

104

sists of a number of food objects scattered at random across the grid.

A set of M world states of locations exist, each providing a distinct 64-bit input

pattern to the system. These patterns are given in Appendix A. Of these some

M +Q M are positive while the remainder M ~ Q M are negative. At each time step,

the automaton is in some state x€M, and has a choice of moving left, right or

straight ahead; a transition matrix determines the next state: T'jc€AfXm ove-*yG M . If

y€M+, a positive reinforcement is supplied immediately (as if the automaton experi

enced the taste of food). If the automaton enters y€M", there is an immediate posi

tive reinforcement, followed by a negative reinforcement delayed by some D = 4 time

steps (as if there was a taste of food later followed by nausea).

Thus the task is firstly to learn to predict the three adjoining states from the

current one, and also to select the moves which result in some y € M + and not y €Af~,

even though the results are delayed and contradictory signals may intervene. For

example, negative reinforcement may not arrive until some time after x € M~ has

been entered, and it may arrive just after some element of M + has been entered.

After learning, all negative states should be transient: that is, the system should

never execute a move which leads to a negative state. As many as possible of the

positive states should be re-entrant: that is, the system should be disposed to enter

positive states when a move from the current state leads there.

There are many complications. States which are themselves positive but which

lead inevitably to negative states should be avoided. States in which one move leads

to a negative state should be re-entrant as long as there is at least one possible move

leading to a non-negative state. States entered after a negative one should be not be

associated with negative reinforcement just because there may be negative reinforce

ment which arrives soon after they are entered.

The system used in this experiment was described in [Mye90] and is shown in

Figure 4.9; it consists of two separate learning modules. The associator module AM

105

Figure 4 .9 . The system implementing a food-finding creature.

learns a mapping AM 'jc€M Xm ove-+y€M . Ideally, it should learn a function identical

to the transition matrix T .

This AM is an MPLN network consisting of 64 pyramid structures, each out-

putting a single bit, and therefore the AM output can come to represent the pattern

expected as input if a certain move is made. Each pyramid has as its bottom layer 8

MPLNs which each receive input from two bits describing a proposed move and

eight bits mapped randomly from the current input pattern (each bit in the input pat

tern will be mapped to exactly one MPLN). These 8 MPLNs then feed into a single

second layer node for each pyramid; all stored values are initialised to £=0.5, and

the output probability function is the steep sigmoid of Equation 2.29.

106

After a move is selected and executed, the old input and selected move are

clamped as input and the pattern representing the new state is clamped as output,

and the addressed sv in each MPLN j in the AM is trained as:

Ajv= 10*r, if yj= 1
= — 10*r, if yj= 0

where r= —1,+ 1.

Given the predictions of the AM, a second, judge module JM learns a mapping

from state to desirability measure.

When the automaton enters a state x, the AM produces each of the three states

it predicts will occur if the bug moves to the left, right or ahead (inactivity is not

allowed). The JM processes each of these predictions in turn, and assigns a desira

bility to each. The output of the bug is the move which the modules predict will

result in the highest desirability rating. Again, the JM is a network of MPLNs with

stored values initialised to f=0.5 and outputting according to <I>£, the soft output

probability function of Equation 2.28. The desirability is simply the sum of the out

put nodes in the JM which output a "1" in response to the AM’s prediction.

The predicted next state plus this move are stored in an attentionally-driven

buffer, n = 5, where attention is set as f (x) = n = 1.0, and is decremented by 8 = 0.2.

When results arrive, the JM is trained so that each state in the buffer is reapplied as

input, and the addressed MPLN locations in the JM are updated according to the

rule:

Asv = Kft if yj= 1
= -K r> if y;=0

where k+1=5 and k - x= — 25. This ensures that, if reinforcement is positive, desira

bility will rise; while it will fall if reinforcement is negative. Again, the negative

increment is larger since there are fewer negative elements in M.

[Mye90] describes results with a JM consisting of 25 8-input MPLNs, mapping

107

randomly to the input pattern (and thus every bit in the input pattern was polled 3-4

times). The desirability was therefore a sum in the range 0..25.

The systems were trained by allowing them to traverse state space, with the

appropriate reinforcements, until learning was such that the negative states would

never again be entered. In this experiment, M“ = {A,2?,C}.

After about 2,000 time steps, or about 24 negative reinforcements, the systems

tended to find solutions, although not every positive state was re-entrant. Figure

4.10a shows one such solution: no negative states are re-entrant, and neither is state

R which leads inevitably to a negative state; but positive states S, D, W, K, N, E, G

are also not re-entrant.

(a.) (b.)

Figure 4 .10 . Example solutions found by the ADB food-finding creature: (a .) with AM
and JM trained together, (b.) with pre-trained AM . Circled states A, B, C = negative;
state R leads only to negative states; box encloses re-entrant states at solution.

In this solution, the system experienced 22 negative states within the first 1,000

cycles, and then only entered one negative state within the next 3,000 cycles, after

which its memories were such that the negative states would never again be entered.

By training the AC first and separately, the system learns faster. The JM is

then getting perfect information about the next states; when the two are trained

108

together, the JM is trying to judge desirability from predictions which are them

selves only being learned. The AM can be trained to mimic the state transition T

perfectly within some 2,000 cycles; the JM then learns its mapping perfectly within

only 500 cycles. Figure 4.10b shows such a solution. Although this solution was

found more quickly, it is actually not as good as that found in Figure 4.10a, since

more positive states are not re-entrant. Quick learning means more pathways are

eliminated quickly, among them transitions into positive states.

In this example problem, there are relatively few patterns to be learned, each

uniquely specifies the state, and the transition matrix is deterministic. The chief dif

ficulty lies not in the problem itself but in the learning conditions: the learning must

be on-line, the patterns do not all necessarily appear with the same frequency, and

the goal, ideally, is only very vaguely specified.

A second important aspect of this problem is the necessity for second-order

prediction. Some states in the environment ("cul-de-sacs") are themselves elements

of M + but lead only to states which are elements of AT. That is, although a state

may be positive, it may entail negative reinforcement. The ADB system is able to

learn this backward association and come to avoid the cul-de-sac state. This is a

consequence of the presence in the buffer of previous states when a reinforcement

arrives.

Finally, in this formalism, the system has been restricted to a single "drive".

There has been no distinction between different elements of M ~ and Af+, and no

internal goals which cause the system to alter its behaviour at various times. It

would be possible to consider multiple goals by creating several "drive" monitors,

each of which feed into the JM and thereby affect the subjective desirability of each

state at a given time. Jordan [Jor86] and Sharkey [Sha89b] have considered architec

tures like this, where the input is a combination of external information and internal

state or context.

109

4.8. Conclusions and Summary of Chapter 4

In this chapter, the ADB model was introduced. It consists of an associative

memory whose inputs and corresponding outputs are buffered until reinforcements

arrive. Because the buffer is of finite size, each new input/output pair is assigned an

attention; if this attention is stronger than that of some element in the buffer, the

new pair ousts it and takes its place. Attention is usually related to the unpredicta

bility of an input/output pair: if the results are well known, there is less need for

the pair to enter the buffer.

The several parameters which describe an ADB system were subjected to

analysis. The most important results are these:

• The maximum delay over which learning is possible depends on attention

assigning function and memory increment, but not on buffer size.

• The maximum delay over which response to a pattern converges to 100% (or

0%) is also independent of buffer size.

• In an exploratory context, the MPLN stored values should be initialised so that

there is a high probability of outputting 1 to a random pattern; useful positive

and negative memory increments can be derived as functions of the maximum

possible attention and of the proportion of inputs which are positively rein

forced.

• The number of MPLN 1 outputs needed for a system accept should be raised to

eliminate false accepts of negative patterns; but if raised too high, the system

will begin to fail to accept positive patterns as well (this is a feature of all

discriminator-structured networks).

• The buffer may be maintained at a system level, or locally at the nodes, allow

ing for parallel updates.

110

An example food-finding creature was described that could learn when results

were delayed, interleaved, and even when actions were themselves positively rein

forced but should be avoided as they lead inevitably to negative reinforcements.

It is important to note that as the problems scale up, in number of nodes,

number of training patterns, complexity of training patterns, etc., the associative

memory may have to become more sophisticated, but the ADB paradigm remains

unchanged, as it is defined, in the first case, independently of any such variables as

N , |M|, etc. Section 4.6, which discusses some of these issues, holds for any such

MPLN network, whether or not it is embedded in an ADB system.

If the reinforcement delay were not some constant D , but rather some time in

the range 0..D, the behaviour of the system would not change overmuch. The prin

cipal effect would appear in Equations 4.2, 4.3 and 4.4, where the attention-setting

function f and memory increment 8 would define the maximum average expected

delay D. The simulations described in [Mye89b] and [Mye89c] learned successfully

when positive reinforcement was immediate, and when negative reinforcement

occurred with a delay randomly scheduled 0..4 time steps later.

If the reinforcement delay is reduced to Z> = 1, then the system becomes more

like those prediction-as-reinforcer systems described in Section 3.5. It still has the

advantage of being able to perform backward learning, as various previous states

will still be present in the buffer when this reinforcement arrives; if there is no

correlation between earlier states and the current one, this may slow learning some

what as the earlier states receive spurious reinforcement.

There are several critical aspects of ADB systems which are not discussed in

this thesis, and which form major portions of future planned research. Most not

ably, in all of these simulations, the attention-setting function is the critical parame

ter, and yet it is selected in an essentially arbitrary fashion — either to be a sine

curve, or else as a plateaued step function, if this simplification does not seem costly

I l l

in terms of system performance. The overall shape of the function is clearly

required to be low or zero for high and low vote tallies and maximal for intermedi

ate tallies, but there is a wide range of curves which satisfy these criteria. Perhaps

the selection mechanism which is most in tune with the philosophy of neural network

research is for this curve to be fitted experimentally by the system itself. This

would almost certainly have a considerable cost in terms of learning time, since the

basis on which the system assigns buffer space would be changing even as the

responses to the buffered items change based on their attentions.

Another very important extension will be considering non-trivial decay

schedules for buffered items’ attentions. In human short-term memory, items are

forgotten with time; but they can be maintained for longer if there is a conscious

effort made to "remember" them (I "remember” where I parked the car today, but

will have forgotten this datum by tomorrow in time to store the new parking space)

or if rehearsal takes place (I repeat a friend’s phone number to myself to maintain it

until I am finished dialling the telephone, and then quickly forget it). Both of these

phenomena are analogous to items being maintained in the ADB buffer for long

periods, without any necessary effect on the long-term (MPLN) memories associated

with them. The ADB system would be much more elegant if provided with capabili

ties for rehearsal, longer retention of items which are particularly relevant or which

a higher controller instructs should be maintained, and even the ability to do "one-

shot" learning — memorisation after a single exposure to critical data. However,

these effects seem to depend on the existence of some higher level controller to dic

tate when they should occur, and such a higher level controller is beyond the scope

of the topics considered here.

Finally, it is important to sum up the essential differences between the ADB

system and related work. It differs from simple buffer-maintaining systems in that it

can learn over delays longer than the buffer size. It differs from eligibility-

112

maintaining systems in that it can reinforce temporally distant events strongly when

necessary, but is not required to do this in every instance. It differs from temporal

difference and AHC methods in that it is not tied to associate the effects of an input

at time t with those at f+1 and t - 1, and also in that it can learn about sequences

which involve different reinforcement to a state depending on which states preceded

it.

In the chapter which follows, an ADB system is designed to simulate portions

of the octopus visual attack learning centre. The heuristics and rules derived in this

chapter serve as troubleshooting aids: their primary use seems to be as guides for

how to improve the behaviour of a system.

113

CHAPTER 5: A MODEL OF THE VISUAL ATTACK LEARNING SYSTEM

OF OCTOPUS VULGARIS

5.1. Introduction

The learning automata considered in this thesis have three major properties. They

are exploratory rather than passive (and hence they have no discrete training period)

(PI). Reinforcement does not come in the form of a desired response but in the

form of a global estimation of success (P2). This global success measure may not

occur immediately; it may only become available at the end of a sequence of arbi

trary length, and other reinforcements may arrive in the meantime (P3).

These criteria are not arbitrary, but are conditions which even very simple

animals must overcome in order to survive. Any man-made learning system claim

ing some degree of intelligence must reasonably be expected to overcome these con

ditions as well.

PI and P2 obviously apply to animal life. P3 may not at first glance appear

relevant, if one considers animals which do not seem to be capable of learning

extended problem-solving sequences. However, delay learning is actually charac

teristic of all operant conditioning tasks:

’’After an object has been detected by distance receptors, such as those of
vision or touch ... there is an interval during which the animal moves
towards the object in question (or draws it in) before the ’reward* [e.g.,
taste] arrives. During this interval the classifying system must somehow
retain information about the characteristics of the object that evoked the
approach." [You71, p.246]

Not only must the original information bridge this time gap, but it must also

persist in spite of intervening patterns. In the above example, the intervening visual

stimuli will include an arm reaching out and obscuring the object, and a hugely

enlarged version of the object as it comes close to the body. Eventually the stimulus

will no longer be visible at all as it is drawn into the mouth. Only then do (pleasant

114

or unpleasant) taste sensations arise.

This chapter examines the performance of a neural network system using

attentionally-driven buffering (ADB) in tasks designed to be like those of which a

simple animal is capable.

Eric Kandel, in his Cellular Basis o f Behaviour credits genetics student Chip

Quinn with the following specification of the neural scientist's ideal organism:

"The organism should have no more than three genes, a generation time
of 12 hours, be able to play the cello or at least recite classical Greek, and
learn these tasks with a nervous system containing only ten large, dif
ferently colored, and therefore easily recognizable neurons." [Kan76, p.
45]

Though whimsical, this imaginary animal illustrates the paradox (for cognitive

modellers as well as neurobiologists) in dealing with real animals: either the ner

vous system is so complex as not to be very well understood, or else it is so simple

that the creature is not capable of any sophisticated adaptive behaviour.

The animal chosen for the purposes of this chapter is in some sense intermedi

ate. Octopus vulgaris Lamarck has a much smaller brain than man, but it has been

extensively studied and shown capable of a considerable number of discrimination

tasks. Although the cephalopod brain differs in many ways from the mammalian

brain, it is likely that at least some of the same operating principles may hold.

The remainder of this chapter is organised as follows. Section 5.2 briefly over

views the salient features of the visual attack learning system in Octopus. Section

5.3 then describes the ADB-based system which is to simulate the behaviours of the

octopus:1 OVSIM (for Octopus Vulgaris SIMulation). The two sections that follow

compare and contrast octopus and OVSIM in discrimination learning tasks, normally

and with ablation of some sections of the brain. Finally, Section 5.6 summarises the

chapter, compares OVSIM with a biologist’s model of the octopus brain, and

1 Throughout the remainder of this thesis, the term octopus will be used to refer to members of the
particular species Octopus vulgaris, except as otherwise noted.

115

examines some predictions about Octopus which the ADB approach suggests.

5.2. The Visual Attack Learning System of Octopus vulgaris

Octopus vulgaris Lamarck, the common octopus, is a species of cephalopod

common near the beaches of Naples, and whose nervous system is well understood

due to extensive neurobiological and behavioural studies. Its main food source is

crab, and laboratory specimens can be trained to attack arbitrary simple figures

when rewarded with bits of crab or to eschew others when punished with mild elec

tric shock. Trainable stimuli include black and white plastic geometric shapes

[You64, p. 79 and 128-37], sinusoidal gratings [MuG88], and even crabs [You64, p.

82]. Thus the animal can be taught to respond in ways which demonstrate condi

tioned learning.

Anatomically, the octopus has a reasonably sophisticated nervous system con

sisting of some 500 million nerve cells. The particular suitability of the octopus for

this sort of study derives from the fact that the motor processes and sensory

processes are largely kept separate, and over 300 million of these neurons are distri

buted among the arms, where they control delicate movements and intricate soma

tosensory explorations. The ganglia overseeing reflex reactions are located in the
g

arms as well. Thus, only some 2x10 nerve cells are centralised; even within this

central area, some 50 subregions form well-defined lobes, with limited interlobe

connections.

A further advantage of studying the octopus is that its behaviours are quite

stylised. Octopus vulgaris lives in crannies on the ocean floor, or homes made from

piles of bricks in an experimental tank. From the home, an arm will be put out to

seize a crab swimming by. If the crab is out of immediate reach, the octopus may jet

out, seize the prey and return to cover. The captured meal is paralysed with a

salivary secretion, broken up by beak and radula, and passed into the mouth. Life

i

116

for the octopus consists in large part of repeated decisions to attack moving objects

in the visual field or to withdraw from them.

Other behaviours occur in these animals, including mating, posturing at rivals,

conditioned responses to touch stimuli, and complex skin patterning for camouflage

or to accompany courtship displays and defence attitudes. Some species of octopus

even engage in complex social organisation [MaL85] and migrations in search of

homes [HAR84]. Only conditioned learning about attack decisions for objects in the

visual field will be considered here.

5.2.1. Trainable discriminations

As described above, the octopus does not lead a particularly varied life, and

the obvious and usual experimental set-up is to condition the octopus to accept

(grasp and draw in) one stimulus and reject (release, refuse to grasp, or even flee

from) a second. The usual reinforcement for accepting the positive stimulus is a bit

of crab or fish, and a mild but painful electric shock usually follows acceptance of

the negative stimulus.

Little is known about newborn octopuses, as most laboratory animals are cap

tured and thus have already been exposed to experiences for some time. Probably,

the octopus has some dendritic arrangements, and hence behaviours, set up by

heredity [You64, p. 138]. For example, the naive (untrained) octopus has an innate

tendency to attack moving objects in the visual field, but it will seldom attack sta

tionary ones [MuG88]. Usually, the initial response to a strange moving object is

attack after a considerable delay; if the object turns out to be edible, the delay

quickly disappears, while without positive reinforcement, hesitation becomes even

more prolonged and attacks eventually die away altogether [You65a]. Within ten

trials, according to Wells [Wel68], a normal octopus can learn to accept one neutral

stimulus rewarded with food and to reject another neutral stimulus followed by

117

shock. Neutral objects tested include black and white geometric shapes [You64, p.

79, 128-37], objects at different contrast [You68], and sinusoidal gratings of at least

discriminable frequency [MuG88]. Maldonado [Mal63] describes experiments where

octopuses were conditioned successfully to discriminate on the basis of movement,

brightness, direction of movement in relation to the long axis of a geometric figure

or in relation to the points of the shape, territory, vertical or horizontal extent of a

figure, and analysis of contour. Wells notes [Wel68, p. 167] that octopuses "have

elaborate eyes and can learn to distinguish most of the differences between shapes

that are apparent to us" — although they are apparently not sensitive to colour

[You64, p.113].

A non-neutral stimulus is one where the animal shows some innate predisposi

tion to attack or reject — for example, Young trained octopuses to reject crabs, their

natural food source [You64], The animals can also be taught discriminations involv

ing non-neutral stimuli, such as to attack a crab but reject one paired with a white

plastic square [BoY55].

However, even after long training on any of these tasks, performance is never

perfect (c.f. [MuG88]); the trained animals show occasional failures to accept posi

tive stimuli, and mistaken attacks on negatively reinforced stimuli.

Finally, if one arm of a blinded octopus is taught a discrimination, the learning

eventually (over a course of hours [Wel59a]) spreads to the other arms. The same

transfer is true of visual learning concerning objects presented to a single visual field

and later tested in the other.

An important inability of the visual learning system is a lack of generalisation

over size. At least in the octopus, size generalisation is not conferred automatically

during learning, so that an object at one size or one distance may not be recognised

if enlarged, or moved significantly further away. The fact that an octopus knows to

attack a crab wherever it appears in the visual field appears to be a result of learning

118

with the crab figure at various retinal sizes during the octopus’s approach to the food

object. Young [You64, p. 171-2] has shown that a trained animal does not recognise

a stimulus when doubled or halved in size, and is even less likely to recognise the

object when the viewing distance is altered significantly.

5.2.2. The functional organisation of the visual learning system

The optic lobes, two structures lying just behind the eyes in octopus, receive as

input the signals from the contralateral retina via the optic nerve (Figure 5.1). They

send outputs to the motor system - initiating attack and retreat actions and also par

ticipating in a visual feedback loop with other centres to fine-tune motor actions. In

addition to their role in generating motor responses, the optic lobes are thought to

be the chief region of visual memory storage in Octopus. Together, the optic lobes

contain some 92% of the nerve cells in the central nervous system [You64, p. 108].

The outer layer of the optic lobe receives the retinal information in a relatively

unprocessed state, and is thought to consist of cells which classify visual input in

terms of features such as lightness, movement, etc. [You71, p. 447]. The dendritic

fields of these cells are regular in shape and mostly oval [You71, p. 68], and the

cells may therefore act as shape and orientation-sensitive filters; most are horizon

tally or vertically elongated, and in fact, the animals do seem to find discriminations

based on horizontal and vertical orientation to be particularly easy to learn [You71,

p.470].

The cells of the optic lobe interior receive input from these classifying cells,

but show no distinct fields, field shapes or topographic mapping [You71, p. 476].

They therefore receive information about widely varying areas of the visual field.

These are the cells which, it is supposed, adapt their output appropriately to visual

patterns. They often show two or more axons, which then leave the optic lobe for

the motor centres to initiate attack or retreat actions.

119

SUPERIOR-FRONTAL VERTICAL LOBE CIRCUIT

Figure 5 .1 . Schematic drawing o f the visual attack learning system in Octopus,
including optic lobes and SFVL circuit (adapted from [Boy67], [Wel59b] and [You71,
p. 245 and 196]). M SF= M edian superior frontal lobe; LSF= Lateral superior frontal
lobe; VL= V ertical lobe; SVL= Subvertical lobe.

Vision in the octopus is basically monocular, and each optic lobe gives rise to

an independent motor command to attack or retreat. The decision from the two

lobes may conflict, and this conflict must be resolved either in the motor centres or

elsewhere.

In addition to the motor centres, the output of the optic lobes also travels to

the higher lobes: the median superior frontal, lateral superior frontal, vertical and

120

subvertical lobes. Together, these four lobes form the superior frontal-vertical lobe

(SFVL) circuit which contains cyclic pathways among the four lobes and also with

the optic lobes. Additional input to the SFVL circuit comes from sensors for taste

and pain: the "results” of an executed decision to attack.

The circuit combines taste and pain (positive and negative reinforcement) to

suppress or amplify tendencies for the optic lobe to signal attack [You71, p. 320]. It

also aids in the setting up of optic lobe memories according to the reinforcement of

taste and pain [You64, p. 203]. Its own output does not seem to be altered by

experience.

Most information about the specific functioning of the lobes comes from abla

tion experiments: an animal, naive or trained to perform some discrimination, has

one or more lobes removed, and the function of the missing areas can be determined

by the resulting behavioural changes. The effects are often complex, as other factors

come into play such as postsurgical shock and loss of input to otherwise intact

nearby brain regions. In particular, any ablation of SFVL tissue interrupts both a

self-reexciting chain and also a loop with the optic lobe: thus there may well be loss

of function only indirectly related to the ablated tissue.

Consensus is that the superior frontals serve to increase the tendency to attack,

particularly for distant objects which the octopus has to jet out to reach (c.f.,

[You64,p.202] and [You70]).

The vertical lobe is thought to serve an opposite function: to integrate the

effects of pain, and where appropriate, use them to repress attacking. Its removal

leads to some complicated effects. The primary effect seems to be the inability to

learn avoidance behaviours. Learned responses are maintained intact — the octopus

will still avoid objects it previously learned not to attack — but it cannot learn not to

attack a new object associated with electric shock [You64, p. 212 and 214], particu

larly if it is an object the octopus is innately predisposed to attack, like a crab

121

[You70]. Removing the vertical lobe also results in a reduced level of nonspecific

tendency to attack [You70].2

The subvertical lobe provides the system’s feedback output to the optic lobe. It

combines the amplification and suppression of the other lobes: in effect, it passes

through the superior frontal signals unless the vertical lobe intervenes with pain sig

nals [You64, p. 203]. Again, a principal effect of ablating this lobe is a reduced ten

dency to attack [You71, p. 320].

There is no evidence [You64, p. 230] that the centres of the SFVL circuit learn

with experience or alter with satiation or hunger. Instead they seem to deal with

changes in the tendency to attack any object, and to help assign reinforcement infor

mation to memories within the optic lobes.3

It seems likely that the long-term visual memories are stored within the optic

lobe. The SFVL circuit may maintain short-term memories until results occur and

then pass these memories on to the optic lobe for permanent storage there. Alterna

tively, short-term memories may be stored within the optic lobe, but the SFVL may

be responsible for setting up these short term memories or for overseeing their even

tual transference into long term memory.

5.3 Details of OVSIM - The Octopus Simulation

A system to simulate learning of discrimination tasks like those performed by

the octopus has been built around the ADB concept developed in Chapter 4. The

2 It is suggestive that the vertical lobe, which may be the SFVL lobe most implicated in learning, is also
the only one to contain many amacrine cells - in fact these integrating neurons make up most of its bulk
[You64, p. 207]. Amacrines have been implicated elsewhere in learning; Wells and Young [WeY65] have
shown that at least a few thousand of these cells are necessary for (touch) learning to take place.
However, their exact function remains a mystery (J. Z. Young, personal communication, May 1990) — in
Octopus and in the brains of other animals.

3 It is believed that the SFVL circuit is also involved with the transfer of learned knowledge from one to
the opposite optic lobe. An octopus with training in one visual field, and hence in one optic lobe, can
solve die same problems on the other side [You64, pJl68]; an animal without the vertical lobe cannot do
this. In touch learning, experience with a single arm ima blinded octopus will be likewise distributed to the
other arms [Wel68, p. 172], but the transfer may take up to an hour.

122

Octopus vulgaris simulation, OVSIM, buffers "visual" images which may be

"attacked" until the arrival of "taste" or "pain" results.

The OVSIM system is illustrated in Figure 5.2, and may be compared with the

generalised ADB systems shown in Figure 4.5: the non-adaptive classifying cells and

adaptive memory units of OVSIM represent the associative memory of the ADB sys

tem; OVSIM’s attention-setting and output-generating units match those in the ADB

system, and it will be claimed later that they may correspond to the SFVL circuit in

Octopus.

5.3.1. Stimuli

OVSIM was designed to learn discrimination tasks resembling those to which

Young, Wells, Boycott and others trained Octopusy and in which the reward (food or

pain) only occurred after a sequence of attacking. In OVSIM, as in Octopus work

(e.g., [You58a]), a trial is defined as the presentation of a stimulus and terminates

when reward is given (if positive), punishment is given (if negative), or a certain

time limit expires in the absence of attacks. For the animal, reward is a small bit of

fish (or if the stimulus is a crab, the animal may be allowed to eat this directly) and

punishment is a mild shock. In OVSIM, reward and punishment are activation of

dedicated channels, which affect the stored memories as described in Section 5.3.5.

OVSIM stimuli consisted of binarised patterns, each 32x16 bits in size, allow

ing for simultaneous presentation of two 16x16 stimuli. The complete set of stimuli

used are shown in Appendix B. The patterns were constructed to resemble the

stimuli used with the octopus, as this simplifies later discussion and because these

sorts of patterns contain the features which the first level of OVSIM visual process

ing was designed to pick out (see Section 5.3.2). Of course they contain no semantic

value for OVSIM - other than that learned during training.

123

DECISION TO ACTo

Figure 5 .2 . The OVSIM system. 4200 classifying cells perform feature-extracting
functions; this recoding is passed as input to the 1615 adaptive memory units. The
summ ed output o f these adaptive memory units is transformed into a binary act decision
as well as into an attention measure, governing the placement o f the current input
pattern into the ADB buffer.

In Octopus experiments, geometric stimuli were often plastic figures measuring
2

about 10 cm (e.g., [You58a]), approximately the same size as the crabs. This con

vention was followed in OVSIM stimuli, as Appendix B shows.

One OVSIM trial consists of one or more cycles, each consisting of a presenta

tion of the input pattern to the associative memory, a system output, and the

response of the world to this output. A trial may last up to 20 cycles if no attack

occurs; after this the trial is terminated and scored as a no-attack. If an attack

124

occurs, the (positive or negative) reinforcement arrives 4 cycles after — during the

interval, the visual input changes to a series of patterns representing the extension of

an arm to the object pictured, the drawing of this object downward as if under the

mantle, and finally the disappearance of arm and object. The arrival of reinforce

ment terminates the trial. Example sequences following attack on a positive and

negative pattern are shown in Appendix C.

In octopus training, stimuli are jiggled by hand at a rate of 3x per second to

ensure movement-detecting cells in the octopus eye or optic lobe are stimulated.

In OVSIM, patterns are jiggled one bit up or down on each cycle to simulate

the effects of movement. Positive and negative trials are alternated (there is no evi

dence that Octopus can learn to discriminate on the basis of sequences [WeY65], and

indeed this version of OVSIM cannot do so either).

Octopus experiments have involved trial lengths as short as 15 seconds [BoY56]

or 30 seconds [You58a]; a more usual trial length is 2 minutes (e.g. [BoY55]). If 2

minutes in Octopus is to be equivalent to 20 cycles in OVSIM, then 1 OVSIM cycle

represents about 6 seconds of stimulation. Young [You58a] and others leave at least

40 minutes between trials. The Unspecific Effect which follows reinforcement is

known however to persist 1-2 hours (see Section 5.5). Accordingly, except as other

wise described, OVSIM trials are separated by 1200 cycles, or an effective 2 hours.

There is no input during these periods.

As mentioned above, in laboratory conditions the negative stimuli are usually

left visible even after an attack, allowing the animal to make a further attack if time

(and inclination) allow. In OVSIM an attack ends the trial. This decision was made

for two reasons. First, allowing multiple attacks per trial means that number of tri

als does not accurately reflect number of learning experiences. Second, leaving the

negative stimulus visible after reinforcement leads to confounding effects in condi

tions of damaged learning systems, as will be discussed in section 5.5.

125

5.3.2. Classifying cells in the optic lobe

The first layer of processing in a visual system generally recodes visual infor

mation into feature space. It is known [Mal63] that Octopus can discriminate shape,

movement, brightness, contour, vertical or horizontal extent. There are no neural

cells besides the receptors in Octopus retina [HaL84] — whereas vertebrates have 5-6

levels of processing retinal cells — and the processes of these receptors form the

optic nerve. It is likely that feature detection takes place in the optic lobe.

Even though the exact types of classifying cells in Octopus are unknown, there

are certain features which trigger the visual systems in most species. Blakemore lists

these as: contrast or edges, movement, direction of movement, convexity or size,

orientation of edges, and overall illumination [Bla75]. Therefore, the feature detec

tors in OVSIM were designed to extract these features from the input patterns.

OVSIM’s front line of processing consists of Classifying Cells (CCs), which

search for the existence of predefined features.4 These cells cover overlapping 3x3

bit areas of the retina, and output ”1" if the feature is present and otherwise output

"0". There are 10 types of CC implemented, detecting whiteness (M0"s), blackness

('T's), on-surround patterns, off-surround patterns, vertical edges, horizontal edges,

and movement upward, downward, left and right. The patterns to which each type

of CC respond are shown in Appendix D. 420 9-bit fields exist on the 32xl6-bit

input patterns, each covered by one of each type of CC; hence 4200 CCs exist in

total.5

The CCs are non-adaptive, and are implemented as RAMs which store a ”1" at

locations addressed by patterns representing the desired features, and ”0" elsewhere.

Mammalian cells in early somatic and visual cortex with feature-detecting function

4 The general topology and nomenclature of the OVSIM Optic Lobe follows from Maldonado’s model
of the octopus learning system [Mal63] which is compared with OVSIM in Section 5.6.2.

5 In the simulation, only a single one of each type of CC exists, and is "moved" across the input pattern,
and its response at each location is noted.

126

(like those the CCs emulate) self-organise during a critical or sensitive period in

infancy, after which their functions remain relatively fixed [Bla88 p. 37-39]. ̂ This

seems logical; higher levels must learn discriminations based on the feature encod

ings of early levels. If the output of early levels is subject to frequent change, the

information stored in higher levels will be quickly out of date unless it is constantly

updated to conform. The simplest solution seems to be to hold the transforms exe

cuted by the early layers to be constant.

5.3.3. Memory cells in the optic lobe

Maldonado [Mal63] proposes that the octopus’s optic lobe outer layer first per

forms feature extraction (as simulated by the CCs), and that its inner layer of cells

learn and store appropriate responses to patterns of CC activity representing aspects

of the stimulus.

These adaptive cells are represented in OVSIM as Memory Cells (MCs). MCs

are units with 6, 8, or 10 inputs from the CC outputs; enough of each sort of MC

exist to cover all of the CC outputs with 98% probability: there are 686 6-input

MCs, 515 8-input, and 414 10-input, for a total of 1615. Connections from CC out

puts to MC inputs are random but fixed throughout a simulation.

Each MC is implemented as an MPLN augmented with a buffer. The binary

MC input X forms an address into the MPLN memory, accesses the stored value at

that location svx , and is transformed into binary output according to the output pro

bability function:

$ p(svx) = svx 5.1
The summed output of all 1615 MCs is used to generate an output action for OVSIM

6 The somatic cortex of adult animals can certainly reorganise — for example an adult monkey trained
to a fine pointing task will develop an enlarged cortical representation for the active finger [Bla88 p. 138],
but this is on a much smaller scale than the changes during the critical period.

127

and to generate an attention value.

The buffer associated with each MC has capacity to store two of the previous

addresses to that MC. When reinforcement r= — l,0 , + l arrives, each of the buf

fered addresses with non-zero attention is reapplied to the MC’s MPLN, and the

value accessed svx is adjusted as:

A svx = rH 5.2

Section 5.3.5 defines H = 1.

It remains to define £, the value to which the svx should be initialised before

training. If £=0.5, approximately 50% of the 1615 MCs will output "1" in response

to the first pattern - for a total of about 808. If the output-generating function is as

described in Section 5.3.4, then the probability of attack on a given cycle will be

0.15, while the probability of attack on a given trial (20 cycles) will be 0.96. This

ensures that most new figures will be attacked on their first presentation.

This agrees with the observation by Boycott and Young [BoY56] that "an

octopus trained to attack crabs usually comes out to attack the figures used here on

their first presentation."

5.3.4. Output generation and assignment of attention

The output from the MCs may be summed to yield a number, V , in the range

from 0 to 1615, indicating a strength or confidence in the decision to attack. To this

sum is added UE+ and UE-, the current unspecific tendencies to attack or retreat

(see Section 5.3.6), and the total is then transformed into a probability of attacking

as shown in Figure 5.3a, and thence into an all-or-none decision to attack.

In Octopus, there are two competing decisions from attack learning and retreat

learning subsystems; ideally, when one votes to attack, the other votes to "not

retreat", and so forth. When conflicts do arise between the outputs of these two sys-

128

Prob(Attack) (a) Attention Assigned (b)

Figure 5 .3 . The junctions used by OVSIM to (a) generate output from sum m ed votes
and (b) assign attention from sum o f votes.

terns, some mechanism such as lateral inhibition must resolve the dilemma. The

retreat learning subsystem does not form part of this study, and so the competition

and inhibition are not considered further here.

At the same time as V , the total number of votes, is transformed into a deci

sion whether to attack, it is also used to assign an attention to the current input

image, as shown in Figure 5.3b. Attention is highest for 600:sV < 850 — the most

random responses from the system. It decreases as V becomes more polarised —

indicating confidence that attack will be rewarded or that it should be avoided. Once

the results of an action are sure, there is little more to learn about that stimulus, and

it is not so important that the system retain information about it against arrival of

reinforcement. The curve is skewed so that inputs which generate a low probability

of attack always also generate non-zero attention — as, if an attack occurs, there is

obviously still more to be learned if they are to be avoided, while inputs with a high

probability of attack generate zero attention so as not to take up buffer space.

Each MC contains a buffer with capacity to store two of its previous input pat

terns together with the attention for each. If the new, current input is assigned a

higher attention than one of the buffered elements, then it overwrites that element.

Attention decays linearly on each cycle, and so even if never overwritten, elements

129

may only stay in the buffer for a finite period while their attention is non-zero: the

decrement to attention is 8 = 1/6, and so the maximum delay bridgeable is 6 since for

all MCs i , / (t f f(0)) = l.

5.3.5. Attack and reinforcement

When OVSIM decides to attack, the action is treated as indivisible and irrever

sible. This is a simplification, of course, but as Section 5.6.3 discusses, there is

some evidence that attack is also irreversible in Octopus.

When an attack is made, the input sequence reflects this activity. In the case of

the octopus, the animal moves toward the stimulus, grasps it and (if positive) draws

it in and eats it. All of this provides input to the visual learning system which is

essentially irrelevant: the important image with which to associate reinforcement is

the original stimulus presentation. The OVSIM input, on attack, initiates a stylised

sequence in which an "arm" pattern is superimposed on the stimulus pattern, and

both are drawn down and out of sight, as if they had moved under the mantle

towards the mouth. At this point, positive or negative reinforcement is admin

istered. If negative, the object is then released and returns to its previous position;

if positive the object remains out of sight as if ingested (see Appendix C).

In the octopus, negative reinforcement occurs immediately upon touching the

electrified stimulus, while positive reinforcement might derive from the taste sensa

tions, or even the visceral signals indicating food in the gut. In OVSIM, both types

of reinforcement occur at the same delay: which is in some sense a compromise

between the two extremes. The negative case is made harder by not allowing

immediate reinforcement. The positive case is made easier in that only a small

number of discrete images occur before reinforcement.

Reinforcement entails setting a quantity, H , to +1 or —1 for the next 10

130

cycles, or about 1 minute of simulated time. After this period, H reverts to its

default value of 0. Its effects can be seen in the MC learning rule of Equation 5.2;

so each pattern in the buffer can receive a maximum of +10 or —10 reinforcement.

In order that all are more likely to remain in the buffer for the full reinforcement

period, attentions of all buffered input images are boosted by a factor of 10 when

reinforcement is detected.

5.3.6. The Unspecific Effect parameter

Section 5.5.3 will discuss the Unspecific Effect: an animal is more likely to

attack an arbitrary figure after feeding and less likely after receiving a shock. This

is in addition to the learning about the specific stimulus-response pair which

occasioned the food or shock. This unspecific tendency decays logarithmically and

disappears within 1 or 2 hours.

In OVSIM, there are two competing forces - UE+ which is an unspecific ten

dency to attack after receiving positive reinforcement, and UE-, which is an

unspecific reluctance to attack after receiving negative reinforcement. They are

scalars: UE+ is added to and UE- subtracted from V, the total votes. The result is

then converted into a probability of attacking as shown in Figure 5.4b.

At rest, UE+ = 300 and U E — = 200, so that there is a slight tendency to attack

even in the absence of any reinforcement. This is supported by the fact that upon

removal of the brain centres in Octopus believed responsible for the Unspecific

Effect, a slight decrease in tendency to attack is observed (see section 5.5.2). When

positive reinforcement arrives, UE+ is set to 600, and thereafter it decays as

300(1— /o £ (l+ 0.0027")), where T is the number of cycles since reinforcement.

When negatively reinforced, UE- is set to 600 and decays as

300(1—/og(l+0.002T)). The resting values for both UE+ and UE- are reached

after 900 cycles, or 1.5 hours of simulated time.

131

5.3.7. Simplifications in OVSIM

Several effects are observed in Octopus which allow OVSIM to be simplified

without too much deviation.

• The octopus will eat up to 20 10-15g crabs per day [BoY55].

• During experimentation, octopuses are maintained in a constant state of hunger

(e.g., [You60]).

• Once trained, the probability of the octopus attacking an object is independent

of hunger [You58b].

• Octopuses trained not to attack the negative figure, and then starved, would

not attack that figure even if it was shown three times a day for three days

[BoY55].

Therefore, no hunger, satiation or diurnal effects are incorporated into the OVSIM

model.

• During training, the animal is usually to be found in its ’home’ at one end of

the tank, and the training stimuli can be presented at the other end of the tank,

a near constant distance of 80-90cm [BoY55]. Therefore training occurs at one

retinal size.

• Octopuses have not been shown to generalise over size changes [You64,

p.172].

The MPLN networks used as the adaptive memory in OVSIM have no inherent size

generalisation capability, and this issue has not been considered further.

• The octopus usually watches as the stimulus figure is lowered into the tank,

and then, if the figure is positive, attacks as soon as the figure touches the bot

tom of the tank.

OVSIM trials begin with the stimulus pattern centered on the retina, and do not con-

132

sider the lowering into view of the stimulus or the tracking mechanisms by which the

octopus locates the stimulus.

There are several further effects in Octopus which are ignored in OVSIM

because a decision was made to restrict OVSIM to modelling the visual attack learn

ing system only:

• Binocularity and transfer of information between the optic lobe associated with

each eye.

• Interplay of other simultaneous systems involving camouflage, mating, etc.

• The touch learning system which is quite comparable to the visual one.

• Ability to operate in continuous time with much more complex retinal informa

tion.

• Existence of the antagonist retreat learning system.

• Simple forgetting, as opposed to forgetting induced by interference from new

memories.

Hopefully, some of these issues may be addressed in future work.

5.4. Trials with the Simulated Octopus

Using OVSIM it is possible to perform a number of learning tasks which are made

to model, as closely as possible, experiments with Octopus. Some comparisons are

perforce limited: for example, it is difficult to calculate and replicate within a com

puter program all of the subtleties of an octopus learning to reject a proffered crab,

its natural food source. Still, repeatedly, the OVSIM learning curves share many

characteristics with learning curves obtained for Octopus. This suggests that OVSIM

has some success in "surviving" in an environment like that which Octopus faces, and

also that the ADB model may share some facets with the learning system in Octopus

vulgaris.

133

5.4.1. Discrimination tasks

One task which the octopus learns fairly quickly is discrimination of vertical

and horizontal rectangular figures — attacking one and rejecting the other. Wells

describes animals which can learn this task within about 10 trials [Wel68, p.168].

The animals can also easily learn to attack a crab (their natural food source) when

shown alone, but to reject it when paired with a white plastic square; Boycott and

Young found that the octopuses could learn this discrimination within about 10 days

at three trials a day [BoY55]. This task not only involves learning not to attack a

food object, but also involves a negative stimulus which actually subsumes the posi

tive stimulus.

OVSIM was trained first to discriminate between patterns of vertical (positive)

and horizontal (negative) rectangles, p_V and pJH7. In these experiments, £ was set

to 0.35, and so the system had a probability of 0.2 to attack a random figure - this

was chosen to match with the data from an octopus experiment ([You64, p.226]).

With that initial setting, V , the number of MCs voting to attack, approached unity to

p_V and zero for p_H. The evolution of V is shown in Figure 5.4. Figure 5.4 also

shows the evolution of percent attacks by Octopus in the vertical/horizontal discrimi

nation task; the two curves have close fits in shape.

OVSIM could also learn to accept the crab image p_C and reject the crab-plus-

square p2C within about 10 trials. This task does not retain the biological signifi

cance of the Octopus task, but shows that OVSIM can learn when the negative

stimulus subsumes the positive one.

7 All OVSIM stimuli in the experiments reported here are shown in Appendix B and referred to by the
abbreviated names given them there.

134

Percent response

Figure 5 .4 . Learning discrimination tasks. The solid line shows the evolution o fV (as
percentage o f M Cs voting to attack) in OVSIM to the positive p_V and negative p_H
patterns, averaged over three simulations. The dashed line shows the percent attacks
by Octopus as a function o f trials fo r the same task (from [You64, p .226]); data
averaged from 25 animals.

5.4.2. Fall in delay to attack

When the experimenter trains an octopus to attack crabs (or any stimuli) in the

tank, the animal at first attacks only after a long delay or observation period which

may take several minutes [You64, p. 71]. With repeated trials, the octopus gradu

ally decreases both this delay and the overall time taken to carry out the attack.

Eventually, as shown in Figure 5.5a, the octopus will attack as soon as the stimulus

touches the tank floor.

Learning in OVSIM shows the same characteristic decrease in delay to attack;

Figure 5.5b illustrates the effect for learning to attack the crab pattern p_C. Ini

tially, when the number V of MCs voting for attack is low, it will on average take

several cycles before a system attack occurs; as V rises, the average waiting time to

attack falls until attacks will usually occur on the first cycle of each trial.

The inverse situation occurs to negative stimuli in both OVSIM and Octopus:

delay to attack a negative stimulus gradually increases, until attacks cease altogether

135

Tim e To Attack (sec) Time To Attack (cycles)

Figure 5 .5 . The fa ll in delay to attack a positive stimulus (crab) in (a) Octopus,
averaged over 10 animals, and in (b) OVSIM, averaged over 3 simulations.

within the finite length of a trial. Delays never cease altogether in Octopus

[MuG88], and if the negative stimulus is left in the visual field indefinitely, an attack

will occur eventually. In OVSIM, attack is probabilistic, and given enough time an

attack will also occur as long as the probability is non-zero.

The occurrence of this phenomenon in OVSIM as a result of its probabilistic

nature lends support to the view that the Octopus may also learn by adjusting proba

bilities of attack, and repeatedly polling them throughout a trial.

5.4.3. Relearning

Another learning characteristic which OVSIM shares with Octopus is that

recent information may disrupt previously stored information, although the old

information is seldom lost entirely.

Boycott and Young [BoY55] subjected several animals to a relearning task.

Each octopus was given three trials with a crab, which it was allowed to eat, fol

lowed by three trials with crab and square and shock, if attacked. This routine was

repeated for several days. Each day, the response to the negative stimulus

decreased; but overnight and after interference from the positive trials, the response

to the negative stimulus would have regained some strength, and rejection would

136

have to be relearned. However, the amount of relearning required each day

decreased, implying that long-term memories were being formed.

This experiment was simulated in OVSIM using the crab (p_C) and crab-plus-

square (p2C) patterns as positive and negative stimuli. The learning routine con

sisted of alternate blocks of three positive and five negative trials. Figure 5.6 shows

the change in probability to attack each stimulus. The tendency to attack p_C grew

steadily; after trials with p2C, the response to p_C dropped and had to be relearned.

Prob (Attack)

Figure 5 .6 . Learning with interspersed blocks o f positive (p jC) and negative (p2C)
trials; solid line is trials with p jC , double line is trials with p2C . Each block o f
training interferes and weakens the opposite memory; but as learning proceeds the
interference is less. Data averaged from 10 simulations.

Each block of trials with p_C begins with a slightly higher response than the previ

ous block, until by the fourth block of trials, there is little loss of learning.

Meanwhile, the situation is reversed for the negative stimulus: the response to p2C

steadily decreases within each trial, but rises for the beginning of each block of

negative trials. By the final block of negative trials, there is little disruption of the

response.

OVSIM’s memory is such that any positive reinforcement increases the proba

bility of attacking an arbitrary figure. Therefore, in the absence of negative rein

137

forcement (as during a block of positive trials), the response to the negative stimulus

also rises. As the negative memory is strengthened over repeated trials, the effect of

the positive reinforcement is less able to interfere. Similarly, as the positive

memory is strengthened, negative reinforcements disrupts it less. Because this effect

mirrors that in Octopus, it is again support for a view of Octopus as a probabilistic

machine with characteristics similar to those in OVSIM.

5.4.4. Transfer of discrimination learning

Octopuses which have learned to attack a crab but not one shown with a white

square show some transfer of this learning to similar situations: they will not attack

a crab shown with a circle or triangle of equal area, or one shown with a square of

half the area of the original [BoY55]. This indicates that the optic lobe encodes

these patterns more or less equivalently.

In the case of the OVSIM simulation, it is possible to determine exactly how

the CCs classify input, and thus to predict how the system should respond to new

input.

15 OVSIMs were trained to make the crab (p_C) versus crab-plus-square (p2C)

distinction. The square was then replaced in test patterns by a smaller square (p3C),

the outline of a square (pFC), a circle (pcC), a reversed circle (pRC), and a triangle

(pTC). Figure 5.7 (top) shows the percent overlap of each new composite picture

with the original positive and negative stimuli - in terms of how many CC outputs

change. (Each instantiation of OVSIM has identical CC response to a pattern).

From this measure, it is to be expected that the system would respond to pcC in a

strongly negative fashion, to pTC and pFC in a more weakly negative fashion, and

to p3C in a strongly positive fashion. Figure 5.7 (bottom) shows that the average

actual responses to each pattern are consistent with these predictions. A response

near 800 votes - half of the MUs active — would be noncommittal.

138

— Percent overlap to positive and negative patttems

1000
900

800
700
600

pcC
Average Votes

pTC

pcC pTC p3C pTC

Figure 5 .7 . Transfer o f learning. The percent overlap (top) o f new patterns with the
positive (p jC) and negative (p2C) trained patterns suggests tendency to attack should
be strongest fo r p3C and weakest fo r pcC; actual system responses (bottom) agree.
Response data is average over 15 simulations.

One indication of these experiments is that OVSIM encodes retinal input in at

least partially the same way as does the octopus optic lobe. The situation in the

animal is obviously more complex than in the simulation. By experimenting with

different combinations of classifying cell type and number in the simulation, it

should be possible to obtain responses which mimic the octopus’s closely, and which

therefore provide some constructive hypotheses about how the animal accomplishes

this task. Unfortunately, such experimentation probably requires much closer corre

lation between visual input to OVSIM and to Octopus than is feasible without more

sophisticated visual input capability in the simulation.

139

5.4.5. Multiple discrimination task

Boycott and Young [BoY56] have shown that octopuses can hold at least three

discriminations in memory at once. They trained animals to attack a small square

but not a large one; these trials were then interspersed with training to attack a verti

cal and not a horizontal rectangle; and finally, the animals learned also to accept a

white circle and reject a black one. Figure 5.8 shows how training progressed for

one animal.

% Attacks

0 20 40 60 80 100 120 140
Trials

© --0 small square □—□ vert. rect. A —A white circle

o •*0 large square □ - 0 horiz. rect. A —A black circle

Figure 5 .8 . M ultiple discrimination learning in Octopus, adapted from [You64, p.
132].

The following points may be noted:

A. The second, vertical/horizontal discrimination takes some 40 trials to learn.

Ordinarily, this is an easy discrimination for the octopus to learn — and should

perhaps take only 10-20 trials to learn, as shown in Figure 5.5.

B. When the second discrimination is introduced, response to the first stimulus

pair becomes less accurate. Errors are mostly failures to attack positive

stimuli.

C. After introduction of the second stimulus, the first discrimination never quite

regains its previous accuracy.

140

D. Adding the third, white/black discrimination task interferes little with the pre

vious two. Young [You64 p. 133] hypothesises that this is because contrast

discrimination is recorded by a different set of cells from those encoding shape

discrimination.

E. Eventually, all six stimuli elicit mainly correct responses.

OVSIMs were trained to attack a 4x4-bit square (p_3) but reject a larger one (p_l)

until three responses in a row to each were correct. Trials with these patterns were

then interspersed with learning to attack a vertical bar (p_V) but reject a horizontal

one (pJH) and finally with learning to attack a circle (p_c) but reject its inverse

(p-R)-8

Figure 5.9 shows learning behaviour averaged over six OVSIMs.

Figure 5 .9 . M ultiple discrimination learning in OVSIM; each point is average
response from 5 simulations.

Comparing with Figure 5.8 several consistencies appear which address points A-E

8 Patterns p_3, p_c and p_R are derived from pCc and pCR shown in Appendix B, but with blank 16x16
fields replacing the crab images.

141

above:

A’. The time to learn the second, p_V/p_H discrimination averages 10.00 attacks or

11.00 trials for the six experiments. Three naive systems learned to make this

discrimination significantly faster: within an average 6.67 attacks or 7.67 trials.

Both of these differences are significant by t-test (P< 0.025).

B’. Introduction of the second discrimination to OVSIM does disrupt the previous

knowledge, as shown in Figure 5.9 by slight returns to randomness in response

to both p__3 and p_l when p_V and p_H are introduced. The average response

to p_3 falls from 1128 votes to 1075.67 votes (P<0.025 by t-test), and that to

p_3 jumps from 539 to 566 votes (P<0.10 by t-test). Both are definite trends

- the fall in positive response is particularly significant.

C’. In Octopus, the response to the first discrimination never regains its former

accuracy once the second discrimination is introduced. However, in simula

tions, the level of responses were not found to differ significantly. As neither

loss of accuracy was significant in the simulation, it suggests either that the

simulation memories were stronger or suffered less interference than did the

octopus memories. Perhaps the octopus memory would also have been

regained with a longer retraining time.

D \ Addition of the third (black circle versus white circle) discrimination interferes

little with the previous memories in Octopus. In OVSIM, there are slight disr

uptions to all memories, but only that to p_H is significant by t-test — the

response drops from 599 to 630 votes (P<0.01). Young [You64 p.133] claims

that in Octopus the disruption caused'by introduction of the vertical/horizontal

discrimination shows that representations for the four figures in the optic lobe

overlap; the black/white distinction is presumably encoded in a different set of

cells and so the memories overlap less. In OVSIM, it is more likely that ear

lier memories may be well fixed by the time of introduction of the third

142

stimulus pair and so are not noticeably disrupted. If this is also true in

Octopus, this would also explain why successive discriminations are learned

with successively less strength — less unfixed memory is available to encode

them.

E*. Eventually, in OVSIM as in Octopus, all learned responses are basically

corrected. At the end of the simulation, each positive stimulus was attacked

with a probability of at least 70% on any given cycle, while probability of

attacking for each negative stimulus was less than 3%.

In summary, then, all effects seen in Octopus are quite well matched in OVSIM, with

the exception of C. which would predict more disruption to the first discrimination.

The simplest explanation for this would be that the animals just required more train

ing time to regain the first discrimination.

5.5. Damage Experiments with Octopus and OVSIM

Showing that OVSIM bears behavioural resemblance to Octopus is showing

performance equivalence between a computer program and a real animal. Section

5.4 has made some claim to this. It went further to suggest that OVSIM might pro

vide a partial model of the animal: in particular, that it might be appropriate to view

Octopus as a machine which learns by adjusting the probabilities of selecting various

actions under various conditions, according to their expected results.

In this section, it is shown that, when various parts of OVSIM are removed or

damaged, the simulation loses function in manners quite analogous to loss of func

tion after surgical ablations in Octopus.

143

5.5.1. Damage to the optic lobe

The optic lobe in Octopus is believed to contain classifying cells, memory cells,

and a region which generates output containing the decisions to attack [Mal63]. In

OVSIM, these correspond to CCs, MCs and the output generator, respectively (see

Section 5.3). To simulate ablation of the optic lobe, OVSIM is damaged such that

some fraction of its MCs output noise (random 0/1) under any input. The output

generating and attention-assigning modules are maintained intact.

Boycott and Young experimented with octopuses after bilateral removal of

about 50% of optic nerve fibres or or optic lobe tissue (which should be equivalent

losses). They found that the animals were capable of learning discriminations "in

the usual way", presumably at normal speed and to normal strength [BoY55].

In OVSIM, this damage was simulated by randomly selecting 50% of the MCs

and forcing them to only output noise (random Is and Os). Three OVSIMs in which

this was done were able to learn to discriminate the vertical and horizontal bar pat

terns pVV and pHH. Table 5.1 compares the results on the damaged OVSIMs with

those of normal ones; the responses learned do not differ significantly in strength,

but the damaged systems take considerably longer to learn. This increase in learning

time does not apparently occur in damaged Octopus. In OVSIM, the result of learn

ing with less available memory is longer time required to find a suitable representa

tion among the remaining cells.

Time to Converge Avg Votes (+ ve) Avg Votes (-ve)
Normals 8.67 1077 538

Damage, then train 31.0 1021 586
Prob (from t-test) P< 0.005 P<0.25 P<0.05

Table 5.1.: Time to converge and average response (over 5 trials) to the positive and negative stimuli of 4
OVSIMs without and with damage to MCs.

Boycott and Young [BoY55] also tried the reverse experiment: they removed

50% of the optic lobe from an octopus already trained to discriminate two figures,

144

and found that the animal’s performance degraded little. They also removed

between 25-50% from three other trained animals; one did not attack again, and the

others retained the discrimination well.

An OVSIM was trained to discriminate pVV and pHH; after 10 trials, it

attacked the positive stimulus 10 out of 10 times and the negative 2 of 10 times. At

this point the simulation was "damaged" so that half of the MCs would only output

noise. Because this was done in simulation, several random lesions could be com

pared on the same trained OVSIM. Each gave very similar results, as shown in

Table 5.2.

OVSIM % Damage Before (+ ve) After (+ve) Before (-ve) After (-ve)
1 50% 1159 995.8 515.2 670.4
2 50% 1159 999 515.2 670.4
3 50% 1159 1012 515.2 666

Table 5.2.: Average of five responses in votes by 3 damaged OVSIMs to the positive and negative stimuli.

The response to the positive stimulus dropped markedly by an average 13.5%, while

the average response to the negative rose by about 20.9%. However, the simula

tions could still consistently discriminate correctly, and would attack the positive

stimulus with 70% probability on any one cycle, and the negative stimulus with pro

bability of only 15%.

5.5.2. The Unspecific Effect and vertical lobe damage

After feeding (even in the home) the octopus is more likely to attack any arbi

trary stimulus, while after shock it is less likely. This effect declines over 1-2 hours

[You58b] until the octopus attacks with usual frequency. Maldonado has named this

the Unspecific Effect [Mal63] (as opposed to a specific effect of a shock to reduce

further attacks to that particular figure).

OVSIM mimics this effect to a slight degree implicitly. When the simulation’s

memory is reinforced positively, one or more locations in each MPLN are

145

incremented. The probability that an /-input MPLN will output 1 in response to an

arbitrary pattern is given as:

i‘ i 2‘
P ro b (o u tp u t= l)= '2 l P ro b (j addressed)* sv j= —r ^ s v j 5.3.

j=* 1 2 jss\

where svj is the value stored at location j . Therefore, even one positive reinforce

ment increases a node’s probability of outputting a 1 (and hence contributing a vote)

to an arbitrary pattern. A negative reinforcement decreases this probability. On a

system-wide level, this leads to a small Unspecific Effect. It is this which causes the

"unlearning" effect shown in Figure 5.6.

OVSIM also incorporates explicit factors by which the Unspecific Effect is

simulated. Maldonado [Mal63] suggests that there is a quantity, the Unspecific

Effect Parameter (UEP), by which the decision to attack is amplified or suppressed.

In OVSIM, this is subdivided into UE+ and UE-, as explained in Section 5.3.6.

The total number of votes plus UE+ minus UE- is then used in the generation of a

probability to attack. Maldonado lists some support for the idea that there are two

separate functions in Octopus - one each to implement the negative and positive sig

nals [Mal63].

In the OVSIM results mentioned so far, at least 900 cycles (1.5 hours simulated

time) has been allowed between trials, and so the explicit Unspecific Effect has not

been relevant. Octopus trials are often similarly spaced by at least 40 minutes to

avoid confounding effects of learning with Unspecific Effects (e.g., [You58a]).

If, however, OVSIM trials are separated by less time, explicit Unspecific

Effects appear. If an OVSIM is given positive reinforcement for attacking p_C and

then responses to a new figure p_H are tested at intervals of 150 cycles (15 minutes

simulated time), there is at first a dramatic drop in the delay to attack, caused by the

rise in the quantity V + (UE+)-(UE-). This decays with time until by 900 cycles (1.5

hours) the response to the neutral figure is back to its normal levels. Figure 5.10a

146

shows the delay to attack, averaged over 6 OVSIMs, together with U E +, for the

interval.

(a) (b)

Figure 5.10. Effect o f UE on delay to attack, (a) Solid line shows delay to attack in
cycles after positive reinforcement at time 0; dashed line shows evolution o f U E + . (b)
Solid line shows delay to attack in cycles after negative reinforcement at time 0; dashed
line shows evolution o f UE-. Both figures show data averaged from 6 OVSIMs. 1
minute sim ulated time = 10 cycles.

The same situation, but preceded by negative reinforcement for attacking p2C, is

shown in Figure 5.10b. It shows a dramatic increase in the delay to attack the neu

tral figure, which eventually returns to normal levels.

When octopuses which have been trained to some discrimination and then had

vertical lobe ablation are retested, they show a significant increase in attacks to the

negative pattern, suggesting that the vertical lobe in some way produces or manipu

lates UE- [You64, p.226-229]. When the lateral superior frontal lobe is removed,

the animals show a decrease in attacks to the positive figure [You64, p.230], so the

lateral superior frontal seems to be involved with adjusting the U E +. If both verti

cal and lateral superior frontal lobes are ablated, the animals attack all patterns

slightly less than usual [You64, p.228]. This implies that, at rest, UE+ and UE-

should produce a net positive effect, and this is why resting values of UE+ at 300

and UE- at 200, for a sum of UE+ - UE- = 100 > 0, are defined in Section 5.3.9.

In an OVSIM trained on the crab (p_C) versus crab-plus-square (p2C) task,

fixing UE- to 0 results in a system which attacked all stimuli, even the ones it had

147

previously learned were negative. Fixing UE+ to 0 resulted in slightly longer

delays to attack the positive figure than normal: averaging 3.0 cycles to attack

instead of 1.0. If both UE+ and UE- are eliminated, the system performs quite

well, with only a slight increase in the delay to attack positive figures: averaging 1.2

cycles delay. The effects of removal of the UE+ and UE- therefore share at least

these effects with removal of the superior fiiontal and vertical lobes, respectively.

5.5.3. Simulating vertical lobe ablation

When the UE- mechanism and the ADB buffer in OVSIM are damaged

together, the resulting effects are quite parallel to effect arising from vertical lobe

removal in Octopus. This is accomplished by (1) the loss of UE- by setting UE-=0;

(2) destruction of the attention-assigning mechanism by setting it to output a con

stant (meaning that buffering is recency-driven rather than attention-driven); (3) res

triction of the buffers to hold a single element — which by (2) will always be simply

the preceding input. This, like vertical lobe ablation, can be done before any train

ing takes place (R-T paradigm) or training can be followed by removal and then

further training (T-R-T paradigm).

An R-T octopus will be unable to learn to avoid attacking crabs [You70], typi

cally stopping after a shock but trying again 1-2 trials later. It will also be unable to

learn discriminations involving crabs — such as crab positive unless shown with

square [BoY55].

However, some learning about neutral stimuli by these animals has been docu

mented in [Boy67] and [You65b]: in one experiment, after 180 trials, the animals

would attack the positive stimulus five times as often as the negative [You58a].

Ordinarily, an OVSIM can discriminate crab (p_C) versus crab-plus-square

(p2C) within some 10-15 trials (Section 5.4.1). R-T OVSIMs were still regularly

148

attacking p2C by the 25th trial. Pattern p_C, unsurprisingly, was consistently

attacked. In the long term, the R-T OVSIMs did show some learning: a decrease

from 100% attacks on p2C in the first five trials to 80% attacks by trials 20-25. The

response in votes to p2C had dropped to an average 477 in trials 20-25 (whereas p_C

was eliciting some 917 votes), but this was still too strong a response to counteract

UE+ in the absence of UE-.

After training a T-R-T octopus to attack crabs unless paired with a square, and

then ablating all vertical lobe tissue, Boycott and Young found that the memory

preventing attack was lost and could not be relearned [BoY55]. If at least 30% of

the lobe was intact, the animal behaved normally; with larger lesions, behaviour was

degraded until by 80% removal the animal was unable to learn. They found no evi

dence that the memories lost in these animals with major lesions could ever be reac

quired.

On the other hand, discriminations involving neutral stimuli could usually be

recovered "quite well" [BoY56]. Typically, discrimination memories lose some accu

racy after vertical lobe removal but slow relearning is possible. It also appears that

disruption is worse for memories associated with difficult discriminations. Possibly,

these memories are weaker even before operation, and therefore less able to with

stand the loss of UE- [BoY56].

Four T-R-T OVSIMs were trained to the p_C versus p2C task; after damage,

all but one OVSIM attacked every pattern presented. Even after 20 cycles of train

ing there was no improvement. Much of this failure is attributable to overwhelming

probability of attacking any pattern in the absence of UE-.

However, comparing the response in votes to positive and negative patterns in

these simulations with those from the R-T simulations shows that some memory

exists in the T-R-T set. The average response to a positive figure in T-R-T is

989.70 votes (std. dev. 9.539), while it is only 955 votes in the R-T set. For

149

negative figures, the average T-R-T response is 453.80 votes (std. dev. 7.097) com

pared with 527.3 in the R-T set. In both the positive and negative conditions there

is a highly significant savings of the previously learned information (P< 0.005 from

t-test in each case).

5.5.4. Overcoming loss of UE- and the ADB buffer

Boycott and Young found that, in octopuses with vertical lobe ablation,

memory would be prolonged if the negative crab-plus-square stimulus was left mov

ing in the visual field after the shock was given [BoY55], They suggest that nor

mally the vertical lobe system somehow performs this re-stimulation of the optic

lobe cells — accomplishing what the experimenters did by hand - so that the

stimulus image is still available when reinforcements arrive [BoY55].

In normal OVSIM, when reinforcement arrives, every item in the buffer is

reinforced for J7-10 cycles. If the attention-assigning mechanism is damaged and if

the buffer size is one, then the inputs being reinforced will be the H patterns

immediately following reinforcement. If trials are separated by the usual 900 cycles,

then most reinforcement will occur to blank patterns. If, however, the next trial fol

lows immediately after the last, then the new patterns will receive reinforcement; in

a rejection task, the re-presentation of the negative item will therefore enter the

buffer in time to receive reinforcement from the last attack. As a result, the system

will learn exactly the correct association despite its damage.

Figure 5.11 shows rejection learning averaged over three damaged OVSIMs.

When 900 cycles (1.5 hours simulated time) separate trials, there is some learning,

but the response stabilises at about 460 votes. If the trials are not separated, the

response can drop low enough that the probability of attack is effectively zero. (Ini

tially, the systems learning with separated trials learn faster. This is simply because,

in the continuous trial condition, a new attack may occur on the very next cycle, and

150

Average response in votes

Figure 5 .11. Average response in votes o f damaged OVSIM learning rejection o f p2C,
when trials are separated by 900 cycles or 1 cycle (continuous trials). W ith continuous
training, probability o f attack fa lls to 0. W ith separated trials, the system learns to
reject the pattern occurring when reinforcement arrives, and the response to stim ulus is
merely generalisation from that.

the H cycles of reinforcement will be interrupted.)

The level at which the response with separated trials stabilises is actually artifi

cially strong. The input present when a reinforcement arrives is actually the fourth

one after the original stimulus appears: as shown in the sequence in Appendix C.

With damage, that is the input which will always be in the buffer to receive rein

forcement, and it is therefore the only pattern reinforced. The overlap between this

and the original stimulus is some 89.095% of CC outputs, and so the number of

MCs expected to receive identical inputs for both patterns is the number expected to

receive all inputs from within that overlap:

686(.89095)6 + 515(.89095)8 + 414(.89095)10 = 677 (o f 1615) 5.4
These will output 0 for both patterns. It is to be expected that, of the remaining

151

MCs, one-half will output 0 and one-half 1. Therefore, the number of MCs

expected to output 1 to the true stimulus pattern is:

(1 - 0.4192)(0.5)(1615) = 469 5.5
The actual average number of MCs responding to the stimulus pattern by trials 36-40

in the 1.5 hour case was 455.

Therefore, all "learning" about the stimulus in the separation trials is artifact -

transfer from learning about the picture visible when reinforcement arrives - and

no real delay learning takes place.

On the other hand, when the separation between trials is only one cycle, the

OVSIMs can learn rejection in about 20 trials — only a few more trials than normal

OVSIMs.

5.6. Conclusions and Summary of Chapter 5

OVSIM, the ADB-based model, has been demonstrated to be capable of learn

ing delayed reinforcement tasks modelled on those learned by Octopus vulgaris.

These are primarily discrimination tasks where reinforcement follows grasping and

drawing in of the stimulus object — so that the visual input changes before the rein

forcement arrives.

OVSIM shows many of the same characteristics of learning as the octopus:

most notably the changes in delay to attack with learning. These effects arise in

OVSIM because of the manipulation of a probability to attack which is repeatedly

polled over the length of a trial. Perhaps this is like what goes on in Octopus. The

alternative hypothesis is that a delay is due to a slow building up of activity to cross

some threshold required for attack, and with learning the activity starts at a higher

level and thus crosses the threshold faster [Mal63].

Vertical lobe ablation in Octopus was shown to share features with the simul

152

taneous elimination of UE- and of the attention-assigning mechanism in OVSIM. If

attention is always set to a constant and if the buffer size is one, the buffer only

maintains the single previous input, and this leads to deficits like those in Octopus

without vertical lobe. While there is no real evidence that the octopus system

operates after an ADB-like fashion, at least the data about vertical lobe removal in

Octopus vulgaris seem consistent with ADB removal in OVSIM.

5.6.1. Potential improvements to OVSIM

There are several ways in which OVSIM could be improved. Most obviously,

its inputs are highly stylised. A more advanced implementation might use video

input for its stimuli, and also during the delay until reinforcement; and it would then

have to reconcile "continuous time" input with buffers which can only hold discrete

images.

In the octopus, output from the optic lobe seems to emerge via two competing

pathways — one carrying the decision to attack, one the decision to retreat. Conflict

between them would need to be resolved either through lateral inhibition or top-

down (goal-directed?) control. Little enough is known about this process in Octopus

that it seemed a reasonable phenomenon to omit in OVSIM. But it would be

interesting to provide OVSIM with a second retreat-learning subsystem and study

the interactions of the two systems during learning.

Octopus also has capacity for transfer, so that associations learned using one

eye (and hence one optic lobe) and tested in the opposite eye are retained. This

would be simple enough to achieve in OVSIM, by providing a second set of CCs and

MCs as the second optic lobe, and then wiring corresponding MCs together and let

ting them share values. This does not seem a likely solution in Octopus: it would

require links between 120 million nerve cell pairs, each of whose function is surely

subject to change during development. Yet this is essentially the hypothesis put

153

forward by Young [You64, p.170] and Maldonado [Mal63] concerning the ventral

commissure joining the optic lobes. A different solution might be for a sampling of

retinal cell axons to travel to the ipsilateral optic lobe, instead of contralateral as

usual. This would provide each optic lobe with (slightly less detailed) intraocular

information, at the pre-CC stage. Then no explicit transfer would be needed, as

MCs from both optic lobes would learn in the usual way, no matter which eye was

providing the input. Unfortunately, Young reports that "the chiasma is certainly

almost if not quite complete" [You71, p. 449]. Octopus experiments on differential

learning with severed ventral commissure versus severed subvertical to optic lobe

connections might show from where the contralateral optic lobe was actually receiv

ing its signal to learn.

OVSIM CCs have been constructed to match the stimuli classes to which the

octopus responds well, under the assumption that vertical/horizontal distinctions, for

example, are easy because cells explicitly encode this feature. There is, in fact, very

little evidence about what types of cells actually exist; suggestions range from simple

vertical/horizontal and black/white recognisers to the very complex ones posited by

Sutherland (ratios of maximum vertical and horizontal extent to square root of area

[Sut57] or openness/closedness of figures [Sut63]). This is all deduction from

observed behaviour, as there seems to have been no single cell recording from

Octopus optic lobe. It might be interesting to use OVSIM to "reverse engineer" clas

sifying cells: use some strategy, such as a genetic algorithm, to generate CCs which

resulted in OVSIM behaviour closely matching that of Octopus, and then inspect the

CCs so derived. This would of course require a much more sophisticated OVSIM

than the ones used here.

154

5.6.2. Maldonado’s model of Octopus

It is appropriate to describe here the model of Octopus visual attack learning

which was developed by Maldonado [Mal63], and which provided a great deal of the

groundwork for OVSIM: at least in terms of dividing the optic lobe explicitly into

classifying and memory cells, in explicit provision of a UEP, and in treating the

attack/retreat decision as a simple scalar.

Maldonado divided the optic lobe neurons into three types: classifying units

(CUs), memory units (MUs), and an addition unit (see Figure 5.12). Taken

together, they function very much like a single-layer perceptron. The CUs receive

input from a localised region of the retina, and classify it according to the presence

or absence of some feature such as brightness, shape or movement. For each possi

ble output of each CU there exists an MU, which is "sensitised" by receiving CU

input.

Visual memory is stored in MU response levels (much like perceptron

weights), which are adjusted upon receipt of various signals, particularly from the

noci-hedono receptors. MUs are only receptive to this input when sensitised by

their CU. The MU weights decay in the absence of reinforcement. It is possible

that MUs may differ from one another in the range of values which their weights

may assume.

In the addition unit, the responses of all MUs are transformed into a weighted

sum which represents the strength of the decision to attack. Conversely, a weak sig

nal indicates retreat. These two actions are the only two behaviours considered.

The attack/retreat decision leaves the optic lobe and travels to the supraoeso-

phageal regions, which Maldonado perceives as a two-stage amplification system: the

medial superior frontal lobe amplifies the positive signals, and the vertical lobe

amplifies the negative ones. The resultant output, the Experiential Parameter (EP),

155

RETINAL INPUT

Figure 5.12. Maldonado’s model (adapted from several figures in [M al63]). Retinal
input drives CUs which signal th e^ ib sen c^ 'o f features such as brightness, shape and
movement; their outputs drive adaptive MUs — one fo r each possible output o f each
CU. The summed MU responses pass out o f the optic lobe as a strength o f decision to
attack which is amplified positively by recent taste and negatively by recent pain.
Feedback o f this response maintains active (firing) MUs at low threshold; when
reinforcement arrives, all MUs at low threshold are updated.

156

passes to a command centre which in turn feeds into the higher motor regions.

Maldonado’s EP is supplemented by two other, non-learning-related parameters:

hunger, which always serves to make attack more likely, and an Unspecific Effect

Parameter (UEP). The UEP amplifies signals from the nocihedono receptors, so

that after pain is received, the octopus shows an overall reluctance to attack arbitrary

stimuli, while after eating it becomes more likely to make further attacks. Again,

the medial superior frontal amplifies positive UEP signals while the vertical lobe

amplifies negative ones. These also pass to the motor system, so the launching of an

attack is a function of the three: EP, hunger (to a lesser extent) and UEP.

Some fraction of the EP is fed back to all sensitised MUs, making them slightly

more likely to repeat the last decision. This provides for the observed effect that an

octopus’s initial delay in attacking a novel stimulus gradually fades with training, as

EP builds up in the cells. It also provides a sort of short-term memory, allowing the

persistence of optic lobe representations until reinforcement arrives. Although an

animal whose vertical lobe has been ablated cannot learn to reject a stimulus associ

ated with shock, it performs better when the stimulus is left in the visual field

[BoY55], implying that retinal input may keep the MUs sensitised in the absence of

an EP to accomplish the same task. Nocihedono input, when it arrives, is applied to

all MUs which are still sensitised.

Much of this compares with OVSIM. It differs in the following important

points:

• Each of Maldonado’s MUs is associated with a single output from a single CU.

This seems to eliminate the possibility of ever forming associations about com

plex features. If, for example, the system is not provided with explicit "T-

detectors", it should not be able to distinguish "T" shapes except as patterns

which stimulate both horizontal and vertical line detectors. Yet the octopus can

distinguish "C" from "L" shapes (with difficulty) [You58a].

157

Further, by this dedication of MUs to CUs, the system is prevented from learn

ing about correlations between CU outputs representing different features:

e.g., in a task of attacking black "L"s and white circles but not black squares.

(This task is in fact learnable by octopuses [BoY56] and in principle by

OVSIM).

• In Maldonado’s model, short-term memory is implemented by maintaining

recently-addressed MUs at low threshold. This will certainly interfere with

their ability to process interim images. Yet the optic lobe is active in the

visuomotor feedback loop which oversees the grasping of food in between

attack decision and actual ingestion. In OVSIM, short-term memory is imple

mented as a buffer distinct from the interim processing.

• Maldonado’s higher lobes function as amplifiers: adjusting the UE+ and UE-,

as in OVSIM, but also simply magnifying the current decision and feeding it

back to the optic lobe.

• Delay in Maldonado’s model is explained as the time during which EP builds

up sufficiently to allow a decision to attack to pass threshold. In OVSIM,

delay occurs as probabilities are repeatedly polled.

• Output to the motor centres, in Maldonado’s model, is from the higher lobes.

In Octopus and OVSIM, this output comes from the optic lobes, and can con

tinue even after ablation of the higher lobes.

5.6.3. Predictions made by the OVSIM model

OVSIM (and the ADB approach to delay learning) make several predictions

which it would be interesting to investigate in Octopus:

1. ADB learns in a backward fashion. Assume the system decides to attack at

time tA, at which point the stimulus is visible, and reinforcement arrives D

158

cycles later at time tA+D, at which point the stimulus is obscured or even out of

vision. Then OVSIM will associate the reinforcement with the image

corresponding to tA+D; when this is learned, and the attention to that scene

drops, it begins to learn about image aQd so on backward. Therefore,

at some intermediate point, the system will give a higher response to image

tA+D than to the true stimulus tA. In Octopus, this would mean that at some

point the animal will strongly attack tA+D-type images (if these can be con

structed) before it has learned to attack the stimulus tA consistently.

2. OVSIM buffers images based on predictability of results. Therefore, if the

interval between tA and tA+D is filled with highly predictable images, the learn

ing of tA should not be affected. However, if this interval is filled with unk

nown, and hence unpredictable, images, the system may well never learn about

tA. This would be highly informative, and not too difficult, to investigate in

Octopus.

3. The suspicion has been raised in Octopus that the effects observed after vertical

lobe ablation are all caused by domination of the U E +, rather than any deficits

in learning capability [You58a]. The most apparent effect of vertical lobe abla

tion is an indiscriminate increase in attacks, and Young found that if reinforce

ment was withheld from these animals (thus manually lowering UE+), perfor

mance improved as weak negative memories were no longer overpowered by

UE+ [You58a]. If this is the whole story, then animals with vertical lobe abla

tion have no actual memory deficit, only an inability to express restraining

memories.

In OVSIM, the removal corresponding to vertical lobe ablation does actually

decrease the capability for delay learning. If the buffer is restricted to store

only the single most recent pattern, then the only pattern about which associa

tions can be learned is tA+D. The response to pattern tA will change as a

159

function of the overlap (in CC feature space) between tA and tA+£). This was

shown to occur in OVSIM (Section 5.5.4). One implication of this would be

that the system should be more able to learn about the pattern tA if it is similar

to pattern tA+D.9 This should be possible to investigate in Octopus.

4. The assumption made for OVSIM is that attack, once decided on, is indivisible

and unstoppable. This is not the case in the real animal: for example, the

octopus may approach an object but not go through with actually touching the

stimulus. At the same time, there are a few contradictory data suggesting that

the octopus cannot stop a full-fledged attack, once begun. If an octopus begins

an attack, and the lights in the experimental room are turned out, the animal

completes the attack in the dark [MuG88]. More dramatically, if the animal is

trained to attack vertical sinusoidal gratings, but not horizontal ones, and then

a horizontal grating is shown which is too fine for the octopus to resolve, the

animal eventually attacks [MuG88]. Even when the octopus nears the stimulus

enough that it can surely detect its error, the attack is completed. This cer

tainly suggests that attack is unstoppable once begun. If it is possible to

reverse this decision, it is quite important to discover where this overriding

control originates. No such mechanism is included in OVSIM or in

Maldonado’s model, with the implication that it does not exist, or that it exists

outside both the optic lobe and the superior frontal-vertical lobe circuit.

9 Appendix E shows two sequences, one which is "harder" in this context since pattern tA and tA+jj
differ greatly, and one which is "easier" since the patterns are more .similar. It is to be expected that an
OVSIM without attention-assignment and with buffer of size 1 could learn more about the stimulus from
the "easier" sequence.

160

CHAPTER 6: SUMMARY AND APPRAISAL

6.1. Summary of the Thesis Contributions

The purpose of this thesis has been to develop a class of neural network

machines which perform exploratory learning with delayed reinforcement. The

requirements leading to this have been stated as three criteria:

• PI. Exploratory learning, with no discrete training period.

• P2. Reinforcement learning, with only a global evaluation of success, rather

than supervised learning with each desired output provided.

• P3. Delay learning, where each reinforcement may not be immediate, and

where other unrelated or contradictory reinforcements may intervene.

The first contribution described in this thesis was the definition of the MPLN, an

extension of Aleksander’s RAM-based PLN which can satisfy both PI and P2. Like

the PLN, its learning algorithm only requires a global reinforcement signal, thereby

satisfying P2. By allowing more internal states than the PLN, its learning algorithm

can be made incremental, so that behaviour changes more smoothly with learning,

and learning can therefore be on-line, as the net is shaped to the desired behaviour.

There are several other models which allow for exploratory reinforcement

learning. The advantages of using MPLNs in this type of work are the same as

those for using MPLNs in general, and accrue from their RAM-based nature.

RAM-based nodes tend to be quick to train, are capable of learning any boolean

function of their inputs, and typically exist in topologies which require only low

interconnectivity, and are therefore more easily implementable than weighted-sum-

and-threshold units.

Having developed a model which satisfies PI and P2, the second contribution

of this thesis was the development of a method for using MPLN networks to satisfy

161

P3. This took the form of Attention-Driven Buffering (ADB).

ADB stores past input/output combinations in a buffer so that they are still

available when reinforcement arrives at some later time. The probability that an ele

ment remains in this buffer after some time is related to an attention parameter,

dependent in turn on how predictable reinforcement to that element is. Highly

predictable elements are less likely to enter the buffer, as there is little or nothing

more to learn about them; this leaves room for more uncertain ones to remain in the

buffer for long periods. In this way, it is possible to maintain a small buffer but to

learn over indefinitely long intervals. Section 4.4 showed that the buffer may be as

small as 1 ; it is the attention-assigning function which ultimately determines the max

imum delay bridgeable.

The most celebrated work on delay learning is that of Barto and Sutton. In

[BSA83], they develop a system which bridges the reinforcement gap by associating

events at time t with expected events at time f+ 1 (and so events immediately preced

ing reinforcement become reinforcers in their own right). This has considerable

support from animal data (c.f. [C0R86]), and is an effect which ADB cannot match.

In many situations, this secondary reinforcement is a good thing; in the case of a bad

(and critical) action followed by several well-chosen (but ineffective) ones, it is not

desirable.

ADB depends critically on being able to assign an attention or confidence to

each decision to act. The architectures used in Chapters 4 and 5 allowed this. How

ever, ADB can only be used with architectures that do allow this. It would not be

straightforward, for instance, to apply ADB to a net consisting of a single pyramid,

which could only output a binary act/not-act decision with no indication of confi

dence. Some convention would have to be adopted, such as sampling output over

time, or allowing non-binary output from the topmost node.

162

Perhaps the largest difficulty with the use of an ADB system is the choice of

the attention-assigning function. This was demonstrated to be the single most

important parameter governing the behaviour and capability of the ADB system, and

yet its choice throughout this thesis has been essentially arbitrary. It seems obvious

that the function should be an inverted paraboloid, as this yields the properties

necessary: namely, that attention should be highest for middle values (unpredictable

outcomes) and lower for extreme (predictably good or bad) values of system output.

However, the maximum height and width of this paraboloid are less easy to justify,

other than as ad hoc solutions to the problem domain involved. From an engineer

ing point of view this is not a particular difficulty, as the most important goal is

merely to solve the problem. From the point of view of cognitive modelling, it

would be preferable to have an attention-assigning function which was more univer

sally powerful and general, and perhaps which the system itself could adjust over

time.

The third contribution of this thesis was the application of an MPLN/ADB sys

tem to a problem of simulating the operant conditioning behaviour of the visual

attack learning system in Octopus. The octopus is a well-studied creature with a

highly distributed nervous system, capable of learning to attack some objects and

reject others. This involves remembering the initial stimulus image while the object

is approached, grasped and placed in the mouth — only then might the reinforcement

of taste signals arrive.

The ADB system to model this behaviour, OVSIM, showed several similarities

with Octopus learning, of which the most noteworthy were:

• negatively accelerated learning curve for rejection and discrimination tasks

• fall in delay to attack with positive trials; and an increase in delay with negative

trials

163

• an unspecific effect (UE) of positive trials to increase the likelihood of attack

to any stimulus, and of negative trials to decrease it

These data provide strong support for a model of Octopus as a stochastic machine,

where learning may be defined as adjusting the probability of attacking in response

to reinforcement obtained.

When the ADB attention-assigning function and UE- in OVSIM were damaged,

OVSIM showed behaviour comparable with that of the octopus after vertical lobe

ablation. Previously acquired knowledge was still accessible; new learning was more

difficult, but close spacing of trials helped, as it was manual provision of a short

term memory in the absence of attention-driven buffering. Trials without reinforce

ment result in quite good performance, implying learning occurs after damage, but

its expression is masked. Again, this is circumstantial evidence that the vertical lobe

in Octopus may be performing what in OVSIM is easily identifiable as attention

assignment and UE- adjustment.

6.2. Appraisal of Physiological Relevance

6.2.1. Objectives

The first question to be asked when addressing the physiological relevance of

the machines studied in this thesis is, do they perform a meaningful task? Do

animals actually have to perform under conditions of PI, P2 and P3?

PI, which requires exploratory learning, is clearly achieved by every animal

which learns. It is possible to imagine an animal which had two phases in its life:

one, where it merely sat passively and was taught how to behave, and a second,

where it performed accordingly but was no longer capable of learning new

behaviours. But this defeats the purpose of having learning ability, which is to

adapt to new or changing environments. An animal which learned passively and in a

164

distinct phase would have no advantage over an animal which simply had all of its

behaviours genetically pre-wired. In fact, this seems never to be the case, as all

animals tested so far can at least habituate - learning to stop responding to stimuli

which repeatedly prove irrelevant [Wel68 , p. 158] — and therefore can learn to

adapt their behaviour to the requirements of their environments.

P2 declares that reinforcement signals are global measures of success rather

than specific target outputs. In most man-made learning machines, a "teacher" exists

to instruct each component in its required response to the inputs. This may have

parallels in rote school learning and in reflexes, but it is quite improbable that this

happens in general sensorimotor learning — for the simple reason that the teacher

would have to predict "how each motoneuron involved in the task should respond to

each afferent volley, and would have to be able to provide these motoneurons with

this information....it is hard to imagine where such detailed information would come

from" [Bar87].

P3, learning across delays in which contradictory reinforcements may arrive, is

the most demanding criterion. It was shown in Chapter 5 that even invertebrates

such as Octopus can be conditioned when delay between decision to act and arrival of

reinforcement may take seconds. There is also a body of literature documenting

experiments with animals such as rat and quail which can learn to avoid food when

ingestion was followed with irradiation to produce nausea [Wal87, p. 233], or to

prefer food if followed by thiamine injections to remedy a deficiency [GEY67], etc.

Even if these "reinforcers" are delayed by several hours [Fel81], the animal learns to

seek or avoid the food. It is therefore apparent that these animals have means of

accomplishing delay learning as defined by P3.

165

6.2.2. Methods

The next question to consider is how animals accomplish these tasks, and

whether their methods can be said to bear any similarity to ADB.

It is accepted that animals have some form of short-term memory (or "work

ing" memory) as this is how the gap until delayed reinforcement arrives must be

bridged. In human beings, STM is often thought of as taking the form of a limited-

size buffer, with capacity for some 5-7 items at once - this being the maximum

number a person can remember at once, if allowed uninterrupted rehearsal of the

items.1 However, once rehearsal is interrupted, items in STM have a half-life of

some 10-15 seconds before they are lost [Joh82]. ADB also involves a limited-

capacity buffer, in which items are lost when new, higher-attention items intervene.

In humans, at least, it seems that rehearsal of items makes them more likely to enter

long-term memory or to be retrievable from long-term memory [Car86, p. 598]. In

ADB, as in many models involving STM [c.f. Gro71], items in STM have correlates

in LTM which are strengthened with each cycle that the item remains in the buffer.2

This sort of approach requires an STM mechanism which maintains activity in

relevant cells for a reasonably long period of time. One way in which this might be

achieved is by reverberation: a cycle of cells which activate one another to form a

circuit which may be active until something interrupts the sequence.

1 There is increasing evidence that the view of STM as holding "7-plus-or-minus-2" items is
oversimplified. These items can be individual letters, words, even sentences. It is possible that there is a
short-term store for each sort of information. Baddely and Hitch (1974) [Joh82] conclude that STM must
contain at least three components: a central executive, a short-term visuo-spatial store, and a short-term
speech store. The speech store can be rehearsed, and therefore has a maximum capacity of as much
information as can be verbally rehearsed within some 3 seconds. The visual store cannot be rehearsed
verbally, and therefore is limited to contain some 2-3 items.

The ADB mechanisms defined in this thesis associate a part of the buffer with every cell. If different
cells in the memory are associated with strongly differing information types, then there would effectively
be the possibility of buffering several instances of each information type. This possibility has not been
explored in this thesis, primarily because the simulations have only involved a single modality — vision.
2 In particular, with each cycle that item x remains in the ADB buffer, it is strengthened in LTM by an

amount equal to H . In the simulations in this thesis, positive reinforcement often meant H = 1 for 10
cycles, while negative reinforcement would set H = — 1 for 10 cycles. If no reinforcement arrived, H
would be set to 0, and there would be no net change to x’s LTM representation.

166

In fact, reverberating circuits have been found in the small nervous systems of

some invertebrates [Sel88], typically governing central pattern generation, such as

might be needed to produce a rhythmic heartbeat.

In mammalian cortex, such reverberation may also exist. Burns, in 1958

[Car86 , p. 605-6] studied isolated but internally intact cortical regions, and found

that they were normally quiet, but that a train of electric pulses could cause bursts of

activity across the region which might continue as long as 30 minutes. A single

large shock to the center of the region could then stop all activity. The suggestion

was that the region was reverberating, once started by the initial pulses; the larger

burst caused all neurons to fire at once, and then as all were simultaneously in the

refractory state, the reverberation was silenced. This does not prove, of course, that

such reverberation is actually the mechanism whereby short term memory is pro

duced; however, events which interrupt electrical activity in the brain, such as blows

to the head, electroconvulsive therapy and epilepsy, also have disruptive effects on

short term memory [Ste87, p. 350].

It thus appears that animals would be capable of maintaining a STM buffer like

that required for ADB. They would also need to be capable of executing the

attention-assigning function which governs which elements occupy the buffer.

The probability of an item entering the ADB buffer in the first place is related

to its attention, which is a measure of how "unpredictable" the item is. This concept

of learning being based on a need to resolve unpredictable events is extant in

psychological theory. Notably, Kelly’s Personal Construct Theory suggests that an

animal (or human) has as its chief motivation the desire to resolve ambiguities in its

input - and to be able to predict results and anticipate its own next input [Kel55].

Animals have shown that they can learn "for learning’s sake" even when there is no

other ostensible motivation for forming memories. For example, rats turned loose

in a maze will explore, and can later return efficiently to where they saw food when

167

they weren’t hungry [Wal87, p. 151-2].

Such a curiosity-driven theory of learning entails that the animal must be able

to recognise these ambiguities when they arise. This means that the animal must

have the ability to judge unpredictability, like is provided by the attention-assigning

component of an ADB system. It is worth emphasising that this requires not merely

a novelty detector, but one which measures a stimulus’s unpredictability — a

stimulus may be familiar but still ambiguous. As will be discussed below, this is a

putative role for the amygdala in mammals.

Another implication of the ADB system is that the buffer is separate from the

cells or portion of the cells which perform the ongoing processing and which actually

maintain LTM (the MPLNs, in the case of the simulations of Chapters 4 and 5).

The alternative, as in Maldonado’s model of Octopus (Section 5.6.2), is for STM to

maintain activated cells at a low threshold. This immediately raises the problem that

the system must be able to keep processing incoming data in the meantime.3

As it happens, the idea of keeping STM in a buffer separate from LTM and

from ongoing processing is not incompatible with physiological data. A popular

current hypothesis of memory formation involves long-term potentiation (LTP),

which is defined as a long-lasting increase in synaptic efficacy produced by high-

frequency stimulation of afferents [Ber84]; its counterpart, long-term depression

(LTD) could produce a decrease. LTP mechanisms are still a subject for research,

but there are several theories which posit a change which does not participate in the

short-term operation of the neuronal circuit [e.g., LyB84]. This would allow short-

and long-term processing to co-exist in the cell with minimal mutual interference.

A final major implication of the ADB system which must be reconciled with

physiological data is its prediction of backward conditioning. In normal classical

3 It entails a further problem noted by Grossberg [Gro87, v.l, p.182-3]: if only unpredictable events
enter STM, how is it that very predictable stimuli can still be processed?

168

conditioning, an unconditioned stimulus (UCS) is chosen which reliably elicits a

response (R). Then if a conditioned stimulus (CS) is repeatedly presented just

before the UCS, it will eventually come to elicit R even if the UCS is no longer

presented. For maximum effect, the CS should be presented some fixed time before

the UCS.4 If the delay is longer, the CS is irrelevant; if the delay is less, the CS has

no value as a predictor of the UCS and will not be learned [KI088]. If the CS onset

actually precedes UCS onset, a set-up termed backward conditioning, the CS may

actually come to inhibit the elicitation of R [KI088], although the effects may be

quite complex.

However, backward operant conditioning can actually result in formation of

associations. Hudson (1939, 1950) [Wal87] electrified a food cup with a striped pat

tern; after a week the rats no longer ate from the cup but piled sawdust over it as if

to hide the pattern and retreated. If the experimental setup was changed so that as

the shock was administered, the lights went out and the cup was removed, many of

the rats failed to learn the association. This implies that the association was formed

in the period immediately following the UCS administration [Wal87, p. 88-9]. Hud

son also found that if pipe cleaners were dropped into the cage just after the shock,

the rats would selectively avoid those [Wal87, p. 89]. Similarly, Keith-Lucas and

Guttman introduced a toy animal into the cage within ten seconds after the shock,

and found that the rats would develop a conditioned aversion to the toy [Wal87, p.

89]. All of these experiments indicate that associations can be formed in the few

seconds immediately following the UCS.

The ADB system will associate reinforcement with whatever is currently in its

buffer. If the items resident have high attention, they will be reinforced and items

occurring just after the UCS but unable to enter the buffer will be ignored. If those

4 The actual optimal timing is dependent both on the species being trained and the response being
tested.

169

new items can get into the buffer, the reinforcement will be attributed to them, and

backward conditioning will occur. This is possibly analogous to the animal case.

6.2.3. Mechanisms

Finally, it is worth a short consideration of where the ADB operations might

be occurring in the mammalian brain. The hippocampus, amygdala, hypothalamus,

orbitofrontal cortex and inferior temporal cortex are all highly interconnected in

mammals, and all seem to be implicated in learning responses to reinforcement, but

not in producing those responses once learned.

The hippocampus in particular has been highly studied and is known to be

involved in a considerable variety of tasks. These include:

• Ability to learn not to perform a trained response [Raw85]

• Maintenance of short-term or "working" memory [Joh82]

• Trace conditioning — with hippocampal lesions, rats can still perform simple

classical conditioning [Car86, p. 591], but are unable to learn when there is a

delay between lever press and food or between tone and food [Raw85]

These functions, mostly noticeable by their absence after hippocampal damage, are

quite parallel to those seen in Octopus after lesions to the vertical lobe. If the verti

cal lobe in Octopus can be thought of as performing some of the operations neces

sary for ADB, perhaps the hippocampus is also involved in these operations.

There are a variety of sophisticated theories of hippocampal function. It may

be an intermediate-term buffer for short term memory, especially where stimulus

representations must be maintained until results arrive [Raw85]; this of course is one

operation required by ADB. It may, instead of being a buffer itself, facilitate

rehearsal of representations elsewhere in associative memory [Raw85]; again, this is

not incompatible with ADB (see Section 4.3). The hippocampus may work as a

170

comparator of experienced events with predictions [McN82]. This task is one which

is not explicitly carried out by the ADB machine as formalised in this thesis, but is

very much the sort of mechanism postulated by Sutton and Barto for their Adaptive

Critic Element [BSA83]. Rolls has even found specific hippocampal cells which fire

more strongly on the first presentation of an object than on subsequent presentations

[Rol89], clearly performing some measure of novelty detection.

A second brain region which may have some bearing on the ADB approach is

the amygdala. This region gets highly processed input from the sensory systems and

the cortex, and outputs to motor, autonomic, associative and limbic cortex [Rol90].

With amygdaloid lesions, among other effects, the subject becomes unable to learn

avoidance and will examine objects excessively, as if unable to decide what to do

with them [Rol90]. Experimentally, there are neurons in the amygdala which never

respond to negative stimuli and do respond to positive or novel stimuli — thus main

taining images of the latter as active while filtering out the former [WiR90]. Wilson

and Rolls suggest that "amygdala neurons would signal that representations should

be retained if a visual stimulus has been previously associated with a positive rein-

forcer ... or attention should be paid to that stimulus" [WiR90]. This is in many

ways analogous to the problem of attention-assignment within an ADB system which

depends upon determining the predictability of an input, and novelty is certainly

related in most circumstances to predictability.

6.3. Future Work

There are three obvious directions in which the work presented in this thesis

could be furthered: extending and completing the OVSIM model, directing attention

to parallels with mammalian brains, and simply improving the utility of ADB as a

computing tool.

171

In the last case, the system can be endowed with several capabilities, ignored in

this thesis, but which allow for more complicated behaviour. Most notably, the

attention function presented here has been a simple, automatically assigned, and

static function. This is certainly not the case in human attention, and need not be

the case in a computer. Humans seem to be capable of artificially boosting (or

lowering) attention as a result of higher level commands — we can make a conscious

effort to "pay attention" to something, and we can make a similar conscious decision

to "memorise" something. In terms of ADB, this would be a higher-level executive

controller which could step in and assign high attention to some inputs — overriding

the usual assignment routines. The phenomenon of rehearsal in humans is also

much more complex than has been considered here. For example, there seems to be

a verbal rehearsal route (the limit of STM seems to be not so much ”7 items” as the

amount of material which a subject can repeat to himself within a cycle time of about

3 seconds). This route would therefore have to include not merely the working

memory, but also auditory speech areas, for example. All of these issues could be

explored with further research on ADB.

The ADB model could also be examined much more completely than it has

been here as a hypothesis of mammalian learning. In order to make such a com

parison feasible, the system would have to be able to mimic data from studies on

hippocampus and other regions.

Finally, the OVSIM presented in Chapter 5 is by no means a complete account

of the Octopus. To begin with, the visual attack learning system is capable of much

more sophisticated discrimination, generalisation, and output activity. The octopus

also has a highly developed touch learning system, which could be modelled and

made to interact with the visual system in the way it certainly does in the normal

animal. The touch learning system is also capable of transfer between arms and

between optic lobes. These phenomena are not completely understood, and if the

172

OVSIM could be made to accomplish these tasks, it would provide at least a working

hypothesis for the experimenter to investigate.

Probably the most interesting aspect of this work has been that a system which

was originally developed from purely pragmatic engineering specifications should

turn out to have some similarities to the solution found by nature in the Octopus. If

it were to turn out that these similarities held in detail in higher brains as well, there

would be a rather dramatic conclusion to be drawn: that there may actually only be

one fairly constrained way in which to accomplish the task of learning. On the other

hand, if the parallels between ADB and the Octopus are eventually proven to be

spurious, then the opposite conclusion holds, and there may in fact be many dif

ferent ways in which to construct an intelligent machine.

This is an intriguing question. But it seems clear that the approach to answer

ing it must continue on two fronts: the bottom-up approach, whereby physiologists

and psychologists continue to provide data on how brains accomplish their tasks, and

the top-down approach, in which engineers and cognitive scientists propose models

to satisfy these data. From this point of view, it is just as important to find out

which models are not satisfactory and why, as this will still provide information.

Whether ADB has any validity or not as a psychological model, therefore, I hope

that continued work with it will prove to contribute at least some small clue as to

how intelligent learning systems can one day be constructed.

173

REFERENCES

[ABJ89] Allinson, N. M.; Brown, M. T.; Johnson, M. J. (1989) {0,1}" space self-

organising feature maps — extensions and hardware implementations. Proc.

1st IEE International Conference on Artificial Neural Networks, London, pp.

261-264.

[AbP87] Abu-Mostafa, Y.; Psaltis, D. (1987) Optical neural computers. Scientific

Am erican , 256(3): 66-73.

[AbS85] Abu-Mostafa, Y.; St. Jacques, J. (1985) Information capacity of the Hop-

field model. IEEE Trans. on Information Theory, IT-31: 461-464.

[AcL90] Ackley, D.; Littman, M. (1990) Learning from natural selection in an artif

icial environment. Proc. International Joint Conference on Neural Networks,

Washington, D. C., vol. I, pp. 189-193.

[A1D85] Aleksander, I.; Dobree-Wilson, M. (1985) Adaptive windows for image

processing. IEE Proceedings, 132E(5): 233-245.

[Ale88] Aleksander, I. (1988) Logical connectionist systems. In, Neural Computers

(eds. R. Eckmiller, C. von der Malsburg). Springer-Verlag, Berlin, pp. 189-

197.

[Ale89] Aleksander, I. (1989) Canonical neural nets based on logic nodes. Proc 1st

IE E International Conference on Artificial Neural Networks, London, pp. 110-

114.

[Ale90] Aleksander, I. (1990) Ideal neurons for neural computers. In, Parallel Pro

cessing in Neural Systems and Computers (eds. R. Eckmiller, G. Hartmann, G.

Hauske). North-Holland, Amsterdam, pp. 225-228.

[A1S79] Aleksander, I.; Stonham, T. (1979) Guide to pattern recognition using

random-access memories. IEE J. Computers and Digital Tech., 2(1): 29-40.

174

[A1S90] Al-Alawi, R.; Stonham, T. (1990) Evaluation of the functional capacities of

multi-layered logical neural networks. Proc. INNC-90-PARIS, Paris, pp. 983.

[ATB84] Aleksander, I.; Thomas, W.; Bowden, P. (1984) WISARD - A radical

step forward in image recognition. Sensor Review , 4(3): 120-124.

[Aus88] Austin, J. (1988) Grey-scale n-tuple processing. BPRA 4th International

Conference on Pattern Recognition, Cambridge.

[BaA85] Barto, A.; Anandan, P. (1985) Pattern-recognising stochastic learning auto

mata. IEEE Trans. on Systems, Man and Cybernetics, SMC-15(13): 360-375.

[Bar85] Barto, A. (1985) Adaptive neural networks for learning control: Some com

putational experiments. Proc. IEEE Workshop on Intelligent Control, Rensse

laer, pp. 170-175.

[Bar86] Barto, A. (1986) Game-theoretic cooperativity in networks of self-interested

units. In, Neural Networks fo r Computing (ed. J. Denker). American Institute

of Physics, New York, pp. 41-46.

[Bar87] Barto, A. (1987) An approach to learning control surfaces by connectionist

systems. In, Vision, Brain and Cooperative Competition (eds. M. Arbib, A.

Hanson). MIT Press, London, pp. 665-701.

[BaS81] Barto, A.; Sutton, R. (1981) Landmark learning: An illustration of associa

tive search. Biological Cybernetics, 42: 1-8.

[BaS82] Barto, A.; Sutton, R. (1982) Simulation of anticipatory responses in classi

cal conditioning by a neuron-like adaptive element. Behavioural Brain

Research , 4: 221-235.

[Ber84] Berger, T. (1984) Long-term potentiation of hippocampal synaptic transmis

sion affects rate of behavioral learning. Science, 224: 627-630.

[BFF89] Bisset, D.; Filho, E.; Fairhurst, M. (1990) A comparative study of neural

network structures for practical application in a pattern recognition

175

environment. Proc. 1st IEE International Conference on Artificial Neural Net

works, London, pp. 378-382.

[Bla75] Blakemore, C. (1975) Central visual processing. In, Handbook o f Physiology

(eds. M. Gazzaniga, C. Blakemore). Academic Press, London, pp. 241-268.

[Bla88] Blakemore, C. (1988) The M ind M achine. BBC Books, London.

[B1B59] Bledsoe, W.; Browning, I. (1959) Pattern recognition and reading by

machine. Proc. Eastern Joint Computer Conference, Boston, pp. 225-232.

[Blo62] Block, H. (1962) The perceptron: A model for brain functioning I. Reviews

o f Modern Physics, 34: 123-135.

[B0088] Booker, L. (1988) Classifier systems that learn internal world models.

M achine Learning, 3: 161-192.

[BoY55] Boycott, B.; Young, J. (1955) A memory system in Octopus vulgaris

Lamarck. Proc. Royal Society o f London, B143: 449-480.

[BoY56] Boycott, B.; Young, J. (1956) Effects of interference with the vertical lobe

on visual discriminations in Octopus vulgaris Lamarck. Proc. Royal Society o f

London, B146: 439-459.

[Boy67] Boycott, B. (1967) Learning in the octopus. In, Psychobiology: The Biologi

cal Basis o f Behaviour (eds. J. McGaugh, N. Weinberger, R. Whalen). W. H.

Freeman, San Francisco, pp. 132-140.

[BSA83] Barto, A.; Sutton, R.; Anderson, C. (1983) Neuronlike adaptive elements

that can solve difficult learning control problems. IEEE Trans, on System s, Man

and Cybernetics, SMC-13(5): 834-851.

[BSB81] Barto, A.; Sutton, R.; Brouwer, P. (1981) Associative search network: A

reinforcement learning associative memory. Biological Cybernetics, 40: 201-

211.

176

[CaG87] Carpeter, G.; Grossberg, S. (1987) ART2: Self-organisation of stable

category recognition codes for analog input patterns. Applied Optics, 26(23):

4919-4930.

[CaG88] Carpenter, G.; Grossberg, S. (1988) The ART of adaptive pattern recogni

tion by a self-organising neural network. IEEE Computer, 21(3): 77-88.

[CaP87] Carnevalli, P.; Patarnello, S. (1987) Exhaustive thermodynamical analysis

of Boolean learning networks. Europhysics Letters, 4(10): 1199-1204.

[Car86] Carlson, N. The Physiology o f Behavior. Allyn and Bacon, London.

[CeP89] Cecconi, F.; Parisi, D. (1989) Networks that learn to predict where the food

is and also to eat it. Proc. International Joint Conference on Neural Networks,

Washington, D. C., vol. n , p. 624 (abstract only).

[CGT90] Clarkson, T.; Gorse, D.; Taylor, J. (1990) Hardware realisable models of

neural processing. Proc. 1st IEE International Conference on Artificial Neural

N etworks, London, pp. 242-246.

[Che90] Chen, V. (1990) Problem-solving by using reinforcement learning neural

nets. Proc. International Joint Conference on Neural Networks IJCNN-90-W ASH ,

Washington, D. C., vol. El, pp. 583-586.

[ChS89] Churchland, P.; Sejnowski, T. (1989) Neural representation and neural

computation. In, Neural Connections and Mental Computation (eds. L. Nadel,

L. Cooper, P. Culicover, R. Harnish). MIT Press, London, pp. 15-48.

[ChV89] Cherassky, V.; Vassilas, N. (1989) Performance of backpropagation net

works for associative database recall. Proc. International Joint Conference on

Neural Networks IJCNN-90-W ASH , Washington, D. C., vol. I, pp. 77-84.

[C0R86] Colwill, R.; Rescorla, R. (1986) Associative structures in instrumental

learning. In, The Psychology o f Learning and Motivation: Advances in Research

and Theory (ed. G. Bower). Academic Press, London, vol. 20.

177

[CrA86] Crick, F.; Asanuma, C. (1986) Certain aspects of the anatomy and physiol

ogy of the cerbral cortex. In, Parallel Distributed Processing: Explorations in

the Microstructure o f Cognition (eds. J. McClelland, D. Rumelhart). MIT

Press, London, vol. 2, pp. 372-289.

[deC86] de Callatay, A. (1986) Natural and Artificial Intelligence. Elsevier Science,

New York, pp. 260-271.

[DGZ87] Derrida, B.; Gardner, E.; Zippelius, A. (1987) An exactly solvable asym

metric neural network model. Europhysics Letters, 4(2), pp. 167-173.

[Dor68] Doran, J. E. (1968) Experiments with a pleasure-seeking automaton.

M achine Intelligence (ed. D. Mitchie). Edinburgh University Press, Edin

burgh, vol. 3, pp. 195-216.

[Fel81] Feldman, J. (1981) A connectionist model of visual memory. In, Parallel

M odels o f Associative Memory (eds. G. Hinton, J. Anderson). Lawrence Erl-

baum, Hillsdale, NJ, pp. 49-81.

[Ful89] Fulcher, E. (1989) Neural networks: A testbed for new conjectures. BSc

Thesis, Middlesex Polytechnic.

[GEY67] Garcia, J.; Ervin, F.; Yorke, C.; Koelling, R. (1967) Conditioning with

vitamin injections. Science, 185: 824-831.

[G0S88] Gorman, R.; Sejnowski, T. (1988) Learned classification of sonar targets

using a massively parallel network. IEEE Trans, on Acoustics, Speech and Sig

nal Processing, 36(7): 1135-1140.

[G0T88] Gorse, D.; Taylor, J. (1988) On the equivalence and properties of noisy

neural and probabilistic RAM nets. Physics Letters A, 131(6): 326-332.

[GoT90] Gorse, D.; Taylor, J. (1990) Training strategies for probabilistic rams.

Parallel Processing in Neural Systems and Computers (eds. R. Eckmiller, G.

Hartmann, G. Hauske). Elsevier Science, Amsterdam, pp. 161-164.

178

[Gro71] Grossberg, S. (1971) On the dynamics of operant conditioning. Journal o f

Theoretical Biology, 33: 225-255.

[Gro80] Grossberg, S. (1980) How does a brain build cognitive code? Psychological

RevieWy 87: 1-51.

[Gro87] Grossberg, S. (1987) The Adaptive Brain. Elsevier Science, New York.

[GuM90] Guha, A.; Mahur, A. (1990) Setpoint control based on reinforcement

learning. Proc. International Joint Conference on Neural Networks IJCNN-90-

WASHy Washington, D. C., vol. El, pp. 511-514.

[HAR84] Hartwick, E.; Ambrose, R.; Robinson, S. (1984) Den utilization and the

movements of tagged Octopus dofleini. M arine Behavior and Physiology, 11(2):

95-110.

[HaL84] Hartline, P.; Lange, G. (1984) Visual systems of cephalopods. In, Com

parative Physiology o f Sensory Systems (eds. L. Bolis, R. Keynes, S. Maddrell).

Cambridge University Press, London, pp. 335-355.

[Heb49] Hebb, D. (1949) The Organization o f Behavior. Chapman and Hall, Lon

don.

[Hop82] Hopfield, J. (1982) Neural networks and physical systems with emergent

collective computational abilities. Proc. National Academy o f Science USAy

79(8): 2554-2558.

[Hul32] Hull, C. (1932) The goal-gradient hypothesis and maze learning. Psycholog

ical RevieWy 39: 25-43.

[Hun88] Hunter, L. (1988) Some memory but no mind. Behavioral and Brain Sci

ences y 11(1): 37.

[Joh82] Johnson-Laird, P. (1988) The Computer and the Mind. Fontana Paperbacks,

London.

179

[Jor86] Jordan, M. (1986) Attractor dynamics and parallelism in a connectionist

sequential machine. Proc. 8th Annual Conference o f Cognitive Science Society,

pp. 531-546.

[KaA87] Kan, W.; Aleksander, I. (1987) A probabilistic logic neuron network for

associative learning. Proc. IEEE 1st Annual International Conference on Neural

Networks, San Diego, pp. 541-548.

[Kan76] Kandel, E. (1976) Cellular Basis o f Behavior: An Introduction to Behavioral

Neurobiology. W. H. Freeman, San Francisco.

[Kan88] Kan, W. (1988) A probabilistic logic neural network for associative learn

ing. PhD Thesis, Imperial College, University of London.

[Kel55] Kelly, G. (1955) The Theory o f Personal Constructs. Norton, New York.

[Klo86] Klopf, A. (1986) A drive-reinforcement model of single neuron function:

An alternative to the Hebbian model. In, Neural Networks fo r Computing (ed.

J. Denker). American Institute of Physics, New York, pp. 265-270.

[Klo88] Klopf, A. (1988) A neuronal model of classical conditioning. Psychobiol

ogy, 16(2): 85-125.

[Koh88] Kohonen, T. (1988) The "neural" phonetic typewriter. Computer, 21(3):

11- 22 .

[Koh90] Kohring, G. (1990) Finite-state neural networks: A step towards the simula

tion of very large systems. (Preprint obtained from author).

[KuR89] Kuperstein, M.; Rubenstein, J. (1989) Implementation of an adaptive

neural controller for sensory-motor coordination. Proc. International Joint

Conference on Neural Networks IJCNN-90-WASH, Washington, D. C., vol. II,

pp. 305-310.

[Lan85] Langley, P. (1985) Learning to search: From weak methods to domain-

specific heuristics. Cognitive Science, 9: 217-260.

180

[LeC86] LeCun, Y. (1986) Learning processes in an asymmetric threshold network.

In, Disordered Systems and Biological Organization (eds. E. Bienenstock, F.

Fogelman Souli, G. Weisbuch). Springer-Verlag, Berlin.

[LeM89] Leaver, R.; Mars, P. (1989) Stochastic computing and reinforcement neural

networks. Proc. 1st IEE International Conference on Artificial Neural Networks,

London, pp. 163-170.

[LGH89] LeCun, Y.; Galland, C.; Hinton, G. (1989) GEMINI: Gradient estimation

through matrix inversion after noise injection. Advances in Neural Information

Processing Systems I (ed. D. Touretzky). Morgan Kaufman, San Mateo, CA,

pp. 141-148.

[LyB84] Lynch, G.; Baudry, M. (1984) The biochemistry of memory: A new specific

hypothesis. Science, 224: 1057-1063.

[Mal63] Maldonado, H. (1963) The visual attack learning system in Octopus vul

garis. Journal o f Theoretical Biology, 5: 470-488.

[MaL85] Mather, J.; Lethbridge, U. (1985) Behavioral interactions and activity of

captive Eledone moschata: Laboratory investigation of a "social" octopus.

Animal Behvaior, 33(4): 1138-1144.

[Mar82] Marr, D. (1982) Vision. W. H. Freeman, San Francisco.

[Mar88] Martland, D. (1988) Adaptation of Boolean networks using back-error pro

pagation. (Preprint obtained from author).

[McA88] McAulay, A. D. (1988) Adaptive 2-D tracking with neural networks.

Abstracts o f 1st Annual INNS M eeting, Boston, p. 457 (abstract only).

[McE86] McClelland, J.; Elman, J. (1986) Interactive processes in speech process

ing: The TRACE model. In, Parallel Distributed Processing: Explorations in

the M icrostructure o f Cognition (eds. J. McClelland, D. Rumelhart). MIT

Press, London, vol. 2, pp. 58-121.

181

[McN82] McNaughton, N. (1982) Is the hippocampus a store, intermediate or other

wise? Behavioral Brain Sciences, 8: 508-509.

[McP43] McCulloch, W.; Pitts, W. (1943) A logical calculus of the ideas immanent

in nervous activity. Bulletin o f M athematical Biophysics, 5: 115-133.

[Mel88] Mel, B. (1988) MURPHY: A robot that learns by doing. In, Neural Infor

mation Processing Systems (ed. D. Anderson). American Institute of Physics,

New York, pp. 544-553.

[MiC68] Mitchie, D.; Chambers, R. (1968) BOXES: An experiment in adaptive con

trol. In, M achine Intelligence 2 (eds. E. Dale, D. Mitchie). Oliver and Boyd,

Edinburgh, pp. 137-152.

[MiP69] Minsky, M.; Papert, S. (1969) Perceptrons: An Introduction to Computational

Geometry. MIT Press, London (2nd edition, 1989).

[MKS88] Miyamoto, H.; Kawato, M.; Setoyama, T.; Suzuki, R. (1988) Feedback-

error-learning neural network for trajectory control of a robotic manipulator.

Neural Networks, 1(3): 251-265.

[MuG88] Muntz, W.; Gwyther, J. (1988) Visual acuity in Ocotpus pallidus and

Octopus australis. Journal o f Experimental Biology, 134: 119-129.

[MyA88] Myers, C.; Aleksander, I. (1988) Learning algorithms for probabilistic

logic nodes. Abstracts o f 1st Annual INNS M eeting , Boston, p. 205 (abstract

only).

[Mye87] Myers, C. (1987) Training strategies for the PLN. Imperial College Neural

Computing Group Internal Report NCG/87/02.

[Mye88] Myers, C. (1988) The number of functions computed by PLN trees.

Imperial College Neural Systems Engineering Internal Report NSE/88/02,3.

[Mye89a] Myers, C. (1989) Output functions for probabilistic logic nodes. Proc. 1st

IEE International Conference on Artificial Neural Networks, London, pp. 310-

182

[Mye89b] Myers, C. (1989) Temporal credit assignment: Adaptive learning when

results are delayed and interleaved in time. Imperial College Neural Systems

Engineering Internal Report NSE/89/01.

[Mye89c] Myers, C. (1989) Temporal credit assignment II: Non-independent

memories. Imperial College Neural Systems Engineering Internal Report

NSE/89/02.

[Mye90] Myers, C. (1990) Reinforcement learning when results are delayed and

interleaved in time. Proc. INNC-90-PARIS, Paris, pp. 860-863.

[NaN67] Nagumo, J.; Noda, A. (1967) A learning method for system identification.

IEEE Trans, on Automatic Control, AC-12: 282-287.

[New88] Newman, C. (1988) Memory capacity in neural networks: Rigorous lower

bounds. Neural networks, 1(3): 223-238.

[NgW89] Nguyen, D.; Widrow, B. (1989) The truck backer-upper: An example of

self-learning in neural networks. Proc. International Joint Conference on Neural

Networks IJCNN-90-W ASH , Washingtion, D. C., vol. II, pp. 357-363.

[PaC88] Patarnello, S.; Carnevalli, P. (1990) Learning to predict the consequences of

one’s own actions. Parallel Processing in Neural Systems and Computers (eds.

R. Eckmiller, G. Hartmann, G. Hauske). Elsevier Science, Amsterdam, pp.

237-240.

[Par85] Parker, D. (1985) Learning logic. Technical Report TR-87, Centre for

Computational Research in Economics and Management Science, MIT, Cam

bridge, MA.

[PoC90] Procino, D.; Collins, J. (1990) An Application of neural networks to the

guidance of free-swimming submersibles. Proc. International Conference on

Neural Networks IJCNN-90-W ASH , vol. II, pp. 417-420.

314.

183

[PPH88] Psaltis, D.; Park, C.; Hong, J. (1988) Higher-order associative memories

and their optical implementations. Neural Networks, 1(2): 149-163.

[PSY87] Psaltis, D.; Sideris, A.; Yamamuro, A. (1987) Neural controllers. Proc.

IEEE 1st Annual Conference on Neural Networks, San Diego, pp. 551-558.

[Raw85] Rawlins, J. (1985) Associations across time: The hippocampus as a tem

porary memory store. Behavioral and Brain Sciences, 8: 479-496.

[RHW86a] Rumelhart, D.; Hinton, G.; Williams, R. (1986) Learning internal

representations by error propagation. In, Parallel Distributed Processing:

Explorations in the Microstructure o f Cognition (eds. D. Rumelhart, J. McClel

land). MIT Press, London, vol. 1, pp. 318-362.

[RHW86b] Rumelhart, D.; Hinton, G.; Williams, R. (1986) Learning representa

tions by back-propagating errors. N ature, 323: 533-536.

[Rol89] Rolls, E. (1989) Function of neuronal networks in the hippocampus and

neocortex in memory. In, Neural Models o f Plasticity: Experim ental and

Theoretical Approaches (eds. J. Byrne, W. Berry). Academic Press, San

Diego, pp, 240-265.

[Rol90] Rolls, E. (1990) A theory of emotion and its application to understanding

the neural basis of emotion. Preprint obtained from author, to appear in Cog

nition and Emotion.

[Ros58] Rosenblatt, F. (1958) The perceptron: A probabilistic model for informa

tion storage and organization in the brain. Psychology Review , 65: 386-408.

[Ros62] Rosenblatt, F. (1962) Principles o f Neurodynamics. Spartan Books, New

York.

[Sam63] Samuels, A. (1963) Some studies in machine learning using the game of

checkers. In, Computers and Thought (eds. E. Feigenbaum, J. Feldman).

McGraw-Hill, New York, pp. 71-105.

184

[SaS89] Saerens, M.; Soquet, A. (1989) A neural controller. Proc. 1st IEE Interna

tional Conference on Artificial Neural Networks, London, pp. 211-215.

[Sch90a] Schmidhuber, J. (1990) Recurrent networks adjusted by adaptive critics.

Proc. International Joint Conference on Neural Networks IJCNN-90-W ASH,

Washington, D. C., vol. I, pp. 719-722.

[Sch90b] Schmidhuber, J. (1990) Networks adjusting networks. Proc. D istributed

Adaptive Neural Information Processing (eds. J. Kinderman, A. Linden), St.

Augustin, 1989.

[Sej86] Sejnowski, T. (1986) Open questions about computation in the cerebral cor

tex. In, Parallel Distributed Processing: Explorations in the M icrostructure o f

Cognition (eds. J. McClelland, D. Rumelhart). MIT Press, London, vol. 2, pp.

372-389.

[Sel88] Selverston, A. (1988) A consideration of invertebrate central pattern genera

tors as computation databases. Neural Networks, 1(2): 109-117.

[SeR86] Sejnowski, T.; Rosenberg, C. (1986) NETtalk: A parallel network that

learns to read aloud. JHU Technical Report JHU/EECS-86/01.

[Sha89a] Shapiro, J. (1989) Hard learning in boolean neural networks. In, New

Developments in Neural Computing (eds. J. Taylor, C. Mannion). Adam

Hilger, Bristol, pp. 125-132.

[Sha89b] Sharkey, N. (1989) A PDP learning approach to natural language under

standing. In, Neural Computing Architectures (ed. I. Aleksander). North

Oxford Academic, London, pp. 92-116.

[ShM88] Shepanski, J.; Macy, S. (1988) Teaching artificial neural systems to drive:

Manual training techniques for autonomous systems. In, Neural Information

Processing Systems (ed. D. Anderson). American Institute of Physics, New

York, pp. 693-700.

185

[Ste87] Stein, J. (1987) An Introduction to Neurophysiology. Blackwell Scientific,

London.

[Sto89] Stork, D. (1989) Is backpropagation biologically plausible? Proc. Internal-

tional Joint Conference on Neural Networks, Washington D. C., vol. II, pp.

241-246.

[SuB81] Sutton, R.; Barto, A. (1981) Toward a modern theory of adaptive networks:

Expectation and prediction. Psychology Review, 88(2): 135-170.

[Sut57] Sutherland, N. (1957) Visual discrimination of orientation and shape by the

octopus. N ature , 179: 11-13.

[Sut63] Sutherland, N. (1963) Shape discrimination and receptive fields. N ature,

197: 118-122.

[Sut88] Sutton, R. (1988) Learning to predict by the methods of temporal differ

ences. M achine Learning, 3: 9-44.

[TeS88] Tesauro, G.; Sejnowski, T. (1988) A "neural" network that learns to play

backgammon. In, Neural Information Processing Systems (ed. D. Anderson).

American Institute of Physics, New York, pp. 794-803.

[TFL89] Tattersall, G.; Foster, S.; Linford, P. (1989) Single-layer look-up percep-

trons. Proc. 1st IEE International Conference on Artificial Neural Networks, Lon

don, pp. 148-152.

[T0W88] Tolat, V.; Widrow, B. (1988) An adaptive neural net controller with visual

inputs. Abstracts o f 1st Annual INNS M eeting, Boston, p. 362 (abstract only).

[Vid88] Vidal, J. (1988) Implementing neural nets with programmable logic. IEEE

Trans, on Acoustics, Speech and Signal Processing, 36(7): 1180-1190.

[WaG89] Wang, J.; Grodin, R. (1989) Novel training algorithm for limited connec

tion networks. Proc. 1st IEE International Conference on Artificial Neural N et

works, London, pp. 387-389.

186

[Wal87] Walker, S. (1987) Animal Learning: An Introduction. Routledge and Kegan

Paul, London.

[Wel59a] Wells, M. (1959) Functional evidence for neurone fields representing the

individual arms within the central nervous system of Octopus. Journal o f

Experim ental Biology, 36: 501-511.

[Wel59b] Wells, M. (1959) A touch-learning centre in Octopus. Journal o f Experi

mental Biology, 36: 590-612.

[Wel68] Wells, M. (1968) Lower Animals. Weidenfeld and Nicholson, London.

[Wer74] Werbos, P. (1974) Beyond regression: New tools for predictions and

analysis in the behavioral sciences. PhD Thesis, Harvard University, Cam

bridge, MA.

[Wer90] Werbos, P. (1990) Consistency of HDP applied to a simple reinforcement

learning problem. Neural Networks, 3(2): 179-189.

[WeY65] Wells, M.; Young, J. (1965) Split-brain preparations and touch learning in

the Octopus. Journal o f Experimental Biology, 43: 565-579.

[WGM73] Widrow, B.; Gupta, N.; Maitra, S. (1973) Punish/reward: Learning with a

critic in adaptive systems. IEEE Trans, on Systems, Man and Cybernetics,

SMC-3(5): 455-465.

[WiH60] Widrow, B.; Hoff, M. (1960) Adaptive switching circuits. 1960 W ESCON

Convention Recordings, part 4.

[WiL88] Wieland, A.; Leighton, R. (1988) Shaping schedules as a method for accel-

lerated learning. Abstracts o f 1st Annual INNS M eeting, Boston, p. 231 (abstract

only).

[Win88] Windecker, R. (1988) Learning of networks of nondeterministic adaptive

elements. In, Neural Information Processing Systems (ed. D. Anderson).

American Institute of Physics, New York, pp. 840-849.

187

[WiP89] Williams, R.; Peng, J. (1989) Reinforcement learning algorithms as func

tion optimizers. Proc. International Joint Conference on Neural Networks,

Washington, D. C., vol. II, pp. 89-95.

[WiR90] Wilson, F.; Rolls, E. (1990) The primate amygdala and reinforcement: A

dissociation between rule-based and associatively-mediated memory revealed in

amygdala neuronal activity.)Preprint obtained from authors).

[WiS64] Widrow, B.; Smith, F. (1964) Pattern-recognizing control systems. In,

Computer and Information Sciences (eds. J. Tou, R. Wilcox). Spartan Books,

New York, pp. 288-317.

[Wit77] Witten, I. (1977) An adaptive optimal controller for discrete-time Markov

environments. Information and Control, 34: 286-295.

[WiZ89] Williams, R.; Zipser, D. (1989) A learning algorithm for continually run

ning fully recurrent neural networks. Neural Computation, 1(2): 270-280.

[WoS89] Wong, K.; Sherrington, D. (1989) The maximum storage capacity in

Boolean associative memories. In, New Developments in Neural Computing

(eds. J. Taylor, C. Mannion). Adam Hilger, Bristol, pp. 133-140.

[WWB88] Widrow, B.; Winter, R.; Baxter, R. (1988) Layered neural nets for pat

tern recognition. IEEE Trans, on Acoustics, Speech and Signal Processing ,

36(7): 1109-1118.

[Yeu88] Yeung, D. (1988) Supervised learning of action probabilities in associative

reinforcement learning. Proc . 1988 Connectionist Models Summer School (eds.

D. Touretzky, G. Hinton, T. Sejnowski). Morgan Kaufman, San Mateo, CA,

pp. 162-171.

[You58a] Young, J. (1958) Effect of removal of various amounts of vertical lobe on

visual discrimination in Octopus. Proc. Royal Society o f London, B-149: 441-

462.

188

[You58b] Young, J. (1958) Responses of untrained octopuses to various figures and

the effect of removal of the vertical lobe. Proc. Royal Society o f London, B-149:

463-483.

[You60] Young, J. (1960) Unit processes in the formation of representations in the

memory of Octopus. Proc. Royal Society o f London, B-153:l-17.

[You64] Young, J. (1964) A Model o f the Brain , Clarendon Press, Oxford.

[You65a] Young, J. (1965) The nervous pathways for poisoning, eating and learning

in Octopus. Journal o f Experimental Biology, 43: 581-593.

[You65b] Young, J. (1965) Influence of previous preferences on the memory of

Octopus vulgaris after removal of the vertical lobe. Journal o f Experim ental

Biology, 43: 595-603.

[You68] Young, J. (1968) Reversal of a visual preference in Octopus after removal

of the vertical lobe. Journal o f Experimental Biology, 49: 413-19.

[You70] Young, J. (1970) Short and long memories in Octopus and the influence of

the vertical lobe system. Journal o f Experimental Biology, 52: 385-393.

[You71] Young, J. (1971) The Anatomy o f the Nervous System o f Octopus vulgaris.

Clarendon Press, Oxford.

189

APPENDIX A

Below left, the stimulus patterns used for the ADB simulations of Section 4.7; below

right, the state transition table for the ADB simulations of Section 4.7 — showing

the next state entered if the system outputs a decision to move left, ahead or right

Current
State

Next State
Left Aheac Right

A B C D

B E F G

C H I J

D K L M

E N 0 P

F Q S T

G R u V

H W X Y

I Z A B

J D E F

K C G H
L I J K

M L N Y

N O P Q
0 R S T

P U V W

Q X Y Z

R A B c

S D E G

T F H I

U J K L

V M N O

w Q R Z

X s T u

Y V W X
z p A M

190

APPENDIX B

The set of stimulus patterns used with the OVSIM simulations of Chapter 5; each is

referred to in the text by reference to the 3-character code given here.

191

APPENDIX C

Sample attack sequence with a positive (below left) and negative (below right)

stimulus. Reinforcement arrives before presentation of the fifth pattern.

POSITIVE SEQUENCE NEGATIVE SEQUENCE

192

APPENDIX D

The 9-bit input patterns to which each type of classifying cell in OVSIM will output

a "1" to signal recognition.

BLACK WHITE

a a a a a i S l i i□ E inp SSHS3
HORIZONTAL EDGES VERTICAL EDGES

mnu mmm
n n i i i i
ON-CENTRE OFF-CENTRE

S S 5 BE DOBQO
r m m ~ i r r n r m m
lM rP n i m i Wj m ten I m i H i LLJi t m D9 HBQIkH S B S H S H
r m l m I tm l t d H i a a o a a
■ m m i r m r m r m
m i c m E m ElH S B B3BQBS
H i t m r u i r u j r r i BBOBB
H i t m rm i l l H i BBD99j~j s e n r n

s e a

193

LEFT

(APPENDIX D

RIGHT

cont.)

UP DOWN
MOVEMENT MOVEMENT MOVEMENT MOVEMENTSB HB mm mma s BE HffiBS G8 ma mman mm PPBFffl
mi i-n HSS ■s
SB sa DH HD
mm SB un ■■
EB na ■ -

EB ■n mm mm
mm na HI muBH an =■ DHHa b e nn mmEB BE mm HDBa BS

194

APPENDIX E

Two sample attack sequences. Reinforcement arrives after the fourth pattern,

making the left sequence "easier" since the current pattern when reinforcement

arrives is more like the original stimulus being learned. In the "harder" sequence,

the current and origninal patterns are very different, and there can be no transfer of

learning about the current pattern to the original stimulus pattern.

EASIER SEQUENCE HARDER SEQUENCE

195

APPENDIX F - PUBLISHED PAPERS

Abstracts of INNS 1st Annual Meeting, 1988, p. 205

LEARNING ALGORITHMS FOR PROBABILISTIC NEURAL NETS
by Catherine Mvers and Igor Aleksander.

D epartm ent of Computing,
Imperial Collegel80 Queen's Gate,London SW7 2BZ England.

Although neural n e t models show great promise in areas where trad itional AI
approaches falter, such as p a tte rn recognition, pa tte rn completion and content
addressable memory, th e ir success is constrained by slow learning ra tes and the
d iff icu lty of p h y s ica l im p le m e n ta tio n ; le a rn in g s tra te g ie s such as
error-back-propagation are also implausible as biological models.

The Probabilistic Logic Neuron (PLN) [1] [2] represents an a ttem pt to address
these issu es w hile re ta in in g th e em ergen t p roperties of the tra d itio n a l
connectionist models. I t is im plem ented as a variable logic device, w ith the
consequences th a t i t can perform any Boolean function of its inputs, while its use
in n e ts allows d ras tic reduction in quan tity and specificity of connection
requirem ents.

O utputs to the PLN serve as address lines, while the value stored in the b it
addressed becomes the output value. Training is thus reduced to the process of
storing appropriate b inary values into the addresses. This rew ard/punishm ent
strategy only requires each node to make use of private information and the global
error/correct state: there is no need, for example, for the PLN to know to which
nodes it is connected or w hat their states are. Typically, a PLN may store a value
which is the probability of outputting a 1 ra th e r than a 0/1 bit itself. This provides
for a set of "don't know" states in which 0/1 are output with equal probability.

The typical back-propagation ne t shows in itia l goal-directed m ovem ent
through state space, bu t quickly resorts to apparently random attem pts to approach
a nearby global energy minimum. Through use of the "don't know" state to restric t
exploration of the state space, and of increm ental rew ard/punishm ent learning,
the PLN n e t can converge on a solution w ith minimal wandering. Accordingly,
applied to the parity problem and other benchmarks, PLN nets show performance
which is orders of magnitude better than back-propagation nets.

S tudies are underw ay to hone the existing PLN learn ing paradigm to
maximise th is effect, m aking best use of the "don't know" inform ation, while
retaining the requirem ent th a t each node make use only of private local knowledge.
The analysis also a ttem pts to define and determ ine the storage capacity and
generalisation ability of these nets.

It is already apparen t th a t the PLN is attractive because of its biologically
plausible learning strategy as well as because of its physically realizable structure;
PLNs also promise high perform ance in im plem entations w ith regard to o ther
models of connectionist systems.

References

[1] Wing Kay Kan & I. Aleksander, Proc. 1st Int. Conf. on Neural Nets, San
Diego, 1987.

[2] I. Aleksander, in Eckmiller & V.D. Marlsberg, Neural Computing, Springer
Verlag, 1988.

196

ii
i

(APPENDIX F, cont.)

Proc. 1st IEE International Conference on Artificial Neural Networks, London
1989, PP. 310-314.

OUTPUT FUNCTIONS FOR PROBABILISTIC LOGIC NODES

C. E. Myers

Imperial College of Science, Technology and Medicine, UK

0. ABSTRACT
PLN nets consist of RAM-based Dodes which can learn any function
of tbeir binary inputs; they require only global error signals during
training, and they have been shown to solve problems significantly
faster than nets learning by error back-propagation. Output func
tions for PLNs may be probabilistic, linear or sigmoidal in nature;
tb it paper deals with designing an output function which yields
fastest convergence. Experiments with several small problems sup
port the values derived. Choice of an appropriate output function is
suggested to be highly problem-dependent, but heuristics for this
selection are outlined.

1. THE PLN AND MP1.N MODELS
Probabilistic Logic Nodes (PLNs), defined by Aleksander et. al.
(1,2), are a class of RAM-based neuron model, designed to combat
some of the deficiencies of more ubiquitous weighted-sum-and-
tbreshold approaches; namely that hardware implementation should
be straightforward, learning should not be unreasonably slow, and
error-correction should require only a global success/failure signal.
Briefly, a PLN is an augmented RAM, in wlych the / binary inputs
to a node form an address into one of the 2 ' memory locations, as
shown in Figure 1. The output function operates probabilistically on
the value stored at this address. During training, an external input
pattern is clamped to the input nodes, addressing one location in
each; each value accessed is translated into node output and in turn
passed as input to other nodes in the net, until external or visible
output is produced. If this external output is correct, the value con
cerned in each node is adjusted so as to increase the probability that
its performance will be repeated when next that location is addressed;
if the external output is in error, adjustment is made to decrease this
probability.
In the simplest case, that of the three-state PLN, every location in
every node contains one of three possible values: 0, 1, and "u" -
representing 'unknow n' for the initialised state. When a "u‘ is
accessed, the output function produces a 0 or 1 with equal probabil
ity. Stored values are then adjusted from *u' to 0 or 1, as the proba
bility of outputting a 1 is to be encouraged or discouraged, respec
tively. When an error occurs, as indicated by the external output
deviating from the ideal, all currently accessed stored values are reset
to * u \ Networks of these units are capable of solving hard learning
problems (1). A further advantage of the PLN paradigm it that it
does not require a specific error signal indicating what the desired
output pattern should have been, nor must it calculate errors at each
node. A global signal to the effect that error was detected or absent
is generated, and all nodes then update on the basis of this general
information.
It is possible, however, that the stored values be elements taken from
a much larger range than that described above. For example, the
values could be selected from the set {0.0, 0.1, 0.2, 0.3, ... 1.0),
representing the probability of outputting a 1 when that value is
addressed. Locations in the node might then undergo incremental
changes from randomness (0.5) to certainty (0.0 or 1.0). By allow
ing incremental adjustments, the net learns even more quickly.
Myers and Aleksander (?) compared this model to the error back-
propagation results given by Rumelhart (4), and found it to be signi
ficantly faster and also to generalise well. This learning algorithm
also gains the potential for varying the size of the increment in con
text of how important the trial is. This is however only one possible
output strategy for the PLN; the experiments cited in tbit paper
examine the performance of other ranges and interpretations of
value.

2. OUTPUT FUNCTIONS
The output function of a node may be described formally at a rule by
which the node determines its output, given a certain pattern on its
input lines. In the case of the PLN, it is the mechanism whereby
stored values are interpreted at affecting the probability that a 1 is

output at that node. In equational form, the output function of the
three-state PLN is given as:

Prob(<J> = 1) - C, if (({0.1)

- .50, if i = -u- (1)

where £ is the value stored at the location currently accessed and $ is
the value output. Similarly, for the U-state PLN described above,
we get:

Prob(6 “ 1) “ t (2)

This is a step-function approximating a linear output function. In
this case, it is a fairly gross approximation, since there are only
eleven steps. A higher number of elements as possible stored values
yields a finer approximation, but more bits of RAM are needed in
each node to store the 2 1 (’s.
Because of the mutual independence of the f ’s within a single node,
the PLN is not restricted to linear functions, and may execute any
arbitrary (non-monotonic, non-smooth, non-differentiable, etc.) func
tion. It is true that linear models such as threshold logic (4), ADA-
LINES (5) and Kobonen nets (6) have bad considerable success, but
there are several reasons why it is desirable to enable the use of non-
linearities, particularly the class of semi-linear or "squashing" func
tions.
As early as 1978, Brodie (7) described cells in L im u lu i eye with a
response that was linear about a central range, but which saturated
when presented with extreme stimuli: this of course describes a
squashing function. Sejnowski (8) reinforces this point in bis model
of cortex. Biological mimicry is not, however, the only reason to
employ sigmoidal output functions: they are essential for
signal/noise separation in reverberating nets. Grossberg (9) neatlv
shows how a sigmoidal output function dissipates noise and quenches
units below threshold, while those above threshold are contour-
enhanced and may be stored in the reverberating circuit. Thus, non-
linearities are a mathematical necessity in complex systems.

The two PLNs described above may be viewed as having maximally
different output functions: the first is very "hard" — i.e., there is no
intermediate space (except "u") between the conditions of con
sistently outputting a 0 and a 1. The second, conversely, has a very
"soft" limiter, where similar values of t yield similar probabilities of
outputting a 1. Of courte there exist an infinite number of inter
mediate curves between these two extremes. The current experi
ments examined effect on speed of learning of PLN output functions
varying first in u , the number of elements representing possible
stored values, and second in the softness or hardness of the function
which interprets and operates on these values.

3. CHQOSING_u_- NUMBER OF POSSIBLE .STORED VALUES
A PLN net is said to converge when all locations in all nodes either
have probabilities of outputting 1 equal to 0 or 1, or else are never
addressed. After convergence, then, any PLN net could be replaced
by a set of equivalent three-state PLNs without altering performance.
The advantage of a PLN with many possible stored values during
training is that after several reinforcements of a RAM location's
value in one direction (e.g ., toward outputting a 1), it is very hard to
erase that knowledge: in fact, it will take an equal number of nega
tive experiences to return it to "u*. Thus it has some protection
against errors which may occur in other parts of the net but which
affect it as well because the error signal is global and indiscriminate.
It will be forced to edge back tov/ards "u", but only one step, and the
probability of outputting a 1 need only change by very little in any
one cycle. In a network where w «3 , in contrast, a tingle error aris
ing anywhere in the net results in one location in every node being
reset to "u", and thus knowledge it erased, regardless of whether any
individual node was in fact responsible for the error.
A cost of increased u , besides requiring more RAM, is the difficulty
of returning a location to "u" when this is required. Noisy data or to
unfortunate ordering of training examples could push a location's

197

(APPENDIX F, cont.)

value very far Irom "u" in an undesirable direction, and an equal
number of error cycle* will be required to reset it.
Ideally, u must be chosen to balance protection against mistaken
erasure versus ability to erase when necessary.

by at least . Tbe probability that this doe* Dot occur is:

R3 « P ro fc(t n o t r e s e t i n x t r i a l s) - 1 — P *" (8)
3.1. Definition*
For a given feedforward net of N nodes of fao-in 7, with one output
node T , describe the current state S =* (S |, 5j, • • ■ 5*), and for all
nodes I, S, - ({j0, (u , ■ • • where l , / f R, tbe oi-element range
of possible stored values. Consider one node /, and let be tbe
value stored at tbe location addressed under tbe current input J.
Then tbe output of the node, <*>,, is given by tbe output function
<fUii) = /V0b(d ,|» l).
When a net is required to learn a function from input pattern to out
put pattern, there exist t a 0 solutions such that in that state the net
always gives a correct response. For the current purposes, we con
sider only problems where i > 0 .
Then, when the net is in state S , there exist one or more "closest"
solutions 5f In function space, where the difference function is at a
minimum:

/ - (3)
i - 1 7 - O

Given one Sc, call the output from each node in that state 6 *. Then
we may define each to be "Right" if when addressed,

s/n[Prob(<t>,= 1)— .5)

■* 7gn[Pro6(<*>’ =* 1)- .5] (4)

and "Wrong" otherwise. More generally, we may say that a node
outputs the Right/Wrong value with probability R /̂tV ̂ when a given
t is addressed. Usually, these probabilities can only be measured at
the output node, T .

Then tbe problem reduces to a choice of o such that there is a high
probability of erasing Wrong values even when R y > W T, *nd simul
taneously a low probability of erasiug Right values even when
Wr>*r.
3.2. Choosing low tu to allow desired erasure
A RAM location q in node (is set at 4 f 7?. At the current net state,
P patterns address it; lo r P * , <J>r“ <t>r while for P w, <t> r ^ <J> r - Notice
that it is possible that |/*u'|> |P*|, even if (is Right, or for |P* |> |p “'|
when t is not Right, depending on activity elsewhere in the Det.
In order to return { to random, so it might be reset, there must occur
y trials such that the number of elements of P v appearing exceeds

the number of elements of P* by at least

C is

, as in the worst case.

steps away from "u". For simplicity, we consider ODly the

i< y trials during which (is actually accessed, and assume the rest of
the net is subject only to minor change, so that S c does not change.
If clamped training inputs are selected randomly, elements of P * and
P w occur as Bernoulli trials. So the probability that at least m ele
ments of P w occur in x trials is:

P rob ^ X S rm) = B(x,m) + B(x ,m + 1) - • +B (x,x) (5)

where B(u,v)*= | u)w , 7?*_ ,l W =* ^, 7?«■ , and x lm . But thisv lvJ \p \ I'M
is not strict enough: it does not suffice that m events occur unless

m 5: (x -m) + | — I , or 2m —x is (6)

So, the probability that enough elements of \PW\ appear in x trials to
reset { to randomness is given by:

P 1 » P r o b (i reset w ith in x t r ia ls) =*

(?)SEsat)
) *

where J ranges from j —

£ automates increasing its index by 2 .

to xr t ranges from — + J to j , and

This time, to avoid (being reset to random, there must not occur y
trial* (of which some x are relevant) such that tbe number of patterns
accessing { and generating < b exceeds those generating 6 r “ d>r

3 .4 ..A compromise
The desired solution maximises both R* and P3: if we consider a
sum-of-squares function, - _

(f’,)J+ (P J)1 - P '’+ (1 - r ') 3 - 1 - 2P'-t- 2 (P *)3 (9)

a maximum occurs at P '«-*-—, i.e., where R’- R 1- —. Therefore,
2 2

tbe equation to solve is

/(<*>) “ * - f (10)
J » 2-

Notice that this equation depends on Rj, Wj, and u>, but not on N, I.
or the depth of the net.
Figure 2 shows optimal values of «u, such that (10) is satisfied, as a
function of Pw for sample values of x. Ideally, the net should be
constructed to minimise u (and hence the amount of RAM needed)
and also x (and hence convergence rime). If it is reasonable to
assume that P v deviates arouod a mean of 0.5, it is seen from Figure
2 that for small x , optimal u clusters in a range 5 s u S l 5 .
Experimental data were gathered to check ’ this assumption and
derived u . Figure 3 shows speed of convergence for small nets of 3
and 7 nodes learning the parity problem at different <o. In the case
of the smallest net, cii=ll led to fastest convergence, while in the
larger case a smaller u performed somewhat better, although for
about 75% of tbe nets, convergence occurred in roughly the same
time for all values of u.
Finally, the nets were set a task involving generalisation. Tbe prob
lem was to recognise a patch of 3 or more Is in a five-bit input
string, including the cases where tbe patch had moved partially offs
creen but at least two of its bits showed. Tbe negative patterns were
instances of single patches of 1 or 0 bits, or patches of 2 bits centered
- and thus not tips of a larger patch. Figure 4 shows the training set
and learning speeds. Nets with w*>ll learned the distinction fastest,
with 76% of sample Dets converging in less than 100 training cycles;
the o - 2 1 nets lagged well behind the others, and in fact 54% failed
to converge within 5000 cycles.
After each net had been trained, it was required to respond to all of
tbe 2J " 32 possible inputs. Of the 16 unseen patterns, 7 were exam
ples of positive patterns distorted by one bit; 9 were negative ones
with one bit of noise. Of tbe total 32 patterns, iu= 6 nets averaged
27.42 correct responses; u = l l Dets averaged 27.45 correct, and
u) = 21 averaged 28.30 right. In all cases a reasonable degree of
generalisation was achieved. However, the u« 2 1 nets showed tbe
most capability to adapt their responses to new stimuli. Because in
nearly half tbe cases the <i> = 21 nets had failed to converge, some
nodes i in tbe net had locations such that, when accessed,
0 < Prob(<6, ” l) < 1. Therefore, there was a possibility of output
ting different values at these Dodes, even given the same address.
This flexibility is responsible for tbe nets' ability to generate a wider
range of input in response to new patterns, and beDec results in a
slightly higher percent correct on the generalisation task.
Overall, empirical data tend to support the theoretical prediction:
that S S u ^ lS , and in specific, u ~ l l , should lead to fastest conver
gence.
For tbe remainder of this paper, u> will be held constant to tbe value
of 11.

4. CHOOSING <E - THE OUTPUT FUNCTION
The second main concern of this paper is selection of <t>, tbe output
function. A node i addresses location q which stores some value
i i R . Then its output d>, is determined by:

0 (0 “ Profc(4>,-l) (11)

<t> may range from relations which approximate linear functions to
ones which approximate threshold functions.

4-1- Detivation of Q
Consider again a feedforward tree, with one output node, T . Define

a t tbe Right value of £ with respect to a nearest solution Se, and
define as tbe Right output from node / under the current input. (
is adjusted toward Rj when 4>,= Rt and $ 7= 6 7 , and thus repetition
of tbe event is enccuraged. Similarly, when <6,4R, and 6 7 ’'<67 , the
current event is made less likely to reoccur, and the desired one
encouraged. If either of the other two events occur (d>/=Bi and
4>t * $ 7. or 8 (and 6 r = <6 r). (is trained wrongly - i.e., away

198

(APPENDIX F, cont.)

from R(. It is therefore desirable to select O such that for a value (
addressed in node i:

P ro b (<J>, = flt p i 6 r -<t>r) * P'ob{<b, * Q 4>r * 4>r)

>> P r o b (t> , * R ^ P l <br * 6 7) + P r o b { $, * / ? { (") <67 = 6 r) (12)
Assume = 1 aod 1; the other cases are of course symmetric.
Then (12) reduces to:

,$ { i) ^ l P 'o b (v a c c e s se d]* ,* R J Q i*))

* (1“ 4>(())]£/Vo£>(v ac ce ssed]* ,* /?t)(l — <t>(v))

» <t>(() V P ro b (v a c ce s s td |t{>, = /?{)(1 - <t>(v))

('. - 4>(t))£/V oh(v occessed\<t>,* ^{)<h(v) (13)

where v i s a value stored in some location in 7", and P ro b (v a cce s se d)
represents the likelihood that the location containing v is addressed
given the current output from node i. P ro b (v accessed]*,** R ^ is of
course independent of <J>(v) and <&(() This simplifies to:

0 (() 2 / 3',°l, (v accessed]* , = .Rl)j2<t>(v)-lJ

» (1 - 4>(())£ accessed |<6, * R^) ^2® (v) — 1J (14)

One hundred nets were trained with each value of a for the two par
ity problems described in the previour section; in both tasks, there
was a clear tendency for nets with hardest limiters to converge fastest
and those with softer limiters to converge more slowly. Figure 6
shows these results, and the mean and median time to convergence
for each type of net is given in Table 4a.
Set the generalisation task described above, all S categories of ne:
tended to learn to recognise the training set in approximately the
same time, with 50% of all trials resulting in convergence with::
1500 pattern presentations. Out of the 32 patterns in the generalisa
tion set, nets with a -2 .5 responded correctly to an average 27.45
patterns; those with a = 4 to an average 27.58 patterns, and those
with a - 5 , 10 and 25 to averages of 27.26, 27.32 and 27.20 patterns,
respectively. These success rates are all very similar, as expected,
since after convergence there should be no difference between nets
using any particular limiter in their ability to execute an associative
function. As all classes of net converged in similar time, and there
fore all bad a similar number nf trials unconverged at the end of
5000 pattern presentations, no one class of net showed the advantage
in generalisation of the unconverged nodes in the u = 21 nets of the
previous section.
These results support the theory that a hard limiter, for example t
high value of a in the functions considered here, leads to faster con
vergence, while having little effect on performance after training -is
completed.

A general form for <I> is (1 + e” ') ” 1. We consider a particular instan
tiation, ®(x) = (1+ e°i~l j * l’) ' 1 - allowing x to range from 0 to 1
instead of the more usual -1 to +1. The topic of concern is then to
select a to maximise inequality (15).

; +" Qi^rf-' n Y Prob(v accessed]* , * R k) |2®(v) - 1 j

» * ai. n . ,) ' Z P r o b (v acce ssed]* ,* fl{) |2 0 (v) - l j (15)

or.

^ P r c b (v accerredld), = R^) |2 ® (v) - l |
------------------------------------- --------------- » *•<-«“ > (16)
2 P r o b (v ac ce s sed |d>, * R^) J20{v) - 11

The right side of this equation is a constant for a given value of (,
and has a minimum as (-1 . depending on the assumption = 1. The
left side, however, will change dramatically as the net is trained,
since it depends on the probability of accessing different locations in
the top node given an output from /. Therefore, the best solution to
this equation is to make a as large as possible, to maximise the fre
quency with which states in the net will satisfy the inequality. The
result is an output function, <t>. which should be made to resemble a
very steep sigmoidal curve.
The result is intuitively satisfying: it suggests that once a node loca
tion is ’committed’ to an output, i.e., that it has been reinforced even
once away from randomness and toward either 1 or 0, it should out
put that value consistently. This allows other locations in the net to
organise around one another with some confidence that all are behav
ing as they expect to behave when fully trained.

Five limiters were compared in performance: approximating

O(x) 1
1 ,

(17)
where a € {2.5, 4. 5. 10. 25} and x € {0, 0.1, 0.2, ... 1.0). The
correspondences between the continuous functions and the <t> approx
imations are shown in Figure 5.

5. CONCLUSIONS
Several assumptions are implicit in the results presented here, and
they warrant restatement. The nets considered are feedforward
pyramids, being trained on problems for which a solution exists, via
a training schedule which involves a random ordering of training pat
terns. This is a constrained class of topology and task, but one
which is still quite powerful.
Given these assumptions, an MPLN net may be designed which »:i:
tend to converge as fast as possible: namely, its nodes contain stored
values selected from a raoge of 5s<uS l5 elements, and interpreted
according to a threshold-like output function. The experiments
described to support these claims are small both in terms of the
number of nodes and also in terms of size of state space relative to
number of solutions available. They are useful, however, since a
small number of distinguishable solutions exist and since the parity
problems are arguably the -hardest” of the hard learning problems.
It is not the case that the u and O defined here arc universally
optimal; it is not clear in the first place that speed of convergence is ;
necessary criterion to judge the "success” of a network - although ::
is probably the most frequent. There are occasions when a soft lim
iter, for example, will be desirable despite its slowness. One obvi
ous example involves a state space with abundant and deep local
minima, where probabilistic noisy outputs are necessary; in effect, i
net using a steep output function forms quick and binding opinions,
whereas a net with a more linear output function makes conservatise
ones, which still allow occasional lapses into the opposite output.
This ability would prove important in simulation of an automata
existing in a changing environment, where convergence per se is not
possible, and where a net might be more successful if some of its
nodes, say, output a one 75% of the time, and occasionally output t
zero to test the effects in the current environment. •
Appropriate choice of parameters is therefore highly dependent c;
the size, shape and complexity of the problem space, and also causes
subtle changes in the way the net organises to solve the problem -
particularly in the speed with which nodes commit to a particular out
put in response to an input pattern. The values of u and C
presented here cannot therefore be purported to be optimal under all
conditions, merely as especially useful and as good first approxima
tions for later fine-tuning, as necessary.

TAJ1LE. L-'-Pedflimancc d m t o: experiments on learning 4-hil &nd 7-hit, P&xiiv. Mean f.vtiih standard deviating ,nH m rdi.n .im^, ,n
arc shown, along with time for 90% and 1Q0% nf nets tested to converge.

3-Bit Parity

a mean st. dev. median ' 90% 100%
2.5 241 132K 150 500 3000

4 165 21K 150 400 900
5 1S6 30K 150 450 1000

10 123 15K 70 300 700
25 81 9K 70 200 705

7-Bit Parity

a mean St.dev. median 90% 100%
2.5 6.8K 46K 5.OK 14K 35K

4 . 8.9K 66K 6.5K 25K 45K
5 7.2K 45K 5.OK 15K 35K

10 4.8K 28K 3.5K 1 IK 35K
25 3.7K -28K 2.5K 9K 25K

199

(APPENDIX F, cont.)

I im grateful to Igor Aleksander and the Neural Systems Engineering
Group (or encouragement and useful discussions. This research was
supported by the NSF (USA).

&. REFERENCES
1. Aleksander, I., 1988, in Eckmiller, R and von der Malsburg,

C., eds., "Neural Computers," Springer-Verlag, Berlin, 189-
197.

2. Kan, W. and Aleksander, 1., 1988, in IEEE Proceedings Inter
national Conference on Neural Networks, San Diego, 541-548.

3. Myers, C. and Aleksander, I., 1988, in Proceedings First INNS
Annual Meeting, Boston.

4. Rumelbart, D.. Hinton, G:; and Williams, R ., 1986, in
Rumelhart, D. and McClelland, J., ed t., "Parallel Distributed"
Processing: Explorations in the Microstructure of Cognition",
vol. 1, MIT Press, London, 318-362.

5. Widrow, B. and Winter, R ., 1988, Computer. 21. 25-39.
6. Kohonen, T ., 1984, "Self-Organisation and Associative

Memory", Springer-Verlag, New York.
7. Brodie, S., Knigbt, B. and Ratliff, F., 1978, 1. Gen. Psychol..

72. 129-154, 162-166.
8. Sejnowtki, T ., 1981, in Hinton, G. and Anderson, J., eds,

"Parallel Models of Associative Memory", Lawrence Erlbaum,
Hillsdale, NJ. 189-212.

9. Grossberg, S., 1973, Studies in Appl. Math.. 50. 213-257.

iWfiriiibi-i

NODE i

optimal a)

Dashed line indicates region of 5 < tn < 15 -

Figure 1 The PLN; 1 binary inputs address a location in RAM
memory; the value accessed, (, is passed to the probabilistic output
function, <t>, which converts it to binary output,

Figure 2 The optimal values of u , as given by Equation (10), as a
function of P1*'; plotted for several values of x, the number of
training cycles.

200

(APPENDIX F, cont.)

% runs
completed

9b runs
completed

Patterns: Patterns:

Figure 3 Speed of convergence for two parity problems, for several
values of u>. Net topologies are shown in insets; sample size is 100
nets for each u .

Figure 4 Speed of convergence on the generalisation task for several
u>. Net toplology and the 16 training patterns are shown; sample size
is 100 nets for each <j .

0(0

% of net* converging

Figure 5 The 5 C* tested. Solid line is 1/1-re0* gp^Q circles are Figure 6 Speed of convergence for two parity problems, for sever*',
actual probabilities used for each value of <J>. Topologies as in Figure 3; sample size it 100 nets for each O.

REINFORCEMENT LEARNING WHEN RESULTS ARE
DELAYED AND INTERLEAVED IN TIME

Catherine Myers
Neural Systems Engioecrinf

Department o[Electrical Engineering
Imperial College, London SW7 2BT ENGLAND

Many real-world problems involve sequences where a automaton executes an action but
there is some delay before the results of that action become apparent. A system is presented
which learns to associate early stimuli with later reinforcement by buffering unfamiliar input
images until that reinforcement arrives. It is shown to learn to predict the immediate results
of various actions in a given state, to avoid entering negative next-states, and also to avoid
entering positive next-states which lead in turn only to negative states. The system is
capable of learning across indefinitely long reinforcement delays while only buffering a
small number of past states locally at the nodes.

Introduction. In the physical world, most events which entail (positive or negative)
reinforcement occur some time before the results actually arrive. For example, when an
animal sees a food-like image and decides to approach, grasp and ingest the object, the
positive reinforcement (taste) does not arrive until the end of the sequence. The original
visual image of the food is supplanted by a series of intervening ones - the final ones do
not even include the food image as it is out of sight inside the mouth. Yet even very simple
animals learn to bridge this time gap and associate distal images with appropriate approach
responses.

Solving this problem requires two abilities: first, that the memory of earlier images be
available when the reinforcement arrives; second, that learning be possible even though this
reinforcement is only an estimate of "goodness" rather than a full desired output as is
traditionally provided for supervised learning in neural networks.

The latter issue, reinforcement learning, has received some attention, notably from Widrow
[1,2], Barto and Sutton [3], Klopf [4] and Aleksander [5], A variant of Alcksander's model,
the MPLN (Multi-valued probabilistic logic node) [6] is used here.

The question of learning with delayed reinforcement is often approached in one of two
ways. One solution is to maintain a buffer of all previous states, possibly each with an
eligibility that decays with time, and then to update each according to its eligibility when
reinforcement arrives. This quickly becomes impractical as the number of possible states
grows. A second solution is to buffer only the S states immediately previous to the current;
but this precludes the system from learning about images which occur S+ 1 time steps before
their associated rewards.

The system investigated here also maintains a buffer of some $ previous states, but these
are not necessarily those that occurred in the immediately preceding time steps. Rather,
they are the S most unfamiliar previous stimuli. A state is placed in the buffer if its
outcome is more unpredictable than some item currently in storage, and it overwrites that
item. Simultaneously, the longer an item has been in the buffer, the more likely it is to be
ousted by a new item. If, on the other hand, the effects of the new stimulus arc predictable
with great certainty, it is unnecessary that the item enter the buffer - since there is nothing
new to be learned about it.

In this way, the system can keep a small number of previous states available, and yet learn
to associate reinforcement with states which occurred indefinitely earlier.

The Task. The problem considered here is based loosely on the idea of an automaton
learning to select food. A set of M types of element (each a 64-bit pattern) exist in the
world; of these some PCM are positive while the remainder NQM arc negative. At each
time cycle, the automaton is in some state x€M , and has a choice of moving left, right or
straight ahead; a transition matrix determines the next state: f(x, move) - y€M. If y fP , a
positive reinforcement is supplied immediately (as if the automaton experienced the taste of
food). If the automaton ecters y€N . there is an immediate positive reinforcement, followed
by a strong negative reinforcement delayed by some d time steps (as if there was a taste of
food later followed by nausea).

Thus the task is to learn to predict the three adjoining states from the current one, and also
to select the moves which result in some y€P and not y€N, even though the results are
delayed and contradictory signals may intervene. For example, negative reinforcement may
not arrive until some time after x€N has been entered, and it may arrive just after some
element of P has been entered.

The Model. The adaptive system consists of three basic parts: the Associator Module (AM)
which, given the current input image and a suggested next move, predicts the resulting next
state; the Judge Module (JM) which, given a predicted next state, estimates the desirability
of entering that state; and the short-term store (STS) which stores recently entered states in
readiness for the arrival of results. The complete system is shown in Figure 1. The move
selected will be the one which results in a prediction from AM to which the JM responds
most highly.

Figure 1. The system for learning with
delayed reinforcement. The AM predicts next
states for- given moves, the JM judges
desirability of next states, and move is chosen
accordingly. Input scenes are stored in STS
buffer until reinforcement arrives, whereupon
judge is trained to adjust desirability
predictions.

There is a limit, S, on the
number of elements which
may reside in STS at any one
time. As each element enters
STS, it is assigned a certain
strength or attention which
decays with time. When a
new clement is to be stored in
STS, it overwrites the resident
element with the weakest
attention. Initial attention, in
the simplest case, is a constant
larger than the longest
possible delay D: STS then
reduces to an S-prcvious-
elcmcnt buffer of the sort
discussed above. to
The AM consisted of MPLN 2
trees: each containing 8 10-
input MPLNs feeding into an
8-input top node. T he lower
level nodes each sampled 8
input bits (randomly, but all
64 input bits were used) plus
two bits encoding the move to
be evaluated. 64 of these
trees existed, each outputting
a bit, so that the predicted
next state could be

(A
PPEN

D
IX

 F, cont.)
Proc. IN

N
C

-90-PA
R

IS, Paris, 1990, pp. 860-863.

reproduced. Two JMs were investigated: a multi-layer version, MLJM, of 8 MPLN trees -
each similar to the AM trees, but without the move information; the total responses from all
top nodes gave a score 0..8 of how desirable the projected state was judged to be; and a
single-layer version, SLJM, consisting simply of 25 8-input MPLNs, sampling the input
retina randomly but evenly, and outputting total response in the range 0..25.

When an action is selected, the current state is stored in STS, along with up to 4 other
previous states (S= S); this is done locally at each node, and so could be synchronous.
When reinforcements arrive, each STS pattern is reapplied to the JM, which is then trained
by a standard MPLN learning algorithm [6] to increase or decrease its desirability measure
for those patterns. The AM is updated after each cycle, by the same algorithm, to produce
the received next state of the world in response to the previous state and move taken.

Results. The AM, trained alone to produce next state from current stato plus move,
predicted with 90% accuracy (measured in bits right) after 300 passes through the pattern
set; within 900 passes it achieved 99% accuracy, and took 6,000 passes to perform perfectly.

The MLJM, also trained separately, learned within 3,000 cycles ('100 passes through its
training corpus) to respond strongly to all elements of P and weakly to all elements of N.
This module was then paired with the trained AM, so that temporal effects (such as "avoid
positive states which lead only to negative ones (cul-de-sacs)") came into effect. Within a
further 2,000 cycles, tbe complete system learned all the necessary associations: including
avoidance of the state which led only to elements of N, but non-avoidance of states which
led to an clement of N but also at least one clement of P. However, by the conclusion of
this training, the system had experienced over 60 negative reinforcements or an average of
20 per clement of N — low by neural engineering standards, perhaps, but excessive when
compared with animal learning.

Training SLJMs in conjunction with the pretrained AM, the system tended to receive an
average of 5.5 negative reinforcements within the first 500-2,000 cycles, after which it
would never again enter a negative state. This is clearly much faster learning than was
obtained with the MLJM; however, the system did not learn so comprehensively. One
solution found is shown in Figure 2a. Not every positive state is re-entrant — in fact, rather
less than half are. This is still a valid solution, since the system receives positive
reinforcement on every cycle. Because the system learns so fast, some positive states arc
entered only once or twice before the system settles on a stable behaviour and may not be
entered again.

Simultaneous training of AM and SLJM resulted in more negative reinforcements during
training, as early output from the AM was nearly random and therefore useless to the
SLJM. The average number of negative reinforcements was 24, still considerably less than
with the MLJM even trained alone. Typically, most of these occurred within the first 500
cycles. Solutions found by these systems included more re-entrant states than when the AM
was pre-trained; one solution, shown in Figure 2b, has 15 of the 22 positive states re
entrant, with all negative elements and the cul-de-sac transient and hence never re-entered.

The observed tradeoff is that the MLJM solves tbe problem perfectly, while the SLJM finds
acceptable approximations to the solution within much fewer negative experiences. The
advantage of using multi-layer systems is their ability to use hidden nodes to form internal
representations. In this task, such representations are unnecessary, and the SLJM was
perfectly adequate — particularly as, composed of MPLNs, each node could learn any
boolean function of its inputs.

Conclusions. A system has been described to learn under conditions of a global scalar

Figure 2. Example solutions found by SLJM with pre-trained AM (a) and by SLJM and
AM trained together (b). Filled circles = positive states, white circles = negative states,
striped circle = cul-de-sac state. Box enclosed re-entrant states.

reinforcement signal which arrives with some delay; it achieves this by keeping a store of S
recent inputs with unpredictable outcomes. This store may be local to the nodes, allowing
parallel updates. The system has been shown capable of making second order temporal
predictions, such as "avoid a state which is itself positive but which leads inevitably to a
negative one." The results described here involve a buffer size which is at least as large as
the maximum possible delay; a future paper will show the system capable of learning even
when the maximum delay is longer.

►aw
Z
©
X
*3
o
o

References

[1] Widrow, B., Gupta, N. and Maitra, S. Punish/rcward: learning with a critic in adaptive
systems. I E E E T r a n s , o n S y s t e m s , M a n a n d C y b e r n e t i c s , SMC-3(5), 455-465, 1973.

[2] Widrow, B. and Smith, F. Pattern-recognising control systems. C om p ute r and
In fo rm a tio n S c ien ce s , Eds. J. Tou and R. Wilcox. Washington, D.C.: Spartan Books, 1964,
pp. 288-317.

[3] Barto, A ., Sutton, R. and Anderson, C. Neuronlike adaptive elements that can learn to
solve difficult learning control problems. I E E E T ra n s , on System s, M a n an d Cybe rne tics ,
SM C-I3(5), 834-851, 1983.

[4] Klopf, A. H. A neuronal model of classical conditioning. P sy ch o b io lo g y , 16(2), 85-125,
1988. i
[5] Aleksander, 1. Logical connectionist systems. N e u ra l C o m p u te rs , Eds. R. Eckmiller and
C. von der Malshurg. Berlin: Springer-Verlag, 1988, pp. 189-197.

[6] Myers, C. Output functions for probabilistic logic nodes. P r o c . F i r s t I E E I n t e r n a t i o n a l

C o n f . A r t i f i c i a l N e u r a l N e t w o r k s , London, October, 1989, pp. 310-314.

*>

202

