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ABSTRACT

This thesis is concerned with an Integrated Transport and Distribution System and 
exact solution approaches for it.

An important problem in the distribution industry is the optimal design of service 
networks with intermediate depots, subject to certain operational constraints. The 
version of the problem considered here is a three-stage trunking problem (origin city - 
collection depot - delivery depot - destination city) in which what is required is to 
determine the least cost system design for given constraints relating to customer 
service.

The problem has been formulated in a number of ways using mixed integer linear 
programming models that minimize the total costs when the structure of the distribution 
network is given. These models were then used to determine optimal locations for the 
depots.

The first algorithm developed for the problem was based on a branch and bound 
procedure. Lower bounds were obtained through a lagrangean relaxation which 
requires the solution of two generalized assignment problems. A subgradient 
optimization procedure was then used to update the lagrange multipliers and maximize 
the lower bounds. Subsequently reduction tests were used to increase the lower bounds 
further and to reduce the problem size.

The model has an imbedded structure which makes it an attractive candidate for 
integer programming decomposition. The second mixed integer programming model 
studies the application and acceleration of Benders decomposition for the above 
distribution system, and illustrates the potential flexibility of the Benders solution 
technique. This method is an improvement over the lagrangean approach.

Computational results are presented for medium size problems of up to 25 origin 
and destination cities, with 5 collection and distribution depots for both the branch and 
bound algorithm and the Benders decomposition method.
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C H A PT ER  1

In tro d u c tio n

Twenty five years ago Drucker [1962] described distribution as the "Economy's 
dark continent", and in the same year Parker [1962] summarized the area as "the last 
frontier for cost economies". These sentiments are, unfortunately, just as true for many 
companies today. Duffy (Financial Times [1982]) reports that

"Transport and distribution activities account for up to 16 per cent 
of sales value in many U.K. companies, and industry could save 
about £2bn annually by improving management techniques".

A greater awareness of the need to look at the field of transportation and 
distribution as a management function is growing in certain sectors, and it has been 
given increasing attention in recent years (Duffy [1982]). However, the literature 
contains little information about strategic system design, or about the operation of
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Chapter 1 12

physically integrated transport and distribution systems where the service comprises 
multi-echelon collection and delivery.

1.1 The Parcel Distribution Problem
An important problem in the distribution industry is the optimal design of service 

networks with intermediate depots, subject to certain operational constraints. The 
version of this problem considered in this thesis is as follows:

There are N  cities to be serviced by a carrier, and in each city there is a demand 
for commodities to be transported to each of the other N-1 cities. The commodities 
from the cities are taken to M collection depots (M <N) and after sorting according 
to their destination, they are dispatched in bulk to M local delivery depots, whereupon 
they are delivered to their final destination cities. This can be made more specific by 
reference to Figure 1.1, which gives a schematic checklist of the various kinds of data 
required to specify the model fully, In these terms, the objective is to determine:

- how many and which of the alternative collection and delivery depots to open
- which collection depots should be assigned to serve which origin cities
- which delivery depots should be assigned to serve which destination 

cities

so as to minimize the total costs associated with
- collection
- delivery
- mass transportation

subject to constraints on
commodity demands to be met in a given time horizon
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- allowable throughput of collection depots
- allowable throughput of delivery depots

each origin city to send a "commodity bundle" to only one collection depot
- each destination city to receive a "commodity bundle" from only one delivery 

depot.

(1) List of commodities (5) List of candidate locations (8) List of final cities
(2) List of origin cities for depots (9) fixed cost of opening
(3) Estimated shipment (6) Maximum allowable a route between final

from origin city in throughput for each collection city and delivery
a given time horizon. and delivery depot depot

(4) fixed cost of opening (7) Variable cost of transporta­
a route between origin tion £/unit (origin city -
city and collection depot collection depot - delivery 

depot - final city)

Fig. 1.1 A general three-stage parcel distribution system model. Schematic checklist
of required data.
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Thus, the problem is a three-stage parcel distribution problem (PDP) (origin city 
- collection depot - delivery depot - destination city) in which what is required is to 
choose that service network which minimizes the total distribution cost over a specific 
time horizon.

A brief discussion is now given of each of the 9 items shown in Figure 1.1. It is 
assumed that the model's time horizon is typically a day in duration.

1. A list of commodities
This is the final level of aggregation of a much larger number of individual 

parcels.

2. A list of origin cities
This is a list of cities requiring collection - of - parcels service. It is permissible, 

and usually desirable, to treat cities with a demand for collection service that happen to 
be geographically proximate to one another as a single city, and transport distances are 
measured to the centroid of demand in the region, or possibly to the largest city in the 
region.

3. Estimated shipment from origin cities
This is the estimated demand for shipment on a typical day from origin cities to 

destination cities.

4. Fixed cost of "opening" a route between origin city and collection depot
If a collection depot is assigned to serve an origin city, then there is a fixed cost 

associated with "opening" of that route, which includes annual running costs, if any, as 
well as fixed portions of operating costs. Some components of the fixed cost may arise
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from linear approximation to nonlinear cost curves.

5. A list of candidate collection and delivery depot locations
Collection and delivery depot locations will be restricted to this list, which 

includes existing depots as well as promising new locations. In each computer run 
selected locations of depots can be prespecified as "open" or "closed".

6. The allowable throughput for collection and delivery depots
The need for throughput limits arises from two different kinds of consideration: 

practical and economic. Nearly all depots have a limited practical throughput capacity 
imposed by available physical structures and systems for commodities handling. 
Economic considerations, on the other hand, concern the need to restrict the size of 
collection and delivery depots to the range over which the associated variable and fixed 
cost estimates are valid.

7. Variable transportation costs
For each pair of origin and destination cities, there is a variable transportation cost 

via intermediate depots, which normally is proportional to the quantity of shipment and 
the distance. This cost can also include handling, and so on.

8. A list of destination cities
This is the final geographic aggregation of destination cities which receive the 

transported commodities. The aggregation should be to a level where there will be no 
necessity for different cities to be assigned to separate delivery depots.

9. Fixed cost of "opening" a route between delivery depots and destination cities
The model requires that no destination city is allowed to receive goods from more
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than one delivery depot. Thus, each destination city must receive all its commodities 
from a single delivery depot. In order to "open" such a route a fixed cost is incurred, 
which is independent of the level of flow.

1.2 Historical Background
The aim of this review is to describe how the parcel distribution problem 

discussed in this thesis fits into the existing literature on location/distribution problems. 
Thus, it is not intended to provide a comprehensive survey of the location/distribution 
problems that have appeared in the literature over the years. The only contributions that 
are mentioned are ones relating to the development of the parcel distribution problem 
presented in this thesis. Its chief ancestors are, of course, the well known and much 
simpler "plant location" problems. If seminal works in location problems such as 
Fermat's from the early 1600's, Cavaleri's [1647], Sylvester's [1857], and in the 
1800s by Steiner are disregarded, the simple plant location problems entered the stage 
of their present form in the period 1957-64. These problems are basically to locate 
plants, in such way as to minimize the cost of satisfying the demand for some 
commodity. In general there are fixed costs for locating the plants and transportation 
costs for distributing commodities between the plants and customers.

1.2.1 Simple Plant Location Problems
This problem is often referred to as the plant, depot, warehouse, site or facility 

location problem, and it has inspired an extensive literature in the last two decades. 
Krarup and Pruzan [1983] give a selective bibliography consisting of over 150 papers. 
Early reviews and shorter summaries of the state of the art can also be found in Balinski 
and Spielberg [1969], ReVelle, Marks and Liebman [1970], Eilon, Watson-Gandy and 
Christofides [1971], Hansen [1972], Lea [1973], Francis and Goldstein [1974], Salkin
[1975], Guignard and Spielberg [1977], Comuejols [1978].
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lematical formulation of these problems as an integer program has proved 
1 the derivation of solution methods. The simple plant location problem 
lized as follows: Consider a set of customers I  = (1,. . .  , M } with a 
l for a single commodity. Let /  = {1 ,..., iV} be a set of sites where 
potentially located. Let fj be the fixed cost of opening plant j  and assume 
cost per unit of transportation of goods from j  to i. The simple plant 
em is to "open" a subset of facilities in order to minimize the total cost 
ill the demands have to be satisfied.
ger linear programming formulation is obtained by introducing the 
tiables. Let yj = 1 if plant j  is "open" and yj = 0 otherwise; ,̂y is the 
istomer z's demand which is satisfied from plant j. The integer linear

17

inimizei

oject to

N M N

7=1 /=1 7=1

N

(1.1)

r-HII

w
* 1 = 1 , - . . , M (1.2)

M

h x i &Myj<•=i y = L . . . (1.3)

x .£ 0 z > l , . . ,  
y = L .. ., M . ,N (1.4)

y,s {0,i) y'= l , . . . ,N (1.5)

Constraint (1.2) ensures that the demand of every customer is satisfied. 
Constraint (1.3) ensures that customers are supplied only from open depots.

Another widely used integer linear program in the literature that is equivalent to
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(1.1) - (1.5) is obtained by replacing constraint (1.3) by the disaggregated set 
constraints

x . . < y .  y J j
i = l , . . . ,  My = l ........ iv ( 1.6)

1.2.2 Algorithms for Simple Plant Location Problems
Numerous algorithms have been proposed for simple plant location problems. 

Krarup and Pruzan [1983] present a bibliography of this problem. The most significant 
approaches can be broadly classified into four groups.

- heuristic methods
- Benders decomposition methods
- branch and bound methods
- dual based methods

1.2.2.1 Heuristic Methods
The earliest attempts to tackle the problem were through the use of heuristic 

methods. One of the earliest heuristics for the simple plant location problem is due to 
Kuehn and Hamburger [1963] who actually present it for a wider class of location 
problems. It consists of two routines. An "add routine" selects locations sequentially in 
an order that maximizes the decrease of the objective function at each step. It stops 
when adding a new plant could only increase the objective. The second, pair-wise 
interchange, or "bump and shift" routine, eliminates (bumps) any plant that has become 
uneconomical because of the presence of other plants located subsequently by the "add 
routine". Then from this feasible solution it considers inter-changing (shifting) a 
location in the solution with one that is not. The procedure stops when it cannot be 
improved by any such inter-changes.

Kuehn - Hamburger's procedure, although over two decades old, still provides a 
kind of generic standard against which algorithm designers compete in computational
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efficiency. In the recent literature Kuehn-Hamburger's procedure is referred to as a 
"greedy heuristic", and the shifting procedure as an "interchange heuristic". Reported 
computational experiments by Comuejols, Fisher and Nemhauser [1977], Rosing and 
Hillsman [1979], and Peeters [1980] suggest that such procedures work quite well.

Cornuejols, Fisher and Nemhauser [1977] have studied the worst-case 
performance of location heuristics. They analyzed the "greedy", and the "interchange" 
heuristics in connection with Kuehn-Hamburger's procedure, and the "greedy- 
interchange" heuristic obtained by applying the two previous heuristics sequentially. 
The most significant results achieved are that the greedy heuristic has an error bound 
that varies between 0 and 1/e (e is the base of the natural logarithm) of the optimal 
solution value. The interchange heuristic (considered only for cases with all fixed costs 
equal to zero), on the basis of worst-case analysis, does not perform as well as the 
greedy heuristic. Moreover, it is not known to be polynomially time bounded. The 
greedy-interchange heuristic will never do worse than the greedy heuristic, but on the 
other hand it has no better error bound in the worst case.

Comuejols, Nemhauser, and Wolsey [1980], and Fisher and Hochbaum [1980] 
have carried out a probabilistic analysis of heuristics.

1.2.2.2 Benders Decomposition Methods
The formulation (1.1) - (1.5) is a mixed integer linear program and it can be 

solved using Benders decomposition [1962]. This approach was proposed by Balinski 
and Wolfe [1963] and appears to have been the first attempt to solve the simple plant 
location problem to optimality, other than the total enumeration approach in Stollsteimer 
[1963]. However, as reported in Balinski [1965], the computational experiments were 
discouraging and this method was abandoned until Geoffrion and Graves [1974] 
reported successful computational results for a more general location problem. In very



recent years Magnanti and Wong [1981] developed techniques to accelerate the 
convergence of Benders decomposition. They generated strong cuts from the set of 
feasible Benders cuts, and by so doing they were able to reduce the number of integer 
programs to be solved. This (accelerated) Benders decomposition and its successful 
application to Geofffion-Graves's model will be fully discussed later on in this chapter.

1.2.2.3 Branch and Bound Methods
The first branch and bound algorithm to solve the simple plant location problem to 

optimality is due to Efroymson and Ray [1966]. Branchings are performed on the 
strategic y-variables in the enumeration tree by setting selected free variables y;- either 
to 0 or 1, thus creating two new branches in the tree (Figure 1.2). At each node of the 
tree the set J of locations is partitioned into three subsets:

K0 = u \y j  = o},
* i = l/' i^  = i).
* 2  = U 1 y-,is free)

Chapter 1 2 0

* 0= {0} 
* !=  {/) 
* 2= U * /}

*o= V ) 
*!={0) 
* 2=  V

Fig. 1.2 Branching strategy
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An upper bound on the value of the corresponding integer program where yj is 
fixed for j  e Ko u  K 1 , can be obtained by solving the linear programming 
relaxation (1.1) - (1.4) and

0 < y , < l  (1.7)

The main result of Effoymson and Ray is a simple analytic solution of this linear 
program for every partition of J  into K0 u  u  K2. Thus, the bound at each node 
of the enumeration tree can be computed very fast by inspection. The report on the 
computational efficiency is somewhat brief. Efroymson and Ray state that" a number 
of simple plant location problems (M = 50, N  = 200) have been solved in an average 
of 10 minutes on an IBM 7094". These results are impressive even on an early 
generation computer. Improvements on the algorithm of Efroymson and Ray were 
made by Spielberg [1969], using an implicit enumeration procedure, but from a 
different perspective. The linear programming relaxation and its dual are solved for a 
sequence of fixed yj, generated by a search algorithm. This is a single branch scheme 
in contrast to Efroymson and Ray. It starts with all yj equal to either zero or one. At 
each node two solutions can be generated which will always be feasible. One solution 
is obtained by dropping the fixed charges for any plant not used in the sub-problem 
solution. A second feasible solution is obtained by solving a linear programming 
problem with all free variables set to 1. The minimum of these two solutions is 
compared with the current lower bound on the tree search, and if it is less, then this 
value will be the new bound. Spielberg reported computational results on a range of 
problem sizes. One example comprised 60 plant locations and 80 customers. The 
reported results for three problems of this size were: "150 CPU minutes on an IBM 
360/50 halted short of optimality at 12,200 iterations from a cold start; 60 CPU minutes
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on an IBM 360/50 solved to optimality with 9975 iterations, starting with an initial 
incumbent; and 60 CPU minutes on an IBM 7094 halted short of optimality after
103,000 iterations".

Two notable algorithms appeared in the same year, namely Khumawala [1972], 
and Hansen [1972]. The results achieved by Khumawala and Hansen can be regarded 
as significant improvements in the algorithm of Efroymson-Ray with respect to storage 
requirements and computing time. Khumawala investigated four criteria of branch 
selection based on three simplified partitions proposed by Efroymson and Ray. Each 
criterion embraced a pair of Largest and Smallest rules, namely Omega, Delta, 
Demand, and Z Integrality rules. Details on how these rales operate can be found in 
Khumawala [1972]. These branch selection rules were tested on a CDC 6500 
computer. The Largest Omega rale, based on the maximum net gain achieved by setting 
a free variable yj to 1, appears to perform best in efficiency, and Smallest Omega to be 
the poorest. Both the Largest and Smallest Delta and Demand rales generally performed 
poorly. Largest Z worked better than the Smallest Z rale. The average computing time 
with Largest Omega for the 16 test problems was approximately 3.8 seconds.

Hansen [1972] deals with two implicit enumeration algorithms (akin to the 
algorithm introduced by Spielberg) exploiting the concepts of "additive penalties". 
Recalling the definition of the three disjoint index sets (K0, Kv K2) at each node of 
the tree, a penalty can be viewed as an increase of the lower bound when a free variable 
yjt is fixed at either 0 or 1. If the values of a subset of free variables are fixed 
simultaneously, some at 0 and some at 1, and if the "addition" of the corresponding 
penalties to the lower bound can be shown to constitute a new valid bound, then these 
penalties are said to be "additive".

The common feature of all these algorithms is that the computation of bounds is 
based on the linear programming relaxation (1.1) - (1.4) and (1.7). This relaxation is 
known as the weak linear programming relaxation whereas (1.1), (1.2), (1.4), (1.6)
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and (1.7) are known as the strong linear programming relaxation. These adjectives, 
weak and strong, emphasize the fact that the latter relaxation is tighter than the former, 
i.e. its set of feasible solutions is, in general, smaller. This follows since constraint
(1.3) is a linear combination of constraints (1.6), but conversely, constraints (1.6) are 
not, in general, implied by (1.2), (1.3), (1.4) and (1.7).

It has been observed by ReVelle and Swain [1970] and other authors that the 
strong linear programming relaxation is so tight that its solution often yields an integer 
optimum for a large fraction of test problems proposed in the literature or at least a tight 
lower bound on it. Thus, a branch and bound algorithm based on the strong linear 
programming relaxation to compute the bounds is likely to perform well. 
Unfortunately, because the number of variables and constraints grows so fast with the 
size of the problem, it is not efficient to apply the standard simplex method directly. 
There have been various attempts to over-come this drawback. Marsten [1972] used 
parametric linear programming and a special implementation of the simplex method. 
Garfinkel, Neebe and Rao [1974] used the Dantzig-Wolfe decomposition. Schrage 
[1975] devised a generalized simplex method to deal with the variable upper bounds
(1.6) . Guignard and Spielberg [1977] suggested a version of the polytope (1.2), (1.4),
(1.6) , and (1.7). Finally Rosing and ReVelle [1978] reduce the number of rows and 
columns of the fully specified model.

1.2.2.4 Dual-Based Methods
The bounds obtained from the dual problem are theoretically as good as those 

obtained by the strong linear programming relaxation. This approach has the advantage 
that, in a branch and bound algorithm, bounds follow from any feasible solution of the 
dual of the linear program at the nodes of the enumeration tree. Thus, it might not be 
necessary to solve the dual to optimality.

The earliest work in this area was done by Bilde and Krarup [1967] but



unfortunately their work has not been translated into English for a full decade (Bilde 
and Krarup [1977] ). A similar approach has been followed independently by 
Erlenkotter [1978]. The dual of the linear programming relaxation provides a lower 
bound, and heuristic methods are used in an attempt to maximize this bound. A branch 
and bound algorithm is then used to solve the problem to optimality. Erlenkotter's 
procedure was so effective that in 45 out of 48 problems that he tested, optimality was 
reached at the first node of the branch and bound algorithm.

Boffey [1978] gives a heuristic for solving the dual of the linear program; his 
method is related to that devised by Erlenkotter. Galvao [1980] has also reported a 
branch and bound algorithm incorporating a dual-based bound.

Slightly better perhaps are the results obtained with lagrangean duality concepts. 
Interest in lagrangean relaxation was aroused by the success of the technique in solving 
travelling salesman problems. Geoffrion [1974] has proposed the lagrangean dual 
formulation for the general integer programming problem and solved it using 
subgradient optimization. Comuejols, Fisher and Nemhauser [1977], Narnia, Ogbu 
and Samuelson [1977], andHanjoul andPeeters [1985] suggest performing lagrangean 
relaxation of the set of constraints (1.2), and report some computational results. An 
alternative lagrangean dual obtained by relaxation of the set of constraints (1.6) (instead 
of (1.2)) is mentioned by Krarup and Pruzan [1983]. Further interesting discussion is 
provided in Fisher [1981].

1.2.3 Capacitated Plant Location Problems
In the simple plant location problem, it is assumed that the plants have unlimited 

capacity such that, in principle, any plant can satisfy all demands. A natural extension 
to this problem is when each potential plant has a capacity, which is the maximum 
demand that it can supply. This problem is known as the capacitated plant location 
problem and it can be formulated as a mixed integer linear program:

Chapter 1 2 4
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N M N

Minimize X / ,y > + Z Z  cr xij 
;=i j =i
N

Subject to ^ x . . =  1 
y=i *

M

/=1

jc..> 0 y

yjs  {0,1}

(1.8)

1 = 1,. . . , M (1.9)

y = l , . . . , A (1.10)

/ = i , . .  y = i , . , . , M. . , A (1.11)

y = l , . . . , A (1.12)

There are N  possible plant locations to supply commodities for transportation to 
M customers. The binary variable yj is either 1 or 0 according to whether plant 
location j  is "opened" or not. The continuous variable represents the proportion of 
demand d-x of customer i which is supplied by a plant at location j. All demand must 
be met (constraint (1.9). Constraint (1.10) prevents upper bound violations of supply 
for open plants, where Sj is the capacity of plant j.

This problem is also known as the fixed charge transportation problem in the 
literature, since if a set of open plants are decided upon, the problem reduces to one of 
deciding the assignment of the customers to these plants. This problem is a 
transportation problem and can be easily solved (Fulkerson [1961]).

1.2.4 Algorithms for Capacitated Plant Location Problems
Branch and bound has been widely applied to the solution of capacitated plant 

location problems. However, the major differences between these methods concern the
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bound computation, that is

- the type of relaxation selected,
- the procedure used to solve the relaxation,
- the techniques used for the strengthening of the bounds.

Sa [1969] extended the simple plant location problem developed in Efroymson 
and Ray [1966] to a capacitated plant location problem. The solution procedure 
proposed by Sa was based on obtaining bounds by replacing y;- variables by

M
US.  Y , d . x . .j  i  IJi = 1

The resulting relaxation is a transportation problem and it can be solved by a 
network flow algorithm [Fulkerson, 1961]. Bounds obtained from this relaxation 
become weak when the supply capacities get large. Rardin and Unger [1976b] 
proposed group-theoretical results to strengthen these bounds in the context of the more 
general fixed charge network flow problem. Aking and Khumawala [1977] generalized 
Khumawala's [1972] bounding rules to the capacitated case and, additionally, proposed 
a hybrid node selection rule. The node selection rule makes use of two parameters, a  
and p. Specifically, when a node is fathomed, the next node evaluated is selected to be 
the one with the least lower bound (breadth-first method). This procedure will 
eventually result in a large number of non-terminal nodes in the search tree. A depth- 
first method generally leaves few non-terminal nodes since the node selection priority 
favors any completion of lower level nodes, if indicated, before backtracking to higher 
level nodes. Aking-Khumawala's procedure implements a breadth-first method and 
continues until the number of non-terminal nodes reaches the level /?, at which time a 
switch is made to depth-first to "clean up” some of the non-terminal nodes. When the 
number of non-terminal nodes is reduced to the level a, the procedure reverts to the
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breadth-first method.
Ross and Soland [1977] show how the capacitated plant location problem can be 

formulated as a generalized assignment problem (GAP). This can then be solved using 
bounds obtained from lagrangean relaxation of the generalized assignment problem, 
which can be solved as a series of binary knapsack problems. No computational results 
are reported for this problem. However, results obtained for uncapacitated problems 
with 25 possible plant locations and 50 customers required less than 5 CPU seconds 
solution time on a CDC 70-94 computer.

Another approach was initiated by Davis and Ray [1969], and pursued by 
Schrage [1975], Geoffrion and McBride [1978], Nauss [1978], Guignard and 
Spielberg [1979], and Christofides and Beasley [1983]. They introduced the following 
set of disaggregated and redundant constraints to the original problem.

x. < y.9 (1.13)

Their experience shows that inclusion of the disaggregated constraints gave very 
tight bounds and hence a small enumeration tree. Davis and Ray employed Benders 
decomposition to compute the lower bounds so as to exploit the fact that the linear 
programming relaxation to be solved reduces to a transportation problem when the y - 
variables are temporarily fixed. Schrage developed a simplex-based algorithm with 
specific pivoting rules and a compact basis inversion representation. Lagrangean 
relaxation was proposed by Geoffrion and McBride. The lagrangean problem is 
obtained by relaxing constraint (1.9) which means that the remaining problem 
decomposes into N  smaller problems, one for each plant. The main thrust of their 
work is towards understanding lagrangean relaxation and only a small amount of 
computational experience on problems drawn from the literature is reported. Nauss
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applied the same lagrangean relaxation augmented by the constraint 

N M

(L14) j= 1

which ensures that the total supply capacity can meet total demand in any sub­
problem solution. The lagrangean relaxation still decomposes into N smaller problems 
but, in addition, a knapsack problem must be solved. Nauss implemented subgradient 
optimization to obtain good lagrangean multipliers and tighter lower bounds. A branch 
and bound algorithm embeds these lower bounds, in conjunction with "pegging rules" 
which significantly reduce the number of branching operations, by invoking certain 
plants to be "pegged" open or closed. Nauss's method is reported to be 
computationally three times faster than Aking and Khumawala's, which is claimed to 
have outperformed many other existing algorithms. In a series of test runs with 25 
plants and 50 customers conducted on an IBM 370/168, all but one problem were 
solved in less than 30 CPU seconds. A dual ascent method was successfully developed 
and implemented by Guignard and Spielberg, but no computational comparisons with 
other approaches were reported. Christofides and Beasley developed a similar approach 
to Nauss's with a slight improvement in their results.

The capacitated location problem surveys also include the monograph by Elshafei 
and Haley [1974] and the textbook by Salkin [1975]. Heuristic algorithms for the 
problem are described in Eilon, Watson-Gandy, and Christofides [1971].

1.2.5 Multi-Commodity Uncapacitated Plant Location Problems
All the plant location models discussed so far were assumed to be single 

commodity problems. The multi-commodity uncapacitated plant location problem is an 
extension of the plant location problem. There are few models in the literature on
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location problems that deal explicitly with several commodities. This is probably 
because problems involving more than one commodity can often be handled by 
considering each commodity independently, or by not distinguishing which commodity 
is supplied to each customer. These approaches are not versatile when there are 
restrictions on the number of commodities that may be supplied from each location. 
These restrictions are modelled in multi-commodity plant location problems.

The multi-commodity uncapacitated plant location problem was first addressed by 
Warszawski and Peer [1973], who were motivated by a large construction project 
which necessitated modelling the location on a building site, of supply centers for three 
major commodities: concrete, reinforcing steel and building blocks. Each plant was 
capable of producing only one of the three commodities and had to be sited in such way 
that 38 customers could be most efficiently serviced.

Given a set of N  possible locations for establishing plants, the multi-commodity 
plant location problem deals with the supply of P commodities from a subset of these 
plants to a set of M customers. For given positive costs C[jk associated with the cost 
of supplying the demand for commodity k from location j  to the customer i, and 
positive fixed costs fjk representing the cost of opening a plant at location j  to supply 
commodity &, the multi-commodity plant location problem seeks to minimize the total 
costs knowing that all the demands have to be satisfied. Let,

Xijk be the continuous variable representing the fraction of customer i's 
demand for commodity k that is delivered from location y,

yjk = 1 if plant j  is open to supply commodity k,
= 0 otherwise.

The multi-commodity plant location problem can be formulated as a mixed integer
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linear program:

Minimize £ 2 //t ty * + 2 2 2  j =1 fc=l 1=1 7=1 k=1CijkXijk (1.15)

N
Subject to x.Jk= 1 

M
i= 1, k = l , (1.16)

Xijk ~ yjk •= i ’ 
{ : ( ;

. . . , M (1.17)
p

2 ^ s ik=1 7 = 1. (1.18)

x^ - ° 7 = J . k= 1,, . . . N (1.19)

{0,1} 7=1 *=* 1 (1.20)

Constraint (1.16) ensures that the demand of every customer is satisfied for each 
commodity. Constraint (1.17) ensures that a plant is opened at each location if a 
customer is supplied with a commodity from that location, and constraint (1.18) 
requires that no more than one plant can supply commodity k.

Warszawski's paper discussed both a branch and bound procedure and a heuristic 
for solving the multi-commodity plant location problem. No computational results are 
provided for the branch and bound algorithm, as Warszawski concluded that large 
problems would consume excessive computer time.

Karkazis and Boffey [1981] combined and extended the work of Bilde and 
Krarup [1977] and Erlenkotter [1978], to develop two dual-based algorithms for 
solving multi-commodity plant location problems, both of which appear to outperform 
Warszawski's procedure. Neebe and Khumawala [1981] calculated bounds from the 
solutions to the simple plant location problem by removing constraint (1.18). The 
simple plant location problem was solved using the algorithm developed by
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Khumawala [1972]. The branch and bound algorithm was then used to obtain the 
optimal solution. Laundy [1985] presented an interchange heuristic for producing a 
good solution to the multi-commodity location problem. The optimality of this solution 
was tested by using a dual heuristic to construct a solution to the dual of an LP 
relaxation of the problem. A tree search was then used if these heuristics failed to 
produce an optimal solution. Lower bounds for this tree search were obtained by 
applying lagrangean relaxation in conjunction with subgradient optimization. The 
reported results indicate that this algorithm outperformed the Karkazis-Boffey and 
Neebe-Khumawala algorithms. The total time required to solve a 3 commodity, 38 
customer, and 9 possible plant location problem was 0.93 CPU seconds on an ICL 
2970 computer.

1.2 .6  Multi-Commodity Capacitated Single-Echelon Plant Location 
Problems

Marks, Liebman and Bellmore [1970] presented a more elaborate extension of the 
capacitated plant location problem to the optimal location of intermediate facilities in 
multi-echelon systems. They report reasonably good computational experience with a 
conventional branch and bound algorithm in which the linear programs, which 
specialize in capacitated trans-shipment problems, are solved by an out-of-kilter 
routine. Ellwein and Gray [1971] briefly considered the same model and indicated that 
their algorithm for the plant location problem can be extended to this case. However no 
computational experience was reported.

The more general multi-commodity feature of the model was introduced by 
Bartakke et al. [1971] who describe an application of Bonner and Moore's Functional 
Mathematical Programming System for the Univac 1108 to an industrial problem with 4 
plants, 4 commodities, 10 intermediate distribution sites, and 39 customer zones. Elson 
[1972] also discussed the multi-commodity capacitated plant location problem,
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concentrating on a single echelon of trans-shipment stocking points. Elson's model 
recognized the management option to expand existing plants, as well as to open new 
ones, and the need to provide customer service at different levels. Elson applied a 
mixed integer programming code (Ophelie Mixed System) to the solution of the multi- 
commodity problem. A test problem with 3 commodities, 5 plants, 14 customer zones, 
22 distribution sites, and 2 service levels was solved to optimality in 174 CPU seconds 
on a CDC 6600 computer.

Geoffrion and Graves [1974] propose a multi-commodity, capacitated, mixed 
integer linear programing problem formulation focusing upon the optimal location of 
intermediate delivery depots between plants and customers. Geoffrion and Graves's 
model not only deals with plant location and commodity flows, but with customer 
assignment as well. In their model, sole-sourcing of customers is mandatory, and 
transportation costs are determined by the plant to customer route and the distance 
traveled.

The mathematical formulation of the problem has the following notation: Consider 
a set of customers L = {1, . . .  , M) with a given demand for a set of commodities I 
= {1, ..  . , M). Let J  = {1,. .  . , N] be a set of possible locations for establishing 
plants, and K = {1, . . . ,  N} be a set of sites where delivery depots can be potentially 
located. Let be the positive unit production and delivery cost associated with 
shipping commodity i from plant j  to customer / through delivery depot k, and//, be 
the fixed cost of establishing delivery depot k. The unit variable cost of throughput for 
delivery depot k is assumed to be vk. The supply of commodity i at plant j  is 
and the demand of customer / for commodity i is D Define _V̂ , V k to be the 
minimum and maximum allowable throughputs for delivery depot k.

The mixed integer linear programming formulation is obtained by introducing the 
following variables. Let,
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x[jM be the number of units of commodity i shipped from plant j  to
customer / through delivery depot k, 

y ki = 1 if customer / is assigned to delivery depot k,
= 0 otherwise.

zk =1 if a delivery depot is established at site k,
= 0 otherwise.

The mixed integer linear program is:

M N N M N M M

Minimize X X X X  cijkl xijkl+ X  &k h  + vk X X  1 t 1-21)i =1 j =\k =1/ =1 k =1 t=l/=l
W M

subject to X X  xijkl ~ Sij j  = l ’ '. (122^k =11 =1

S  Xijkl ~ Dil Jkl j= 1
l = 1, / = 1, *=1,

. . . , M (1.23)
N

k =1 /=1, . . . , M (1.24)

M N

v * - X X  Diiy k i^v ~kzki =1 / =1
k = l, (1.25)

J y , e 1 ) for all /, y, k, l (1.26)

xijkl -  0 for all i, j, k, l (1.27)

Constraint (1.22) is the supply constraint. Constraint (1.23) requires that if a 
customer is assigned to a particular delivery depot then the demand must be satisfied via 
that depot. Constraint (1.24) ensures that each customer is supplied via a single



Chapter 1 3 4

delivery depot. Constraint (1.25) enforces that the total throughput of an "open" 
delivery depot does not exceed the upper and lower limits.

A characteristic of Geoffrion-Graves's model is that commodities do not "forget" 
their source identity when traversing delivery depots. This is achieved by using the 
quadruply subscripted variable jc,y#. Geoffrion and Graves were the first to introduce 
optimization over the entire path for commodity flows; previous models such as 
Elson's [1972] model employ two sets of triply subscripted variables and Xjkl. 

That is, the optimization is plant-to-delivery depot and then delivery depot-to-customer. 
The other advantage of quadruply subscripted notation is that direct plant-to-customer 
transportation can be easily accommodated. For business applications where there are 
perishable commodities, it is important to have this direct shipment feature.

Another characteristic of the model is that each customer's demand must be 
satisfied by a single delivery depot. In practical applications single sourcing is 
convenient administratively, and tends to reduce small delivery shipments.

Geoffrion, Graves, and Lee [1978] refined the model presented in Geoffrion and 
Gravest1974] to a form more amenable to practical application. In the revised version, 
sole-sourcing is only imposed on a "bundle" of similar items, not the totality of demand 
for all items. Upper and lower limits on delivery depots' throughput are not strictly 
enforced, and violation is allowed at a penalty cost. Lower as well as upper limits are 
imposed on plant capacity to enable some control over economies of scale. Throughput 
is computed as a weighted sum of items shipped through delivery depots, with each 
commodity having a distinct weight. Finally, the refinement permits the unit variable 
cost of throughput to differ by commodity. All of these refinements seem realistic in the 
context of real world problems. The Geoffrion-Graves-Lee model is the product of 
many man-years of empirical refinement, having been validated over a wide cross- 
section of industrial applications, and it would thus appear to represent the state-of-the- 
art for multi-commodity capacitated location problems. The implementation vehicle is a
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user-oriented management support system known as ODS. The optimization procedure 
employed by ODS is based on the decomposition theory of Benders [1962]. Geoffrion
[1976] reported the computational results of a large-scale distribution warehouse 
location analysis, using the Benders decomposition method, for Hunt-Wesson Foods, 
Inc., a firm which produces several hundred distinct food products at fourteen plants, 
and delivers these products to customers throughout the USA through a network of 
twelve intermediate delivery depots. Computational results on an IBM 360/91 computer 
ranged from just 16 CPU seconds in the case of a fixed configuration of 16 delivery 
depots, and solving for 249 assignment variables only; to 191 CPU seconds in the case 
of 30 delivery depots, and 513 binary variables.

1.3 Basic Notation
In this thesis several mixed-integer linear programming formulations of the PDP 

are given. All of these formulations are new and lend themselves to new solution 
techniques. However, before discussing any of the models, some basic common 
notation which is used in all of these models, and in the remainder of this thesis, is 
introduced.
Let model parameters be:
N  Total number of cities (positive integer),
M Total number of candidate depots (positive integer), 
i index for origin cities,
j  index for collection depots,
k index for delivery depots,
/ index for destination cities,
qn required quantity for shipment from city i to city /,
Q f handling capacity of the collection depot j  (i.e. the limit on the total throughput

which can be allocated to a collection depot located at j),
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which can be allocated to a delivery depot located at k),
c average unit cost of transporting goods from city i to city /, via two intermediate ijkl

collection and delivery depots j  and k respectively,
f.j fixed operating cost of assigning city i to the collection depot y,
/  fixed operating cost of assigning city l to the delivery depot k.kl

1.4 Branch and Bound Algorithm for the PDP Formulation
The PDP can be formalized as a set of origin cities, I  = [ 1 , . . .  ,N} with a 

demand for transportation of commodities to a set of destination cities L = {1,.. . ,  
N}. Let /  = {1, . . . , M] and K = { 1 , . . .  , M j be a set of sites where collection 
and delivery depots can be potentially located, respectively. N and M are assumed to 
be positive and integer.

The PDP can then be viewed as two separate capacitated plant location problems 
together with, some other side constraints. The first plant location problem is to select 
collection depots from a set of possible sites to which cities are to be assigned (Figure

Fig. 1.3 The collection problem
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1.3). These are the set of cities where the demand for the collection of commodities 
"originate”. This problem is similar to the plant location problem in which origin cities 
represent plants, and the collection depots represent warehouses.

The second problem is to select delivery depots from a set of possible sites to 
which cities are to be assigned. These are the set of cities where the supplied 
commodities are delivered as their final "destination" (Figure 1.4). This problem is also 
similar to the plant location problem in which delivery depots represent warehouses, 
and the destination cities represent customers.

Fig. 1.4 The delivery problem

Ross and Soland [1977] were the first to propose, formulate and solve the 
capacitated plant location problem as a generalized assignment problem (GAP). The 
PDP problem has been formulated as an integer linear program in which its structure is 
based on the GAP. Although the GAP is an NP-complete problem (Garey and Johnson 
[1979]), nevertheless there exists an effective algorithm for it, such as Martello and 
Toth [1981]. It was hoped that the use of the GAP algorithm in exploiting the structure
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of the PDP would yield a practical and general solution method for the problem.
Let,

yij =1  if the origin city z is assigned to collection depoty,
= 0 otherwise.

zki = 1 if the destination city / is assigned to delivery depot k,
= 0 otherwise.

Xyki is the proportion of origin city z's supply which is shipped to the 
destination city /, via the intermediate collection depot y and delivery depot k.

The integer linear program then is

Problem  P

Minimize
N M M N

zi=XXXXcyti xiw1=1 j =1 k=l 1=1
N A/ M N

+X X ^ v X X 4 z*/i=l y =1 £=1 /=1
(1.28)

M
subject to X  ^  = 17=1

Z = 1,. . . ,iV (1.29)

N N
X X  - Q]i=l /= 1

y = 1 , . . . ,  M (1.30)

M
X  h r 1k=1

/ = 1 , . . . , N (1.31)
N N

S  S  qil Zkl ~ Q/ci=l /=1
fc = 1 , . . . ,  M (1.32)

t-HII II 
II (1.33)

Xijid ^  1/2 Cy,7 + zkl) for all z, y, k, l (1.34)

yij’ zkl’ x ijkt 6 tO, U for all z, y, / (1.35)
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Constraint (1.29) ensures that each origin city supplies its commodity to only one 
open collection depot. Similarly constraint (1.31) ensures that the demand for each 
destination city is supplied from only one open delivery depot. Constraints (1.30) and 
(1.32) may place limits on the amount of commodities that can be handled by collection 
and delivery depots. Constraint (1.33) follows from the fact that there is only one route 
between each pair of origin-destination cities. Constraint (1.34) ensures that if the 
origin city i is assigned to the collection depot j, and the destination city / is assigned 
to the delivery depot k, then there may be a flow from origin city i to destination city 
/ via the assigned depots j  and k. Constraints (1.35) are the integrality constraints.

In the above integer linear programming formulation constraints (1.29) and (1.30) 
represent the capacitated collection problem. The capacitated delivery problem is 
represented by constraints (1.31) and (1.32). The mass transportation from collection 
to delivery depots (Figure 1.5) is represented by the remaining constraints.

Fig. 1.5 Mass transportation problem

Many of the most successful algorithms for the simple plant location problem and
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closely related problems employ branch and bound algorithms as their solution 
technique. Thus, as a first exact solution approach to the PDP, a branch and bound 
algorithm is considered. The above formulation seems to be a strong one, since the 
inter-linking constraint (1.34) considered has a disaggregated form. The linear program 
relaxation of the problem provides integer solutions in many instances. However, for a 
practical sized problem, the size of the PDP becomes excessive to solve by existing LP 
codes. If, however, constraint (1.34) is relaxed in a lagrangean fashion, then the 
remaining problem consists of two GAPs, so that their structure can be fully exploited 
by using special algorithms.

Martello and Toth [1981] suggest relaxing the assignment constraints (1.29) and 
(1.31) in the GAP using lagrange multipliers, and solving the remaining problems as 
knapsack problems. These relaxations are also implemented. The solution method 
based on these relaxations, and further improvement of bounds by applying reduction 
tests, provides sharp bounds that can be embedded into a tree search to obtain an exact 
optimal solution.

1.5 Benders Decomposition Method and its Application to the PDP
Problem P presented in the previous section is a large-scale integer linear 

programming problem and, for most practical applications, is computationally complex 
using a conventional branch and bound algorithm. In this section an alternative 
approach will be introduced which reduces the computational difficulty by 
decomposing the problem.

Benders decomposition is a method for solving mixed integer programming 
problems that has been applied successfully to a variety of applications (Florian et al.
[1976], Richardson [1976], and Cote and Laughton [1982]). Geoffrion and Graves 
[1974] have had great success applying the algorithm to multi-commodity capacitated 
distribution systems. These contributions demonstrate the potential for using Benders'
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method to solve specially structured mixed integer programs.
The PDP, as discussed, is in the class of location problems, as well as having an 

attractive feature that makes it possible to be decomposed as two GAPs and a 
transportation sub-problem. Thus this has been a reason to study Benders 
decomposition method and its application to the PDP.

1.5.1 Benders Decomposition Approach
It is perhaps helpful to give an intuitive interpretation of the Benders 

decomposition method so as to clarify the unjustified "mystery" that often surrounds it. 
This also highlights the inherent advantages of the decomposition method. The Benders 
decomposition can be viewed as a learning "trial and error procedure". This is shown 
schematically in Figure 1.6, where a trial configuration is selected and its performance 
evaluated. The results obtained in this trial will be the basis for another configuration 
selection. The iterative procedure is continued until the difference between the current 
trial configuration and the previous one appears small enough, when further 
calculations do not significantly improve the configurations.

Configuration
generator

Trial configuration

Configuration
evaluator

Select a trial 
configuration 
of depots

Evaluate PDP 
performance 
under the trial 
configurationResults

Fig 1.6 A simple configuration design for the PDP

A "trial system configuration" for the PDP was usually an assumed assignment of 
origin/destination cities to a set of open collection/delivery depots. An "evaluation" of
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performance usually meant calculating the total fixed costs plus the total cheapest 
transportation flows from origin cities to destination cities, via the assigned depots, 
avoiding any violations of capacities of depots and other constraints.

The major short-coming of such a trial and error procedure, as Geofffion, Graves 
and Lee [1978] pointed out, are:

(1) It ignores many alternative system designs.
(2) It is a very tedious and slow procedure, with many dangerous and tempting 

short-cut opportunities.
(3) Sensitivity analysis is extremely limited.

However the Benders decomposition method employs the refined and automated 
selection of trial configurations, as well as the evaluation of system performance. It 
uses the underlying structure of the trial configurations in the process of selection, 
which is an important feature. This method completely eliminates the first and second 
short-comings, and it significantly improves the final one.

The Benders decomposition method and its application to PDP will be discussed 
in the following section, where the inherent advantages of the method will become 
apparent.

1.5.2 PDP Weak Formulation
The PDP can be formulated as a mixed integer linear program:
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Problem W
N M M N N M

Minimize Z2=EEEEC;;« *,7W+EE
1 = 1  j= 1 k=l 1=1 i= 1 j= 1

M N

^ij y i j X X i ' /  
£ = 1  / = 1

(1.36)

M

subject to 2*i yij = 1 
7=1

i = 1 ,. . . ,iV (1.37)

N NEE - Q]i=i i=\
j  = 1 , . . . ,M (1.38)

ME z « = 1k= 1
/=  1 , . . .  ,7V (1.39)

N NXX 4ilZkl ~ @ki= 1 / = 1
* = 1 , . . . , M (1.40)

PS*«■»*

ii i = l , . . . , 7 /  
7 = 1,. • . , M (1.41)

N M NX X Xijkl = X ^il Zkli=l j=l i=l
k = l , . . . ,N  / = 1 , . . . , M (1.42)

M MXX x m = *u
7 = 1  k= 1

/ = 1 , . . . ,  TV 
/= 1 ,. . .  ,7V (1.43)

yij> zkl e { 1  } for all i j ,  k, / (1.44)

* £ IV o for all i, y, fc, / (1.45)

Constraints (1.37) and (1.39) state that each origin/destination city may only be 
served by a collection/delivery depot respectively. Constraints (1.38) and (1.40) ensure 
that the total throughput limits through collection/delivery depots are not violated. 
Constraint (1.41) ensures that the total supply from the origin city must pass through
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the assigned collection depot. Similarly, constraint (1.42) ensures that all the demand of 
a destination city is served via the assigned delivery depot. Constraint (1.43) ensures 
that all demands are satisfied.

Problem W is a large-scale mixed integer linear program. Benders decomposition 
reduces the computational difficulty in the following way.

An equivalent formulation of W is to minimize;

_ N M M N _ N M M N

{E2>5 y, E2>»— EISSs. vJ} <■--«i=l j = 1 k=l 1=1 i = 1 7 = 1  k=l 1=1
Subject to (1.37)-(1.43)

Ify and z are held temporarily fixed, (1.46) together with (1.41)-(1.43) and
(1.45) define a multi-commodity transportation problem. If a solution x to this 
transportation problem is held fixed temporarily, and y and z are permitted to vary,
(1.46) together with (1.37)-(1.40) and (1.44) define an integer programming problem. 

The Benders decomposition method is based on the convergence of upper and
lower bounds obtained from alternately solving the two sub-problems. With the binary 
variables held fixed (that is, a fixed configuration) the commodity independent 
transportation sub-problems are solved for optimal transportation costs and flows. 
These sub-problems constitute restrictions on W since not all of the variables are free to 
vary. Consequently any sub-problem solution is an upper bound on W. Iteratively 
varying the configurations and solving the associated sub-problems produces a non­
monotonic sequence of such upper bounds. Each time a sub-problem is solved, the 
optimal solution is used to solve the master problem for a new configuration. 
Specifically the master problem is:
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Minimize Z,,M z=l 7=1

M NX S-4/ZW + ̂ 0
*=1 7=1

(1.47)

subject to (1.37)-(1.40), and
N M NXXX7=1 7=1 /=1

TV M  7VXXX7=1 £=1 /=1

TV TV

7=1 7=1

y i}, zw e { 0 , 1  }
h = 1 , . . . ,  H (1.48) 
for all 7, j, k, l

where a, p, and y coefficients represent an optimal dual solution of the hfi1 
transportation problem corresponding respectively to constraints (1.41)-(1.43).

The sense of the optimization is maximize instead of minimize since it is actually 
the transportation duals which are solved rather than the primals. The reason for this is 
that the solution space of the transportation dual is configuration-independent. Such is 
not the case with the primal. The master problem is a relaxation of W, and each 
additional transportation sub-problem solved contributes a new constraint of the form 
(1.48) to the master. These constraints are called Benders cuts, and because each new 
cut reduces the size of the solution space of the master problem, successive solutions 
constitute a monotonically increasing sequence of lower bounds on W. The master 
problem is solved for a new configuration and the procedure repeats. Termination 
occurs when upper and lower bounds converge to an e gap.

1.5.3 PDP Strong Formulation
A major computational bottleneck in applying Benders decomposition is that the 

master problem which must be solved repeatedly has two GAPs, which are NP 
complete problems, plus Benders cuts. Even when the master problem is highly 
structured, the relaxation algorithm does not generally perform well due to its poor 
convergence properties (Geoffrion and Graves [1974]; Magnanti and Wong [1981]).
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There are several possibilities for improvement;
- Formulating the problem in a "stronger model",
- Selecting strong cuts to add to the master when there are several choices,
- Modifying the master problem objective in order to select a different 

configuration.
Two different formulations of, the same problem might be identical in terms of 

feasible solutions, but might be different in other ways such as having different 
relaxations of the master. Several researchers have illustrated the importance of problem 
formulation (Geoffrion and Graves [1974]; Comuejols et al. [1977]; Magnanti and 
Wong [1981]). Geoffrion and Graves show that proper model formulation, for multi- 
commodity distribution systems, can generally improve the computational efficiency of 
the Benders procedure. Magnanti and Wong provide theoretical insight concerning the 
role of formulation in accelerating Benders decomposition.

For a given model representation, it is possible in many instances to accelerate 
Benders decomposition by generating several different cuts, and selecting the "Pareto- 
optimal" cuts at each iteration (Magnanti and Wong [1981]). This selection process is 
accomplished by solving a linear program, starting from the multiple optimal solutions 
of another linear program.

There have been several proposals to alter the master problem objective function 
at each iteration (Nemhauser and Widhelm [1971]; Geoffrion and Graves [1974]; 
Marsten et al. [1975]). This is because the master problem is feasibility-seeking only. 
Thus it is permissible, literally, to introduce any attractive objective function. 
Nemhauser and Widhelm [1971] demonstrate scaling the constraints of the master 
problem to find the "geometrically centered" value for integers at each iteration. 
Geoffrion and Graves [1974] produce several different cuts in the disaggregated model 
of multi-commodity distribution systems. Marsten et al. [1975] had success in 
restricting the solution to the master at each iteration to lie within a box centered about
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the previous solution.
These experiences encourage reformulation of the PDP problem in the following 

disaggregated form, in which the resulting multi-commodity subproblem, when binary 
variables are fixed, is separable by origin and destination cities and hence commodity- 
independent. It will be shown that this produces choices for Benders cuts at each 
iteration. Thus strong choice of Benders cuts limits the number of Benders iterations, 
and convergence to optimality is accelerated.

The PDP can then be formulated as a mixed integer linear program;

Problem S
TV M  M  TV TV M  M  TV

= y y y y Ci,iV+xi/,v 2:X/wZMinimize Z3  = L L L L kl (1.49)

subject to

i= 1 7 = 1  * = 1  /= 1 i= 1 7 = 1  >t=l / = 1

M 
;=i

1 = 1 , . . . , N (1.50)

°oTVI j  = 1, . .  . , Af (1.51)
MS z« = iTt=l

/ = 1 , . . . ,  iV (1.52)
N NX X 4ilzkl ~ @ki=l / = 1

£ = 1 , . . . , M (1.53)

MX *0 *k=l
/ = l , . . . , i V j  = 1 , • . . , M / = 1 , . . . , N (1.54)

MX Xijkl = ^il^kl M II II
 II 

.. -*
 « (1.55)

yip zklG {0 » 1 } for all i, y, &, l (1.56)

oAl•S'* for all i, y, k, l (1.57)
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Constraints (1.50) - (1.53) are similar to (1.37) - (1.40), and represent the 
assignment of cities to depots. Constraint (1.54) states that if a city is assigned to a 
particular collection depot, then all the transportation flows must pass through that 
depot. Similarly, constraint (1.55) requires that all the transportation flows which are 
destined to a city must pass through the assigned delivery depot. Constraints (1.54) and 
(1.55) are disaggregated version of constraints (1.41) and (1.42).

1.6 Computational Complexity
An algorithm is a step-by-step procedure for solving a problem, which has a finite 

computing time for all data instances. For a given problem type (e.g. simple plant 
location problem) and a set of data instances of a given size, corresponding to a given 
input length (e.g. in simple plant location problem (M, N)), the complexity function 
for an algorithm expresses the largest amount of time required for solving the problem 
for an arbitrary data instance of that size. An algorithm is polynomial-time-bounded if 
for all data instances its computing time does not exceed some polynomial function of 
data size. Such algorithms are said to be polynomial. Otherwise the algorithm is called 
non-polynomial. Example algorithms in the polynomial class are sorting numbers, 
matching in graphs, network flow, and calculation of the shortest path and shortest 
spanning trees in graphs.

Cook [1971] and Karp [1972] have introduced the notion of NP-complete 
problems. This is a class of combinatorial problems that are equivalent in the sense that 
either all these problems can be solved by a polynomial time algorithm or none of them 
can be. Problems in this class include many classic combinatorial optimization 
problems such as the Clique Problem, the Steiner Network Problem, and the Vertex 
Covering Problem [see Maffioli, 1978]. A rigorous definition of this important notion
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will not be given here, but instead the reader is referred to Aho, Hopcroft and Ullman 
[1974]. At present no polynomial time algorithm is known for solving any NP- 
complete problem, and it has been widely conjectured that none exists, although this 
question is still unsettled. A problem is said to be NP-hard if the existence of a 
polynomial time algorithm to solve it would imply that all NP-complete problems can 
be solved by a polynomial time algorithm. Thus to show that a problem (P) is NP-hard 
it suffices to find a polynomial transformation that reduces a known NP-complete 
problem to the problem (P) [Karp, 1972].

According to Guignard and Spielberg [1977]: "The simple plant location problem 
is one of the simplest mixed integer problems which exhibits all the typical 
combinatorial difficulties of mixed 0 - 1  programming and at the same time has a 
structure that invites the application of various specialized techniques". This statement 
indicates that the simple plant location problem is a hard problem to solve, or to use a 
more precise characterization, that is highly unlikely that an exact polynomial time 
bounded algorithm can ever be devised for its solution.

In Comuejols [1978] it is shown that the simple plant location problem is NP- 
hard. Then it is a simple exercise to show that other location problems mentioned in the 
previous section, namely the capacitated plant location problem, multi-commodity 
uncapacitated plant location problem, multi-commodity capacitated single-echelon plant 
location problem, and the parcel distribution problem which is considered in this thesis 
are also NP-hard.

The more detailed theory of computational complexity is closely related to the 
theory of computing machines and is beyond the scope of this thesis. A good survey of 
the area is provided by Maffioli [1978]. Karp [1975] provides the underlying 
mathematics as well as identifying problems in each class. An ongoing catalogue on the 
complexity status of various problems can be found in Johnson [1987].



Chapter 1 50

1.7 Overview of the Thesis
Many of the most successful algorithms for the simple plant location problem and 

closely related problems depend on the solution of the strong linear programming 
relaxation or its dual.

These linear programs play such an important role because they actually solve the 
integer linear problem in many instances. Unfortunately the solution of these linear 
programs is difficult due to their large size. However the special structure of some 
problems can be exploited. In Chapter 2, a strong formulation for the PDP based on the 
generalized assignment problem will be presented, instead of the direct use of the linear 
programming relaxation of the problem. Its special structure is exploited using 
lagrangean relaxation to obtain lower bounds. The reduction tests are based upon these 
lower bounds, in order to reduce the problem size. A subgradient optimization 
procedure is applied to update the lagrange multipliers.

Chapter 3 introduces an alternate mixed integer linear program formulation of the 
PDP. This formulation has an attractive structure which can be decomposed as two 
separate sub-problems. Hence, the BDM and its application to this formulation of the 
PDP will be presented. This is followed in Chapter 4 by the development of a stronger 
formulation of the PDP for accelerating Benders decomposition. An acceleration 
technique for reducing the number of Benders iterations in the procedure is described. 
The structure of the transportation sub-problems are also fully exploited in this chapter.

A major computational bottleneck in applying Benders decomposition is that the 
master problem, which must be solved repeatedly, is an integer program. Chapter 5 
describes several bounding strategies which are introduced for the solution of the 
master problem. Finally, a complete algorithm for the PDP based on a revised, 
accelerated BDM is described.

Finally, Chapter 6  presents conclusions and considers some problems suitable for 
further studies.
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1.8 Conclusion
This chapter has reviewed the more significant work which has contributed to the 

solution of location problems and closely related problems of physical distribution 
management. It would appear that an abundance of tools is available for solving simple 
(uncapacitated) and capacitated plant location problems. Methods for dealing with 
multi-commodity problems are not abundant, however. Nevertheless some innovative 
branch and bound approaches and the application of Benders decomposition have made 
possible the optimization of some reasonably large systems. Little work has been 
reported in dealing with single echelon plant location problems; while work on solving 
multi-echelon systems is practically nonexistent. The need for the solution of such 
systems motivated the study of the three stage parcel distribution problem presented in 
this chapter. The solution methodology of this problem will be looked at in the 
remainder of this thesis.



C H A P T E R  2

A n A lgor ith m  for the P arcel D istr ib u tion  P rob lem  B ased  on 
L agran gean  R elaxation

A branch and bound based method for solving the Parcel Distribution Problem 
(PDP) is developed in this Chapter. Lower bounds are obtained through a lagrangean 
relaxation of a 0-1 integer formulation of the problem. A subgradient optimization 
procedure updates the lagrange multipliers. Problem reduction tests based upon these 
lower bounds and the original problem are introduced, in order to reduce the problem 
size. The algorithm is tested on randomly generated data sets, and computational results 
on the performance of the developed code are presented.

52
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2.1 Problem Formulation
The integer linear programming formulation of the PDP is finding binary 

variables y,y, zkb and jc,yjy that satisfy

Problem P
N M M N

Minimize Z = X X X X  cijki xijki i = l j = 1 k=l 1 = 1
N M M N

+X X ^  v X X / «  h i/=1 y=l £=1 / = 1
(2 . 1 )

MV \
subject to 2 ^  y-tj = 1 /’=! /=  1 ........ // (2 .2 )

°oTVIPSSr* 7 = 1 , . . . . M (2.3)

M
X  z« = ik= 1

/= 1 , . . . » IV (2.4)

N N
X  S  qil Zkl ~ @ki=l / = 1

& = 1 , . . . , M (2.5)

M M 
7= 1  * = 1

II 
II

►—* 
H—4 (2 .6 )

Xijki ^  1/2 CYij + ZU) for all /, y, l (2.7)
yir zu> xijki s  (o, 1 } for all i, 7 , / (2 .8 )

y>ij is a 0 - 1  decision variable that is equal to one if a city i is assigned to a 
collection depot j, and it is equal to 0 otherwise. Similarly zkt is a 0-1 decision 
variable for the assignment of a delivery depot k to a city /. is equal to one if 
(qu) the quantity required for the shipment from city i to city /, passes through 
intermediate collection depot j  and delivery depot k, and it is equal to 0 otherwise. The 
other variables are defined following the notation developed in Chapter 1.
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Constraints (2.2) and (2.4) ensure that exactly one collection/delivery depot is 
allocated to each city. Constraints (2.3) and (2.5) ensure that no capacity limits are 
violated. Constraint (2.6) follows from the fact that there is only one route from each 
origin city i to each destination city /. Constraint (2.7) provides a correct logical 
relation between the variables. Constraint (2.8) is the integrality constraint. It is 
assumed that there exists a feasible solution yty, zw, to the above formulation.

Note that in this formulation it is assumed that each city requires shipment 
services. If at any city i there is no shipment to destination city /, then corresponding 
costs could be set to some large number in order to preclude the possibility of having it 
in an optimal solution.

2.2 Lower Bounding Procedure

To solve the above defined PDP a lower bound is derived, from a lagrangean 
relaxation of the problem, for use in a branch and bound procedure.

The lower bound on the optimal solution to problem P is generated by multiplying 
the constraints in (2.7) by the vector of positive lagrange multipliers X = {Xv X2, . 
. ., A^}, and adding them to the objective function to obtain the following lagrangean 
dual problem:

Problem PR^

Minimize,
N M M N N M M NvXXXX cm w  XX>«v X X hi

i =  1 j =1 k =1 /=! r = l 7 = 1 k =1 /=!
N M M N (2.9)

i =  1 / = ! k =1 /=!
subject to (2 .2 ) - (2 .6 ), (2 .8 )
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After re-arrangement of terms, the lagrangean problem can be re-written as;

Minimize,
N M M N

Lx =
N M

i = lj= 1 k=1/=! »' =1 7=1

M N
( C i j kl +  ^i j k l ^ X i f  y i j + ^ h ^ l i ^ k i  "

k =1 /=! 'kl
(2. 10)

subject to (2 .2 ) - (2 .6 ), (2 .8 )

M N
where y  = X  X  h m  

k =1 /=1
N A/

and ^  = X X Xijki
t= l 7=1

The lagrangean dual problem PR^ could be solved as two independent generalized 
assignment problems and a simple generalized upper bound problem.

2.3 Algorithm for Solving the Lagrangean Dual Problem

Step 1 Solve a generalized assignment problem for the collection part. This is given by

Problem C

yv m
Minimize C. = ^ ^  (f - 1/2^) y (2.11)

*‘ = 1 7 = 1

M
subject to X y-tj = 1 / = 1 ,. .. , A (2 . 1 2 )

7=1

NX y = 1 , .  .. , M (2.13)
i=l
Jy-S (0 , 1 } for all i,j (2.14)
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where in the above problem,
N

q u i =
1=1

Step 2 Similarly, solve a generalized assignment problem for the delivery part. This 
is given by

Problem D
M N

Minimize D  =  I I  <fa  - 1/2SW) ‘klk=1 /=!
M

subject to ^  zkl = 1
k=1
NI1=1

z kl G (O’ U

/ = ! , . .  . ,N

k= 1 , . . .  ,M

for all k, l

(2.15)

(2.16)

(2.17)

(2.18)

N .
where ^  ^  qn l = 1,. . . , N

;=i

Step 3 Select a cheapest route from the modified cost matrix for each origin city i and 
destination city /. This pan is represented by the following 0-1 dual problem.
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Problem S
N M M N

Minimize S (cm + Xijki ) x ijkif-Hii

r-HII•—
>II

M M
subject to X  S  x ijki = 1

i = l , . . . ,  N
k=i y=i
x ijkle [0 , 1 } for all i, j, k, l

(2.19)

(2 .20) 

( 2 .21)

This 0-1 problem could be solved by inspection since there are N x N  
independent problems for each pair of origin - destination cities. The solution is as 
follows;

(i) From a list of the (C,y*/ + X ^) for each pair of origin - destination cities, 
arrange them in ascending order and pick the least one.
(ii) Add this cost to the cost of Sx (i.e. S;jis the total cost of the cheapest route for 
each origin - destination pair).
Step 4 Ly~ + D^+ Sfo where is a lower bound on Z* the optimal value 

of the PDP.

2.4 Details in Step 1 and 2 (Solving GAP)
In step 1 and 2 of the algorithm, it is required to solve a generalized assignment 

problem (GAP) with a modified cost function. The most widely known exact methods 
for solving GAP have been developed by Ross and Soland [1975], Martello and Toth 
[1981], and Fisher, Jaikumar and Van Wassenhove [1986]. Reported computational 
results with Martello-Toth's algorithm are comprehensive and provide satisfactory 
results up to date. Hence, a description of the GAP and an algorithm for solving it 
based on Martello and Toth [1981] will be presented in this section.
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A general notation is used to describe the procedure, this can then be easily 
modified for each GAP at steps 1 and 2. Consider a generalized assignment problem as;

Problem G
N M

Minimize 2 ^ = ^  ^  a., x..
;=i j =l U lJ

(2 .2 2 )

N

subject to x.. = 1
;=i

(2.23)

M
y  w.. x.. <  b. ^  v y * 
7 = 1

/ = 1 , . .  . , A (2.24)

XijG {0 , 1 } for all /, j (2.25)

where {i\i = 1 , . . . , /V} is a set of depotindices, [j\j = 1 , . . . , M) is a set of 
city indices, a tj is the cost of assigning depot i to city j, and W y> 0  is the amount 

of a shipment from city j  to depot and each depot has total maximum capacity 
Let,

Xij = 1 if city j  is assigned to depot /,
= 0  otherwise.

Constraints (2.23) and (2.25) specify that each city is to be assigned to exactly 
one depot. A depot, however, need not be assigned only to one city. Constraints (2.24) 
place limits on the amount of goods supplied by the cities.

The proposed algorithm for solving the above formulation requires relaxation of 
constraints (2.23). This relaxation would have no meaning in the formulation of 
problem G, since relaxation of (2.23) leads to a trivial solution with all the variables 
equal to zero, and an optimal value of zero. Therefore, an equivalent maximization
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problem is considered by defining a constant positive vector V = {v2 , v2, . .. , %} 
such that

v.= {Max a..} J i lJ

and set P..= v.-a..y J lJ

Hence problem G can be re-written as

j  = 1 . M

= 1  = 1 ,

(2.26)

M  N  N  M
V.

j = 1 i= 1 i'=l ; = 1

subject to (2.23) - (2.25)

Z xu - X z P..x..Minimize

Since x.. = 1, the above formulation becomes
/=i

Problem G'
N M

Maximize 2q’ = I I  Pijx ij (2.27)
i=i ;=i

subject to (2.23) - (2.25)

The problem G' is equivalent to G, and relaxation of constraint (2.23) would not 
result in a trivial problem. Thus, constraint (2.23) is removed and the remaining 
problem is N 0-1 single knapsack problems of the form
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(2.28)

y = 1 , . . . , M

There are a wide range of algorithms in the literature for solving the knapsack 
problem, and include techniques based on:

- Dynamic programming,
- Network approaches,
- Generalized lagrangean methods,
- Implicit enumeration.

Dynamic programming algorithms are computationally efficient when the value of 
the capacity bt is small. When bt is quite large they generally tend to be very 
inefficient in both time and storage space requirements. Network approaches, discussed 
in Shapiro [1968], Shapiro and Wagner [1966], and in Frieze [1976], formulate the 
knapsack problem as a shortest route problem. These methods are usually inefficient 
because of the enormous size of the resulting networks. The performance of 
generalized lagrangean methods is computationally satisfactory only when approximate 
solutions are required; classical studies on these solution methods can be found in 
Everett [1963], Brooks and Geoffrion [1966], Nemhauser and Ullman [1968], Shapiro 
[1971]. The first implicit enumeration method was a breadth-first branch and bound 
procedure presented by Kolesar [1967]; the large computer memory and time 
requirements of Kolesar's algorithm were greatly reduced by the depth-first branch and 
bound method of Greenberg and Hegerich [1970]. Horwitz and Sahni [1974] proposed 
a highly effective branch and bound procedure, based on Greenberg-Hegerich's

M
Maximize u. -  /  P..x..l X-J lj ljy'=i

M
subject to ^  w..x..< bi 

j =i lJ 11
XijG [0 , 1 }
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algorithm. Further improvements have been presented by Ahrens and Finke [1975], 
Barr and Ross [1975], Fayard and Plateau [1975], Nauss [1976], and Martello and 
Toth [1977].

Thus, the technique selected for solving the 0-1 knapsack problem was Martello 
and Toth's algorithm [1977], whose computational performance is good in terms of 
both time and memory requirements. The upper bound obtained is

If the solution of the relaxed problem (2.28) satisfies constraint (2.23), then the 
optimal solution is obtained for problem G'. Otherwise a depth-first branch and bound 
algorithm is used to obtain an optimal solution. Suppose that the solution does not 
satisfy constraint (2.23), then two types of infeasibility could be defined

The upper bound can be improved by calculating the penalty to be paid in order to 
satisfy / 0  & J\.

N

N
j 0= { j n & j s M , Z i xu =o}

i= 1

N

i= 1

r. .= Min \u .I x. = llij L i ij J

r. .= Min \u. \x. . = olij L i ij J V / e / e / , ,  where /.=  (s I x =11
j ’ J  1 ’ J  1 S J  J
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The corresponding lower bound is

/.= Min \(u.~ r . .) I j  e Jn 1j  i  1 1J  J 0 J

N

(,'={[ X  ■ ri j> ■ (Mr  rij )]| j  s  Jx, i s  /  }i= 1

Hence the upper bound can be improved in the following way
N

U * = / J u .-l.'l J  
i  = 1

where /. *= Max {/., /.} jeJ^K jJ .j  J  J  * ' 0  1

The values of 1* can be used in order to select a branching variable. A branching 
is then carried out on a variable / .  If /  e / 0  then for each i a node is generated by 
setting Xif = 1. But if /  e then for each / for which jcfy* = 0 a node is generated. 
The algorithm proceeds on each node in a depth first manner until an optimal feasible 
integer solution is found.

2.5 Determination of a Feasible Solution
A solution to the lagrangean problem PR^ is not necessarily a feasible solution to 

the PDP, and consequently a feasible solution must be generated initially. In searching 
for a feasible solution, of course, the better the initial solution, the shorter is the 
subsequent tree search. A number of different procedures were adopted to search for a 
initial feasible solution. The following procedure is typical.
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Step 1 List the costs of all possible combinations of origin city i - collection depot y, 
and rank them in ascending order.

Step 2 Assign origin cities i to collection depots j  in order, starting with the lowest 
cost and eliminating higher cost alternatives as appropriate. When a collection 
depot's capacity (Qfi is reached, all further assignments to that depot are 
eliminated. Continue until all cities i are assigned to a depoty.

Step 3 List the costs of all possible combinations of destination city / - delivery depot 
k, and rank them in ascending order.

Step 4 Assign collection depots j  to delivery depots k in order, starting with the 
collection depot j  containing parcels for the delivery depot k with lowest 
destination city delivery cost, and eliminating higher cost alternatives as 
appropriate. When a delivery depot's capacity Qk is reached, all further 
assignments to that depot are eliminated.

Step 5 Deliver all parcels to correct destination cities.
Step 6  Calculate the total cost of deliveries and define this as ZUB> the upper bound on 

the solution.
Note that this procedure does not consider the cost of delivery from collection 

depots to delivery depots; the cost of setting up local collection and delivery routes is 
assumed to be greater than the cost of mass trunking between collection and delivery 
depots.

2.6 The Subgradient Optimization Procedure
One objective in determining a new set of lagrange multipliers X is to increase 

the lower bound (L ^), and to force the variables to more closely satisfy the 
constraints in (2.7). Therefore the dual phase is defined as the maximization problem:
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The iterative method of updating the lagrange multipliers is called subgradient 
optimization and is described in Held, Wolfe and Crowder [1974], as well as in many 
other papers.

In the search for lagrange multiplier values that maximize the lagrangean 
expression, it has been shown (see Fisher [1981] e.g.) that a subgradient vector v, 
computes a vector which "points" in the general direction of the optimal X. The 
subgradient direction at the h111 iteration is as follows:

vijki= x iju- wya - v izu for a11 k’ 1

Using a step size th, the method computes new values for Xh by moving in the 
direction 1)^ . The new set of multipliers Xh+l is

Xh+lijkl + tHVijkl (2.29)

A commonly used step size is given by

Hh( Z - L hx )
‘h ~ " 7 u¥ ' ” "

(2.30)

Z is an over-estimate of the maximum value of L . If Z is equal to L , the
A A

sequence of {X.jkl} is guaranteed to converge to that value of X which maximizes 
as h —> For computational convenience, however, Z is usually set equal to an
upper bound on Z*, the value of the optimal solution to the PDP. While this choice



does not guarantee convergence, no convergence problem occurred in any of the large 
number of problems tested.
The double bars II . II indicate the Euclidean norm, fi^is a positive number < 2 
determined by the user. Typically, its starting value is initialized at 2. Since an iteration 
maximum is specified for a node, the value of \ih should decrease to force smaller 
steps as the search nears its end. The most promising approach, discussed in Held, 
Wolfe, and Crowder [1974], is to decrease \xh from 2 to 1 after half of the iterations, 
then to 0.5 at the three-quarter point. As L% increases and Z decreases, the numerator 
of (2.30) decreses, further reducing the step-size, and allowing the algorithm to "fine 
tune" X.

2.6.1 Modification of the Subgradient Optimization Procedure
In computational experiments a modification of the standard subgradient 

procedure involves the use of a direction-correcting factor, proposed and tested 
successfully by Crowder [1976] and Mulvey and Crowder [1979]. Instead of moving 
along the subgradient direction in h* step, as defined by equation (2.29), the following 
substitution was made

h h ~ __ h-  1 
V  =  U +  0 J 5 V

This modification leads to improved convergence over the standard subgradient 
optimization procedure. After testing various coefficients between 0 and 1, it was 
concluded that a smoothing factor of 0.75 gives the best convergence rate for the PDP.

Let LB! denote the lower bound obtained by the subgradient optimization 
procedure, which does not use the modification just described. LB2  is the bound 
obtained with the modification. A preliminary experiment on a set of ten randomly 
generated problems of small size revealed that LB2  generated the best bounds (Table
2.1). The procedure stopped whenever the step size in the direction of the subgradient 
was smaller than a pre-specified quantity. LB2  was then incorporated into the branch
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and bound code.
In table 2.1 the number of iterations used by LB2 was substantially less than 

LB 1, being as low as 37% (in case 6 ). The average number of iterations was only 6 6 % 
of the number used by LB1, and the worst case was 8 8 % (case 5).

Likewise, the time taken by LB2 was less than LB1: the average value for the 10 
cases is 71% of the time taken by LB1, the lowest being 37% (case 6 ), and the highest 
98% (case 2).

Figure 2.1 illustrates the lower bounds obtained by LB1 and LB2 in problem 
number 7. It is clear that after the first 10 iterations, LB2 converges towards the optimal 
solution much faster than LB1, reaching optimality after only 93 iterations, whereas 
LB 1 took 146 iterations.

Fig. 2.1 Ascent of lagrangean bounds for the problem 7

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
No. of iterations



Table 2.1
Evaluation of the lagrangean bounds using two different step sizes

Problem Problem Lower Bound (LB 11 Lower Bound (LB21
Number

i
Size 

j  k /
N o. o f  

Iterations Bound
Tim e

(CPU Sec.)
N o . o f  

Iterations Bound
T im e

(CPU Sec.)
O ptim al
S o lu tio n

1 5 3 3 5 36 422.0 17.5 23 422.0 1 2 . 6 422.0
2 5 3 3 5 54 433.6 27.0 47 433.1 26.4 434.0
3 5 3 3 5 1 0 1 454.5 44.2 72 454.8 36.6 456.0
4 1 3 3 7 126 557.3 73.4 64 558.0 40.6 559.0
5 1 3 3 7 1 1 0 566.0 63.8 97 566.4 59.2 568.0
6 1 4 4 7 57 538.6 39.9 2 1 539.0 14.7 539.0
7 1 4 4 7 146 559.2 6 8 . 1 93 558.9 44.1 560.0
8 1 5 5 7 158 544.6 102.9 128 545.0 92.4 545.0
9 1 5 5 7 230 526.4 157.0 187 528.0 130.9 528.0

1 0 1 0 2 2 1 0 113 714.2 75.5 43 713.7 27.8 716.0

cs"4

Chapter 2
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2.7 Reduction in Problem Size
Reduction procedures have been found to be extremely useful in some classes of 

combinatorial optimization problems (Crowder and Padberg [1980]; Crowder, Johnson 
and Padberg [1983]; Christofides and Beasley [1982] & [1983]; Gavish and Pirkal 
[1985]; Lucena-Filho [1986]). In this section, methods for performing sensitivity 
analysis on the solutions to problem (PR^) generated by the subgradient optimization 
procedure are developed and evaluated. Given an arbitrary X vector, consider the 
effect on L^ of setting to zero a variable that has a value of 1 in the optimal solution 
to problem (PRjJ- If the resulting change in Lx is such that the new value of L% 
exceeds ZUB, the best known upper bound Z*, then it is evident that the optimal 
solution to PDP must have this variable set equal to one. Therefore, the PDP or any 
relaxation of it, can be solved, with variables of this type set equal to one.

At the start of the branch and bound procedure, sensitivity analysis of this type is 
performed on the relaxed problem (PR*.), using A*. Any variables set to one as a 
result of this sensitivity analysis can be set to one throughout the branch and bound 
procedure. Sensitivity analysis is also useful at any level of the tree search, where 
additional sets of variables can be set to one in the appropriate sub-problems. Here, it is 
possible to identify variables that must be part of an optimal solution to the original 
PDP, with the additional branch and bound variables fixed to zero or one.

2.7.1 Penalty on Assigning an Origin City to a Collection Depot
The penalty to be paid for assigning an origin city / 0  to a collection depot J0 in 

the dual solution to problem (PR*) is as follows;
Suppose that u f  are the set of upper bounds for the problem C<. This is 

equivalent to problem C, having constraint (2.12) removed.
Define,
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r . . = Min {u. I y . . = 1 V J V

Thus, the penalty for having origin city i0 served by collection depot j0 (i.e.

2.7.2 Penalty on Assigning a Destination City to a Delivery Depot
The penalty in serving destination city / 0  by a delivery depot k0 can be computed

similarly, by letting ukd be the upper bounds for the problem D, the equivalent GAP 
D, where constraint (2.16) is removed.
Define,

M N

where

o o k e  K

Thus, the penalty to be paid is given by
P = Min [u - rki } + 0

0 0 0

N M

where

2.7.3 Penalty on Re-Routing an Origin City to a Collection Depot
The penalty occurred in re-routing an origin city / 0  via a different collection depot
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Jo (i-e. y,-^ = 0) is as follows; 
Define,

r. . = Min { u. I y. . = o}V 1 J V J j  e J., where/ .  = {j I y. = 1 }l l 1 ^ IS 1

Thus, the penalty for closing route 3Vo is

P = ^  f wc - r. .} - Max { u. - r. .} - 0. . ^  1 J V ye /  1j z J; ir  Vo

M N
where 9. . = /  . c. . x. . ..i j  X j i j  t /  i j  klcro >t=l/=! ™

2.7.4 Penalty on Re-Routing a Destination City to a Delivery Depot
Similarly, the penalty paid for serving a destination city / 0  via a different delivery

depot k0 is computed as follows;
Define,

r,. = Min { I z = 0} k e  K., where K = (s I z Z=1 }o o ^

thus the penalty paid for setting z^/o = 0  is

p = y L  { -° k in /CfcA., o 00
k e K ,

N M
where 0 = X X  c^ i x ijki

0 0 J 0 0 ; 0 0

2.8 Outline of the Lower Bounding Procedure
The lower bounding procedure incorporating the subgradient technique and the
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penalty tests given in the previous section is described in detail as follows;
1. Using a heuristic procedure, generate a feasible solution to PDP. Use this value 
as the upper bound Z on the optimal solution value that is required for the subgradient 
procedure (The algorithm described in section 2.5 is used to obtain Z ). Initialize the 
lagrangean vector X.
2. Compute the optimal solution to the lagrangean problem.
3. If in the optimal solution to the lagrangean problem, the correct relation between 
y 's and z’s is not obtained, use a heuristic procedure to generate a feasible solution to 
the PDP, starting from the solution to the lagrangean problem. If the associated cost of 
this procedure improves on the best - known feasible solution, update the value of Z.
4. Terminate if Z-L^< e, with the increment accepted as the e-optimal solution. 
Otherwise continue with step 5.
5. Update the vector X, using the subgradient optimization procedure.
6 . Repeat steps 2 through 5 until no further significant improvement in the lower 
bound value occurs.
7. Perform sensitivity analysis on the best lagrangean problem generated. Reduce 
the problem size by fixing the assignment variables to zero or one whenever possible, 
and similarly reduce the size of the problem by forcing the associated flow variables 
Xijki to zero or one.
8 . If the lower bound value equals the best feasible solution value known, stop. 
Otherwise use a branch and bound procedure to generate and verify the optimal 
solution.

2.9 The Branch and Bound Procedure
The use of lagrangean relaxation in branch and bound has been described in 

Fisher [1981], and Geoffrion [1974]. The general flow of the procedure will now be
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described in order to clarify how the different concepts, described fit together.
1. Initialize LB to be equal to any respectable lower bound on the original PDP, and 
Z to be equal to an artificial upper bound obtained from a heuristic procedure.
2. If the branch and bound search is completed then stop.
3. Relax problem Z by removing constraints (2.7). Choose a set of dual variables 
X to represent the deleted constraints. Incorporate those into the objective function, 
which now becomes the lagrangean problem L .̂
4. Solve the relaxed problem to minimize L^. This includes solving two GAP 
problems and a simple inspection problem, and a smoothing procedure to remove the 
infeasibility. Set LB = L
5. If LB > z , or problem Z has no feasible solution, problem Z is fathomed. 
Backtrack to step 2 .
6 . If the solution from step 4 is feasible, compute its real cost Z*. If Z* < Z then 
set Z = Z* and record this solution as the incumbent. Fathom any sub-problems with 
LB>Z.
7. Systematically update the multipliers X and repeat steps 3 to 6  until an iteration 
limit is reached.
8 . Perform sensitivity analysis on the best multipliers obtained.
9. If the LB value equals the best feasible solution known, stop.
10. Choose a branching variable that is not currently fixed in value. Create two new 
sub-problems by adding to problem Z the separation constraints.
11. Select the sub-problem with lowest lower-bound value between the two sub­
problems. Go to step 2.

At the initial tree node sensitivity analysis was carried out in the attempt to reduce 
the problem size. The modified subgradient procedure was then carried out until 
termination rules were satisfied. If the subgradient failed to converge to an optimal
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feasible solution then the set of the best multipliers corresponding to the highest lower 
bound was used to update the upper bound value of the PDP. A further twenty 
iterations of the subgradient procedure were then performed which takes advantage of 
the improved feasible solution obtained.

The subgradient iteration was also performed for twenty iterations at each node. 
The initial step size = 2 was chosen and halved according to the rule described in 
section 2.6. The branching rule will be explained in the following section.

2.10 Branching Procedure
Three variable types are involved in the branch and bound procedure; y,y, zki, 

and Xijy. These variables are nested, since = 1 implies that and zkl are equal 
to one. This property implies that a possible branching might be to branch to M2 new 
nodes. Obviously, this branching strategy will increase enormously the number of 
nodes in the branch and bound tree. By using another branching strategy, the number 
of nodes was significantly reduced. The branching variables can be selected by 
considering the following rules;
1. Select a variable x ^  satisfying x ^  = 0 and y-tj -  zkl = 0, and branch.
2. Alternatively, select a variable satisfying xyu = 1 and y-tj -  zki = 1 and
branch.
3. If no such variables can be found, find a variable yy satisfying y(y = 0 and jĉ jy 
= 0 , for all k, / and branch.
4. Alternatively, find a variable y ..satisfying y.. = 1 and f^ x .^  = N, and branch.

5. If the current solution is feasible and the above complementary conditions are not 
satisfied, select a variable y,y / zw and branch.

The generated sub-problems with their associated data were stored in a tree. The 
next sub-problem for branching was selected as the one with the lowest lower bound
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In order to improve the efficiency of the branch and bound algorithm, Rule 1 was 
used in the following manner: Let x-^i be selected as the branching variable. 
Whenever the constraint = 0 is added to some sub-problem, the constraints yty = 
0 and zki = 0 are also added for every successor node on the tree.

Similarly, Rule 2 implies that if the constraint x = 1 is added to some sub­
problem, the successive nodes emerging from that sub-problem have the following 
constraints = 1 and zw = 1 augmented on them.

In addition, Rule 3 is used to introduce the constraint X*//*/ = 0 whenever yfy = 
0 is selected. If a variable y-tj is selected for branching and the constraint = 1 is 
added to the sub-problem, Rule 4 states that since there are N destination cities with 
demands for shipments from origin city i, then the constraint X  = N is added to 
successor nodes.

This concludes the description of the algorithm. The next section reports on tests 
of the performance of the algorithm.

2.11 Computational results
In this section computational results using the lagrangean relaxation approach are 

shown in order to demonstrate the power of this method when applied to PDP. All the 
problems attempted had fixed operating cost coefficients generated randomly via a 
uniform distribution on the interval [1000,9000]. The variable operating costs were 
represented as a function of the distances between cities and depots and the unit costs of 
local and trunk transport.

The unit cost of local collection and distribution was chosen to be 1 and the unit 
cost of mass transportation is set at 1/4. The values of local distances were drawn from 
a uniform distribution between 0 and 15. Similarly, the distances between depots are 
drawn from a uniform distribution. Finally a uniform distribution of integers between



Table 2.2
Representative runs for 9 problem sizes

D
3 *

’H
CD-!K)

Problem size§ No. of Percent No. of lagrangean iterations No. of tree ____________ CPU Time (sec.)
O C x C D  problems Duality Gap At root node Total nodes At root node Total
D D  x D C  ________________________________________________________ ____________________________________________________________________________________

a s b A ve. M ax. A ve. M in . M ax. A ve. M in . M ax. A ve. M in ,. M ax . A ve. M in . M ax. A v e . M in . M ax

1 5x3x3x5 5 5 4 0.25 0.36 86 23 168 98 23 229 1 0 6 46.4 12.6 87.4 57.9 12.6 123.6
2 7x3x3x7 5 5 3 0.16 0.31 76 29 157 87 41 278 5 1 17 49.3 18.9 97.7 61.5 26.9 175.1
3 7x4x4x7 5 5 4 0.10 0.23 83 21 172 96 21 242 3 0 12 49.1 14.7 115.2 72.2 14.7 164.5
4 7x5x5x7 5 5 3 0.05 0.33 120 39 194 225 92 397 23 5 50 90.5 28.2 138.2 163.0 66.2 297.7
5 10x2x2x10 5 5 3 0.23 0.38 65 21 169 81 21 263 10 0 32 52.2 13.6 106.4 52.6 13.6 168.3
6 10x3x3x10 5 5 3 0.17 0.24 96 18 177 136 18 302 14 0 28 73.0 12.6 131.5 97.2 12.6 211.4
7 10x4x4x10 5 4 2 0.11 0.45 134 88 208 373 88 704* 34 0 72 116.2 75.6 196.6 330.4 75.6 600.0*
8 15x2x2x15 5 5 3 0.13 0.21 110 63 186 389 63 513 8 0 24 87.0 50.4 154.2 301.2 50.4 439.2
9 15x3x3x15 5 3 2 0.07 0.56 152 97 192 429 97 692* 14 1 42 181.6 122.3 261.6 528.1 122.3 600.0*

§ O C  O rigin C ity  C D  C o llec tio n  D ep o t D D  D eliv ery  D ep ot D C  D estin ation  C ity  
a Attem pted
s S o lv e d  to O ptim ality
b N o . o f  problem s requiring B ranch and Bound
* Program  Term inated

<1U\
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100 and 500 was used to create quantities of shipment from cities i to cities /.
The generation of the problems is discussed in greater detail in Section 3.6.

Table 2.2 summarises the computational results using the method described. Nine 
different problem sizes were used, with five examples of each. Of these 45 problems, 
42 were solved optimally, and 40% did not require Branch and Bound. At least one of 
each problem size did not require Branch and Bound.

The average duality gap at optimality was only 0.14% of the overall results, and 
the average for each class of problem did not appear to depend on the problem size.

The worst case for any problem size was only 0.56%, and similarly there is no 
apparent pattern in the worst case duality gaps of the different problem sizes.

The number of Lagrangean iterations required at the root node increased with the 
size of the problem; the average, minimum, and maximum number of iterations for each 
size being (in most cases) substantially larger for the larger problems.

2.12 Conclusion
The reduction methods and penalty routines used in connection with the PDP are 

the most important feature discussed in this Chapter. It is important to appreciate the 
strong influence that the chosen reduction method has on the solution procedure. The 
branch and bound algorithm, as described in this Chapter, depends on an optimal 
solution to the lagrangean relaxed problem in order to supply lower bounds. By 
introducing sensitivity analysis the algorithm may require extra computational effort. 
The benefits achieved by this sacrifice are good quality lower bounds which limit the 
tree search, and hence faster solution times for the PDP.



CHAPTER 3

A Formulation of the Parcel Distribution Problem Based on 
Benders Decomposition

This Chapter introduces a formulation of the Parcel Distribution Problem (PDP). 
The Benders decomposition method and its application to the model will be described. 
The behaviour of the model will be illustrated on small size problems, and further 
refinements will be dealt with in subsequent Chapters.

3.1 Problem formulation
The Parcel Distribution Problem can be viewed as having two sub-problems, a 

city-to-depot assignment sub-problem, and a transportation flow sub-problem. The

77
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city-to-depot assignment problem can be considered as a sub-problem which assigns 
each origin city, with a known demand for goods to be collected, to a collection depot. 
Similarly, each destination city is assigned to a delivery depot. The transportation flow 
sub-problem ensures the integrity of the goods at intermediate stages of shipment and 
ensures that the correct shipment is made between corresponding origin-destination 
pairs. The interlinking between the assignment sub-problem and the transportation sub­
problem is considered in the transportation sub-problem itself. If an origin city is 
assigned to a collection depot then all goods emerging from that city must be routed via 
that collection depot. Similarly, goods received at a final city must be delivered via a 
delivery depot allocated by the assignment sub-problem. Figure 3.1 shows a typical 
PDP in a schematic form.

The PDP can be formalized as the following mixed integer program: 

Define,
y- -  1 if city i is assigned to the collection depot j

0 otherwise
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zkl = 1 if city / is assigned to the delivery depot k 
0 otherwise

xijk[ is a variable denoting the amount of goods dispatched from city i to city /, via 
two intermediate depots j  and k.

Thus, with N cities providing the supply, and N cities receiving the deliveries 
via M collection depots and M delivery depots, the model is:

Problem W
N M M N N M

Minimize Z =XXXX cijki xm  +X X M N
fij ;̂+XX/« Z*/ (3.1)i = l j =l k=1/=1 t=l;=i *=1 /=1

M
subject to y-tj '■ 

j =l
= 1 i = 1, . . . , iV (3.2)

N NXX W u  55 Q) y = 1 , . . . ,  M (3.3)
;=i i=\
MX hik= 1

= i / = 1 , . . . , N (3.4)

N NXX z«  2 2* * = 1, . . .  , M (3.5)
i=1 /=1
M N A/XXk=1 /=1 V=X/ = 1

/ = l , . . . , i V  
7 = 1.........Af (3.6)

A/ A/ NXX Xijkl ~ ^  qil Zkl

r*HII II (3.7)i=l j =1 i=1 - •““* • • • * * ' *

M M
Xijkl qil i = l .........

/ = ! (3.8)
j =1 *=1

s  { 0, 1 } for all i, j, k, l (3.9)
xijkl - 0 for all /, y, k, / (3.10)
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It is assumed that all the summations and constraints run only over the possible 
combinations of subscripts. All demands must be met exactly. The objective function 
(3.1) is made up of two parts: a transportation cost part, and the fixed cost of operating 
a possible route between a city and a depot.

Constraints (3.2) and (3.4) specify that each city must be assigned to only one 
collection/delivery depot.

Constraints (3.3) and (3.5) enforce the limits on total throughput through depots 
j  and k, namely Q f and Qkd.

Constraint (3.6) enforces the correct relationship between the .r's and y's. When 
yy = 1 then the total flows from city i must be through collection depot j. When y-j = 
0 then all the corresponding flows must be equal to zero.

Constraint (3.7) similarly enforces the same interlinking condition for x's and

Constraint (3.8) ensures that the demand for transportation between two cities 
must be met via two intermediate depots.

3.2 Application of the Benders decomposition method
Consider the decomposing of the variables for the PDP in two sets X and W 

given by

The PDP can then be re-written ( for the sake of convenience) in matrix form as

z's.

X = { x m  } 
w = {yij’ h i)

(transportation variables) 
(assignment variables)
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Minimize dpi + c t2w

subject to DW>BX

AxX + A JV > B

X >0

W e  [0, 1}

where D is the matrix of coefficients for equations (3.2) - (3.5), and Ax and A2 
are the coefficient matrices of equations (3.6) - (3.8).

An observation regarding the structure of the matrix D reveals that it represents 
two separate and independent generalized assignment problems (GAP), and these can 
be solved "effectively" using existing algorithms, (Martello and Toth [1981]; Fisher, 
Jaikumar and Van Wassenhove [1986]).

For any given values of variables W which satisfy the constraints of the GAP, 
the remaining problem in X is:

Minimize c jx

subject to AxX > B 2-A 2W (3.12)

X >0

which is a linear programming problem. Thus, this fact suggests the applicability 
of the Benders decomposition method which was developed for such types of mixed 
integer linear programs (Benders [1962]; Hu [1969]; Lasdon [1970] & [1972]; Zionts
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[1974]; Balas and Bergthaller [1977]; Me Daniel and Devine [1977]; Magnanti and 
Wong [1981]).

3.3 The Benders decomposition method
The Benders decomposition method can provide an efficient primal approach for 

solving problems with structures similar to (3.11). When applying BDM the focus is 
on a problem which is "equivalent" to the one stated in (3.11). In this equivalent 
problem, the assignment variables are suppressed and dual variables of the 
transportation sub-problem are brought explicitly into play to "represent" the 
assignment sub-problem. The discussion that follows is based on Geoffrion [1972]. 
For further details, the reader is referred to the original paper by Benders [1962] and 
Lasdon [1970].

3.3.1 Theory
To emphasize its special structure the PDP (3.11) can be re-written as:

Minimize c l w  + [Minimize c ' ' x  I A .X  >  B, - A A V  ] (3-13)
WeSflV) z x>0 1 1  z z

where S(W)= {W \ DW >BV W e {§, \)}

If the assignment variable W is fixed in (3.13) the problem reduces to:

Minimize c |x

subject to AxX > B 2~ A (3.14)

X >0
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Introducing the non-negative vector (/, the dual of (3.14) can be written as:

Maximize ( B2- A^V J u

subject to <CX (3.15)

U> 0

A superficial study of problem (3.15) indicates that the set of feasible solutions to 
the dual does not depend on the value of W whereas the right-hand-side of the primal 
is parametrized in W. It will be assumed for simplicity that problem (3.14) is both 
feasible and bounded for any value of W e S(W). In order to ensure feasibility it is 
sufficient to introduce a dummy collection and delivery depot with an unlimited 
handling capacity and an artificially very high fixed cost. Although these depots will not 
be utilized at optimality their presence guarantees the feasibility of the problem. Under 
these conditions the dual (3.15) is also feasible and bounded. Denoting an optimal 
solution to (3.14) and (3.15) as X* and U*, respectively, we must have, by the 
duality theorem (Hu [1969]) that

c\ x *=(B2-A }V ) U (3.16)

Further, from (3.13) and the equivalence of (3.14) and (3.15), the following 
must hold

Min. c[w  + C^X = Minimize cTw + [Maximize (^ 2 " ^  -  ^ 1  ̂ 0 ^ )
2 1 W e S ( W )  2 u >  0
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It is well known from the theory of linear programming that under these 
conditions the set of feasible solutions to any linear program forms a convex polytope 
which can be described by the finite set of its extreme points. It has been established as 
well that for such a linear program, the objective function will achieve its optimal value 
at one or more of these extreme points. Hence, let L = { U h }, for h = 1, . . ., H to 
represent the set of all extreme points of the solution space of (3.15). Then problem 
(3.15) can be written as:

Minimize (B - A H o W )  (3.18)
V t / 16  L

Then, the sub-problem in (3.17) can be replaced by (3.18) to become:

Minimize C^W + [Maximize (^ 2 "  ̂ 1 (3.19)
WeS(W) z t/*e L

or, after introduction of a scalar unbounded variable M0 and a few manipulations: 

Minimize C^W + MQ

subject to DW>Bl (3.20)

(B1-A ^V 'i(U h) <M0 V l f e L

W 6 (0, 1)

M0 un-bounded
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Each extreme point Uh gives one constraint in (3.20) which restricts the solution 
space of the problem. These constraints are often referred to as Benders cuts in the 
literature (Lasdon [1970]).

3.3.2 A solution procedure
The solutions of problems (3.11) and (3.20) are equivalent. However, because 

the number of dual solutions in set L is very large, and because there exists a Benders 
cut associated with each solution, problem (3.20) is not tackled directly. Instead a 
significant subset L of L is constructed in a two stage iterative procedure. In the first 
stage of each iteration, a relaxed version of the equivalent problem (3.20) is solved. 
Each time the transportation sub-problems are solved under some assignment of cities 
to depots, it is possible to generate one of the basic dual variable solutions belonging to
L. Hence, it is possible to construct a subset L of L and to solve a relaxed equivalent 
problem (3.20) over this subset.

The relaxed problem is normally referred to as the master problem, and solving it 
delivers both a feasible assignment of cities to depots and a lower bound on the 
minimum cost of the master problem.

In the second stage, the transportation sub-problem (3.14) is solved under the 
assignment decision just obtained in stage one. Stage two yields not only the total cost 
for this parcel distribution problem but also another basic dual feasible solution to 
further add to the set L.

As the two-stage process is repeated, the cost of the lower bound converges to the 
minimum cost of the original problem and the optimal parcel distribution plan is 
eventually obtained. In normal practice with BDM, the computations are stopped when 
the lower bound on the minimum cost is within a pre-specified error tolerance of the 
cost of the best distribution plan obtained up to that point.
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3.3.3 A specialized procedure for the PDP

The Benders decomposition method, formally described in the previous section, 
applied to the parcel distribution problem (3.1) - (3.10) leads to the following 
algorithm:

step 0 Initialize h = 0, UB = °o5 LB = -<=°.
Let 8 > 0 to be a convergence tolerance parameter, 

step 1 Increment h by 1.
Solve the current relaxed master problem.

N M M N

Minimize ZM= £  yij+ ]T  £ / «  zu +M0
;=l y=i k=i /=l
M

subject to ^  y.. = 1 / = 1 , . . . ,  N
7=i U
N NXX j = u . . . , Mi=l /=1 
MI  zH = i / = 1 , . . . ,  IV (3.21)
k= 1 
W A'IX k = l , . . . ,  M“t=l /=1

N M N N M N N NXXX «*wXXX ^ z«+XX^-M/=1 y=l /=1 /=1 *=1 /=1 i=1 /=1
h = l, . . . , H

yij, zkle {0, 1} for all
M q un-bounded



Chapter 3 8 7

Let (y!*1 . z ^ 1, Mh0+) be the optimal solution and Z^be the optimal value. ZM
*is the new lower bound, i.e. put LB = Z^.. If UB - LB < 8, stop with the increment 

accepted as the e-optimal solution.
/l "hi h +1Step 2 Using (y„ = y „ , zkl = zkl ), solve the transportation sub-problem.

N M M N

Minimize ^  =XXXZc i j U  *  i=l 7 = 1 Jfc=l / = 1 ’i j k l

A/ A/ A/
subject to Z Z x i jk i = Z*=1 /=1 Z=1 « u  y i j i = 1, y = i.

. . . , iV. . . , M

A/ A/ WZZ v =Zi=l 7=1 1=1 Q i l  Z k l
k = 1, / = 1, . . . , N. . . , M

Af MZZ X i jk l  =  q i l  7=1 *=1
i = 1 , /=  1 ,

. . . , N

X i jk l  *  0 for all i,y, /

(3.22)

h~t~\ h+\Denote the optimal solution by and its objective value by Zs . If,

N M M N

z r = 4  + 1+l S  Z ^  S  S 2« ]  5 U®- Put UB = Zj,
i = 1 7 =1 fc=l / = !

and update the incumbent solution, i.e. put,
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If UB - IB < e stop; {y , , x.jkl }is a £-optimal solution.
If not, determine an optimal dual solution for the transportation sub-problem, denote it 
by

h + 1 /z+1 h +1

a ij > P u  ’ r,i

corresponding respectively to constraints (3.6), (3.7), and (3.8), and go to step 1.
Note that if an initial value of {y-  ̂zkl} is available, then the procedure can be 

started in step 2. Practical experience may guide the choice of a good initial solution. 
Finite convergence of the procedure is a direct consequence of the finiteness of the 
extreme points.

3.4 Application of the procedure to the PDP
A successful implementation of BDM depends on the resolution of several key 

factors. Firstly, Benders established that the convergence of the method towards the 
optimal solution is theoretically guaranteed, nonetheless this does not give indication as 
to the rate of convergence i.e. how many times step 1 and 2 must be solved before the 
optimal solution is reached. Secondly, the transportation sub-problem can be relatively 
easy to solve, the procedure for it must produce optimal multipliers. Thirdly, the master 
problem can be solved with a high level of efficiency. It will be shown in the following 
that these factors account for the great flexibility of the method, which allows the 
application of a specifically tailored procedure to different problems.

3.4.1 Solution of the master Problem
An advantage of BDM is the fact that no restriction is imposed on the type of 

algorithm used for solving the master problem. In this way any appropriate algorithm 
which exploits any underlying special structure to the full, may be used. The master
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problem (3.21) at first iteration (h = 0) has a special structure and can be solved as two 
separate generalized assignment problems. However, for h > 0, the master problem 
has augmented Benders cuts. This destroys its special structure. Thus, the greatest 
limitation of the approach lies in the necessity to solve a sequence of difficult mixed 
integer linear programs. This is the main obstacle that arises in most applications of 
BDM. The PDP is no exception to the rule, and the procedure presented is designed to 
alleviate this problem.

The solution method is a depth-first, tree-search procedure where the two 
branches from any node of the tree represent assignment and non-assignment of a city 
to a particular depot. Lower bounds are calculated by relaxing the integrality condition 
in the master problem. The relaxation exploits the efficiency of modern LP codes. It 
also provides a good lower bound on the optimal value of the PDP. The conventional 
branch and bound algorithm is outlined in detail below.

The following notation is adopted for the purpose of describing the procedure.
In The set of assignments of cities to depots which are explicitly included in
the solution at node n to effect branching (i.e. variables, y-. & zkl whose values are 
fixed at 1 at node n).
En The set of assignments of cities to depots which are explicitly excluded in
the solution at node n to effect branching (i.e. variables, y-j & zkl whose values are 
fixed at 0 at node n).
In u  En The union ln and En , the set of assignments which form the partial 
solution at node n, (i.e. variables whose values are fixed at node n).
(/n u  £„)c The complement of (/nU En), i.e. the set of free items at w, (i.e. 
variables that are free to take on either 1 or 0 at node n).
Fn The set of fractional assignments of each city to a particular depot at node
n, (i.e. variables whose values are fractional at node n).
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Step 1 Initializing and establishing the starting node (root node).
Set n = 0.
Set the lower bound LB to be equal to the current best lower bound computed 
from the previous Benders cut.
Set the upper bound UB to be equal to the current best upper bound found for 
the PDP.
Solve the LP relaxation of the master problem (3.21). Let Fn+1 be equal to 
the set of fracti nal variables (y- and zw), and go to step 2.

Step 2 Branching and fea ability testing
Set n — n +1, if Fn empty; set n - n  - 1, if n = 0, stop; else repeat step 2. 
Select an item from the set Fn in numerical order, (say ytJ-)- This is a 
simple and successful selection strategy. A more complex procedure will be 
given in the following Chapter. Execute branching on a city j lf for which the 
integrality conditions are violated and generate following branchings:

Update /n, En. Test feasibility of the solution corresponding to In u  En. If 
infeasible go to step 4; else go to step 3.

Step 3 Calculation of lower bound
Compute a lower bound LB with respect to current state.
If LB > z* go to step 5; else go to step 4.
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Step 4 If Fn empty, then a better solution has been found. Update z*, and go to 
step 5; else go to step 2.

Step 5 Backtrack
Remove y,y', by updating In, En. Go to step 2.

3.4.2 Second solution approach to the master problem ( Alternative 

Strategy )

It has been realized that it is not critical to the application of BDM that the optimal 
solution must be obtained tor the current master problem at each iteration, (Geoffrion 
[1974]; Me Daniel and Devine [1977]; Magnanti and Wong [1981]). This is due to the 
fact that the initial master problems contain too little information about the transportation 
flow costs to be worth optimizing very strictly. Hence, it might be better to search for a 
feasible solution with cost < UB - e, where UB represents the best upper bound 
obtained so far, and to generate a cut at this point by solving the transportation sub­
problem. The algorithm terminates due to the fact that the number of dual solutions to 
the transportation sub-problem is finite, and by the realization that if a dual solution is 
generated twice, then the master solution must be improved by at least e .

The new strategy can be written more formally once M0 is eliminated from the 
master problem (3.20) and the upper bound UB is introduced:

Minimize C^W

subject to DW>Bl

(B2 - A j v j (  U h) < U B - e

(3.23)

V i f s  L
W e  (0 ,  1 )
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The master problem (3.23) no longer produces a lower bound on the optimal 
value of PDP. Thus the algorithm introduced at section (3.3.3) should be modified 
accordingly:

Step 0 Initialize h = 0, UB =
Step 1 Increment h by 1.

Solve the current relaxed master problem.

N M M N

Minimize ZM= I l 4 ' V ^ ^ k l Z k l
i = 1 j = 1 £=1 /=!
M

subject to ^  y.j = 1
;=i

f = 1 , . . . ,  iV

N NX X Wq - Q]t=1 /=!
y = 1,. . ., M

MX hi=i
k =  1

/ = ! , . . .,iV (3.24)

JV A/X S  /̂7 z*/ ~
i = l  / = 1

N M Nv v v  * N M N
V v v  - N V

V i j +  d i j  q i i>  V k ! +  h i  q i i )  h  q ii * UB-£
i = l  j = l  /=1 t=1 £=1 / = 1 i = l  / =1

yu , zkle {0, 1}
/z = l , . . . , / /  

for all /, j, k, l
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Let (yl*1, z^+1) be a feasible solution. If no feasible solution exists, then 
terminate. The current UB is e-optimal.

/i 1 fi -f-iStep 2 Using (y~ , zH ) solve the transportation sub-problem (3.22), determining 
an optimal solution and its objective value Z^+1. If,

N M M N

zr = 4 +1+1 X  X  fij yv + X  X  4  z« ] 2 UB> Put UB = z r-
i = l  y = l  k = 1 /=1

and update the incumbent solution. If not, determine the corresponding 
optimal dual solution (oAH ’ P/ci ’ Yu l); and go to step 1.

Notice that the master problem has become a pure 0-1 integer problem. The effort 
needed to find a feasible solution to this problem increases as new cuts are added. 
Geoffrion and Graves [1974] who introduced this approach point out that the master 
problem (3.24) is needed only in order to produce a feasible solution, so that any 
objective function could be used instead of the one described above. Hence, a new 
objective was developed to encourage the production of useful feasible solutions. This 
involves constructing a surrogate constraint (Glover [1968]) from the Benders cuts. 

Suppose is determined for h = 1 , . . . , / /  such that:

H

l a hh =1

Multiply the /1th Benders cut by Xh for h = 1,. . ., H and sum the results to
obtain the surrogate constraint
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//
<j>(X)h= Y l \ ( B 2-AJV)J(Uh) h = l

< UB-8 (3.25)

The left hand side of function 0 is then used to build the objective function.

3.4.3 Solution of the transportation sub-problem
At step 2 of the Benders decomposition problem, it is required to solve the

following transportation problem given that at iteration h, = yhJ l and zkl = z ^ 1.

Minimize
N M M Nz,=XXXXv
/ = i 7 = i  * = i  i = i

x..,,ijki

subject to
M NEX x mk=1 1=1

II / = 1, . . y = l , . . . ,N. ,M

N M NXX v = X q« hi *—. ii ii . . ,N  . ,M;=i 7=i i=l
M MXX x iju =7=1 k= 1

. i= 1 ,. . . ,A  
..  jV

Xiju s  0 for all i, j, k, l

The above model represents a linear programming problem which can be solved 
by any LP code. It is evident that even a commercial LP code (for large a scale 
problem) requires much computer time and considerably more space for data storage 
than the special algorithms. However, the primary interest was to develop the
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framework of a general problem in this Chapter. The more specialized algorithm will be 
developed in the following Chapter to solve the transportation problem.

Marsten's [1981] XMP code is used to solve the above problem, and the dual 
obtained at each iteration was used to derive the cuts of the master problem at step 1 of 
the procedure.

3.5 Numerical example
To illustrate the solution method in the proceeding sections the PDP has been 

solved for a small model (figure 3.3). The model has 2 origin cities with demand for 
deliveries of goods, 2 receiving (destination) cities, and 2 collection and delivery 
depots. In order to present the model in a simple form, the number of origin, 
destination cities and collection, delivery depots is chosen to be equal, without loss of 
generality.

Origin Collection Delivery Destination
Cities Depots Depots Cities

Fig. 3.3 A PDP network example

The numbers above the arcs give the fixed cost of establishing that link. The
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numbers inside the (collection/delivery) nodes give the maximum handling capacities of 
those nodes. The numbers beside the (origin/destination) nodes give the total quantity 
of shipment from/to those nodes. The unit variable costs of shipment from origin to 
destination cities via two intermediate depots are given in Table 3.1. The desired 
quantities of shipment from origin to destination cities are given in Table 3.2.

Table 3.1
Origin-destination unit cost matrix

N. / 1 2
i

j  \ 1 2 1 2

1
1 3 1 1 5

2 9 4 8 2

2
1 8 2 3 8

2 2 3 5 4

Table 3.2
Quantity of shipment (qu) matrix

1 2

1 15 5

2 25 55
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The BDM applied (step by step) to the above example is as follows:
Step 0 Initialization.

The iteration step h set to 0.
The upper bound (UB) set to °o. The lower bound (LB) set to -<*>.
The convergence tolerance parameter (s) set to 0.

Step 1 h = h + l = l
Initially the master problem is decomposed into two generalized assignment 
problems. The first one assigns origin cities to collection depots. The second 
one assigns destination cities to distribution depots.Two GAPs are solved to 
obtain,

y [ 2 =  y h  = z j, = 4 i  =  l and a11 other y \ j = zh  = °-

The lower bound on the optimal solution to PDP is provided by the 
summation of optimal solutions to two GAPs; that is LB = 800.

Step 2 Using the fixed cost solutions for y-j and zkl from step 1, the transportation 
sub-problem was solved as a linear programming problem. The results 
obtained are jc1211 =15, (i.e. the desired quantity of 15 units from origin city 
1 is shipped to destination city 1 via collection depot 2 and delivery depot 1). 
Similarly, x 1 2 2 2  = 5 , ^ 2 i n  = 25 , and x 2 1 2 2  =  55.
The total variable cost (TVC) is 785 and UB to the PDP is equal to total fixed 
cost (TFC) plus (TVC); i.e. UB = 800 + 785 = 1585.
The dual variables obtained are as follows:

Thus the first Benders cut derived is as follows:
-120 yn - 480 y22 - 240 z21 - 300 z22 + 785 < M0 

Step 1 h — h + \ = 2
The integrality constraint in the master problem is relaxed and the problem
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solved as an LP problem. The solutions obtained are all integer,
y 12 = y\i = Z 2 1  =Z122  =1 and all other y*  = z j  =0.

Thus there is no requirement for a branch and bound procedure at this 
iteration. The optimal solution to the master problem gives the new lower 
bound to the PDP, which is LB = 1165.

Step 2 Using the recent fixed cost values, the following solution is obtained to x's: 
■ *1221 = * * 1 2 1 2  = - * 2 2 2 1  = 25, and * 2 2 1 2  = 55.
The TVC = 450. The updated upper bound remains the same as at the 
previous iteration. The new dual variables are as follows:

Thus, the second Benders cut derived is as follows:
-140 yn - 160 y2l- 40 zn - 360 z22+ 450 < M0 

Step 1 h = h+ 1 = 3
The second cut is also augmented to the master problem. The integrality 
condition is relaxed and the master problem solved as an LP problem. The 
following result is obtained:

y \i ~ y\\ ~ z2i = 1 ’ Z12 = 0*93 ’ z22 = and all other y}. = = 0.
The above solution to the master problem is not integer and requires a branch 
and bound procedure to obtain a feasible integer solution. The complete tree 
search for this procedure is illustrated in Figure 3.4. The top numbers inside 
each node indicate the order in which the nodes were examined, and the other 
value designates the lower bound (LB) on the node.
The summary of the solutions at each node are as follows:

node 1 yj2= z21= z22= 1, y21= 0.04, y22= 0.96, and MQ= 837.50 

node 2 yn = y21= zn = 1, z^= 0.16, z21= 0.83, and MQ= 283.57
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node 3 yn = y32l = z2l = zn -  1, and MQ= 315

node 4 yn = zn = zn = 1, y2l= 0.63, y\ 2= 0.37, and MQ = 308.75

node 5 yn = y22= zn = z32= 1, and MQ= 410

3 3 3 3node 6 yn = y2]= zn = z12= 1, and MQ= 485

Fig. 3.4 Branch and bound tree for the example.

The new lower bound obtained from the feasible integer solution at node 3, 
i.e. LB = 1365.

Step 2 Using the solution obtained at node 3 of the branch and bound procedure, the 
transportation problem was solved and the following solution was obtained:
*1221 ~ *1212 = *2121 = 25 , and * 2 1 1 2  =
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The TVC = 315. The updated upper bound is UB = 1050 + 315 = 1365. At 
this iteration UB - LB = 0. Therefore, the optimum solution to the PDP is 
obtained and the procedure terminated.
The optimum solution network is shown in figure 3.5.

2° 40

Fig. 3.5 Optimum network solution for the example

3.6 Computational results
In this section the computational results with the proposed approach have been 

provided to demonstrate the power of the BDM when applied to PDP. All the problems 
attempted had fixed operating cost coefficients f-- and f kl generated randomly via a 
uniform distribution on the interval [1000,9000]. The variable operating cost 
coefficients were represented by the following formula:

Cijkl ~ dij Uij + djk ujk + dkl Ukl

where rf.., d-k and d kl represent the distances between the cities and 
collection/delivery depots. The unit cost of local transport between cities and 
collection/delivery depots is represented by u~ and ukl respectively. The Ujk is the
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unit cost of mass transportation between collection and delivery depots.
The unit cost of local collection and distribution was chosen to be 1 (uV} = ukl = 

1, V i,j, k, /). The unit cost of mass transportation is set to be 1/4 (Ujk = 1/4, V j, 
k). The values of local distances di} and dkl were drawn from a uniform distribution 
between 0 and 15. Similarly, d-jk is drawn from a U[100,700]. Further, a uniform 
distribution of integers between 100 and 500 was used to create quantities of shipment 
from cities i to cities /.

It has been pointed out that the master problem without an augmented Benders cut 
represents the GAP. The computational experience of Martello and Toth [1981] shows 
that for generalized assignment problems if the capacities are chosen to be 
comparatively small, then the solution time tends to become very high. Thus, the 
following formula was used to generate data for the handling capacities Q f and Q f  
in order to test the PDP.
A. The values of Q f and Q f  were determined by:

N N MQCj=  I (0.6 * ( Max ^  qu- Min 2 ^ q u))* f c )  + 0.4 *R
1 /=! * 1=1 Ml = \ 

N

Similarly,

where R = Max { ^  quy ..}
ie /=i

N N N(fk~ I (0.6 * ( Max ^  qa - Min ^  qu)) * (j j ) + 0A* R
i=l J=1i = l 
N

where R = Max { ^  quzkl }

l.l represents the "integer part o f , y » and zkl are the solutions to the initial



Chapter 3 102

relaxation. The data generated above are similar to Ross and Soland's [1975] 
expression. All the problems generated were feasible.
B. The same formula was used for generating the data, but Q f and Qkd values were 
chosen to be 70 percent of the generated values.

The Benders decomposition procedures described were implemented in Fortran 
IV and run on a CDC 7600 using the FTN5 compiler. The master problems were 
solved using rudimentary linear programming based on a branch and bound algorithm 
(Land and Powell [1973]). The implementation used the XMP code (Marsten [1981]) 
to solve LP relaxation of the master and transportation sub-problems. The generalized 
assignment code (Martello and Toth [1981]) was also used to solve GAP problems.

Table 3.3 gives the computational results for 52 test problems all solved to 
optimality (allowing for the usual convergence tolerance). Only one problem of type B 
terminated because of a time limit. At termination the solution was within 2.3% of the 
optimum. In Table 3.3 the average running time for each class of problem is given. The 
minimum and maximum times are also shown. It also shows the average number of 
major iterations of Benders, as well as the minimum and maximum iterations.

It should be noted that BDM has a better performance for data set A than for the 
"hard" data set B. This is due to the difficulty of solving the master problem of set B at 
each iteration, which reflects the tightness of their handling capacities. This feature is in 
line with the experience of Martello and Toth [1981]. Furthermore, for each data set the 
problem difficulty increases more with the number of depots M than with cities N 
because the number of feasible assignments is M!. The average number of iterations on 
both data sets is approximately the same.



Table 3.3
Representative runs

Data
Set

Problem Size 
i j  k l

No. of 
0-1

Variables

No. of 
Other 

Variables

No. of Major Iterations 
problems
solved Ave. Min. Max.

Total execution time (Sec.) 
Ave. Min. Max.

A 5 2 2 5 20 100 5 6 3 9 6^534 3.758 9.529
A 5 3 3 5 30 225 5 9 6 10 41.519 22.938 48.934
A 8 3 3 8 48 576 4 19 13 22 81.271 72.664 87.390
A 10 2 2 10 40 400 5 14 10 19 62.495 53.107 68.792
A 10 3 3 10 60 900 5 18 14 24 90.440 75.514 98.573
A 10 4 4 10 80 1600 2 23 18 27 180.362 145.904 214.827
B 5 2 2 5 20 100 5 6 2 10 7.282 2.536 10.385
B 5 3 3 5 30 225 5 6 4 12 48.594 28.924 60.291
B 8 3 3 8 48 576 4 19 16 23 96.281 86.877 105.120
B 10 2 2 10 40 400 5 16 13 20 79.812 66.373 90.742
B 10 3 3 10 60 900 5 20 16 22 113.421 101.726 124.691
B 10 4 4 10 80 1600 2 - 19 28* - 196.459 300.00*
* program terminated without convergence for one of the two problems

Chapter 3 
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The convergence properties of the BDM are illustrated in figure 3.6 for a problem 
size of 10x3x3x10. It can be seen that the gap between upper and lower bounds on the 
solution is reduced very sharply in the first iterations. This remains in line with past 
experience of the method (Geoffrion and Graves [1974]; Sherali and Adams [1984]; 
Cote and Laughton [1984]). It should be noted that after only 5 iterations this gap (as a 
percentage of the lower bound value) has fallen from 42.6% to 8.7%. At iteration 10 
this gap was 2.4%, and an additional 14 iterations were run to reduce this gap to zero. 
The fact that the exact optimal solution required so many additional iterations suggests 
that many solutions are near-optimal. The ability of the algorithm to generate such 
solutions will be useful for sensitivity analysis.

Fig. 3.6Convergence of the BDM

The other element which testifies to the efficiency of the BDM, i.e. the ability to 
solve master and transportation sub-problems efficiently, is best illustrated by 
considering the execution time. Table 3.4 gives details of the execution time for the 
problem of size 10x3x3x10 of sets A and B. For the problem of type A, the solution
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presented was obtained in 93.83 seconds, of which 77% was spent solving the 
sequence of master problems, and 23% the transportation sub-problems and overheads. 
Similarly, for type B, total execution time was 115.07 seconds of which 83% was 
taken by masters and 17% by the rest of the problem. The fact that the optimal solution 
was obtained with fewer iterations for problem type B indicates the tightness of 
capacities in this class. However, the "hardness" of this type of problem was reflected 
by the greater execution time required.

Table 3.4Detailed run time for a 10x3x3x10 problem

MajorIteration

D AT A SET A D AT A SET B
LP bound on root node%

Execution Time LP bound on root node%
Execution Time

Master Total Master Total
1 94.97 1.66 4.93 90.48 2.45 5.922 94.84 1.64 2.48 90.02 2.53 3.283 94.93 1.72 2.46 89.89 2.81 3.794 93.95 1.77 2.67 89.33 3.36 4.105 93.64 2.10 2.84 88.68 3.52 4.376 92.86 2.30 2.87 88.27 3.72 4.417 92.62 2.53 3.44 88.10 3.91 4.678 91.41 2.87 3.56 87.30 4.47 5.349 90.68 2.93 3.74 86.47 4.67 5.6510 90.80 2.85 3.63 86.00 4.86 5.6911 90.63 2.88 3.59 85.84 4.11 5.9012 90.54 2.81 3.51 85.83 5.22 5.8013 90.02 2.93 3.72 84.36 5.55 6.1914 90.00 3.05 3.79 83.73 5.42 6.0315 89.96 3.02 3.64 83.15 5.44 6.1716 89.90 3.12 3.98 82.34 5.91 6.55• 17 89.41 3.38 4.33 81.51 6.36 7.0918 89.25 3.74 4.71 80.86 6.94 7.5619 89.14 3.82 4.56 79.07 7.34 8.0520 88.61 3.91 4.94 78.53 7.76 8.5121 88.35 4.09 4.9822 87.75 4.13 4.8623 87.38 4.35 5.2724 87.18 4.42 5.33

Total 72.02 93.83 96.35 115.07Time



Chapter 3 1 0 6

It should be noted that the initial iterations take less time to solve than the last ones 
in both types. This is because the number of constraints in the master is smaller at the 
beginning (one element is added at each iteration) and also because the problem is more 
highly structured. However, it can be seen that sub-optimizing the master as described 
in section 3.4.2 is generally successful in helping to keep the time spent on it small. It 
should also be emphasized that transportation sub-problems have little variation on their 
run time at each sequence of iteration.

Moreover, at each iteration the previous master solution could be used as an initial 
solution to the present one by simply updating the free variable M0 in (3.20). Because 
it is a very primitive approach employed to solve relaxed LP problems, this was not 
implemented in the present version. Thus, this also partly accounts for the high 
proportion of time spent on the masters.

Table 3.5 gives average, minimum and maximum LP bounds at the root node, as 
a percentage of the lower bound to the master problem. It details each major iteration of 
problem size 10x3x3x10. The average LP bounds for data set A are better than data set 
B. In general, LP bounds are satisfactory for the given formulation.

It should be noted that although the quality of bounds improves as each Benders 
cut is augmented to the master, nevertheless the LB of the PDP increases at a rapid rate. 
Therefore the percentage of LP bounds decreases with an increase in the number of 
iterations. This indicates the rapid convergence of the BDM during early iterations, and 
that it slows during further steps. It also shows that as the number of iterations 
increases, greater time should be spent to obtain an optimal solution to the master. 
Therefore, it appears worthwhile given the experience of Me Daniel and Devine [1977] 
to generate several cuts from the initial linear programming solution.
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Table 3.5LP bounds at root node (%) for a set of 10x3x3x10 problems

DATA SET A_______ DATASET B_______
Major No. of LP bound at root node No. of LP bound at root node 

Iteration Problems_______ __________  Problems_______ _________Ave. Min. Max. Ave. Min. Max.
1 5 94.30 93.32 95.74 5 90.39 89.92 91.162 tf 93.98 92.73 95.71 tt 90.02 89.42 90.803 ti 93.61 92.58 95.19 tt 89.44 88.59 90.044 tf 93.29 91.99 95.10 tt 88.81 87.86 89.715 tt 92.79 91.66 94.69 tt 88.20 87.36 89.456 ft 92.22 91.23 ' 94.15 tt 88.05 87.12 89.417 tt 91.47 90.60 94.08 tt 87.68 86.71 89.068 ft 91.24 90.05 93.68 tt 87.14 86.56 88.489 tf 90.81 89.53 93.52 tt 86.63 86.06 87.8510 tt 90.23 88.70 92.73 ft 85.80 85.03 86.8111 tf 89.90 88.66 92.10 ft 85.25 84.14 86.1712 ft 89.63 88.48 91.90 tt 84.86 84.09 85.8413 tt 89.34 88.15 91.68 tt 84.25 83.89 85.1214 ft 89.17 88.00 91.33 tt 83.67 82.97 84.5815 4 89.18 88.07 90.44 tt 83.11 82.22 84.4816 tt 89.09 88.02 90.33 tt 82.45 81.47 83.9017 2 88.59 87.77 89.41 4 81.42 80.37 82.3718 tf 88.50 87.75 89.25 tt 81.17 80.52 82.0619 tt 88.37 87.59 89.14 3 80.32 79.07 81.5320 tt 87.87 87.12 88.61 tt 79.58 78.53 80.3721 1 88.35 88.35 88.35 2 79.59 79.16 80.0322 tt 87.75 87.75 87.75 ft 79.09 78.53 79.6623 tt 87.38 87.38 87.3824 tt 87.18 87.18 87.18

3.7 Conclusion
The purpose of this Chapter has been to introduce the BDM and to establish that it 

offers a sound approach to solving the PDP. A practical implementation of the method 
suggests that the approach can work efficiently and with a reasonable degree of 
accuracy. The method has displayed good convergence characteristics. The time needed 
to solve the linear programming relaxation of the master and, thereby, to generate the 
initial set of cuts was not very substantial. Thus, in situations where near-optimal 
solutions are satisfactory, the method provides planners with a more powerful tool in
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order to arrive at meaningful decisions for PDP, contrary to the previous approach 
(lagrangean relaxation) where no judgement could be made when it terminated 
prematurely. Admittedly the solution times reported may be rather conservative since 
the present implementation does not use the more efficient codes. However, in the next 
Chapters this formulation will be redefined to further exploit the BDM and available 
codings, and the model will also be enlarged to include more complex problems. It will 
be illustrated that BDM will be most appropriate for handling these extensions.



CHAPTER 4

A Strong Formulation of the Parcel Distribution Problem 
Based on Benders Decomposition ( Model 2 )

The Parcel Distribution Problem has been shown in Chapter 1 to be NP hard. 
However, it has been pointed out that constraints and variables, in the mixed integer 
linear programming formulation of the problem, naturally decompose into binary and 
continuous variables. Furthermore, the problem formulation has an imbedded 
generalized assignment structure. These encourage the use of the Benders 
decomposition procedure for obtaining an optimal solution.

In this Chapter, an alternative "strong" formulation of the problem will be 
studied. It will be shown that if the binary variables are fixed in PDP then the resulting 
continuous sub-problem is separable by origin and destination cities.

109



Chapter 4 110
4.1 An alternative formulation for the PDP

The notation developed in Chapter 1 will be used. The problem can be written as 
the following mixed integer linear program,

Problem S

Minimize
N M M N N M

- X X X X ^ w X Xi = l j =  1 k=1 / = 1 i=17=1

M N
fij v X Z - S f  Zklk=11=1

(4.1)
M

subject to X  ^ = i/•=1
(4.2)

°oTVI ; = 1 , . . .  ,M (4.3)
M

X  h i  = 1*=1
/ = 1,. . iV (4.4)

N N
X  X  ^il Zkl ~  @k;=i /=i

k = l , . . . , M (4.5)

II* i = l , . . . , N  
j  =  1, . . . , M  /= 1 , . . . , iV (4.6)

j-e ?v- II N

i = l ........fc = 1,. . . , M  / = 1,. . . , N (4.7)

s {0,1} for all /, y, / (4.8)

IV o for all /, y, / (4.9)

In this formulation, is the non-negative per unit cost for shipping goods 
from origin city i to destination city /, via intermediate depots k and /. The f y  and 
f u  are the fixed charge assignment cost for arcs { i , j }  and {k, /}. Constraints (4.2) 
- (4.5) are similar to (3.2) - (3.5) and relate to assignment decisions.

The "forcing" constraint (4.6) states that if city i is assigned to collection depot
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y, i.e. if y-tj  = 1, then total flow from origin city i  to destination city / via intermediate 
collection depot j  and all depots k  must be equal to the required quantity of shipment, 
q n  Similarly, constraint (4.7) is a "forcing" constraint for the delivery part. However, 
constraints (4.6) and (4.7) jointly impose a logical relation between y 's and z's, i.e. if 
y tj  = 1 and z ki = 1 then xi jkl = q a . The "forcing" constraints (4.6) and (4.7) are 
disaggregate versions of constraints (3.6) and (3.7),

M  NX X x i j u
k =1 /=1

N=X ‘> u y ij  /=1
/ = 1, . .  7 = 1 , . . . , N. , M (4.10)

N  M NX X x i j k ,
i = l  7=1 =X ^  z u1=1

k  = 1, . .  / = ! , . . - , N• , M (4.11)

Both versions of these constraints impose that x . . , .  = q u  if yt;- = zw = 1, 
otherwise to be zero.

This disaggregation substantially increases the number of constraints in the 
formulation for even medium sized problems: with 30 origin and destination cities and 
5 collection and delivery depots, the disaggregate formulation (4.1) - (4.9) contains 
9000 forcing constraints of type (4.6) and (4.7); whereas the aggregate version 
contains only 300 constraints of type (4.10) and (4.11).

Note that in the formulation (4.1) - (4.9) the arcs are directed. Thus, each city, 
which can receive goods as well as sending goods, is split into two distinct origin and 
destination cities. Similarly, depots are separated into two sets of collection and 
delivery depots (Figure 4.1). In the problem where directed arcs [ i , j ]  and {k , /} 
can be denoted by undirected arc {/,y} (Figure 4.2) (i.e. each origin and destination 
city is assigned to a depot, and it sends as well as receives its commodities from that 
depot), then the modified formulation would reduce the number of continuous 
variables, for a problem of 30 cities and 5 depots, from 22,500 to 5,625.
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Fig. 4.1 Arcs directed PDP graph

O
Cities

Depots

Fig. 4.2 An undirected PDP graph
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Surprisingly, the seemingly less efficient and substantially larger disaggregate 
formulation with forcing constraints (4.6) and (4.7) instead of (4.10) and (4.11), and 
with transport flow variables for each origin-destination rather than for each origin, 
leads to a stronger formulation and effective algorithms. The disaggregated model is 
preferred computationally for the following reasons:

Many techniques such as LP based branch and bound, for solving problems of 
this kind require the solution of linear programming relaxations of the model. The 
disaggregate linear program provides a sharper lower bound on the value of the integer 
programming formulation, because the linear programming version of the disaggregate 
formulation is much more tightly constrained than the linear programming version of 
the aggregate formulation. Thus, the common practice of dropping integrality 
requirements in order to produce an LP relaxation, in disaggregated formulation, yields 
a tighter relaxation than in aggregate formulation. The important advantages of using 
"tight" linear programming relaxation have been pointed out by a number of authors 
(Beale and Tomlin [1972]; Comuejols, Fisher and Nemhauser [1977]; Davis and Ray 
[1969]; Geofffion and Graves [1974]; Moris et al. [1978]; Magnanti and Wong [1981]; 
Magnanti et al. [1986]; Rardin and Choe [1979]; and Williams [1974]). It should also 
be noted that the extra number of constraints (4.6) and (4.7) by comparison with 
constraints (4.10) and (4.11), does not offer any difficulty whatever when Benders 
decomposition is used, since at each iteration the continuous sub-problem is separable 
by origin and destination cities.

In addition, Benders decomposition method utilizes information obtained from the 
dual of the linear programming relaxation. The disaggregate formulation (4.1) - (4.9) 
will produce much more effective duals. Because the disaggregate formulation has 
more constraints, it has a richer collection of linear programming dual variables and, 
therefore, provides more flexibility in algorithmic development.



Chapter 4 114

4.2 Algorithms based on Benders decomposition
The typical size of real-life applications of the PDP is too large to be solved 

economically by existing general mixed integer linear programming codes, such as, 
Marsten's M31PX branch and bound code (Singhal [1982]). However, as has already 
been noted, a special property of the PDP enables it to be decomposed in such a way 
that the transportation problem becomes simpler to solve. When the binary variables are 
temporarily held fixed for selected y 's and z's, the remaining problem for the variable 
x  reduces to a collection of transportation problems comprising independent and 
separable pairs of origin-destination cities. This property decreases the size of the total 
problem to manageable dimensions, and suggests an application of Benders 
decomposition method (Benders [1962]).

4.2.1 Benders decomposition method
Benders decomposition assumes a particularly simple form when applied to PDP 

defined by (4.1) - (4.9) in the standard fashion.
Step 0 Initialize h = 0, UB = 0, LB = -«>.

Let e  > 0 be a convergence tolerance parameter.
Step 1 Increment h by 1.

Solve the current relaxed master problem.

Minimize ZM

subject to

Z E w XXw*« (4.12)/=1 7=1 k=1 1=1
M

T“HIIXp / = 1 , . . . ,N (4.13)
N NXX Wq1=1 /=1 < Q Cj y=i , . . . ,M (4.14)
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MX z« = i
k=1

/ = ! , . . . , N (4.15)
N NX X Qil Zkl ~ &k
i=1 / = 1

II (4.16)
N M NXXX 4 / w -i=ly = l /=1

N M NXXX1=1 *=1 /=1 (4.17)

h =  1 , . . . ,  H
y-ir zk iG {0 , 1} for all i j , k , l (4.18)
M 0 unbounded (4.19)

Let (yty+1, +1 > Mq+1) be the optimal solution andZ^be the optimal value. Z M
*is the new lower bound, i.e. put LB = ZM. If UB - LB < e, stop with the increment 

accepted as the e-optimal solution.
h +1Step 2 Using (y„ = y . j  , z kl =  2̂  ), solve the transportation subproblem.

N M M N
Minimize Zs = X X X X c i j k l  x i j k l1=1 y=1 k = \  1= 1

(4.20)

M

Subject to X x i j k i  = Q i i y - i j  
k = 1 • = l ’3 = 1, / =1,

. . . , N. . . , M (4.21)

MX X i j k l ~ (I i l Z k l7 = 1
/  =* = 1,/ = 1, . . . , M. . . , i V (4.22)

IV O for all i , j ,  k, l (4.23)

Determine an optimal solution and its objective value zj+1. If,
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N M M Nzr4tl+[IZ  4VX X 4 ZJ *UB’ PutUB = zr»r i)i=l j= \  k=1 /=i
and update the incumbent solution, i.e. put,

{ /̂y’ z ki
* i t h + l*«*/) = l * h+ 1 /i+ 1z*; ’ *//*/ }•

* * *If UB - LB < 8 stop; { y z k l, jc..wJ is a £-optimal solution. If not, determine an
h ~ \ ~ \  s*}%+1optimal dual solution for the transportation sub-problem. Denote it a ^  , p ikl , 

corresponding respectively to constraints (4.21) and (4.22); go to step 1.

The standard procedure for the Benders algorithm is initiated by the user 
specifying initial values of y  and z. An advantage of standard BDM is the fact that the 
set of N  x N  disjoint sub-problem and the relaxed master problem may be solved by 
any appropriate algorithm. A successful implementation of BDM depends quite heavily 
on the ability to solve both the master problem and the transportation sub-problem with 
a high level of efficiency. In the following sections, the efficient solution procedures to 
tackle the mentioned difficulties will be discussed.

4.3  Solution of the master problem
A critical problem posed by the BDM is the time consumed in solving the integer 

master problem. A general purpose mixed integer linear code such as Marsten's 
M3 IPX branch and bound code, fails to capitalize on the underlying structure of PDP. 
The branch and bound algorithm contributes to reducing the execution time. In any 
branch and bound algorithm, the effectiveness is entirely dependent on the quality of 
the bounds used to limit the tree search (Christofides [1985]). An outline of the 
calculation of such bounds will be discussed.
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4.3.1 LP relaxation approach
The primary approach to obtain lower bounds for the master problem would 

be the usual approach of relaxing the integrality conditions and solving the resulting 
problem by LP codes. It is hoped that the disaggregate formulation used the linear 
program to provide a sharper lower bound on the value of the integer programming 
formulation, that is, that it more closely approximates the integer program. When 
solving the current master problem, it is often possible to use the LP solution obtained 
at a previous iteration of Benders as an initial basis for current LP relaxation of the 
master problem.

The described relaxations are an easy way of calculating lower bounding values 
for the master problem. However, a better choice of relaxation, especially as a 
supplement to the usual LP relaxation is the lagrangean relaxation.

4.3.2 Lagrangean relaxation approach
The master problem has two generalized assignment problems with 

additional constraints generated by Benders cuts. If it were not for the additional 
Benders cuts the master problem could have been solved as two independent 
generalized assignment problems. One way to retrieve that structure is to relax Benders 
cuts with the help of lagrange multipliers (Geoffrion [1974]). The resulting relaxed 
problem can then be separated into two independent generalized assignment problems. 
Those problems could be further relaxed by dualizing constraints (4.13) and (4.15). 
Then the relaxed problem is solved by an approach similar to that of Martello and Toth 
[1981]. As mentioned earlier, it is also possible to take advantage of the solution 
obtained for the master problem on a previous iteration. For example, it should be 
possible to use multiplier values from previous master problems to initialize the current 
multipliers (Fisher and Jaikumar [1978]).

It should be noted that it is not necessary to solve the master problem to optimality
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on every iteration (Geaffrion [1974]; Me Daniel and Devine [1977]; and Magnanti and 
Wong [1981]). Either a primal feasible non-optimal solution or a dual feasible 
Lagrangean solution can be fed to the sub-problem to generate a Benders cut. After a 
few iterations one would need to introduce a branching process in the master, in order 
to overcome the inherent limitations of lagrangean relaxation techniques which can not 
on their own bridge the duality gap existing between the partial dual and master 
problem.

4.4 Solution of the transportation sub-problem
At iteration h with y.. = y ! f '+1 and z kl = it is required to solve the following 

transportation sub-problem.

Minimize Z s

Subject to

S X Z Z  c ijU x ijUi=1 7=1 k=1 /=1
(4.24)

MV 1 _ h+l 2-4 x ijkl 4  i P ak=1
1 = 1,..  7 = 1, . .  / = 1, . .

, . , N  • , M. , N
(4.25)

MV* _ h+l  
2 a  Xijkl Qu z kl 
j =1

i = l ,.  
k  = 1,. . / = ! , . ,

. . , A  . ,M . . , iV (4.26)

c:
: IV o for all i, j ,  k, l (4.27)

The above problem, as indicated previously, can be separated as N  x N  

independent sub-problems. Since it has the following block structure;
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Objective function

%
z*h %

zki2 5oo**Oto2oo3
S'In

} y int q'NlN
} k̂l tfi l

Fig. 4.3 Block structure of coefficients

Thus, for a given origin and destination city (let i = i and / = /'), the 
problem could be separated as the following LP problem;

M M

Minimize Z., = X  Z  c ijkV x i'jkV 
j =1 k=1

(4.28)
M

Subject to X  x i w  = q n  ty***=1 y= 1, . . .  ,M (4.29)
MV 1 A+l xiy*r “ z*r ;=i

k =  1 , . . . ,  M (4.30)

■—i IV o for all y, k (4.31)
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Since y ^ +l must satisfy (4.2), then it implies thaty^+1= 1 for the j th index. This 
index is represented by j ( i r).

From constraint (4.29), it implies that x ^  = 0 for all j ,  k, /' with j ( i ' ) .  

Therefore, constraint (4.29) reduces to

M
X  XV j(i’) k V ~  Q ir  k= 1

(4.32)

Similarly, since z ^ }  must satisfy (4.4), then it implies that 1 for the k lh 
index. This index is represented by k( lr).
Thus, it could be deduced that constraint (4.30) will reduce to

M
S  Xi' j  k(V) V ~  q iT  
7=1

The problem Z'l7 could therefore be written as

M M
Minimize Z., = X  £  c  m  r  x  ,

7=1 k= 1 
M

X  Xi'j(i’) k V =  q i l  k=l
M

z L  x v j  k(V) v  =  q i r
7=1
X i ' j k i  > 0

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

It can be simply observed that the only solution for problem Z ) i  is jc,-^  ^  /< =
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q i r . The solution procedure will be repeated for each origin and destination city. The 
total optimal solution to the sub-problem Zs  is equal to the following summation;

N Nzr I Xi=1 /=1

4.5 Dual solution of the transportation sub-problem
In order to satisfy the requirements of the BDM, the optimal dual variables must

fi+\ halso be computed. The required optimal dual variables (a . j l , p ik[ ) to the problem Z s  

with y  and z fixed at y h+1 and zh+1 respectively, must be synthesized from available 
dual variables to problems Z't7, since problem Z s  is solved via a set of N  x N  

independent problems Z'j7.
Since the mechanics of Benders decomposition are the same at each iteration, 

while synthesizing the optimal dual variables, the superscript h+1 will be dropped for 
notational simplicity.

Let the optimal dual variables to Z'l7 for a given origin i and destination city / to 
be:
jj!! (corresponding to constraints 4.29), and (corresponding to constraints 4.30). It 
will be shown that the following relation exists between the optimal dual variables of 
Z ' h and Z s .

Vil j , l  (4.38)
i7 0

v k = Pu, V /,&,/ (4.39)



Chapter 4 122
In order to deduce the above relations, the duals of problem Z'l7 and Z s  must be 

compared. The duals of Z',7 for each origin i and destination city /, which may be 
combined into a single LP since there are no common variables. That is, (//, v )  is an 
optimal solution of

N N M M
Maximize XX [ X q ity ij ) + X

1=1 /=1 y=l k= 1

subject to f j !  + v llk >  - c ijkl V (4.40)

The dual of problem Zs  is now considered

N M N N M N
Maximize XXX a iji q ny i j ] + X X X ^

i = l  ;= 1  /=1 t = 1 k=\ 1=1

subject to a . j t + p ikl >  -c.jkl V i j , k , l  (4.41)

Note that for any fixed i and /, the dual constraints are disjoint. Therefore it is 
clear that (4.40) and (4.41) are identical optimization problems. Hence relations (4.38) 
and (4.39) provide required duals of the problem Z s  which are used in order to 
generate Benders cuts in the BDM.

4.6 Strengthening Benders Cuts
The standard Benders cut (4.17) is but one of many possible lower bounds on the 

cost of PDP. As has already been noted, this cut is derived from dual variables to the 
linear programming solution of transportation sub-problems. It has also been noted that 
a considerable number of these constraints may simply be dropped from problem
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(Z'l7), since they may always be satisfied without any effect on the value of the 
objective function. Thus, these problems are usually degenerate, and their dual 
problems typically have alternative optimal solutions each defining a Benders cut. In 
this section, it will be discussed how better cuts might be generated.

It is shown in section (4.5) that the solution to problem Z'j7, after preliminary 
reductions, may be determined by a simple inspection. Hence it is not required to solve 
/ x / linear programming problems for a given origin and destination pair. Thus, in 
order to calculate the preferred optimal dual variables, the following formulae may be 
derived from the Duality theorem.

M M M MX X CIW xvjkv = X Hr V + X % H r  V ) (4-42>
j  =  I k  = l  j  = 1 k  = l

Notice that (- q iT y ^ )  = 0, when j  *  y(0» and similarly also (- q iT z kV) = 
0, when k  ^  k ( l r). It can therefore be deduced that:

i ‘V _
n  (>')-  (>' )<:('•) /•

7
’k (/' ) = 0

The corresponding duals for the remaining constraints may take a range of values 
without affecting optimality. The best choice for f i . 1 when j  *  j  (/') is considerd to be: 

l l ‘ = Min fC...... }

For any fixed the optimal choice oft// is obvious since there are no jointj
. , i Tconstraints with v ,k

< ’=Min { C i W - H i ‘' }

The lower bound obtained from a Benders cut which is derived from the above



choice of dual variables is generally better. This also illustrates the fundamental role of 
duality (in generating the Benders cut) for developing objective function bounds.
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4.7 Numerical example
The PDP studied in the example involved 3 origin cities and 3 destination cities. 

The delivery operation is carried out via two intermediate depots, namely, collection 
and delivery depots. Estimates of these demands are shown in Table 4.1.

Table 4.1
Estimated delivery demand

X 1 2 3

1 20 12 0

2 0 24 0

3 4 0 16

The fixed prices charged for each origin city and collection depot pair are shown 
in Table 4.2. Similarly, the fixed prices charged for each delivery depot and destination 
city pair are given in Table 4.3.
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Table 4.2 Table 4.3
fixed collection charges fixed delivery charges

There are also unit operating costs charged for local collection and local delivery, 
and a mass unit transport cost between pairs of collection and delivery depots. These 
are shown in Figures 4.4, 4.5, and 4.6 respectively. The large circle represents the 
depot and the small circle the city. Numbers above the arrows are unit costs.

Fig. 4.4 Per unit collection costs

Fig. 4.5 Per unit delivery costs
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Fig. 4.6 Per unit transportation costs

Table 4.4 shows the per unit cost for each pair of origin and destination cities via 
intermediate depots. These are calculated from the above figures.

Table 4.4
Origin - Destination Unit Cost Matrix

\ / 1 2 3
i X 1 2 1 2 1 2

1
1 10 32 12 31 15 30

2 31 23 33 22 36 21

2
1 14 36 16 35 19 34

2 27 19 29 18 32 17

3
1 15 37 17 36 20 35

2 28 20 30 19 33 18

It is also assumed that each depot has total throughput capacity of 60 units.
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The following describes a step by step solution using BDM,
Step 0 Initialization

The iteration step set to 0, i.e. h =  0.
The upper bound (UB) set to ©o.
The lower bound (LB) set to "°°*
The convergence tolerance parameter set to 0, i.e. e  =  0.

Step 1 Increment step by 1, i.e. h =  1.
Initially the master problem could be solved as two generalized assignment 
problems, since there is no additional Benders cut to couple the two sub­
problems. Thus, two GAPs are solved to obtain,

l l l l l l 1 
^ 1 2  “  ^21 ~ y 32 ~  Z11 “  Z22 ~  Z23 “  1

and all other variables are equal to zero. The lower bound obtained is equal to 
the summation of optimal solutions of the two GAPs, i.e. LB = 90 + 60 = 
150.

Step 2 Fixing the y's and z's obtained at step 1, yields a sub-problem which can be 
separated as 9 individual sub-problems. These problems are solved using 
results of section (4.4), and the following optimal solution is obtained;

* 1 2 1 1=  *1 2 2 2 =  *2 12 2=  *3211=  ^ ’anC  ̂*3233=

The total optimal variable cost (TVC) is equal to the summation of the optimal 
solution to 9 individual problems, i.e. TVC = 2124. It was shown, in section
(4.5), that dual solutions of the sub-problem are equal to the dual solutions of 
the 9 individual problems. Thus, the following dual solutions are derived 
from them,

a,1, =32, a 1 =31,  a 1 = 12, a 1 =22, a 1 =35, a 1 =29, 111 121 112 ’ 122 212 222

a 1 = 3 7 ,  a 1 = 2 8 ,  a 1 = 3 5 ,  a 1 =18.311 321 ’ 313 ’ 323
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p l = -22, P l = -8 , P 1 = -1 9 ,fl1 = -1 1 ,/J1 =-22, Mil M21 M12 ’ M22 Mil
/U = -8  , p l =-15.M 2 1  M 1 3

Thus, the first Benders cut derived is as follows,
784yn + 884j 12+ 840y21+ 696y22+ 708y31+ 400y32- 528zn - 192z21

- 456z12- 264z22- 240z13- Mq< 0

The upper bound is now updated to be UB = TFC + TVC = 2274.
Step 1 Increment step by 1, i.e. h -  2.

Add the first Benders cut to the master problem, using the Lagrangean
relaxation of the master problem. A feasible lower bound is obtained of value
698. The feasible solution is,

2 2 2 2 2 2 ,
^11  “ ^2 2  “ ^ 3 2  “  Z11 “  Z22 “  Z13 ”  *

Step 2 Using the current fixed variables, the transportation problem is solved, and 
the following result is obtained,

* l l l l = ^ *  ■ *! 122=  ^ fX2222= X3211=  anC* X3213=

The TVC = 1644. The updated upper bound is equal to UB = 1894. The new 
dual Variables are obtained from the 9 individual problems, and the second 
Benders cut is derived to be,

344yn+ 1016y12+ 384y21+ 696y22+ 620y3]+ 400y32- 192z21- 396z22
-240z13-M 0<0

Step 1 Increment step by 1, i.e. h -  3.
The second cut is augmented to the master problem, which is then solved
using a tree search to obtain a feasible solution,

3 3 3 3 3 3 ,
^ 1 2  ~ y22 ~ y3l ~  Z11 “  Z12 “  Z23 “  **
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The new lower bound is LB = 1126.
Step 2 The current fixed variables would result in the following solution of the 

transportation problem,
* 1 2 1 1=  *1 21 2=  * 2 2 1 2 =  ^ ’ *3111= ^ ’ a n ^ * 3 1 2 3 =

The upper bound remained the same. The 3rd cut was generated to be,
784jn+  1016y12+ 384y 2 ] +  696y22+ 620y31+ 368y 32~ 440zu - 160z21

- 396z22- 240z13- M q <  0

Step 1 Increment step by 1, i.e. h  = 4.
The third cut is augmented to the previous master problem, which is then 
solved using a tree search to optimality. An optimal feasible solution is 
obtained to be,

4 4 4 4 4 - 4 ,
^11 ~ ^ 2 1  “ ^3 2  “  Z11 “  Z12 ~  Z23 “  **

The lower bound is LB = 1338.
Step 2 Using the fixed variables obtained at the third cut, the transportation problem 

is solved and the following results are obtained,
* 1 1 1 1 =  x \\\2~ ^ ’ *2 1 1 2 =  *3211=  an£* * 3 2 2 3 =

The updated upper bound is UB = 1338. At this iteration UB = LB = 1338. 
Therefore, a feasible optimal solution to the PDP example is calculated to be 
1338.

4.8 Conclusion
It is common practice to economize on the number of constraints in large scale 

problems. The major conclusion arising from this Chapter is contrary to this practice. It 
is illustrated that a seemingly less efficient and substantially larger disaggregate 
formulation of PDP can yield more efficient algorithms.
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It was also demonstrated how in some cases a large transportation problem could 

be separated into smaller size problems whose solutions can be determined by 
inspection. Therefore, the large number of constraints in comparison with the model 
presented in Chapter 3, does not offer any difficulty.

Another conclusion reached was that a disaggregate model generated much 
sharper Benders cuts, since it utilizes more information from the dual of the 
transportation problem. Hence, the solution to the problem could be obtained in a 
smaller number of iterations.

Also in this Chapter, special problem structures of the master were exploited in 
order to develop efficient solution techniques. This will be extended in the next 
Chapter, since it is noted that in all the implementations of Benders decomposition, a 
large proportion of the solution time is used by the master problem.



CHAPTER 5

An Algorithm for the Formulation in Model (2)

It has been pointed out in Chapter 4 that the performance of the BDM rested 
partially on the efficiency with which the master problem could be solved. The master 
problem becomes a mixed integer problem with a single continuous variable when the 
Benders cuts are added. Because of the necessity to solve a sequence of such problems, 
the performance of BDM can be computationally prohibitive if an efficient procedure is 
not available. The development of such a procedure is based on branch and bound, 
using bounds obtained from LP and lagrangean relaxation presented in this Chapter. 
These relaxations provide lower bounds on the master problem and at the same time 
good lower bounds on the optimal value of the PDP.

131



5.1 The generalized assignment master problem
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The master problem given in the Benders decomposition technique of section

4.2.1 was as follows :

Minimize Z M

subject to

N M M NX X-4- v  X X
/= l j = i  l /=:

A l ZU + M  0
l

(5.1)

MX y ij = 1 1 = 1,. . . , N (5.2)

N  NXX q u y ij - Q ]  
1=1 /=1

7 = 1.. . . , M (5.3)

MX z« = ik= 1
. . , N (5.4)

N  NX X î7 Zkl ~  @ k
i=1 /=1

II . . . , M (5.5)

N  M  NXXX 4/4;,Vi = l y = l /=1

N  M  Ni n
i=l *=i 1=1

V u z k i ^ M o (5.6)

A = 1, . .

jty  (0, i } for all i J ,  K  l (5.7)

M 0 > 0 unbounded (5.8)

where,

H  Number of Benders cuts added so far.

CLji , p . hk l Coefficients for the c u t calculated from the dual solution to 

transportation sub-problem.

M 0 Slack variable added for modelling convenience.

The other variables were described in section (1.3).

The above master problem is a mixed integer programming problem with a single
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continuous variable M0. The solution of mixed integer programming problems has 
already received much attention (Geoffrion and Marsten [1972]; Geoffrion [1976]). 
The different solution approaches have been divided into two categories: exact 
methods, where convergence towards the optimal solution can be guaranteed, and 
heuristic methods where no such guarantee can be given. For the purpose of this 
Chapter only exact methods will be considered.

5 .2  The solution technique selected for the master problem
The master problem defined by (5.1) - (5.8) consists of two generalized 

assignment problems with additional Benders cuts (constraints). Many algorithms were 
developed for solving generalized assignment problems (Ross and Soland [1975]; 
Martello and Toth [1981]; and Fisher, Jaikumar and Van Wassenhove [1986]). These 
algorithms could be easily adapted to deal with the above problem. However a basic 
weakness with the above approach is that the master problem must be solved at every 
iteration of the Benders decomposition method. Hence, even in moderate size problems 
solving the master problem becomes a formidable task, as additional cuts are generated 
at each iteration.

Branch and bound algorithms are currently the most widely applied optimization 
techniques for such a problem. As is the case with all branch and bound algorithms, 
their effectiveness is entirely dependent on the quality of the bounds used to limit the 
tree search. Therefore, the derivation of such bounds will be discussed first.

5 .3  Bounds from LP relaxation
One of the basic questions faced in the design of any branch and bound algorithm 

for the master problem is which relaxation to use for (lower) bounding. The chosen 
relaxation must be a suitable compromise between ease of computation on one hand and 
tightness of the resulting bound on the other. Generally a relaxation which yields a very
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tight lower bound on the optimal value of the master will be very costly to compute, 
whereas an easily computed relaxation is likely to result in relatively poor bounds and 
consequently a large tree search. So there is a trade off between the quality of bounds 
and the time needed to compute them. The most obvious choice, the one that would be 
made by default, is the usual LP relaxation of the master problem obtained by relaxing 
constraint (5.7) to

0 < y-tj  <1 for all i j  (5.9a)
0  < z ki <  1 for all k, l (5.9b)

This relaxation exploits the efficiency of the new LP codes, for example 
Marsten's [1981] XMP code, which is particularly difficult in the usual situation where 
the generalized upper bound (GUB) constraints (5.2) and (5.4) constitute a large 
fraction of all constraints.

Another important issue that should favor this relaxation is the fact that since the 
dissagreggate formulation of PDP was considered, then its relaxed primal problem has 
a smaller feasible region (Magnanti and Wong [1981]). Since the BDM utilizes the dual 
of this relaxation, then the Benders cut generated from these duals yields to "tight" 
constraints in the master problem. Hence LP relaxation provides a sharper lower bound 
on the value of the master problem.

5.4 Bounds from lagrangean relaxation
The relaxation to be developed is based on the fact that the master problem 

defined by (5.1) - (5.8) could be solved as two independent generalized assignment 
problems, if it were not for the Benders cuts. One way to handle these cuts is to 
introduce lagrange multipliers X h >  0, (h = 1,. . . , H )  and then to obtain the 
lagrangean dual program by bringing them into the objective function. The result is
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N M M NI Ii =1 y = l *=1 1=1

H N M N

Minimize f klh i + M o +  I  V l I IA=1 t=l 7=1 /=1
N M N (5.10)

+ ^ i k l^ i lZk l ' AVt=l *=1 /=1
subject to (5.2) - (5.5), (5.7), and (5.8)

If the lagrange multipliers are chosen so that 
//

I V 1 (5-u)h=l
the variable M0 will vanish and a new relaxed master problem will result, namely to 
minimize:

N M H N M N H NLr I I  «u+ I I  Ka1j,) V I I  (V IIKPL) \t <5-12>r=l7 = 1 A=1 /=1 k = l l= l  h=1f=l
subject to (5.2) - (5.5), and (5.7)

The problem L ĉan now be separated as two generalized assignment problems to
V Zbe designated as L  and L  , one for each GAP in y  and z , respectively. Thus, the 

following formula for the optimal value of could be written :

V ( L x ) =  V ( L yx ) +  V ( L 2x ) (5.13)

These two problems can be further relaxed by defining lagrange multipliers |it- > 
0, (i = 1, . . . , N )  for constraints (5.2), and similarly n I > 0, (/ = 1, . . . , N )  for
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constraints (5.4). Therefore separated as the following problems :

N M N

Minimize i ^  = XX < 4 + A1i+XX Xh a ij‘ ) y H ' X  A*,
^  t = l  ; = 1  / i = l  / = 1  i = l

N N

subject to XX q uy i j~
i= l /=1

(0, 1} for all i j

(5.14)

and similarly,

M N H N N

lL=XX (fki+ XX wiki') zu - X ni (5-i5)k=1 /=1 h=l /=1 /=1k=1 /=1

subject to XX ̂
1=1 /=1

z kl e  (0, 1}

ife =  1 ............A f

for all &, l

Therefore (5.13) could be modified as:

V  (L ) =  V  (Ly ) +  V ( L \  )A,/X X,JT (5.16)

where ^ ^represents the lagrangean relaxation of the master problem. The 
term "relaxation" is applied to L ^  ^because its feasible region is larger than that of 
the original master problem, and its objective value is less than or equal to that of the 
original master problem on the true feasible region (5.2) - (5.8). These properties are 
sufficient to ensure that L  ̂^ ^provides a lower bound on the optimal value of the
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master problem. Geoffrion [1974] has demonstrated the fact that a lagrangean 
relaxation is equivalent to a partial dual, so that many of the results of duality theory are 
available. In particular

knapsack problems, once A, /I, and n  are fixed, using the procedure based on 
Martello and Toth's algorithm [1977] which was pointed out in section 2.4. Problem 
(5.18) on the other hand could be used to select values of A, fi , and K to provide a 
lower bound on the value of There remains to determine whether a solution

V Zobtained from ^, and (5.18) is optimal in ZM and to develop a method to
solve (5.18).

5 .5  Projection method for lagrange multipliers
In the previous section it is assumed that the lagrange multipliers Xh can be 

chosen so that

Z D ~ Z M
where Z D = Max (L ^ J

(5.17)
(5.18)

t e S
/Z,7T>0

5 = [ A S 0 I Z X a = 1)

V zThe aim in introducing and ^ is to generate a relaxed version of Z M 

which will be easier to solve. Both the above problems could be solved as M  0-1

H
(5.19)

However, this assumption has not been discussed yet. This is taken into account 
by projecting the multipliers \ h onto the set S  defined in (5.18), using the inspection



Chapter 5 1 3 8

procedure which is a specialization of work described in Held, Wolfe and Crowder 
[1974].

Given a positive vector X h (h =  1, . . . , H ), a vector of multipliers X e S  

will be sought where

s = u > o i ] r  aa= i }
h=1

(5.20)

The problem can be written more formally as

H _ 2
Min 1/2 ( V V  s.t. A s  5}

A=1
(5.21)

By the Kuhn-Tuker theorem (Bazaraa and Shetty [1979]), sufficient conditions 
that X e  S  solves (5.21) are the existence of multipliers 77, coh such that

Xh - X h +  77 - (Oh =  0 h = 1,. . .  , H  (5.22)
Xh ® h =  0  h = 1,. . .  , H  (5.23)
cô > 0

Such a vector X is easily constructed. Suppose that the components of A are 
ordered so that

r > A " . . .S A “ (5.24)

then define
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Xh = Max (Xh - ?7 ,0) (5.25)

coh =  Max (77 -2^,0) (5.26)

Constraints (5.22) and (5.23) together with the positivity of X are satisfied. If 
the value of rj is fixed, then constraint (5.19) is also satisfied. Given (5.24) and 
(5.25) it is easy to check that there will exist an index H 0 such that

X. >  0 if h <  H nh o
X, = 0 otherwiseh

Hence
H H0 H0 H0Z v 5>a=X<v i»>-Ev *o’j-1

h = l  h = l  h = 1 h  =  1

n = [ £  V i ] / » 0
/z= l

The value for H 0 is obtained by calculating (5.30) iteratively starting with H 0 =  

1. The procedure is stopped when a value of X  is found such that ^ X h =  1. It can be 
easily verified that

H _  __
H q =  Min { « / ( X  A*-1)1 H > X k + 1 ]  (5.31)

h = l

5.6 Duality gaps
A duality gap is said to exist between the master and its lagrangean relaxation if a 

strict in equality holds in (5.17). Insight as to why a duality gap exists is gained by

(5.29)

(5.30)

(5.27)
(5.28)
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observing that problem (5.17) is equivalent to the LP dual of the LP relaxation of Z M. 
This was first pointed out by Nemhauser and Ullman [1968]. When no such gap 
exists, an optimal solution (A*, //*, /r*, y * ,  z* )  of (5.18) is also optimal in Z M 

provided:
N M H N

;=iy=i® v M̂=XX^+̂ XX^;>,;+/j=i /=i
M N H N

hi -X̂ - -X*/
N N

k= 1 /=1 h= 1 /=1 :=1 /=1
M* 'V™' *M X  >v 1)=0;'=i
M

(ii) 7 T * ( ^ ẑ /- i)  = 0Jfc=l

/ = ! , . . . , W

/ = ! , . . . , N

N M NK & iiu ny ij
i = 1 7=1 /=1

N M N

+ XXX  ‘M o>=°i= l £=1 /=1

M

2 ,^ 7 < 1
;=i

M

(Ui) X  h i < 1
k=\

(5.32)

/ = 1, . . . , W

/ = ! , . . . , iV

N M N

i =17=1 /=1
N M N

XXX Kki<luhi^Moi= 1 >k=l Z=1
/i = l , . . . , / /

If on the other hand there exists a duality gap, then (5.18) fails to yield a solution 
(A*, /!*, 7T*, y*, z*) satisfying the optimality conditions (5.32). It follows that it
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is not possible to establish directly whether a solution (y*, z*) obtained from (5.18) is 
also optimal in Z M• Instead one has to try to overcome this duality gap by some other 
artificial means. This problem has been investigated by various authors, including 
Fisher et al. [1975]. They indicated that branch and bound could be viewed as a method 
which guarantees to bridge this duality gap by a systematic search, and also illustrated 
that bounds derived from the LP relaxation of the master could be naturally replaced by 
dual problems for selecting lagrange multipliers. This method requires an efficient 
technique to solve the lagrangean relaxation at each node.

5.7 Subgradient optimization for solving the lagrangean relaxed master
problem
Subgradient optimization is a technique for progressively updating the lagrange 

multipliers (A, fj.; k ) in a systematic way in an attempt to maximize the value of the 
lagrangean dual problem (5.18). This procedure is one of the more successful 
techniques for obtaining good lagrange multiplier values, as detailed in the paper by 
Held, Wolfe, and Crowder [1974]. The subgradient procedure works in the following 
way:
(1) Determine an initial value for Zyg - the upper bound on the master. This can be 
done using any heuristic for the generalized assignment problem (e.g. Martello and 
Toth [1981] ). alternatively the solution found so far for PDP in the BDM could be 
selected as an upper bound.
(2) Choose an initial value for the lagrange multipliers. Two simple methods are 
available to select (A0, jj? , nP). The integrality condition in the master Z M could be 
relaxed, and it is solved by an LP code. The dual variables corresponding to constraints
(5.6), (5.2), and (5.4) offer a candidate for initial values of (A0, fi° , jf i) .

Another method is based on the fact that (5.18) is a relaxed version of the master



Z M and that at each Benders iteration this master is modified by addition of a single 
constraint. Hence in Benders iteration h, the last multipliers (A, f i ,  iz) obtained from 
subgradient optimization could be used in iteration h +  1 to form the initial vector of 
multipliers of the following form :

Chapter 5 1 4 2

/no o o.(A , ii , % ) = A' (5.33)
nL_ _

This last method is prefered because it was found that the (A0, j i ° , /r°) 
obtained were very good at locating a feasible solution to the master, and secondly 
because it required no extra computational effort.
(3) For the current set of lagrange multipliers (A, J i ,n )  solve two M  0-1 knapsack 
problems, L  y and L  2 , using Martello and Toth's algorithm [1977].

The solution to these problems are (y, z) and their objective function value is

(4) Determine the cost of the feasible solution to Z y  associated with (y, z). If this 
is better than Zyg then update Zyg accordingly. Similarly set

Z* = Max(Z*,Z*)
(5) If any of the termination criteria is fulfilled, then stop.
(6) Define the subgradient vector

*=i
N M N N M N

«&/9« v X X S  & L  «u h i - M o

(5.34)

* = 1........ iV

1 = 1 , . . . , N  

(5.35)

;=iy=i /=i
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Then v  =  [ if., \fr  xPh ] is the subgradient of the lagrangean dual at (A, f i , n ).
(7) Stop, if uf = 0, V /, v p{ = 0, V /, and v £ =  0, V/i when an optimal solution ( y , z ) 

has been obtained.
(8) The new set of multipliers are determined as:

/ +1= / + t  11

=  £  +  t (5-36)
l l p l

Xp. + l  =  Xp. + 1h h p h

*
where t = S p zub ' zp (5.37)

P llupll2

Sp are appropriate scalars with 0  < 8 P < 2 . 8 P were chosen with starting value 
of 2, and this value is halved every 10 successive iterations. II D̂ ll denotes the 
Euclidean norm of the subgradient vector. The following. _' norm was used.

1/2

(9) Go to (3) and resolve the lagrangean dual program with the new set of 
multipliers, unless some termination condition is satisfied in which case stop.

The stopping criteria are derived with reference not only to (5.18) but to the BDM 
as a whole.
(i) When the subgradient optimization method reaches a solution V (L ^  ̂ ^  Z - 
e v  where Z is the cost of the best solution found so far in the BDM, then the method



has established that the solution which yielded z is -optimal and BDM is stopped.
(ii) When for a given vector (A, fi, tu) a solution (y , z )  is reached , and the cost 
of this solution when evaluated in Z M is less than Z - e 2, then the subgradient 
optimization method is stopped and the transportation sub-problem is solved using 
these (y, z). This condition corresponds to the situation of step 1, section 3.4.2, 
when a feasible solution has been found.
(iii) If the number of subgradient iterations exceeded twenty, which implied slow 
convergence or the existence of a duality gap, then the BDM is stopped.

5 .8  The branch and bound procedure
In the event that the subgradient procedure does not optimally solve the master, a 

usual depth-first tree search will be utilized (Figure 5.2). The procedure has the 
following features. At any level of the branch and bound tree, a separation variable is 
selected. A set of sub-problems are generated; and for each sub-problem, twenty 
subgradient iterations are performed, seeking to improve the value of the lower bound 
V(JL^ ^  K) for the restricted master. The sequence of iterations is halted if one of the 
following situations occurs:
(i) fathoming is achieved,
(ii) there is little improvement in V {L ^ ^  n),
(iii) the number of iterations exceeds a preset limit.

The next node selected for branching is the one with the lowest lower bound 
value among the sub-problems. Whenever a node is fathomed, backtracking is 
performed (in a depth-first procedure) to the lowest level node along the path to the 
fathomed node. The best feasible solution found at the end of the branch and bound 
procedure is the optimal solution to the master.

Chapter 5 1 4 5
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Fig. 5.2 Flow Chart of the branch and bound procedure
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5.9 Computational Results
In this section computational results are given for 80 test problems, all problems 

being randomly generated using the procedure described in section 3.6. These 80 
problems comprise two sets of 40 problems namely Data Sets A and B, which differ in 
their capacity constraints as also defined in section 3.6. The problems solved in this 
section are however substantially larger than those solved in the previous chapters, the 
largest having 250 zero-one variables and 15,625 other variables, compared to 80 zero- 
one variables and 1,600 other variables in chapter 3.

The algorithm described in this chapter was implemented in Fortran IV and run on 
a CDC 7600 using FTN5 compiler. The master problems were solved using two 
different methods, Linear programming based on a branch and bound algorithm and 
lagrangean relaxation (LR). As in Chapter 3, Marsten's XMP code was used to solve 
the LP problems, and the generalized assignment problems (GAP) were solved using 
Martello and Toth's code.

Table 5.1 gives the computational results for 80 test problems of which 78 were 
solved to optimality (allowing for the usual convergence tolerance) using LP-bounds 
obtained from the Linear relaxation of the Master problem. (The smallest problems 
solved are almost equal to the largest problems solved in Chapter 3.)

Two problems of type B were terminated, one for exceeding the iteration limit (of 
30 iterations), the other for exceeding the CPU time limit (of 300 seconds).

The average execution times for problems of Data Set B were at least 7% greater 
than for Set A, and at worst 61% greater (for the 20x5x5x20 problems). This is due to 
the tighter capacity constraints used for problems of Data Set B. By contrast, the 
average number of iterations for problems in Set B is little more than the average for Set 
A. This is because each iteration in Set B takes longer due to the tighter constraints.

It is notable that although the same relaxation method is used for the master problem 
as in the results in Table 3.3, the average number of iterations and average execution



Table 5.1
Representative Runs Using LP Bounds in the Master.

Data Problem Size N o . o f  N o . o f  N o . o f  Major Iterations Total execution time (Sec.) 
Set 0-1 Other p rob lem  _____________________  _____________________________________

i j k / Variables V ariables attem pted Ave. Min. Max. Ave. Min. Max.
A 10 3 3 10 60 900 10 12 8 13 57.645 35.595 69.346
A 10 5 5 10 100 2500 10 14 9 16 60.277 40.080 76.044
A 20 3 3 20 120 3600 5 14 12 16 65.120 52.028 83.920
A 20 5 5 20 200 10000 5 19 16 22 92.067 78.528 115.340
A 25 3 3 25 150 5625 5 13 10 15 68.470 54.129 88.095
A 25 5 5 25 250 15625 5 26 24 30 190.202 167.449 254.260
B 10 3 3 10 60 900 10 12 9 13 69.255 48.726 89.323
B 10 5 5 10 100 2500 10 15 14 17 64.769 43.278 86.866
B 20 3 3 20 120 3600 5 14 12 18 71.678 55.763 97.763
B 20 5 5 20 200 10000 5 20 18 21 148.243 112.361 151.341
B 25 3 3 25 150 5625 5 15 13 17 86.215 72.892 98.102
B 25 5 5 25 250 15625 5 26* 22 >30b 272.824* 241.028 300.00c
a Average given for 3 problems only.
b One problem exceeded the iteration limit Thus, program terminated, 
c One problem exceeded the time limiL Thus, program terminated.

Chapter 5 
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times for the 10x3x3x10 problems are some 33% lower in Table 5.1 due to the 
improved formulation of the problems. (This would be true for problems of all sizes.)

Table 5.2 shows the results for the identical sets of problems as Table 5.1, using 
lagrangean relaxation to solve the master problem. All 80 problems were solved to 
optimality, the maximum number of iterations being 22. The average execution time for 
problems of Set B was at least 11% greater than for Set A, and at worst 52% greater 
(for the 25x5x5x25 problems). These figures are comparable to the corresponding 
figures of Table 5.1.

As in Table 5.1, the average number of iterations for problems of Set B is little 
more than for Set A.

The average solution times for problems in both sets are more dependent on the 
number of iterations than on the problem size (as measured by the number of 
variables). So, for instance, the average time of 63.4 seconds for 25x3x3x25 problems 
in Set A corresponds to 10 iterations rather than the number of variables.

The comparison of Tables 5.1 and 5.2 illustrates several features of the relative 
performance of the LR and LP methods. Firstly, the average number of iterations 
required to solve the problems is less for the LR method for every problem size; (the 
maximum number is less than or equal to the number required by the LP method in 
every case.) At worst the number of iterations required by LR is 92% of the LP case 
(10x3x3x10 problems in Set B), and at best 65% (25x5x5x25 problems in Set B). This 
is due to the fact that LR produces tighter bounds at each iteration, and hence fewer 
iterations are required.

The average time taken to solve the problems is also less for LR than for LP in 
most cases (8 out of 12), but the improvement is proportionally less than the reduction 
in number of iterations, ranging from 99% to 76%. As pointed out before, this is due to 
the fact that each iteration of the LR method takes longer.



Table 5.2
Representative Runs Using Lagrangean Relaxation Bounds in the Master.

Data Problem Size N o . o f  N o. o f  N o. o f  Major Iterations Total execution time (Sec.)
Set

i j k /
0-1

Variables
Other

Variables
p rob lem
attem pted Ave. Min. Max. Ave. Min. Max.

A 10 3 3 10 60 900 10 9 7 12 54.097 43.210 72.011
A 10 5 5 10 100 2500 10 11 8 13 66.093 49.308 84.560
A 20 3 3 20 120 3600 5 12 10 13 64.144 57.158 91.346
A 20 5 5 20 200 10000 5 15 11 17 82.185 65.282 119.615
A 25 3 3 25 150 5625 5 10 10 11 63.408 59.834 67.631
A 25 5 5 25 250 15625 5 19 16 22 144.168 112.764 185.014
B 10 3 3 10 60 900 10 11 9 12 68.332 52.009 79.097
B 10 5 5 10 100 2500 10 12 10 15 73.102 65.631 95.436
B 20 3 3 20 120 3600 5 12 9 16 76.647 64.340 104.024
B 20 5 5 20 200 10000 5 15 12 16 105.760 81.742 122.282
B 25 3 3 25 150 5625 5 11 10 14 87.153 72.406 95.121
B 25 5 5 25 250 15625 5 17 13 20 218.94 144.067 288.945
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Perhaps most important, the superiority of LR over LP, in both the number of 
iterations and the execution time, increases as the size of the problem increases. Thus, 
for example, in Set B, for problems of 120 zero-one variables or less, the average 
number of iterations required for the LR method is 86% of those required for the LP 
method, while for problems with 150 or more zero-one variables, the average number 
of iterations is 71% of the number required by the LP method. Likewise the 
corresponding average execution times are 106% and 84%. This is consistent also with 
the fact that LR method solved even the largest problems to optimality.

It also confirms the fact that LR is more likely to perform better as the problem 
sizes increase.

Figures 5.3 and 5.4 illustrate the convergence of the BDM applying two different 
relaxation methods to the master problem. The problem solved in both figures is a 
20x5x5x20 problem from Data Set B. It is clear that using the lagrangean relaxation 
method, the convergence between the upper and lower bounds is much quicker. This is 
due to the fact that solution of the master problem using LR produces tighter Benders 
cuts, and hence rapid convergence.

It is notable that in both cases the upper bound converges towards the solution 
quickly: In Figure 5.3, it is within 5% of the optimum after 5 iterations, and in Figure 
5.4, within 3% after 5 iterations. It is common that using a powerful heuristic will 
permit reaching within a few percent of the optimum quite quickly.

By contrast, the corresponding lower bounds after 5 iterations are 17% and 5% 
below the optimal.

Tables 5.3 and 5.4 give detailed run times for a 25x5x5x25 problem from both 
Sets A and B using the two different relaxation methods for the master problem.

As seen in Tables 5.1 and 5.2 the problem from Set B requires 15% fewer 
iterations, but takes 58% longer time to solve, due to tighter constraints in the Set B
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Fig. 5.3 Convergence of the BDM 
(LP Bounds)

Fig. 5.4 Convergence of the BDM
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problems, (i.e. reducing the region of feasible solutions).
For both problem types, the great majority (> 80%) of the solution time is spent 

solving the master problem, and as the number of iterations increases, and so the 
master problem becomes more complex, the time taken to solve the master problem at
each iteration increases.

Table 5.3Detailed run time for a 25x5x5x25 problem (using LP bounds in the master)

MajorIteration

DATA SETA 
CPU Time*

DATA SETB 
CPU Time

Master Sub­problem Total Master Sub­problem Total
1 3.46 1.62 5.08 6.90 1.19 8.092 3.75 0.90 4.65 6.86 1.25 8.113 3.88 1.11 4.99 6.92 1.24 8.164 4.13 1.54 5.67 6.98 1.30 8.285 4.20 1.13 5.33 7.13 1.34 8.476 4.29 1.21 5.50 7.14 1.28 8.427 4.44 1.45 5.89 7.35 1.22 8.578 4.46 1.58 6.04 8.45 1.26 9.719 4.57 1.22 5.79 8.67 1.30 9.9710 5.07 1.36 6.43 8.73 1.33 10.0611 5.16 1.02 6.18 8.82 1.47 10.2912 5.20 1.19 6.39 9.23 1.41 10.6413 5.36 1.17 6.53 9.55 1.45 11.0014 5.74 0.96 6.70 9.89 1.48 11.3715 6.07 1.40 7.47 9.93 1.42 11.3516 6.25 1.26 7.51 10.21 1.40 11.6117 6.43 1.33 7.76 10.43 1.43 11.8618 6.78 1.23 8.01 11.62 1.46 13.0819 6.96 1.37 8.33 12.24 1.49 13.7320 7.14 1.18 8.32 13.64 1.57 15.2121 7.27 1.05 8.32 14.76 1.51 16.3722 7.71 1.17 8.88 15.17 1.61 16.6823 8.50 1.53 10.0324 8.66 1.72 10.3825 8.83 1.33 10.1626 9.11 1.48 10.59

Total 153.42 33.51 186.93 210.62 30.41 241.03
Time

^Computations (in Seconds) on a CDC 7600
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However, the solution of the sub-problem in either case remains almost constant 
for each iteration.
These comments apply also to Table 5.4, with one important difference. The LR of the 
master problem takes fewer iterations to converge to the optimal solution. However, at 
each iteration, a greater percentage of time is spent solving the master problem. For 
example, at iteration 17 89% of time is spent on the master problem using LR for data 
Set A, whereas only 82% is spent using LP relaxation. Likewise for iteration 13 (in 
Data Set B) LR spends 92% of the time for solving the master problem, whereas LP 
spends only 87%.

Table 5.4Detailed run time for a 25x5x5x25 problem (using Lagrangean Relaxation bounds in the master)

MajorIteration

DATASETA 
CPU Time*

DATASETB 
CPU Time

Master Sub­problem Total Master Sub­problem Total
1 4.64 1.12 5.76 8.95 1.06 10.01
2 4.31 0.74 5.05 8.18 0.87 9.053 4.47 0.97 5.44 8.62 1.11 9.734 5.14 1.08 6.22 9.46 1.08 10.545 5.29 1.02 6.31 9.64 0.94 10.58
6 5.35 1.07 6.42 9.71 1.12 10.837 5.43 0.81 6.24 9.89 0.89 10.78
8 5.47 1.02 6.49 10.03 1.11 11.149 5.69 0.84 6.53 10.12 0.83 10.05

10 5.98 0.93 6.91 10.30 0.99 11.29
11 6.07 1.02 7.09 11.53 0.92 12.54
12 7.05 0.99 8.04 12.05 0.90 12.9513 7.26 1.04 8.30 12.63 1.14 13.7714 7.34 0.86 8.2015 8.28 0.82 9.1016 8.68 0.98 9.6617 8.74 1.06 9.80

Total 105.19 16.37 121.56 131.11 12.96 144.07
Time

*Computations (in Seconds) on a CDC 7600
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Finally, Table 5.5 shows that the starting bounds at the root node are significantly 
grater for LR than for LP for all iterations. As the number of Benders cuts increases, 
the quality of the relaxed master problem declines faster for LP bounds, and therefore 
requires more iterations. It is also notable that the minimum, maximum, and average 
bounds all follow this pattern.

Table 5.5Bounds at root node (%) for a set of 20x5x5x20 problems

______________________ DATA SET B___________________ __
Major No. of LP bound at root node No. of LR bound at root node 

Iteration Problems_______ (%)_______  Problems_______ ( % )_______Ave. Min. Max. Ave. Min. Max.
1 5 94.29 93.81 94.86 5 97.76 97.56 97.95
2 5 93.41 93.20 93.61 5 97.33 96.78 97.633 5 92.91 92.51 93.17 5 97.06 96.50 97.544 5 92.28 91.55 92.77 5 96.80 96.45 97.305 5 91.75 90.85 92.61 5 96.09 95.67 96.54
6 5 91.60 90.58 92.44 5 95.60 95.29 95.857 5 91.32 90.40 92.29 5 95.27 95.06 95.48
8 5 90.94 90.27 92.06 5 94.97 94.50 95.349 5 90.60 90.07 91.89 5 94.74 94.40 95.08

10 5 90.20 89.70 91.35 5 94.18 93.53 94.70
11 5 89.77 89.19 90.38 5 93.58 93.09 93.80
12 5 89.31 88.24 90.20 5 93.13 92.69 93.6613 5 89.07 87.84 89.77 4 92.81 92.42 93.3214 5 88.55 87.49 89.33 4 92.41 92.00 92.8815 5 88.03 86.82 88.59 4 92.05 91.66 92.5316 5 87.57 86.81 87.93 2 91.78 91.17 92.1817 5 87.19 86.73 87.5018 5 86.67 86.32 87.2919 4 86.25 85.70 86.75
20 3 85.95 85.52 86.20
21 2 85.77 85.37 86.10

5.10 Conclusion
Following the theoretical analysis of Chapter 4, this Chapter has described the 

implementation of a disaggregated formulation of the PDP problem. The relative 
performance of two different algorithms, using different solution methods, namely LR
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and LP has been compared. Sets of problems were generated of two different types 
following the method described in chapter 3. However, whereas in Chapter 3 the 
largest problem had 80 0-1 variables, in this Chapter problems with as many as 250 0- 
1 variables are solved. The results obtained show that the process of disaggregation 
was effective in the case of these larger problems. In addition the stronger formulation 
developed in Chapter 4 permits the algorithm to produce sharper Benders cuts in 
practical problems, hence reducing the number of iterations required to solve the 
problems.

The results also demonstrate clearly the superiority of LR over LP in producing 
better bounds for the master problem thereby reducing the number of iterations required 
to solve the problems to optimality, and reducing solution time (though the 
improvement in the latter is proportionately less due to the longer time taken for each 
iteration).
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C o n clu s io n

The 3-stage parcel distribution problem is an NP-hard problem, and is 
significantly more complex than multi-commodity capacitated plant location problems. 
Hitherto only 2-stage problems have been solved, and consequently the PDP problem 
is an interesting combinatorial optimisation problem.

In this thesis I have formulated the PDP problem as a mixed integer programming 
problem, and initially solved it with Lagrangian Relaxation (LR), using sensitivity 
analysis in order to improve the lagrangean bounds. The results of this procedure are 
shown in chapter 2 .

From the structure of the problem a new formulation was derived which lent itself 
to decomposition by Bender's method, a technique that has been used quite 
successfully for solving the multi-commodity transportation problem. In the rest of my 
thesis I have shown that the combination of Bender's decomposition and Lagrangian 
Relaxation is capable of solving PDP problems of reasonable (25x5x5x25) size, and

1 5 7
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therefore appears promising for further development.
It is notable that the solution of the Master Problem absorbed most of the 

computation time. Because of this I developed the method of disaggregating the 
problem, thereby producing better Benders cuts, and enabling me to reduce the solution 
time significantly. An alternative procedure which would offer further improvements, 
would be to pre-process the Master Problem so as to produce pareto optimal cuts.

A number of other directions for further work are possible. For example, further 
constraints could be imposed so that depots would act as collection and delivery points. 
This would have the effect of enabling larger problems to be solved.

Another approach would be to alter the practical details of the formulation in order 
to extend the range of application of the problem - such as siting of relay systems and 
selection of the optimal routes through high-speed data transmission and computer 
networks.

From this it can be seen that further refinements of my work can substantially 
enhance both the performance of the algorithm, and the range of practical applications.
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