
OPTIMAL CONTROL SYSTEMS WITH TIME DELAY

AND CONDITIONS FOR NORMALITY

by

Javier Fernando Rosenblueth Laguette

A thesis submitted for the Degree of 
Doctor of Philosophy of the University of London 

and for the
Diploma of Membership of 

the Imperial College of Science and Technology

November 1986

DEPARTMENT OF ELECTRICAL ENGINEERING

IMPERIAL COLLEGE OF SCIENCE AND TECHNOLOGY

UNIVERSITY OF LONDON



ABSTRACT

We treat two fundamental problems in dynamic optimization. The first 

one deals with the fixed endpoint problem in the calculus of variations 

involving a delay in the phase coordinates. Necessary conditions in the 

form of a maximum principle are veil known and, hence, conditions 

equivalent to those of Euler, Legendre and Weierstrass. However, no 

results seem to exist for sufficiency or for a corresponding Jacobi con

dition. We derive necessary and sufficient conditions in terms of the 

first and second variations, extending the classical results for the 

delay free case. The first order condition is then characterized in 

terms of Euler's equation and, for the second order condition, we obtain 

through the method of steps and solutions of the Hamiltonian system con

ditions similar to that of Jacobi. The second problem, normality for 

optimal control systems (the cost or performance index in the necessary 

conditions of Pontryagin's maximum principle does not vanish) is studied 

through perturbations of the endpoint set. It is known that normality 

holds for all problems obtained by translating the original endpoint set 

in directions belonging to a dense set. When the equations of motion are 

linear in the state variable, we enlarge this set of directions to a 

full (Lebesgue) measure set. For non-linear systems, we show that 

enlarging or diminishing the endpoint set, instead of translating it, 

normality is also guaranteed almost everywhere.
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PART I

OPTIMAL CONTROL SYSTEMS

WITH TIME DELAY



CHAPTER 1

THE DELAY FREE PROBLEM

1 INTRODUCTION

In this chapter we present a brief summary of the classical theory on 

necessary and sufficient conditions for the simple fixed endpoint prob

lem in the calculus of variations. These conditions are first given in a 

non-standard form involving the first and second variations. The stan

dard form, in terms of the Euler equation and the Jacobi condition, is 

then derived by characterizing the previous first and second-order con

ditions and, independently, making use of the field theory and the 

Hamilton-Jacobi inequality.

The purpose of presenting three different proofs of the same theorem 

is twofold. First of all, we want to see how much of the classical 

theory can be extended in a natural way to the problem involving delays. 

It will turn out to be the non-standard form of the conditions the only 

approach where we can put in parallel both theories, word by word. Dif

ficulties arise in trying to characterize the second-order condition and 

finding an equivalence for Jacobi's condition. We shall see all this in 

detail in Chapter 2.

On the other hand, we convert the delay problem, in Chapter 3, into a 

non-delay problem. It will no longer have fixed endpoint constraints,

13
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but several results of the classical theory will serve as the main tool 

for finding the corresponding necessary and sufficient conditions.

Most results in this chapter are based on the classical literature 

(see, for example, [4], [5], [15], [18], [20], [22], [33]). Some proofs 

are simplified and we make weaker assumptions than usual. For some rea

son, there are no common assumptions concerning the smoothness of the 

functions delimiting the problem. To give an example, in order to apply 

the classical sufficient conditions, the Lagrangian is assumed to be of 

class C4 in [15] and [20] and of class C2 in [11] and [18]. In [15] and

[20], the trajectory under consideration is assumed to be of class C4, 

in [18] of class C1 and in [11] piecewise-C1. The assumptions seem to 

be, for each case, an integral component of the proofs.

What we show is that, for each specific result, it is enough to impose 

the continuity of the Lagrangian and the partial derivatives involved. 

In particular, the sufficient conditions hold if the Lagrangian L(t,x,x) 

and its first and second partial derivatives with respect to x and x are 

continuous.

For this theorem, we also prove that it suffices for the trajectory to 

be piecewise-smooth as in [11], but the conditions (either for a weak or 

a strong minimum) do not only imply that it solves the problem locally: 

if the trajectory satisfies these conditions, it has to be continuously 

differentiable.

In Chapter 2, the Lagrangian will be given by a function L(t,x,u,x) 

mapping [tQ,t1] x R3n to R. If L does not depend on the variable u and 

the delay is zero, the problem will be reduced to the non-delay case. 

Consequently, those propositions and theorems whose proofs are essen

tially the same for both problems, will be stated in this chapter 

without proof, and most comments and observations will be left for the 

delay problem.
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2 STATEMENT OF THE PROBLEM AND VARIATIONS AS DIFFERENTIALS

We are given an interval [tQ,t1], two points £0 and ^  in Rn, an open 

set A in V, where V denotes the usual topology of [tQ,t1] x R2n, and a 

function L mapping [ tQ, t1 ] x R2n to R (called the Lagrangian). Let

X:= {x:[tQ,t1] -> Rn | x is piecewise-C1}

(space of trajectories),

X(A):= {x e X | x(t) e A, (tQ < t < tx), and L o x is integrable)

(admissible trajectories)

X#(A):= {x e X(A) | x(tQ) = £0 and x(tx) =

(endpoint constraints)

where, for all x in X and t in [t0, tx] 9 x(t):= (t,x(t),x(t)). The 

basic problem in the calculus of variations, which we label P(A), is

ti
that of minimizing the functional I(x):= J L(x(t))dt over X#(A). Of

course, the problem depends on the Lagrangian, the endpoint constraints 

and the set A but, for most purposes it will be convenient to write 

explicitly only its dependence on A.

A "solution" of P(A) is considered in the following senses: for all x 

in X and e > 0, let

T0(x;e):= {(t,y) e [tQ,t1] x Rn | |x(t) - y| < e)

(tube about x)

T1(xje):= {(t,y,v) e T0(x;e) x Rn | |x(t) - v| < c)

(restricted tube about x).

A trajectory x is said to solve P(A) if
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x e S(A):= {x e X#(A) | I(x) « I(y) V y e X#(A)},

x is a strong minimum for P(A) if there exists e > 0 such that x solves 

P((TQ(x;e) x Rn) fl A) and x is a weak minimum for P(A) if there exists 

e > 0 such that x solves P(T1(x;e) n A).

We introduce next some definitions in terms of the space X and the 

Lagrangian that will be used constantly. Let us denote the values of L 

by L(t,x,x). In (ii)-(iv), the domain of the functions is defined wher

ever the derivatives involved make sense.

i. Set of trajectories vanishing at tQ and tx.

Y:= {y e X | y(t0) = yCt,) = 0}.

ii. The Veierstrass 'excess function'.

E(t,x,x,u):= L(t,x,u) - L(t,x,x) - <u - x , L^(t,x,x)>.

iii. The first variation of L with respect to x e X.

I'(x;y):= J (<Lx(x(t)) , y(t)> + <L-(x(t)) , y(t)>)dt for all y e X. 
fco

iv. The second variation of L with respect to x e X.

ti
I"(x;y):= J* 2S2(t,y(t),y(t))dt for all y e X 

where, for all (t,y,y) in [t0,t1] x R2n,

22(t,y,y):= <y , Lxx(x(t))y> + 2<y , Lx-(x(t))y> + <y , L--(x(t))y>.

We end this section stating an initial result concerning the varia

tions. For ease of notation we shall say from now on that, for example, 

L e C2(A;x ,x ), if L and its first and second partial derivatives with 

respect to x and x are continuous on A.
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1. Proposition: Assume L s C2(A;x,x). Then the functions I'(x;-) and

I''(x; •) are the first and second Fr&chet differentials at x of 

the functional I with respect to the space (X, || || ) where, for all x in

X, || x || := sup{ | x( t) | + | x( t) | | t0 < t < tj}.

An immediate consequence of this fact are the following sufficient 

conditions for a weak minimum.

2. Corollary: Suppose L e C2(A;x,x) and xQ is a trajectory satisfying 

the endpoint constraints. If there exists c > 0 such that I'(xQ;y) = 0 

and I"(x;y) > 0 for all y in Y - {0} and all x in X#(A) satisfying 

|| x — xQ || < c, then xQ is a strict weak minimum for P(A).

3 NECESSARY AND SUFFICIENT CONDITIONS THROUGH VARIATIONS

The purpose of this section is to state the classical necessary and 

sufficient conditions for a minimum in terms, explicitly, of the first 

and second variations. For all A in Y, consider the following sets:

(1) Vanishing of the first variation in Y.

E(A):= {x e X(A) | I'(x;y) = 0  V y e Y}

(called the set of extremals).

(2) Nonnegativity of the second variation in Y.

H(A) := {x e X(A) | I"(x;y) * 0 V y e Y).

(3) The condition of Veierstrass.

W(A):= {x c X(A) | E(t,x(t),x(t),u) > 0  V (t,x(t),u) e A).

(4) The condition of Legendre.
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L(A):= {x c X(A) | L--(x(t)> * 0 V t e [t^tj).

With these definitions, the following result holds:

3. Theorem: Suppose L is continuous on A and x is a trajectory solv

ing P(A). Then x lies in E(A), H(A), W(A) and L(A) whenever the deriva

tives of L involved (in each case) are continuous. In particular, if 

L e C2(A;x,x), then:

S(A) c E(A) n H(A) n W(A) n L(A).

Consider now the following sets of trajectories, obtained by slightly 

strengthening the previous ones.

(2) ' Positivity of the second variation in Y - { 0 ).

H' (A) := {x e H(A) | I"(x;y) > 0  V y e Y - {0}}.

(3) ' Strengthened Weierstrass condition.

W(A;e):= {xQ e W(A) | E(t,x,x,u) > 0 V (t,x,x) e T1(xQ;e)

and (t,x,u) e A).

(4) ' Strengthened Legendre condition.

L' (A): = {x e L(A) j L--(x(t)) > 0 V t e [t^tj).

This slight strengthening of the necessary conditions is adequate to 

render them sufficient, as the following theorem shows.

4. Theorem: Suppose L e C2(A;x,x) and xQ is a trajectory satisfying 

the endpoint constraints.

i. If xQ lies in E(A), H'CA) and L'(A), then xQ is a (strict) weak 

minimum for P(A) of class C1([t0,t1]).
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ii. If, for some e > 0, xQ lies in E(A), H'(A), W(A;e) and L'(A), then 

xQ is a (strict) strong minimum for P(A) of class C1([tQ,t1]).

Several results hold if, instead of L'(A), ve impose along a trajec

tory only the nonsingularity of L” . Consider the following strengthened 

set of extremals:

(1)' Nonsingular extremals.

E' (A) := {x e E(A) | |L**(x(t))| * 0 V t e [t^tj)

and observe that Theorem 4 can be restated as follows:

i. Suppose x e X#(A) fl E'(A) n H'(A) n L(A). Then there exists c > 0 

such that x e SCT^xje) n A) fi C1([t0,t1]).

ii. Suppose x e X#(A) n E'(A) n H'(A) n W(A;e), for some e > 0. Then 

there exists 6 > 0 such that x c S((TQ(x;5) x Rn) fl A) 0 C1([tQ,t1]).

It is easy to show that, if (ii) is true, then the assertion in (i) 

holds. This fact, which will be proved in Chapter 2, allows us to study 

these sufficient conditions only for a strong minimum.

4 THE FIRST VARIATION: EULER'S EQUATION

The whole purpose of the remaining sections is to establish the clas

sical necessary and sufficient conditions in the standard form, i.e., in 

terms exclusively of the Lagrangian without referring to the variations. 

Ve start characterizing the set of extremals, that is, the set E(A) of 

trajectories where the first variation vanishes on Y, and prove that it 

is equivalent to the set of trajectories satisfying the so-called 

Euler's equation. This fact, together with some properties of extremals, 

will follow again as a particular case of the problem with delays.
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5. Proposition: Suppose x is a trajectory in X(A). Then x is an 

extremal if, and only if, there exists a constant c in Rn such that, for 

all t in [t0,txJ,

t
L;(x(t>) = J Lx(x(s))ds + c.

*0

This last relation is known as Euler's equation. It has several conse

quences and we summarize the most important ones in the following two 

corollaries. It should be emphasized that the smoothness assumptions 

are weaker than usual and that the second corollary, which is not a 

standard result, will permit us to assume proving the classical suffi

cient conditions that the trajectory under consideration is only 

piecewise-C1.

6. Corollary: For any set A in Y, the following holds:

i. Veierstrass-Erdmann corner condition. If x e E(A) then o x is 

continuous on [tQ,t1].

ii. Hilbert Differentiability Theorem. If Lx is Cr_2(A) and Lx is 

Cr_1(A) (r £ 2), then any nonsingular extremal of class C1 is of class 

Cr, i.e., E'(A) C C' d t ^ t J ) .

iii. Regularity. If L is regular on A (that is, if A is convex in x 

and L” (t,x,x) > 0 for all (t,x,x) in A) and L- is continuous on A, 

then:

a. E(t,x,x,u) > 0 for all (t,x,x) e A and (t,x,u) e A.

b. E(A) c

7. Corollary: Suppose L and L” are continuous on A, xQ is a non

singular trajectory (that is, |L-(x(t))| * 0 for all t in [tQ,t1]) 

and, for some e > 0, xQ belongs to W(A;e). Then e can be diminished so
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that the inequality in the definition of W(A;e) becomes strict, i.e., 

E(t,x,x,u) > 0 for all (t,x,x) in T1(xQ;e) and (t,x,u) in A with u * x. 

Moreover, if xQ is also an extremal, then xQ e C1([tQ,t1]). In other 

words, for all e > 0, E'(A) fl W(A;e) c C1([t0,t1]) and, in particular, 

E'(A) 0 L(A) c tfdtj.t,]).

As we shall see in a moment, nonsingular extremals satisfy a system of 

ordinary differential equations. This is the central result in the cal

culus of variations and it should be noted that practically all results 

we state from now on, rely on this fact (which is a simple consequence 

of the implicit function theorem) and the classical theory on existence 

and uniqueness of solutions of this kind of systems. It is also the main 

difference between this and the delay problem since, for the latter one, 

nonsingular extremals satisfy instead a system of differential differ

ence equations involving both advanced and retarded arguments.

8. Proposition: Suppose is of class Cr(A) (r £ 1), and xQ is a 

nonsingular trajectory in X(A). Set p0(t):= L^(xQ(t)) and, for all 

e > 0, let T2(x0;e):= {(t,x,p) c T0(xQ;e) x Rn | |p - p0(t)| < c). Then 

there exist e > 0 and a function A(t,x,p), with Ap of class Cr on 

T2(xQ;e), such that the following are equivalent:

i. x e E' (A) n C1([t0,t1]), p(t) = L*(x(t)) and (t,x(t),p(t)) 

belongs to T2(xQ;e).

ii. (x,p) satisfies the ordinary differential system:

x(t) = Ap(t,x(t),p(t))

*EE) ' P(t) = - Ax(t,x(t),p(t))

Proof: Let G(t,x,p,v):= L-(t,x,v) - p for all t in [10,tx] and x, p 

and v in Rn. By definition of p0, G(t,x0(t),p0(t),x0(t)) = 0 and, since 

Xq is nonsingular, |Gv(t,x0(t),p0(t),x0(t)) | * 0. L* is Cr and so is G.
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Consequently, by the implicit function theorem, there exist e > 0 and a 

unique function U of class Cr mapping T2(xQ;e) to Rn, such that, for all 

(t,x,p) in T2(x0;c), p = L^(t,x,U(t,x,p)>. Define for all (t,x,p) in 

T2(xqjc):

A(t,x,p):= <p , U(t,x,p)> - L(t,x,U(t,x,p)).

This function is called the Legendre transform (with respect to xQ) and 

observe that it satisfies:

Ax(t,x,p) = - Lx(t,x,U(t,x,p))

Ap(t,x,p) = U(t,x,p).

This implies the required smoothness of A. Now, clearly, (i) * (ii) fol

lows by uniqueness of U and Proposition 5 and (ii) 4 (i) follows dimin

ishing e so that |L^(t,x,x)| * 0 for all (t,x,x) in T1(x0;e).

Remark: Throughout the remaining sections, we shall need the assump

tions L e C2(A;x ) and c C1(A). The proof of Proposition 8 shows not 

only that, for this case, Ap is C1, but also that Ax inherits the 

smoothness of Lx, i.e., A is also C2(T2(xQ;e);x).

5 THE SECOND VARIATION: JACOBI'S CONDITION

In this section we characterize, as we did with the set of extremals, 

the set of trajectories where the second variation is nonnegative in Y 

(H(A)) or strictly positive (H'(A)). We start with a few definitions.

Given a trajectory x, denote by Jx the second variation with respect 

to x and by Ex the set of trajectories (called secondary extremals), 

that satisfy Euler's equation for the integrand Q, i.e., for all y in X,
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Jx(y):= I"(x;y) = J 22(t,y(t),y(t))dt
fco

Ex:= {y e X | Jx'(y;z) = 0  V z e Y}

= {y e X | there exists c e Rn such that

2y(y(t)) = J 2y(y(s))ds + c Y tQ < t < tx}. 
*o

Secondary extremals can be characterized in a simple way in terms of a 

linear system in Rn. It corresponds, for the integrand 2, to the system 

we already met in Proposition 8. Observe first that, given x in X,

2y(t,y,y) = Lxx(x(t))y + Lx-(x(t))y

By(t,y,y) = L-X(x(t))y + L--(x(t))y.

Now, if x e L'(A), the integrand 2 is regular and, by Corollary 6(iii), 

all secondary extremals (with respect to x) are of class C1. This 

implies the following result:

9. Proposition: Suppose x e L' (A) and y e X. Then the following are 

equivalent:

i. y is a secondary extremal (with respect to x).

ii. For all t in [tQ,t1], y satisfies the differential equation:

(JE)

3I[Lix(x(t))y(t) + L-(x(t))y(t)]

= Lxx(x(t))y(t) + Lx*(x(t))y(t).

called the Jacobi equation.

iii. If we set q(t):= Lxx(x(t))y(t) + L - (x( t))y(t), then (y,q)
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satisfies the linear system (* denotes transpose):

( y(t) = A(t)y(t) + B(t)q(t)
(JE)' \ q(t) = C(t)y(t) - A*(t)q(t)

where:

A(t):= - Li-"1(x(t))L*x(x(t)),

B(t) := L-'-^xCt))

C(t):= Lxx(x(t)) - Lx-(x(t))L-x"1(x(t))Lxx(x(t)).

Now, assuming x e L'(A) n C1([t0,t1]) and L e C2(A;x,x), the matrices 

A, B and C are continuous and the theorem on the existence and unique

ness of the solution of the Cauchy problem holds for (JE)'. Denote by 

(Y( •,tQ),Q(•,t0)) the fundamental (matrix) solution of the Jacobi equa

tion, i.e., the (matrix) solution of (JE)' satisfying the initial data:

^(*0**0) = =

A point s in (10, tx] is called conjugate to tQ with respect to x if 

Y(s,t0) is degenerate. Observe that this is equivalent to the existence 

of a secondary extremal y in Ex nonvanishing on (tQ,s) and such that 

y(t0) = y(s) = 0.

This definition allows us to express C1 trajectories in H(A), satisfy

ing the strengthened Legendre condition, in terms of the Jacobi equa

tion. Consider the following set:

(5) Jacobi's condition.

J(A):= {x e X(A) | s e (tQ,t1) s is not conjugate to tQ

with respect to x).

10. Proposition: Suppose L e C2(A;x,x) and x is a C1 trajectory in 

H(A) satisfying the strengthened Legendre condition. Then there are no
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conjugate points to t0 with respect to x in the open interval (tg,^). 

In terms of (5), C1([tQ,t1]) fl L'(A) n H(A) c J(A).

Proof: Suppose x eJ(A). By definition, there exist s in (10,tx) and y 

in Ex, such that y is not identically zero on (tQ,s) and y(tQ) = 

y(s) = 0. Let z(t):= y(t) for all t in [tQ,s] and z(t):= 0 for all t in 

[s9t1]. Clearly z belongs to Y and

Jx(z) = J 2S2(t,z(t),z(t))dt

= J8 {<z(t) , 2y(z(t)» + <z(t) , Sy(z(t))>}dt 
fco

= /  37«z(t) , 2-(z(t))»dt = 0.
‘o

Since x e H(A), z minimizes Jx on Y. Now, since x is C1, S, 9y, and S2y 

are continuous and so, by Theorem 3, z e Ex. But this implies, since 

z(t) = z(t) = 0 for all t in (s,t1) and z satisfies (JE), that z(t) s 0 

on [t0,t1]. This contradicts the nonvanishing of y and the result fol

lows.

This proposition and Theorem 3 imply the classical necessary condi

tions for a minimum in the standard form. Observe that we are not 

assuming x is C1. This follows by the conditions and Corollary 7.

11. Theorem: Suppose L e C2(A;x,x) and x is a trajectory solving 

P(A). Then x satisfies Euler's equation and the conditions of Legendre 

and Weierstrass. If also x is nonsingular then x satisfies Jacobi's con

dition.

We have thus expressed the set H(A) in terms of the Jacobi equation.
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We turn now to the set IT (A). As we shall see below, it can be charac

terized in terms of conjugate points imposing the same condition as for 

H(A) but in the half-open interval (tQ,t1]. It should be noted that, 

for this characterization, the smoothness assumptions concerning the 

Lagrangian will be slightly stronger than L € C2(A;x,x): we also require 

for to be C1 on A.

(5)' Strengthened Jacobi's condition.

J'(A):= {x e J(A) | t: is not conjugate to tQ with respect to x}.

12. Proposition: Suppose L e C2(A;x), e C1(A) and xQ is a non

singular extremal satisfying the Legendre condition. Then the following 

are equivalent:

i. xQ 8 H'(A).

ii. x0 e J'(A).

iii. There exists a matrix solution (Y,Q) of the linear system (JE)', 

satisfying |Y(t)| t 0 and Y*(t)Q(t) = Q*(t)Y(t) for all t in [ t0, tx ] •

Proof: (i) (ii): The assumptions imply, by Corollary 7, that xQ is

C1 and, applying Proposition 10, xQ e J(A). So, if we suppose that (ii) 

is false, there will exist y in Y, a nonvanishing secondary extremal 

with respect to xQ. As before, we obtain I''(x0;y) = 0, thus contrad

icting (i).

(ii) + (iii): Let p0(t) = L-(xQ(t)). By Proposition 8, (xQ,p0) 

satisfies (EE), and so it can be extended over a larger interval 

[t0-e, tj + e]. Solve the Cauchy problem for (EE) with initial data 

(0 < 5 < e):
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x(t0-$,X) = x0(t0-$) 

p(tQ-S,X) = X + p0(t0-6).

By their definition, x(-,X) are extremals of L and, therefore, the fol

lowing identity holds:

- ^Y[L-(t,x(t,X),x(t,X)>] + Lx(t,x(t,X),x(t,X>) « 0.

Differentiating with respect to X we obtain, in view of the equality 

x(t,0) = xQ(t),

- 3t[L-(50(t))T(t,t0-S) ♦ Lix(x0(t))Y(t,t0-5)]

+ Lx-(x0(t))Y(t,t0-6) + Lxx(x0(t))Y(t,t0-S) s 0

where Y(t,t0-8) denotes the matrix 9x(t,0)/3X. This equation is pre

cisely (JE). So, defining

Q(t,t0-6):= L-x(x0(t))Y(t,t0-S) + L*x(x0(t))Y(t,t0-5),

it follows that (Y(t,tQ-S),Q(t,t0-5)) solves (JE)'.

Observe now that Q(t,t0-$) = 9p(t,0)/3X since, by Proposition 8, 

p(t,X) = L*(x(t,X)). So, by the boundary conditions imposed for x(*,X) 

and p(•,X),

Y(t0-5,t0-6) = 0, Q(t0-6,t0-5) = I.

This implies that (Y(t,t0-5),Q(t,t0-8)) is the fundamental matrix solu

tion of the Jacobi equation. Since we are assuming xQ e J'(A), it fol

lows from the continuous dependence of solutions on initial data, that 

the matrix Y(t,tQ-8) is nonsingular for some 8 > 0 on the entire inter

val [tQ,t1]. This completes the first part of (iii). The second part
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follows from the fact that the quantity Y*(t)Q(t) - Q*(t)Y(t) has zero 

derivative and value 0 at t = t0-6.

(iii) 4 (i): Let y e Y and set v(t):= Y-1(t)y(t) and z(t):= Y(t)w(t) 

so that y(t) = Y(t)w(t) + z(t). We want to show that I " ( x Q;y) > 0 

unless y ■ 0. From the definition of Q,

22(y(t)) = <y(t) , 2y(y(t))> + <y(t) , 2y(y(t))>

= <Y(t)w(t) , Q(t)w(t) + Lx-(x0(t))z(t)>

+ <Y(t)w(t) + z(t) , Q(t)w(t) + L--(x0(t))z(t)> 

= Jt(<w(t) ’ Q*(t)Y(t)w(t)» + <z(t) . Li];(x0(t))z(t)>. 

Since w(tQ) = = 0, this implies that

l"(x0;y) = J <z(t) , L-*(x0(t))z(t)>dt.

Consequently, I''(x0;y) > 0 unless z(t) = Y(t)w(t) = 0. But |Y(t)| t 0 

and w(tQ) = 0, so I " ( x 0;y) = 0 «♦ w e O y * 0 .  This completes the

proof.

The classical sufficient conditions for a minimum follow from this 

proposition and Theorem 4:

13. Theorems Suppose L c C2(A;x), L- e C1(A) and x in X#(A) is a non

singular trajectory satisfying Euler's equation, Legendre's condition 

and Jacobi's strengthened condition. Then x is a weak minimum for P(A). 

If also L is regular on A or x satisfies the strengthened condition of 

Weierstrass, then x is a strong minimum for P(A).
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6 FIELDS OF EXTREMALS

In the previous section we showed that, if x is a nonsingular extremal 

satisfying Legendre's condition, then x e H'(A) if, and only if, 

x e J'(A). This allowed us to replace condition (2)' by (5)' in Theorem 

4 and we obtained Theorem 13, the standard form of the classical suffi

cient conditions.

In this and the next sectioh, we prove Theorem 13 directly, that is, 

without the help of condition H'(A). In fact, the two approaches we 

present imply sufficiency in a much simpler way than the variational 

one. This is because of the nature of the problem, but we will have 

occasion to see how different things are for the delay problem. The 

first proof is based on the invariance of a line integral and the family 

{x(*,X>} of extremals we met in Proposition 12.

A couple (r,M) is called a Mayer-field on A if:

i. M is a region in R x Rn.

ii. T:M -> Rn is of class C1 and (t,x,T(t,x)) e A for all (t,x) in M.

iii. The line integral (called Hilbert's integral):

I*:= J P(t,x)dx + Q(t,x)dt 

is independent of the path in M, where:

P(t,x):= L-(t,x,r(t,x))

and

Q(t,x):= L(t,x,T(t,x)) - <r(t,x) , P(t,x)>.

Observe that if x is any trajectory in M and we set L*(t,x,x): = 

<P(t,x) , x> + Q(t,x), then
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l‘(x) = J L*(t,x(t),x(t))dt 
fco

is minimized by x over the class of trajectories joining its endpoints. 

If we assume L e C2(A;x,x), then L* e C1((H x Rn);x,x), and we can apply 

Euler's equation for the integrand L*, that is, there exists a constant 

c in Rn such that:

c = L-*(x(t)) - J Lx*(x(s))ds 
fco

« L-(t,x(t),r(t,x(t)))

- J {Lx(s,x(s),r(s,x(s))> + Px(s,x(s))(x(s) - r(s,x(s)))}ds. 
fco

This implies that, if x is a solution of x(t) = T(t,x(t)) (called an 

extremal of the field (T,M)), then x is an extremal of L and I*(x) = 

I(x). Observe also that, along any trajectory x in M, we have:

ti
I(x) = I*(x) + J E(t,x(t),r(t,x(t)),x(t))dt

since E(t,x,r(t,x),x) = L(t,x,x) - L*(t,x,x). These facts give us 

already a sufficient condition for a strict strong minimum.

14. Lemma: Suppose L e C2(A;x,x), (T,M) is a Mayer-field, and

E(t,x,T(t,x),x) > 0 for all (t,x) in M and (t,x,x) in A with x t T(t,x). 

If xQ in X#(A) is an extremal of (T,M) then, for any trajectory x in 

Xe(A) - {xQ} lying in M, I(x) > I(xQ).

The main result of this section is the fact that extremals satisfying 

the strengthened Legendre and Jacobi conditions are extremals of some

1
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Mayer-field:

15. Lemma: Suppose L e C2(A;x), L- e C1(A) and xQ is a trajectory in 

E'(A) fl L(A) fl J'(A). Then there exists a Mayer-field (T,M) of which xQ 

is an extremal.

Proof: In Proposition 12 we proved the existence of some aQ < tQ such 

that |xx(t,0) | * 0 for all t in (aQ,t1], where (x(•,X),p(•,X)) satisfy 

the Cauchy problem for (EE) with initial data:

x(a0,X) = x0(a„) 

p(a0,X) = X + P0(a0).

By the implicit function theorem, there exist e > 0 and a unique X of 

class C1 mapping T0(xQ;e) to Rn, such that, for all (t,y) in T0(xQ;e), 

y = x(t,X(t,y)). Set M:= T0(xQ;e) and T(t,y):= x(t,X(t,y)) for all 

(t,y) in M. Observe that T e C1(M) and (t,y,T(t,y)) 8 A for all (t,y) in

M. By construction, xQ is an extremal of (T,M). It remains only to show 

that I* is independent of the path in M.

Let C c M be any trajectory of class C1, parametrized by:

C = {(t(s),w(s)) | s0 < s « Sj) 

and define, for all s0 < s < sx:

u(t,s):= x(t,X(t(s),w(s)>) a0 ^ t < t(s)

and

t(s)
F(s):= J L(t,u(t,s),u(t,s))dt.

Evaluating the integral I* along C, we get:
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I‘(C) = J «P(t(s),w(s)) , w(s» + Q(t(s),w(s))t'(s)}ds 
8 0

81
= J {<L-(t(s),u(t(s),s),u(t(s),s)> , uB(t(s),s)>

8o

+ L(t(s),u(t(s),s),u(t(s),s))t'(s)}ds

= J F'(s)ds = F(Sl) - F(s0) 
8 0

and so I* is independent of C. This completes the proof

With the help of these lemmas we obtain Theorem 13 as follows: we are 

assuming that L e C2(A;x), e C1(A) and, for some e > 0,

X0 e X#(A) n E' (A) fl J'(A) fl V(A;e).

By Lemma 15, xQ is an extremal of some Mayer-field (T,M). By Corollary 

7, e can be diminished so that the inequality in the definition of 

W(A;e) becomes strict. If necessary, diminish also M so that, for all 

(t,y) in M, (t,y,T(t,y)) e T^x^e). Applying Lemma 14 to (T,M) we 

obtain that, for all x in X#((M x Rn) n A) - {x0}, I(x) > I(xQ). This is 

the definition of a (strict) strong minimum for P(A).

7 THE HAMILTON-JACOBI THEORY

Sufficiency through the Hamilton-Jacobi theory is based on the 

existence of a function satisfying some inequality or some partial dif

ferential equation. In this section we show how, for both cases, the 

existence of this "verification" function is implied by the classical 

sufficient conditions for a minimum.

The first proof is based on the Hamilton-Jacobi differential equation
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and, though we proceed directly, it is equivalent to the one of the last 

section. The second one relies on the Hamilton-Jacobi inequality. The 

verification theorem for this approach is not equivalent to the one of 

the Hamiltonian, but weaker and, unlike the other proofs, sufficiency is 

derived without the help of a field of extremals. This last proof is 

due to F. H. Clarke and V. Zeidan (see [11]).

7.1 THE HAMILTONIAN

Given A in Y, the Young-Fenchel transform or Hamiltonian (relative to 

A), is given, for all (t,x,p) in [t0,t1] x R2n, by:

H(t,x,p):= sup{<p,u> - L(t,x,u) | (t,x,u) e A).

The verification theorem for problem P(A) states the following:

16. Lemma: Let x e Xe(A) and suppose there exist e > 0 and a function 

W:TQ(x;e) -* R of class C1 such that:

a. For all (t,y) in TQ(x;e), Wt(t,y) + H(t,y,Wy(t,y)) = 0.

b. For all t in [t0,tx],

H(t,x(t),Wy(t,x(t))) = <Wy(t,x(t)) , x(t)> - L(x(t)).

Then x is a strong minimum for P(A).

Proof: Let y e X#(A) with (t,y(t)) c TQ(x;e) for all t in [t0,tx]. By

(a) and the definition of the Hamiltonian,

Vt(t,y(t)) + <Vy(t,y(t» , y(t» - L(y(t» < 0

and, by (a) and (b),

Vt(t,x(t» + <Wy(t,x(t)> , x(t)> - L(x(t» = 0.

This implies that I(y) £ W(t1,^1) - = I(x) and we obtain the
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required result.

Observe now the following: let us assume that L e C2(A;x), e C1(A) 

and x0 e E'(A) fl L(A) n J'(A). Let (T,M) be the Mayer-field constructed 

in Lemma 15, of which xQ is an extremal, and let us define

t
W(t,y):= J L(s,x(s,X(t,y)),x(s,X(t,y)))ds. 

ao

The partial derivatives of W are given, for all (t,y) in H, by:

Vt(t,y) = L(t,y,r(t,y)) - <P(t,y) , T(t,y)>

Wy(t,y) = L-(t,y,r(t,y)) = P(t,y).

The Legendre transform, defined in Section 4, was given by:

A(t,x ,p):= <p , U(t,x,p)> - L(t,x,U(t,x,p))

where U is the unique (local) solution around (t,xQ(t),p0(t)) of p = 

L^(t,x,U(t,x,p)). By uniqueness of U, M can be diminished so that 

T(t,y) = U(t,y,P(t,y)). Consequently, for all (t,y) in M,

a'. Vt(t,y) + A(t,y,Wy(t,y)) = 0

br. A(t,x0(t),Vy(t,x0(t))) = <Wy(t,x0(t)) , xQ(t)> - L(x0(t>)

which is precisely Lemma 16 with the Legendre's transform instead of the 

Hamiltonian. Moreover,

E(t,x,U(t,x,p),u) = A(t,x,p) - <p,u> + L(t,x,u).

So, for a nonsingular trajectory xQ, both transforms coincide (locally) 

if, and only if, xQ satisfies the strengthened Weierstrass condition. 

This fact, together with Lemma 16, implies Theorem 13.

Remark: It should be noted that in this proof we have implicitly shown
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the relation between Mayer-fields and the Hamilton-Jacobi partial dif

ferential equation: given xQ in X(A) nonsingular, (T,M) is a Mayer-field 

containing xQ if, and only if, there exists W:M -» R of class C1 satisfy

ing (a)' and Wy(t,y) = L-(t,y,T(t,y)) for all (t,y) in M.

7.2 THE HAMILTON-JACOBI INEQUALITY

Let us consider now the following verification theorem:

17. Lemma: Let x e X#(A) and suppose there exist e > 0 and a function 

W:T0(x;e) -> R of class C1, such that

Wt(t,y) + <Vy(t,y) , v> - L(t,y,v)

(HJI)
< Wt(t,x(t)> + <Wy(t,x(t)) , x(t)> - L(t,x(t),x(t))

for all (t,y,v) in (T0(x;e) x Rn) n A. Then x is a strong minimum for 

P(A).

The assertion is readily verified by simply integrating (HJI). 

Observe that, if W satisfies the Hamilton-Jacobi differential equation, 

then W satisfies (HJI) but the converse is not necessarily true.

The third proof is as follows: our assumptions are, once more, that 

L e C2(A;x ), L- e C*(A) and, for some X] > 0,

X e xe(A) n E'(A) n J'(A) n v(A;h).

It is not difficult to show (see [11] for details) that, for some \i > 0, 

there is no nontrivial solution (y,q) of (JE)' with C replaced by 

C - |il, for which y vanishes both at tQ and at some point s in (t0, tx ]. 

In view of Proposition 12, there exists a matrix solution (Y,Q) of the 

system (JE)' with C replaced by C - pi, such that |Y(t)| * 0 and 

Y*(t)Q(t) = Q*(t)Y(t) for all t in [tQ,t1] (this is is proved in [11]
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without extending the extremal x.)*

Setting V(t):= Q(t)Y_1(t) it follows that V is a symmetric solution on 

[t0,tx] of the matrix Riccati inequality:

V(t) + V(t)A(t) + A*(t)V(t) + V(t)B( t)V(t) - C(t) < 0.

Define, for all (t,y) in [t0,tx] x Rn,

W(t,y):= <L^(x(t)) , y> + \ <y - x(t) , V(t)(y - x(t))>.

We shall show that the domain of V can be diminished so that V satisfies 

(HJI). First of all, observe that, in view of the assumptions, L* o x 

and hence W are C1. By the implicit function theorem, there exist 6 > 0 

and a unique function u:T0(x;6) Rn of class C1, such that, for all 

(t,y) in T0(x;6),

L-(t,y,u(t,y)) (= Wy(t,y)) = L-(x(t)) + V(t)(y - x(t>).

Define next, for all (t,y) in T0(x;6),

F(t,y):= Wt(t,y) + <Wy(t,y) , u(t,y)> - L(t,y,u(t,y)). 

Evaluating Wt and Wy, one finds that F is given by:

F(t,y) = <Lx(x(t)) , y> - <x(t) , V(t)(y - x(t)»

+ ^<y - x(t) , V(t)(y - x(t))> - L(t,y,u(t,y))

+ <L-(x(t)) + V(t)(y - x(t)) , u(t,y)>.

From this it follows that Fy and Fyy are continuous in (t,y) and satisfy 

Fy(t,x(t)) = 0

Fyy(t,x(t)) = V(t) + V(t)A(t) + A*(t)V(t) + V(t)B(t)V(t) - C(t) < 0.

So, by Taylor's formula, 6 can be diminished so that, for all (t,y) in 

T0(x;6), F(t,y) < F(t,x(t)). Setting e:= min{n>&} we obtain the
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required result for, if (t,y,v) is any point in (T0(x;e) 5 

Wt(t,y) + <Wy(t,y) , v> - L(t,y,v)

= Wfc(t,y) + <L-(t,y,u(t,y)) , v> - L(t,y,v) 

< Wt(t,y) + <L-(t,y,u(t,y)) , u(t,y)> - 

= F(t,y) < F(t,x(t))

= Wt(t,x(t)) + <Wy(t,x(t)) , x(t)> -

Rn) fl A, then

L(t,y,u(t,y))

L(t,x(t),x(t)>.



CHAPTER 2

SYSTEMS WITH ONE DELAY

1 INTRODUCTION

The purpose of this chapter is to generalize the results of Chapter 1 

to systems involving one delay in the phase coordinates. In order to 

visualize the parallel between the latter and delay free systems, we 

shall use the same notation as in the previous chapter. Every concept is 

followed implicitly by the words ’’for systems with one delay’’.

Sections 2 and 3 are devoted to a detailed study of the first and 

second variations. They are expressed as differentials and necessary and 

sufficient conditions are derived extending, word by word, the classical 

results for the delay free problem. In Section 4 we characterize the set 

of extremals, finding the corresponding Euler's equation together with 

several well known consequences of solutions of the equation. Section 5 

treats the question of expressing H'(A), the set of trajectories for 

which the second variation is strictly positive, in terms of solutions 

of the Jacobi equation. We show how this equation is equivalent to a 

linear delay system for which, if one imposes conditions both in the 

initial and terminal intervals of length the delay, existence and 

uniqueness can be guaranteed. This fact allows us to define conjugate 

points and hence an analog of Jacobi's condition.

38
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2 STATEMENT OF THE PROBLEM AND VARIATIONS AS DIFFERENTIALS

In this section we pose the simple fixed endpoint problem in the cal

culus of variations involving one delay in the phase coordinates. We 

introduce the first and second variations and show how, when a suitable 

norm is chosen on the space of trajectories, they can be defined as 

Fr&chet differentials of the functional we are minimizing.

We are given the following:

i. An interval [tQ,t1] and a point £ in Rn.

ii. A set A in Y, where Y denotes the usual topology of [ tQ, 11] x R3n.

iii. A positive number 6.

iv. A function $ mapping [t0—©,t0] to Rn.

v. A function L mapping [ 10, ] x R3n to R (the Lagrangian).

Denote the space of trajectories by:

X:= {x:[to-0,t1] Rn | x is piecewise-C1},

for all x in X set

x(t):= (t,x(t),x(t—0),x(t)) t0 < t < tx

and let

X(A):= {x e X | x(t) e A (tQ < t < tx) and L o x is integrable}

(admissible trajectories)

and

X#(A):= {x e X(A) | x(t) = <f>(t) V t c [to-0,tQ] and x(tx) =

(endpoint constraints).

The problem we shall be concerned with, which we label P(A), is that of 

minimizing the functional I(x) over X#(A), where:
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I(x):= J L(x(t))dt for all x e X(A). 
fco

Define tubes and restricted tubes about a trajectory x as follows: for 

all e > 0, let

T0(x;e):= {(t,y,u) e [ t^tj x R2n | |x(t) - y| < e, |x(t-0) - u| < e}

and

Ti(x; e) := {(t,y,u,v) e T0(x;e) x Rn | |x(t) - v| < 8}.

We shall say that a trajectory x solves P(A) if

x e S(A):= {x e X#(A) | I(x) < I(y) V y c X#(A)},

x is a strong minimum for P(A) if there exists 8 > 0 such that x solves 

P((T0(x;e) x Rn) n A) and x is a weak minimum for P(A) if there exists 

e > 0 such that x solves P(T1(x;e) n A). In other words, x is a strong 

(weak) minimum for P(A) if x in X#(A) and there exists e > 0 such that 

I(y) * I(x) for all y in X#(A) with (t,y(t),y(t-0)) in TQ(x;e) 

( (t,y(t),y(t-0),y(t)) in T^xje) ).

Let us denote the values of L by L(t,x,u,x). Given a trajectory x in 

X, we define the first variation of L (with respect to x) by:

I'(x;y):= J {<Lx(x(t)> , y(t)> + <Lu(x(t)> , y(t-0»

+ ^(^(t)) , y(t)>)dt

and the second variation of L (with respect to x) by:

ti
I"(x;y):= J 22(t,y(t),y(t-0),y(t))dt

where, for all (t,y,v,y) in [t0,tx] x R3n,
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22(t,y,v,y):= <y , Lxx(x(t))y> + <v , Luu(x(t))v> + <y , L-(x(t))y> 

+ 2{<y , Lxu(x(t))v> + <y , Lx*(x(t))y> + <y , L*u(x(t))v>}.

The following proposition shows that the variations turn out to be 

differentials of I, if we introduce in X the norm

|| x 11 := sup{ | x( t) | + |x(t)| | to-0 < t < tx).

1. Proposition: Assume L is C2(A;x,u,x). Then the functions I'(x;*) 

and I''(x; •) are the first and second Fr&chet differentials at x 

of the functional I with respect to the space (X, || || ).

Proof: Ve begin by showing that X(A) is open as a subset of (X,|| || ).

For all x in X and e > 0, let

B(x; c) := (y e X  | || y - x|| < e}

and take xQ in X(A). Since {xQ(t) | t e [tQ,t1]} is compact in 

[tQ,tx] x R3n and A is open, there exists p > 0 such that the closure of 

S:= T1(xQ;p) is contained in A. Let x be any trajectory in B(xQjp). So, 

for all t in [t0,t1], x(t) e S c A and, consequently, x belongs to 

X(A), which proves that X(A) is open.

Now, since L and all its first and second partial derivatives with 

respect to x, u and x are continuous on A, they are uniformly continuous 

on the closure of S. So, if || x — xQ|| -> 0, L(x(t)) -> L(xQ(t)) uni

formly on [t0,t1], and the same applies for the derivatives. Hence, for 

all e > 0, there exists 5 > 0 such that, for all y in X and x in 

B(x0;5),

|I'(x;y) - I'(x0;y)| < e|| y||

|I'' (x;y) - I'' (xQ;y) | < e|| y ||2
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and so, if || x - xQ|| -» 0, then I'(x;y) ■» I'(x0;y) and I"(x;y) ■> 

I " ( x 0;y) uniformly for || y|| < 1.

Observe next that, if x is any trajectory in B(xQ;p), so also is xQ + 

X(x - xQ) for all X in [0,1]. Applying Taylor's theorem to the function 

X -> I(xQ + X(x - xQ)) we obtain, for all x in B(x0;p):

I(x) = I(xQ) + I'(x0,x - x0) + PjCx^x - xQ) (2.1)

where:

l
Pi(x0,y) = J {I'(x0 + Xy;y) - I'(x0;y)}dX 

o

= J (1 - X)I"(x0 + Xy;y)dX 
o

and

I(x) = I(xn) + I'(xn,x - xn) + 4 I"(x0,x - x0) + P2(x0,x - x0)

where:

P2(x0,y) = J (1 - X){I"(x0 + Xy;y) - I " ( x 0jy)}dX. 
o

The required result now follows, since

lira
x +  x 0

pi(*0'x - xo>

II X - x0||
0 and lim

x •» x0

P2(x0,x - x0) 

II x - xj| 2

It should be noted that this result was obtained by making use only of 

Taylor's theorem. It implies, in a natural way, sufficient conditions 

for a weak minimum. Let us denote by Y the set of trajectories vanishing 

at [t0-6,t0] and tx, i.e.,

Y:= {y e X | y(t) = 0  V t c [t0-6,t0] and yCt^ = 0}.
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2. Corollary: Suppose L e C2(A;x,u,x) and xQ is a trajectory satisfy

ing the endpoint constraints. If there exists e > 0 such that I'(xQ;y) = 

0 and I"(x;y) > 0 for all y in Y - {0} and all x in X#(A) n B(xQ;e), 

then xQ is a strict weak minimum for P(A).

Proof: Diminish £ so that (2.1) holds. Then

I(x) - I(x0) = Px(x0,x - x q) > 0 

for all x in X#(T1(x0;£) 0 A) — {xQ) and the result follows.

3 NECESSARY AND SUFFICIENT CONDITIONS THROUGH VARIATIONS

In the preceding section we found sufficient conditions for a weak 

minimum by means of the concept of differentials without making use, at 

all, of the special form of the functions involved. The goal of the 

present section is to establish, through several properties particular 

of these functions, necessary and sufficient conditions both for weak 

and strong minima.

We begin by defining some sets of trajectories which are a natural 

extension of the ones we had for the delay free problem. For all A in Y, 

let:

(1) Vanishing of the first variation in Y.

E(A):= {x e X(A) | I'(x;y) = 0 V y e Y) (set of extremals).

(2) Nonnegativity of the second variation in Y.

H(A):= {x e X(A) | I"(x;y) > 0 V y e Y).

(3) The condition of Veierstrass.



44 Systems with on* Delay [Ch. 2

W(A):= {x e X(A) | E(t,x(t),x(t-0),x(t),v) > 0

V (t,x(t),x(t-0),v) e A}.

vhere the Veierstrass 'excess function' E, is given by:

E(t,x,u,x,v):= L(t,x,u,v) - L(t,x,u,x) - <v - x , L^(t,x,u,x)>.

(4) The condition of Legendre.

L(A):= {x c X(A) | L--(x(t)) > 0 V t e [tQ,t,]}.

The following theorem gives necessary conditions for a solution of 

P(A), vhere A is any set in Y. Thus, necessary conditions for a weak or 

strong minimum are derived if we replace A by (T1(x;e) fl A) or 

(TQ(x;e) x Rn) fl A respectively.

3. Theorem: Suppose L is continuous on A and x is a trajectory solv

ing P(A). Then x lies in E(A), H(A), W(A) and L(A) whenever the deriva

tives of L involved (in each case) are continuous. In particular, if 

L c C2(A;x,u,x), then:

s(A) c e (A) n H(A) n w(A) n L(A).

Proof: Each condition will be proved separately according to the 

smoothness required for the Lagrangian.

i. "L e C1(A;x,u,x) S(A) c E(A)": Suppose x solves P(A) and y is 

any trajectory in Y. Since A is open, there exists 8 > 0 such that, for 

all |e| < 8, x + ey belongs to X(A). Define for all |e| < 8  and t in

F ( t , e ) :=  L ( t , x ( t ) + e y ( t ) , x ( t - 0 ) + e y ( t - 0 ) , x ( t ) + 0 y ( t ) )
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f(e):= J F(t,e)dt.

Since y belongs to Y r x + ey belongs to X#(A) and thus f(0) < f(e) for 

all |s| <5. By hypothesis, L, Lx, Lu and are continuous on A. This 

implies that F and Fe are piecewise continuous, and so:

ii. "L e C2(A;x,u,x) + S(A) c H(A)”: An analogous argument to that

of (i) applies, and we obtain:

iii. "L e C2(A;x) W(A) c L(A>”: Let x e W(A), fix t e [t0,tx] and 

define, for all v in Rn:

By definition of the excess function, G has a local minimum at x(t). 

So, for all c in Rn,

which implies that x e L(A).

iv. ML e C1(A;x) S(A) c W(A)n: Suppose xQ is a trajectory in

S(A). Consider any point s in (t0,t1) at which xQ is continuous and let 

v in Rn be such that (s,x(s),x(s-0),v) belongs to A. Now, choose any y 

in (0,t1-s) and define the following family of trajectories, for all $ 

in [0,y] and t in [0,1):

i
0 « f"(0) = J F„(t,0)dt = I' * (x;y).

G(v):= E(t,x(t),x(t-0),x(t),v).

0 < <c , G,f(x(t))c> = <c , L-(x(t))c>

x(t;e,5):= x0(t) t e [to-0,s] U [ s + M J
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x(t;e,8):= xQ(t) + (t-s)(v-xQ(s)) 

x(t;e,8): = xQ(t) + X(e)(s+8-t)(v-x0(s))

c [s,s+e8]

e [s+e8,s+8]

where X(e) = e/(l-e).

Since A is open, there exists t) > 0 such that, for all 8 in [0,p] and 

e in [0,f|]» x(-;e, 8) belongs to X#(A). Therefore,

0 « I(x( •; e, 8)) - I(xQ) = F(e,8) + G(e,8), (2.2)

where:

F(e,S): =
s + e6
J
8

{L(t,x(t;e,8),x(t-0;e,8),xo(t)+v-xo(s)) L(x0(t)))dt

B + &
G(c,8):= J {L(t,x(t;e,S),x(t-6;e,8),xft(t)-X(e)(v-x (s))) - L(x0(t)))dt

b + c6

Now, since L is continuous on A, for all 0 < |e| <

lim 
8 0

F(e,8)
it = L(s,xo(s),xo(s-0),v) - L(x0(s))

and

lim — = •^|y[L(s,xo(s),xo(s-0),xo(s) - X(e)(v - xQ(s)))) - L(xQ(s))] 
8 0

In view of (2.2), we have:

0 < lim 
e 0

11. lim Sift*!
L 8 0 8 -> 0 e®

= E(s,xn(s),x (s-0),x (t),v).

Finally, by continuity of L and L^, the condition of Veierstrass also 

holds at the end and corner points of xQ, and the result follows.

As in the delay free case, slightly strengthening the previous sets we 

obtain sufficient conditions. Let us consider the following definitions:
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(1) ' Nonsingular extremals.

E'(A):= {x e E(A) | |L--(x(t))| * 0 V t e [t0, tx]}

(2) ' Positivity of the second variation in Y - { 0 ) .

H'(A):= {x c H(A) | I"(x;y) > 0  Y y e Y - {0}}.

(3) ' Strengthened Veierstrass condition.

V(A;e):= {xQ e V(A) | E(t,x,u,x,v) £ 0 V (t,x,u,x) e T ^ x ^ e )

and (t,x,u,v) e A}.

(4)' Strengthened Legendre condition.

L'(A):= {x e L(A) | L--(x(t)) > 0 V t e [t0,t,]}.

We shall find it useful to first establish the following property of 

the Weierstrass function.

4. Lemma: Suppose L is C2(A;x) and xQ is a nonsingular trajectory 

that belongs to W(A;e) for some e > 0. Then there exist 8 and h > 0 such 

that, for all (t,x,u,x) in T1(xfl;8) and (t,x,u,v) in A,

E(t,x,u,x,v) > h [(1 + |v - x|2)1/2 - 1]. (2.3)

Proof: By Theorem 2(iii), xQ belongs to L(A) and, since xQ is non

singular, it also belongs to L'(A). So, by continuity of L^-, there 

exist eQ and hQ > 0 such that, for all c in Rn and (t,x,u,x) in 

Ti(x0;e0)» <c » L - (t,x,u,x)c> £ hQ | c |2. Without loss of generality, 

eQ < e. Now, by Taylor's theorem, for all (t,x,u,x) in T1(xQ;e0) and 

(t,x,u,v) in T ^ X q JCo),

E(t,x,u,x,v) = L(t,x,u,v) - L(t,x,u,x) - <v - x , L*(t,x,u,x)>
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= J (1 - X)(<v - x , L-^(t,x,u,x+X(v-x))(v - x)>)dX 
o

1

Let $ > 0 be such that the closure of T^XgjS) is contained in T1(xQ;e) 

and p > 0 such that, for all |c| 4 p and (t,x,u,x) in T1(xQ;6),

(t,x,u,x + c) belongs to T1(xQ;e0).

Now, take (t,x,u,x) in T^x ^ S )  and (t,x,u,v) in A. Observe that, if 

(t,x ,u,v) is in T^x^e,,), then

E(t,x,u,x,v) > 2̂  (|v - 

and so (2.3) holds with h = hQ.

p

x|2) > h0 [(1 + | v

For the case (t,x,u,v)

j (v - x)and c: = -— ^— -

- xl2)1/2 - 1] 

^T^x,,;^), let

and observe that |c| = p and k > 1. Hence,

E(t,x,u,x,v) = E(t,x,u,x,x + kc)

= E(t,x,u,x + c,x + kc) + kE(t,x,u,x,x + c)

+ (k - l)E(t,x,u,x + c,x)

khQ
> k E(t,x,u,x,x + c) £ |c|2

■= ^  |c11kc| » [(1 + |kc|2)1/2 - 1]

h0P
= —  [(1 4- | V — x|2)1/2 - 1].

Therefore, equation (2.3) holds with h = min{h0,(hQp)/2) and the result 

follows.

We are going to prove now the main result for sufficient conditions in 

terms of the first and second variations. What we shall prove is actu
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ally stronger than the statement of the theorem. The conditions will 

turn out to be sufficient for a local minimum, not only with respect to 

the space X of piecewise-C1 trajectories, but also with respect to the 

class X' of all absolutely continuous functions mapping [to-0,t1] to Rn. 

Throughout the proof, X'(A) and X#'(A) will denote, respectively, the 

sets of functions in X' being admissible and satisfying the endpoint 

constraints. The main ideas that follow are based on the proof for the 

delay free case given by M. R. Hestenes (see [18]).

5. Theorem: Suppose L e C2(A;x,u,x) and xQ is a trajectory satisfying 

the endpoint constraints.

i. If xfl lies in E(A), H'(A) and L'(A), then xQ is a (strict) weak 

minimum for P(A) of class Cx( 1 v ]).

ii. If, for some e > 0, xQ lies in E(A), H'(A), W(A;e) and L'(A), then 

xQ is a (strict) strong minimum for P(A) of class C1([tQ,t1]).

Proof: In Corollary 8 (which is independent of this theorem), we shall 

show that, if xQ is a trajectory satisfying the assumptions of (i), then 

xQ belongs to W(T1(xQ; e); e) for some c > 0. If we suppose that asser

tion (ii) is true, xQ will be a strong minimum for P(T1(xQ;e)), i.e., 

there will exist 8 > 0 such that P((TQ(x0;8) n Rn) n (T^X q JC))) is 

solved by xQ. Setting p:= min{e,8), it follows that:

T ^ X q JU) n A  c ^ ( x ^ y )  c (T0(x q ;8) f)Rn) flT^x^e).

But this implies that xQ is a weak minimum for P(A) and so (i) holds. 

The smoothness of the trajectory is also a consequence of Corollary 8, 

and so it remains only to prove that, if for some e > 0

X0 e X#(A) n E'(A) n H'(A) n V(A;e), (2.4)

then xQ is a strong minimum for P(A).
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Let us start considering the following strengthened set of solutions: 

S(A; p):= {x e S(A) | I(y) * I(x) + PD(y - x) V y e X/(A)} 

where, for all y in X' and c in Rn,

D(y):= J f(y(t))dt and f(c):= (1 + |c|2)1/2 - 1. 
fco

The proof consists in showing that the conditions imposed on L and xQ, 

imply the existence of some p and 6 > 0 such that xQ belongs to 

S(T0(x0;p) n A;6), which in turn implies that xQ is a strict strong 

minimum for P(A). Suppose the contrary, that is,

x0 Z U S(T0(x0;p) fl A; S). (2.5)
p , 6 > 0

We shall show that xQ e H'(A) thus contradicting the assumption (2.4). 

To begin with, observe that, for all x in X'(A),

I(x) = I(xQ) + I'(x0jx - xQ) + K(x) + E*(x)

where:

E*(x):= J E(t,x(t),x(t-G),x0(t),x(t))dt 
"o

K(x):= J (M(t,x(t),x(t-0)) + <x(t) - xQ(t) , N(t,x(t),x(t-0))>)dt

and

N(t,y,u):= L-(t,y,u,x0(t)) - L*(x0(t))

H(t,y,u):= L(t,y,u,x0(t)) - L(x0(t)) - <Lx(x0(t)) , y - xQ(t)>

- <Lu(x0(t)) , u - xo(t-0)>.

Moreover, by Taylor's theorem, there exists y > 0 such that, for all
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(t,y,u) in T0(x0;y),

M(t,y,u) = i <y - xQ(t) , P1(t,y,u)(y - xQ(t))>

+ \ <u - xo(t-0) , P2(t,y,u)(u - xo(t-0))> 

+ <y - x0(t) , P3(t,y,u)(u - xQ(t-0))> 

and

N(t,y,u) = Qx(t,y,u)(y - xQ(t)) + Q2(t,y,u)(u - xQ(t-0)),

where:

P^t.y.u):- 2 J (1 - X)LxxdX, P2(t,y,u):- 2 J (1 - X)LuudX, 
o o

l i i
P3(t,y,u):= 2 J (1 - X)LxudX, J L*xdX, Q2(t,y,u):= J L*udX

0 0 0

with all derivatives of L evaluated at

(t,xQ(t) + X(y - xo(t)),xo(t-0) + X(u - xo(t-0)),xo(t)).

Next, we show that there exist SQ, a and h > 0 such that, for all x in 

X'(T0(x0;50) n A),

E*(x) £ hD(x - xQ) (2.6)

and

|K(x)| < a|| x - x01| (1 + D(x - x0)) (2.7)

where, in contrast with the norm used in Section 2,

|| x|| := sup{|x(t) | | t c [ t0, t1]) .

To prove it, let 6 and h > 0 satisfy the conclusion of Lemma 4, and let 

x be any trajectory in X'(T0(xQ;6) n A). In view of (2.3), we have
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E*(x) = J E(t,x(t),x(t-0),xo(t),x(t))dt 
*0
fci

Z h J f(x(t) - x0(t))dt = hD(x - xQ)
‘o

and (2.6) holds. For (2.7), we can clearly choose a' > 0 such that, for 

all x in X'(T0(x0;y) fl A) and t in [t^tj,

| M(t,x(t),x(t-0)) + <x(t) - xQ(t) , N(t,x(t),x(t-0))> |

< a' [|x(t) - xQ(t)| + |x(t-0) - xQ(t-0)|](l + |x(t) - x0(t)|2)1/2.

But this implies that:

ti
|K(x)|< 2a'|| x - x0 || J (1 + f(x(t) - x0(t)))dt

fco

< a|| x - xj| (1 + D(x - xQ))

with a:= 2max{a',a' (t1 - tQ)}. Hence, (2.6) and (2.7) hold with 0 < SQ < 

min{y,6}.

Now, in view of (2.5), for every natural number q there exists xq in 

X#'(A) such that:

|| xq - x01| < min{60,l/q) and I(xq) - I(xQ) < D(xq - xQ)/q. (2.8)

An important property we shall be using of the sequence (xq), is that it 

contains a subsequence (we do not relabel), such that

xq(t) -» x0(t), q -* ® almost uniformly on [t0,tx]. (2.9)

This follows observing first that, since xq - xQ e Y and xQ e E(A),

I(xq) - I(x0) = K(xq) + E*(xq)
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>  ~  « l l  x q -  X oH +  D < X q "  X 0 > ( h  “  “ H X q ~  X oH > 

which implies that, for all q in N,

D(xq - xQ)(h - 1/q - a/q) < ot/q

and so D(xq - xQ) 0, q -> ®. Setting

vq(t):= [1 + £ f(xq(t) - x0(t))]^,

observe that, by the inequality of Schwarz,

*l . „ |x (t) - x <t)I2dt *1
I J |x (t) - x (t)|dt |2 « J ----------- -------  I w (t)2dt

* 0  * 0  * , < * >

-  D < X ,  -  -  ‘ o )  +  D < X q -  X 0 > ) -

So, xq -» xQ in the I^-norm and (2.9) holds.

Now, in view of (2.8), dq: = (2D(xq - xQ))1/2 is strictly positive for 

all q in N, and we can define the following sequence of absolutely con

tinuous functions:

yq(t):= (xq(t) - x0(t))/dq to-0 < t < tx, q e N.

Observe that, for all y in Xf, the functional D satisfies

|y (t) 12dt
D(y) = J --- 2--------  (2.10)

tQ 2 + f(y(t))

and so, for all q in N,

‘‘ |yq(t)|2dt
J — 3------- = 1. (2.11)
t. w (t)2 0 q

Consequently, (yq/wq) is a sequence of square-integrable functions and, 

from the last relation, there exist a subsequence of {yq} and a function
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uQ in L2([t0,t1]), such that yq/wq converges weakly (on L2([t0,t1])) to 

uQ, that is,

tl yq(t) ^
lira J <g(t) , ( v >dt = J <g(t) , u0(t)>dt (2.12)
* - t0 ^  } t0

for every square-integrable function g(t) on [tQ,t1].

Define the following function, which belongs to X' and has a square- 

integrable derivative:

yn(t):=
V 9 < t < t0

J un(s)ds t0 < t < ti

We wish to show that y0 satisfies the following:

i. y0 belongs to Y.

ii. I " ( x 0;y0) « 0.

iii. yQ is not identically zero on [t0,t1].

This will imply that xQ eH'(A) and the proof will be complete. For this 

purpose, we prove next a few convergence properties of the sequence

{y,}-
To start with, observe that, for all q in N,

*1 ti
I 1wq(t) - 1 |2dt = J

INX-N-M0> - l)dt - 2 J (wq(t) - l)dt
*0 *o fco

since Wq(t)2 * wq(t) » 1 almost everywhere, we also have that

fcl fci
0 < J (Wq(t) - l)dt < J (wq(t)2 - l)dt < D(xq - *o>-

These facts clearly imply that
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lira J (wq(t)2 - l)dt = lim J (w (t) - l)dt 
« * “ fc0 9 * *

1
= lim J |w (t) - l|2dt = 0

9 * - t0
(2.13)

With the help of these equalities, let us prove that yq converges weakly 

on L1 to yQ. Let g be any function in L* and note that, for all q in N,

s  ya(t)
IX <g(0(V (t) - 1) , >dt|2 « J |g(t)|2|V (t) - l|2dt
‘o 12 ‘o

and

yq(t) y,<o
<g(t) , yq(t)> = <g(t) , — > + <g(t)(vq(t) - l) , >.

Using (2.12), (2.13) and the boundedness of g, we have

ti tl y (t)
lim J <g(t) , yq(t)>dt = lim J <g(t) , -■q (^  >dt 

q ■* 00 tQ q + ® tQ '

= J <g(t) , y0(t)>dt (2.14)

and the weak convergence follows. Note that (2.14) holds also for all g 

in L2 integrating over a measurable set where wq(t) tends to 1 uni

formly. Moreover, if Rq and R are continuous functions such that Rq(t) -» 

R(t) uniformly on [t0,t1], then

ti ti
lim J <R (t) , y (t)>dt = J <R(t) , y0(t)>dt. (2.15)
* * “ fco

This last assertion follows observing that, by (2.13) and (2.16) below, 

there exists a constant T > 0 such that, for all q in N,
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|J |yq(t) |d112 « J vq(t)2dt < T

and so, in view of (2.14),

■-1 1
lim S <R (t) i y (t)>dt = lii" I <R(t) , y (t)>dt = J <R(t) , y0(t)>dt

<1 -» » t0 q ■> » t„ t0

and (2.15) holds.

Next, we prove that yq converges to y0 uniformly on [tQ,t1]. To this 

end, observe first that, by virtue of the weak convergence of yq to y0 

in L1, for all t in [tQ,t1] we have

t t
lim J y (s)ds = lim J y0(s)ds 
* * “ fc0 9 « ^ “ fc0

and so yq converges pointwise to yQ. Now, let S be any measurable set in 

[tQ,t1]. By the inequality of Schwarz and (2.11),

Us yq(t)dt|2 « h
|yq(t)|2dt

wq(t)2
Wq<t)2dt )

« !s wq(t)2dt

= m(s) + Js (wq(t)2 - l)dt (2.16)

where m(S) is the measure of S. Given e > 0, let q0 in N be such that

q * q, < V t > - l)dt < e/2,

and 0 < 6 < s/2 such that, for all q < q0,

m(S) < 6  * |JS yq(t)dt| < e

So, if m(S) < e/2, we have that, for all q in N, IJ_ y (t)dt| < e. Con-
t

sequently, the sequence of integrals { / yq(t)dt) and hence also (yq),
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are equi-absolutely continuous on [ tQ, tx] and so yq -> y0 uniformly on

[ tî  •
We shall need one last result concerning the Weierstrass function, 

namely,

E*(x ) , *1
lim inf --- —  > £ I <y0(t) , L-(x (t))y0(t)>dt. (2.17)
« -» " dq2 * t„

By virtue of (2.9), it suffices to prove it on S c [tQ,t1] where xq(t) ■* 

x0(t) uniformly. By Taylor's theorem, there exists q0 in N such that, 

for all q > q0 and all t in S,

[E(t,xq(t),xq(t-e),x0(t),xq(t)>] = \ <yq(t) > Rq(t)yq(t)> 
dq

where:

R„(t):= 2 J (1 - X)[L;;(t,x„(t),xrt(t-0),xo(t) + X(xq(t)-xQ(t)))]dX.xx' ' q' ' ’ q

Let R(t):= L**(x0(t)) and observe that, for all t in S,

<y,(t) , (Rq(t) - R(t))yq(t)>| < II Rq(t) - R(t) |y,(t)l

« M
lr,(t)l

where:

Hqi= sup{[ || Rq(t) - R(t)) || 2 vq(t)4]1-'2 | t e S).

Since Rq(t) -► R(t) and wq(t) -> 1, both uniformly on S, Mq ■> 0 as q -> ®. 

Observe also that

<yq(t) , R(t)yq(t)> = <y0(t) , R(t)y0(t)> + 2<yq(t) - y0(t) , R(t)y0(t)> 

+ <yq(t) - y0(t) , R(t)(yq(t) - y0(t))>.
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As we mentioned before, (2.14) holds replacing g(t) by R(t)y0(t) and 

integrating over S. Consequently,

lim inf Js <yq(t) , Rq(t)yq(t)>dt
q »

= lim inf J <y_(t) , R(t)y (t)>dt
q -> oo S q q

= xs <y0<t> » R(t)y0(t)>dt

+ lim inf J*s <yq(t) - y0(t) , R(t)(yq(t) - y0(t))>dt
q *> ®

and finally, since R(t) is positive definite, (2.17) follows.

With the help of these results we are now in a position to prove that 

y0 satisfies (i)-(iii). From their definition, each yq belongs to Y and, 

since yq converges to yQ uniformly on [tQ,t1], y0 belongs to Y (for this 

result it clearly suffices the pointwise convergence). So (i) holds. For

(ii), observe that, by definition of the functional K,

K(x ) , *1
— T- - 5 I l <y„(t) , Pj y,(t)> + <yq(t-e) , P2 yq(t-e» 
dq ‘o

+ 2 <yq(t) , P3 yq(t-9)> + 2 <yq(t) , Qt yq(t) + Q2 yq(t-6)> }dt

where Pi and Qi are evaluated at (t,xq(t),xq(t-8)) and q is sufficiently 

large. So we have:

2 i " ( v y o >
K(x ) ,. 1 rlira ---+ i I <y0(t) , R(t))y.(t)>dt] (by (2.15))

-t ■» d 2 t„

K(x ) E (x )
< lim ----- + lim inf ------ (by (2.17))

-y m d -¥ aa dq

I(x ) - X(x0)
= lim inf -------------  < 0

q -» 08 d 2 q
(by (2.8)).
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Consequently, (ii) holds. Finally, for (iii), note that, if y0 a 0 then 

lim K(x )/(d 2) = 0 and so, from the last relation and (2.6),
q -> ®  q q

h E‘(Xq>j 4 lim inf------ < 0
* - - dq2

contradicting the positivity of h. The proof is now complete.

4 THE FIRST VARIATION: EULER'S EQUATION

We start characterizing the set E(A). Both Euler's equation and its 

consequences related to the smoothness of extremals can easily be 

extended to the delay problem.

6. Proposition: Suppose x is a trajectory in X(A). Then x is an 

extremal if, and only if, there exists a constant c in Rn such that, for 

all t in C t0,tx J,

Lx(x(t)) = P(t;x) + c

where P(;x) is given by:

t t+e
P(t;x):= J Lx(x(s))ds + J Lu(x(s))ds tQ < t < t1-0

t i
:= J Lx(x(s))ds + J Lu(x(s))ds t1-0 < t < t±.

Proof: By definition of the first variation and the function P(*;x), 

observe that, for all x and y in X,

I'(x;y) = J (<y(t) , P(t;x)> + <y(t) , L-(x(t))>)dt

+ J <y(t) , Lu(x(t+0)»dt
"o"9
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The "if" part follows directly from this relation since, given y in Y,

° = J | t<ŷ  * P<t;x> + c>dt

= J (<y(t) , P(t;x)> + <y(t) , L-(x(t))>}dt = I'(x;y).
"o

Hence, we assume x in X(A) is such that I'(x;y) = 0 for all y in Y. 

Define:

1 1
c:= t -j t J (L*(x(t)) - P(t;x))dt

1 o t

and

z(t):=
to-0 « t « t0

J (L^(x(s)) - P(s;x) - c)ds t0 < t < tx

so that z e Y and z(t) = L(x(t)) - P(t;x) - c. Clearly,

0 * J ^<z(t) , P(t;x) + c>dt
t„

J {<z(t) , P(t;x)> + <z(t) , L^(x(t)) - z(t)>}dt

l l
I'(x;z) - / |z(t)|2dt = - J |z(t)|2dt.

Consequently, z(t) = 0 for all t in [tQ,t1] and the result follows

7. Corollary: For any set A in Y, the following holds:

i. Veierstrass-Erdmann corner condition. If x e E(A) then L- o x is
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continuous on [tQ,t1].

ii. Hilbert Differentiability Theorem. Assume Lx and Lu are Cr_2(A), 

is Cr_1(A) (r £ 2), and xQ e E'(A) fl C1([t0,t1]). Then:

a. xQ is Cr on [tQ,t1-0] and Cr on [t1-0,tQ].

b. If Lu(xQ(t)) vanishes at tx, together with all derivatives up 

to order r-1, then xQ is Cr on [tQ,tx1.

iii. Regularity. If L is regular on A (A is convex in x and 

L^(t,x,u,x) > 0 for all (t,x,u,x) in A) and L̂ - is continuous on A, 

then:

a. E(t,x,u,x,v) > 0 for all (t,x,u,x) in A and (t,x,u,v) in A.

b. E(A) c C‘([t0,tj]).

Proof: The assertion in (i) follows by Proposition #, since P(*;x) is 

continuous on [tQ,t1]. For (ii), let G(t,v):= L;(t,x0(t),xQ(t-0),v) - 

P(t;x0) - c, g(t):= Lx(x0(t)> and h(t):= Lu(x0(t)>, where c is the 

constant obtained from Proposition (e>, The assumptions imply that 

G(t,x0(t)) = 0 and |Gv(t,xQ(t)) | t 0 and, since,

Gt(t,v) = ^[L;(t,xo(t),xo(t-0),v)] - g(t) - h(t+0) t0 < t < tx-0

= jf[L*(t,xo(t),xo(t-0),v)] - g(t) tx-0 < t < tx

Gv(t,v) = L-(t,xo(t),xo(t-0),v) t0 < t 3 tlf

the implicit function theorem clearly implies (a) and (b).

To prove (iii), observe first that, by Taylor's formula, given 

(t,x,u,x) in A and (t,x,u,v) in A, there exists X in (0,1) such that

E(t,x,u,x,v) = i <v - x , L-(t,x,u,x + X(v - x))(v - x)> > 0

and (a) holds. For (b), let x in E(A) and suppose there exists s in 

(t0»ti> such that

a:= x(s - 0) * x(s + 0) =:b.
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Set, for all (t,v) in [tQ,t1] x Rn,

F(t,v):= L(t,x(t),x(t-0),v) - <v , L^(x(t))>.

Since L- o x is continuous on [tQ,t1],

F(s,a) - F(s,b) = E(s,x(s),x(s-0),b,a) > 0

F(s,b) - F(s,a) = E(s,x(s),x(s-0),a,b) > 0

and we arrive to a contradiction. Hence, x is continuous on [tQ,t1] and 

the proof is complete.

8. Corollary: Suppose L and are continuous on A, xQ is a non

singular trajectory and, for some e > 0, xQ e V(A;e). Then e can be 

diminished so that E(t,x,u,x,v) > 0 for all (t,x,u,x) in T1(xQ;e) and 

(t,x,u,v) in A with v t x. Moreover, if xQ is also an extremal, then xQ 

is C1. In other words, for all e > 0, E'(A) fl W(A;e) c C1([t0,t1]) and, 

in particular, E'(A) n L(A) c C1([t0,t1]).

Proof: The first part follows by Lemma 4. It can also be proved 

directly as follows: diminish e so that |L^(t,x,u,x) | t 0 for all 

(t,x,u,x) in T1(xQ;e). Suppose the result is false, i.e., there exist 

& < e and (t,x,u,x,v) with (t,x,u,x) in T1(xQ;8), (t,x,u,v) in A and 

v t x, such that E(t,x,u,x,u) = 0. Setting f(w):= E(t,x,u,w,v) for all w 

in Rn, f has a local minimum at w = x and so,

0 = f'(x) = - L-(t,x,u,x)(v - x).

But this implies v = x and the first part is proved.

Assume now that xQ is also an extremal. As in the proof of Corollary 

7(iii), suppose there exists s in (t0,t1) such that

a:= xQ(s - 0) t xQ(s + 0) =:b.
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Set, for all (t,v) in [t0,t1] x Rn,

F(t,v):= L(t,xo(t),xo(t-0),v) - <v , L-(xQ(t))>.

Since o xQ is continuous on [tQ,tx] and, by definition, (t,xQ(t),a) 

and (t,xQ(t),b) belong to T ^ x ^ e )  n A,

F(s,a) - F(s,b) = E(s,xo(s),xo(s-0),b,a) > 0

F(s,b) - F(s,a) = E(s,xo(s),xo(s-0),a,b) > 0

which implies that xQ is of class C1.

Finally, assume only that xQ e E'(A) fl L(A). Since L̂ * is positive 

definite along xQ, there exists e > 0 such that |L^-(t,x,u,x) | > 0 for 

all (t,x,u,x) in T^x^e). Let (t,x,u,x) and (t,x,u,v) in T1(xQ;e), and 

assume t in (tQ,t1) does not correspond to a corner point of xQ. Since 

the set

{(t,x,u,y,v) | |y - x0(t)| < e} 

is convex, we obtain, by Taylor's formula,

E(t,x,u,x,v) = L(t,x,u,v) - L(t,x,u,x) - <v - x , L-(t,x,u,x)>

l
* f (1 -  X){<v -  x , L-• ( t , x , u , x  + X(v -  x ) ) ( v -  x)>}dX 

0

> 0.

Therefore the condition of Veierstrass on T ^ x ^ e )  holds along xQ except 

possibly at the endpoints and corner points of xQ. But by continuity, it 

holds at these points also, and so xQ t W(T1(x0; e)je). The previous 

result applies for this case and we obtain the required smoothness of

V

We prove next that nonsingular extremals satisfy a system of differen
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tial difference equations involving both advanced and retarded argu

ments.

9. Proposition: Suppose Lx is of class Cr(A) (r £ 1), and xQ is a 

nonsingular trajectory in X(A). Set p0(t):= L^(xQ(t)) and, for all 

e > 0, let

T2(x0;e):= {(t,x,u,p) e TQ(x0;e) x Rn | |p - p0(t)| < e).

Then there exist e > 0 and a function A(t,x,u,p), with Ap of class Cr on 

T2(xQ;e), such that the following are equivalent:

i. x e E'(A) n C1([t0,t1])f p(t) = L^(x(t)) and, for all t in 

[t0,t1], (t,x(t),x(t—0),p(t)) belongs to T2(xQ;e).

ii. (x,p) satisfies the difference-differential system (which we 

label (EE)):

x(t) = Ap(t,x(t),x(t-0),p(t)) t0 < t < t1

p(t) = - Ax(t,x(t),x(t-0),p(t))

- Au(t+0,x(t+0),x(t),p(t+0)) tQ < t < tx-0

= - Ax(t,x(t),x(t-0),p(t)) tx-0 < t < tx

Proof: By the implicit function theorem, there exist € > 0 and a 

unique function U of class Cr mapping T2(xQ;e) to Rn, such that, for all 

(t,x,u,p) in T2(x0;e),

p = L-(t,x,u,U(t,x,u,p)).

Define, for all (t,x,u,p) in T2(xQ;e):

A(t,x,u,p):= <p , U(t,x,u,p)> - L(t,x,u,U(t,x,u,p)) 

(the Legendre transform with respect to xQ), and observe that
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Ax(t,x,u,p) = - Lx(t,x,u,U(t,x,u,p))

Au(t,x,u,p) = - Lu(t,x,u,U(t,x,u,p))

Ap(t,x,u,p) = U(t,x,u,p).

This implies the required smoothness of A. Now, clearly, (i) * (ii) fol

lows by uniqueness of U and Proposition 6 and (ii) (i) follows dimin

ishing e so that |L^-(t,x,u,x) | * 0 for all (t,x,u,x) in T1(xQ;e).

5 THE SECOND VARIATION: JACOBI'S CONDITION

At this stage we can express, in terms of Euler's equation, trajec

tories for which the first variation vanishes on Y. Now we want to 

characterize H(A) and H'(A), i.e., the sets of trajectories for which 

the second variation is nonnegative or strictly positive in Y. In the 

delay free problem, they were characterized in terms of conjugate 

points, that is, points where the fundamental matrix solution of the 

Jacobi equation (Euler's equation for the integrand B), is singular. The 

whole purpose of this section is to find an equivalent concept for the 

delay problem.

Denote by Jx the second variation with respect to x and by Ex the set 

of secondary extremals with respect to x, i.e., trajectories satisfying 

Euler's equation for 2:

Jx(y):= I"(x;y) = J 2S(t,y(t),y(t-0),y(t))dt
fco

Ex:= {y e X | Jx'(y;z) = 0 V z e Y).

Several properties of these sets which will be used repeatedly 

throughout this section are summarized in the following lemma. They fol
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low directly from the definitions.

10. Lemma; Suppose L e C2(A;x,u,x). Then for all x, y and z in X, the 

following holds;

i. 2Jx(y) = Jx'(y;y)

ii. Jx'(y;z) = Jx'(z;y)

iii. If x e H(A) and y e Y' then y e Ex if, and only if, Jx(y) = 0

iv. If x c H'(A) then Y n Ex = {0}.

Now, fix xQ in X and set, for all tQ < t < tx,

A(t):= L--(x0(t)) B(t):= Lxx(x0(t))

C(t):= L*u(x0(t)) D(t);= Lxx(xQ(t))

E(t>:= Lxu(x0(t)) F(t):= Luu(x0(t))

so that, for all (t,y,v,y) in [tQ,t1] x R3n,

2S(t,y,v,y):= <y , A(t)y> + <y , D(t)y> + <v , F(t)v>

+ 2{<y , E(t)v> + <y , B(t)y> + <y , C(t)v>}, (2.18)

2y(t,y,v,y) = B(t)y + D(t)y + E(t)v 

S2v(t,y,v,y) = C*( t)y + E*(t)y + F(t)v 

2y(t,y,v,y) = A(t)y + B*(t)y + C(t)v.

and

2Q(t,y,v,y) = <y , Sy(t,y,v,y)> + <v , Sv(t,y,v,y)> + <y , S2y(t,y,v,y)>.

Assume that xQ e L'(A). By Corollary 7(iii), all secondary extremals 

with respect to xft are of class C1 and so y e E if> and only if,0 Xft
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Jt By(y(t)) = ay(y(t)) + 2v(y(t+9))

= 8y(y(t)) . t ^ e  < t < tx.

This is Jacobi's equation for the trajectory xQ, which we label (JE). In 

terms of (2.18) it is given by:

Not surprisingly, Jacobi's equation for the delay problem presents 

shortcomings absent in the previous linear ordinary differential equa

tion: the Legendre transform for the secondary problem is now given by a 

linear delay differential equation involving both advanced and retarded 

arguments. We start expressing (JE) in a standard form and see if we can 

apply general theorems on existence and uniqueness of solutions of the 

equation. Assuming A, B and C are differentiable, define a£j(t) for 

i,j = 0,1,2 as follows:

jf[A(t)y(t) + B*(t)y(t) + C(t)y(t-9)]

= D(t)y(t) + E(t)y(t-0) + B(t)y(t) + F(t+0)y(t)

+ E*(t+0)y(t+0) + C*(t+0)y(t+0) 

= D(t)y(t) + E(t)y(t-0) + B(t)y(t)

V ( t )  to+0 < t < tx 

aoo^t  ̂ = ' 0 t1 < t < tx+0
\
/
C*(t) tQ+0 < t < tx

/
F(t) + D( t-0) - B*(t-0) tQ+0 < t « t±

D(t-0) - B*(t-0) tx < t < tx+0
\

and, for all t in [tQ+0,tx+0],
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a20(t) = E(t-0) - C(t-0) a02(t) s a22(t) h 0

ail(t) = B(t-G) - B*(t-0) - A(t-0) 

a21(t) = -C(t-0) a12(t)^ -A(t-0).

Setting w0 = 0, co1 = 0 and w2 = 20, (JE) becomes, for all t in

[to+0>ti+9]»

Z I = 0. (2.19)
i -0 j -0

Define now AA(t) and Bi(t) (i = 0,1,2) by:

A0(t) 

A,( t) 

A2(t)

' I 0 N ' 0 -I \

k o a02(t)
4

B0(t) =
. •.«<*> a0i(1)

4

' 0 0 ' 0 0 \

0 al2(
4

B,(t) =
an <*> >

( 0 0 ' 0 0 \

• a22(t)
4

B2(t) =
a20(t) a2i(t)

4

r y(t)
and observe that, if we set v(t) = 

the linear delay differential system: 

2

y(t)

Z [Ai(t)v(t-wi) + B1(t)v(t-coi)] = 0
i *0

>
then (2.19) is

*

to+0 < t < ^+0.

equivalent to

( 2 . 20)

For a system of this kind there do exist conditions implying existence 

and uniqueness of solutions. They are of the form:

v(t) = <J/(t) to-0 < t < to+0 (2.21)

where *f/(t) is a continuous function on [tQ-0,to+0], the matrices A£(t) 

and Bi(t) are continuous on [tg+0,^+0] and AQ(t) is nonsingular on the 

entire interval [to+0,t1+0]. Under these hypotheses, there exists a
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unique continuous function v(t) satisfying (2.20) and (2.21). Now, since 

aQ2(t) B 0, we have for our case that det(AQ(t)) = 0. Several examples 

in [2] and [12] are given where, for this case and imposing initial con

ditions of the type (2.21), there does not exist a solution and, even if 

the matrices AA(t) and Bi(t) are continuous and there exists a solution 

of (2.20) and (2.21), it may not necessarily be continuous.

The question at this point is whether there exist initial conditions 

for (JE) implying a unique continuous solution and, if any, see if they 

are appropriate for an equivalent definition of conjugate points. As we 

did in Chapter 1, let us express (JE) in terms of the Legendre transform 

for Q. Observe that the assumption of A, B and C being differentiable is 

unnecessary in this representation.

11. Proposition: Suppose xQ satisfies Legendre's strengthened condi

tion. Then the following are equivalent:

i. y is a secondary extremal (with respect to xQ) and, for all t in 

It0,t1], q(t) = A(t)y(t) + B*(t)y(t) + C(t)y(t-0).

ii. (y,q) satisfies the linear difference-differential system (which 

we label (JE)'):

1. y(t) = Aj(t)y(t) + A2(t)y(t-0) + A3(t)q(t)

2a. q(t) = A4(t)q(t) + A5(t)q(t+0) + Ag(t)y(t) + A7(t)y(t-0) + A8(t)y(t+0) 

2b. q(t) = A4(t)q(t) + A9(t)y(t) + A?(t)y(t-0).

(1) is satisfied on [tQ,t1], (2a) on [tQ,t1-0], (2b) on [t1-0,t1] and 

the matrices Aa are given by:

A^t):- -A-1(t)B*(t)

A2(t) := - A - ^ D C d )

A3(t);= A-1(t)
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A,(t):= B(t)A-1(t)

A5(t):= C*(t+6)A_1(t+e)

A6(t):= D(t) + F(t+6) - B(t)A-1(t)B*(t) - c’d+ejA-'d+ejcdtS) 

A,(t)i= E(t) - B C O A ^ C D C d )

At(t): = E*(t+6) - C^t+ejA'Ht+ejB'd+e)

A9(t):= D(t) - B(t)A-1(t)B*(t).

This is the equivalent of Proposition 1.9. As ve shall see below, the 

difficulties mentioned above for finding a unique solution of (JE) are 

overcome imposing initial conditions for (JE)' of the form

(1) ' y(t) = <Kt) to-0 < t < t0

(2) ' q(c) = q0

with \f/: [ tQ-0, tQ] Rn continuous, q0 in Rn and c any point in [t1-0,t1].

12. Lemma: For all h £ 0 let x(h):= max{t0,t0 - 0 + h), Qx(h): = 

C°([tQ-0,tQ+h],Rn), S2(h):= C°( [ tQ, tQ+h] ,Rn) and suppose the matrices

Ax ,...,A9 are continuous. Then there exists h strictly positive such 

that, given ip: [tQ-0, t0] -» Rn continuous, q0 e Rn and c e [x(h),t0+h], 

there is a unique (y,q) e ^(h) x Q2(h) solution of (1) on [tQ,t0+h], 

(2a) on [tQ,x(h)] and (2b) on [x(h),t0+h], satisfying the initial condi

tions (1)'(2)'.

Proof: For all i = 1,...,9 let aj,^ || A± || and assume, without loss of
9

generality, that there exists i such that aA * 0. Let M:= ( L ai )"1,
l

take 0 < h < M with h < tj - tQ and suppose <J/:[tQ-0, tQ] -> Rn continuous, 

q0 e Rn and c e [*c(h),t0+h] are given. We are going to prove that this 

way of choosing h satisfies the assertion of the lemma.

Let S1:S22(h) -> ^(h) and S2:91(h) -» C2(h) be such that, for all
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q e S2(h), Sĵ Cq) is the unique solution of (1) on [t0,tQ+h] satisfying 

(1)' and, for all y e S2(h), S2(y) is the unique solution of (2a) on 

[t0,x(h)] and (2b) on [x(h),t0+h] satisfying (2)'. That these functions 

are well defined is easily verified in view of the theorem on existence 

and uniqueness of solutions for delay differential systems of this kind.

Now, if we set S:= Sx o S2, clearly the existence of a fixed point of 

S is equivalent to the existence of a solution of (1)(2) satisfying 

(1)'(2)'. Consequently, the lemma will be proved if we show that there 

exists 0 < a < 1 such that, for all x, y e Sx(h), || S(x) - S(y)|| < 

a|| x — y|| for, by the contraction principle, S will have a unique fixed 

point on S1(h).

To begin with, note that the following holds for all y in Q1(h) and q 

in S2(h):

(Sx(q))(t) = *(t) t0-G « t « t0 (2.22)

= ^(t0) + I [A1(s)(S1(q))(s) + A2(s)(S1(q))(s-0) + A3(s)q(s)]ds

t0 < t < tQ+h

(S2(y))(t) = r(y;t) x(h) « t « t0+h (2.23)

= Y(y;x(h)) + /  [A4(s)(S2(y))(s) + A5(s)(S2(y))(s+e)
T(h)

+ Ag(s)y(s) + A?(s)y(s-0) + Ag(s)y(s+0)]ds tQ ^ t < x(h)

where, for all t 8 [x(h),tn+h],

Y(y;t):= qo + S [A4(s)(S2(y))(s) + Ag(s)y(s) + A7(s)y(s-0)]ds

Let x, y e ^(h). In view of (2.22),
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II S(x) - S(y) || = sup{ | S1(S2(x))(t) - S1(S2(y))(t) | | t0-6 < t « t0+h }

< hCaj+a^ll S(x) - S(y)|| + ha3||S2(x) - S2(y)||.

This implies that, if h(a1+a2) < 1 and we set ax:= ha3/(l-h(a1+a2)), 

then || S(x) - S(y)|| < aj| S2(x) - S2(y)|| .

On the other hand we have, in view of (2.23):

|| S2(x) - S2(y) || = sup{ | (S2(x))(t) - (S2(y))(t) | | tQ < t < tQ+h )

^ (T(h)-t0)(a4+a5) || S2(x) - S2(y)|| + (x(h)-t0)(a6+a7+a8) || x - y||

+ (t0+h-T(h))(a4|| S2(x) - S2(y)|| + (ag+a7)||x - y|| )

= (ha4 + (x(h)-t0)a5) || S2(x) - S2(y)||

+ [ha7 + (tQ+h-x(h))ag + (x(h)-t0)(afi+a8)] || x - y|| .

So, if ha4 + (x(h) - t0)a5 < 1, we have || S2(x) - S2(y)|| < a2|| x - y|| , 

where:

a2:= {h(a7+ag) + (x(h)-t0)(a6+a8-ag))/{l - (ha4 + (x(h)-t0)a5)).

The proof is almost complete since, if h satisfies h(a1+a2) < 1 and 

ha4 + (x(h)-t0)a5 < 1, then || S(x) - S(y)|| < a|| x - y|| , where a = ot^. It 

remains to show that the way we chose h implies these two conditions 

together with 0 < a < 1.
9

To this end observe that, since h < ( E a. )_1, h(ax + a2) < 1 and the
l

first condition holds. For the second, we may assume x(h) = to-0+h > tQ 

since the case x(h) = tQ is trivial. Hence, x(h)-tQ = h-0 > 0 which 

implies

ha4 + (x(h)-t0)a5 = h(a4+a5) - 0a5 < 1

and the second condition follows. To prove that 0 < a < 1, observe first 

that ax < 1 since h(a1+a2+a3) < 1. Now, if x(h) = tQ, we clearly have
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a2 < 1 and the result follows. Suppose then that x(h) = tQ-0+h. This 

implies:

h(a7+a9) + (x(h)-t0)(a6+a8-a9) + ha4 + (x(h)-t0)a5 

= h(a4+a7+a9) + (T(h)-t0)(a5+a6+a8-a9)

= h(a4+a5+a6+a,+a8) - 0(a5+a6+ae-a9)

9
< h( E a£ ) - 0(a5+a6+a8) < 1.

4

Hence, for this case we also obtain a2 < 1 and, by definition of a, it 

follows that 0 < a < 1. The proof is complete.

We are interested in obtaining Lemma 12 with the constant h replaced 

by tx - tQ, so that the unique solution of the Jacobi equation will be 

defined on the whole interval [tQ-0,tx]. The proof of Lemma 12 implies 

the following result.

13. Theorem: Suppose L c C2(A;x,u,x), xQ e L'(A) is a trajectory of 

class C1 on [tQ,t1] and

e « -  t ,  < ( E II AJI r 1. ( 2 . 24)
1

Then, for all <J/:[to-0, tQ] ■+ Rn continuous, q0 e Rn and c e [tl-0, t1], 

there exists a unique (y,q) e C°([to-0,t1],Rn) x C°([t0,tx],Rn) solution 

of (1)(2), satisfying the initial data (1)'(2)'.

Remark: Throughout the remaining of this chapter we shall assume that 

condition (2.24) holds, thus limiting ourselves to problems for which 

the delay is "sufficiently small". It should be noted that, under the 

usual smoothness hypotheses for the Legendre transform, an analogous 

proof to that of Lemma 12 shows that initial conditions (1)'(2)'
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guarantee existence and uniqueness of solutions of (EE).

Based on Theorem 13, the notion of "conjugate point" seems now 

natural: denote by (Y( *,t0),Q( *,t0)) the (matrix) solution of (JE)' 

satisfying:

Y(t,t0) = 0 for to-0 < t < t0 

Q(tlft0) = I.

Following the definition for the problem without delays, a point s in 

(tQ, tx] would be called conjugate to tQ with respect to xQ if Y(s,tQ) is 

degenerate. As the following proposition shows, there would be a slight 

difference between the two definitions.

14. Lemma: Let s be any point in (tQ,t1]. Then the following state

ments are equivalent:

i. Y(s,t0) is singular.

ii. There exists y, a nonvanishing secondary extremal with respect to 

xQ, satisfying y(t) * 0 for all t in [t0—0,t0] and y(s) = 0.

Proof: (i) + (ii) follows clearly defining y(t):= Y(t,t0)c where c in 

Rn - {0} is such that Y(s,t0)c = 0. Hence, assume (ii) is true and let, 

for all t in [tQ,t1],

q(t):= A(t)y(t) + B*(t)y(t) + C(t)y(t-0).

Let c:= q(tx). Since y(t) = 0 on [tQ-0,to], c ^ 0 for otherwise y * 0. 

Define z(t):= Y(t,t0)c and r(t):= Q(t,t0)c. Hence, (z,r) satisfies 

(JE)', z vanishes on [tQ—0,t0] and r(tx) = c = q(tx), which implies that



Sec. 5] The second Variation: Jacobi's Condition 75

(z,r) = (y,q). Consequently, Y(s,t0)c = y(s) = 0 and (i) follows.

The slight difference is that it cannot be assured the nonvanishing of 

the secondary extremal y on the whole interval (tQ,s). As we saw in the 

proof of Proposition 1.10, this played a fundamental role in order to 

characterize H(A) in terms of conjugate points. The next lemma shows 

that there is an even stronger difference between the two problems.

15. Lemma: Suppose there exist y in E vanishing on [tQ-0,tQ] and c
xo

in (t0,t1] such that y(c) = 0. Let

/
y(t)

z(t):= « 0
to-0 < t ^ c

c < t ^ tl

Then z belongs to Y and

where x(t):= min{t+0,t1}.

Proof: From the definition of Q it follows that:

Qy(z(t)) = Sy(y(t))

= E(t)y(t-0)

t0 « t < c

c < t ^ t (c )

= 0 x(c) ^ t < tx

2y(Z(t)) = 2y(y(t))

= C(t)y(t-0)

t0 < t < c

c < t < t (c )

= 0 t (c ) < t < tx
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2v(z(t)) = 2v(y(t))

= F(t)y(t-0) 

= 0

t0 < t < c
c < t < t (c ) 

t (c ) < t <

Consequently,

Jx (z) = J «z(t) , 2y(z(t))> + <z(t-0) , fiv(z(t))> + <z(t) , 2-(z(t))»dt

J (<y(t) , 2y(y(t))> + <y(t-0) , 2v(y(t))> + <y(t) , 2^(y(t))>}dt

T(C )
+ J <y(t-0) , F(t)y(t-0)>dt

For the case c e (t ,t,-9] we obtain:

J (z) = J «y(t) , S(y(t)) + B„(y(t+9))> + <y(t) , B-(y(t)»}dt
0 *o

c+e c
+ J <y(t-0) , F(t)y(t-0)>dt - J <y(t) , 2v(y(t+0))>dt

c c-9

= f  jf[<y(t) , B-(y(t)»]dt

c+e
+ ; <y(t-9) , F(t)y(t-6) - B (y(t))>dt

c+e
= - I <y(t-0) , C*(t)y(t) + E*(t)y(t)>dt

For the case c t (t1-0,t1] the proof is similar and we obtain:

J (z) = - J <y(t-0) , C*(t)y(t) + E*(t)y(t)>dt

In view of the last two lemmas, we adopt the following definition of

conjugate point:
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Definition: A point c in (t0,t1] will be called conjugate to t0 with

respect to x0 if there exists y in E such that:
xo

i. y is nonvanishing on (tQ,c).

ii. y(t) = 0 for all t in [tQ—©,tQ] and y(c) = 0.
T ( C )

iii. J <y(t-0) , C*(t)y(t) + E*(t)y(t)>dt > 0.
c

where x(t):= minCt+G,^}.

According to this definition, we characterize the set H(A) in the next 

proposition.

16. Proposition: Suppose L e C2(A;x,u,x) and xQ is a C1 trajectory in 

H(A) satisfying the strengthened Legendre condition. Then the following 

holds:

a. There are no conjugate points to tQ on the interval (tQ,t1-0].

b. If there exists s in (t1-0,t1] such that L^u(xQ(s)) = 0, then 

there are no conjugate points to tQ on (tQ,s).

Proof: Suppose there exist c e (t0,tx—0] and y secondary extremal, 

satisfying (i)-(iii) above. In view of (ii) and (iii) and Lemma 15, the 

function

z(t):=
'y(t)

4 o
\

tQ-0 < t < c

C < t $ tx

belongs to Y and J (z) = 0. Since xQ e H(A), z must be a secondary
xo

extremal with respect to xQ and so it satisfies (JE). Setting

r(t):= A(t)z(t) + B*(t)z(t) + C(t)z(t-0)

(z,r) satisfies (JE)'. Now, z(t) = 0 on [tQ-0,tQ] and, since



78 Systems with one Delay [Ch. 2

c e (to,t1-0], r(t) = 0 for all t in [c+0,tx]. By Theorem 13, it follows 

that z s 0, thus contradicting (i). This proves (a) and, clearly, the 

same argument applies for (b).

17. Remark: Consider the following two conditions:

Cl. If y satisfies (JE) and there exists c > tQ such that y(t) = 0 

for all t in [tQ-0,c], then y 'm 0.

C2. The matrix

T(t)
1^(1):= J Y*(s-e,t0)(E*(s)Y(s,t0) + C*(s)Y(s,t0))ds

t

is positive semidefinite at points in (tQ,t1] where Y(-,tQ) is singular,

i.e., |Y(c,t0)| = 0 =► Ky(c) > 0.

Observe that, assuming these conditions, Proposition 16 holds if we 

define conjugate points as was suggested in the previous "natural" way,

i.e., points where the matrix Y(*,t0) is singular. In fact, under these 

conditions, the two definitions are equivalent in view of Lemma 14.

Conditions (a) and (b) of Proposition 1.16 will be called Jacobi's 

condition. We turn now to characterize condition H'(A) and find an ana

log of Jacobi's strengthened condition. For the delay free problem, it 

was shown in Proposition 1.12 that, if (Y,Q) is a solution of (JE)', 

then Y*(t)Q(t) - Q*(t)Y(t) is constant. This was basic in order to prove 

that xQ e H'(A) if, and only if, the matrix Y(-,t0) is nonsingular on 

the interval (tQ,t1]. The next lemma shows what happens in the delay 

case.

18. Lemma: Suppose L e C2(A;x,u,x), (Y,Q) is a matrix solution of 

(JE)' and Y(t) = 0 for all t in [tQ—0,tQ]. Then:
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Q*(t)Y(t) - Y*(t)Q(t) =
T(t)
J
t

(Y*(s)C(s) + Y*(s)E(s))Y(s-0)ds

T(t)
- J Y*(s-0)(C*(s)Y(s) + E*(s)Y(s))ds (2.25)

where x(t) = min{t+0,tx).

Proof: For all y and z in X ,let:

T(t )
K(y,z;t):= J <z(s-0) , C*(s)y(s) + E*(s)y(s)>ds.

t

We shall first prove that, if y and z are any trajectories in E then,
xo

for all t in [tQ,t1]:

<z(t) , 2y(y(t))> - <z(t0) , 2y(y(t0))> + K(y,z;t0) - K(y,z;t)

= <y(t) , S^(z(t))> - <y(t0) , S2y(z(t0))>

+ K(z,y;t0) - K(z,y;t) (2.26)

Let t in [tQ,t1] and assume t < tx-0 (for the case t > tx-0, the proof 

is analogous). From the definitions we have:

<z(t) , Sy(y(t))> - <z(t0) , S2y(y(t0))>

t
= J (<z(s) , Sy(y(s)) + Qv(y(s+0))> + <z(s) , Q^(y(s))>}ds

fco

= <y(t) , 2-(z(t))> - <y(t0) , 2-(z(t0))> 

t0+e
+ f (<y(s-0) , sv(z(s))> - <z(s—0) , S2v(y(s))>}ds

*0

t+e
+ J {<z(s—0) , Bv(y(s))> - <y(s-0) , Sv(z(s))>)ds
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which implies (2.26).

Now, denote the columns of Y and Q by y± and qA respectively. Since 

qA(t) = SyCy^t)), the (i,j)-entry of the matrix Q*(t)Y(t) - Y*(t)Q(t) 

is given by

<qi<t) , yj(t)> - <yi(t) , qj(t)>

= M y ^ y ^ t )  - K(yj,yi;t)i

T(t)
= J { ^ ( s )  , C(s)yj(s-G)>

t

T(t)
- J (<y.(s-0) ,

t

which is the (i,j)-entry of the right hand matrix in (2.25). The equal

ity follows.

+ <yi(s) , E(s)yj(s-0)>)ds 

C*(s)y.(s) + E*(s)y.(s)>)ds

19. Lemma: Suppose there exists a matrix solution (Y,Q) of (JE)' such 

that |Y(t)| * 0 and

T(t)
Y*(t)Q(t) - Q*(t)Y(t) = | [R*(s) - R(s)]ds

t

for all t in [t^tj, where R(t) = Y*(t-0)(C*(t)Y(t) + E*(t)Y(t)) and 

x(t) « min{t+0,t1). For all y in Y, let

w(t):=
o t0-e « t < t0

Y-1(t)y(t) t„ « t «

and

T(t):= Y*(t-0)(C*(t)y(t) + E*(t)y(t)).

Then
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1
J (y) = J <Y(t)w(t) , L-(x0(t))Y(t)w(t)>dt 

0

tl T(t)
+ 2 J <w(t) , J (R(s)w(t) - T(s)}ds>dt. 

fco

Proof: The proof follows directly from the definitions. Let z(t):= 

Y(t)w(t) so that y(t) = Y(t)v(t) + z(t). From the definition of Q,

<y(t) , 2y(y(t))> = <Y(t)w(t) + z(t) , Q(t)w(t) + A(t)z(t)>

+ <Y(t)v(t) + z(t) , C(t)Y(t-e)(w(t-0) - w(t))>

and similarly, for tQ < t ^ tx-0,

<y(t),Qy(y(t)) + 2v(y(t+6)» = <Y(t)w(t) , Q(t)w(t) +B(t)z(t) + C*(t+0)z(t+0)> 

+ <w(t) , Y*(t)E(t)Y(t-0)(w(t-0) - w(t)) + R(t+0)(w(t+0) - w(t))> 

and, for tx-0 < t < tx,

<y(t) , S2y(y(t))> = <Y(t)w(t) , Q(t)w(t) + B(t)z(t)>

+ <Y(t)w(t) , E(t)Y(t-0)(w(t-0) - w(t))>.

Hence,

J <y) = X {ff«v(t) , Q (t)Y(t)w(t)» + <z(t) , A(t)z(t)»dt 
0 ‘o

tl
+ 2 J <w( t-0) - v(t) , Y*(t-0)C*(t)z(t) + R(t)w(t)>dt

fco

ti
+ J <w(t) , R(t)w(t) + (Q*(t)Y(t) - Y*(t)Q(t»w(t)>
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- J <w(t—9) , R(t)w(t-0)>dt 
"o

ti
= J <z(t) , A(t)z(t)> 

fco

tj- T(t)
+ 2 J {<w(t-0) - w(t) , T(t)> + <w(t) , ( J R(s)ds )w(t)>}dt 

and the result follows.

Consider the following condition:

t'1 T(t)
C3. For all y in Y, J <w(t) , J (R(s)w(t) - T(s)}ds>dt £ 0.

*

We are now in a position to prove the analog of Proposition 1.12. We 

shall say that xQ satisfies Jacobi's strengthened condition if there are 

no conjugate points to tQ with respect to xQ on (tQ,t1].

20. Proposition: Suppose L e C2(A;x,u), L- e C1(A) and xQ is a non

singular extremal satisfying the Legendre condition. If conditions (Cl), 

(C2) and (C3) hold, then the following are equivalent:

i. xQ e H'(A).

ii. xQ satisfies Jacobi's strengthened condition.

iii. The matrix Y(t,t0) is nonsingular for all t in (tQ,t1].

Proof: (i) (ii): By Corollary 8, xQ is C1 on [10,tx] and so, by Pro

position 16, (ii) holds on the interval (tQ,t1-0]. Suppose there exists 

a conjugate point on (tj-0,^]. Then, as in the proof of Proposition 16, 

there exists z in Y - (0) such that J (z) ^ 0 contradicting (i).

(ii) * (iii): See Remark 17.
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(iii) »► (i)s Setting p0(t) = L-(x0(t)), (xQ,p0) satisfies (EE). In 

the proof of Proposition 9 we saw that solutions of (EE) are C1- 

extreraals lying in a neighborhood of (t,xo(t),xQ(t-0),po(t)), and so 

(xQ,p0). can be extended over a larger interval [tg-e^+e]. Solve the 

problem for (EE) (see the remark following Theorem 13) with initial data 

(0 < 8 < e)s

x(t,X) = x0(t) to-0-S < t < t0-$

p(tx,X) = X + P0(t^) •

Since x(*,X) are extremals of L, the following holds:

-  g t l L ^ x d . X ) ) ]  + Lx( x ( t , X ) )  + Lu( x ( t + e ,X ) )  ■  o t 0 « t « t t - e  

-  j t l L ^ x a . X ) ) ]  + Lx( x ( t , X ) )  ■  o t j - e  « t « v

The smoothness of L* permits to differentiate with respect to X. Since 

x(t,0) = xQ(t) by uniqueness, it follows that the matrix Y(t,t0-8): 

3x(t,0)/3X satisfies Jacobi equation (JE). Setting

Q(t,t0-S):= A(t)Y(t,t0-8) + B*(t)Y(t,t0-«) + C(t)Y(t-0,tQ-S),

it follows that (Y(t,t0-5),Q(t,tQ-S)) solves (JE)'.

Observe now that Q(t,t0-5) = 3p(t,0)/3X since, by Proposition 9, 

p(t,X) = L^(x(t,X)). By the boundary conditions imposed for x(*,X) and 

P( iX),

Y(t,t0-S) = 0 to-0-8 « t < t0-8

Q(t1,t0-8) = I.

In view of (iii) it follows, by continuity considerations, that the 

matrix Y(t,t0-5) is nonsingular for some S > 0 on the entire interval
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(t()-5,t1]. The rest of the proof is the content of Lemmas 18 and 19.

We summarize the results of this and the previous section stating the 

analogs of Theorems 1.11 and 1.13. They follow directly from Proposi

tions 6, 16 and 20.

21. Theorem: Suppose L e C2(Aj x,u ,x ) and x is a trajectory solving 

P(A). Then x satisfies Euler's equation and the conditions of Legendre 

and Weierstrass. If also x is nonsingular then x satisfies Jacobi's con

dition.

22. Theorem: Suppose L e C2(A;x,u), L^ e C1(A) and conditions (Cl), 

(C2) and (C3) hold. If x in X#(A) is a nonsingular trajectory satisfying 

Euler's equation, Legendre's condition and Jacobi's strengthened condi

tion, then x is a weak minimum for P(A). If also L is regular on A or x 

satisfies the strengthened condition of Weierstrass, then x is a strong 

minimum for P(A).

Remark: It should be noted that the proof of Proposition 20 permits us 

to embed explicitly trajectories belonging to H'(A) into families of 

extremals, suggesting an extension of Mayer fields and the Hamilton- 

Jacobi theory. The conditions required for these extensions turn out to 

be quite similar to those of (C3). Consequently, we shall stop at this 

point the parallel between the two problems. The shortcomings presented 

in order to verify these conditions will be overcome in the next chapter 

through a completely different approach.



CHAPTER 3

THE METHOD OF STEPS

1 INTRODUCTION

The problem studied in Chapter 2 is converted, through the "method of 

steps", into one without delays. This new problem will not have fixed 

endpoint constraints but necessary conditions for a minimum will turn 

out to be a direct consequence of the results obtained in Chapter 1. 

Sufficiency will be derived through the Hamilton-Jacobi inequality, 

fields of extremals and the positivity of the second variation, adding 

an extra condition to the classical sufficient conditions for delay free 

problems. This extra condition is based exclusively on a solution of a 

given matrix Riccati equation. The main difference between these condi

tions and those stated in Theorems 2.21 and 2.22, will be the concept of 

conjugate point. We introduce the notion of "conjugate sequence" and 

overcome the difficulties presented in order to verify the existence of 

the previous conjugate points.

We end this chapter presenting two examples illustrating some of the 

results. For the first one we use the notion of conjugate point to show 

that the problem under consideration has no minimum. For the second 

example, consisting of a problem with a weak minimum which is not a 

strong minimum, we apply the sufficient conditions of Theorem 2.5.

85
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2 AN EQUIVALENT NON-DELAY PROBLEM

Ve shall be dealing with the problem P(A) of Chapter 2 with A = 

[tQ,t1] x R3n. We assume throughout this chapter that the Lagrangian is 

integrable along any trajectory and the delay is strictly positive. For 

ease of notation every concept will be written without referring expli

citly to the set A. Hence, our problem, labeled (P), will be that of

minimizing the functional I(x) = J L(x(t))dt over X#, where the space
fco

of trajectories is given by

X = {x:[to-0, tx] -> Rn | x is piecewise-C1}, 

and the endpoint constraints are

X. = {x e X | x(t) = <fr(t) V t e [t0-9,t0] and x(tx) = 1}.

In this section we convert (P) into a non-delay problem. Let us start 

defining formally in what sense two problems will be called equivalent.

1. Definition: Given two sets X and X and functionals I:X -» R and 

I:X -> R, consider the problems:

P: Minimize I(x) over X#

P: Minimize I(x) over X#,

where X# and X# are subsets of X and X respectively. We shall say (P) 

and (P) are equivalent if there exists a one-to-one mapping $ of X# onto 

X# which leaves the value of the functionals unchanged, that is, one for 

which I(x) = i(*(x)) for all x e X#.

Clearly, if two problems (P) and (P) are equivalent, x solves (P) if, 

and only if, $(x) solves (P) and, when X and X are normed spaces and $ 

and $-1 are continuous with respect to the norm topology, the same
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applies for local optimality.

In order to find an equivalent non-delay problem for (P), consider the 

following definitions:

i. Let N: = max{k e N | t0 + k0 < tx], p:= N + 1 and t2:= tQ + p9. 

ii. Define L:[O,0] x R2np •» R as follows: extend L such that, for all 

t in (tlft2] and (x,u,x) in R3n, L(t,x,u,x) = L(tlfx,u,x) and let, for 

all t in [0,0] and x = (&0,...,xN) and v ■ (vQ,...,vN) in Rnp,

L(t,x,v):= L(t+to,xo,«Kt+to-0),vo) + I L(t+to+k0,xk,xk_1,vJt).
k-1

iii. Define c:Rnp -> Rnp, X and X# as follows:

c(x0,...,xM) = (<Kt0),x0,...,xN_1) for all (xQ,...,xN) c Rnp

X:= {x:[O,0] ■> Rnp | x is piecewise-C1}

X#:= {x c X | x(0) = c(x(0)) and xN(t-tQ-N0) = ^ V t e [t1,t2]}.

Consider now the new problem:

P: Minimize I(x) over X#

A A
where the functional I:X R is given by

0 - • .I(x):= J L(t,x(t),x(t))dt for all x c X.
o

2. Proposition: Problems (P) and (P) are equivalent.

Proof: Given x in X, extend x such that x(t) = x(t2) for all t in 

(tlVt2] and let * = ($0,... ,#N):X -> X be such that

(*k(x))(t):= x(t+tQ+k0) k «* 0,1,...,N, t c [0,0].

By construction, it is clear that $(X#) = X# and $ (restricted to X#) is
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one-to-one. The inverse of * (restricted to X#) is explicitly given by:

(*-1(x))(t) = 4>(t) t e [t0-e,t0]

= xk(t-t0-ke) t 8 [t0+ke,t0+(k+l)9] k = 0,1,...,N-l

= xN(t-to-N0) t e [t^NO,^].

To prove the invariance under the integral, let x e X# and set x:= $(x). 

From the definition of the functionals, we have:

I(x) = J L(x(t))dt 
fco

e n
= J I L(x(t+to+k0))dt

0 k-0

= J L(t+to,xo(t),<Kt+to-0),xo(t))dt 
0

e n
+ S Z L(t+to+k0,xk(t),xk_1(t),xk(t))dt

0 k = l

= i ( x ) .

In a natural way ve extend the concepts of tubes and restricted tubes, 

for the space X, as those defined in Chapter 1. For example:

T0(xje) = {(t,y) e [0,0] x Rnp | |x(t) - y| < e).

By construction, it is clear that the function ♦ preserves local 

optimality. Now, since (P) and (P) are equivalent, we obtain immediately 

necessary conditions for (P) for, if x solves (P), then x also solves 

the problem:

P': Minimize I(y) over X#'

X/:= {y e X | y(0) = x(0) and y(0) = x(0)}

where:
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and, for this fixed endpoint problem, we can apply the results of 

Chapter 1.

These remarks and Theorem 1.3 imply the following result. Denote by Y 

the set of trajectories in X vanishing at 0 and 9 and the Weierstrass 

excess function for L by E.

3. Theorem: Suppose L e C2(x,v) and x is a weak minimum for (P). Let 

x: = *(x). Then the following holds:

i. For all y e Y, i'(x;y) = 0. 

ii. For all y e Y, I"(x;y) £ 0. 

iii• For all t e [0,0], L..(t,x(t),x(t)) > 0.

If x is a strong minimum for (P), then x also satisfies:

iv. For all u e Rnp, E(t,x(t),x(t),u) £ 0.

3 A VERIFICATION THEOREM

The Hamilton-Jacobi inequality, which we studied in Section 1.7, is 

given, for a C1 function W(t,y), by:

Wt(t,y) + <V.(t,y) , v> - L(t,y,v)

< Vt(t,x(t)) + <V.(t,x(t)> , x(t)> - L(t,x(t),x(t>)
(HJI)

For our problem, since the constraints are not fixed endpoints, this 

inequality is not enough for sufficiency. In the following proposition, 

which is readily verified, we show what else is needed.

4. Proposition: Suppose x belongs to Xa and there exist e > 0 and a 

function W of class C1 mapping T0(x;e) to R such that:
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a. (HJI) holds for all (t,y,v) e T1(x;c).

b. f(x(6)) < f(y(e>) for all y e \  with (t,y(t),y(t)) e T^xje) 

where f(y):= W(0,y) - W(0,c(y)).

Then x is a weak minimum for (P). If (HJI) holds for all (t,y,v) in 

T0(x;e) x Rnp and f(x(0)) < f(y(0)) for all y e X# with (t,y(t)) in 

TQ(x;e) then x is a strong minimum for (P).

In Section 1.7 it is shown how the classical sufficient conditions for 

the basic problem in the calculus of variations imply precisely the 

existence of a C1 function W satisfying (HJI). The proof we gave, based 

on that of F. H. Clarke and V. Zeidan, exhibits a verification function 

in terms of a solution of the Jacobi equation. It is given explicitly 

by:

V(t,y) = <L.(t,x(t),x(t)) , y> + \ <y - x(t) , V(t)(y - x(t))>

where V(t) = Q(t)Y_1(t) and (Y,Q) is a solution, with |Y(t)| t 0 and 

Y*(t)Q(t) = Q*(t)Y(t) for all t e [0,0], of the linear differential sys

tem:

Y(t) = A(t)Y(t) + B(t)Q(t)

Q(t) = (C - 6I)(t)Y(t) - A*(t)Q(t).

The constant 8 is strictly positive, and the matrices A, B and C are 

given by:

A(t) = - L.j(t)

B(t) = L0._1(t)

C(t) = L..(t) - L.(t) L.-'d) L-jd)
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where, for example, L..(t) is an abbreviation of L..(t,x(t),x(t)). The 

matrix V(t) = Q(t)Y“1(t) is symmetric and satisfies on [0,0] the matrix 

Riccati inequality:

V(t) + V(t)A(t) + A*(t)V(t) + V(t)B(t)V(t) - C(t) < 0. (3.1)

A
Now, observe that, given y e X#,

<L(0) , y(0» - <L-(0) , y(0)> = <L-(x(t0+(N+l)6)) , yN(0» - < L W )  , y0(0)>.

Hence, if we define, for all y in Rnp,

F(y):= <y - x(0) , V(0)(y - x(0)» - <c(y) - x(0) , V(0)(c(y) - x(0)»

it follows that, for all y c X#, f(x(0)) ^ f(y(0)) if» and only if, 

F(y(6)) ^ 0. Consequently, we obtain sufficient conditions for problem 

(P) (and hence, for the original one delay problem (P)), imposing the 

usual sufficient conditions for problem (P') together with the nonnega

tivity of F along the end points y(0), where y belongs to X# and, for a 

strong (weak) minimum, y lies on a tube (restricted tube) about x. Of 

course, both for a weak and strong minima, this last condition for F 

holds if, for some e > 0,

F(y) £ 0 for all y e RnN x with |y - x(0)| < e.

Now, let Z:= {z = (zQ,...,zR) e Rnp | zN = 0) and observe that this 

condition for F holds if, for all z e Z,

i. <F'(x(0)) , z> = 0 

ii. <z , F"(x(0))z> > 0.

Condition (i) holds in view of the constraint c(x(0)) = x(0) and (ii) is 

equivalent to <z , (V(0) - V(0)J)z> > 0 where the constant matrix

J = c' (x(0))c' (x(0)) is given given by = I i f i + j = 2  and Ji;j = 0 

otherwise. We shall label this condition (Dl):
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Dl: <z , (V(0) - V(0)J)z> > 0 for all z e Z, where V(t) is a sym

metric solution on [0,0] of the matrix Riccati inequality (3.1).

Let us turn now to sufficiency through fields of extremals and see its 

relation with condition (Dl). The verification theorem for (P) in terms 

of the Hamilton-Jacobi partial differential equation is stated in the 

following proposition. Recall that the Hamiltonian for L is given, for 

all (t,x,p) in [0,0] x R2np, by:

H(t,x,p):= sup{<p,u> - L(t,x,u) | u e Rnp).

5. Proposition: Suppose x belongs to X# and there exist e > 0 and a 

function V of class C1 mapping TQ(x;e) to R such that:

a. For all (t,y) s T0(x;e), Wt(t,y) + H(t,y,V.(t,y)) = 0.

b. For all t in [0,0],

H(t,x(t),V.(t,x(t))) = <W-(t,x(t)) , x(t)> - L(t,x(t),x(t)).

c. f(x(0)) < f(y(0)) for all y s Xe with (t,y(t)) s T0(x;e) where 

f(y):= W(0,y) - W(0,c(y)).

Then x is a strong minimum for (P).

As for (HJI), we know from Chapter 1 that the classical sufficient 

conditions for a strong minimum for (P') imply the existence of a C1 

function satisfying (5a) and (5b). The partial derivatives of W are 

given, for all (t,y) in TQ(x;e) by

Wt(t,y) = L(t,y,T(t,y)) - <P(t,y) , T(t,y)>

W-(t,y) = L(t,y,T(t,y)) = P(t,y)

where (r,T0(x;e)) is the Mayer-field constructed in Lemma 1.15 of which



Sac. 3] A Varification Thaorara 93

x is an extremal. Recall that I*(t,y) = x(t,X(t,y)), where X is the 

unique local solution of y = x(t,X(t,y)) and the family of extremals 

{x( *,X)} containing x are such that |xx(t,0)| t 0 for all t e [0,0]. 

Now, condition (5c) is satisfied, as before, if, for all z e Z,

i. <f'(x(0)) , z> = 0 

ii. <z , f"(x(0))z> > 0.

Observe that f'(x(0)) = W.(0,x(0)) - W.(0,x(0))c'(x(0)) and so (i) holds 

in view of c(x(0)) * x(0). For condition (ii), set V(t) * Q(t)Y-1(t) 

where

Q(t):= L..(t,x(t),x(t))Y(t) + L.(t,x(t),x(t))Y(t)

and Y(t):= xx(t,0). It follows that ff'(x(0)) = V(0) - V(0)J and so (5c) 

holds if

D2: <z , (V(0) - V(0)J)z> > 0 for all z e Z.

These facts, together with Theorem 1.4, imply the following sufficient 

conditions for (P):

6. Theorem: Suppose L e C2(x), L. e C1 and x e X#. Let x:« f(x) and 

suppose the following holds:

i. For all y c Y, I'(x;y) = 0. 

ii. For all y e Y, i"(x;y) > 0.

iii. For all t e [0,0], L..(t,x(t),x(t)) > 0.

If any of conditions (Dl) or (D2) is satisfied, then x is a weak minimum 

for (P). Moreover, if also L is regular or, for some e > 0,

iv. E(t,y,y,u) £ 0 for all (t,y,y) e T^xje) and u c Rnp,

then x is a strong minimum for (P).



94 The Mathod of Stops [Ch. 3

4 CHARACTERIZATIONS

We turn now to characterize the conditions derived in the previous two 

sections. Let us start evaluating the first and second partial deriva

tives of L and seeing their relation with those of the original Lagran- 

gian. Let t e [0,0] and x = (xQ,...,xN) and v = (vQ,...,vN) e Rnp. 

Directly from the definitions we have:

L. (t,x,v) = Lx(t+to,xo,4>(t+to-0),vo)
vk

oii

k = 1,.

L  (t,x ,v) = L (t+t ,x0,<J>(t+t0-e),v0) + Lu(t+to+0,x1,xo,v1) k = 0Xk

" Lx(t+tO+ke>ik’ik-l>0k)
+ Lu( t + t 0+ ( k + l ) e , x k+1, x k,vk+1) k =

= M t+tO+ N 0 '*S’*H-l'*»> k  = N -

We shall find it useful to evaluate explicitly the first derivatives 

of L along #(x), where x is any trajectory in X^.

7. Lemma: Let x e X# and set x:= $(x). Then, for all t in [0,0], 

L  (t,x(t),x(t)) = L-(x(t+to+k0)) k = 0,...,N
vk

L. (t,x(t),x(t)) = Lx(x(t+to+k0)) + Lu(x(t+to+(k+l)0)) k = 0,...,N-1
xk

= Lx(x(t+to+N0)) k = N.

The following proposition shows that Euler's equation for the Lagran- 

gians L and L are equivalent.
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8. Proposition: Let x e X# and assume Lx o x is continuous and 

Lu(x(t)) = 0 for all t in (tx, 12]. Then the following are equivalent:

i. I'(x;y) = 0 for all y in Y. 

ii. I'($(x);y) = 0 for all y in Y.

Proof: Set x:= $(x). (i) (ii): By Proposition 2.6, x satisfies

Euler's equation, i.e., there exists a constant c in Rn such that, for 

all t in [t^tj,

L;(x(t)) = P(t;x) + c

where P(*;x) is given by:

t  t+e
P(t;x)= J Lx(x(s))ds + ! Lu(x(s))ds tQ ^ t < tj-0

Define c = (cQ,...,cN) as follows: for k = 0,1 , . . . , N-l

t Q+ke
ck = J Lx(x(s))ds +

t0+(k+l)9

J Lu(x(s))ds + c

c,N J Lx(x(s))ds + J Lu(x(s))ds + c
t

In view of Lemma 7, for all t in [0,0],

L. (t,x(t),x(t>) = L^(x(t+t0+k9))
vk

= P(t+to+k0;x) + c

A i
= J L. (s,x(s),x(s))ds + c . 

o *

t

Hence, L.(t,x(t),x(t)) = J L.(s,x(s),x(s))ds + c and Proposition 1.5
t

o
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implies (ii).

(ii) (i): By Proposition 1.5, there exists a constant c =

(cQ,...,cN) in Rnp such that, for all t in [0,0],

. 1 . .L*(t,x(t),x(t)) = J L«(s,x(s),x(s))ds + c 
0

Applying Lemma 7 ve obtain that, for k = 0,...,N-1 and tQ+k0 < 

t < tQ+(k+l)0,

L*(x(t>) = J {Lx(x(s)> + Lu(x(s+0))}ds + ck 
t0+ke

and, for to+N0 < t < t2,

L*(x(t)) = J Lx(x(s))ds + cN
to+N0

Since L* o x is continuous we have, for k = 1,...,N-1:

to+k0
ck = L-(x(to+k0)) = J {Lx(x(s)> + Lu(x(s+0))}ds + ck_1

tQ+(k-i)©

For k = N the integrand is replaced by Lx(x(s)). Consequently, for all 

t in [to,t1-0],

L;(x(t)) = J (Lx(x(s)) + Lu(x(s+0))}ds + cQ 
fco

and, for t in [t1-0,t1],

t
L’(x(t))= J Lx(x(s))ds + c0. 

fco

The required result follows now by Proposition 2.6.

Remark: It should be noted that, in view of Lemma 7, the condition of 

Weierstrass for L implies the corresponding condition for L, but the
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converse is not necessarily true.

We turn now to characterize the positivity of the second variation. 

For the second partial derivatives of L we have:

L  . (t,x,v) = L-(t+to,xo,<Kt+to-0),vo) j = k = 0 
j *

-  L; ; < t + V k6> v * k - :L -0k>
II•o * 0

= 0 otherwise

L. . ( t , x , v )  = L-x( t + t 0, x 0,<Kt+t0- 9 ) , v 0)
j ^

II•o = 0

-  Lix<t + V k0»V*k-l»*k> j = k ft 0

k = j -  1

= 0 otherwise

L. . ( t , x , v )  = LXi ( t + t 0,x 0 , f ( t + t o- 0 ) , v 0)
xj k

II = 0

= L, ; < t + t o+k0-*k>*k-i'°k> j = k t  0

1“»II + 1

= 0 otherwise

L. . (t,x,v) = L (t+t ,x ,*(t+t0-e),v ) + L (t+t0+6,x1,x|),v1) j = k = 0
x j xk

- ^,x<t+tO+k0 >5k>*k-l>Ok> + K m < t+V < k+1>0 >*k+l’V * k +l>
j =k e {l,...,N-l}

“ Lxk<t+to+Ne»5H»*H-i^1,) k = j = N

= L (t+tft+k0,x.,x. ,,v.)ux' 0 7 k 7 k-17 k' k = j + 1
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= L (t+tn+j0,x .,x. ,,v.) k = j - 1 

= 0 otherwise

9. Lemma: Let x e X#, y e X and x:= $(x). Then, for all t e [0,0], 

[L0.(t)y(t)]k = L--(x(t+to+k0))yk(t) k = 0,1,...,N

[L.(t)y(t)]k = L-x(x(t+t0))y0(t) k = 0

= L-u(x(t+to+k0))yk_1(t) + L-x(x(t+to+k0))yk(t) k = 1,...,N

[Lc-(t)y(t)]k = Lv;(x(t+tn+k0))yt(t) + Ln;(x(t+to+(k+l)0))yk+1(t)

k = 0,1,...,N-1

= Lx-(x(t+to+N0))yN(t) k = N

[Lii(t)y(t)]k = [Lxx(x(t+t0)) + Luu(x(t+to+0))]yo(t)

+ Lux(x(t+to+0))y1(t) k = 0

= L^CxCt+^+kO^y^Ct) + Lux(x(t+to+(k+l)0))yk+1(t)

+ [Lxx(x(t+to+k0)) + Luu(x(t+to+(k+l)0))]yk(t)

k = 1,...,N-1

= Lxu(x(t+to+N0))yN_1(t) + Lxx(x(t+to+N0))yN(t) k = N.

Comparing Propositions 1.9 and 2.11, it is clear by Lemma 9 that, if 

tx = t2, then the Jacobi equation for (P) coincides with the Jacobi 

equation for (P). Based on this fact, we define the notion of conjugate 

sequence as follows:
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10. Definition: Given x e X§, we shall say that a sequence of points 

{s+tQ+k0 | k = 0,...,N), with s e (0,0], is conjugate to tQ with respect 

to x, if there exists y e X satisfying (JE) and such that:

i. y(t) = 0 for all t c [to-0,tQ]

ii. y(t+tQ+k0) is not identically zero for t e (0,s) k = 0,...,N.

iii. y(to+k0) = y(s+to+k0) = 0  k = 0,...,N.

Ve redefine the condition of Jacobi as follows: x will be said to 

satisfy Jacobi's condition if there are no conjugate sequences to tQ 

with respect to x on (tQ,t1) and Jacobi's strengthened condition if 

there are no conjugate sequences to tQ with respect to x on (tQ,t1].

Now, in view of Lemma 9, given x e Xe and y e X, if tx = t2 then

I"(x;y) = i"(*(x);$(y))

and so I"(x;y) > 0 for all y in Y - {0} implies i"($(x);y) > 0 for all 

y in Y - {0}. The converse is not necessarily true, but Proposition 1.12 

suggests a condition, similar to (Dl) and (D2), which implies the strict 

positivity of I"(x;-) along Y - (0). Assume L e C2(x;u), e C1, tx =

t2 and x is a nonsingular extremal satisfying the Legendre condition. It 

follows from the proof of Proposition 1.12 that I"(x;y) > 0 for all y 

in Y - {0} if, and only if, there exists (Y,Q), a matrix solution of the 

Jacobi equation for L (with respect to §(x)), with |Y(t)| * 0 and 

Y*(t)Q(t) = Q*(t)Y(t) for all t e [0,0] such that, for all y c Y - {0},

©
f <z(t) , L..(t,x(t),x(t))z(t)>dt + R(y) > 0 
o

where

R(y) = <y(0) , V(0)y(0)> - <y(0) , V(0)y(0)> 

V(t) = Q(t)Y_1(t), y = *(y) and z(t) = y(t) + Y(t)Y-l(t)y(t).
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Consequently, if there exists (Y,Q) satisfying the conditions above and

<z , (V(9) - V(0)J)z> > 0 for all z e Z, then R(y) will be strictly

positive unless y * 0, implying I''(x,y) > 0 for all y in Y - {0}. The

matrix V(t) = Q(t)Y_1(t) is symmetric and, since V(t)Y(t) + V(t)Y(t) = 
•
Q(t), it follows that V(t) satisfies the matrix Riccati equation:

V(t) + V(t)A(t) + A*(t)V(t) + V(t)B(t)V(t) - C(t) = 0. (3.2)

The converse is also true, that is, if there exists a symmetric matrix 

V(t) satisfying (3.2) and <z , (V(0) - V(0)J)z> > 0 for all z c Z, then 

I''(x;y) > 0 for all y in Y - (0). This follows by direct calculation 

since, for all y e X,

i"(*(x);y) = J <z(t) , L**(t,x(t),x(t))z(t)>dt + R(y) 
o

where R and y are defined as above, and

z(t) = y(t) + L00(t)(Lw (t) - V(t))y(t).

We shall label this last condition (D3):

D3: There exists V(t), a symmetric matrix solution of (3.2), such 

that <z , (V(0) - V(0)J)z> > 0 for all z e Z.

Observe that (D2) implies (D3) and so we can reduce the three condi

tions into one as follows: we shall say that x satisfies Riccati's con

dition if there exists V(t), a symmetric matrix solution of (3.1) or 

(3.2), such that <z , (V(0) - V(0)J)z> > 0 for all z e Z.

We are now in a position to state the necessary and sufficient condi

tions for (P) obtained so far.

11. Theorem: Suppose L e C2(x,u,x), tx = t2 and x is a trajectory
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solving (P). Then x satisfies Euler's equation and the conditions of 

Legendre and Veierstrass. If also x is nonsingular then x satisfies 

Jacobi's condition.

12. Theorem: Suppose L c C2(x,u), L- e C1, tx = t2, and x e X# is a 

nonsingular trajectory satisfying Euler's equation, Legendre's and 

Riccati's conditions and the strengthened condition of Jacobi. Then x is 

a weak minimum for (P). If also L is regular on A or $(x) satisfies the 

strengthened condition of Veierstrass (for L), then x is a strong 

minimum for (P).

5 EXAMPLES

5.1 A problem with no minimum.

Let L(t,x,u,x) = x2 - x2 - u and suppose we are given a point £ e R, 

<fr:[-n,0] -> R and (P), the problem under consideration, is to minimize

I(x) = /  [i(t)2 - x(t)2 - x(t-n)]dt
0

over all piecewise-C1 trajectories x :[-ji,2ji] -> R satisfying x(t) = <f>(t) 

on [-it,0] and x(2it) = £.

Suppose x is any piecewise-C1 trajectory. The way L is defined implies 

that x is nonsingular. The Jacobi equation, relative to x, is given by:

^  [2y(t)J = -2y(t) 0 * t « 2n

Let y(t) = sin(t) for all t e [0,2it] and y(t) = 0 for t e [—n,0]. This 

trajectory solves the Jacobi equation, it is nonvanishing on (0,n), 

y(t) = 0 for all t e [—ji,0], y(n) = 0 and
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/  <y(t-e) , C*(t)y(t) + E*(t)y(t)>dt - 0.
It

This implies that n e (0,2ji) is conjugate to 0 with respect 

Theorem 2.21, x cannot be a minimum for (P).

5.2 A weak minimum which is not a strong nininum.

Let L(t,x,u,x) = x2 - 4xx3 2ux3 + 2tx4,

6 = 1 / 2 ,  <>(t) = 0 for -1/2 < t < 0 , tQ = 0, tx = 1

and consider the problem:

i
P: Minimize J (x(t)2 - 4x(t)x(t)3 - 2x(t-6)x(t)3 +o

subject to x(t) = <f>(t) on [-1/2,0] and x(l) = £.

Consider the trajectory xQ(t) h 0. We shall show that xQ 

minimum for (P).

i. xQ satisfies Euler's equation: from the definition of 

equation is given by:

jY (2x(t) - 12x(t)x(t)2 - 6x(t-6)x(t)2 + 8tx(t)3)

= _4x(t)3 - 2x(t+6)3 0 < t < 1/2

= -4x(t)3 1/2 < t < 1

which is satisfied by xQ.

ii. xQ is nonsingular: L^(xQ(t)) = 2 for all t e [0,1].

iii. I " ( x 0;y) > 0 for all y e Y -

I"(x0;y) = / 2y(t)2dt
0

to x. By

and £ = 0

2tx(t)4}dt

is a weak

, Euler's

{0}: this follows since
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By Theorem 2.5, it follows that xQ is a weak minimum for (P).

Now, the trajectory xQ satisfies the condition of Weierstrass, since

E(t,xo(t),xo(t-0),xo(t),v) = v2 + 2tv4 £ 0

but, as we shall see below, xQ is not a strong minimum for (P). Define 

for k and h strictly positive:

x(t) = 0 -1/2 « t « 0

= kt/h 0 ^ t < h

= k(l-t)/(l-h) h « t « 1

Evaluating I along x, and assuming h < 1/2, we obtain:

h
I(x) = J {k2/h2 - 4tk4/h4 + 2tk4/h4}dt 

o

l
+ f {k2/(l-h)2 - 4(l-t)k4/(l-h)4 + 2tk4/(l-h)4}dt

h

Jl+h 1
+ J 2(t-0)k4/h(l-h)3 dt + J 2(l-t+0)k4/(l-h)4 dt

n n+h

= -k4/h2 + k2/h + k2/(l-h) + k4(3-h)/(l-h)3

+ k4h/(l-h)3 + k4(3/4 - 2h + h2)/(l-h)4

We have |x(t)| ^ k for -1/2 < t < 1 and, for each fixed k, I(x) < 0 

whenever h is sufficiently small. Since x satisfies the endpoint con

straints, xQ does not afford a strong minimum to I.



Corrigenda
The proofs of the results in Chapter 3 
are all correct only under the assump
tion that the time interval is commen
surate with the time delay, i.e.



PART II

GENERIC CONDITIONS FOR NORMALITY IN

OPTIMAL CONTROL THEORY



CHAPTER 4

NORMALITY CONDITIONS

1 INTRODUCTION

There are optimal control problems where the necessary conditions of 

Pontryagin's maximum principle do not involve the cost or performance 

index, adding no information to the one already specified by the dynam

ics, control set and end conditions. These problems are called "abnor

mal" and several attempts to characterize them have been made. The ques

tion has remained unanswered since the maximum principle was esta

blished. The strongest result, due to R. B. Vinter [30], states that, 

under mild conditions (satisfied by the so-called "relaxed problem"), if 

one perturbs the original problem through translations of the endpoint 

set, there is a dense set of problems where normality can be guaranteed.

In this chapter we extend this result based on a "lower semilipschitz" 

property of the value function known as "calmness". When the equations 

of motion are linear in the state variable, we enlarge the previous 

dense set to a full (Lebesgue) measure set. In other words, we show that 

normality holds for all problems obtained by translating the original 

endpoint set, except possibly in directions that belong to a set of 

measure zero.

We also introduce a different way of perturbing the endpoint set

1 0 7
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(enlarging or diminishing instead of translating it) and prove that, 

dealing with this kind of perturbations, one obtains normality almost 

everywhere even if the equations of motion are not linear in the state 

variable.

2 NORMALITY IN A MATHEMATICAL PROGRAMMING PROBLEM

Dealing with a mathematical programming problem such as:

minimize f(x) subject to: 
g£(x) < 0  (i e I = {1,...,m))

where f, gi:Rn -> R are of class C1 (i el), one is concerned with the 

linearly independence of

(ygi(x) I i e I(x)) (4.1)

where I(x) = {i e I | g£(x) =0), in order to have the Lagrange multi

plier rule as a necessary condition for local optimality. That is, if x 

is a local solution of (P) and (4.1) is linearly independent, then there 

exist X1,...,Xjn £ 0, with Xi « 0 if i Z I(x), such that

m
F:= f + I \ g i + VF(x) = 0.

l

In 1979, J. Spingarn and R. Rockafellar [28] proved that, if g1,...,gm 

are of class Cn, then "most" problems satisfy these conditions, in the 

sense that, for all u e Rm, except in a set of measure zero, if x is any 

feasible solution of

{minimize f(x) subject to: g£(x) < uA (i e I)

and I(x,u) = {i e I | gA(x) = uA), then {VgA(x) | i e I(x,u)} is 

linearly independent. This result helps to show that, with the same kind
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of perturbations, most problems are such that every local solution 

satisfies the strong second-order conditions for optimality.

A similar result was proved in 1976 by F. Clarke [7] assuming merely 

local Lipschitz continuity on the functions delimiting the problem. It 

is based on a theorem of I. Ekeland, the theory of generalized gradients 

and the concept of calmness. The central result is the following:

If (X, || || ) is any Banach space, f, g£:X -> R are locally Lipschitz 

(i c I) and x * is a local solution of (P), then there exist 

XQ, XA (i e I) not all zero, such that:

i. X0, \ * 0  (i e I)

ii. Xigi(x*> = 0  (i e I)

in
iii. 0 e X03f(x*) + £ X^g^x*),

l

where ”3" denotes the generalized gradient.

The problem (P) is called "normal" if, whenever x* solves (P), there 

exist XQ, X£ (i e I) satisfying (i)-(iii) with XQ > 0. Given u e Rm, 

(Pu) is called "calm" if <>(u) e R and

l lm m i
V -> U IV — u I

where $:R“ -* is given by $(u) = inf{f(x) | gi(x) < uA, i cl} and

|•| denotes the norm in Rn.

It is not difficult to show that, if (Pu) is calm and x* a solution of 

(Pu), there exist K, e > 0 such that x* solves:

minimize f(x) + K E max{0 , gA(x) - u.} 
L: l

subject to: || x — x* || < e
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which in turn implies that (Pu) is normal. This implies that, if U is a 

neighborhood of 0 e R® where 4* Is finite then, for all u e U except in a 

set of measure zero, (Pu) is normal, for <f> is decreasing as a function 

of each component of u separately, so differentiable a.e., and so (Pu) 

calm for almost all u e U.

3 STATEMENT OF THE PROBLEM

We shall be concerned with the (Mayer) optimal control problem:

{minimize g(x(l)) subject to: x e X#, x(l) e C

where:

Xm = {x e X | x(0) e CQ and there exists u:[0,l] -» Rm such that

u(t) e U(t) and x(t) = f(t,x(t),u(t)) almost everywhere)

X = {x:[0,l] R" | x is absolutely continuous)

and the following is satisfied:

i. C, CQ c Rn are closed, 

ii. g is locally Lipschitz.

iii. For each x e Rn, f( *,x, •) is L x B  measurable, where L x B 

denotes the o-algebra of subsets of [0,1] x Rm generated by product sets 

M x N, where M c [0,1] is Lebesgue measurable and N c Rm a Borel set.

iv. For each x e X there exist k e L1(0,1) and S, an e-neighborhood 

of x, such that, for all t e [0,1] and u e U(t), f(t,-,u) is Lipschitz 

on 2 of rank k(t).

v. Gr(U): = {(t,u) e [0,1] x Rm | u e U(t)) is L x B measurable.

Under these hypotheses, the maximum principle states the following (we
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refer to [9]):

1. Theorem: If x * solves (P) with u* corresponding control, then 

there exist X e {0,1} and an absolutely continuous function p mapping 

[0,1] to Rn, not both zero, such that:

a. -p(t) e p(t)9xf(t,x#(t),u*(t)) a.e.

b. <p(t) , f(t,x*(t),u (t))> = sup{<p(t) , f(t,x*(t),u»| u eU(t)} a.e.

c. p(0) e N (x‘(0)>
co

d. -p(l) c Nc(x‘(l>) + X3g(x*(l))

(the notation 3xf refers to the generalized Jacobian of x -» f(t,x,u*(t)) 

and Nc(x) denotes the normal cone to C at x e C).

The problem we shall be dealing with is that of giving conditions that 

guarantee the nonvanishing of the cost's multiplier. In other words, 

under what conditions can X can be taken to be 1.

4 CALMNESS AND NORMALITY

For the optimal control problem, we shall call (P) "normal" if, when

ever x# solves (P), there exist (p(*),X) satisfying the maximum princi

ple with X — 1. Before defining the concept of "calmness", we start giv

ing a simple condition that implies normality:

2. Lemma: Suppose that, whenever x* solves (P), there exist K and e 

positive, such that x* solves:
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minimize g(x(l)) + K dist(x(l),C)
L:

subject to: x e X# and || x — x* || < e

where || • || denotes the sup norm in X. Then (P) is normal.

Proof: Suppose x* solves (P). Let K and e > 0 be such that x* solves L

and apply the maximum principle for this problem. We obtain (p( *),X) 

satisfying (a), (b) and (c) exactly as for problem (P), and (d) becomes:

-p(l) e X [ag(x*(l)> + K 9dist(x*(l),C)].

Now, if X were 0, we would have —p(1) = 0 which, together with (a), 

implies p h 0. The contradiction implies X = 1 and so (d) results as for 

problem (P).

As we shall see below, the notion of calmness implies the assumption 

of Lemma 2. Observe first what happens if we assume the contrary, that 

is, there exist sequences ei i 0, K£ t 00 and xA e X# satisfying

|| xi — x* || < such that, for all i e N,

g(x£(1)) - g(x*(1)) < - Kidist(xi(l),C).

Since C is closed, for all i e N there exists ci e C such that

Ix£(1) - cj = dist(xi(l)fC).

Set aA = xA(l) - cL and define the "value function" for all a s Rn: 

4>(a):= inf{g(x(l)) | x e X# and x(l) e C + {a}}.

We clearly obtain that

♦(«i) - +(0)

So, if we consider the family of problems, for a e Rn:
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P :a
minimize g(x(l)) subject to: 
x e X#, x(l) c C + {a}

and call (Pa) "calm" if $(a) e R and

lim inf 
b -» a

4>(b) - 4>(a) 
Ib - a|

>

then the above argument and Lemma 2 show that calmness implies normal

ity.

This argument also induces in a natural way a different kind of per

turbations to the original problem that gives generic conditions for 

normality.

3. Theorem: Consider the following family of problems for a c Rn:

{minimize g(x(l)) subject to: x € X#, dist(x(l),C) < |a|

Then, for almost all a e Rn, Qa is normal.

Proof: Define for all a e Rn:

\fr(a):= inf{g(x(l)) | x c X# and dist(x(l),C) < |a|).

Now, the same argument as above applies for \J> if one assumes the con

trary of Lemma 2, obtaining that

'KoO -  *<0)
------------  -» - « , i -» ®. (4.2)

But is decreasing as a function of each component separately. Hence, $ 

is differentiable a.e. and so (4.2) can only hold in a set of measure 

zero. By Lemma 2, Qa is normal for almost all a in Rn.
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5 TRANSLATIONS: THE LINEAR CASE

In this section we prove that, if the dynamics are linear with respect 

to x, most problems are normal with respect to translations of the end

point set. Let us start characterizing the notion of calmness.

4. Lemma: Suppose we are given a function g:Rn -> R and a family of 

sets in Rn, {Ca | a e Rn}. Let'

4>(a):= inf{g(x) | x e Ca}, Q:= {a e Rn | Ca * 0}

and consider the following statements:

i. lira inf ♦(a),~ |*(°) > -a -  0 1*1

ii. There exist K and 5 > 0 such that, for all a e Q n 6B,

♦(a) - <K0) > - K| a |

where B denotes the open unit ball in Rn deleting zero.

Then, if 4>(0) > -®, (i) * (ii) and, if 0 e Q, (ii) (i). In particu

lar, if <j>(0) e R then (i) and (ii) are equivalent.

Proof: Define f:Rn ■> R as follows:

f(a) = *(**[a |*W  if a e Rn - (0)

= 0  if a = 0

and let Qf:= {a e Rn | f(a) < + 00 ). By definition we have that

lim inf f(a) > - « 
a -* 0

if, and only if, there exist K and $ > 0 such that, for all a e Qf fl SB, 

f(a) £ - K. The result follows observing that
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Q = {a e Rn | $(a) < + 00 }

for, if $(0) > - ®, then Q c Qf and so (i) (ii); if 0 e Q, then

0t - {0} c Q and so (ii) (i).

Now we can express the notion of calmness in a very simple way. Set:

A:= {x(l) | x e X J

Q:= {a e Rn | A n (C + {a}) * 0}

S: = {a c Q | there exist K,5 > 0, such that, for all b c Q fl (6B +&])

♦(b) - *(a) > - K|b - a|).

Observe that, for all a e Rn,

♦(a) = inf {g(x) | x s A fl (C + {a}))

and

Q = (x - c | x 8 A and c £ C] = A - C.

By Lemma 4 the notion of calmness is characterized by S as follows:

5. Lemma: Pa is calm if, and only if, a e S and ♦(a) > - ®.

In other words, our problem is to see, roughly speaking, how "big” is 

S with respect to Q. Now, the set A is precisely the "attainable set" 

and, when the dynamics are linear with respect to x, this set is convex 

(in Rn). Before showing what happens in this case, let us recall a few 

concepts. A set H c R" is called an affine set or linear variety if

(l-X)x + Xy e M for every x e M, y e M and X e R,

the affine hull of a set D c Rn, denoted by aff D, is the intersection
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of all affine sets M such that M => D and the relative interior of a con

vex set D (ri D), consists of the points x in aff D for which there

exist 8 > 0 such that y e D whenever y e aff D and |x — y| < e.

The result due to I. Ekeland mentioned in Section 2 states that, if <f> 

is lower semicontinuous on Q, then S is dense in Q (see [13]). It was 

observed by R. B. Vinter in [30] that, if A is compact, then the lower 

semicontinuity of <f> on Q holds, $(a) is finite for all a in Q and conse

quently, in view of Lemma 5, S is a dense set of points in Q where nor

mality can be assured.

We present next a simple example of an abnormal problem. It illus

trates some of the main difficulties that appear trying to impose condi

tions for calmness. It should be noted that the cost function is dif

ferentiable everywhere, the attainable set is convex and compact and the 

endpoint set is convex and closed.

Let g(x,y) = x for all (x,y) e R x R, and consider the following sets:

A = {(x,0) | -1 « x < 1} 

c = {(X,y) | y > xJ }•

To show that normality is not satisfied, suppose x* «= (x,y) solves a 

problem (P) where A is the attainable set and C the endpoint constraint. 

By the maximum principle, there exist an absolutely continuous function 

p:[0,1] -> R x R and X 8 {0,1}, not both zero, such that:

-p(l) e NC(X*(1)) + X9g(x*(l».

Now, observe that x*(l) = (x(l),y(l)) e A fl C and so x(l) = y(l) = 0. 

This implies that Nc(x*(l)) is the half-line x = 0, y < 0, and, since 

-p(l) is orthogonal to C at (0,0), it follows that X = 0.

Since calmness implies normality, the problem posed is not calm. This 

can also be proved directly as follows: for all 0 < a < 1, the value
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function at (0,-a) is given by:

<K(0,-a)) = inf{g(x,y) | (x,y) c A n (C + {(0,-a)})}

= inf{x e [-1,1] | x2 < a}

= - a1/2.

So, the calmness condition fails, since:

♦ « 0 f - a »  -  ♦ « 0 |0 ) )  .  -  «1/2 a + 0 .
I(0,-a)| | a | a1/2

The result ve prove below is that, if A and C are convex and A com

pact, then Q is convex and ri Q c S. If A is bounded but not closed, the 

same result holds assuming g is globally Lipschitz. We shall find it 

useful to first establish the following lemmas.

6. Lemma; Suppose A and C are convex, 0 e ri Q (note that Q = A - C, 

and this is a convex set) and A is bounded. Then there exists M > 0 such 

that, for all a e Q and x e A n (C + {a}), dist(x , A fl C) ^ M|a|.

Proof: Since 0 e ri Q, there exists e > 0 such that

b e aff Q and |b| ^ s b e Q. (4.3)

Since A is bounded, there exists R positive such that, for all x and y 

in A, |x — y| < R. Now, let a e Q, and x e A fl (C + {a}). We shall show 

that the required inequality holds with M = R/e.

Let b:= - e y^y and note that, since a e Q c aff Q and 0 e aff Q, it 

follows that b e aff Q. Also |b| = e, and so, by (4.3), b e Q. Conse

quently, A n (C + {b}) t o. Now, let y e A fl (C + {b}), cQ and cA c C 

such that x = cQ + a and y = cx + b and set X:= |a|/(|a|+e). Observe

that:
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c:= Xcx + (1-X)c0 = Xy + (l-X)x e A fl C.

The result now follows since

dist(x , A n C) < |c - x| = X|x - y| « |x - y| < | |a|.

7. Lemma: Suppose 0 e Q and there exist M and 6 > 0 such that, for

all a c Q n SB and all x e A n (C + {a}),

dist(x , A n C) < M|a.|.

If A is compact or g globally Lipschitz then 0 e S.

Proof: Let a e 0 D SB and t > 0. By definition of <f> and the function 

distance, there exist x e A n (C + {a}) such that g(x) < $(a) + e and 

y e A n C such that

|x — y| < dist(x,A fl C) + |a| < (M+l)|a|.

Now, the assumptions A compact or g globally Lipschitz, imply the

existence of some L > 0, independent of a and e, such that

|g(x) - g(y)| < L|x - y|.

From this it follows that

♦(a) - WO) + e * g(x) - g(y) * - L|x - y| ̂  - L(M+l)|a|.

Since s is arbitrary we obtain the required result.

We are now in a position to show that normality holds for all (linear) 

problems obtained by translating the original endpoint set, except pos

sibly in directions that belong to the relative boundary of the set Q.

8. Theorem: Suppose A and C are convex and A bounded. If also A is 

closed or g is globally Lipschitz, then ri Q c s.



Sac. 5] Translations: the Linaar Casa 119

Proof: Let aQ e ri Q and define, for all b e Rn,

$(b):= inf{g(x> | x e A fl ((C + {aQ}) + {b})}.

Set R:= A - (C + {a0}) and observe that aQ e ri Q 4 a0 e ri R + {a0} ** 

0 e ri R. Consequently, by Lemmas 6 and 7 there exist K and 8 > 0 such 

that b e R n 8B + $(b) - $(0) > - K|b|. But $(aQ + b) = $(b) for all 

b e Rn. Hence, if a e Q

b : = a - a Q e R fl 8B

and

«>(a) - <f>(aQ) = *(b) - *(0) » - K|a - a0|. 

This implies aQ e S and the proof is complete.



CONCLUSIONS

1. Optimal Control Systems with Time Delay. For an optimal control 

problem with a delay in the phase coordinates, G. L. Kharatishvili (see 

[25]) established in 1961 necessary conditions in the form of a maximum 

principle. In subsequent works this principle was generalized for prob

lems with several delays and the best known results were given in 1969 

by S. C. Huang ([19]). These conditions imply straightforward the neces

sary conditions of Euler, Legendre and Veierstrass as stated in Chapter

2. An equivalent of Jacobi's necessary condition was not known and suf

ficiency was neglected. The reason, as pointed out by G. Tadmor in [29] 

and explained in detail in Section 2.5, is that the Jacobi equation 

becomes a differential-difference equation involving both advanced and 

retarded arguments.

The first contribution of this research is the content of Theorems 2.3 

and 2.5: necessary and sufficient conditions expressed explicitly in 

terms of the variations. There are problems where the second order con

dition for optimality is readily verified, such as example 5.2, and this 

results become applicable.

For most problems, it is necessary to have a verifiable characteriza

tion of the positivity of the second variation. This is usually accom

plished by a direct computation of the fundamental matrix solution of 

the Jacobi equation, through fields of extremals or solving a matrix

1 2 1
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Riccati equation. We centered our attention in the first procedure. The 

main result of this section is that there do exist initial conditions 

that guarantee existence and uniqueness of the solution of Jacobi's 

equation. This is proved in Theorem 2.13, where an extra assumption is 

required: the delay should be "sufficiently small". A conjecture at this 

point is clear: to see if this assumption is essential, i.e., if the 

same result holds if the delay is not assumed to be bounded. Nov, even 

if this fact were true, we would still have problems verifying condi

tions (C1)-(C3) of the sufficient conditions stated in Theorem 2.22, 

since they are based on a nonsingular matrix solution of the Jacobi 

equation obtained only implicitly throughout the proof.

The method of steps in Chapter 3 avoids these difficulties and suffi

ciency is verifiable solving a matrix Riccati inequality or Riccati 

equation. The open question in this approach consists in finding a 

corresponding necessary condition to the one we called "Riccati condi

tion". One suspects that it exists, since the necessary condition "there 

are no conjugate sequences on (t0,t1)" exploits the nonnegativity of 

I " ( x 0;*) only along Y, without taking into account trajectories nonvan

ishing at the endpoints 0 and 6.

All these results could be extended to optimal control systems involv

ing several delays in a nonsmooth analysis context.

2. Normality Conditions. Motivated by the results obtained for a 

mathematical programming problem ("most problems are normal"), it sounds 

acceptable the conjecture that most problems will be normal in optimal 

control. This question has remained unanswered since Pontryagin's prin

ciple was established. We prove that indeed this is the case if one per

turbs the endpoint set by enlarging it. For problems that are obtained 

by translating this set, the question was reduced to the following: sup

pose we are given a locally Lipschitz function g:Rn -» R and two sets A
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and C in Rn. Define for all a e Rn:

4>(a): = inf {g(x> | x e A n (C + {a})}

Q:= {a c Rn | A n (C + {a}) * 0} 

and let S be the set of points a e Q for which

lim inf «b) - ♦(•? > . 
b ■* a ' | b — a. |

The question is reduced to find how "big" is S with respect to Q. In 

other words, when is $ lower semi-Lipschitz continuous. Given a problem 

for which A (the attainable set) is compact (this is satisfied by the 

so-called "relaxed problems"), it was shown by R. B. Vinter ([30]) using 

a result of I. Ekeland ([13]), that S (the set of directions where nor

mality can be guaranteed) is dense in Q (the set of directions for which 

the attainable set translated and the endpoint constraint set inter

sect). We extend this result when the dynamics are linear in the state 

variable, proving that Q is convex, and the relative interior of Q is 

contained in S. In other words, all relaxed and linear problems obtained 

by translating the endpoint set are normal, except possibly in direc

tions that belong to the relative boundary of Q. The non-linear case 

remains unanswered but future work studying properties of the value 

function could solve the question of normality under translations.
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