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A bstract

The north-west corners of the major ocean basins are characterised by seaward jets, flanked by 

tight, non-linear gyres exhibiting closed potential vorticity contours. At deep levels, isolated from 

surface forcing, areas of homogeneous potential vorticity are apparent. Following a review of 

pertinent theories and observations, a model is presented describing these ‘recirculation’ regions, 

extending the quasi-geostrophic layer models of Marshall and Nurser (1986, 1988) to the continu­

ously stratified two dimensional case.

The study is diagnostic, concentrating on numerical inversions of idealised potential vorticity 

distributions in a vertical, meridional section through a free inertial gyre. An iterative approach 

is used to find the ‘bowl’ of the circulation: the free boundary between the deep recirculating 

homogenised water and the stagnant water below. A quasi-geostrophic model is presented first, 

forced by potential vorticity anomalies in the upper layers. Later, the Ertel potential vorticity 

is inverted in an isopycnal coordinate model, ‘forced’ by prescribing the depth of the uppermost 

coordinate surface, chosen to represent the depth of the main thermocline.

It is shown that the homogenised recirculation has a finite depth penetration, possibly not 

extending to the ocean floor. In cases where the flow reaches the bottom, the recirculation can be 

divided into two regions: a ‘core’ region, where bottom currents exist and a baroclinic ‘fringe’ to 

the south. The surface intensified part of the eastward jet is recirculated in the broad, westward 

flowing fringe, while the component of the transport returned within the core itself is largely depth 

independent.

The enhanced mass transport of the Gulf Stream can be accounted for by the models. Its 

magnitude is sensitive to the surface forcing imposed. For realistic parameters, the core carries 

the greater proportion of the transport.

The structure of the recirculation is dependent on the value assumed for the deep homogeneous 

potential vorticity. If a positive deep potential vorticity anomaly is imposed, the upper level gyre 

interface moves northwards while a cyclonic gyre becomes dominant in the bottom flow. If the 

anomaly exceeds a certain limit, solutions can no longer be found.
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C h a p ter  1

R eview  o f T heories

1.1 Introduction

A major component of the observed large scale ocean circulation can be attributed to 

the driving force of the wind. The precise mechanism is subtle but the end result is 

intuitive. Blocked by the continents, the water circulates in closed gyres. During the 

late 40s and early 50s, theories were developed to explain the nature of the wind driven 

circulation. A duality emerged. On the one hand there were forced dissipative models 

such as that of Stommel (1948), where the momentum imparted by the wind is dissipated 

in a frictional boundary layer. On the other hand, Fofonoff’s (1954) model had no wind 

forcing or friction, but free flow closed by non-linear boundary currents. In the latter 

model, the role of forcing and dissipation is relegated to a fine tuning effect, determining 

the intensity of the free circulation (Niiler, 1966). In this thesis, attention is concentrated 

on the ‘recirculation’ regions found in the north western corners of the world’s oceans, 

which are modelled as free inertial gyres.

The dynamics of these two archetypal theories are best understood in terms of vorticity. 

In the forced / dissipative regime, vorticity is supplied and extracted by the wind stress 

and friction in a continuing cycle, offsetting changes in planetary vorticity as the fluid 

moves meridionally. In an unforced, ‘inertial’ regime, the flow follows closed absolute 

vorticity contours.

The ocean circulation has considerable depth dependence and if this vertical structure 

is to be modelled, the effects of vortex stretching must be taken into account. Vorticity

11



12 CHAPTER 1. REVIEW OF THEORIES

theory must give way to potential vorticity theory. Various forms of potential vorticity 

shall be used in what follows, but they are all based on either the Ertel potential vorticity,

or the quasi-geostrophic form,

{ f  + t ) dp
p dz

( l . i . i )

( 1.1.2)

where /  is the coriolis parameter; £ the relative vorticity; p is density; y and z are north­

ward and upward cartesian coordinates; fo and /3 are the values of /  and its meridional 

gradient at y = 0; ip is the horizontal streamfunction and N  is the Brunt Vaisalla fre­

quency.

In an incompressible baroclinic ocean, the following conservation laws apply for steady, 

adiabatic flow:
u. V p = 0 

u.VQ = 0
(1.1.3)

where u is the velocity, (u ,v ,w ) (in directions x ,y ,z  where x is to the east). Equations 

(1.1.3) form a starting point for all theories of the vertical structure of ocean gyres, but 

alone, they are not sufficient to pose the problem fully. In the last decade several theories 

have emerged which satisfy (1.1.3) in radically different ways. A new duality now ex­

ists between ‘ventilated’ models (Luyten, Pedlosky and Stommel, 1983) and unventilated 

models (Rhines and Young, 1982a). In the former, potential vorticity is set at a surface 

density outcrop and then conserved as fluid is subducted into the main thermocline. In the 

latter, deep flow is confined to regions where potential vorticity contours have closed off 

on themselves, resulting in the homogenisation of potential vorticity by small (synoptic) 

scale eddies.

Again, the duality can be resolved by considering different regions. Marshall and 

Nurser (1986,1988) (hereafter MN and MN2), Greatbatch (1987), Cessi, Ierley and Young 

(1987) (hereafter CIY) and Cessi (1988) have all made use of the facts that homogeni­

sation occurs within closed Q contours, and that these closed Q contours are a feature 

of the recirculating gyres associated with strong seaward jets such as the Gulf Stream 

and Kuroshio extensions. The resulting models depict these recirculation regions as free 

inertial gyres with homogeneous potential vorticity at deep, isolated levels.

H V e r t i c a l  a m p o A & A t
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The work presented in this thesis is an extension of these theories to a vertically 

continuous model, which is then used to examine the structure and transport of these 

gyres. Idealised distributions of potential vorticity are inverted to find the flow in a 

vertical, meridional section through a free inertial gyre. In particular, solutions are sought 

for the ‘bowl’ of the circulation: the free boundary representing the depth of penetration 

of the deep homogenised gyre.

The remainder of this chapter is a review of the classical theories of the steady, gyre 

scale ocean circulation. Particular emphasis is given to the role of eddies in equilibrat­

ing these steady flows, especially through their effect on the large scale Q distribution. 

Attention is focussed on the ramifications for non-linear free gyres of sub-basin scale.

In chapter 2, the observations relevant to the recirculation region are discussed. Hy­

drographic sections and current meter measurements are presented and the characteristic 

Q fields at different depths are analysed.

In chapter 3, a brief review is given of theories which have attempted to describe the 

vertical structure of these observations. Previous models of the vertical structure of free, 

non-linear gyres with idealised Q distributions are discussed in detail and the results from 

eddy resolving numerical models are surveyed.

Chapter 4 contains the author’s extensions to these models. A continuous two dimen­

sional model is presented, based on numerical inversions of idealised quasi-geostrophic 

potential vorticity distributions. The method of solution for both the flow and its depth 

extent is described and the results are presented and analysed. Comparisons are made 

with simple theory, observations and general circulation models.

Chapter 5 is an extension of this work to an asymmetric two gyre system in which the 

value of the deep homogeneous q and the position of the eastward jet are allowed to vary. 

The quasi-geostrophic inversions presented up to this point are the subject of a paper by 

the author (Hall, 19So).

In chapter 6, a new formulation is presented in which the restrictions of quasi-geostrophy 

are discarded and a geostrophic form of the Ertel potential vorticity is inverted. This al­

lows much closer comparison with.the observations shown in chapter 2. In particular, the 

sensitivity of the solutions to the position of the thermocline and the bottom isopycnal is 

investigated and an inversion is presented which has been forced with real data.



14 CHAPTER 1. REVIEW OF THEORIES

1.2 H om ogeneous T heories o f th e Ocean Circulation

Much of the early theoretical effort in oceanography was concentrated on understanding 

how surface winds could drive the observed general circulation. Figure (1.1) shows the 

surface currents of the Atlantic Ocean from a long term compilation of measurements 

and ship reports (Defant, 1961). The first thing to note about these observations is the 

existence of closed circulation patterns or gyres. Another striking feature is the strong, 

narrow boundary currents which complete these gyres on the western sides of every major 

ocean basin in both hemispheres. A brief review is presented below of the key theories 

which have been put forward to explain these phenomena.

(a) Basic Driving Mechanisms: Ekman and Sverdrup Transports

Surface currents were a puzzle for navigators and oceanographers during the early part 

of this century. The correlation between mean winds and mean currents, as measured by 

ship drift was very poor. It was Ekman (1905) who took the first step towards explaining 

this conundrum. In an Ekman surface boundary layer the momentum balance is

/ k Av + —Vp = 
Po

1 d r  

Po dz
(1.2.1)

where k is a vertical unit vector, v is the horizontal velocity, (u,v), po is density, Vp is 

the horizontal pressure gradient and r  is the horizontal stress acting at depth z due to 

vertical momentum transfer from the surface wind. It is now standard theory to model 

r  as proportional to the vertical shear of the horizontal current, a parameterisation of 

turbulent vertical momentum transfer. The resulting'solution of (1.2.1) is the ‘Ekman 

spiral’. The dominant balance at the surface is between the wind stress and the coriolis 

force, resulting in a surface drift to the right (in the northern hemisphere) of the prevailing 

wind direction. Below the surface layer, the direct effect of the wind stress is diminished 

and the flow is in geostrophic balance with the large scale pressure gradient. We shall see 

below that the Ekman layer is instrumental in setting up this pressure gradient.

The mean winds blowing over a northern hemisphere ocean take the form of polar and 

equatorial easterlies and mid-latitude westerlies. If the integrated mass transport of the 

Ekman layer is to the right of the mean winds, this results in a convergent mass transport 

in sub-tropical regions and a divergence in sub-polar regions, evident in figure '(1.1).
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Figure 1.1: Surface currents in the Atlantic Ocean from a long term compilation of measurements 

and ship reports. From Defant (1961).
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Figure 1.2: A schematic diagram representing the character of the basin scale gyres of the world’s 

oceans. The prevailing winds depicted to the left of the picture give rise to the Ekman pumping 

field shown, and hence the southward Sverdrup flow. The gyre is closed by a strong western 

boundary current.

Through mass conservation this implies sub-tropical downwelling (Ekman pumping) and 

sub-polar upwelling (Ekman suction). This is represented schematically in figure (1.2).

One can envisage the above process having no effect at all on the general circulation 

of the ocean, with the wind simply driving a slow overturning motion in a shallow layer 

(~  100m) at the ocean surface. However, there are more constraints to satisfy than mass 

conservation. The vorticity equation must also be satisfied.

The steady horizontal momentum equation is

_  - 1 _  1 d r
v .V v  + / k Av + —Vp = — ----- F

Po Po oz
( 1.2 .2)

where F  is a frictional drag. Eliminating the pressure by taking the curl, and combining 

with the continuity equation,
du dv dw

Tx + ey + T z =Q (L2-3>

one obtains the vorticity equation,

v .V (/ + o  =  / ^  + - | - k .V Af  -  k.VAF (1.2.4)OZ PqOZ

where £ = VAv and has been neglected relative to /  when undifferentiated.

Equation (1.2.4) states that the rate of change of vorticity for a fluid parcel is equal 

to the vortex stretching; plus the vorticity supplied by vertical momentum transfer from
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the surface wind; minus that removed by friction. If (1.2.4) is integrated from the surface 

to a depth, d, at which r  = w = 0 (the depth of the wind driven gyre) then, neglecting 

both friction and the advection of relative vorticity, we obtain Sverdrup’s (1947) mass 

transport equation,
r° 1 .

(3 / vdz =  —Ic.VaTs (1.2.5)
J-d po

where f£ is the surface wind stress. If this integral is performed over the region between 

the base of the Ekman layer, where the vertical velocity is w e , and — d, neglecting the 

transport within the Ekman layer itself, the right hand side of (1.2.5) can be replaced 

by fw £ , giving an equation for the transport in the thermocline in terms of the Ekman 

pumping velocity, tug.

We are now in a position to compare the magnitude of velocity required by (1.2.5) 

with the meridional velocity required simply to maintain a divergent Ekman layer (from 

(1.2.3)). The former is of the order

v ~
Pd we

while the latter is
Lyv ~ -—we d

where Ly is the meridional scale of the circulation. The ratio of these two velocities is the 

ratio of the radius of the Earth to the horizontal scale of the gyre. So it can be seen that 

due to the constraints imposed by the vorticity equation, Ekman pumping has the effect 

of forcing a rapid non-divergent horizontal flow which is considerably stronger than the 

surface Ekman drift.

Sverdrup used (1.2.5) to clarify further the relationship between currents and winds. 

It is important to note that it is the curl of the wind stress which determines the transport 

rather than the wind stress itself. Equation (1.2.5) predicts southward transport in regions 

of anticyclonic wind stress curl (sub-tropical gyre) and northward transport in regions of 

cyclonic wind stress curl (sub-polar gyre). If the circulation of the gyres is to reflect the 

sign of the vorticity input by the wind stress, then they must be closed by meridional 

boundary currents running along the western side of the ocean. Therefore the Sverdrup 

transport is consistent with the western intensification seen in figure (1.1), although (1.2.5) 

cannot account for it explicitly.
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Through continuity, it can be seen that maxima and minima of the eastward com­

ponent of fs, where meridional transport is zero, correspond to zonal transport to the 

east and west respectively. These latitudes mark the gyre boundaries, and herein lies the 

explanation of how an eastward tropical counter current can exist against a prevailing 

easterly wind, in the region of trade wind minima known as the Doldrums.

Extensions of (1.2.5) to allow explicit representation of western boundary closures will 

be considered in the next section.

(b) Frictional and Non-Linear Boundary Closures

It can be readily shown that (1.2.5) cannot support a western boundary current by writing 

it in terms of a mass transport streamfunction, $ , defined by

r° ;  dqi r° j/  udz  =  — -7—, /  v dz =
J-d oy J-d

<9$
dx

then, for purely zonal winds, we obtain

dx

1 dfa 

poP dy

(1.2.6)

(1.2.7)

which has a solution linear in x and therefore unable to furnish the repeated values of $  

necessary for a closed circulation.

To proceed to a full theory, second order (frictional) or non-linear (advection) terms 

must be included in the equations of momentum and vorticity. It must be noted, however, 

that non-linear terms alone cannot act as dissipation for the input of vorticity through 

the wind stress curl.

Stommel (1948) constructed a model with rectangular geometry and a $  = 0 boundary 

condition, prohibiting flow through the walls. A sinusoidal zonal wind profile was chosen 

to represent easterly winds to the south and westerlies to the north, the curl of this 

quantity having a single maximum at the middle latitude of the basin and decreasing to 

zero at the latitudinal boundaries. The model is therefore just a single anticyclonic gyre. 

Friction was represented by a linear drag law in the momentum equation:

F = Rv ( 1.2.8)

where R  is a coefficient of friction. In the depth integral, this form for F can be associated 

with the effect of bottom friction.
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Equation (1.2.7) now becomes

dx p0Ly \Ly (1.2.9)

where tq is a constant and Ly is the meridional extent of the basin. It is the left hand 

side of (1.2.9), due to the variation of Coriolis parameter with latitude, that is entirely 

responsible for the western intensification seen in the solution (figure (1.3a)). Equation 

(1.2.9) cannot support eastern boundary currents because d ^ /d x  is negative except in 

the frictional boundary layer while $  is positive everywhere.

An alternative to this type of friction is that used by Munk (1950). In recognition of 

the fact that currents almost vanish towards the ocean floor, Munk discarded the idea of 

bottom friction and instead postulated that lateral friction in small scale eddies was the 

dominant dissipative process. This was parameterised in terms of the gradient of velocity 

rather than the velocity itself by analogy with molecular viscosity, to give a dissipative 

term in (1.2.2) of the form

F = —i/V2v (1.2.10)

where v is the kinematic viscosity coefficient, assumed to be independent of position. This 

gives a replacement of the Laplacian term in (1.2.9) by

+z>V4$  or + ivV2E

where V4 = + 2QxTd y 2 + and E is the relative vorticity of the mass transport. The

adoption of this form of dissipation term is consistent with the idea of relative vorticity 

being fluxed laterally down-gradient by eddies. The applicability of this to the ocean 

will be discussed in the following section. The equation to be solved is now fourth order 

and thus requires further boundary conditions in addition to those used by Stommel. 

A no slip condition was chosen, consistent with a mechanism whereby eddy vorticity is 

transferred laterally and destroyed by friction at the coasts. Originally Munk used the 

same rectangular basin as Stommel but realistic annual mean zonal winds were used to 

drive the model. Munk and Carrier (1950) reproduced the work with a triangular basin 

for better comparison with observations and this can be seen in figure (1.3b).

Both the linear dissipative models described above are successful in reproducing the 

observed surface flow patterns to a certain extent, particularly in their representation of
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r

Figure 1.3: The results of the classical linear ocean circulation theories of Stommel (1948) (a) 

and Munk and Carrier (1950) (b). The latter is compared with observations of the Pacific surface

currents.
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the western boundary current. They fail, however, to give this current the correct width, 

needing a viscosity coefficient much larger than observed by independent means to do 

so. Also, the mass transport in the boundary current predicted by the models is only 

about half the observed value. It can be seen from figure (1.3b) that the models even 

fail qualitatively due to their inability to represent the seaward extensions of the western 

boundary currents observed in both the Atlantic and Pacific oceans.

These weaknesses in the frictional models correspond to the strengths of the non-linear 

models. Non-linear terms can introduce seaward jets and flow strengths in excess of those 

implied by linear theories, accounting for the mismatch of the latter with observed current 

strengths. The key difference between these two paradigms lies in the geometry of the 

contours of absolute vorticity, 77 (where 77 = /  + £). In the linear models, contours of 77 

always connect with the meridional boundaries. Flow is forced across them by wind stress 

in the interior and friction in the western boundary current, changing its value of 77 as it 

goes. In the unforced, non-linear limit, 77 contours coincide exactly with streamlines and 

77 is materially conserved.

Fofonoff (1954) proposed a model in which all wind stress forcing and frictional dissi­

pation was neglected, and the coriolis term, (3v, was balanced purely by the advection of 

relative vorticity. Thus, equating the left hand side of (1.2.4) to zero, we obtain

J(4>, v) = 0 (1.2.11)

Here 77 = / 0 + (3y -f- V 2tp and J(tp,7]) is the Jacobean of ip and 77, (= and

represents the advection of 77. Equation (1.2.11) implies that there is a functional relation­

ship between tp and 77 and to proceed further it is necessary to specify this relationship. 

For analytical convenience Fofonoff chose a linear form:

tj = 7jo-\- cip (1.2.12)

where 770 and c are constants, and solved for ip in a rectangular basin requiring -0 = 0 

on the boundaries. The solution is shown in figure (1.4). It is characterised by a strong 

eastward flowing jet and a broad westward return flow. To complete the circulation there 

are symmetrical eastern and western boundary currents. Both the position of the jet and 

the strength of the flow are arbitrary in this model, depending on the values of 770 and c 

respectively. The north-south asymmetry of the ocean circulation, which is absent from
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X ------ ►

Figure 1.4: Fofonoff’s (1954) solution for free non-linear flow in a rectangular basin. Weak, 

westward flow prevails over most of the gyre and relative vorticity is concentrated in the boundary 

layers and in the eastward jet to the north. The dashed meridian is a line of symmetry included 

for later reference.
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Figure 1.5: Streamlines from a numerical integration by Veronis (1966) in which a barotropic 

model is forced by wind stress and retarded by bottom friction in the same manner as Stommel’s 

(1948) model, but with the non-linear terms also included.

the linear models, is well represented in a Fofonoff gyre, although the east-west symmetry 

is an unrealistic feature of the model. It was noted by MN that the limit represented 

by the Fofonoff gyre forms a useful reference point from which to study the recirculation 

regions. The work presented in this thesis is an investigation into the vertical structure 

of such regions in terms of baroclinic Fofonoff gyres.

Various attempts have been made to reconcile the two extremes presented above. 

Charney (1955) made a successful detailed comparison between observations and an un­

forced non-linear model of the western boundary area, supplied from the east with a 

prescribed realistic flow. Niiler (1966) showed that weak forcing and dissipation can in 

principle set the transport of a Fofonoff gyre (see next section). Figure (1.5) shows a 

numerical result due to Veronis (1966) in which frictional and non-linear terms are fully 

included. The basin scale flow adheres, broadly speaking, to the forced linear Sverdrup 

balance. However, an intense seaward jet exists in the north western corner, much of 

which is recirculated locally in a tight non-linear gyre more reminiscent of the Fofonoff 

mode.
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1.3 T he R ole o f Eddies in Shaping th e Large Scale Flow

All the analyses presented so far have depicted the ocean as a quiescent fluid, circulating 

in a steady fashion. This is far from the truth. In reality the ocean is alive with transient 

eddies, produced by both barotropic and baroclinic instability, particularly in the intense 

jet regions where there are sharp gradients of potential vorticity. If one is to make a 

serious attempt to model the large scale circulation then small (synoptic) scale processes 

cannot be ignored. The effects of these eddies must be represented accurately, even if only 

through a generalisation of their collective effect on large scales, i.e. a parameterisation 

of their transfer properties in terms of large scale quantities.

For our purposes, an eddy can be defined as a deviation from a time mean field over 

~  10 years, the time scale for the adjustment of the large scale baroclinic flow field to 

changes in large scale forcing. It should be remembered, however, that eddies exist as 

single coherent entities with characteristic spatial extents ~  100 km and lifetimes of several 

months. They are readily identified in satellite photographs of ocean colour or sea surface 

temperature and from experiments with drifting buoys. On these length scales, typical 

ocean velocities are less than 1 m /s, so the Rossby number is small and the eddies are 

well described by geostrophic dynamics.

The spatial extent of ocean eddies causes serious problems for both observationalists 

and numerical modellers. They exist on a length scale equal to the Rossby radius of 

deformation: Lp = N H / f  = y /g 'H \jf  where H  is a depth scale for the motion and g' 

is the reduced gravity. This is the scale at which vortex stretching and relative vorticity 

advection play an equal role in the creation of vorticity locally. It is several hundred times 

smaller than a typical ocean basin. Equivalent systems in the atmosphere, which is more 

strongly stratified, are 2000 km wide, posing no such problems. The parameterisation of 

small scale processes is therefore particularly important in ocean modelling.

If we are to assess the transfer properties of geostrophic eddies in quasi-two dimen­

sional turbulent flow, it is useful to talk in terms of a quantity which is conserved by the 

horizontal flow. Such a quantity is the quasi-geostrophic potential vorticity, q. The other 

advantage of using q is that given boundary, conditions, it specifies the flow. Therefore 

any hypothesis as to the nature of eddy transfers of q in terms of the mean q field can 

form a dynamical closure for the mean flow.
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(a) Scale Evolution o f Geostrophic Turbulence

Turbulent flow, as distinct from wave like flow, is associated with the irreversible defor­

mation of q contours. Theoretical arguments are presented by Rhines (1979) to illustrate 

the way the spatial scales of energy and enstrophy (= | q2) evolve in turbulent flow. If the 

enstrophy is associated mainly with vorticity and the velocity structure is represented as 

a stun of wave components then the integral conservation laws for energy and enstrophy 

can be written as follows:

Energy / 0°° Edk = constant 

Enstrophy / 0°° k2Edk = constant
(1.3.1)

where k is the wavenumber, E  is the energy (= |(Vt/>)2) and enstrophy is §(V2t/>)2 = 

~ k 2 E. The only way that both these integrals can be preserved at their constant value is if 

energy migrates to larger scales while enstrophy cascades to smaller scales. What happens 

physically is that eddies stretch out the q contours, increasing the average q gradients and 

thus creating a finer scale structure in the q field. Small scale dissipative processes then 

break these contours leading to dissipation of enstrophy at very small scales. This effect 

can be seen in figure (1.6). The process is eventually slowed by the increasing disparity in 

scales between the straining eddies and the strained eddies. The streamfunction shows no 

such collapse to small scales (the V-2 can be regarded as a smoothing operator). Rather, 

the ip field becomes smoother as filaments of q are stretched.

Further strong constraints are imposed on these processes by the presence of vortex 

stretching, bottom topography and by the background planetary vorticity gradient. The 

enstrophy cascade can be halted as chaotic turbulence degenerates into organised Rossby 

waves with a length scale appropriate to k2 (3/u.

(b) Transfer Properties o f Eddies

If a closure is to be found for geostrophic turbulence, the systematic effect of eddies on 

the mean flow must be understood. This can be achieved by considering the way in which 

eddies re-shape the large scale q field through turbulent fluxes.

The equation expressing the conservation of potential vorticity is

— + v.Vq -  T  - V (1.3.2)
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Figure 1.6: Contours of constant vorticity in a barotropic, two dimensional turbulence experiment. 

The stretching out of contours can be seen. From Rhines (1979).

where T  and V  are sources and sinks of potential vorticity. The fields can be split into 

time mean and eddy components:

? = Q + q' 

v  = v +  v '

V  = V  + V

(1.3.3)

where overbar and prime denote mean and perturbation. Substituting these into (1.3.2), 

multiplying by q' and time averaging, the eddy enstrophy equation is formed.

Wt G 9'2)  + ^ ’V \ q'2 + v '?'-Vg = - P V  (1.3.4)

Equation (1.3.4) states that the eddy enstrophy change.undergone by a fluid parcel is the 

result of eddy q fluxes across mean q contours and frictional dissipation at small scales.

For example, at the entrance to an atmospheric storm track, where eddy enstrophy 

is increasing along streamlines, there must be a flux of eddy potential vorticity down the 

mean q gradient. Eddy enstrophy is dissipated in storm track exit regions either through
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up-gradient q fluxes or through the cascade process described above whereby energy is 

returned to the mean flow (see Hoskins, 1983, Iflari and Marshall, 1983).

However, such examples from the atmosphere are of limited use in the ocean, where 

there is a mean meridional velocity and strong curvature of q and %Jj contours. In the 

ocean, eddies are spawned in the intense jet regions and decay over a much larger area. 

To understand their large scale transfer properties it is useful to split the eddy flux into 

divergent and non-divergent parts, a method pioneered by Lau and Wallace (1979). By 

doing this, assuming that the mean flow is almost free, i.e. q = q(ifi), Marshall and Shutts 

(1981) rewrote (1.3.4) as

v .V |g '2 + (vY )rot.Vg = 0 (1.3.5a)

§ i ( b '2) + (v V  ~ (v'gOrotJ-Vg = -V 'q ' (1.3.5b)

where (v'g')rot = |kA V (^ |g ,2). Equations (1.3.5) demonstrate that the advection of 

eddy enstrophy by the mean flow (1.3.5a) is associated with a purely rotational eddy q 

flux which cannot alter the large scale field. If local eddy enstrophy is in a steady state, 

(1.3.5b) shows that in an enstrophy cascade, the divergent eddy q flux, which is capable 

of acting on the large scale, is directed down the mean q gradient.

We are now able to replace the frictional dissipation employed in the previous section 

with a more realistic eddy vorticity flux. Green (1970) introduced a diffusive parame- 

terisation for the gross effects of eddy potential vorticity transfer. The above arguments 

suggest that there is some justice in using such a parameterisation for local time mean 

eddy fluxes as well. We therefore write

v7?  = ~nVq  (1.3.6)

where k, is the an eddy transfer coefficient.

Marshall (1984) shows that redistribution of potential vorticity alone is capable of 

maintaining equilibrium in a symmetrical two gyre system. Vorticity is supplied to the 

sub-polar gyre and extracted from the sub-tropical gyre by the wind. It is carried down- 

gradient between the two by divergent eddy flux. Frictional processes are only necessary 

at very small scales to halt the enstrophy cascade. Marshall’s model is barotropic so the 

closure is mathematically identical to that of Munk (1950). However, the physical empha­

sis is completely different: Munk envisages a lateral vorticity transfer to the boundaries,
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where momentum is destroyed; Marshall adopts a different boundary condition, allowing 

flow on the boundaries and relies on the double gyre system for equilibration.

(c) Potential Vorticity Homogenisation

A down-gradient eddy transfer of potential vorticity obviously acts to erode mean potential 

vorticity gradients. In the absence of sources of q, and within closed q contours, this erosion 

can continue unimpeded, resulting in gyre scale regions of uniform q. Potential vorticity 

cannot be transported across density surfaces except by diabatic processes. This serves to 

reduce the dimensionality of the problem. If the density surface one is considering does 

not outcrop at the surface, the region can be considered isolated from surface forcing. 

Rhines and Young (1982b) put forward a theory for such regions. The equation of motion 

for steady, unforced flow is

J{ip,q) — —V.v'g' = V.ttVg (1.3.7)

Integrating (1.3.7) within a closed streamline, the left hand side vanishes and the equation 

becomes

£  KVq.hdl = 0 (1.3.8)

where n  is a unit vector normal to the ip contour. Using

one obtains

Vt/> dq —
n = -—=- and Vo = —=Vip

|V t/»| * dip r

- S  £  n\^1p\dl = 0 . 
dip J

(1.3.9)

(1.3.10)

which implies that q is uniform wherever there is flow, isolated from forcing.

These gyre scale regions of uniform q can be seen in the observations and in eddy 

resolving numerical models (see chapter 3). The theories of the vertical structure of the 

recirculation region presented in this thesis invoke their existence.

(d) Equilibration o f Almost Free Gyres

Even if the direct contribution of eddies to the vorticity budget is small, they can have a 

controlling effect on the mean flow. Niiler (1966) made use of weak forcing and dissipation 

to remove the indeterminacy of the transport in a barotropic Fofonoff gyre. He adopted
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a free, inertial zero order flow, with forcing and dissipation acting as first order effects. 

The equations for such steady, almost free flow are

(1.3.11)
j(V>,v) = o

+ J & , r,’) = T ' - V

A prime now denotes an eddy which is weak compared to the mean flow. As before, a 

linear relationship is assumed between 77 and rp giving

f o + P y  + V V  = *7o + dtp
(1.3.12)

This is identical to (1.2.12), the equation of a Fofonoff gyre. The strength of the flow is 

set by integrating (1.3.11) over the area enclosed by a streamline. The result is an integral 

balance between forcing and dissipation.

JJ F 1 dxdy — J J L)' dxdy (1.3.13)

If F ' = ^ k .V Ar  and a bottom friction parameterisation is used: V ' = R V 2tp as in (1.2.8),

then (1.3.13) can be written

— <f_T.dl = R  /  v. 
Po J  xb J  xb

d\ (1.3.14)
Po Jt/> Jxf,

Frictional dissipation takes place primarily in the boundary layers, where velocities are 

high, so the right hand side of (1.3.14) can be associated with a velocity scale for the 

inertial boundary layer. Niiler deduced that the boundary current velocity is almost an 

order of magnitude higher than that implied by linear theory. It can also be seen that 

(1.3.14) is consistent with the notion that the sense of the circulation must reflect the 

sign of the wind stress forcing, proving that bottom  friction is capable of equilibrating an 

almost free gyre. However, problems occur when this mechanism is replaced by down- 

gradient fluxing of 77. If dissipation is modelled as the eddy transfer of eddy vorticity: 

V  = —V.(kVt]) (c.f. (1.3.7)) then, using (1.3.9), (1.3.14) becomes

—  <f_T.dl= <£_ K V . d l
Po Jxb Jt4

(1.3.15)
Po Jij> dip Lp

implying that if the sign of the circulation is to reflect the sign of the wind stress curl, 

dfj/dtp must be negative. This can be understood qualitatively from figure (1.7) which 

shows an anticyclonic wind driven gyre with a balancing down-gradient eddy vorticity 

flux. But if this is the case then the solution to (1.3.12) becomes sinusoidal, meaning that
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Figure 1.7: An anticyclonic gyre produced by anticyclonic wind stress. t{) increases into the gyre. 

The wind stress curl imparts negative vorticity to the gyre. For equilibrium, eddies must transfer 

positive vorticity into the gyre. Therefore, if eddies transfer q down-gradient, q must decrease into 

the gyre. So dq/dip is negative. Taken from MN.
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inertial boundary layers cannot exist. A solution to this paradox was proposed by MN, 

who couched the problem in terms of baroclinic flow, replacing the absolute vorticity, 77, 

with quasi-geostrophic potential vorticity, q, as defined in (1.1.2). Thus (1.3.12) becomes

ft, + VV + /o2!G^JJ)=9o+|  ̂ (L3'16)
This equation can support inertial boundary layers even when dq/dtij) is negative due to 

the presence of vortex stretching. So if lateral transfer of eddy potential vorticity is to 

equilibrate an almost free gyre, the flow must have some vertical structure. The precise 

nature of this vertical structure will be addressed in the following chapters.
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C h ap ter  2

O bservations o f th e R ecirculation

2.1 T he C irculation in Three D im ensions

As it flows through the Florida straits, the Gulf Stream is estimated to carry a mass 

transport of about 30 Sverdrups (Sv)(one Sv is 106 m3s-1 ). As it leaves the coast at 

Cape Hateras, this has intensified to ~100 Sv. By the time it reaches 55° W, now flowing 

eastwards, the transport has risen to 150 Sv (see Richardson, 1985 for a review of transport 

estimates). We shall return to a quantitative discussion in section (2.4) and in chapters 

4 and 6. Qualitatively, it is obvious that the large transports carried by the seaward 

jet cannot be representative of the transport of the basin scale circulation. Much of the 

excess water must be recirculated locally. The downstream acceleration described above 

is consistent with the inertial nature of the boundary layer, which gains cyclonic shear as 

the current moves northwards and planetary vorticity increases (see Stewart, 1964). An 

‘inertial recirculation’ can therefore be postulated simply on the basis of maintaining the 

observed transport structure of the Gulf Stream. However, there is further evidence of a 

separate, locally recirculating gyre in the western north Atlantic.

Following an analysis of oxygen concentrations in the north Atlantic, Worthington 

(1962) identified two distinct circulations . Warm, relatively oxygen sparse Sargasso sea 

water was hypothesised to recirculate in an anticyclonic gyre confined to the western side 

of the Atlantic, the north Atlantic drift further east being returned in a separate gyre 

(also anticyclonic) to the north east. Figure (2.1) shows Worthington’s (1976) suggested 

circulation scheme for the total flow in the north Atlantic. It was constructed on the basis

33
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Figure 2.1: Worthington’s (1976) circulation scheme for depth integrated flow in the north Atlantic. 

Contours show intervals of 10 Sv.
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of material conservation of physical properties. Flow lines were drawn such that they did 

not cross clear water mass boundaries. The resulting scheme has been criticised (Clarke 

et al, 1980) for violating geostrophic balance. Furthermore, it is difficult to satisfy mass 

transport continuity in a gyre of this scale without allowing thermal forcing to modify the 

water mass to some extent (Luyten and Stommel, 1982). But even if some of the Gulf 

Stream water does end up far to the north, it seems that a large fraction of it stays in 

the western half of the basin, recirculating to the south. A fluid parcel in this gyre is 

thought to make many orbits on average, before its properties are significantly influenced 

by wind or thermal forcing. Much of the thermocline water circulating as shown in figure 

(2.1) has weak vertical gradients of temperature and density, and has correspondingly low 

potential vorticity. It is known as 18 degree water or ‘mode’ water and its importance is 

discussed in the next section.

In tandem with this southern recirculation gyre is a tight cyclonic recirculation to the 

north, returning Gulf Stream water to the west south of the Grand Banks of Newfound­

land. The structure and transport of this gyre has been documented by Hogg (1983), 

Richardson (1985) and Hogg et al (1986). It is discussed further in sections (2.3) and 

(2.4), and a model is presented in chapter 5.

The non-linear nature of the recirculation is apparent from figure (2.2a) which shows 

a north Atlantic potential vorticity map compiled by Keffer (1985). At this level (erg = 

26.3 — 26.5) closed contours can be seen, forming free paths for the flow. These closed 

contours delineate the recirculation region. To the east of this region, the Q contours 

still show significant curvature but it can be seen that much of the water flows through 

the outcrop zone and is therefore influenced by surface forcing. This is the ‘ventilated 

thermocline’ (Luyten, Pedlosky and Stommel, 1983). A strong front is apparent, marking 

the position of the Gulf Stream and illustrating its baroclinically unstable nature. Just 

south of the Gulf Stream front is a strong minimum of potential vorticity. This is the 

mode water referred to above. There is considerable injection of potential vorticity into 

this layer through convective mid-gyre sources, violating the necessary conditions for 

potential vorticity homogenisation.

At deeper levels (figure (2.2b)) the water is largely isolated from direct mechanical 

and thermal forcing. Although the layer shown (ae = 26.5 — 27.0) still outcrops, closed
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Figure 2.2: North Atlantic potential vorticity taken from Keffer (1985): (a) in the cq =  26.3 — 26.5 

layer showing closed contours; (b) in the <7$ =  26.5 — 27.0 layer, showing homogeneous regions.
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Q contours exist south of the outcrop, providing the opportunity for homogenisation as 

described in section (1.3c). At this level, the homogenisation has extended across most of 

the ocean basin. It should be noted that the appearance of such large scale homogeneity 

in Q could in part be due to a lack of contrast in boundary conditions, with the outcrop 

zone arranged in such a way that there is a limited range in the values of Q advected 

south (see Keffer, 1985).

There is a marked contrast, therefore, between flow regimes which are ventilated and 

those which are isolated. In ventilated regions, the potential vorticity is set at the outcrop 

and conserved downstream. In isolated regions, potential vorticity is not continually reset, 

so there is time for it to be redistributed by eddies, allowing free flow in a region of uniform 

Q set into the background beta gradient.

In the direct vicinity of the Gulf Stream, the homogenisation of properties extends 

across the stream itself in the deep water (<iq > 27.1) (Bower, Rossby and Lillibridge, 

1985). This contrasts with the strong front in both dynamical and passive properties at the 

surface, where the Gulf Stream has a continuous identity as a water mass boundary. The 

larger scale picture at this depth is more complicated, particularly in the north Atlantic. 

McDowell, Rhines and Keffer (1982) document open Q contours lying in a north east - 

south west orientation and providing pathways for source to sink flows of Mediterranean 

water and north Atlantic intermediate and deep waters. Such source to sink flows require 

a complicated depth structure to the currents in the eastern north Atlantic. By imposing 

the Sverdrup constraint, Saunders (1982) deduces northward flow between 300 and 1000 m 

depths at 48° N and 20° to 30° W, with southward flow extending to great depths below. 

The closure of this thermohaline mode of circulation takes place through deep convection 

in the norwegian sea. Some of the cold abyssal water formed in this region ends up in 

the western north Atlantic by means of the deep western boundary t u r r e t  (see figure 

(2.1)). The Pacific on the other hand, is more poorly ventilated and these denser layers 

do not outcrop to the north even in the winter. Consequently, potential vorticity still 

appears to be homogeneous on a large scale down to the base of the thermocline.
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2.2 M ode W ater and A nticyclogenesis

(a) Geographical Location and Formation o f Mode Water

Another view of mode water is given in the hydrographic section of figure (2.3) which shows 

the 1956 Atlantis section at 50° W (McCartney, 1982). Figure (2.3a) shows contours of 

potential density with depth as the ordinate. The strong vertical shear at the Gulf Stream 

front is clearly apparent. To the south of this, centred on ag = 26.5, is a wedge of weak 

vertical gradient: a pycnostad. The pycnostad gets thicker towards the north as vortex 

stretching offsets planetary vorticity, maintaining the potential vorticity at a low value. 

The thermocline is at its deepest just south of the Gulf Stream. The pycnostad of figure 

(2.3a) translates into the region of low potential vorticity shown in figure (2.3b), a contour 

plot of potential vorticity with cq as the ordinate. A sharp front exists at the latitude of 

the Gulf Stream. It is still sharper when relative vorticity is included in the calculations 

of Q (M. Hall, private communication).

The upper regions of the recirculation are characterised, then, by a region of low 

potential vorticity south of the Gulf Stream front, associated with a depression in the 

main thermocline.

McCartney (1982) documents the geographical location of two types of mode water: 

sub-tropical and sub-polar. It is the sub-tropical variety which forms Worthington’s 18 

degree water and resides within the recirculation. Sub-tropical mode water is formed 

when winter outbreaks of cold air from the continent cool the surface of the warm water 

just offshore of the Gulf Stream or Kuroshio. The resulting deep convection destroys 

the vertical stratification creating low potential vorticity water which is subducted into 

the main thermocline as the mixed layer retreats in the spring (Woods and Barkmann, 

1988). Sarmiento (1983) estimates that the flux of water from the mixed layer into the 

thermocline in this region is as much as 40 Sv, exceeding the Ekman flux by a factor of 

5. Once an east-west band of this low Q water is formed, it is advected round the gyre to 

the south and back west to fill the gyre in a sporadic uneven way.

In fact the distribution of mode water is highly variable in space and time. Talley and 

Raymer (1982) have recorded temporal variations in potential vorticity at one station. In 

the short term, they correspond to spatial variations over a few thousand km along the 

flow direction of the same order as the value of Q characteristic of mode water. The depth
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Figure 2.3: Meridional sections taken along 50° W by RV Atlantis between November 13 (north) 

and November 30 (south) 1956, taken from McCartney (1982). (a) Potential density in kg m“3 

with depth as the ordinate. The mode water is centred on og = 26.5. The bowl is marked as a 

thick line, (b) Potential vorticity in 10“ 12 m” 1 s-1 with potential density as the ordinate. The 

low potential vorticity water has been shaded.
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Figure 2.4: A schematic illustration of annual changes in the Gulf Stream position and interface 

shape. From Worthington (1976).

variation of the mode water is equally troublesome, spanning a range in <rg equal to the 

thickness of the mode water wedge. In the long term, the properties and abundance of 

mode water one not always constant, but can change suddenly after years of constancy in 

response to anomalous atmospheric conditions. Observations of this nature expose the 

limitations of steady state theories in the modelling of these gyres. The models presented 

in the following chapters can aid our understanding only if they axe interpreted carefully 

(see section (3.3)).

(b) Anticyclogenesis

The intensity of the Gulf Stream system is observed to increase significantly following 

severe winters. This intensification has been dubbed ‘anticyclogenesis’ by Worthington 

(1972a, 1976) who attributes it to the surface cooling and subsequent convective over­

turning which follows winter cold air outbreaks. Halkin and Rossby (1985) and Fu et al 

(1986) present evidence of annual spring time intensification of the Gulf Stream. Increased 

volumes of mode water were generated after the particularly severe winter of 1976-77 (Mc­

Cartney, Worthington and Raymer, 1980) and the Gulf Stream intensified considerably 

(Worthington, 1977). Figure (2.4) shows schematically the annual changes in the position 

of the Gulf Stream and the shape of the thermocline. It is deeper and steeper in the 

spring following the regeneration of mode water. Worthington talks of a ‘fresh charge of 

energy’ being given to the stream.

Whether this extra depression of the main thermocline is the result of thermal forcing, 

or simply due to increased wind stress during winter is a m atter for conjecture. Worthing­

ton (1972b) describes a thermally direct meridional circulation with sinking water in the
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region of maximum cooling and a broad region of upwelling to the south. Csanady (1982) 

has modelled the effect of this differential buoyancy loss in a simple two layer ocean and 

finds that the thermohaline circulation transfers streamwise momentum into the stream, 

thus intensifying it. The thermocline is distorted in a manner similar to that of figure 

(2.4). A relevant question to ask is: can this vertical circulation aid the Ekman pumping 

and actually increase the depth integrated transport ? There is an important difference 

between thermally induced vertical motion and Ekman pumping which is made clear by 

equation (1.2.5). The term has disappeared in the vertical integral and has no effect 

on the vertically integrated velocity in the linear Sverdrup regime. It is only the wind 

stress which can set the transport in this case. The situation is more complicated in a 

non-linear recirculating gyre. The relative vorticity advection term in (1.2.4) is non-linear 

in velocity. If a thermally induced vertical velocity can redistribute this term in the verti­

cal this may, therefore, lead to a change in the depth integrated velocity locally. Stommel 

and Veronis (1980) show that in a rotating baroclinic fluid, initially ageostrophic finite 

amplitude disturbances to density surfaces lead to non-zero barotropic transports in the 

subsequent geostrophically adjusted flow. The rotation of the fluid means that some of 

the available potential energy liberated by cooling feeds a depth independent transport, 

rather than a vertical secondary circulation. MN2 suggest that anticyclogenesis is a ‘res­

onance’ of the free Fofonoff mode and they model the intensified recirculation in terms 

of baroclinic Fofonoff gyres reaching down to the ocean floor. This model is described in 

detail in section (3.3).

The causes and effects pertaining to anticyclogenesis are not addressed directly in the 

work presented below. Rather, the effect of varying the volume of low potential vorticity 

water and the thermocline depression is studied in isolation from the driving mechanisms.

2.3 D eep  Flow

Attention has so far been restricted chiefly to the main thermocline. Over most of the 

ocean the flow at deeper levels is weak. However, the deep abyssal flow is a very important 

part of the recirculation system. Figure (2.3b) shows a region of homogeneous potential 

vorticity descending to great depths. More recent data (McCartney, private communi­

cation) shows very weak isopycnal gradients of potential vorticity extending right to the
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ocean floor. The homogeneous potential vorticity of figure (2.3b) matches closely onto 

areas where isopycnals are sloping, as seen in figure (2.3a). A bold line has been drawn 

on this figure demarking areas with sloping isopycnals from areas with relatively flat 

isopycnals. This is the ‘bowl’ of the circulation.

Within the bowl, there is baroclinic flow and uniform potential vorticity. Beneath 

the bowl, the water is stagnant, isopycnals are at their reference depth and the potential 

vorticity takes on its rest value. The above statement is an idealisation of the observations. 

This idealised model forms the basis of the work presented in this thesis.

Whether or not the bowl hits the bottom is an important question, as it determines 

the possibility of a barotropic (depth independent) component to the recirculation. This 

question is addressed theoretically in chapters 4 and 6. Observational evidence that the 

bowl does indeed hit the bottom in the north Atlantic is given by Schmitz (1980). Figure 

(2.5) shows his current meter data, from an array set out along 55° W. The westward 

return part of the flow at 36° N is almost independent of depth. The recirculation has a 

strong (~  10 cm s-1 ) barotropic component at this latitude.

These data also show a deep counter current beneath the axis of the eastward jet. The 

jet itself sweeps southwards with depth. In an analysis of further current meter data, Hogg 

(1983) reveals that the dominant recirculation gyre at 4 km depth is in fact cyclonic, and 

represents a southward expansion of the cyclonic recirculation found to the north of the 

Gulf Stream at the surface with a contribution to the westward flow also coming from the 

deep western boundary current (see Richardson, 1985). Both cyclonic and anticyclonic 

gyres are seen in figure (2.6), which shows a suggested circulation scheme for 4 km depth. 

The cyclonic gyre is clearly the larger of the two. This depth structure is modelled in 

terms of free homogeneous gyres in chapter 5.

As mentioned above, the Pacific is a poorly ventilated ocean compared to the north 

Atlantic and the main thermocline does not penetrate to such depth (see Worthington and 

Kawai, 1972). This can affect the depth penetration of the bowl, and will be discussed in 

chapters 4 and 6. Figure (2.7) shows schematic zonal average potential vorticity regimes 

in the north Pacific, compiled by Talley (1988). The region of homogeneous potential 

vorticity shrinks towards the axis of the Kuroshio in the manner predicted by the theories 

presented below. But it only penetrates to a depth of 2.5 km, so by this criterion, the bowl
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Figure 2.5: Time averaged horizontal velocity vectors at sites along 55° W from current meter 

readings reported by Schmitz (1980). The ‘weakly depth dependent* nature of the westward return 

flow, and the counter current beneath the Gulf Stream are apparent (the range of mean positions 

for the axis of the Gulf Stream is shown by a horizontal bar).
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Figure 2.6: A circulation scheme for the deep flow in the western north Atlantic as inferred from 

long term direct measurements. From Hogg (1983).
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does not hit the bottom (although it is possible that a uniform potential vorticity region 

may penetrate deeper on a scale unresolved by these data). However, bottom currents do 

exist in this region. Schmitz (1987) reports of large (~  5 cm s-1 ) stable abyssal currents 

which seem to bear little relation to the recirculating flow above. Whatever the origin 

of the abyssal Pacific currents, it is reasonable to suppose that they cannot be modelled 

directly by the simple theories presented below.

2.4 Partition  o f M ass Transport

There are two useful divisions to be made in the mass transport of the oceans. One is 

simply spatial: how much water goes where. The other involves depth dependence.

(a) Spatial Partition

Richardson (1985) lists the estimates of the Gulf Stream’s transport between 50° and 

70° W, which have been made by a variety of methods. The values vary from 79 Sv 

(Clarke et al, 1980) to 226 Sv (Robinson et al, 1974). The generally accepted value for 

the maximum transport is Worthington’s (1976) value of 150 Sv, south of Nova Scotia. All 

these estimates suffer from the problem of differing time scales. A hydrographic section 

is almost synoptic, and will include eddies, meanders and embedded small scale features 

(although the highest frequency ageostrophic features are automatically filtered out). It 

is difficult to judge which of these belong to the stream and where the limits of the stream 

lie. Estimates based on floats have similar drawbacks although the possibility of some 

spatial integration exists. Current meters, on the othei- hand, produce a time series, but 

their spatial resolution is poor. Hall and Bryden (1985) overcome these problems by 

assuming that temperature can be used as an across stream coordinate and using the 

stream’s own meanders to give spatial resolution to a single moored current meter array. 

Their estimate for the transport at 68° W is 94 Sv.

Richardson’s (1985) estimate, based on a large scale experiment combining neutrally 

buoyant floats with current meter measurements, is 93 Sv for 55° W. This is low compared 

to the values mentioned above because it represents a long time average. The relevance 

of this to theoretical models is discussed in section (3.3).

How much of the Gulf Stream’s transport can be considered part of the recirculation ?
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Richardson’s study reveals two counter currents, one to the north and one to the south, 

which reach to the ocean floor. These are the northern and southern recirculating gyres 

described above. Of the 93 Sv carried by the Gulf Stream, 41 are returned to the north 

and 29 to the south. The remaining 23 are returned further to the south in the larger 

scale sub-tropical gyre. These observations therefore suggest that the excess transport 

carried by the inertial flow is ~  40 Sv.

(b) Barotropic and Baroclinic Components

Schmitz (1980) describes the westward return flow as ‘weakly depth dependent’. Yet the 

eastward jet itself is strongly surface intensified. Therefore there must be a baroclinic 

component to the recirculation at some latitude. Richardson estimates that about two 

thirds of the Gulf Stream’s transport, and about half the transport in the two counter 

currents is ‘bottom relative’ at 55° W.

Since the idea of a ‘level of no motion’ is obviously inappropriate at least to the Atlantic 

recirculation, we shall use the term baroclinic component to mean the bottom relative 

transport, while the barotropic component is the bottom flow multiplied by the depth. It 

will be shown in chapter 4 that a strong relationship exists between this somewhat artificial 

transport partition, and a spatial partition based on the latitude at which the bowl hits the 

bottom, with baroclinic flow south of this latitude feeding the surface intensified eastward 

jet.

The Kuroshio at 152° E is slightly more barotropic in nature than the equivalent 

stage of the Gulf Stream at 68° W and has a shallower thermocline expression (see Hall, 

1989). Further downstream, however, while the Gulf Stream intensifies and becomes more 

barotropic, the Kuroshio still has weak eastward bottom flow (Joyce and Schmitz, 1988), 

flanked by a stronger westward flow. In fact the transport at 165° E between 30° and 

42° N is westward; about 63 Sv. This is in stark contrast with the Gulf Stream system, 

which shows a closed double gyre structure in the bottom flow. Hogg (1983) speculates 

that this difference is related to topography. He notes that the eddy energy in the deep 

north Atlantic increases downstream of the New England sea mounts, potentially driving 

the flow. At the equivalent position in the Pacific the Emperor sea mounts rise steeply 

from an abyssal plain. But in this case there is a downstream decrease in eddy energy,
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with the topography apparently blocking rather than stirring the flow.

(c) Summary

An upper limit on the Gulf Stream’s transport is ~ 150 Sv. This value is reduced on 

time averaging. Much of this is returned in two tight recirculating gyres, one anticyclonic 

and one cyclonic, each carrying an excess ~  40 Sv above the linear, Sverdrup component. 

These recirculations have considerable barotropic components, as does the eastward flow­

ing Gulf Stream. The eastward jet of the Kuroshio, however, lacks this barotropic inten­

sification and closed circulation patterns for the abyssal flow in the Pacific are unclear.



C h a p ter  3

M odels w ith  V ertical Structure

3.1 Introduction

The homogeneous theories presented in section (1.2) have been useful in discussing the 

mass transport of the basin scale flows. Indeed, Sverdrup’s mass transport equation 

(1.2.5) makes no assumption about the depth dependence of the flow. However, one of 

the most striking features of the ocean is its vertical structure, particularly the existence of 

the main thermocline: the region of strong vertical gradients of temperature and salinity 

which contains most of the wind driven circulation. It is desirable to build models which 

can represent these variations in order to understand the processes which are responsible 

for them. Recently, considerable progress has been made in understanding the vertical 

structure of ocean gyres through layered models (Rhines an Young, 1982, Luyten, Pedlosky 

and Stommel, 1983). These models are briefly described below as a precursor to a review 

of layered models of free non-linear gyres pertinent to the recirculation.

3.2 Layer M odels

The concept of water being driven across latitude lines by the wind, modifying its vorticity 

as it goes, turns out only to be useful when considering the depth integral. In fact even 

in this forced region, considerable curvature of Q contours is necessary to allow the deep 

low to move meridionally. Otherwise the flow is confined to a shallow layer just below the 

Ekman layer where it can be directly forced at all latitudes (see Rhines, 1986 for a scaling

49
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Figure 3.1: A schematic diagram of the ventilated thermocline model of Luyten, Pedlosky and 

Stommel (1983). The outcropping layer interfaces and the surface Ekman pumping are indicated. 

From Rhines (1986).

argument). In the ocean, rather than being directly forced everywhere, the thermocline 

flow is ventilated, as described in chapter 2. The deep curving Q contours thread back 

to outcrop windows at the surface. If the Q contours close off completely, then free flow 

becomes a possibility, and a different thermocline regime is generated. Successful layer 

models of these two regimes are described below.

(a) The Ventilated Thermocline

Luyten, Pedlosky and Stommel (1983) constructed a model of the eastern part of a large 

scale ocean gyre, in which the flow is forced by the wind. Frictional dissipation and 

advection of relative vorticity are considered negligible. Thus the Sverdrup constraint 

(1.2.5) can be applied to the depth integrated flow and the potential vorticity is simply 

given by Q = f /h ,  where h is the thickness of an isopycnal layer. The formulation of 

the model is shown in figure (3.1). Each layer outcrops between latitude lines, where 

it is forced by an Ekman pumping velocity. In the layer model context, the Sverdrup 

constraint is a summation over active layers:

P ^ 2 h nvn = fw E(x }y) (3.2.1)

where n denotes layer number. Potential vorticity is conserved away from outcrop regions
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Figure 3.2: Contours of height for the lowest interface of the deepest layer of the ventilated 

thermocline model. These are trajectories for the lower layer flow. Notice the shadow zones to 

the west and on the eastern boundary. From Rhines (1986).

according to

(3.2.2)

The vns in the above equations can be substituted for in terms of h through thermal wind 

balance:

v n — (3.2.3)

The problem is solved by using (3.2.1) and (3.2.2) together to specify hn(x, y). Equation 

(3.2.1) is integrated from the eastern boundary and, using prior knowledge of the potential 

vorticity of the already subducted layers (equation (3.2.2)), the depth of the outcropping 

layer is found and hence its potential vorticity. When the outcropping layer is subducted 

to the south, it conserves this value of Q , becoming more squashed in order to offset the 

change in / .

A solution is shown in figure (3.2) for the total depth of the ventilated thermocline. 

This is a streamfunction for the lower layer flow, which outcrops north of the dashed 

line. South of this line the contours Eire also parallel to Q contours, which sweep round 

to allow meridional displacement of deep subducted fluid. A feature of the solution is the 

stagnant ‘shadow zone’ in the south eastern corner of the deepest active layer. In this
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region, the layer is not sufficiently squashed by the flow above to allow any Q contours to 

connect back to the outcrop region. All Q contours in this shadow zone meet the eastern 

boundary so the water cannot move. Only when one is far enough west for the Ekman 

pumping integral to be large enough can the Q contours thread back to the outcrop.

Another shadow zone exists to the west. This region is simply not penetrated by 

any flow trajectories from the outcrop window of this layer. It is therefore isolated from 

direct wind forcing and susceptible to eddy Q homogenisation within closed Q contours. 

A model of this type of deep gyre is described below.

(b) Closed Wind Driven Gyres

Rhines and Young (1982a) offer an alternative to the direct ventilation of the previous 

model in their quasi-geostrophic layer model of closed ocean gyres. Rather than having 

density layers outcropping, the stratification is prescribed and the Sverdrup transport is 

shared between a directly forced upper layer, and a lower layer which is set into motion 

when q contours close to form free paths for the flow. The two layer form of equation 

(1.1.2) is

?i = PV + L~2 {rp2 -  rpi)

q.2 = P y  + L p 2{ipi -  $2)

Relative vorticity has again been neglected. If the upper layer is directly forced by the 

wind, and dissipation is through lateral eddy q transfer in both layers (equation (1.3.6)), 

then the equations of motion in the two layers are

J(ip i .? i )  =  pk.VAT +  /cV 2<7i 

J(*l>2 ,q2 ) = acV2$2

Momentum is transferred from the upper layer to the lower layer through eddy form drag. 

The direct equivalence of vertical momentum transfer to lateral transfer of q is made clear 

by the relations:

* v 29l =  - < 7 ^  -  y>2)

KV292 =  - K i J 2V 2(t/>2 -  4>l)

the right hand sides of which represent interfacial drag terms in the momentum equations. 

In this model, fluid is brought into motion in layer 2 through the action of eddies. A point 

is reached where q2 contours close off allowing free flow. A pool of uniform q2 then evolves,

(3.2.5)
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expelling these closed contours to its perimeter. The eddy term which brought about this 

free flow is then ‘switched off’, leaving the lower layer to circulate in an equilibrium state 

defined by the action of eddies. This region of homogeneous free flow is impervious to 

influence from outside. It corresponds to the western shadow zone of the ventilated model 

above.

To solve equations (3.2.5) it is necessary to transform them into a set of linear equa­

tions. Rhines and Young choose to do this by imposing the Sverdrup constraint, which 

can be written as a barotropic mode streamfunction determined from the known wind 

stress.

$  = ^ i + V>2 (3.2.7)

Substituting this into the final state of the lower layer momentum equation (in the limit 

of weak eddies) we obtain

J ( 1 >2 , 0 y + L ; 2 <i) = O(K) (3.2.8)

which implies that in the region of closed <72 contours,

rh = G(fiy + L~ 2 V) (3.2.9)

where G is an undetermined function. The form of G is also selected by the eddy terms. 

Equation (3.2.8), with the 0(/c) term defined as in (3.2.6), is integrated round a closed 

ip2 contour. The left hand side disappears, revealing that in this case, the integrated 

circulation is shared equally between the two layers, irrespective of the value of k , and G 

is simply equal to L 2p/2. ^2 can now be calculated and hence, from (3.2.7), tp\.

Figure (3.3) shows Rhines and Young’s solution in each layer for a simple wind stress 

pattern applied to a circular patch centred on the origin of a boundless ocean. The wind 

stress curl is proportional to — x and independent of y, integrating out to zero in the 

zonal direction and around streamlines and thus posing no problems requiring frictional 

western boundary closure. The lower layer flow is confined to the small, circular region 

of closed q2 contours in the northern half of the area of upper layer flow. If the two layer 

model is extended to the continuously stratified case, this northward migration of the 

anticyclonic gyre with depth becomes clear, as seen in figure (3.4).
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Figure 3.3: Streamfunctions from the two layer model of Rhines and Young (1982a).

\

Figure 3.4: A meridional section of the continuously stratified model of Rhines and Young (1982a), 

showing the shape of the bowl and the northward migration of the anticyclonic gyre with depth.
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3.3 Inertial Layer M odels

(a) Baroclinic Fofonoff Gyres: the MN Model

Up to this point the vertical structure of ocean gyres has been discussed purely in terms of 

how the wind driven Sverdrup transport may be distributed in the vertical, and what the 

important processes are. The transport in the inertial recirculation is, however, far greater 

than the Sverdrup transport, as expounded in chapter 2. What is the vertical structure 

of the flow in a non-linear recirculating gyre ? To answer this question, the Sverdrup 

constraint must be abandoned and alternative ways of forcing the model adopted.

To specify the potential vorticity, given boundary conditions and a suitable balance 

assumption, is to specify the flow. This is the route taken by MN, MN2, Greatbatch 

(1987) and Cessi (1988) in setting up their analytical models of the recirculation. These 

models can be regarded as extensions to Rhines and Young’s solutions, to the non-linear 

recirculation. They have the following features in common: all describe a vertical, merid­

ional section in which the quasi-geostrophic potential vorticity is specified; they are driven 

by a low potential vorticity anomaly in the surface layer (determined by various means); 

they assume that at deep levels, the potential vorticity is homogeneous in the region of 

flow and they solve for the extent of this region by imposition of boundary conditions.

MN put forward a model of stacked Fofonoff gyres in which potential vorticity is set 

through a linear (q, ip) relationship as in equation (1.3.16), viz

q = q0 + op

Figure (3.5) is a schematic diagram of the quasi-geostrophic layer model used in MN and 

MN2. It represents a vertical meridional section through a Fofonoff gyre, the position of 

which is shown in figure (1.4). A low value of q is given to the upper layer, representative 

of mode water. Thus, for continuity of potential vorticity at the southern edge of the gyre, 

qo is set to — (3L (where L is the meridional extent of the gyre). The corresponding value 

for the sub-polar gyre is /3L, giving a realistic front in q at upper levels near the Gulf 

Stream (see figure (2.2a)). In the sub surface layers, it is assumed that q homogenises to 

the value of planetary vorticity at the axis of the eastward jet (the effects of relaxing this 

assumption are considered in chapter 5). This simply means that q is set equal to zero 

in the abyssal flow region. The value of dqfdip is determined by the integral balance of
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y

Figure 3.5: The vertical structure in MN’s layer model of the recirculation. Regions of vortex 

squashing are shaded to represent the bowl of the circulation. North of these regions, q is homo­

geneous and free flow exists.
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forcing and dissipation, as illustrated by equation (1.3.15). For the moment, however, we 

shall concern ourselves with the simpler case of uniform potential vorticity in regions of 

flow, (g ,-0) relationships are discussed further in section (3.3c) and chapter 4.

Returning to figure (3.5), the deep flow i& set into motion through a similar mechanism 

to that described in section (3.2b), as follows: Layer 1 has moving fluid, with constant low 

potential vorticity. Its thickness increases in a linear fashion on moving northwards, as 

vortex stretching offsets planetary vorticity. Accordingly, the interface between layers 1 

and 2 (the thermocline) is pushed down, progressively squashing the still motionless layer 

2. Thus the potential vorticity in layer 2 increases at a faster rate than the beta effect and 

so q2 reaches zero at y = —I2 . This marks the southern edge of the deep recirculating gyre. 

Contours of 52 can now close off between this latitude and y = 0, and <72 can homogenise 

to a zero value. To maintain <72 = 0 against the background planetary vorticity gradient, 

layer 2 is now stretched until it regains its reference thickness at y = 0. This results in 

a depression of the interface between layers 2 and 3, implying motion in layer 2 and also 

squashing layer 3 and bringing it into motion at y = —l^. The /„s collectively define the 

bowl of the circulation. Figure (3.5) shows the ‘hyperbolic plunge’ of the bowl, with the 

homogeneous gyres retreating northwards with depth, and the penetration of the flow 

extending to infinity as the axis of the eastward jet is approached. This hyperbolic form 

compares well with the observations discussed in section (2.3) and shown in figure (2.3).

(b) Barotropic Flow and the Southern Boundary Condition: the CIY Model

CIY present a barotropic model in which the balance of terms in (1.1.2) is between plane­

tary and relative vorticity, a very different emphasis to that of MN. Their model is forced 

by imposing anomalously low values of q on the boundaries. These q anomalies are dif­

fused into the interior and eventually form a closed gyre with homogeneous q. They show 

through circulation integrals that the value of homogeneous q is a velocity weighted av­

erage of the boundary anomalies. The rationale for employing this type of forcing is that 

the q distribution in the recirculation is dominated by advection of q from distant sites 

by strong boundary currents, rather than by local forcing. This approach fails, however, 

to reproduce the strong minimum in q found in the gyre centre at upper levels (see figure 

(2.2a)) (an advantage enjoyed my MN, who model the effect of local forcing in terms of a
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(q, VO relationship). CIY find that in their numerical integrations, a strongly forced recir­

culating gyre will fill the domain. If the model is less strongly forced, the southern extent 

of the recirculation depends on the size of the q anomaly. This dependence enters into 

their analytical calculations through an additional southern boundary condition, namely 

u = 0 or ‘no slip’. This extra condition is required to allow the unspecified latitudinal 

extent of the gyre to be determined in the solution of the second order equation, (1.1.2). 

Whether or not it is useful to have a variable domain in the upper layers depends on 

the relative importance of local mechanical •/ thermodynamic forcing and the degree of 

certainty attached to the boundary conditions employed.

The choice of no slip boundary condition is justified by invoking the ‘extremum princi­

ple’. CIY show through circulation integrals (see section 1.3c) that any local ‘extremum’ 

(or closed contour) in q will be eroded by eddies under the parameterisations introduced 

in chapter 1, and in the absence of direct forcing. If there is no flow to the south of the 

recirculation, then its southern edge must have a no slip character to ensure continuity of 

velocity. Otherwise, a forbidden extremum would result in relative vorticity and hence in 

Q-

In the MN model, the eastward jet is assumed to have a boundary layer character 

and so their solutions are unable to satisfy the no slip southern boundary condition at 

the edge of the bowl required by CIY. Rather, at y = — /n, a discontinuous jump exists in 

velocity at all levels. In fact, implicit in their neglect of relative vorticity at this latitude 

is an assumption of continuity of q through the shaded zones of figure (3.5), or to put 

it another way, a zero relative vorticity or ‘free slip’ southern boundary condition. MN 

argue that this is the appropriate condition to impose at the bowl. We shall return to 

this point in section (3.4), where the evidence from eddy resolving numerical models is 

noted and it is discussed in terms of a vertically continuous model in section (4.3).

(c) Models with Baroclinic and Barotropic Flow

Barotropic flow is only possible north of the latitude where the bowl hits the bottom. 

The question remains as to what determines the strength of the barotropic component. 

The bottom boundary condition usually applied in this region is ipz = 0, implying an 

isopycnal ocean floor. This is consistent with the spin up of the gyre from rest with w = 0
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at the bottom. With this boundary condition, the vortex stretching term disappears from 

the vertical integral of (1.1.2). Therefore the depth integrated flow must be determined 

entirely from the remaining terms in rp. These arise either through relative vorticity or 

through non-zero values of dq/d'ip (or c) appearing in the form chosen for q.

In all cases, relative vorticity is essential for the closure of the circulation in the 

eastward jet to the north. To model this part of the gyre explicitly, relative vorticity must 

be included in equations (3.2.4), which are solved for a model with N  isopycnal layers of 

constant density interval as a set of N  coupled equations:

qi = Py + V 2ipi + Lp2(ip2 -  Vh) = -P L  + a*Pi

qn = Py + V V n + a nT~2(*/;„_! -  2ipn + ipn+i) = 0 (3.3.1)

qN = Py + V V at + ocnL~2 (iPn -  1 -  rptf) = 0 (or = ĉ iPn )

with all sub-surface layers having qn = 0 where there is flow, and rjjn — 0 in the stagnant 

regions to the south. an is the ratio of the upper layer thickness to the thickness of layer 

n.

CIY and Cessi (1988) allow relative vorticity alone to set the transport of the barotropic 

component. Extending the analytical model of CIY to the baroclinic case, Cessi solved 

(3.3.1) for two layers, with c = 0 and a no slip (rpy = 0) rather than free slip (ipyy = 0) 

boundary condition at the southern edge of the deep flow. Relative vorticity, therefore, 

exerts its influence right out to this latitude. This alters the value of I2 from L j2 in the 

MN model to 3T/4 in the case of «2 = 1. Coupled with the presence of an ocean floor in 

this model, this serves to emphasise a barotropic balance to the flow, with relative vortic­

ity offsetting planetary vorticity over most of the gyre and a strong barotropic component 

to the transport. The importance of vortex stretching is minimised in this study as it 

has no effect on the barotropic component of the flow. The processes described above, 

leading to the hyperbolic bowl, are relegated by Cessi to a weak ‘baroclinic fringe’, with 

most of the recirculation taking place in a ‘barotropic core’ north of the latitude where 

the bowl hits the bottom. This terminology is retained, and Cessi’s interpretation of the 

transport in the recirculation is investigated critically in chapters 4 and 6, where the roles 

of relative vorticity and vortex stretching are described in full quantitative detail in a 

vertically continuous model.
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MN2 analyse the bottom  flow in terms of a 3 layer quasi-geostrophic model, where 

relative vorticity is neglected over the westward flowing part of the gyre and only becomes 

important in the eastward flowing boundary layer. This means that they have to rely on 

non-zero values of c to set the strength of the westward flow. Enhanced forcing is imposed 

in the upper layer through the relation q\ = — f3L + c i^ i, and in the lower layer bottom 

friction is represented through q3 = 03^3 in the region of bottom flow. q2 is again equal 

to zero wherever layer 2 is in motion. Application of the theory embodied in (1.3.15) 

(where Ekman dissipation replaces wind stress forcing for the lower layers) leads to the 

simple constraints: c\ < 0; C3 > 0. To give further information about the possible values 

of dq/dtj.!>, (3.3.1) must be solved.

Equations (3.3.1) can be written in vector form as

<4y + i ; 2A i?+/3b =  0 (3.3.2)

where is the column vector (r/?i, 02, 4>n ) T , b is (y + L ,y ,..., y)T and A is a tri-diagonal

matrix involving the stretching term coefficients of rf> and the cs. In the three layer case, 

A is given by

' ' - ( l  + ci), 1 0 N

A = q2, — 2a 2, a 2

\ 0, a 3, —(a 3 + c'3) )

where c' =  L 2pc. Equation (3.3.2) is solved by projecting onto normal modes and combining

the particular integral (ipi) with the complementary function (tps) to form the solution

$  -  $ 1  + $ b (3.3.3)

rpl is obtained by inverting A to solve

Lp2Aipi -f /3b = 0 (3.3.4)

and ipBi by solving the linearly independent equations

^ B y y  +  L p  2 (3.3.5)

where A is the column vector of the eigenvalues of A and = E where E is the 

matrix of eigenvectors of A.
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Consistent with FofonofF mode form, MN2 neglect the contribution of 0# to the west­

ward flowing part of the gyre, assuming that it is only important in an eastward flowing 

boundary layer, with the solution of (3.3.5) decaying exponentially away from y = 0. To 

ensure westward flow under this assumption further constraints are placed on the allowed 

values of dq/dtp. MN2 analyse the case where ct 2 = 1. The condition for westward flow is 

then

det A = a 3 c[ + c'3 + 2c[c'3 > 0 (3.3.6)

since < 0 and 4 > o ,  this implies

0 > C; > - i  (3.3.7)

Equation (3.3.6) also implies a lower limit on C3 which depends on the value of c \. However, 

these limits are only meaningful if relative vorticity can be neglected out to the latitude 

y = —I3 . It will be shown in chapter 4 that C3 can easily be zero, with relative vorticity 

providing the balance for the depth integrated flow rather than bottom friction. In this 

case, there is strong cancellation between 0 / and ips and the potentially infinite values of 

0 , arising from having det A = 0, are avoided. Indeed, if a no slip boundary condition is 

to be satisfied, then the growing solution to (3.3.5) must also play a part, and the whole 

of the bottom flow region acquires a boundary layer character as in Cessi (1988). On the 

other hand, condition (3.3.7) on c\ proves to be a realistic constraint on the upper layer 

forcing in the numerical inversions presented in chapter 4.

The views of the recirculation described in this section appear to be in opposition in 

several respects. It is hoped that the results of the next chapter will illustrate that the 

tru th  contains elements from both interpretations of equations (3.3.1).

(d) On the Interpretation o f Two Dimensional Section Models

The models discussed above, and the models presented in the following chapters, are 

couched in terms of two dimensional inversions of specified potential vorticity distribu­

tions. They are intended to represent meridional sections through the recirculation. Wind 

forcing and thermodynamic processes are not considered explicitly, but their effect on the 

potential vorticity field is noted. It is assumed that the flow is slowly varying in the zonal 

direction, so zonal derivatives can be neglected. The models are also steady: time deriva­

tives are ignored. However, it is not strictly justified to interpret the results in terms of a
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time mean state. The models are intended to represent the dynamics of the Gulf Stream 

/  Kuroshio systems. The time mean state of these systems is severely broadened and 

diluted by meanders which can have a similar horizontal scales to the cross stream scale 

represented by the models. The models should therefore be thought of as representing 

the time mean downstream flow, which is zonal in direction but not fixed in latitude. The 

interpretation of the mass transport is also a matter for careful consideration. The mod­

els represent the non-linear flow in a restricted area of the ocean in terms of an idealised 

potential vorticity distribution. So part of the wind driven Sverdrup transport is outside 

the model domain. However, the wind driven component can not easily be decoupled 

from the non-linear, free component of the transport as it has some effect on the potential 

vorticity field which is being inverted. Even in a linear, dissipative Stommel type gyre, 

the absolute vorticity contours do not exactly follow latitude lines, and in the ventilated 

models described in the last section the potential vorticity contours are swept round with 

the flow. It is therefore probably better to interpret the models’ mass transport as an 

imperfect sub-basin scale representation of the total mass transport of the Gulf Stream 

/  Kuroshio systems, rather than as a non-linear ‘excess’ transport. It will be seen in 

chapter 4 that the interpretation of the model transport has important consequences for 

the conclusions drawn.

3.4 Eddy R esolving G eneral Circulation M odels

Before moving on to the specification of the vertically continuous model, a brief survey is 

presented of the knowledge which can be gained about the dynamics of the recirculation 

by integrating large numerical models. The pathological problems of disparate scales 

in the ocean have been overcome to some extent through the use of quasi-geostrophic 

general circulation models. By using a ‘cheap’ equation set, in a reduced size ocean basin 

(~  3000 km), these models can be integrated many times, allowing process studies to 

be carried out. The effects of the resolved ~  100 km eddies is well represented by the 

quasi-geostrophic dynamics, and these models can provide insight for the more idealised 

models considered here. The quasi-geostrophic formulation is particularly well suited to 

some aspects of the recirculation dynamics, such as the study of sub-basin scale isolated 

regions, where communication with a surface outcrop is not thought to be an important
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process.

The models reviewed in this section are multi-layered, driven at the surface by a 

sinusoidal wind stress with mid-latitude westerlies and polar and equatorial easterlies, 

and retarded in the deepest layer by bottom .friction. A double gyre is formed, cyclonic to 

the north and anticyclonic to the south with a strong eastward jet traversing the basin at 

its middle latitude. This jet is fed by intense western boundary currents from both gyres 

and the flow has a highly non-linear recirculating nature.

Figure (3.6) shows the time mean streamfunction and potential vorticity fields from 

the three layer integrations of Marshall, Nurser and Brugge (1988) (hereafter MNB). The 

latitude of the eastward jet is marked by a strong front in q with low values to the south 

and high values to the north. The gradient of q actually reverses on the southern flank 

of the anticyclonic gyre, indicating a highly unstable flow. At deeper levels, the gyres 

shrink towards the central latitude, much in the manner predicted by MN and MN2. In 

layer 2 the flow is confined to an extensive area of uniform q and in layer 3 the beta effect 

dominates. These fields should be compared with the observations of figure (2.2). The 

homogenisation of q in isolated layers is illustrated even more graphically in figure (3.7), 

which shows an instantaneous q field from an intermediate level of the eight layer model of 

Holland, Keffer and Rhines (1984). The accompanying (q, ip) scatter plot clearly indicates 

that the fluid is either at rest, or in motion with uniform potential vorticity.

Closer inspection of the layer 3 streamfunction in figure (3.6) reveals the existence of 

four gyres. To the north and south of the two main gyres, there are two weak, counter 

rotating eddy driven gyres. These gyres are also a feature of the model of Holland et al 

(1984). They are not modeled explicitly in any of the theories presented above. However, 

their existence has implications for the choice of boundary condition at the southern edge 

of the deep homogeneous flow. If the possibility of flow outside the bowl is admitted, 

then it becomes possible for a free slip (ipyy = 0) southern boundary condition to be 

used without violating the extremum principle of CIY. The relevance of this phenomenon 

to the ocean is still to be investigated. In the study presented in the next chapter, the 

applicability of slip and no slip boundary conditions to the continuous model will be 

discussed and their implications explored.

Figure (3.6) also shows the (q,ip) scatter plots from selected areas of MNB’s model.
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Figure 3.6: Time mean fields (non-dimensionalised) from the three layer eddy resolving quasi- 

geostrophic model of MNB. (a), (b) and (c) show the streamfunction (in units of a Sverdrup 

velocity scale multiplied by the meridional extent of the domain) for the top, middle and bottom 

layers respectively, (J), (e) and (4) show the potential vorticity (in units of/3 x the same length 

scale) and (g), (h) and (1) show scatter plots of q against for selected regions of the three layers.
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Figure 3.7: An instantaneous potential vorticity field from the third layer of the eight layer eddy 

resolving numerical simulation of Holland et al (1984), and a (g, rp) scatter plot from the whole of 

this layer: either potential vorticity is uniform of the flow is stagnant.

The middle layer again shows uniform q, while for layers 1 and 3, the sign of dq/dip vin­

dicates the predictions made in section (3.3). The (q,ip) relationship will be discussed in 

more quantitative detail in section (4.4), where comparisons with the vertically continuous 

model are made. Figure (3.8) shows the depth integrated transport for the three layers 

shown in figure (3.6). Contours are labelled in units of the linear Sverdrup component, 

showing an intensity of about five times the Sverdrup transport, or ~  150 Sv. Approxi­

mately half this mass transport is recirculated in the region where bottom currents exist 

in the same sense as the currents in the upper layers. This region can be associated with 

the core region referred to above, the transport returned within this region being predom­

inantly depth independent. This partition of transport will be expanded upon in the next 

chapter, where differences between the MNB model and the vertically continuous model 

will be discussed.
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Figure 3.8: The depth integrated time mean flow from the MNB model (a sum of figures (3.6) 

(a), (b) and (c) weighted by the appropriate layer depths). A value of 1 corresponds to the linear, 

Sverdrup transport.



C h ap ter  4

A  V ertically C ontinuous 

Q uasi-G eostrophic M odel

4.1 Introduction  and M odel Specification

In this chapter the layer models described in section (3.3) are extended to a continuous, 

two dimensional section. The method of prescribing the potential vorticity distribution, 

rather than imposing a wind stress and the Sverdrup constraint is once again utilised, and 

a numerical finite difference scheme is used to invert equation (1.1.2) for the flow. This 

high resolution, quantitative approach will help to resolve some of the apparent conflicts 

highlighted in the last chapter.

To understand the vertically continuous extension of figure (3.5), it is useful to ask 

what would happen if the number of layers became very large. Figure (3.5) consists of 

regions of stagnation, of vortex squashing and of stretching. As the number of layers 

is increased, the squashing regions become narrower. In the continuous limit, they are 

replaced by a line, the bowl, along which there is a discontinuity in q. This discontinuity 

is not dependent on the presence of relative vorticity, as is the discontinuity which results 

from the application of the no slip boundary condition considered in chapter 3. It is a 

discontinuity in the vortex stretching, arising from the fact that the smooth, squashing 

regions found in the layer models, have collapsed onto a line. This line is the boundary 

between motionless water, where q = (3y, and recirculating water where the flow can 

maintain q = 0 through vortex stretching and relative vorticity. On this boundary, isopy-

67
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Figure 4.1: The formulation of the free boundary problem. Potential vorticity is specified above 

the bowl and there is no flow below. Boundary conditions are applied to close the problem and 

locate the bowl.

cnals are at their reference depths (dip/dz = 0). Since the surface boundary condition is 

tpz = 0, the vertical integral of vortex stretching vanishes at the bowl.

These facts can be used to find the position of this interface. The formulation of the 

problem is shown in figure (4.1). The potential vorticity is specified everywhere where 

there is flow as in the layer model of figure (3.5). The surface is at z = 0 and the low 

q water extends down to z = —m. The bowl is at z = — D(y). There are three fixed 

boundaries with appropriate conditions while the bowl is a free boundary where extra 

information is needed to specify its position.

If (1.1.2) is integrated vertically from —D{y) to the surface, the vortex stretching term
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vanishes and one obtains

D =
|y|

(4.1.1)

If relative vorticity is neglected, then D(y) simply follows the ‘hyperbolic plunge’ de­

scribed by MN. Note that in this case, surprisingly, the depth profile is independent of 

stratification. A natural question to ask is: can the circulation really extend to infinite 

depths, and if not, does it reach the ocean floor ? Near the eastward jet, the relative 

vorticity integral term in (4.1.1) becomes significant and positive, tending to make the 

bowl more shallow. It is conceivable that it could bottom out at a finite depth.

To answer this question, the full problem must be solved by numerically inverting 

(1.1.2). An iterative approach has been used to find D(y), in which ip = 0 is imposed 

everywhere along the bowl and solutions are sought in which ipz = 0 is also satisfied. This 

is achieved by searching for vertical minima in the geostrophic energy. In cases where the 

bowl intersects the bottom, it becomes necessary to impose a further lateral boundary 

condition on the bottom flow to determine its latitudinal extent. No slip (ipy = 0) or 

free slip (ipyy = 0) conditions are applied. This point is discussed further in section (4.3). 

Following Gill (1984) and Nurser (1988), a vertical profile was used for N  to allow the 

stratification to diminish realistically with depth:

N  = 5 /2 /1  : z > —h

N  = s/{h — z) : z < —h
(4.1.2)

where 5 and h are empirically derived constants (= 2.8 m s-1 and 150 m respectively). 

Full details of the method of solution are given in appendix A.

In the next section, the finite depth penetration of the flow will be exposed in a 

numerical inversion with a bottomless ocean. In section 4.3 an ocean floor is included 

allowing barotropic flow and in section 4.4 the forcing is made more realistic by imposing 

non-zero values of dq/dip. A  brief summary is given in section 4.5.

4.2 Inversions in a Very D eep  Ocean

In order to discover how deep the circulation could be expected to penetrate, equation 

(1.1.2) was inverted with realistic stratification, a meridional gyre extent of 1500 km and
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y(km) —►

Figure 4.2: Zonal velocity section from the solution for a deep ocean. The flow extends down to 10 

km. The contour interval is 1 cm s - 1  and the maximum eastward velocity is 79 cm s-1 . Note that 

the y coordinates have been stretched to emphasise the region of the eastward jet (see appendix 

A).

Em upper low q layer 500 m deep. The VEdues of fo Emd /3 pertsdning to a latitude of 40° 

N were used. The depth of the domain was allowed to become as large as necessary in 

order to prevent the bowl from hitting the bottom and the position of the bowl was found 

using the iterative procedure outlined in Appendix A. Figure (4.2) shows the solution, 

which consists of a strong, surface intensified eastward jet with a weak, broad return flow 

to the south. Note that the y coordinates have been stretched so that the eastward jet 

region ceui be clearly seen (see appendix A). As suspected, the bowl does indeed ‘bottom 

out’, the circulation penetrating to a depth.of ~  10 km below the eastwsud jet. So it 

seems likely that the circulation extends to the bottom, although it must be stressed that 

the penetration depth is dependent on the parameters used. The depth penetration of
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Figure 4.3: Maximum depth of the bowl plotted against the depth of the surface (low q) layer 

(using realistic stratification).

the flow, and its associated region of uniform potential vorticity was discussed in section

(2.3) for the Gulf Stream and Kuroshio systems. The finite penetration beneath the 

Kuroshio could tentatively be associated with the bottoming out of this model. This idea 

is consistent with the notion that the poor ventilation, and relative paucity of mode water 

in the Pacific is responsible for this weak penetration of the recirculating flow. Figure

(4.3) shows how variations in the volume of mode water, controlled by varying m, affect 

the depth of penetration of the flow, D(y ^=0). As expected the bowl gets deeper as 

the depth of the mode water layer increases. In fact this relationship is one of simple 

proportionality.

The other parameter which can be varied is the stratification, N 2. This becomes an 

important factor in determining both the strength of the flow and the depth of the bowl, 

because it sets the balance between the relative vorticity and vortex stretching terms. 

This should be compared with the analysis of section (4.1), where the value of N 2 has 

no effect on the penetration depthunless the relative vorticity term is included in (4.1.1). 

Figure (4.4) shows the dependence of the penetration depth on the (constant) value of 

N 2. In a strongly stratified ocean, the bowl becomes very shallow as relative vorticity
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Figure 4.4: Maximum depth of the bowl plotted against the (constant) stratification, with a surface 

layer 500 m deep.

takes control of the dynamics with the gyre spinning very rapidly. As N 2 is decreased, the

Rossby radius is reduced and relative vorticity can only exert its influence near to the axis
a t

of the eastward jet, causing the bowl to bottom outAdeeper levels. The bowl bottoms out 

mainly as a result of the action of relative vorticity at upper levels, allowing the isopycnal 

at the base of the mode water layer to return to its reference depth at y = 0, as illustrated 

in figure (3.5).

These results are consistent with the simple calculations (MN, Cessi, 1988) which 

show that the width of the lower gyre is dependent on the strength of the upper forcing, 

the ratio of the layer depths and, in cases where the relative vorticity plays a role in 

determining the gyre width, the Rossby radius.

4.3 Inversions in an Ocean o f R ealistic D ep th

(a) The Southern Boundary Condition in the Continuous Limit

Given the likelihood of the flow penetrating to the ocean floor, it is interesting to in­

vestigate the form and meridional extent of the bottom currents and their effect on the 

structure and transport of the gyre above. We shall consider two regions of the model: In
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the core region, north of the latitude where the bowl hits the bottom (y = — /), a depth 

independent flow is allowed, which can enhance the transport. South of y = —Ms the 

purely baroclinic fringe region.

However, to invert for the flow in the case where the bowl hits the bottom, the question 

of what determines / must be addressed. The arguments for different lateral boundary 

conditions for layered models were given in the last chapter, but which of these conditions 

is the most appropriate in the continuous limit ? The position of the bowl is normally 

found through the knowledge that ip and tpz axe zero. If 5 is a coordinate along the 

direction of the bowl, then it follows from the chain rule that

dip dz dip dy
dz ds dy ds

(4.3.1)

on any ip contour, including the bowl. Since ipz is zero on the bowl, this implies that ipy is 

also zero on the bowl, provided only that the bowl is not vertical. So the natural choice for 

the southern boundary condition of the bottom flow is ipy = 0, connecting smoothly onto 

the free boundary above. This boundary condition allows for stagnant water everywhere 

south of y = —l, while satisfying the extremum principle of CIY.

However, the evidence from eddy resolving quasi-geostrophic models (see section 3.4) 

is that the bottom flow has a free slip boundary at y = —l , with a counter rotating gyre 

to the south. For purposes of comparison, it would be desirable to simulate this type of 

flow in the continuous model without explicitly simulating the weak, eddy driven gyre. 

The question is, can this be done by imposing ipyy = 0 at y = — / for the bottom flow ? 

It should be noted that the bowl approaches the bottom very nearly vertically, rendering 

the condition, ipz — 0, redundant. If this is the case, the condition ipy = 0 can no longer 

be directly inferred from (4.3.1), because dy/ds  = 0. If one takes advantage of this fact 

to impose a free slip condition, then the bowl is, in part, no longer a ‘free boundary’ 

insofar as it has a non-zero normal derivative. It is also generally true that this type of 

southern boundary is unable to connect smoothly on to the true free boundary above. 

The discontinuity in velocity cannot follow the bowl as it becomes more slanted, without 

violating the condition, ipz — 0. The result is either a bowl on which ipz ^  0 or a velocity 

discontinuity in the interior. This assertion is made transparent by considering a Taylor
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expansion for ipz about the point (y,z) = ( —/, - H ):

^z (y ,z )
1  + A y ^  + A z I~z +

A y 2 d2 A y A z  d2
2 dy2 2 dy<9z

A z 2 d 
2 dz2

(4.3.2)

where Ay = y -f / and A z  = z + H . For a free slip southern boundary condition, with 

a ipz = 0 bottom boundary condition in the core, the conditions at the point (—/, — H ) 

are: tp, \pyy, ipz, dtpn+1 /d y ndz = 0. If we have ipyy — 0 it can also be assumed that all 

vertical derivatives of the vortex stretching term in (1.1.2) are zero at this point. Thus 

the only term in the right hand side of (4.3.2) which is not neglected is the term in Az. 

Using (1.1.2) and neglecting vertical gradients of N 2, (4.3.2) therefore leads to

BIN2
ipz = Az (4.3.3)

Jo

arbitrarily close to the point (-1,-H). This quantity is non-zero, thus (1.1.2) can not be 

satisfied exactly in the continuous limit with a free slip boundary condition at (y,z) = 

The basic problem is that q — (3y, when integrated up from the bottom is 

non-zero, requiring non-zero ipz in the absence of relative vorticity. Thus a vertical inter­

section of the bowl with the bottom cannot be supported in the continuous limit without 

relative vorticity playing a part. The discretisation of the bottom boundary condition in 

layered models conceals this problem, but the continuous model with a free slip boundary 

condition at the bottom must be regarded in the strictest sense as an approximation to 

the limiting behaviour of the layer models as their resolution is increased. It is possible, 

however, to obtain a unique and useful approximation if it is accepted that tjjz is not 

exactly zero on the lower portion of the bowl (a reasonable assumption given that flow is 

envisaged outside the bowl in this case). (tpz)2 can be minimised by the iteration scheme 

while also iterating sideways for the condition, ipyy = 0 at the bottom (see appendix A). 

This procedure has been carried out for a number of inversions presented below.

(b) Numerical Results

A similar inversion to that of figure (4.2) is shown in figure (4.5) except that in this case 

the ocean is 5 km deep and the flow extends to the bottom. A no slip (ipy = 0) boundary 

condition is applied at z = — H  on the southern edge of the core. North of y = —l, the 

existence of a barotropic component is clear in the velocity field of figure (4.5a). But
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C  ̂ y(Km) —*■

d)
y(km) —*■

Figure 4.5: An inversion in a 5 km deep ocean with the bowl hitting the bottom. A no slip lateral 

boundary condition is used to locate the southern edge of the bottom flow. The core region has 

a latitudinal extent of 206 km. (a) Zonal velocity (cm s_1). Maximum eastward velocity is 82 

cm s-1 ; (b) Potential vorticity in units of /?£; (c) the vortex stretching term in (1.1.2) in units 

of j3L; (d) the ratio of relative vorticity to vortex stretching terms, y coordinates stretched as in 

appendix A. .
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in general the depth dependent form chosen for N 2 serves to concentrate the strongest 

flow near the surface. Figure (4.5b) shows the potential vorticity field for reference and 

(4.5c) shows the vortex stretching term. By comparing these two it can be seen that the 

stretching simply balances the beta effect over most of the southern, westward flowing 

part of the gyre. Vortex stretching is important at all depths, although it disappears 

in the vertical integral, with negative values above z — —m  cancelling positive values 

below.Vortex stretching is the dominant dynamical process throughout the fringe and 

over significant regions of the core. Figure (4.5d) shows the ratio of relative vorticity to 

vortex stretching; V 2ip only dominates in the upper reaches of the eastward jet (it is in 

this region that isopycnals are brought back to their reference levels, allowing the bowl to 

bottom out far below in the example of figure (4.2)) Although over much of the domain 

relative vorticity is small in absolute magnitude, it is crucial in controlling the structure 

of the recirculating core. Its importance relative to vortex stretching has another peak 

in the deep flow at the southern edge of the core, where the no slip boundary condition 

has been applied, implying a boundary layer structure for the deep westward as well as 

eastward flow.

The corresponding inversion with a free slip (ipyy = 0) boundary condition is shown 

in figure (4.6). The overall structure is similar but a discontinuous velocity is apparent at 

y — —l. In this case the core does not extend so far south and carries a smaller proportion 

of the transport. In the following we shall compare these two results quantitatively with 

a simple analysis of the barotropic mode streamfunction north of y — —l.

(c) Solutions for the Barotropic Mode

In the core, north of y = —l, the depth integral of q does not vary with y (q is uniform 

in y for both the upper layer and the abyssal region, and the flow extends to the bottom 

everywhere). Therefore, since the depth integral of vortex stretching is zero, changes 

in planetary vorticity must be offset by relative vorticity in a depth integral sense. So 

integrating (1.1.2) vertically it becomes

9 = V + V’yy (4.3.4)

where ~ denotes a depth average, and q has been scaled by /3T, y by L and ip by (3L3.
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Figure 4.6: As figure (4.5a) but with a free slip lateral boundary condition at the southern edge 

of the bottom flow. The core is 150 km wide.
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q = —m / H , where H  is the depth of the ocean. Equation (4.3.4) has solution

y3 y 2
ip =  -  — + q— +
^ 6 y 2

I2 'fpF
g2 + 6 ~ T

(4.3.5)

if = 0 at y = 0, and ipp is the value of ip. at y = —l. Additional boundary conditions 

will be used to determine l. Equation (4.3.5) can be differentiated to find the position and 

hence the value of the maximum depth integrated streamfunction, "ip-max, the barotropic 

mode transport. In the case when ipp = 0, and ipyy = 0 at y = — l (free slip):

l = —q (immediately from (4.3.4))

and V>mo!r =  - q 3/ 9\/3
(4.3.6)

If ipy = 0 at y = — l (no slip):

V w * = - ? 3/12 (= ^ /3)

Equation (4.3.7) recovers the results of CIY and Cessi (1988) expressing the mass transport 

in terms of l. Note that there is little difference between the values of ipmax for slip and 

no slip conditions when it is expressed as a function of q.

It must be stressed that the predictions of (4.3.6) and (4.3.7) are only valid if the 

transport carried by the baroclinic fringe is negligible. However, figures (4.5) and (4.6) 

show that this is not the case. Table (4.1) gives values for the transport and the meridional 

extent of the core provided by the analysis above (where the baroclinic fringe is neglected) 

and from the numerical inversions. Clearly the transports given by this simple analysis are 

weak compared to the model’s transport (the absolute value of the transport is discussed 

further in section (4.4)). Only in the free slip case is the gyre width correctly predicted 

by the analysis; the reason being that if relative vorticity is zero at the bottom at latitude 

y = —l, then the depth integrated relative vorticity can also be reasonably approximated 

to zero at this latitude. So (4.3.4) immediately provides a good prediction for l in the free 

slip case. However, ipF = 0 is not an appropriate boundary condition at the southern edge 

of the core and the zero velocity southern boundary condition is also a poor approximation 

for the barotropic mode. For such quantities a boundary condition applied at z = — H 

is not equivalent to a boundary condition on the depth integrated flow. In the numerical 

inversions presented in figures (4.5) and (4.6) the transport in the ‘baroclinic fringe’ south
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ip max X 10 

(non-d)

*Pmax

(Sv)

Z

(non-d)

Z

(km)

Free Slip Barotropic Analysis 

(Eq. (4.3.6)) 6.42 18 0.1 150

Numerical Inversion 

(Fig. (4.6)) 9.65 28 0.1 150

No Slip Barotropic Analysis 

(Eq. (4.3.7)) 8.33 24 0.15 225

Numerical Inversion 

(Fig. (4.5)) 10.10 29 0.137 206

Table (4.1): A comparison of the barotropic mode solutions with the numerical inversions

of y = - l  is in fact very strong, and cannot be neglected. Thus, in the no slip case, the 

value of Z given by (4.3.7) must be replaced by the appropriate solution of

Z3 Z2
y  + g-g -  u f I + =  o (4.3.8)

(from (4.3.5)) where up = —ipy at y = —Z, and in both cases, ipp must be retained in 

(4.3.5) when calculating ^ moi. If values for ipp and up are now taken from the numerical 

inversion and used in the above analysis, then excellent agreement results for the values 

of Z and ipmax-

To provide an estimate for ipp which is independent of the numerical inversions, (1.1.2) 

can be re-written assuming ipyy can be neglected at this latitude:

F'tpzz =  q - y (4.3.9)

where z is scaled by H  and F  =  ( f L / N H )2 (constant stratification is assumed for sim­

plicity). Solving this and integrating vertically, one obtains

V>F = - £ _
6 F 6 FI2 (4.3.10)

So in the free slip case, rpp = —q/QF. Obviously, ipp is dependent on the stratification, 

but reasonable values of F  (~  500) show ipp to be of the same order as tpmax, and therefore 

an important contributor to the transport. Further details of the partition of transport 

between fringe and core will be presented in the following section.
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The analysis above shows how the transport is controlled by the depth integrated q, and 

to a large extent, the stratification. It is useful for comparing the model with theory, but 

the inferred transports are weak compared with eddy resolving quasi-geostrophic models 

and with observations. The potential vorticity of the thermocline is not uniform, but 

exhibits a marked minimum just south of the Gulf Stream. Therefore, if the model is to 

represent the recirculation accurately, it must be forced with a variable upper layer q. In 

this section, following MN2, we consider the effect of enhanced upper forcing and bottom 

friction, as represented by the linear (q,ip) relationships employed in section (3.3). We 

retain the notation from the 3 layer model, but for the continuous model, c\ is applied 

where z > — m  and C3 decays exponentially upwards from the bottom with a height scale 

of 500 m. Negative values are used for c\ and positive values for C3, as required by the 

conditions set out in section (3.3). An example of an inversion with non-zero dq/dtp is given 

in figure (4.7). The velocity and potential vorticity fields are shown; no slip conditions 

are imposed at y = - l  (l = 225 km); C\ = -400 / L 2] c3 = |ci| exp [(2 + i7)/500] and the 

transport is 41 Sv.

Figure (4.8) shows the dependence of the transport on c\ and C3. The transport has 

been split into two components: a purely baroclinic part, returned in the fringe (south of 

y = — /) and supplied by the sin-face intensified eastward jet; and the rest of the transport, 

returned within the core (north of y = — l) and almost exclusively barotropic in nature 

for all inversions carried out. Transport is plotted against the cube of the maximum 

magnitude of q in the upper layer. The linear dependence predicted in section (4.3) is 

still broadly adhered to. A value of |g |^aa, = 1 obviously corresponds to c\ = 0, and 

incremental changes in c\ are denoted by tick marks on the curve, illustrating a rapid 

increase in transport as c\ is increased. Indeed an upper limit on C\ occurs as predicted 

in section (3.3c). As c\ approaches a value of about 1200/Z 2, the matrix constructed 

from grid point ‘molecules’ loses diagonal dominance and the inverter fails. It can be seen 

immediately that the barotropic component, excited when the bowl hits the bottom, is 

a major contributor to the transport of the gyre. In general, as the magnitude of c\ is 

increased, the proportion of the transport carried by the core also increases, because it 

becomes both wider and more intense.
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Figure 4.7: As figure (4.5) (a) and (b), but with cx =  —400/L 2 and c3  =  |ci|exp[(z +  if)/500]. 

Maximum eastward velocity is 93 cm s_1. The core is 227 km wide, y coordinates stretched as in 

appendix A.
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Figure 4.8: Dependence of the transport on c\ and C3 . Transport (Sv) is plotted against the cube 

of the maximum magnitude of the upper q (in units of (3L). The components of the transport 

carried by the fringe and core are shown for three models: no slip boundary condition, C3  =  0  

(solid lines); no slip boundary condition, C3  =  |ci|exp[(z -f if)/500] (dot-dashed lines); free slip 

boundary condition, C3  =  0  (dashed lines). Tick marks denote increments of 2 0 0 /L 2 in the value 

of Ci.
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Three curves are shown: two with a no slip southern boundary condition on the 

core and one with free slip. Of the former two, one has C3 = 0 while the other has 

C3 = | Ci | exp [(z + #)/500] (it is difficult to make an informed judgement on the relative 

magnitudes that Ci and C3 should have, but the eddy resolving model results (figure 

(3.6)) suggest that [031 does not exceed |ci|). It can be seen that non-zero C3 causes the 

barotropic flow to become weaker. This is partly because the core has shrunk slightly 

and partly because the bottom flow has been retarded. But compared to the increase 

in transport effected by ci, the decrease due to a corresponding value of C3 is relatively 

small. Changing to a slippery southern boundary condition also has very little effect on 

the overall transport, even though the barotropic region is again less extensive in this 

case. However, the partition of transport between fringe and core is more sensitive to 

these considerations, with the fringe gaining importance if bottom friction or free slip 

boundary conditions are introduced.

If the model is to represent the total transport of the sub-tropical gyre (see section 

3.3a), then the appropriate point to choose on the graph shown in figure (4.8) should 

correspond to a transport of ~ 75 Sv: the transport of one gyre in MNB’s model. For this 

transport, c\ takes a value of «  —800/T 2, remarkably close to the value found by MNB 

when re-scaled to their units. There are, however, differences between the inversions and 

the eddy resolving model: The flow in the inversions is more barotropic for this level of 

transport, particularly in the no slip cases, which have a wider, stronger core. The free slip 

case is more directly comparable and has a more baroclinic transport with about one third 

of the flow returning within the fringe. It should also'be noted that the eddy resolving 

model has a quite different upper layer potential vorticity profile, as seen in figure (3.8). 

The minimum in q is stronger, —2(3L as opposed to — 1.7/3L in equivalent units and the 

southern boundary does not return smoothly to q — ~(3L, but has strong gradients of 

q. The similarity of values of c\ for comparable transports arises from the combination 

of these two factors. Direct quantitative comparison of the two models is therefore more 

difficult than one might expect, especially with the transport so sensitively dependent on 

the depth integrated q. We shall return to a discussion of transport partitions in chapter 

6, where a model is presented which can be compared more directly with oceanographic 

data.
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4.5 Sum m ary

In summary, the model has been used to illuminate the vertical structure of the recircu­

lation. Despite the apparent dominance of vortex stretching, relative vorticity has been 

shown to be of importance, either in limiting the penetration depth or in controlling the 

depth integrated balance in the barotropic core. Both the overall transport of the gyre, 

and the partition of transport between barotropic and baroclinic components, has been 

shown to be dependent on the volume of low q water in the upper layer. For a gyre with 

realistic transport, the barotropic component is greater but not predominant. The effect 

of varying the boundary conditions at the southern edge of the barotropic recirculation 

has been investigated, and although it has little effect on the overall strength of the gyre, 

it has some impact on the latitudinal extent of the core and the proportion of the mass 

transport that it carries. It has also been shown that bottom friction has little effect on the 

transport compared to the considerable influence of imposing an upper (q, tp) relationship 

of the same magnitude.
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C h ap ter  5

Inversions w ith  A nom alous D eep  

P oten tia l V orticity

5.1 Introduction

In the previous sections, the potential vorticity of the deep recirculating gyres has been 

assumed to be equal to the value of the planetary vorticity at the axis of the eastward 

jet. However, it is very unlikely that the entire deep homogeneous gyre should adhere 

strictly to this value of q. For example, it is well documented that the abyssal water of 

the western North Atlantic can have remote origins such as the Norwegian Sea (Hogg, 

1983) with very different values of / .  Its potential vorticity is also likely to be influenced 

by convective and thermohaline processes at distant sites. These considerations are not 

directly related to the position of the Gulf Stream.

It is difficult to infer a value for the abyssal potential vorticity from hydrographic 

sections, which is appropriate to our idealised quasi-geostrophic model, although obser­

vations suggest that the abyssal anomaly is positive (see figure (2.3b) where the deep 

potential vorticity contours tend to swing southwards from the axis of the Gulf Stream 

into the homogenised abyss). In this section we will examine the sensitivity of the above 

solutions to changes in the deep q. It will be seen that the structure of the solution can 

be modified considerably by allowing the value of deep q to depart from our reference 

value, and also that there is a limit on the strength of the abyssal q anomaly, above which 

solutions no longer exist.

87
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The imposition of non-zero abyssal q upsets the symmetry which has so far been as­

sumed between the cyclonic and anticyclonic recirculation gyres which flank the eastward 

jet to the north and south, forcing us to consider the two together. The effect on the 

strength and position of the two gyres, and of the eastward jet itself is considered in the 

following sections through a variety of models, ranging from simple calculations of bowl 

depth and barotropic mode (section 5.2) to solutions for the baroclinic structure in terms 

of a two layer model (section 5.3) and a continuous numerical inversion (section 5.4). 

These results are discussed in section 5.5.

5.2 Influence on th e E xtent and P osition  o f D eep  Gyres

Since the forcing of the sub-tropical/sub-polar gyre system is no longer antisymmetric, 

both gyres must now be considered together. Furthermore, it is no longer generally true 

that the latitude at which the upper layer streamfunction is equal to zero, marking the 

interface between the sub-tropical and sub-polar gyres, is at y — 0. However, if potential 

vorticity is to be conserved in steady, free flow, this gyre interface must coincide with the 

front in potential vorticity, where q changes from a value of —(3L (sub-tropical gyre) to 

f3L (sub-polar gyre). This condition is therefore imposed in the models presented below: 

upper layer q is discontinuous and upper layer tp = 0 at latitude y = s. The model 

formulation is shown in figure (5.1), with deep flow in the region t < y < p and baroclinic 

fringes outside these latitudes.

The effect of a deep q anomaly on the shape of the bowl can be assessed by returning 

to equation (4.1.1). If a deep potential vorticity anomaly, 7/3X is assumed, where 7 is a 

scaling factor, then (4.1.1) becomes

D  =
m L  ( I f f i  -  7) _  g S-D V 2'!’ dz

y - f L (5.2.1)

For positive 7 the bowl becomes deeper in the sub-polar gyre and shallower in the sub­

tropical gyre. If relative vorticity is neglected, the sub-polar gyre now penetrates to infinite 

depth at y = 7 L and the solution for the depth of the bowl in the region 0 < y < 7X 

is not physically meaningful. However, relative vorticity cannot be neglected here, and 

furthermore, we expect the bowl to strike the bottom north of y — 7 L and south of y = 0.

To study in detail the nature of the solution in this region we can once again appeal
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y

Figure 5.1: Model formulation for the double gyre problem with non-zero deep potential vorticity 

and variable upper gyre interface latitude. Boundary conditions as in figure (4.1).

to a depth integrated model of the barotropic core, which now consists of two counter 

rotating gyres. If the values of q in the two gyres are given by

qt = - m  + 7(1 -  m) :t  < y < s 

qp = m + 7(1 -  m) : s < y < p

where m  has now been scaled by H , and we set

'
t

= 0 at y = <

P

(5.2.2)

(5.2.3)

then, matching tpy at y = s and introducing the coordinate change y1 = y — s, the solution 

of (4.3.4) in the double gyre context yields

6[p'it ~ t'tpp) -  3{qtt,2p' -  qPp'2t') + ( t 'V  -  p,2t') = 0 (5.2.4)

It can be seen that a solution exists to (5.2.4) which is symmetrical about y = s, with 

'tpp = - ^ t , t1 = - p’ and s = 7(1 -  m). So imposing a positive value of 7 is simply
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equivalent to shifting coordinates so that the entire core region moves northwards. This 

result is in accord with equation (5.2.1), wherein the bowl becomes deeper to the north 

and shallower to the south. Note that the deep potential vorticity anomaly is still positive 

when measured relative to the latitude of the upper q discontinuity, i.e. 7 — s (=  7m) 

is positive. Extra boundary conditions must be employed at t and p to allow further 

solutions to (5.2.4) to be found. These solutions have the core moving northwards by 

the same amount, but with a single gyre dominating the depth integrated flow with an 

eastward jet at y = t or p. They do not correspond to any solutions found in the continuous 

model and are therefore not of interest.

The preceeding analysis provides an outline of the effect of introducing a deep q 

anomaly. The upper level front and gyre interface moves northwards so that potential 

vorticity may be conserved. The core region also migrates northwards while the baroclinic 

fringe becomes shallower in the sub-tropical gyre and deeper in the sub-polar gyre.

5.3 Solutions o f th e Two Layer Problem

The solutions for the barotropic mode within the core can, of course, tell us nothing about 

the vertical structure of the flow. They also rely on the restrictive assumption that ip = 0 

at y =  5, when it is only the upper layer streamfunction which needs to be zero at this 

latitude.

To proceed to the baroclinic case, a two layer analytical model is examined. The 

solutions discussed below are essentially an extension of the solutions found by Cessi 

(1988) to the double gyre case with a non-zero value of q in the lower layer and an upper 

layer gyre interface at the variable latitude, y = s. Thus equations (3.3.1) become:

Qi — Py + ipiyy + L~2(xJj 2 — rp\) =

q2 =  Py A $ 2yy  +  ctL~2(ip1 -  ip2) = 7 @L (t < y < p) 

with boundary conditions

if) i = 0 at y = —L, s , L

ip 2 — 0 at y < t and y > p

ip2 y = 0 at y = t ,p (no slip)

and continuity of

(5.3.1a)

(5.3.1b)

V>2, Vhy, *l>2y at y = s
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The boundary conditions, (5.3.1b) are sufficient to solve (5.3.1a) and in addition, to 

determine the values of t , p and 5. The equations are solved by projecting onto normal 

modes. Details of the method of solution are given in appendix B.

Consider first of all, the case when 7 = 0 {considered in the previous chapter). We find 

that there are four solutions to the problem described by (5.3.1). One is trivial (£ = p = 5), 

one is symmetric (t — —p, s = 0) and two are asymmetric and complementary (in the 

sense that they map onto one another on rotation through half a circle about the origin). 

Figure (5.2) shows the streamfunction and potential vorticity for the symmetric solution 

and one of the asymmetric solutions. The streamfunction shows the familiar double gyre 

pattern in the symmetric case, but in the asymmetric cases, s is non zero and there is 

only one lower gyre which occupies the entire region t < y  < p. In the solution shown, s 

is positive and the deep gyre is cyclonic. In the other solution (not shown) s is negative 

and the deep gyre is anticyclonic. The potential vorticity in the symmetric case shows the 

imposed uniform value in the region t < y < p in layer 2, with discontinuities at t and p. 

Outside this region it returns almost linearly to the value of the planetary vorticity at the 

edges of the domain. In contrast, the asymmetric solution shows closed <72 contours in the 

stagnant region south of y = t. Invoking the extremum principle, we should expect these 

closed contours of potential vorticity to be eliminated by eddies, and hence the solution 

to relax back to the symmetric state. We argue, therefore, that it is only the symmetric, 

2 gyre solution which can be maintained physically.

Figure (5.3) shows the double gyre solution with 7 = 0.25 and a = |. With 7 > 0, 

again we find that the front in <71 shifts northwards (note that 7 — s is again positive). 

However, it can now be seen that although the sub-tropical gyre has expanded in the 

upper layer, the sub-polar gyre is dominant in layer 2, with the gyre interface moving 

southwards with depth. As before, there is one double gyre solution, and two single 

(deep) gyre solutions. As 7 increases to about 0.39, the deep double gyre becomes a 

single cyclonic gyre which can be identified with the already existing single gyre solution. 

At this limit, the merged solution has no extremum in <72- If 7 is increased beyond this 

point, then the solution disappears immediately and no solution to the problem can be 

found. Evidently the continued northward shift of the homogeneous q region renders the 

extra boundary condition (fay = 0 at y = t) impossible to satisfy. For smaller values
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Figure 5.2: Solutions to the two layer double gyre problem with 7  =  0, a =  Lf Lp = 1 0 . 

Streamfunction (in units of (3L2pL) and potential vorticity (in units of (3L) are shown for the 

symmetric solution ((a) and (b)) and the asymmetric solution with a single cyclonic deep gyre 

((c) and (d)).
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Figure 5.3: Double deep gyre solution corresponding to the solution shown in figure (5.2) (a) and 

(b) but with 7  =  0.25.
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of a  (giving a deeper abyssal layer), the core region shrinks (as one would expect from 

the previous analysis) and the threshold value of 7 is reduced: if a  = 7 cannot exceed

0.026.

5.4 Solution Structure in th e N um erical Inversions

The behaviour revealed above is also seen in the continuous model, in which a value 

of 7 was imposed and the value of s gradually increased until precise correspondence 

between the upper layer q front and gyre interface, given by ip = 0, was achieved. In 

fact the vertical structure of the flow was found to be very sensitive to 7, requiring this 

correspondence to be very accurate for consistent results. The results from a number of 

double gyre inversions show s and 7 to be proportional as predicted in section (5.2). The 

constant of proportionality is now slightly less than (1 -  m) due to asymmetry between 

the baroclinic fringes. The values of t and p also increase linearly with 7. As s and 7 are 

increased, the ip = 0 contour, which marks the interface between the deep gyres, sweeps 

increasingly southwards with depth from the reference latitude, s.

Figure (5.4) shows an inversion in which the upper layer q discontinuity has been 

moved north to s = 0.177 (corresponding to a shift of 265 km). The value of 7 required to 

ensure conservation of upper layer q was found to be 0.205. No slip boundary conditions 

have been applied on the bottom flow to define the position of the core and for this 

figure the y coordinates have not been stretched. It can be seen that the entire deep 

homogenised region has shifted northwards together with the upper layer gyre interface. 

The sub-tropical gyre has become larger and also shallower, while the sub-polar gyre is 

deeper, and it is this cyclonic gyre that dominates the bottom flow, with the ip = 0 

contour sweeping southwards with depth. At the bottom it has been displaced almost to 

the southern edge of the core. This corresponds to the baroclinic structure seen in the 

two layer model result of figure (5.3).

As 7 is increased to about 0.225, the latitude where ip = 0, between the two bottom 

gyres, becomes coincident with the southern extent of the bottom flow, and only one gyre 

remains. For higher values of s and 7, it becomes impossible to satisfy whatever addi­

tional boundary conditions one chooses, in order to specify this latitude. The horizontal 

iteration for the latitude at which the bowl strikes the bottom fails, and the southern
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y (k m )

Figure 5.4: Streamfunction, rp, (in units of /3£3) from a double gyre inversion with a deep q 

anomaly: 7  =  0.205; s =  0.177 (=  265 km); ci =  C3  =  0; no slip lateral boundary conditions are 

applied to the bottom flow and the widths of the sub-polar and sub-tropical gyres are 330 km and 

65 km respectively at the bottom, y coordinates are not stretched.
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extent of the core cannot be determined. This is analogous to the response of the two 

layer model to increasing 7, where the solution for layer 2 reached a single gyre state and 

then disappeared.

5.5 D iscussion

The above analysis reveals that one can expect the strength, sense and position of the 

abyssal recirculation to show considerable dependence not only on the surface forcing, 

but also on the value assumed for the deep potential vorticity. If the perturbation is 

positive, as implied by the observations, then the upper level gyre interface, together with 

the front in potential vorticity must migrate northwards. The deep flow region follows 

the northward shift, but the cyclonic gyre becomes stronger and more extensive than 

the anticyclonic gyre at depth. This result is in agreement with the abyssal recirculation 

scheme described in section (2.3) (see Hogg, 1983) in which the sub-polar gyre is dominant 

at depth.

The northward shift of the front in q can be explained in terms of a global integral 

constraint. If (1.1.2) is integrated over the domain of the model, we obtain

J \ q  ~ Py) dA ~  m A u  (5.5.1)

where Au is the difference between the average surface layer velocities at y =  L , —L,  the 

only latitudes where we do not have Neumann boundary conditions. If a positive deep q 

anomaly is introduced, then there must be an accompanying northward shift of the upper 

level discontinuity in order to preserve the right hand side of (5.5.1) at a physical value. 

If there were no northward shift, an anomaly of 7 ~ 0.1 would require this term to be 

orders of magnitude too large. It is clear from (5.5.1) that the northward shift in the 

front is dependent on the fact that the boundaries of the upper level gyres are fixed at 

y  =  L , —L.  It could be argued that this assumption is artificial and that the boundaries 

of the domain should also be determined by application of further boundary conditions. 

This would, of course, render the problem trivial, simply shifting the origin to y  =  y L.  A 

more reasonable alternative would be to assume that the position of the eastward jet is 

prescribed at a fixed latitude, and allowing the domain to mutate to accommodate (5.5.1). 

In terms of the baroclinic structure of the flow, this option is probably equivalent to the
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one pursued above.

The southward migration of the axis of the eastward jet with depth is also consistent 

with a positive deep q anomaly. The slope of a ip contour is given by

( d z \  . _
\ d y  )  xp const  V ’z

(5.5.2)

and if the abyssal gyre interface is to slope southwards with depth, this quantity must be 

positive for the zero ip contour. Now in the deep regions of the core, the vortex stretching 

term in (1.1.2) is greater in magnitude than the relative vorticity (see figure (4.5)) and will 

therefore have the same sign as q — (3y. Since the bottom boundary condition is ipz — 0, 

ipz will also have this sign. Therefore, provided the flow is eastward, a positive deep q 

anomaly (relative to the latitude, s) is likely to induce a southward slope of the zero ip 

contour with depth.

Finally, it is significant that in the case where 7 ^ 0 ,  solutions can only be found 

when the zero ip contour hits the bottom. As 7 is increased, the southern edge of the core 

moves northwards and the sub-tropical gyre becomes smaller. At a critical value of 7, the 

zero ip contour hits the bottom at the southern edge of the core. For larger values of 7 

there is no solution. This is because it is impossible for the zero ip contour to intersect 

the bowl south of y = t. In general, a zero ip contour cannot strike a free boundary (a 

zero streamline on which the first normal derivative of the streamfunction is zero) except 

at a point where the forcing changes sign along that boundary. This result is proved by 

means of a Taylor expansion for ip about a point on the free boundary (see Cessi, 1987): 

Consider Poisson’s equation

Q = V 2ip (5.5.3)

in the vicinity of a free boundary, on which

^o = 0 dkipo _  dipo _
dsk dn (5.5.4)

where subscript 0 denotes a value on the boundary, s and n are coordinates along and 

normal to the boundary and k is any integer. Under conditions (5.5.4), the value of ip at 

a distance 6 from the boundary, ips, is given by a second order Taylor expansion about 

ipo as
62 d2ip0
2 dn2 (5.5.5)
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and

so

d2tl>0 V ^ o
dn2

=

|V n|2

62Q

(5.5.6)

(5.5.7)
2| V n|2

therefore ip can only change sign near to the free boundary if Q also changes sign. It 

follows that the only latitude at which the ip = 0 contour is allowed to meet the bowl is at 

y = 7 L, where q — fiy changes sign. However.if this contour slopes southward from y = s, 

and s < j L ,  the above condition cannot be satisfied. In the case where 7 = 0, the ip = 0 

contour may strike the bowl at y = 0, but if the abyssal potential vorticity is non-zero, 

the bowl cannot bottom out and the flow in both gyres must extend to the bottom.

It appears, therefore, that the symmetrical sub-polar /  sub-tropical gyre system, in 

which the bowl bottoms out, is a singular case, for which asymmetries in the potential 

vorticity field cannot be supported. However, if the homogenised region extends to the 

bottom, the model is more robust, and can produce realistic asymmetric solutions.

In reality, bottom currents are observed in the recirculation regions of both the At­

lantic and Pacific oceans. In the Pacific the bottom currents do not appear to relate 

systematically to the flow above, and probably owe their existence to processes not ad­

dressed in our simple model. The bottom currents in the Atlantic, on the other hand, 

appear to have some qualitative agreement with the above solutions, with a dominant 

cyclonic gyre at depth (see figure (2.6)). The explanation offered above depends on the 

idea of positive potential vorticity anomalies being transported to the region from distant 

sites at least in the creation if not the maintenance of the steady state described by the 

model. The larger scale abyssal flow is certainly capable of this (see McDowell, Rhines 

and Keffer, 1982) and even though the process of potential vorticity injection into gyres 

which circulate within closed potential vorticity contours can not be simulated in a steady 

state model, it should not be ruled out.

An alternative explanation of the deep cyclonic flow is given by Hogg and Stommel 

(1985), who model the abyssal recirculation in terms of uniform potential vorticity flow 

beneath a thermocline which surfaces. Their, abyssal layer becomes thinner to the south 

and to the north of the upper layer outcrop because of the deep expression of the ther­

mocline and a shoaling bottom to the north which enhances the beta effect. To ensure
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mass conservation in this abyssal layer, they deduce that the relative vorticity must have 

a positive maximum below the outcrop, and that the deep flow must be cyclonic. Thus 

their deep potential vorticity anomaly must also be positive. Neglected by Hogg and 

Stommel is the possible importance of deep density surfaces intersecting the continental 

rise, allowing more freedom in the determination of the relative vorticity directly beneath 

the stream. The alternative offered in this chapter places more emphasis on the possible 

values that the deep potential vorticity may take, rather than on the gross features of the 

vertical extent of the deep water.1 The conclusion of deep cyclonic flow is still reached if 

the deep potential vorticity is allowed to exceed its reference value slightly.
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C h ap ter  6

A  G eostrophic M odel in 

Isentropic C oordinates

6.1 Introduction

The results shown in chapters 4 and 5 are difficult to compare with observational data for 

at least two reasons:

1) The models are forced by imposing derivative quantities such as potential vorticity and 

(q,ip) relationships. While this is desirable as an alternative to the Sverdrup constraint, 

which is unrealistic in the recirculation region, this approach to driving the model is 

somewhat abstract if sensitivity studies are to be usefully compared with observations.

2) The quasi-geostrophic framework places severe restrictions on the realism of the model 

and interpretation of the results. The linearisation of dynamic density perturbations and 

the accompanying lack of horizontal variations in stratification limits how representative 

the fields of p and q are.

These problems are alleviated in this chapter by adopting a less restrictive equation set. 

The Ertel potential vorticity (equation (1.1.1)) is inverted assuming geostrophic balance. 

Density is used as a vertical coordinate, allowing the forcing to enter the model by way 

of prescribed upper and lower boundary conditions. In particular, the top boundary 

condition can now be chosen as the depression of the main thermocline, a quantity which 

can be read directly from hydrographic sections. The Sverdrup constraint is, of course, 

still discarded.

101
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In section 6.2 the model is described. Some preliminary analysis indicative of its 

behaviour is given in section 6.3. Numerical results are presented in section 6.4 and the 

effect of changing the bottom boundary condition is considered in section 6.5. In section 

6.6 an inversion is presented with a thermocline shape based on hydrographic data. A 

brief summary is given in section 6.7.

6.2 T he M odel

(a) The Equations

The model described below represents an incompressible ocean which is in geostrophic and 

hydrostatic balance. The assumption of geostrophy, while not strictly valid everywhere 

in a Fofonoff gyre, is exactly satisfied on the section line considered and can be used in 

a diagnostic sense throughout the region since the Rossby number is small everywhere. 

The Ertel potential vorticity, Q, is therefore inverted for the Montgomery potential, M, 

the streamfunction for the geostrophic flow on a density surface, defined as

M  = p + pgz

(see for example Starr, 1945). The geostrophic velocity is given by

1
v  =

Pofo
k a VM

and the hydrostatic equation can be written in terms of M,  thus

dM
dp

gz

For our purposes, Q can be defined as the positive quantity,

/  + £
Q = dz

dp

(6 .2 .1)

(6 .2.2)

(6.2.3)

(6.2.4)

where £ is the relative vorticity in isopycnal coordinates, evaluated geostrophically. Using 

equations (6.2.2) and (6.2.3) this leads to the elliptic equation,

/  +
1

•V2M + Q d2M
= 0 (6.2.5)

Pofo ’ * ' *  ' g d p2

It is useful to separate M  into the dynamically passive and active components, M0 and M\.  

Mo is associated with the background stratification of the resting fluid. Thus its horizontal
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derivatives are zero and its derivative with respect to density gives the reference depth of 

an isopycnal, z0> via equation (6.2.3). Horizontal derivatives of Mi provide the velocity 

through (6.2.2) and its density derivative represents the perturbation of an isopycnal from 

its reference depth due to the motion field. Unlike the quasi-geostrophic equations, this 

perturbation need not be small. Equation (6.2.5) can now be set purely in terms of the 

dynamical variable, Mi.

Q
9

d2 M\ dz0 
dp2 + 9 dp = f + - ^ T V 2M 1

Po/o
(6.2.6)

where dz^jdp is a known function of p.

We shall now introduce the following scalings:

y = y'L

p = p'|Ap|

z = z 'H  (6.2.7)

M = M'gH\Ap\

Q = Q ' ^

The latitudinal extent, depth and top to bottom density difference of the model are given 

by L , H  and Ap respectively. Dropping primes and the subscript, 1, and considering a 

meridional section where zonal derivatives are neglected as before, equation (6.2.6) now 

becomes the model equation

SQ ~ f  / fo — QMpp + A2Myy (6.2 .8)

where s is a non-dimensional stratification parameter defined as

IA/o| dz0 
H dp

(6.2.9)

If we have uniform stratification then s is unity. A is the non-dimensional depth average 

Rossby radius,

A = Vfl7H/ f oL  (6.2.10)

The beta plane approximation is again used to represent / .  Given suitable boundary 

conditions described below, (6.2.8) can be inverted for M.
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(b) Model Domain and Boundary Conditions

Figure (6.1) shows the specification of the model domain and boundary conditions first in 

physical space, and then in non-dimensional density coordinates. The uppermost density 

contour is defined as p = 0 and is identified with the main thermocline. All the flow 

in the model is therefore in the deep homogeneous Q region, beneath the mode water 

layer. Thus the flow above the main thermocline is not represented explicitly, rather the 

depth of the thermocline is used as a top boundary condition to drive the unventilated 

flow beneath. This enters through a Neumann boundary condition, dM /dp  = z t , the 

perturbation of the thermocline from its reference depth. The bottom is assumed to be 

a flat isopycnal with dM /dp  = 0. Alternatives to this bottom boundary condition are 

explored in section 6.5.

To ensure mass conservation on each density surface, the side boundaries are closed 

streamlines with M  = 0. Within the flow region, Q is assumed to homogenise along 

isopycnals to the reference value set at y = 0. Thus Q(y,p)  is specified as equal to 1 / s(p) 

in this region. The southern edge of the region, the bowl of the circulation, is again 

determined as a free boundary on which isopycnals return to their reference depths, and 

at which the velocity disappears. Thus M, Mp and My are all zero along the length of this 

boundary with no slip at the southern edge of the bottom flow in the core (at y = —l). 

This boundary condition is used in all the inversions presented in this chapter. A simple 

iteration scheme is employed to find the position of the bowl, making use of the fact that 

the sign of M  above the bowl is known. Details are given in appendix A. The y coordinate 

stretching is retained in order to enhance the resolution in the core (see appendix A).

(c) Background Stratification

The stratification parameter, s(p), is equal to N 2 / N 2(p), where N 2 is the depth average 

value of N 2. In section 4.1, the hyperbolic form, (4.1.2), is chosen to represent realistic 

variations of N 2 with z. To achieve the same qualitative results in p coordinates, a linear 

expression can be chosen for s(p). This expression must, however, satisfy the following 

constraint: The reference depth of an isopycnal is given by
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- L o

Figure 6.1: The formulation of the isopycnal model (a) with depth as the ordinate with the 

physical dimensions shown and (b) in the model’s coordinates showing non-dimensional values 

and boundary conditions.
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Since Zq = — 1 at p = 1, it follows that

/  *(p)dp  =  1Jo

The linear expression for s which satisfies (6.2.12) is

s =  2p ( l  -  s 0 )  +  50

(6 .2.12)

(6.2.13)

where so is the value of s chosen at the thermocline (p = 0).

Thus the stratification of the model is controlled by the choice of |Ap| and So. The 

former controls the overall intensity while the latter controls the sharpness of its variation. 

The effect of varying both will be discussed below, but for realistic inversions, values of 

|Ap| = 1.5kg m “3 and s0 = 0.05 were chosen, implying N 2 = 5.9 X 10-5 s- ** at the 

thermocline and 1.5 Xl0“6 s~*-at the bottom.

6.3 D ep th  Penetration  and Baroclinic Flow

(a) The Depth of the Bowl

As with the quasi-geostrophic model, it is possible to solve analytically for the depth of 

the bowl provided relative vorticity can be neglected. If this is done, then equation (6.2.8) 

becomes

sQ -  f / f o  = QMPP (6.3.1)

setting Q to its reference value of l/a , we obtain

M,pp (6.3.2)
1 ~ f / f o  •

Integrating with respect to p from the thermocline to the bowl and using (6.2.11) then 

yields

* *  = r r TiTo ^
Zqb is the depth of the bowl below the reference depth of the thermocline (at which 

Zq = 0) and zt is the perturbation of the thermocline from its reference depth. Alternative 

derivations of (6.3.3) are given by Nurser (1988) and MN2.

There are three things to note about equation (6.3.3):

1) If relative vorticity is neglected, we see again that the depth of the bowl is independent 

of the form and magnitude of the stratification used.
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2) It is necessary that the thermocline should return to its reference depth at the latitude 

from which the value of Q has been set, i.e. z? = 0 where /  = f 0. Otherwise z0jg will 

become positive in some region. This is equivalent to the problem of non-zero deep q 

dealt with in chapter 5, where it was found that the upper level front needed to shift 

northwards to accommodate a positive deep q anomaly.

3) The presence of relative vorticity is now to a large extent implicit in this model. It is only 

the relative vorticity of the deep flow that has been neglected in (6.3.3) and which could 

conceivably modify point (2). The important contribution of relative vorticity above the 

thermocline is now represented in the model through the form chosen for zx(y). Indeed, 

it is inevitable that the bowl will bottom out at some depth even from the simple result 

above, provided the thermocline returns to its reference depth at y = 0. This is to be 

contrasted with the hyperbolic plunge of the previous analysis. The depth at which the 

bowl bottoms out will in general depend on the shape and maximum depth perturbation 

of the thermocline. A rough estimate of the flow penetration can be gained by considering 

a thermocline which returns linearly to its reference depth from a maximum depression, 

hx over a scale distance for the eastward jet, 6y. In this case, according to (6.3.3) the 

bowl will bottom out at a depth hx/P'Sy where (3' = f iL/ fo. This number can be close to 

unity for reasonable parameters, and the influence of relative vorticity in the deep flow will 

be to reduce this penetration further. So again it seems possible that flow regions with 

uniform potential vorticity can indeed be isolated from the ocean floor in oceanographic 

contexts. However, in most of the numerical inversions shown below the the flow reaches 

the bottom, allowing a strong barotropic component to develop.

(b) The Deep Baroclinic Flow

In order to assess the strength of the baroclinic, sub-thermo cline flow, (6.3.1) can be solved 

for M  in regions where relative vorticity is negligible. In the case of uniform stratification, 

(6.3.1) reduces to

Mpp = G(y) (6.3.4)

where G = 1 — / / / o  or on a beta plane, G — —/3'y. Applying the boundary conditions: 

Mp = zt at p = 0 and M  = Mp = 0 at p = ps ,  the solution to (6.3.4) is

M = f  ̂  “ pB)2 (6.3.5)
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where the density at the bowl is given by

PB = ~
zt
G

(6.3.6)

Since the stratification is uniform, (6.3.6) is simply a rescaling of (6.3.3). In general, ps  is 

a function of the strength and form of the stratification although zqb is not. To find the 

sub-thermocline fringe transport, (6.3.5) is integrated from the thermocline to the bowl 

to give

(6.3.7)

If this equation is fully redimensionalised, we obtain an expression for the mass transport,

in Sverdrups, of the flow in the fringe, to the south of the latitude, y:

Transport (Sv) = 10 6—̂ r r
6/?oP2

|Ap| \zT l3 
H y2

(6.3.8)

Comparing (6.3.8) with (4.3.10) it can be seen that the fringe transport is still dependent 

on the stratification, and on the cube of a term which represents the surface forcing, in 

this case, zt - Quantitative details of model transports are given in the next section.

Having established the role of the average stratification in determining the model’s 

baroclinic transport, it remains to be seen whether the depth dependence of the strat­

ification can also have some influence. To provide some guidance in this m atter, it is 

convenient to consider depth dependent flow in a region where the flow reaches the bot­

tom. If (6.3.4) is solved with Mp = zt at p — 0 and M  = 0 at p = 1, and then integrated, 

we obtain

J ! M d p =- (f+?) (6-3-9)
If, however, the stratification is a function of depth, (6.3.4) becomes

Mpp = s(p)G{y) (6.3.10)

Substituting from (6.2.13) for s and using the same boundary conditions, after some 

simple manipulation we arrive at the following expression for the mass transport:

f  sMdp  = — 
Jo

- l i  + ^  + s5 1 2 6
i ! + f {,+?} (6.3.11)

Note that the integral has been weighted such that it is now evaluated with respect to 

z0, to give a true estimate of the mass transport. For uniform stratification (sq = 1),
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(6.3.11) reduces to (6.3.9) but as so becomes smaller, representing a sharp decrease in 

stratification with depth, the depth dependent transport is diminished. In practice, for 

many of the inversions presented below, the baroclinic part of the flow is swamped by the 

strong depth independent component and varying so actually makes very little difference 

to the overall transport of the model, but the above analysis suggests that it can have an 

order one effect on the baroclinic part of the flow.

(c) The Flow Above the Thermocline

The flow within the mode water layer is dynamically important, as illustrated in section

(a) above, and it is a deficiency of the model that this flow is not represented explicitly. 

It is also to be expected that the mass transport above the thermocline should make a 

significant contribution to the overall model transport. It is possible to make an estimate 

of this component of the transport from our knowledge of the velocity and thermocline 

slope at the top boundary of the model.

From thermal wind balance, we can write

du g dp f  dzT
dz Pofo dz V dy

(6.3.12)

Assuming a uniform stratification above the thermocline, and integrating from the ther­

mocline to to a depth, z, we obtain

u(z) - u T = - ^  lz  ~ (Z0T + * t )\  (6.3.13)

where ut is the zonal velocity at the thermocline, zot is the reference depth of the ther­

mocline and zt the perturbation. Integrating again, we obtain the mass transport per 

unit length,

[  u dz = \ (Zot + *t )2 + uT(z0T + zT) (6.3.14)
J z 0T +zT zjo \  dy J

This is integrated numerically in the meridional direction to give an estimate of the 

transport above the model. A value of 1 .6x l0-5 s- i is chosen for N 2 in this region.
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6.4 Barotropic Flow and M ass Transport

(a) Solution for the Barotropic Mode

Judging from the inversions shown in chapter 4, it is to be expected that a major pro­

portion of the flow will be carried in the depth independent component. To identify the 

important parameters which determine this component, the simple depth integral analysis 

of section 4.3(c) can be repeated for the new equation set.

Integration of (6.2.8) with respect to density from p = 0 to 1 leads to

X2Myy = zr(y) -  0'y  (6.4.1)

where ~ again denotes a depth average quantity and Q has again been set to its reference 

value. Note that in this case, the vortex stretching term does not disappear in the vertical 

integral but instead, forces the model through the upper boundary condition, z t {v), which 

remains to be specified. For analytical convenience we shall choose a linear ramp shape 

for the thermocline depression, with zt = 0 at y = — 1 and zt = — h r at y = 0 (returning 

discontinuously to the reference depth at this latitude). Equation (6.4.1) can now be 

written

X2Myy = -(A t + F)V -  hr  (6.4.2)

If it is assumed that all the mass transport is carried within the barotropic core (the 

validity of the analysis will be tested against numerical inversions below), the boundary 

conditions with no slip at the southern edge of the core are

M  = 0 at y = 0

M  = Myy = 0 at y — —l

and the solution to (6.4.2) is

3 h ix 2M = - { h T + ^ - h^ - 8{hT+0i ) y

with

1 = 3hx

(6.4.3)

(6.4.4)

(6.4.5)
2 (hT + P')

It is interesting to compare (6.4.5) with the expression for / given in (4.3.7). bn the 

latter, / depends on q and thus implicitly on the thickness of the mode water layer and 

on (3. These dependencies arise from the assumption that q = -j3L everywhere above
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the thermocline, resulting in a linear ramped thermocline depression. In (6.4.5), however, 

no assumptions have been made about the potential vorticity above the thermocline and 

the linear ramp has been imposed a priori. This results in a perhaps more intuitive role 

for /3, with the core shrinking as it is increased. The core will, of course, still become 

larger if the thermocline depression is increased, up to a limit which violates the model 

assumptions.

Equation (6.4.4) can be differentiated to find the latitude at which M  is a maximum, 

and if this is substituted back into (6.4.4) the resulting expression for the mass transport 

is

A Mmax 12(hT + /3')2
(6.4.6)

To calculate the mass transport in Sverdrups, the right hand side of (6.4.6) must be mul­

tiplied by the factor, IQ~6 foL2 H . As before (equation (4.3.5)), the mass transport of the 

core is dependent on the cube of the surface forcing, subject to the same reinterpretation 

as discussed above for /. It is independent of both the strength and form of stratification 

used, although the problem becomes ill posed if A is set to zero. Also, if A gets too large, 

and/or hj- too small, the bowl is expected to bottom out as explained in the last section. 

Quantitative comparisons of (6.4.6) with numerical inversions will be presented in the 

next section.

(b) Inversions with a Linear Thermocline Depression

To facilitate comparison with the theory above, numerical inversions of (6.2.8) were car­

ried out in which a linear ramp shape was chosen for the top boundary condition, -zj-(y). 

In these inversions, the thermocline returns to its reference depth over one grid point 

south of y = 0. Values of L = 1500 km, H  = 5 km and Ap = 1.5 kg m~3 are used. 

Figures (6.2) (a) and (b) show the velocity field in density coordinates, and density con­

tours in height coordinates respectively, from an inversion in which the thermocline was 

pushed down to a maximum depression, hr  ;= 200 m. The y coordinates are stretched as 

before (see appendix A) in figure (6.2a) but have been unstretched for the hydrographic 

section of figure (6.2b). The stratification is uniform so the potential vorticity is equal 

to 1 throughout the flow region. The broad features of the flow are the same as in the 

quasi-geostrophic inversions, but it should be remembered that this figure only shows
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Figure 6.2: Results from an inversion with a linear ramped thermocline with a maximum depression 

of 200 m and uniform stratification, (a) Zonal velocity in cm s-1 . Density is the ordinate, varying 

from the value at the thermocline to this value plus Ap at the bottom. Dashed lines indicate 

surfaces of constant depth, y coordinates are stretched as in appendix A. (b) Density contours 

with depth as the ordinate. The upper limit of the diagram is at the reference depth of the 

thermocline. y coordinates are not stretched. The bowl is indicated by a dashed line.
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Figure 6.3: Mass transport plotted against maximum thermocline depression for the linear ramped 

thermocline. The shaded region represents the estimated transport above the thermocline. The 

lower curve is the depth independent transport beneath the thermocline and the next curve up 

is the sub-thermocline transport within the core. The total sub-thermocline transport (core and 

fringe) corresponds to the entire unshaded region. The dashed curve is the solution of (6.4.6).

the flow beneath the thermocline. The flow within the core is predominantly barotropic 

but a surface intensified eastward jet exists, returned mainly within the fringe. The sub- 

thermocline transport in this inversion is 61 Sv. The core transport, north of y = — 

is 47 Sv, of which 37 Sv is depth independent. The transport above the thermocline is 

estimated at 15 Sv, of which 4 Sv is due to the velocity shear (the first term on the right 

hand side of (6.3.14)). The core is 260 km wide and the maximum velocity in the jet is 

84 cm s” 1. For this value of h r, equation (6.4.6) predicts a mass transport of 57 Sv.

The full range of mass transport as a function of maximum thermocline depression, 

h r ,  is shown in figure (6.3). Various curves show the different components of the sub- 

thermocline transport and the shaded region indicates the estimated transport above the
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thermocline. The transport calculated from equation (6.4.6), appropriate to the depth 

independent flow, is included as a dashed line for comparison. It can immediately be seen 

that (6.4.6) provides a remarkably good estimate for the total transport. This is perhaps 

fortuitous for the region of the curve where the transport is less than about 40 Sv and 

the fringe transport is a large proportion of the total (the bowl actually bottoms out if 

hr = 50m) but it is to be expected for the more strongly forced region when the core 

becomes dominant. It can also be seen from figure (6.3) that as the core becomes stronger 

fcnd wider), it starts to carry a larger proportion of the baroclinic transport and the sub- 

thermocline fringe transport becomes negligible. It should be noted, however, that the 

flow above the thermocline also makes a large contribution to the fringe transport.

(c) Inversions with a More Realistic Thermocline

In the interests of further realism, the above numerical experiments were repeated with a 

depth dependent stratification (50 = 0.05 in equation (6.2.13)) and a smooth, continuous 

thermocline depression, represented by the function,

= hj-sin 7ru (6.4.7)

where u is the meridional coordinate of the stretched model grid, related to y by the 

expression given in appendix A. This means that the thermocline has its maximum de­

pression, z t  =  — / i t , in the middle of the model domain but to the north in real space 

(at y = —0.2) and results in a broader eastward jet (erring on the side of excess) and a 

slightly increased average thermocline depression.

Figures (6.4 a,b) show the velocity and hydrography from an inversion in which /it = 

220 m. The realistic stratification cam be seen in figure (6.4b) together with the modified 

thermocline shape. This inversion transports 65 Sv of which 46 Sv is returned within 

the core and is almost completely depth independent. The estimated transport above the 

thermocline is 20 Sv, with 4 Sv due to the aforementioned shear component. The core is 

310 km wide and the maximum velocity in the jet is now only 39 cm s-1 . The eastward 

jet is now more spread out due to the gentler rise in the thermocline. Figures (6.4) (c)

(d) and (e) show further diagnostics from the model. Figure (6.4c) shows the potential 

vorticity, controlled by the background stratification in the flow region with Q = 1/s, 

and with sloping contours outside the flow region representing the beta effect. The terms
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y(km) — ►

Figure 6.4: Results from an inversion with a stretched sinusoidal thermocline shape (see equation 

(6.4.7)) and a maximum thermocline depression of 220 m. Depth dependent stratification is used 

with «o =  0.05. (a) and (b) as figure (6.2). (c) Potential vorticity, Q. (d) Vortex stretching term, 

QMPP and (e) relative vorticity, A2Myy all in non-dimensional units (coordinates stretched as in 

appendix A).
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Figure 6.5: As figure (6.3) but for inversions with a stretched sinusoidal thermocline. The lower 

curves show results for an M  =  0 bottom boundary condition, with the dashed curve giving the 

sub-thermocline transport if uniform stratification is used.

in equation (6.2.8) associated with vortex stretching and relative vorticity are shown in 

figures (6.4) (d) and (e). Vortex stretching is again seen to be the dominant process in the 

baroclinic fringe region to the south, with relative vorticity playing a role in the barotropic 

core, especially in the eastward jet.

The sensitivity of the transport of the model to ht  is revealed in figure (6.5), a graph 

similar to that of figure (6.3). It appears that the shape of the thermocline has some 

small impact on the strength of the flow, with the transport rising more sharply in the 

case where the maximum depression is further south. However, it is still the case that for 

realistic transports, at least the sub-thermocline transport is predominantly barotropic. 

Significant changes to this picture will emerge in the next section.

Parameter studies in which Ap was varied by several kg m~3 show that this has a 

weak effect on the transport compared to the great sensitivity to a reasonable range of
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ft? , with stronger stratification resulting in a slightly increased transport as the Rossby 

radius increases and relative vorticity becomes more important. The partition between 

barotropic and baroclinic components shows more sensitivity to stratification, with the 

depth independent share of the transport weakening considerably as Ap gets larger.

6.5 A lternative B ottom  Boundary C onditions

In all the numerical inversions discussed so far, and in the theory at the beginning of the 

last section, it was assumed that the bottom boundary of the ocean was a flat isopycnal. 

A possible rationale for making this assumption is the fact that if an ocean gyre were to 

spin up from rest, with zero vertical velocity on a flat bottom, then the resulting state 

would indeed have an isopycnal bottom. However, in reality the ocean floor is not flat; 

bottom friction can lead to deep Ekman pumping and the long time scales involved in 

setting up the baroclinic structure of the deep ocean allow for other physical processes 

to have important effects, neglected in the weak dynamical argument mentioned above. 

Bottom friction in particular has been investigated in section 4.4 by considering a (g, t/>) 

relationship in the deep ocean. The difficulty of assigning a value to this quantity and 

comparing it with measurable quantities has already been emphasised. In the framework 

of the new model, it is possible to obtain guidance directly from measurable quantities, 

such as the typical depth perturbation of very deep isopycnals in the recirculation region. 

In the hydrographic data taken at 52°W (discussed further in the next section), isopycnals 

near the bottom of the recirculation are seen to bow downwards to extents of the order 

of hundreds of metres. The bottom topography also shows height variations of this order. 

An important question therefore arises as to the effect of changing the bottom boundary 

condition of the model in this manner. The following simple argument sheds light on this 

matter.

Consider a model in which the bottom isopycnal deviates from its reference depth by 

an amount zjj{y). In this case (6.4.1) becomes

X2Myy = zt -  zh -  (3'y (6.5.1)

It can immediately be seen that if the barotropic mode is to consist of an anticyclonic 

gyre, with Myy negative over most of the core, then (6.5.1) places restrictions on the
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possible magnitude of Zff. If zh is negative, as suggested by the data, this limit can be 

written

\*h \ < \z t \ -  p'\y\ (6.5.2)

and simply represents the value of zjj set in the one dimensional problem with no relative 

vorticity. This result is independent of the form used for 5. Using (6.5.2) as a guide, it 

can be seen that if plausible values are chosen: \zx\ ~  0.05; ft' ~  0.3 and \y\ ~  0.1, then 

there is considerable cancellation on the right hand side, leading to strong constraints on 

z h - In general, we require that M  be positive everywhere, so it is to be expected that the 

condition on zh will be even more stringent than (6.5.2), which merely implies that M  is 

positive. The conclusion is that it does not take a very large perturbation to the bottom 

isopycnal to alter the barotropic component drastically.

The results of numerical inversions in which the bottom boundary condition has been 

set to M = 0, forcing the depth independent component of the flow to vanish, confirm this 

result. For example, in an inversion with hx = 220 m in equation (6.4.7) and so = 0.05, 

the maximum deviation of the bottom isopycnal is just 56 m. The corresponding transport 

in such inversions is, of course, purely baroclinic and greatly diminished. Its dependence 

on hx is indicated through the lower curves in figure (6.5). The dashed line shows the 

sub-thermocline transport in similar inversions with uniform stratification, confirming the 

predictions of equation (6.3.11) for the baroclinic transport.

It is interesting to enquire whether it is possible to obtain a realistic transport and 

strong bottom currents (~  10 cm s-1 , Schmitz, 1980) but with more realistic deviations 

of the deep isopycnals from the horizontal (~  100 m as a conservative estimate based on 

hydrographic data shown in the next section). The transport is very sensitive to hx, so it 

can easily be strengthened by increasing this parameter slightly. However, a very different 

flow pattern now emerges. This can be seen in figure (6.6), an inversion with hx = 330 m 

and with a bottom boundary condition set through the relation

zh = —hn  sin?r— ^  (6.5.3)

within the core region and tin = 100 m. The resulting velocity field is far more baroclinic, 

with considerable baroclinic recirculation even within the core. The hydrography shows 

the bottom isopycnal bowing down as specified, The transport in this case is 97 Sv, with
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Figure 6.6: An inversion in which both top and bottom isopycnals are perturbed, by 330 m and 

100 m respectively, (a) shows zonal velocity with depth contours and (b) shows the hydrography 

as in figure (6.2).
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too ZSo Zoo 250 4-oo hr (n)

Figure 6.7: As figure (6.5) but with the bottom isopycnal depressed by 100 m according to equation 

(6.5.3). Lower curves show results with an M  =  0 bottom boundary condition, continued from 

figure (6.5).

only 65 Sv returned within the core, of which 51 Sv is depth independent. The transport 

above the thermocline is estimated at 37 Sv, of which 8 Sv is due to the velocity shear. 

The maximum velocity in the jet is 59 cm s-1 and the core is 397 km wide. The transport 

in figure (6.6) is rather high, although not as high as it would be if the bottom isopycnal 

were flat (see figure (6.5)). However, the maximum westward bottom velocity is only 

5 cm s-1 , and the depression of the bottom isopycnal is modest. The conclusion is that it 

is difficult to reconcile realistic bottom velocities with realistic bottom isopycnal deviations 

in a uniform potential vorticity model with a reasonable mass transport.

The dependence of the transport in these inversions on hx is shown in figure (6.7). 

The continuation of the purely baroclinic transport curves from figure (6.5) is included 

for comparison. There is a lower limit on h r, below which the deep values of M  start to
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become negative. Above this limit, the transport curves rise very steeply with increasing 

hy with a large proportion of the transport now carried by the baroclinic flow. This highly 

sensitive result could be modified if some linkage between the values of h? and hff were 

imagined to exist, but this would involve further abstract physical conjecture.

6.6 A  Sem i-D ata-D riven Inversion

The analytical functions chosen to represent the thermocline depression in previous sec­

tions have been useful for comparing the effects of the different strengths of forcing and 

for comparing the model with theory. However, neither gives a very satisfactory shape 

to the thermocline for comparison of the model with observations and in this section we 

shall take full advantage of our freedom to impose a realistic thermocline depression.

Figure (6.8b) shows a hydrographic section taken at 52°W (obtained from the Rhines 

Atlas, University of Washinton). Deep potential vorticity contours from this section calcu­

lated by McCartney (private communication) appear to follow the density contours closely 

in the flow region. It is therefore interesting to carry out an investigation in which the 

thermocline depression is based on the shape of the ag = 26.6 contour, shown in figure 

(6.8a), with potential vorticity uniform on isopycnals in the flow region beneath. The 

meridional extent of the inversion is now 1660 km, with H  and Ap equal to 5 km and 1.5 

kg m-3 respectively.

As it stands, the data presents problems if it is to be interpreted in terms of a steady 

model with no zonal variation. The quasi-synoptic nature of the hydrographic section 

means that considerable variations in therniocline depth can be seen which are not per­

manent or not continuous in the zonal direction. Eddies such as these, whether they are 

steady or transient, need to be removed to make the model more truly representative of 

the recirculation. It is also necessary to do this for technical reasons, because if the ther­

mocline goes above its reference depth, M  becomes negative just below the thermocline 

implying a locally cyclonic circulation and making it impossible to solve for the bowl. The 

dotted line in figure (6.8a) shows the thermocline shape which was actually used to force 

the model.

Another difficulty to be faced is the choice of reference depth for the thermocline. 

Given the actual thermocline depth, this is effectively a choice of the strength of its
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fu ll h y d r o g r a p h ic  s e c t io n  (c o n to u r s  o f  <tq).
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downward perturbation, to which the transport is sensitive. This must be borne in mind 

when interpreting the results. The reference depth was taken to be 300 m, entering at the 

southern edge of the section, with the thermocline returning to this depth at the northern 

edge. Finally, the bottom boundary condition was imposed through equation (6.5.3) with 

hjj = 50 m in order to achieve a realistic model transport.

The results from the inversion are shown in figure (6.9). The sub-thermocline trans­

port is 70 Sv: 52 Sv in the core of which 37 Sv is depth independent. Above the ther­

mocline, the transport is estimated at 26 Sv; 7 Sv due to the shear component. The 

effect of the thermocline shape can be seen in the velocity field of figure (6.9a), with the 

steepening of the depression as one moves north giving rise to a tighter signature in the 

velocity field, which does not spread smoothly into the fringe to the same extent as in 

previous inversions. The maximum velocity in the eastward jet is 91 cm s-1 and the core 

is 288 km wide. As expected, the hydrography (b) (in real coordinates) bears some resem­

blance to the data, given that the two eddies have been removed. Vortex stretching (c) 

dominates the fringe, but forms a double lobed structure to balance the relative vorticity 

(d), which which shows maxima near the northern and southern boundaries of the core, 

demonstrating clearly the lack of boundary layer structure in this region at all depths. 

The inclusion of data has, therefore, highlighted the important qualitative features of the 

of the recirculation, even if we must regard the quantitative predictions of the model with 

the reservations mentioned above.

6.7 Sum m ary

A geostrophic model of the recirculation has been investigated using density as a vertical 

coordinate. This has given us the ability to force the model in a more physically accessible 

way and to compare the results directly with data. The assumption of uniform potential 

vorticity along isopycnals beneath the thermocline has been retained and the model has 

been forced with various types of thermocline depression. It has been shown that it 

is possible for the flow to bottom out under oceanographic parameters and that the 

penetration and strength of the baroclinic flow is controlled by the extent to which the 

thermocline is depressed, with the stratification also having some effect on the later. When 

the flow extends to the bottom, a strong barotropic component arises, also dependent
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F ig u r e  6 .9 : r e su lts  fr o m  a n  in v e r s io n  w ith  th e  th e r m o c lin e  d e p r e s s io n  a s  in  f ig u re  ( 6 .8 a )  a n d  th e  

b o t t o m  is o p y c n a l d e p r e s se d  b y  a  m a x im u m  o f  5 0  m . (a )  Z o n a l v e lo c ity  w ith  d e p th  c o n to u r s , (b )  

T h e  d e n s ity  p ro file , ( c )  V o r te x  s tr e tc h in g  te r m , (d )  R e la t iv e  v o r t ic ity  te r m . D e t a ils  a s in  f ig u re  

( 6 .4 ) .
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on the perturbation of the thermocline. In fact the overall transport of the model is 

sensitively dependent on plausible variations in maximum thermocline depression. The 

type of bottom boundary condition employed is also very important, with reasonable 

depressions of the bottom isopycnal tending to extinguish the barotropic flow leaving 

correspondingly small bottom velocities compared to current meter observations. Finally, 

it has been shown that if hydrographic data is used to guide our choice of thermocline 

depression, then a realistic transport can be achieved, with the realistic thermocline shape 

serving to emphasise the recirculating nature of the flow as opposed to a boundary layer 

interpretation for the eastward jet.



C h a p ter  7

C onclusions

A baroclinic Fofonoff gyre has been used as a basic reference point from which to describe 

the tight, sub-basin scale recirculating gyres found in the north western corners of the 

world’s oceans. It was established at an early stage that it is necessary that these gyres 

should have some baroclinic structure, if realistic mechanical forcing and dissipation is to 

be balanced with eddy transfer of potential vorticity in an almost free, steady state. The 

remainder of the thesis has been an investigation into the precise nature of this vertical 

structure. Central to the studies presented above has been the assumption that potential 

vorticity is uniform in regions of deep flow, and that the water in these regions has been 

set into motion by the flow in the mechanically or thermally forced layers above. The 

emphasis has been on diagnosis of steady, free states, rather than on forcing mechanisms 

and their role in creating and maintaining these flow patterns.

Firstly, it has been shown that the abyssal flow has a finite depth penetration, and 

that for oceanographic parameters it is possible that this flow may not reach the bottom. 

This has been demonstrated in the contexts of both quasi-geostrophic and Ertel potential 

vorticity inversions. It is a consequence of relative vorticity, which must be present to 

close any type of Fofonoff gyre. This has been put forward as a possible explanation of 

the shallow region of uniform potential vorticity observed in the north Pacific. It should 

be pointed out again that these solutions are not robust to small perturbations to the 

value of homogeneous potential vqrticity.

In regimes with stronger surface forcing, or weaker stratification, the homogeneous 

flow penetrates to the ocean floor. The immediate consequence of this is the emergence of

129
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a strong barotropic component to the flow. This barotropic component is very sensitive 

to the surface forcing, and in some circumstances it can come to dominate the mass 

transport of the model. In fact, a cubic dependence on some measure of surface forcing 

seems ubiquitous: either on the depth integral of q in the quasi-geostrophic model, or on 

the depression of the main thermocline from its reference depth in the isopycnal model. 

This cubic dependence is not at all surprising, it was simply arrived at by solving second 

order linear equations. But it is significant in its relevance to the recirculation region, 

where these second order equations can be applied. The sensitivity of the transport to 

thermocline perturbation is consistent with the observed phenomenon o f ‘anticyclogenesis’ 

following severe winters, when the Gulf Stream intensifies as a result of an enhanced 

depression of the main thermocline due to either thermal or mechanical forcing.

The existence of a barotropic component to the flow allows us to define partitions in 

the mass transport of the model. One such partition is between the depth independent 

part, and the contribution made due to velocity shear from the bottom upwards. It 

has been found that there is close correspondence between this partition and a spatial 

partition which demarkates the transport into ‘core’ and ‘fringe’ regions. The eastward jet 

is very surface intensified, but the recirculation immediately to the south is only weakly 

depth dependent, the baroclinic part of the jet being recirculated further south in the 

fringe where there are no bottom currents. This transport scheme is consistent with the 

observations of the Gulf Stream and its recirculation described in chapter 2. The precise 

partition of transport between fringe and core depends on a number of factors. Again the 

degree of surface forcing is important with more strongly forced flows tending to be more 

barotropic. The strength of the stratification also has some bearing on this balance with 

stronger stratification tending to enhance the baroclinic component.

The novel feature of the work has been the full inclusion of both the relative vorticity 

and vortex stretching components of the potential vorticity in a vertically continuous 

model. An ability to study the importance of these two terms has led to two conclusions:

1) The vortex stretching term is dominant in magnitude over almost the whole of the 

recirculation, although it disappears in vertical integral.

2) The relative vorticity term is vital, either in allowing the bowl of the circulation to bot­

tom out, or in cases where bottom flow exists, in controlling the depth integral structure
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over the whole of the barotropic core of the recirculation. The inversions generally demon­

strate that a decaying boundary layer type structure is not applicable to the barotropic 

core.

To sum up: both baroclinic structure and relative vorticity are essential for any model of 

the recirculation based on free non-linear gyres. In this model the c<#tf4tti€AW>japproaches 

of MN and CIY have therefore been brought together, with the added advantage of high 

vertical resolution.

If the flow in a sub-section of an ocean basin is to be represented by solving an elliptic 

equation, then the solutions will be sensitive to two considerations: the nature of the field 

inverted and the position and conditions imposed at the boundaries. The boundaries give 

rise to particular problems since we do not always know where they are and exactly what 

conditions correspond best to the physical world. These two questions are related, as in 

the case of the southern boundary condition on the bottom flow, where arguments were 

given for the application of either free slip or no slip conditions. The total transport of 

the model was not sensitive to this issue, but the width and transport of the barotropic 

core was affected. The solutions have also shown great sensitivity to boundary conditions 

about which we have more information. The obvious example is the depth perturbation of 

the thermocline, entering as a top boundary condition in the isentropic model of chapter 

6, which determined the transport of the homogenised gyre below. The solutions were also 

found to be sensitive to the depression of the bottom isopycnal, with feasible perturbations 

of deep density surfaces able to extinguish the barotropic flow brought on by the depression 

of the thermocline above. It was found that realistic hydrography was not easy to reconcile 

with realistic bottom currents in the uniform potential vorticity model.

This brings us to the first consideration mentioned above, the nature of the field being 

inverted. The flow field may well be sensitive to departures of the deep potential vorticity 

from uniformity. In chapter 5 it is demonstrated that a small, finite anomaly in the value 

to which the deep potential vorticity homogenises can have dramatic effects on the vertical 

structure of the flow. If this anomaly is positive, then a recirculation system emerges in 

which the surface sub-tropical gyre is strong, with a smaller counter-rotating sub-polar 

gyre to the north. At depth this picture is reversed, with a dominant cyclonic gyre in 

the core squeezing the deep sub-tropical gyre to the south. A limit exists on the deep q
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anomaly which corresponds to a solution in which the bottom flow is entirely cyclonic. 

The solutions shown in chapter 5 are suggestive of the deep flow in the western north 

Atlantic and although the model is again steady and diagnostic, and does not address 

the question of the creation or maintenance of these flow patterns, there is circumstantial 

evidence of a positive deep q anomaly and ample opportunity for maintaining it in the 

deep north Atlantic circulation.

On the subject of comparing the model with potential vorticity distributions in the 

data, it has been noted that this is very difficult in the quasi-geostrophic framework. 

Moving to the Ertel potential vorticity in the isopycnal model of chapter 6 was a great 

improvement in this respect, as well as in terms of being able to force the model with 

real data. The ‘semi-data-driven’ inversion shown still carries with it the assumption of 

uniform deep potential vorticity, and still solves for the ‘bowl’ of the circulation. When 

looking at real potential vorticity data, the general impression is that isopycnally uniform 

potential vorticity does exist at all depths, bounded by some sort of bowl. Ideally, the 

demarkation between the flow region and the stagnant water coincides with a change in 

the nature of the Q contours. In density coordinates, Q contours should be flat in the 

homogeneous flow region, and slope at an angle given by (dp/dy)Q = —/3N2/ f  outside 

this region. This angle is small enough to make location of the bowl difficult in noisy data.

The logical next step is to attempt an inversion of real potential vorticity data. This 

would form a very interesting extension of this work and may provide an answer to some 

of the questions posed above concerning uncertainties in boundary conditions, and degree 

of homogeneity of Q. However, this is by no means a solution to the ‘level of no motion 

problem’. The potential vorticity field would need to include a contribution from the 

barotropic flow, invisible to the hydrography. It is possible to conceive of an iterative pro­

cedure which could bring forward the fields of M  and Q together from initial hydrographic 

data to a full solution with a consistent barotropic mode, in which the Q field matches 

both density and momentum fields. The domain over which such an inversion could be 

carried out would have to be small enough to allow relative vorticity to form a signifi­

cant part of the elliptic operator, and the conditions at the side boundaries would still 

influence the solution. Also, the two dimensional nature of the model would still give rise 

to the problems discussed in chapter 6. The pitfalls of attempting to recover geostroph-

t
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ically balanced, mass conserving flow in such an ‘inverse’ calculation have already been 

encountered by Luyten and Stommel (1982).

Further desirable extensions to this model would be the explicit inclusion of the ther- 

mocline flow and the representation of outcropping density surfaces. The arguments for 

using an isopycnal model become considerably weaker if these things are included as the 

surface boundary condition is now a mixed layer density rather than the depth of an 

isopycnal, giving rise to considerable technical difficulties.

The ethos of forcing the model with what is known well, to deduce what is known 

poorly is a sound one and it should be remembered that the basic task of ocean modelling 

is to explain and describe the ocean circulation. A good ocean model is inspired by 

observations. Likewise, all data analysis contains some elements of modelling. As the 

extensions suggested above are added to the model, the fine between modelling and data 

analysis will be crossed. A good oceanographer should always be aware of which side of 

this line he is on.
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Figure Al: Grid points in the numerical inversion with the bowl passing between them.

A p pendix  A

The Iteration Scheme

The potential vorticity field is inverted with a free boundary (the bowl) specified at each 

grid point position in the horizontal and between grid points in the vertical. It is known 

that on this boundary, and on all grid points below it, ip  = 0 (see figure (4.1)). In general, 

the boundary will cut between grid points in the horizontal and in the vertical and this is 

taken into account in the finite differencing above the boundary. Consider the situation in 

figure (A l). A set of grid points is shown with the bowl passing between them. Outlying 

values of t/> can be expressed as Taylor expansions about the central grid point where

!P =  V’o'-
l2

rp+  =  ip0 +  h p y o  +  - ^ V W )  +  0 ( / 3 )  

q2
0 = ipo — altjjyo + ^y-T/>yy0 + 0 ( /3)

Subscripts denote grid point positions, / is the non-dimensional grid spacing and a is the 

fraction of l shown in figure (A l). These expansions lead to the following finite difference 

representations for first and second derivatives at the central grid point:

^*0 = Q(1^ a)f [QV +  + (1 -  a2)V>o] + 0(1*)

^W> = a ( l  + a)P  ^  + +

These are used to to calculate quantities on grid points just above the boundary.

The extra condition which must be satisfied at the bowl is xj)z = 0. Now provided the 

bowl is not vertical, by the chain rule, rpy must also be zero at each point on the bowl
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(see section 4.3a) thus we can form the following quantity,

J « V )2 + |>(V-*)2 ( = KJ3. + A.P.E.),

which must be zero on the bowl. This quantity has the desirable properties of being 

positive definite, and non-zero everywhere except on the bowl. It is minimised just above 

each individual boundary point in the following way: Contours of a vertical minimum 

are found and the position of the bowl moved up to meet these minima in decreasing 

increments. It was necessary to sweep inwards from the edges of the gyres towards y = 0, 

whilst iterating upwards for the bowl, because the vertical positions of the energy minima 

near the eastward jet Eire sensitive to the solution in the interiors of the gyres. The 

iteration stops when when the bowl sits just below an energy minimum at each horizontal 

grid position. Ideally, this quantity should be zero on the bowl, and it was found to be 

negligible in all cases once the bowl had been located to grid point accuracy.

For cases where the bowl hits the bottom, a similar procedure was followed to find 

the latitudes bounding the core. The position at which the bowl intersected the bottom 

was moved inwards towards y — 0 until the required lateral boundary condition (^ y or 

ipyy = 0 at the bottom) was satisfied to within one grid point. In the inversions where the 

ipyy boundary condition was implemented, thus sacrificing exact satisfaction of = 0 

(see section 4.3a), the A.P.E. alone was minimised in the expression above.

In the isentropic model of chapter 6, no slip boundary conditions were used throughout 

and a simpler iteration scheme was employed. The finite difference formulae given above 

were used to calculate M, but it is known that M  can not change sign near the bowl and 

therefore that M  is positive everywhere in the sub-tropical gyre (see the arguments in 

section 5.5). Thus an ordinary accelerated directional scheme was used to minimise M  

and hence its normal derivative (ensuring that it was still positive) near the bowl.

The Coordinate Stretching

It was necessary to use an irregular grid to provide the model with sufficient resolution 

in the eastward flow region. The following expression was used:

y = 5u — 5.9253 tanh(0.82u)

where y, and u are the non-dimensional northward coordinates in physical space and grid
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space respectively. The numbers have been chosen such that the function is monotonic; 

with finite derivatives at the boundaries; with y and u equal at -1, 0 and 1 and able the 

stretch the middle of the double gyre in a continuous manner.
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A ppendix  B

Method o f Solution for the 2 Layer Double Gyre Problem 

Equations (5.3.1) have the following solutions in four different regions:

- 1  < y <  t :

t < y < s : 

s < y < p : 

P < y <  1 :

ipi = y + 1 + A  sinh%(y + 1) 

rp2 = 0

ocipi + V>2 =  -V 2 [*£ + { f g  + s }  + B y '  + C ]

— t/>2 = ( l+ a ) — cosh vy'\ + v2C cosh uy' -f (1 + oc)D sinh vy'

a^i + f a  = - v 2 [ £  -  { f g  -  5} + # 2/' + c]
ipi — -02 = ( 1 ^ )  [1 — cosh + I/2C cosh + (1 + a).D sinh i/y' 

rpi = y -  1 + £  sinhx(y -  1)

^2 =  0

where y' = y — s, x  = L/Lp,  v — X \/l -f ct, V' has been scaled by (3L2pL and y by L. The 

above solutions yield -01 — 0 at y = 1, —1,5 and ip and ipy are matched at y = s in both 

layers.

Application of the further conditions that the normal modes, and their first derivatives 

must match at y = t,p  produces eight equations in the five arbitrary constants, A to E, 

and cubic and hyperbolic functions of t, p and s. Five of these equations were used in a 

linear inversion to find the values of i  to JS. These values were then used in the other 

three equations to provide three residual functions which were then minimised by varying 

t , p and 5 (each time recalculating A to E). Mutual zeros of these three residual functions 

correspond to the four types of solutions for f, p and s referred to in the text.
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