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ABSTRACT

A method of approximating the posterior distribution of P, the probability 
that a new observation y belongs to one of two populations with no parameters in 
common is developed and applied generally to Exponential family populations and 
specifically to multivariate Normal linear model populations with unequal 
covariance matrices, Gamma, Binomial and Poisson populations. The posterior 
moment generating function of the log likelihood function at y is derived and 
the posterior moments of the likelihood, log likelihood and L, the log 
likelihood ratio function are found. The method is extended to populations with 
parameters in common and applied to multivariate Normal linear model populations 
with equal covariance matrices. The posterior distribution and credibility 
interval for L are approximated using Pearson curves. The posterior distribution 
and credibility interval for P are obtained by transformation from L.

The method is generalised to the situation where the new observation y 
belongs to one of more them two populations (with or without parameters in 
conation). The method is also generalised to the situation where the mixing 
parameters are unknown and the random samples were obtained by mixture sampling 
from the combined population distribution, and their population of membership 
subsequently identified. A method of combining subsets of variables modelled 
separately is shown, including the location linear discriminant model and the 
situation of independent subsets of variables as special cases.

Finally the stability of the predictive density function is considered. A 
method of obtaining credibility interval bands for the likelihood and log 
likelihood functions is given. For the likelihood function, this gives a 
credibility interval band around the predictive density function. The joint 
posterior moment generating function of the log likelihood functions at multiple 
new values is also obtained.
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CHAPTER 1

Estimates, predictive distribution and credibility interval for P t the 
probability that a new observation belongs to one of two populations

1 .1 Introduction

Suppose that observations belong to one of two distinct populations or 
n2, and that in population the d-dimensional random variable X has
probability density function Pi(x|©) of known, but not neccessarily the same 
functional form, for i=l,2, dependent on some unknown parameter vector © which 
combines the parameters from both populations. This allows for the possibility 
of common parameters between the populations. Suppose that independent random 
samples, Xj. = (xij? and 2Lz =(x2j, j=i»nz)» from nA and n2 respectively,
are to be used to gain information concerning which population, or n2, a new 
observation y belongs to. Prior to being observed y is assumed to have been 
drawn from or n2 with probabilities qx and q2 respectively,i.e. y is assumed 
to have been drawn from the combined population distribution,
qipi(y|©)+qzP2(yI©)• The probability P that the new observation y belongs to 
given the value y, the combined population parameter vector © and the prior 
probabilities is,

P =  q,p,(y|e) . (1.1.1)
qiPi(yie) + q2P2<yie)

The purpose of this research is to develop a method for approximating the 
posterior distribution and finding a credibility interval for P. The method is 
outlined later in chapter 1 and is applied to multivariate Normal populations 
both with equal < chapter 2) and unequal (chapter 3) covariance matrices, and to 
Exponential family populations, including Gamma, Binomial and Poisson 
populations (chapter 4).
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In chapter 5 the problem is generalised to allow the previously fixed known 
prior probabilities of population membership, (and q2=l-qi), to be unknown. 
Assuming a known or vague prior distribution for q^, then random samples and 
x?, obtained by mixture sampling, i.e. sampled from the combined population 
distribution qiPi(xie) + q2P2(x i0 )» arK* then identified as belonging to and 
n2 respectively, can be used to update the prior distribution for q^. The number 
of observations in the data set from each of the two populations gives 
information concerning the distribution of q^. If the mixing parameter q^ was 
unknown and the random samples were obtained by seperate sampling, then the 
problem is insoluble since no information is available concerning the mixing 
parameters, unless a non vague prior distribution is assumed for q^.

The problem of more than two populations is considered in chapter 6. In 
chapter 7 the general situation of multiple new observations from one or more 
populations, where the mixing parameters may be unknown, is considered and 
applied to multivariate Normal linear model populations, both with equal and 
unequal population error precision matrices. The stability of the predictive 
density function is investigated in chapter 8. The problem of combining subsets 
of variables modelled seperately is considered in chapter 9, including as a 
special case the situation of independent subsets of variables. In chapter 10 
the problem of using the extra information concerning the unknown population 
parameters © provided by the new observations of unknown population membership 
sampled from the mixture distribution is considered. Conclusions are given in 
chapter 1 1 .

The notation used for population probability density functions used 
throughout this thesis is that of Aitchison and Dunsmore (1975), except where 
stated otherwise.
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1.2 Estimates of P

Estimates of p using independent random samples from and II2 have been
either ’estimative’ or ’predictive’ (Aitchison, Habbema and Kay, 1977).

An ’estimative' estimate of P, denoted by Pe , is obtained by substituting
Ainto Pi(y|e) point estimates 0 of the population parameters 0, for i=l,2. The 

resulting estimates of pj.(y|0 ), i=l,2 , are then substituted into equation
(1 .1 .1 ), giving

A?e = ______q,Pt(yie) . (1 .2 .1 )A 7 T

qiPxCyi0 ) + q2p2(yie )

A ’predictive* estimate of P, denoted by Pp, is obtained by substituting 
the predictive densities Pi(yfxi,X2) for the population densities Pi(y|0), i=l,2 
, into equation (1.1.1). The predictive density is defined by

Pi(yl*l**2 ) = | Pi(yl0 ) P(©lxi*X2 ) »

(Aitchison and Dunsmore, 1975, Ch.2), where P<©lxi>X2 ) is the posterior
distribution of 0 given the independent random samples x^ and X2 , and assuming 
either a prior distribution for 0 or the limiting case of vague prior knowledge 
about ©.

Hence,

p p  =  ________ q i P i ( y l g L > x 2 ) _____________  • < i . 2 . 2 )
qiPiCyixx.^) + q2P2<yixi»*2 >

The ’predictive’ estimate of P cam be shown to be equal to p(yen-j |y ,xi ,x?) 
from a fully Bayes approach, i.e.

p(y€n1 ly,x1 ,x2 ) = _______qiPi(ylxi»X2 )_________
qiPi(yi2LL»x2 > + q2P2(yi2Si*2S2 )

(Aitchison and Dunsmore, 1975, Ch.ll).
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The ’estimative' and 'predictive' estimates of P have been compared for a 
particular data set concerning Conn's syndrome by Aitchison and Dunsraore( 1975, 
Chll). They found that the 'estimative' and 'predictive' estimates of P can 
differ dramatically, particularly in their practical implications. The 
'estimative* and 'predictive' estimates of P have also been compared in a 
simulation study by Aitchison, Habbema and Kay (1977). They also found that the 
'estimative' and 'predictive' estimates of P cam differ dramatically for the 
multivariate Normal populations they considered, amd that the 'predictive* 
estimates of P generally gave more accurate estimates of P as judged by the 
<xV>so\uYe, error in the estimate of the log likelihood ratio.

An alternative Classical estimate of P to the usual 'estimative' estimate 
Pe has been proposed and considered by Moran amd Murphy (1979). They propose 
using bias-corrected estimates of the log likelihood functions log Pi(ylO) for 
i=l,2, and hence obtaining estimate Pu of P by transformation from (1.1.1). This 
implies using a bias-corrected estimate, 1^, of the log likelihood ratio 
function, L = log Pi(y|0) - log P2(yl©). They found that the Classical estimate 
Pu of P performed comparably with the 'predictive* estimate Pp of P, aus judged 
by the aWoWte error in the log likelihood ratio, but also that all three 
estimates of P, Pu , Pe and Pp cam differ dramatically.
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1.3 The posterior distribution and credibility interval for P

Since the ’estimative* and ’predictive* estimates of P can differ 
considerably as shown by Aichison and Dunsmore (1975, Chll), Aitchison, Habbema 
and Kay, (1977) and Moran and Murphy (1979), it would be useful to obtain a 
Bayesian credibility interval for P. In particular this will throw some light on 
the relationship between the 'estimative' and 'predictive' estimates of P.

If, given y, P is treated as a randon variable,(a function of the random 
variables ©), then the posterior distribution of P given and can be 
obtained.

In order to achieve this, the posterior moments of the logarithm of the 
likelihood ratio, L, are obtained, where L=li~l2, and 1^ = log(Pi(yl©)) for 
i=l,2. The posterior distribution of L can then be approximated, either using 
Pearson curves (Elderton and Johnson, 1969, Chapter 5) or, if appropriate, using 
a Normal distribution. A Normal approximation may be justified in a particular 
case provided calculation of the posterior skewness and kurtosis of L shows them 
to be close to the values for a Normal distribution, i.e. 0 and 3 respectively. 
An approximate posterior credibility interval for L can easily be obtained using 
percentage points for Pearson curves, tabled in full by Johnson, Nixon and Amos 
(1963), and in summary by Biometrika tables, No. 4.2.
The posterior distribution and credibility interval for P are obtained by 
transformation from the posterior distribution and credibility interval for L 
since,

P 1
1 + ̂ .e'L <U

(1.3.1)

Hence the posterior probability density fuctions p(P) and p(L) are related by, 

p(P) = p(L)|dL/dP| = P(L)eL.(q1/q2 ).(l + e"1̂ / ^  )2 ,for 04P41. (1.3.2)
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The problem of obtaining an interval for P has been considered extensively 
from a Classical viewpoint by Cr itch ley and Ford. They propose two main methods, 
the first being based on finding the variance and higher moments of the bias 
corrected estimate of the log likelihood ratio, Ly, and using these to obtain an 
interval for P (Critchley and Ford, 1984, 1985). The problems with this approach 
are, firstly, that the exact formulae for the variance and higher moments of Ly 
have so far appeared intractable, at least for multivariate Normal populations 
so far considered, and secondly, even when found, the formulae for the variance 
and higher moments will be functions of the unknown parameters © and hence will 
have to be estimated by substituting some estimate of 0 into the formulae. The 
second Classical method they propose is to obein an interval for the log 
likelihood ratio L from its profile, (Critchley, Ford and Rijal, 1986a) and 
(Critchley, Ford and Hirst, 1986).

A review of several approaches to obtaining an interval for P is given by 
Critchley, Ford and Rijal (1986b), where they compare the intervals obtained for 
Conn's syndrome data from Aitchison and Dunsmore (1975, Chll). They found that 
their profile likelihood approach and the Bayesian approach, derived here, gave 
very similar results for this particular data set. They are currently carrying 
out a simulation study to compare the performance of the different approaches to 
obtaining an interval for P.



1.4 The posterior moments of L. the log likelihood function at the new 
value y. when the two population distributions have no parameters in common

If the set of parameters involved in Px(ylQ) is different from the set in 
Pz(yl©)» and the two sets of parameters have independent prior distributions, 
then lx and 12 have independent posterior distributions and the posterior 
cumulant generating function, Kj/t), L can be obtained by finding the
posterior cumulant generating functions of lx and 1 2 separately since,

L = li + 12 and hence

since Ijl and I2 have independent posterior distributions.

Hence

i.e. K^t) = Kx (t) + Kx (~t) . (1.̂ .1)

Hence the rth cumulant of L, (Kr )L> is related to the rth curaulants of 1^ and

(1.4.2)

15



Ttie posterior cumulant generating function and curaulants of 1* are found , 
for i=l,2 , from which the posterior cumulant generating function and cumulants 
of L are obtained using (1.4.1) and (1.4.2). The posterior central moments of L, 
i.e. moments of L about its mean, can then be found from its posterior c umulants
using a special case of the recurrence relationship derived in Appendix 2,

M'r = jf̂ Q [ j ] *r-j f°r (1.4.3)

where jx• r is the r*-*1 moment about the mean and Kr is the rth cumulant.
Hence #i' 2 = K2 f

= K3 » (1.̂ .̂ )
M'4 = *4 + 3 ^ 2K2 = K* + 3K22 .

The posterior moments of L are thus found and are used to approximate the
posterior distribution of P as explained in section 1.3.

Chapter 2 considers the case of multivariate Normal populations with unequal 
means and unequal covariance matrices. This case has been considered from a 
Classical rather than a Bayesian viewpoint by Crithley, Ford and Rijal (1986a, 
1986b). Chapter 4 considers the case of Exponential family populations having no 
parameters in cannon, including as examples, pairs of Gamma, Binomial and 
Poisson populations, each pair having no parameters in common. The case of 
multivariate Normal linear model populations with unequal covariance matrices is 
considered in chapter 7.
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1.5 Posterior moments of L when the two population distributions have
parameters in common

If the populations have contnon parameters, then lx and 12 will not have 
independent posterior distributions and hence the moments of L cannot be found 
from the moments of lx and 12 separately, but can be found either from the joint 
posterior moment generating function of 1^ and I2 or directly from the posterior 
moment generating function of L itself. The posterior curaulant generating 
function of L is used to obtain the posterior mean and cumulants of L, from 
which the posterior moments of L about its mean are obtained using (1.4-.4.) 
above. The posterior distribution of P can then be approximated as explained in 
section 1.3.

Chapter 3 considers the case of two multivariate Normal populations with 
unequal means but equal covariance matrices. Critchley and Ford (1985) and 
Crichley, Ford and Hirst (1986) have considered this case using a Classical 
rather than a Bayesian approach. The case of multivariate Normal linear model 
populations with equal covariance matrices is considered in chapter 7.
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1.6 Motivation for obtaining a credibility interval for P

The dramatic differences in the estimates of P, discussed in section 1.2, 
indicate that the posterior distibution and, in particular, the posterior 
credibility interval for P would be desirable. It is hoped that this will throw 
light on the relationship between the different estimates of P.

Different new observations y could lead to the same estimate of P but have 
dramatically different posterior distributions and posterior credibility 
intervals and so should not be treated identically.

Prom a practical point of view, given a particular utility loss-gain 
structure, relating possible actions a to the true population Ili of the new 
observation y, i.e. U(a,i), a point value for P would give a point optimum 
action a (i.e. with maximum expected utility or gain over all possible actions
a), while a distribution for P would give a distribution of optimum actions a or 
a distribution for the expected utility or gain for a particular action a. If 
the utility structure, U(a,i,y), also depends on the value of the new 
observation y, as suggested by Aitchison and Dunsmore (1975, Chl2), then since y 
is Xnown the utility structure given the value y returns to being a function of 
a and i. For example, suppose that all values of P in a credibility interval for 
P lead to the same optimum action a, one would feel confident in choosing this 
action. If, however, the values of P in a credibility interval for P lead to 
different optimum actions a, more consideration should perhaps be given to the 
choice of action, for example, by collecting further data before choosing am 
action.
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CHAPTER 2

Populations with no parameters in commoni Multivariate Normal populations with 
unequal means and unequal covariance matrices

distribution and credibility interval for P, the probability that a new 
observation y belongs to one of two populations or ri2 , where y is assumed to 
have been drawn from the combined population distribution QiPi(yl0) + qaP2(yl©) 
is applied to d-dimensional multivariate Normal populations, and Il2 » with 
unknown and unequal population means Mi and M2 and unknown and unequal 
population covariance matrices £} and £2 respectively. Let Ti=Ei_1 be the 
population precision matrix for i=l,2 , then 0 = (Mi>Ti>M2 >T2 ) 211x1 "'th© i***1 

population density, for i=l,2, is given by

Estimates of P
The true probability, P, that a new observation y belongs to population is 
given by substituting Pi(yl©) from equation (2.1.1), for i=l,2 into equation
(1.1.1).
The 'estimative* estimate of P, Pe , is given by substituting point estimates for 
(Mi»Ti) into equation (2.1.1) and then substituting the resulting Pi(yl©) for 
i=l,2 into equation (1.2.1). The maximum likelihood estimates of (Mi>Ti) are 
given by (X^n^S^--1-) where is the mean and is the corrected sum of squares 
and products matrix for the i*-*1 random sample, x^, for i=l,2.
The 'predictive' estimate of P, Pp, is given by substituting the predictive 
density Pi(yl£i,£2 ) for i-1 ,2  into equation (1 .2 .2 ), where Pi(yI^Ll>22 ) is given 
by equation (2 .2 .2 ) in section 2.2 , and (b,c,v,h) are the parameters of the 
posterior distribution of (Mi>Ti) for i=l»2. Assuming vague prior information 
about the parameters (Mi>Ti) then Pi(ylxi>2 2 ) iB given, for i=l,2, by 
substituting (Xi,ni,ni-l,Si) for (b,c,v,h) in equation (2 .2.2 ), i.e.

2 .1  Introduction

The method described in chapter 1 of approximating the posterior

(2 .1 .1 )

Pi(y|xi,*2 > rC(ni-d)/2]
rfn-i/2 ]

where Di = (y-X*j’Si'^y-Xi ).
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Credibility interval for P

In section 2.2 the moments of the posterior distribution of the likelihood 
z=p(y|/x,T) considered as a function of the random variables (ji,T) for a given y 
are obtained, by integrating zfc over the posterior distribution of (jx»T) given a 
random sample x=(xi,X2 , ... • »*ti) from a multivariate Normal population with mean 
\l and precision matrix T, where X is the sample mean and S is the sample 
corrected sum of squares and products matrix.

Since E(z^) = E(et^°8z ), the formula obtained in section 2.2 for the 
posterior moments of z is also the formula for ♦i(t), the posterior moment 
generating function of the logarithm of the likelihood l=logz. In section 2.3 
the posterior cumulants of 1 are obtained from log 4>i(t). Hence the posterior 
cumulants of 1± [= logz^ = log Pi(ylMi»Ti )]» for i=l»2 , are then obtained by 
appropriate substitution for (b,c,v,h) in the results of section 2.3. If vague 
prior information was assumed for (Mi»Tj.) then

Ix^ ) — P(Mi»Ti lxi>si) — NoWî jCX-j_,n̂ *nj_-1 ,S^ ) ,
in the notation of Aitchison and Dunsmore (1975, Ch2), and hence (Xi,ni,ni-l,Si) 
is substituted for (b,c,v,h) in the results of section 2.3 to give the posterior 
cumulant generating function and posterior cumulants of 1^ for i=l,2.

The cumulant generating function and cumulants of Ip= 1^-12 are then found 
using equations (1.4.1) and (1.4.2) since the posterior distributions of 1^ and 
12 will be independent. They will be independent because the population 
distributions have different parameter sets (Mi »Ti ) and (ji2 »T2 ) respectively and 
the random samples from the two populations are independent. Hence the posterior 
distributions of the two sets of parameters will be independent, provided it is 
assumed that the prior distributions of the two sets of parameters are 
independent.

For the example in section 2.4 the cumulants of li,l2 and hence L are found 
assuming independent vague prior information for the two sets of parameters 
(jil,Ti) and (M2»t 2)‘ Pearson curves were then used to approximate p(L), the 
posterior probability density function of L using the first four curaulants of L. 
Hie transformation (1.3.1) gives the relationship between P and L and hence 
p(P), the posterior probability density function of P is found using equation
(1.3.2). In the example in section 2.4 equal prior probabilities, q* and q2 , of 
population membership were assumed. The conclusions are given in section 2.5.
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2.2 The posterior moments of z . the likelihood function at y

Let z = p(y|ji,T)

= ( 2 T r ) " d / 2 | T | 1 / 2e x p | ^ % ( y - f x ) , T ( y - M ) ]  ,

where d is the dimension of the vector y, y is a new observation of known value, 
and (m »T) has a Normal-Wishart posterior distribution p(/i,T|X,S) given the 
sample mean vector X, the sample corrected sum of squares and products matrix S 
and the prior distribution p(ji,T).

If p(ji,T) = NdWi^jiotnotVotho), then for u q ^O,

p<ji,TIX,S) NoWid [~̂ 4 n ~ »n0+n *v0'fn>hl] »

(Aitchison and Dunsmore, 1975, Ch2).

If vague prior knowledge is assumed for (ji,T), i.e. p(/x,T) a ITI ~ d + 1  > f then 
p</i,T|X,S) = NoWi^Xt^n-ltS) , (Aitchison and Dunsmore, 1975, Ch2).

For a general result let p(/x,T|X,S) = NoWi^(b,c,v,h), then,

( 2 t t)”%dt |T|exp[-ist(y-^),T(y-^)].

( 2 tt | cT | % e^q5C-%(M"b)'cT(^-b)].
I%hÎ 'v |T| %(v-<3-l ) exp[-%trhT;j 

rd(%v) d jx dT ,

where rd( %v) = rrd(d-l)/4 d. n r[%(v-d+j >] j=i
and TAO means T is positive definite.
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Completing the square and integrating out /i, gives,

E( a* ) =
<c+t)

• J |T|%(v'd+t'1 ).ej(p[-istr[h + S^y-bHy-b)'| t J dT,

where K = ¥.1* cW
(2ir)‘sd(t+1) rd<isv)

By noting that the integrand above is in the form of the Wishart probability 
density function, T can be integrated out to the constant of the Wishart 
distribution giving,

E(zt ) rdC%(v+t)]

n*td. rd(̂ v) h+&M;%(v+t)

where D = (y-b)*h~1(y-b).

( 2 . 2 . 1 )

Setting t=l gives the multivariate Student t distribution evaluated at y, i.e., 

p<yix) = Std [v,b,[l+i]

m<v+l)]
TT̂ .rt̂ Cv-d+i)]

"%(v+l)
( 2 . 2 . 2 )

This is the predictive density function for y discussed in section 2.1.
The predictive density at y can be considered to be either the posterior 
expected value of the likelihood function at y, or the estimate of the 
likelihood function at y which minimises the posterior squared errror loss.
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2.3 The posterior moment generating function of l=logz. and moments of 1

The posterior moment generating function of l=logz is given by, 
<*q(t) = E[et,io8z ] = EO*1], which was obtained in equation (2.2 .1 ). 
On taking logs and differentiating (2.2.1) with respect to t,

d d— log 4>i(t) = -%d.logrr - %log|h| + E ^.^[^(v+t-i+l)]at i=l

2( c+t i - ♦ si] -2( c+t)

where ¥(s) = r ’(s)/r(s) is the psi (digamaa) function.

ctD
c4*t

(2.3.1)

Now let Q = ĉ .D
2(c+t).[c+t+CtD] 

Using partial fractions,

( r ) r+11 2(c+t)
(•l)rtl.n.(14«D)m

2[C+t+CtD]r+1
(2.3.2)

Expressing the higher derivatives of (2.3.1) in terms of derivatives of Q and 
then substitution from (2.3.2) gives the r*-*1 kumulant of l=logz, (Kr )j ,

<Kr >l = [d<r > log 4>(t)
.dt(r) t=0

r ^ (r-1 )(%) E V1 ;[«V-i+l)] i=l

+ — 1}-- Ccr+(d-v)(r-1)) 
2c

for r^2.

( r -2 )l ( -l)r
2C

[-cr-f-v( r-1)(1+cD) ] . (1+cD )r ‘ 1

(2.3.3)
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The r**1 moment of l=logz about its mean, i.e. (Mr* )l» can now ^  obtained from 
the kumulants of 1, given by equation (2.3.3), using the recurrence relationship 
(1.4..3).
Hence,

E(l) = (Ki)! = - |.log n - - |.log|hl - E *[«t(v-i+l)] ,

V ( l )  =  (M 2 >1 =  ( K 2 ) i  =  — 5 +2c
v-c .D + -.v.D2 + -. E *’[%(v-i+l)] , 

2 4. i=l

(M3 >1 =  < * 3 > 1  =  " - 3  -
3D - - 1

3D2 2  - 1

C .c 2 . C
3 1 d (2)- v.D + -. E ’T  [<s(v-i+l)], 

8 i=l

<M4 )l = <K4 )l + (*2 )l » where,

<*4)1 3d 12(v-c )D
4 3c c

(3V-2C)6D2 | (3V-C)4D3 f 
2c c

3vD*+ —  
16

d ( 3 )E '[^(v-i+i)]. 
i=l

(2.3.4)

If v is an integer then the value of the Psi function ¥ and its derivatives 
in E( 1), V( 1), (M3 *)l and (M4* )l can be found using the formulae given in 
Appendix 3. If v is not an integer then an efficient numerical method of 
approximation which is particularly useful when the Psi function and its 
derivatives are required at the same value is given in Appendix 4.

For the examples in section 2.4 vague prior knowledge about (Mi»Ti)» f°r 
i=l,2 , was assumed, so that p(Mi>TjJXi,Si) = NoWicj(Xi,nj[,ni~l,S^) and hence 
(X^,ni,ni-l,Si) was substituted for (b,c,v,h) in the above formulae to give the 
posterior cumulants of li=logZi for i=l,2. The posterior cumulants of the log 
likelihood ratio L=log( Z2/Z2 )=li~l2 about its mean were then found using 
equations (1.4.2). Pearson curves were then used to approximate the posterior 
distribution of L (Elderton and Johnson, 1969, Ch5) using the first four 
cumulants of L. The posterior distribution of P was then obtained by 
tramsformation using equation (1.3.1), assuming equal prior probabilities i.e.
qi=q2-
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2.4 Examples of the posterior distribution of P

A sample of size 10 was generated from each of two populations with 
multivariate Normal density functions p(yl/ii>Ti) with mean and precision 
matrix Ti (= E ^ ) giving sample statistics Xi and Si for i=l,2 , where,

M l * =  ( 0 . 0 0 . 0 ) E i  =

<--
---

--
i

O
 

H
o

 
o

H
 

O
b

 
b

*2 =  ( 1 . 0 1 . 0 ) E2 =
r i . o  o . 6 i
[ o . 6  1 . 0 J

» l ' =  ( 0 . 1 6 9 0 . 4 0 7 )  , S i  =
P 8 . 6 9 4  0 . 3 9 3  
( . 0 . 3 9 3  5 . 8 3 8

* 2 ’ =  ( 0 . 9 8 1 0 . 9 5 9 )  , S2  =
f 4 . 1 8 8  1 . 4 5 4  
[ l . 4 5 4  4 . 0 4 9

A new set of observations was independently sampled from the combined population 
distribution %[p(ylMi»Ti) + p(y lM2»T2 )] • F°ur observations y^ to y^ were chosen 
from the new set having distinctly different posterior distributions p(P) as 
shown by figures 1 to 4, where, 
yx = (0.023 0.208) ,
y2 = (-1.697 -0.4480) ,
y3 = (-1.299 -2.818) and,
y^ = (0.006 1.962).

On each graph the following are marked,

(Pl,P2)
T

Q

E

B

, a cental 90X credibility interval for P, i.e. equal tail areas.
, the true value of P obtained using the true population parameters, 
given by equation (1 .1 .1 ).

, the ’estimative' estimate of P assuming unequal covariance matrices 
for the populations, and using maximum likelihood estimates 
(Xi,Si/ni) for (jii,Ej.) for i=l,2 , i.e. a quadratic discriminant 
estimate.

, the 'estimative' estimate of P assuming an equal covariance matrix,
E, for the two populations and using estimates (Xi,(Si+S2 )/(ni+n2-2) 
for (/ii,E) for i=l,2, i.e. the usual linear discriminant estimate.

, the 'predictive' estimate of P assuming unequal covariance matrices 
and vague prior knowledge about the parameters, given by substituting 
equation (2 .1 .2 ) for i=l,2 into equation (1 .2.2 ).
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Figure 1. The posterior density function p(P) for new observation y^.
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Figure 3. The posterior density function p(P) for new observation .
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The points y^ to y4. are plotted in figure 5 together with the true 
chi-squared and estimated T-squared 90X confidence ellipses for a new 
observation y for each of the two populations, respectively defined, for i=l,2, 
by the set of y such that,

(y-Mi),Ci'1(y-Mi) * x22,o .9o a*Ki»

(r>i"l)• [jjjJx] • (y_*i)'si_1(y'*i) * * ^ . x,d ,0.90
(nj-l)d
(n^-d) * d,ni-d,0.90

(2. -4.1)

where nj=10 is the sample size and d=2 is the dimension of the populations. The 
suffix 0.90 refers to the upper 90X point of the distribution. Equation (2.4.1) 
can be interpreted as meaning that the expected or average X of new observations 
captured within Rj, the region defined by (2.4.1) over a sequence of independent 
random samples with sample statistics (Xj^S^Jj for j=l,2,..., each with the same 
number of independently sampled new observations, is 90X.

As several of the estimates of P are close to zero or one, the following 
table compares the corresponding estimates of the log likelihood ratio, L, given 
by equation (1.3.1), where qj_=q2=0.5 . The corresponding central 90X credibility 
interval, (L(Pi) ,L(P2 )), is also given. Hence the interval and the different 
esimates of L.(and by transformation P) can be compared,

L(T) U Q ) L(E) L(B) L(Pi) L(P2 >
yi 0.265 0.687 0.950 0.440 -0.577 1.903
y2 1.896 5.759 3.237 2.313 -0.271 12.341
y3 2.251 8.359 4.761 1.693 -5.815 23.287
YU 0.24-3 0.948 -0.461 0.320 -1.970 4.004

Prom the above table it is clear that the different estimates of the log 
likelihood function L can differ quite dramatically but still lie within the 
credibility interval for L. This is particularly striking for y3. Also despite 
the estimates of L being highly positive for yjt the credibility interval still 
includes the value L=0, which corresponds to P=Js, indicating that the true 
population of membership of y3 is not clear cut.
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__________  True chi-squared 90% confidence ellipse for y.

_________  Estimated T-squared 90% confidence ellipse for y.

Figure 5. The true and estimated 90% confidence ellipses for a new
observation y plotted together with the new observations y^-y^
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Denote the posterior probabiliy density function of P based on yj by Cj. 
It is interesting to compare with C3. Curve C3 may be desribed as 'unstable* 
in the sence that the value of P appears likely to be at one extreme of the 
interval (0,1 ), but which extreme is unclear. Curve C^ may be described as 
'stable' since P appears very likely to be moderately greater than 0.5. Clearly 
therefore further sampling would be of considerable value for deciding at which 
extreme P lies for y3, while it would only serve to provide a more accurate 
estimate of P for y^.

The following question therefore arises. From which population is further 
sampling the more helpful. In order to decide this consider the mean and 
variance(M and V) of the log likelihoods lij = log p(yjl^i,Ti) for j=l,2,3,4 and 
population i=l,2,

i=l i=2

M V M V
yi -1.924. 0.143 -2.481 0.441
y2 -4.144. 1.228 -9.266 14.170
y3 -10.714 17.271 -18.175 63.266
y* -3.783 0.903 -4.576 2.497

From this table it can be seen that the 'stability' of P in is due to 
the low variances of l^i and l2i» while the 'instability* of P in C3 is due to 
the large variances of 113 and 123* particularly 123. Hence it would be better 
to continue sampling from the second population if firmer knowledge about the 
true population to which y3 belongs is required. This is even more apparent for 
Y 2 -
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2.5 Conclusions

Prom section 2.4. it cam be seen that even though estimates of P are close 
to 0 or 1 it is still possible for the 90X credibility interval for P to be very 
wide, as for example for y3 . Furthermore the 90X credibility interval for P cam 
include both Bayesiam and ClaLSsical estimates (B and Q) even when they differ 
greatly, e.g.,

Q Pi P2
0.99977 0.00297 1 - 0.77x10"10

0.9969 0.433 1 - 0.44xl0~5

B
y3 0.845 

o.9io

Hence, though estimates B and Q may be both well within permissible statistical 
limits, they may differ immensely in their practical implications.
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CHAPTER 3

Populations with parameters in common: Multivariate Normal Populations with 
unequal means but equal covariance matrices

3.1 Introduction

The Method descibed in chapter 1 of approximating the posterior 
distribution and credibility interval for P, the probability that a new 
observation y belongs to one of two populations or II2 , where y is assumed to 
have been drawn from the combined population distribution qjPi(yl0 ) + <l2P2(yl0 )» 
is applied to d-dimensional multivariate Normal populations Xl̂  and II2 with 
unknown and unequal population means and ^ 2 and unknown but equal population 
covariance matrix E. Let T=E_1 be the common population precision matrix, then 
©=(Mi »M2 »T) and the i^h population density , for i=l,2 , is given by

Pi(yie) = Pi(ylMi,T) = (2rr) ^ITI^expJ-^y-jXiV^y-Mi)] . (3.1.1)

Estimates of P
The true probability, P, that the new observation y belongs to population is 
given by substituting Pi(ylO) from equation (3.1.1), for i=l,2, into equation
(1.1.1).
The 'estimative' estimate of P, Pe , is given by substituting point estimates for 
(Mi,T) into equation (3.1.1) and then substituting the resulting Pi(yie) for 
i=l,2 into equation (1.2.1). The maximum likelihood estimates of [MitM2»T 3 are 
given by [XifX2 »(nl+n2 )(sl+s2 )-1] where X* is the mean and Si is the corrected 
sum of squares and products matrix for the i^h random sample, x^, for i=l,2.
The 'predictive’ estimate of P, Pp, is given by substituting the predictive 
density Pi(ylxi»2E2) for i=l,2 into equation (1.2.2), where Pi(ylx1 ,x2 ) is given 
by equation (2.2 .2 ) in section 2.2 and (b,c,v,h) are the parameters of the 
posterior distribution of (jii,T) given random samples xi a™* 252 » for i=l*2 . 
Assuming vague prior information about the parameters (Mi»M2»T ) then p-j(ylxi ,x?) 
is given for i-1 ,2  by substituting (X*,n*,ni+n2 -2 ,S) for (b,c,v,h) in equation
(2 .2 .2 ) where S=Si+S2 , i.e.

Pi(yl*l>*2>
r [ ( n 1 t n 2 - l  ) / 2 ] ____

it1/2. r[(n1+n2-d-l)/2]

where Di = (y-Xi)*S"1 (y-Xi).

- 1/2

[
1+ z( ny+n2 " 1 )/2J H  lDi ]hi+lj J (3.1.2)
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Credibility interval for P

In section 3.2, 4>l(t)=E(etL), the posterior moment generating function of 
the logarithm of the likelihood ratio, L=li-12, where li=log(Pi(y I©)) for i=l,2, 
considered as a function of random variables (m i »M2 »t ) f°r a 8iven y is obtained 
by integrating etL over the posterior distribution of (MitM2 »T ) 8iven random 
samples x1=(x1 1 ,x12,.. ,xlnl) and X2=(x21»x22» • • »x2n2 ) from population nx and n2 

respectively with sample means and X2 and sample corrected sums of sqares and 
products matrices s^ and S2 respectively.

In section 3.3 general formulae for the posterior mean and curaulants of L 
are obtained. In any particular example the posterior mean and momc.^s of L 
about its mean cam be obtained by appropriate substitution for (bi»ci,b2,c2 ,v,h) 
in the results of section 3.3. If vague prior information is assumed for 
(Ml,M2 »T) then

p(Ml,M2»T l2£l»2S2) = P(Mi,M2tTlxi ,x2,S) = NoNoWi(x! ,n2 ,x2 ,n2 ,n2+n2-2 ,S) 
where S=Si+S2, and hence (xi,n2 ,x2,n2,ni+n2-2,S) are substituted for 
(bi,ci,b2 ,c2»v,h) in the results in section 3.3.

In section 3.4. the posterior distribution of L is approximated both using a 
Normal distribution and using Pearson curves. The posterior distribution of P is 
then obtained by using transformation (1.3.1). A numerical example is given in 
section 3.5.
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3.2 Hie posterior moment generating function of L t the logarithm of the 
likelihood ratio at y.

The posterior moment generating function of L, the log of the likelihood 
ratio at y, given the independent random samples Xj. 811x1 *2 from the populations 
nA and n2 respectively, is given by

♦x,(t) = E[etL] = E (y ie)l t | = f [p ,(yie)i 
(yie)J J J lp2(yl©)J

tP(©l25jL»2bt )d© (3.2.1)

Where p(0lx1 ,xz) is the posterior distribution of © given and x,.
Let Ili be a d-dimensional multivariate Normal population, Nod(Mi*T), with 

mean Mi and precision matrix T,i.e.

Pi(yie) = Pi(yl^i,T) = 1T1*/2 exp[-%(y-Mi )'T(y-Mi )] for i=l,2. (3.2.2)( 2tr )d/2

Let © = (^x *M2»T) have a Normal-Normal-Wishart prior distribution, 
p(HA,#i2,T),prior that is to observing the values of Xj. and £z» i.e.

P(Mjl »Mz »T ) = NoNoW^/ixo^xotMzotnzofVotho)* defined by 
p(Mx,M2,T)=p(MxlT)p(M2 lT)p(T) where p(Mi IT)=Nod(Mio»nioT ) for and
p(T)=Wicj(v0,h0 ) (Ait chi son and Dunsmore, 1975, Chapter 2).
Then, for n10M) and n20\0, the posterior distribution of © is

p(©|xA,x2 ) = P(Mx »T|x x ,x2 ,S)
= NoNoWidfn, ftttin4ntx, ,n,n+n, ,n2rji2X£tn2xi ,n2C)+n2 ,vc+nA+n2-2 .hjl

1 n 4-n n +n Jxo x 20 2

where h x = h0+S+ E f niQni_( x* -Mio)(*i -Mio) ’ 1 •i=ll n. +n. J
1 0 1

If vague prior information is assumed, i.e. P(Mx »Mz *t ) a JTI" ^ 4 1 )/2 then 
p(G|xx,x2 ) = p(Mi,M2,T|xltx2,S) = NoNoWid(x1 ,ni,x2,n2,ni+n2-2 ,S) , 
where x x and x2 are the sample mean vectors, nx and n2 are the sample sizes and 
SA and S2 are the sample corrected sum of squares and products matrices for the 
random samples xx and x* respectively, and S=SA+S2.

For a general result let

P(©IXx»X2 )=p(Mx »M2 ,T|Xx , x 2 ,S )=N°N°Wid(bx ,cx ,b2 ,c2 ,v,h) (3.2.3)
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*L(t) =* J J | [p^yj^1ri]tp(^j.,M2,T|X:L,X2,S) d d M 2 dT ,
T^O Mi€Rd M2€Rd

“ l\\ ITlV* (2tt)”dt/z eaq>[-%t(y-^i1)*T(y-Mi)]
,\T\-t/z (2rr )dt/2 exp[%t(y-ji2 )fT(y-M2 >3

. ICjlTI1-/2 ( 2rr) ~d/z exp[-%(fijL-bi) fcxT( Mi-bi )]

. | c 2T| (2rr)"d/2 exp[-Js(/i2-b2 )'c2T( )]

.l%h|v/* 1T| (v-d-1 )/z exp[-JstrhT] djix djx2 dT,
Td(v/2)

Bence substituting px(yl©) and p2(yl©) from (3.2.2) and pCOIx^x^) from
(3.2.3) into (3.2.1) gives,

where TAO means T is positive definate, and Id(v/z) = 7rd(d-l)/4 n r[(v-d+j)/2].
j=l

Completing the squares in each of and /x2 and integrating out the result to 
the constants of Normal distributions,
No[(Cib1+ty)/(c1+t),(c1+t)T] and No[(c2b2 -ty)/(c2-t),(c2-t)T] gives,

*L(t) _ £ i_  i d /z  r_£z_ i d /z  i%hiv /z  r 
Cj+t j Lc2-t J Td(v/2) J |T |(v-d-l)/2 exp[-%trHT] dT,

where H - h + c,t (b< -y )(b, -y)' - c7t (b?-y )(by-y)'. 
cx+t c2-t

By noting that the integrand is in the form of the Wishart probability density 
function, T can be integrated out to the normalising constant of the Wishart 
probabillity density function giving,

*L(t> - r_Cj_ jd'2 [_£*_ ld/2 lh |v/2 . (3.2.4)
Uj+t J LCz-t J IHIV/*

Now by considering the determinant of a partitioned matrix of size (d+2) by 
(d+2) with elements h, [ a ^ b ^ y  ),a2(b2-y)], [-(bi-y), -(t^ -y)] ’ and I2 the two
dimensional identity matrix,

IHI = |hI . [1 + ô D*. + cx2D2 + cqa^DJ^-D^)] , (3.2.5)
where ax= c,t . a2= _ c,t . Di=(bi-y)'h“A(bi-y) for i=l,2 

Cj+t c2-t

and DJL2=(bJL-y)*h"i(b2-y).
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3.3 Hie Posterior Moments of L

On taking logs and differentiating ^(t) r tiroes with respect to t and 
setting t=0 gives the rttl cumulant of L, (Kr>L, i.e.,

(Kr >L = fd<r > log ♦lCt)1 = ( -l)r(r-l)ld + (r-l)Id . vfd<f> log ul , (3.3.1)
Uit(r ) -*t=0 2cir 2c2r 2 klt(r ) -*t=0

Where r*l and u = [1 + + a2D2 + aAa2(DAD2-DA2)).
Differentiating the equation, du = u d log u, (r-1) times with respect to t

dt dt
and setting t=0 gives the recurrence relationship,

r -1
fd(r > log ul -  l f r d<r > ul . Z fr-11 Td<1> ul fd(r ~i > log u] 1 (r\1)
Kit^r ) t=0 u *■ Klt^r ) t=0^=^ i <̂it( t=0

where fd(r > ul = ( - D ^ r l D , 4 (-l)r!D, . fc,c? Ir! f( -l)r + _ 1 1 ( D 1Dz -d J  ) 
LdtTr) -*t=0 cir i c2r - 1 ĉi+cz *-cxr"i c2r-i-*

for r>l.
The rth moment of L about its mean, (j*r* )l » is naw given by,

r -2
(Mr')L - E([L-E(L)]r ) - £ fr-11 (Mj ' )L * (*r-j >L

j-0 L j J
Hence E(L) - (Kx)h - -lprCD^-D*) + djl . 1 jj

, for rAl.

V(L) =

(̂ 3 )L=(K3)L = -I

+ D2Z) + 2v fP̂ 4fizli + dr I +
ICi C2J1 Lcj.2

3vfD,2 - D,z] + 3vjp« - d , }k C2 J 1Ic*2 c22J
+3vDi2f(Di-D2) + fl

B r ’-fc]] ■ (3.3.2)

and (fi£ )L = (K4.)l + 3(K2 >L "here

(K4 )l= 3 fv(DJL4+D24) + 4-V fD, 3+ P,31 + 6vfDif+ P,21 + 4vfP, 4 D, ] + d[ 1 + 1 ||
L lcA c2 J c22J [c ±* c 23J [c x* C2 4 JJ

+6vDi2 4- 12vD 2'12 l_Jj* - evDjp^ Ljp>z+ i_J •
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3.4. Approximating the Posterior Distributions of L and P

The posterior distribution of L can now be approximated using its posterior 
moments either by Pearson curves (Elderton and Johnson, 1969,Chapter 5), or, if 
appropriate, by a Normal distribution,i.e.

L ~ N(jx,cr2) where /x = E(L) and <r2 = V(L).

A Normal approximation to the posterior distribution of L may be justified in an 
individual case by checking that the posterior skewness and kurtosis of L are 
sufficiently close to the values 0 and 3 respectively.

Using the transformation P = [1 + )e~L] , the posterior distribution of
P can be approximated by

p(P) = 1______expr l (L-u)2] where L - log [q, fl-PI ] , (3.4.1)
(2tt)jSctP(1-P) L 2a2 J Lqx l P JJ

for 0ZPZ1.

Hence, using a Normal approximation to the posterior distribution of L, a (1-a) 
credibility interval for L is given by,
(Lx ,L2) = (n.-za/2<r,/i.+za/2a ) , where ẑ x/z is the a/2 point of a Normal
distribution.

Alternatively, using a Pearson curve approximation to the posterior distribution 
of L, a more accurate credibility interval (L^,!^) for L based on its first four 
cumulants can be obtained. Percentage points for Pearson curves are given by 
Johnson, Nixon and Amos (1963 ) or by Biocnetrika Tables, No. 42 .

A (1-a) credibility interval (Pi >1*2) for p can ^  obtained from the 
corresponding credibility interval (L^,!^) for L by using transformation 
(1.3.1), giving,

(p ,.,p 2> ’ < [i + <q2/q1)e Li r 1 , ti + > • <3.<-.2 )
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3.5. A numerical example of the calculations

As an illustration of the calculations, suppose random samples each of size 
10 from IIjl and II2 give the following sample statistics,

21 , and S = Sl4Sx = [12.88 1.85 
1.85 9.89

where (x±»si) are the sample mean and corrected sums of squares and products 
matrix for the sanple from the 1th population, for i=l,2.

Assume that observations from populations and II2 have bivariate Normal 
distributions with unequal means mi and M2 but equal precision matrix T.
If equal prior probabilities q^ and q2 , and vague prior information about Q = 

are assumed, then in the equations for posterior mean and cumulants of 
L given in section 3.3 substitute,

Cb1 ,ci,b2,c2,v,h] = CXjl »n2 »x2 ,n2 »nJL+n2-2 ,SJ

= rp.1691 10 J0.9811 10, i 8 J1 2 .8 8  1.8511 
Ll0.407J LO.959J L 1.85 9.89JJ

Por new observation, y - fO.0231 , DA = (b^-yyiT^b^-y) = 0.00495 ,
10.208J

D2 = (b2 -y)’h'A(b2-y) - 0.11035, and Dxz - (bA-y)'h'x(b2-y) - 0.0222.
Hence for y, E(L) - 0.9486, V(L) - 0.3285 and an approximate 95% credibility 
interval for L is (-0.175,2.072), using a Normal approximation to the posterior 
distribution of L as in section 3.4. Hence the corresponding approximate 
credibility interval for P is (0.456,0.888), using equation (3.4.2).
The posterior skewness and kurtosis of L are given by,

(M3 ')L = (*3 >L = 0.1495 
(k 4>L = 0.1021 and so 
(M4*)L = 0.1021 + (3X0.32852 ) =0.4258

Hence the posterior skewness of L is (/0i >l ~  (̂ 3 >L = 0.7942
/ •v3/2<42 >L

and the posterior kurtosis of L is (/32>l  = ( M4 * )l  = 3.9462.
(42'>L2

A more accurate credibility interval for L can be obtained by approximating the 
posterior distribution of L using Pearson curves. Using percentage points for 
Pearson curves, an approximate 95% credibility interval for L is given by,
(ML ' 1 . 5 8 8 ctl  , ML + 2.308aL ) = (0.03844 , 2.27143) ,
and hence an approximate 95% credibility interval for P is given by 
(0.5096,0.9065).
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CHAPTER 4.

Exponential family populations with no parameters in common

4.1 Introduction

The method described in chapter 1 of approximating the posterior 
distribution and credibility interval for P, the probability that a new 
observation y belongs to one of two populations, where y is assumed to have 
been drawn from the combined population distribution qiPi(ylO) + q2P2(yl0 ) 
is applied to Exponential family populations, and II2 , with unknown
parameter sets and ©2 respectively, having no parameters in common. Here 
the parameter vector ©=(©1 ,©2 ) and the ith population density, for 1=1 ,2, 
is given by

Pi(yie) = a<ei)b(y)es(y)’r(ei> , (4.1.1)
where y is a d dimensional observation,

©i is a dQ dimensional parameter vector, 
s is a k dimensional vector function of y, and 
r is a k dimensional vector function of ©.

Estimates of P
The true probability P that the new observation y belongs to is given by 
substituting Pi(yl©), given by equation (4.1.1), for i=l,2, into equation
(1.1.1).
The 'estimative' estimate of P, Pe , is given by substituting point 
estimates of ©^ into equation (4.1.1) and then substituting the resulting 
Pi(yl©)» for i=l,2, into equation (1 .2.1 ).
The 'predictive' estimate of P, Pp, is given by substituting the predictive 
density Pi(y 1*1 »*2) ♦ for into equation (1.2.2), where Pi(ylxi»£2 ) is
given by equation (4.2.13) and (u,u>) are the parameters of the posterior 
distribution of ©^ given the random sample x^, for i=l,2 , given by 
(4.2.5).
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Credibility interval for P

In section 4.2 the joint posterior moment generating function of the log 
liXelihood functions at multiple new values (yi,y2 »• • »Ym) from an 
Exponential family population is obtained, and in particular the posterior 
moment generating function of the log liXelihood function 1 = log p(y|0) at 
a single future value y is obtained in section 4.2.4.
The posterior cumulants of 1 are obtained from the posterior cumulant 
generating function Kj(t) = log 4q(t) and hence the posterior mean and 
central moments of 1 cure found using equation (1.4.4). Hie posterior mean 
and central moments of lj = log Pi(y|0), for i=l,2, are then obtained by 
substituting for (v,u>) the parameters of the posterior distribution of 
into the results in section 4.2.5. The posterior moments of L=l2-l2 are 'then 
found using equations (1.4.1) and (1.4.2). The posterior distribution of L 
can then be approximated either by Pearson curves using the first four 
moments of L or, if appropriate, by a Normal approximation using the first 
two moments. The posterior distribution of P can then be found by 
transformation using equation (1.3.2).
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4.2 The joint posterior moment generating function of the Ioe
likelihood function at multiple new values from an Exponential family 
population

4.2.1 Introduction

Let X be a d-dimensional random variable with probability density function, 
p(x|G), a member of the Exponential family, i.e.

where e is a do dimensional parameter vector,
s is a k dimensional vector function of x , and 
r is a k dimensional vector function of ©.

Let x = (xi,X2,... ,xn ) be a random sample of observations of random variable 
X. Interest centres on the joint posterior moment generating function, 
♦jL<t̂ ), of the log likelihood functions of possible future observations 
(yj; j=l,2,... ,m) of the same random variable X.

Where p(©|x) is the posterior distribution of the parameter vector © given 
the random sample x.

p(x|©) = a(©)b(x)es(x)'r(©) (4.2.1)

where here t = (tlft2,....t*), 1 = ( li,l2, * • • »lm>»
and lj = log p(yjl©) for j=l,2 ,.
Hence

(4.2.2)
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4.2.2 The posterior distribution of the parameter vector e £iven the random
sample x for an Exponential family population

Hie natural conjugate prior distribution for © is given by,

p(©) = c[v/0,o)0]a(©)l/0eWo , (4.2.3)

where vq is a scalar, wq is a X dimensional vector and cCvot^o] is 
normalising constant.

Hie posterior distribution for © given the random sample x is given by 

np(©|x) a p(©). n p(Xj|©) , 
j=l

oj'r(©)a(©) e

nwhere v - vq + n and to = wo + E s(xj ) , (4.2.4)
j=l

»/ u'w©)i.e. p(©lx) = c[i/,to]a(©) e v . (4.2.5)



4.2.3 Evaluating »?(t)

Proa equation (4.2.2),

♦l(t) = J [^ni Ja(e)b(yj)eB<y3) r(e)jt3 | .ctw,<i>]a(©)l/e“ r<0> de ,

= c(V,u] [ ^ W y ^ i  J . J a O ) ^  ^  (

m mv»here E = E and n = n throughout section 4.2.3.
3=1 3=1

Hence,
c[i/,u].n

- C£y+ctj#»fEtjS(yj )J (4.2.6)

Hence the cunulant generating function of 1. is given by,

Ki(t) = log 4»i(t) ,
= log c[v,«] - log c[v+Etj,uH-EtjS(yj)] + Etjlog b(yj) . (4.2.7)

The predictive distribution for y=(yi,yo,...y»)

Setting tj=l for 3=l,2,..,m in equation (4.2.2) gives from equation
(4.2.6),

P(Zlx)
c[v/,w].n b(yj) 
c [ u4a, io+Es( y j ) ] (4.2.8)
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4.2.4 The posterior Moment generatimg function and Moments of the log
likelihood function at a single future value y

Setting m=l in equation (4.2.6) and omitting the subscript 1 from l^.t^ and 
yi and setting s=s(y) gives,

♦l(t)
tb(y)

C[v+t,<iH-tS] (4.2.9)

Kj(t) =s log c[y,w] - log c[v+t,ort-ts] + t.log b(y) , (4.2.10)

E(1) = [ ^ ( t ) ] t=0 dt log c(vA+t,w+ts] + log b(y) , and (4.2.11)

(K ).r 1
d<r )
U) Kl(t)

dt t=0
d(r >
dt(r)

log c[v+t,urt-ts] + log b(y)
. t=0 (4.2.12)

for r*2 , and hence the posterior central moments of 1 , (Mr')l* can be 
obtained from the cumulants of 1, (Kr )i, using equation (1.4.3).

The predictive distribution for a single future value y
Setting t=l in equation (4.2.9) gives the predictive distribution for a 
single future observation y given the random sample x»

c[u,id3.b(y)
C[l/+1,0H*S]p(ytx) (4.2.13)



4.3 Gamma populations

4.3.1 Introduction

Suppose that in populations and II2 the random variable X has Gamma 
probability density functions, Ga(ki,©i) and Ga(k2 ,©2 )* respectively, where 
ki and X.2 are known but and ©2 are unknown parameters. Here the parameter 
vector is ©=(©1 ,0 2) and the i *̂1 population density for i=l,2 is given by

P i( y ie )
_ ki ki-1 -©iy ©i 1 y 1 e ^

T(ki) (4.3.1)

Estimates of P
An 'estimative* estimate of P, Pe , is given by substituting the maximum 
likelihood point estimates of Q±, k^/X^, for i=l,2, into equation (4.3.1) 
and then substituting the resulting Pi(yl©), for i=l,2, into equation
( 1 .2 .1 ).

The 'predictive' estimate of P, Pp, is given by substituting the predictive 
density Pi(y lxi ,X2), for i=l,2, into equation (1.2.2), where Pi(ylxi,X2 ) is 
given by equation (4.3.6) and (g,h) are the parameters of the posterior 
distribution of ©^ given the random sample for i=l,2. Assuming vague 
prior knowledge about parameter ©^ then Pi(yl3Ll,3̂ 2) is given, for i=l,2, by 
substituting (nik^.n^Xi) for (g,h) in equation (4.3.6), i.e.

Pi(ylXi,X2) r C k i ( n i - H ) ] . ( n j X i  )k i n i  y * 1 1 

r < k jn i)  r ( k i ).<y+ni x i )ki<ni+1>
(«.3.2)

Credibility interval for P
The posterior mean and central moments of lj = log Pi(yl©) about, for i=l,2, 
are obtained by substituting for (g,h) the parameters of the posterior 
distribution of ©^ into the results in section 4.3.3. If vague prior 
information about ©^ was assumed then (njkj^njXi) is substituted for (g,h) 
in the results in section 4.3.3. The posterior moments of L=l2-l2 are then 
found using equations (1.4.1) and (1.4.2). The posterior distributions of L 
and P are then approximated as explained in section 4.1.



4,3.2 The posterior moment generating function of the log likelihood
functions at multiple new values from a Gamma population

Let p(x{e) ©k *X-1 e_Q>c
r(K) where X is fixed and Known.

Comparison with (4.1.1) gives a(©) = 0^, b(x) = x*-l
r(k>* s(x)=x and r(G) = -©.

If a natural conjugate prior distribution p(©) = Ga(g0,ho) is assumed for ©, 
then given the random sample x=(xltX2,.. ,Xn) from the Gamma Ga(K,©) 
distribution, © has a Gamma posterior distribution given by,

p(©|x) = Ga( go+nk ,ho+nX)

(Ait chi son and Dunsmore, 1975, Chapter 2), where 3fc=£xj/n.

If vague prior information about © is assumed then p(©|x) = Ga(nX,nX).

For a general result let p(©|x) = Ga(g,h), i.e.

p(©|x) = r(g)
Comparison with (4.2.5) gives v - g-1. u> = h and c[i/,u>3

X

Hence from (4.2.6),

h8 T(g+XEtj) n

= w*^*1 .
r(Xu+i)

*i(t) =
[r(X)]tti r(g) [h+Etjyj]8+KEtj

and from (4.2.8),

(4.3.3)

P(Ylx> = h8 r(g-HXm) n yj(K~1) 
[r(K)f r(g) [h+Eyj]8+)an

(4.3.4)
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From equation (4.2.9),

4.3.3 The posterior moment generating function of the log likelihood
function at a single future value v

♦l(t)
t(k-l) . gy h r(g4tk)

trtxji*1 r<*) (h+ty),+tx
(4.3.5)

and from (4.2.13) the predictive distribution of y is the Inverse-Beta 
probability density function, given by

p(y|x) = — --- -— = InBe(k,g,h] . (4.3.6)
T(k) r(g) (h+y)*^

Bence frosi (4.3.5),

log ♦i(t) = t(k-l).logy 4 g.logh 4 log[r(g4tk)] - t.log[r(k)]

- log[r(g)] - (g4tk).log[h4ty] ,

d log *i(t) = (k-l).logy 4 k.9(g4tk) - log[r(k)] - k.log[h4ty] - y(g4tk)
dt (h4ty)

d(r)log ♦x(t) = kr .*(r‘Vg+tk) + (-l)r~Iyr~1(r-2)l.fOH-ty)fc-(«y-hkWr-l>l 
dt(r) (h+ty)r
for r*2.

Bence,

<*r>l = d<r > log ♦i(t)'
dt(r)

r *( r-1 . r -1 r -1= k‘.9'‘ “?g) 4 (-1)~ ~ y~ (r-2)![rhk-(r-1)gy]
t=0

for r*2 , where (Kr)j is the cumulant of 1 .
(4.3.7)

Equation (1.4.3) gives a recurrence relationship between the moments of a 
random variable about its mean and its cumulants, hence using the resulting 
equations (1.4.4),

E(l) = (Ki)i = (k-l).logy 4 k.*(g) - log[r(k>] - k.logh - gy ,
h

V<1) = (Mz'h = <*2)1 = k2.»<1 >(B) + <-l).Z_[2hk-*y) ,
h2

< M3 * )l = <*3)1 = k3.*<2 ><g) + < -l)2.j£[3hk-2gy] , and <4.3.8)
h3

<M*’)1 = <*4)1 + 3<*2>? ,
where <*4)1 = k*.*<3)<g) + (-1 )3 .21 .^[<hk-3gy] .
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4-.3.4 Special case of Exponential populations. Bx(©i ) and Ex(©?)

Since Ex(0) = Ga(l,©), the Exponential distribution Ex(G) is just a 
special case of the Gamma distribution Ga(k,e) where k=l. Hence the results 
in section 4. 3.3 reduce to,

E(l) = V(g) - logh -*.y ,
h

V(l) = (M2f)l = ^ ^ ( g )  " 2_[2h-ygJ ,

(M3f)l = <*3)1 = *(2 )(g> + Z?.[3h-2yg] , and
. 3

(4.3.9)

<M«')1 = (K«)l + 3<JC2)l ,

where (K^)j = ^(^(g) - 2y3r4h-3yg] .
h*

Note that V( 1) is minimised when y takes the value h/g.

For vague prior information about © substitute (n,nX) for (g,h).
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The following example is taken from Aitchison and Dunsmore, 1975, Chll.
Exponential populations example (special case of Ganna populations)

Sample 1 
Sample 2 
New Cases

47,17,32,19
75,31
40,70

from Ex(Gi), population IT̂ 
from Ex (02>, population II2 

unknown population IT̂  or II2

Assume fixed chosen sample sizes i.e. the data were not collected from a 
'naturally occurring experiment*, and assume equal prior probabilities
qi=<l2 *

'Estimative* estimate of P

Aq iP i(y ie )
A Aq iP i( y i © )+q2P2 < y  i ©)

A
Ex(Bi)
A AEx( ©x )+Ex( ©2 )

AWhere for i=l,2, Ex(©i) A©i.e
A-©iy

Aand the maximum likelihood estimate of ©i is ©i = 1/Xi.

'Predictive* estimate of P

p = _____qjPi(y<xi»X2)______  = ______ InBe(l,ni,n!Xi)______
p qiPi(ylx1 ,x2 )+q2P2(yl2LL*2£2 ) InBe(l,n1 ,n1X1 )+InBe(l,n2,n2X2)

assuming vague prior knowledge about ©1 and ©2, where for i=l,2,

InBe(l,ni,niXi) = ni*(nî j ) ^
(niXi+y)”141

in the notation of Aitchison and Dunsmore (1975, Ch2),
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P oster ior  moments o f  the log lik e lih o o d  Is = log p-i(yie) 
E ( l i )  = » (n i)  - lo g (n iX i) - y/X-i 
V ( l i )  = - y . [ 2 * i - y ] / ( )
Hew case 1; x=40
Pe = 0.008652 = 0.49376

0.008652+0.008871
Pp = 0.007820 = 0.51991

0.007820+0.007208
Hence E(li) = *(4) - log115 - 40/(28x75)

3= -C + E 1 - log 115 - 40 using the results of Appendix 3,
j=l j 28x75

= -4.88013
Similarly E(l2) = -4.995376
E(L) = E(la ) - E(l2 ) = 0.115246 = /iL
V(li) = »<1 >(4) - 40 . f 2*28*75 - 40]

4*28*75*75
0 3= n± - E 1_ - 40 [2*28*75 -40]

6 J=1 j2 4*28*75*75
= 0.072103

Similarly V(l2) = 0.175016
Hence V(L) = V(l2 ) + V(l2 ) = 0.247119 = ctl 2

and an approximate 95X credibility interval for L is given by 
£/iL -1.96*crL , ML+1 *96*®!.] = [-0.85909,1.08958] = [^,3^] 
and an approximate 95% credibility interval for P is given by

[(1+e"Ll ) 1 ,(1+e 1,2) 1 ] = [0.29753,0.7483]
New case 2: ac=70 
Similarly for new case 2,
Pe = 0.37698, Pp = 0.43922,
E(lx) = -5.9236, E(l2 ) = -5.5614 and E(L) = -0.3622
V(li) = 0.435052, V(l2 ) = 0.388615 and V(L) = 0.823667
and an approximate 95X credibility interval for L is given by
[-2.14102,1.41662]
and an approximate 95X credibility interval for P is given by 
[0.1052,0.80481].
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4.4 Binonial populations

4.4.1 Introduction

Suppose that in populations IIj and II2 the random variable X has Binomial 
probability density functions, Bi(k,©i) and Bi(k,0£), respectively, where k 
is known but ©^ and ©2 are unknown parameters. Here the parameter vector is 
©=(©!,©2 ) and the i**1 population density for i=l,2 is given by

Pi(yie) = £] eiy(i-el)k ‘y . (4.^.1)

where PM = . — —  , throughout section 4.4.lyJ yl(h-y)I

Estimates of P

An 'estimative' estimate of P, Pe , is given by substituting the maximum 
likelihood point estimates of 0*, Xj/k, for i=l,2, into equation (4.4.1) 
and then substituting the resulting Pi(y!0)» for i=l,2, into equation
(1.2 .1).
Ihe 'predictive* estimate of P, Pp, is given by substituting the predictive 
density p-i(y|xi .x?). for i=l,2, into equation (1 .2.2 ), where Pi(ylxi»X2 ) is 
given by equation (4.4.6) and (g,h) are the parameters of the posterior 
distribution of ©i given the random sample x± for i=l,2. Assuming vague 
prior knowledge about parameter ©i then Pi(ylxifX2 ) is given, for i=l,2, by 
substituting (niXi,ni(k-Xi)) for (g,h) in equation (4.4.6), i.e.

Pi<ylxi»*2> B(njXj4y,ni(k-Xi)-fk-y) 
B( n$Xi, n^(k-Xj )) (4.4.2)

Credibility interval for P
Ihe posterior mean and central moments of 1* = log Pi(y|0), for i=l,2, are 
obtained by substituting for (g,h) the parameters of the posterior 
distribution of ©^ into the results in section 4.4.3. If vague prior 
information about ©^ was assumed then (n^X,n^(k-X^)) is substituted for 
(g,h) in the results in section 4.4.3. The moments of -I2 are then found 
using equations (1.4.1) and (1.4.2). The posterior distributions of L and P 
are then approximated as explained in section 4.1.
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4.4.2 The joint posterior moment generating function oi the log livelihood
function at Multiple new values from a Binomial population

Let p(x|G) = ©x(l-©)* X , Where k is fixed and known.

Comparison with (4.1.1) gives a(0) = (l-©)*5-, b(x) = j, s(x) = x, and 

r(©> = log[©/(l-©)].

If a natural conjugate prior distribution p(©> = Be(g0 ,ho) is assumed for ©, 
then given the random sample x=(xltx2,.. ,x*,) from the Binomial, Bi(k,©), 
distribution, © has a Beta posterior distribution given by

p(©|x) = Be( gQ+nX.ho+nk-nX),

(Aitchison and Dunsmore, 1975, Chapter 2), where 3fc=Exj/n.

If vague prior information about © is assumed then p(©|x) = Be(nX,nk-nX). 

For a general result let p(©|x) = Be(g,h), i.e.

P(0\x) ©8-1.(i-©)h-l 
B(g,h)

Comparison with (4.2.5) gives v = (g+h-2)/k , 

w = g-1 and c[v,u>] = [B(urt-l ,ku-w+l)•

Hence from (4.2.6),

♦a(t) B( g+Et iYj ,h4-kEti -£t ̂y-i) * fk 1*3 
B(g,h) j=ltyjJ

where E = E throughout section 4.4.2. i=l
Also from (4.2.8),

(4.4.3)

P(Zix) B( g+Ey i ,h+km-tyi ) * pc 1 (4.4.4)



4.4,3 The posterior Moment generating function of the log likelihood
function at a single future value y

Prom equation (4.2.9),

^ _ POt B( g+ty ,h+t( X -y))
* l ( t )  " lyJ ' B(iTbj------------  •

and from (4.2.13) the predictive distribution of y is the Beta-Binomial 
probability function given by,

P(ylx) = [£] = BeBi(k,g,h) . (4.4.6)

Bence from (4.4.5),

log ♦i(t) = t.log£] 4 log[r(g+ty)] + log[r(h+t(X-y))]

- log[r( g+h+tX)] - log[B( g ,h)j

d log 4»i( t ) =
dt

d(r)log ♦x(t)
dt(r)
for r*2 .

108(y) + y **(8+ty> 4 (X-y).*[h+t(X-y)] - X.*( g+h+tX)

= yr .9(r"1^g+ty) 4 (X-y)r’»(r'1 )[h+t(X-y)] - x V r_1>( g+h+tX)

Hence,

rr - rd(r) *©£ ♦l(t) ' r'1 (r)Ldt' ;
= yr.» 
t=0

<r' V g )  + (k -y ) ‘ *
r„(r-1 )(h) - k V ^ ^ g + h )  ,

(4.4.7)

for r5fc2, where (Kr )j is the r*-*1 cumulant of 1 .

Equation (1.4.3) gives a recurrence relationship between the moments of a 
random variable about its mean and its cumulants, hence using the resulting 
equations (1.4.4),

E(l) = (Ki)i = logJ^j + y.*(g) + (k-y).y(h) - k.V(g+h)

V (l)  = (ft2 ’ ) 1  = (K2 )l = y 2 * ( 1 ) (g )  + (k -y )2 .*<1 )(h ) - k2 .*<1 >(g+h)
( H3 * ) l  = (K3 ) i = y 3 .*<2 ><g) + (k -y )3 .* ( 2 )(h ) - k3 .*<2 >(g+h) ( 4 .4 .8 )

(M4’)l = (*4>1 + 3<K2)l

where (*4)1 = y*.*(3 )(g) 4 (X-y)^.^3 ^(h) - X*.*(3 )(g+h)
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4.5 Poisson populations

4.5.1 Introduction

Suppose that in populations ITj and II2 the random variable X has Poisson 
probability density functions, Po(e1 ) and Po(e2 ), respectively, where ©1 

and ©2 are unknown parameters. Here the parameter vector is ©=(©i,©2 ) and 
the i^ 1 population density for i=l,2 is given by

P i( y ie )
-©ie 1

yi (4.5.1)

Estimates of P
An 'estimative' estimate of P, Pe , is given by substituting the maximum 
likelihood point estimates of ©*, X*, for i=l,2, into equation (4.5.1) and 
then substituting the resulting Pi(yl©)» for i=l,2, into equation (1.2.1). 
The 'predictive' estimate of P, Pp, is given by substituting the predictive 
density p^( y I x^ *252)» ôr i=1»2» into equation (1 .2.2 ), where p^( y I x^ ,5 2 ) is 
given by equation (4.5.6) and (g,h) are the parameters of the posterior 
distribution of ©^ given the random sample x± for i=l,2. Assuming vague 
prior knowledge about parameter ©^ then Pi(yl2Ei»5 2) is given, for i=l,2, by 
substituting (n^Xi,^) for (g,h) in equation (4.5.6), i.e.

P i(y l* l» * 2 > ( n jX j+ y -1 )! n j n ^ (  n i+ l ) ' ( n ^ +y > 
y !  ( n iX i- 1 ) !

(4.5.2)

Credibility interval for P

The posterior mean and central moments of lj_ = log Pi(yl©), for i=l,2, are 
obtained by substituting for (g,h) the parameters of the posterior 
distribution of ©* into the results in section 4.5.3. If vague prior 
information about ©i was assumed then (n^X,n^) is substituted for (g,h) in 
the results in section 4.5.3. The moments of L^l^-12 are then found using 
equations (1.4.1) and (1.4.2). The posterior distributions of L and P are 
then approximated as explained in section 4.1.
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4.5.2 The joint posterior moment generating function of the log likelihood
functions at multiple new values from a Poisson population

e'© 0*Let p(x|e) = — — —  .

Comparison with (4.1.1) gives a(e) = e"©, b(x) = 1/xl, s(x) = x and 
r(©) = log©.

If a natural conjugate prior distribution p(©) = Ga( go»^o) is assumed for © 
then given the random sample x=(xltx2,.. ,xn ) from the Poisson, Po(©), 
distribution, © has a Gamma posterior distribution given by,

p(©|x) = Ga(g0+nX,ho+n)

(Ait chi son and Dunsmore, 1975, Chapter 2), where X=Exj/n.

If vague prior information about © is assumed then p(©|x) = Ga(nX,n).

For a general result let p(©|x) = Ga(g,h), i.e.

hE.eS-̂ .e-*1©p(©|x) = r(g)

Comparison with (4.2.5) gives v = h, = g-1 and c[v/,ca] 

Bence from (4.2.6),

l/OH-1
r( to+1 ) *

r( e+ct jyj) h*

"L<_> r(g) [h+EtjJ8+Et3yJ n(yj! 

m mwhere E = E and ri = n throughout section 4.5.2. 
3=1 3=1

(4.5.3)

Also from (4.2.8),

p(y|x) =
Hg+Eyj) h*

T(g) Ch+m]8+Eyj n yjl
(4.5.4)
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4.5.3 The posterior moment generating function of the log likelihood
function at a single future value y.

Prom equation (4.2.9),

♦l(t)
ru+ty) h * 

r(g) (h+t]‘+ty.ylt

Also from (4.2.13) the predictive distribution for y is the 
Negative-Binomial probability function, given by,

P(ylx)
r(g+y) h£

r(g) fh-Hn]8+y yl
NeBi

(4.5.5)

(4.5.6)

Hence from (4.5.5),
lo g  * i ( t )  = lo g [ r ( g + ty ) ]  - t . lo g [ r ( y + l) ]  - lo g [ r ( g ) J

+ g .lo g h  - ( g + ty ) . lo g [h + t]  ,

d _ lo g  4»i(t) = y .* ( g + ty )  - lo g [ r ( y + l) ]  - y . lo g [ h + t ]  - y  + ( h y -g )  ,
dt (h+t)

d(r)log *i(t) = yr .*<r'Vg+ty) - (-l)r~2.y.(r-2 >l + (-l)r~1 .(hy-g).(r-l)l
dt(r) (h+t)r l  (h+t )r
for r*2 .

Hence,

<*r>l d<r > log ♦i(t)*
.dt(r)

= yr .V(r"Vg) + (-lV 1(r-2 )l.[rhy-(r-l)g] 
t=0 . r

(4.5.7)
for r*2 , where (Kr )i is the r*-*1 cumulant of 1 .

Equation (1.4.3) gives a recurrence relationship between the moments of a 
random variable about its mean and its cumulants, hence using the resulting 
equations (1.4.4),

E(l) = (Ki)! = y.*(g) - log[r(y+l)] - y.logh - £ ,
h

V(l) = (H2 '> 1 = (*2>1 = ■ l_[2hy-g] ,

(M3 ’ h  = <K3 )1  = y3 .* (2>(g )  + l_ (3h y -2 g ] , ( 4 .5 .8 )
h3

(»U .’ ) l  = (JC4) 1 + 3 (K 2 ) f  ,

where (K^)j = y^.*^3 Hg) + < -1 )3.2I. r4hv-3el .
t)4
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CHAPTER S

The situation where the Mixing parameters are unknown and the observations
are obtained by Mixture sampling

5.1 Introduction

The probability P that new observation y belongs to n^, given the value 
y, the population parameters © and the prior probabilities qi and (=l-qi> 
is given by equation (l.l.l). Previously it was assumed that the prior 
probability qi=p(y€ni) was known (and hence q^l-qj. was also known). 
Suppose however that is itself unknown and the random samples x^ and x? 
were obtained by mixture sampling from the combined population distribution 
qiPl(x|©)4q2p2(x|e) and then identified as belonging to nj and 
respectively, so that the number of observations from and n2 in the 
random samples and X2 respectively gives information about .

5.2 Estimates of P

The * estimative* estimate of P, P ,is obtained by substituting into Pi(yl©) A Apoint estimates (©,qi) for the population parameters (©,qi), for i=l,2. The 
resulting estimates of Pi(yl©), for i=l,2, are then substituted into 
equation (1 .1 .1 ), giving,

A A______ q i- P i( y ie )______
A A A  A
qi*p(yi©) + q2-P2<yie >

(5.2.1)

The maximum likelihood estimate of q^ is given by nj,/(n2+n2 ), for i=l,2.

The ’predictive* estimate of P is given by Pp = p(yerii ly,ni ,n?,xi ,x?).
Prom a fully Bayes approach assuming prior independence of 0 and q^ and 
assuming that p(yly€njL,q1 ,©) = p(yly€lli,e) C=Pi(yl©)] , for i=l,2 , and that 
p(yellilqi,0 ) = P(y€nilqjL> ♦ for i=l,2 , then it can be shown that,

p _ ___________ p(yenilnI ,n2 ).p(ylyen1 ,x1 >X2 )_____________________
p p(yen1 in1 ,n2 ).p(y lyeni.X!,^) + p(yen2 |n1 ,n2 ).p(y{yen2 ,x1 ,x2 )

= ___________ p(yen1|n1,n2 ).p1(y|x1,X2 )_________________  2 2)
p(yeH1 |n1 ,n2 ).p1(y|x1 ,x2 ) + p(yen2 |n1 ,n2 ).p2(y|x1 ,>c,)

( Aitchison and Dunsmore, 1975, Chll).
Assuming vague prior knowledge about q^ then p( yen* I n2 , n2 ) = ni/(nj+n2 ).
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5.3 Posterior distribution and credibility interval for P

The true probability, P, that new observation y belongs to population n^, 
defined in equation (1 .1 .1 ), can be written as,

where L = L + Lq,
i>ii-i2 = iog(Pi(yie)] - iog[P2(yl©)J ,
and Lq = Iq-^lqg = log qi - log q2 = logCqj/Cl-qx)].

If, given y, P is treated as a random variable, (a function of the 
random variables 0 and q^), then the posterior distribution of P given 
randon samples xi and £2 * ^ith sample sizes n^ and n2 respectively, can be 
obtained.

In order to achieve this first the posterior moments of L are obtained. 
The posterior distribution of L can then be approximated either using 
Pearson curves or a Normal approximation. The posterior distribution of P 
can then be obtained by transformation using equation (5.3.1).

The posterior distributions of L and q^ will be independent provided 
the assumptions given in section 5.2 are made (Aitchison and Dunsmore, 
1975, Ghll), and hence their cumulant generating functions are related by,

P (14e"L )“1 (5.3.1)

(5.3.2)

and hence, for r=l,2 ,..., their posterior rth cumulants are related by

(5.3.3)

The cetral moments of L can be obtained from its cumulants using equations



parameter qi

Assuming a Beta Be(go»ho) prior distribution, P(qi)» for q^, then the 
posterior distribution of q^, given random samples and X2 of sizes n^ and 
n2, obtained by mixture sampling and identified as coming from populations 
IIi 311x1 n2 respectively, is given by,
P(<ll lnl »n2 ) = Be( go+nl»1'o+n2 ) •
If vague prior information about is assumed then,
p(q1|nI ,n2 ) = Be(n1,n2 ).

5.4 The posterior Moments of Iq. the log odds for the nixing

For a general result let P(qj.lni,n2 ) = Be(g,h), then

■ f e n  = j

= B(g-ft,h-t) 
B(g,h)

r( g+t ).r(h-t)
r<g).r(h)

Let Lq = log[q1/( 1 -qj, )] then 

♦ (t) = *[.«*] = £[[-£-}*}•qi-
log *_ (t) = iog[r(g+t)] + iog(T(h-t)] - iog[r(g)] - logcr(h)]

(*r), d<r > log ♦i(t)
dt(r)

= *(r-1 ><g) + (-l)r.'P(r'1 )(h) (5.4.1)
. t=0

for raOL, where (Kr ) is the rth cumulant of Lq.

Equation (1.4.3) gives a recurrence relationship between the moments of a 
random variable about its mean and its cumulants, hence using the resulting 
equations (1.4.4),

E(Lq) = (Kx)^ = V(g) - ¥(h)

V(Lq) = (M2’)t = (K2 ) = >P<1 >(g) + *<X>(h)Lq Lq

(M3 ’)t = (*3>T = * (2 )(g> " *(2)(h> (5.4.2)Lq Lq

<M*’)T = (*4), + 3(k |)Lq lq Lq
where (K^V = *<3 >(g) + *<3 >(h)
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Por vague prior information about substitute (ni,n2 ) for (g,h) in 
the above results. Hence, using the results from Appendix 3,

E(Lq) = n^ ) - V( n2 ) = j , for ni^n2»

nl-l 1 - "2^j=l .2 j=l .2
3 J

1 = 2. i- ,
3=n2 j3

(5.4.3)
(M4. )T = (**)- + 3(K2 ).Lq Lq

where (K4.) = >p( 3 )(ni) 4 >p( 3 )(n2 ) = 31. 2*t(4> j£i z z  j£i .«
3 3

and C(4.) = tr̂ /90 = 1.08232323 is the Zeta function evaluated at 4..

An alternative approach is to find the posterior distribution of 
Q = qi/(l-qi) and 1^ = log[qi/(1-q^)] where, for a general result, q^ has a 
Be(g,h) posterior distribution.

Hence Q will then have an Inverted-Beta InBe(g,h,l) posterior 
distribution with probability density function given by,

2-1 - ( e-f-h)p (r) = 1 .rfe (14r) vs ' for r^O,
9 B(g,h)

and Lq has the following probability density function,

( 5 . 4 . . 4 . )

PT (S) 1 .egs(l+es )-<8+h) for - oq4.s 4 .4 o o .

B(g,h)
( 5 . 4 . . 5 )

The posterior inoinents of Q and Lq could then be directly obtained from their 
posterior probability density functions. For vague prior information about 
qjL substitute (ni,n2 ) for (g,h) in the above results.
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5.5 Example

In the example in section 4..3.4. the data were assumed to have been 
obtained by seperate sampling and equal prior probabilities were assumed. 
Assume instead that the data were obtained by mixture sampling and 
subsequently identified as belonging to or II2 , and that the mixing 
probability q^ is unknown. Assume a vague prior for qj_.

New case 1 : 3c=40 
n^=4 and n2=2

0.008652x(4/6)
0.008652x(4/6) + 0.008871x( 2/6) 0.661089

0.O07820x(4/6 )
PP “ 0.007820x(4/6 ) + 0.007208x(2/6) 0.684524-

E(L) = 0.115246 and V(L) = 0.24.7119 where 
L=i1 -l2=iogCp1(yie)]-iog[p2(y ie)j

E(Lq) = 1 i = 0.83333 where I ^ l o g ^ A  1-qj.)]
J —^ J

V(Lq ) = ^  - .2, - .i, ^  = 0.92876^  3 1=1 .2 1=1 .2
3 3

Hence E(L) = 0.115246 + 0.83333 = 0.948576 =
V(L) = 0.247119 + 0.92876 = 1.17588 = aL2
Hence an approximate 95J credibility interval for L is given by
ltiL-1.96<TL , tiL+1.96aL] = [-1.17681 , 3.07396] = lLltL2]
and an approximate 95Z credibility interval for P is given by

[(1+e"**1 ) 1 , (l+e"1*2 )’1] = [0.23563 , 0.95581]

New case 2 : x=70
Pe = 0.54755 and Pp = 0.610358
E(L) = E(L)+E( Lq) = -0.3622+0.83333 = 0.47113 =
V(L) = V(L)+V(Lq) = 0.823667+0.92876 = 1.75243 = aL2 
A 95Z credibility interval for L is given by [-2.12350,3.06576] and 
a 95Z credibility interval for P is given by [0.10683,0.95546],

In conclusion, by comparison with the results of section 4.3.4, it can be 
seen that the uncertainty about the mixing parameters leads to a much 
greater posterior variance for L resulting in a much wider credibility 
interval for P .
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CHAPTER 6

The situation where the new observation belongs to one of more than two 
populations

6.1 Introduction

Suppose that individuals belong to one of I distinct populations Hi, for 
i=l,2,..,I. Independent random samples, x^ = (x^j, j=l,n-£), from population Ili 
for i=l,2,..,I are to be used to gain information concerning which population a 
new observation y belongs to. Let be the prior probability that y belongs to 
rii and let Pi(ylO) be the ith population density, given the population 
parameters 0, for i=l,2,..,I. The probability Pj that y belongs to ITj given the 
value y, the population parameters 0 and the prior probabilities, for 
j=l,2,..,I, is given by,

P = . . <6.i.i)i
e qiPi(yi©)

1=1

6.2 Estimates of Pj

An ’estimative* estimate of P j, denoted by Pej, is obtained by substituting 
Apoint estimates 0 of the population parameter(s) © into (6.1.1), i.e.
Apej = qjPi(yie)) <6 .2 .1 )

1 A
iE1qiPi<y,e)

A 'predictive' estimate of Pj, denoted by Ppj, is obtained by substituting 
the predictive densities Pi(ylxi»X2 ,..,xj) for the population densities Pi(yl©), 
i=l,2,..,I in (6.1.1), i.e.

Ppj = qjPi(ylxi»X2t. . ,xj)  ̂ (6.2.2)
I
E qiPi(yl2LL>*2 » • • »2£l)i=l

The 'predictive* estimate of Pj can be shown to be equal to 
p(ygllj ly.xi ,x?,.. ,xt ) from a fully Bayes approach.



6.3 Credibility interval for Pj

6.3.1 Introduction

Pj can be written as,

SifEi 1 (6.3.1)

i=l
IE qtZi 1 4 Rj

Hence approximating the posterior distribution of Pj requires approximating 
the posterior distribution of Rj, which in turn depends on the posterior 
distribution of either the likelihood functions at y i.e. z=(z^,Z£,..,zj) or the 
log likelihood functions at y i.e. 1=( lj., I2* • • t li)♦

6.3.2 Population distributions with no parameters in common.

In this case, provided independent prior distributions are assumed for the 
different sets of population parameters, then the posterior distributions of z^ 
(or equivalently 1^) for i=l,2,..,I, will be independent. Hence the moments of 
Rj can be obtained from the moments of z-̂  obtained seperately for i=l,2,..,I. 
The moments of z^ for Normal (unequal covariance matrices), Gamma, Binomial and 
Poisson population distributions are obtained in chapters 2 and 4.

Since Rj I
E <Iizi , and hence,

E(R)

(6.3.2)I IE E
il=l i£-l
il*j i2J<ij

which can be simplified, since z ^  and are independent for ii*i2*

Similarly the higher moments of Rj can be obtained.
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6.3.3 Populations with parameters in cannon

In this case the posterior distributions of z^ (or equivalently 1^) will not be 
independent and hence the posterior moments of R cannot be found from the 
seperate posterior moments of z^ for i=l,2,..,I. To find the posterior moments 
of Rj the joint posterior moments of z=(zji ,Z2,. . ,zi) must be obtained, since

E(Rj) x - 1 -i^(qiqj ).E(ZiZj )
i*3

E(Rj2 ) = , E E (q q. q. 
1l~x T-2-1 X1 *2 3*1*3 *2*3

).E(z. z. z.‘ *1 *2 3

and similarly for higher moments of Rj.

(6.3.3)

Consider the example of multivariate Normal opulations Nd^/i^T), for 
i=l,2,..,I, with unequal means but equal covariance matrices E (where T=E_1 is 
the common precision matrix). In section 6.4. the joint posterior moment 
generating function of 1=(1^,I2 ,..,li) is obtained. In section 6.5 the joint 
posterior moments of z=(zi,Z2 ,..,zj ) are obtained , and in section 6.6 the joint 
posterior moments of 1 are obtained.

6.3.4 Conclusions
Once the posterior moments of Rj are found, the posterior distribution of 

Rj can be approximated (for example by using Pearson curves) and hence the 
posterior distribution of Pj can be obtained by transformation using equation
(6.3.1).

Furthermore, the joint posterior moments of (Rj; j=l,2,.. ,1-1) can be 
obtained similarly and their joint posterior distribution approximated. Hence 
the joint posterior distribution of (Pj;j=l,2 ,..,1 -1 ) can be obtained by 
multivariate transformation from (Rj;j=l,2,..,1-1), where each seperate 
univariate transformation from Rj to Pj is given by equation (6.3.1).
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6.4 The joint posterior moment generating function of the population
log likelihood functions at y

The joint posterior moment generating function of the log of the likelihood 
functions _1=( ll» I2 »• • •»*1)» where lj=log[Pi(y I©)] for i=l,2,..,I, at y, given 
the independent random samples xi,X2 ,..,xj, from populations nx,n2,..,ni 
respectively, is given by

+l(t) = ECe^’1 ] = e [ J  CPi(yie) **]

= J n [[P i(yie)]t l Jp(ei3ci>jc2 , . . ,3cx)<ie , (6.4..1)

where P^lx^.x^,.. ,xj ) *s the posterior distribution of 0 given x< ,x,,.. ,Xf.

Let Ili be a d-dimensional multivariate Normal population, No^CMitT)* with 
mean and precision matrix T,i.e.

Pi(yl©) = Pi(yl^i,T) = \T\*-/Z exp[-%(y-Hj )’T(y-Mi )] , (6.4.2)
( 2rr )d/ 2

for i=l,2 ,..1 .

Let © = (i±,T) have a Normal1-Wishart prior distribution, p(i±,T), prior that is 
to observing x ^ x ^ . . , ^ ,  i.e.

P(it»T ) = NoIWi<j(^0,no,v0,h0 ) ,

where i±o=( Mio»^20»• • »Mio) and Ho=(n10*n20» • • »nI0>» defined by, 

P<£,T)=p(MilT).p(M2lT). . .p(Mi IT).p(T) ,

where p(MilT)=Nod(Mi0tni0T) for i=l,2,..,I and p(T)=Wid(v0,h0 ).
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P<©l£x*£z»*-»*l) = P(lifT iXj.»X2»-• *XI»S >
= Ifc^WidCjip.np.Vp.hp] ,

%here i^( filpt^2pf • • *Mip) and Hip = nsnUsn+n-jX-j ,
niO+ni

J2pF( nlp»n2p»*• »nIp) nip = niO+ni *
I

v d = vo + E ni - I and 
* i=l

Ihp = h04S+ £ r ni2n^_(Xi-#iio)(Xi-#iio)'j , 
l -  L J

Iwhere S = E S* , and subscript p indicates parameters of the posterior i=l
distribution of © and where n^, and 5j are the san$>le size, the mean and the 
corrected sum of squares and products matrix for the random sample for
i=l,2 ,..,1 .

If vague prior information is assumed, i.e. p(£,T) a |T| )/2 then,
P(©I*x ,2£2, • • ,£l) = P(£,T|x ,S) = MO^i^d.^Eni-I.S) 
where X=(X1 ,X2»---»*l) and n^n^na, • • »ni )•

For a general result let

PCeiXj-fXz.. . ,Xj ) = Pdi.Tlx.S) = NoIWi<j(b,c,v,h) , (6.4.3)

where b=(bi,b2,.... ,bj ) and c=(ci,c2,....tcj).

Bence substituting Pi(yl©) from (6 .4.2) for i=l,2,..,l, and 

PC©IXj.»X2» • • »xj) from (6.4.3) into (6.4.1) gives,

♦l(t) = | J.....J [ .n i CPi(ylMi»T)]t l  j .p(ji,T 1X2,52, • • »2£rtS) d£ dT ,
TAO

= f f--- j [ n |T!tl/2(2rr) dtl/2exp[-%t(y-Mi )’T(y-^i )]]1=1 a> J

‘ fi”l,CiTI 1/2 (2Tr) d/Z «*PC‘WHi-bi)’ciT(Mi-bi )]j 

. l%hlv/* |T|(v ’ d - 1 )/2 exp[-%trhT] d^x dji2___d^i dT,
rd(v/2 )

dwhere TAO means T is positive definate and rd(v/2 ) = n T[( v-d+j )/z].
j=l

Then, for n^M) for i=l,2,..,I, the posterior distribution of © is
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Completing the squares in each of the m  and integrating out the result to 
the constants of Normal No[ (Cibi+tiy)/( Ci+ti),(Ci+ti )T] distributions for 
i=l,2,.... ,1 gives,

«l(t) = IW»lv/z. 1___  f
r<j[*v] (2iDdCti ‘

ITjCv-d-iVr eap[ -%trHT] dT,

Iwhere H = h + E c^ts (bi -y )(bs -y )*. 
i=l Ci+ti

By noting that the integrand is in the form of the Wishart probability density 
function, T can be integrated out to the normalising constant of the Wishart 
probability density function giving,

♦l(t) r * f C j l O A  1 . rnrttv+cts )1
l i - l l c i + t i J  J rd[%vj

lh|V*
|B,(v+rti) / 2

(6.4../;)

New by considering the determinant of a partitioned matrix A of sire (d+I) by 
(dfl) with elements AltA2 ,A3 and A^ given by
h. [a1(bA -y),a2(b2-y),.. .a^bj-y)], [-(b2 -y),-(t^-y),--- .-(t^-y)]* and the I
dimensional identity matrix respectively, then

iA| = JA2 A3 J = IA4.I . IA2 -A3A4. *A2 1 - IA2 I . |A4.-A2A2 *Aa | »
Ia2 aJ

and hence |H| = |h|.|u| where, (6.4.5)

u = 1+OiDii alD12 ---OiDi!
a2t>zi l+a2D22 --- a2D2I

aiDn aIDI2 ---1+aiDn

where a^- c-its ,for i-l,2 ,..,I, and Dij-(bi~y)’h_1(bj-y)
Ci+ti

for i=l,2,..,I and j-l,2 ,..,I.

Hence from (6.4.4) and (6.4.5),

♦l(t) f * r_ c i_ l< V 2 ) . ___________ r„r%(v+rts )1_____________
U - l U i + t J  J rd[V* J.w" t i / 2 (u l( " « t i » / 2 |l i l« i /2

(6.4.6)
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at y
6.5 The joint posterior moments of the population likelihood functions

Let Zi=Pi(y|0) be the i^ 1 population likelihood function at y, for i=l,2,..,l.

Since 4»i(t) = e [ n z ^ 1] ,li=l J
the joint posterior moments of z=(zjl,Z2 , •... ,zj) can be found from <*>i(t) by 
appropriate substitution for t in the results of section 6 .4.

For example E(zjZ2Z3> is obtained by substituting t-(1 ,1 ,1 ,0,....,0) in 
section 6.4 giving

E(ZJZ2Z3 ) =. r a l c, 1<V* 1 • rri[<s(v43)i__ IhlV*
Li?ilc:i+l J J rd [isv] 3d/2. TT IHI<’ +3

where |HI - |h|.|ui and

u - 1+alDll alD12 alD13 0 ___ 0
a2°21 1+<*2d22 a2°23 0 .... 0
a3D31 <*3̂ 32 1+03033 0 ___ 0

0 0 0 1 .... 0

0 0 0 0 ___ 1

where = citi = ci for i=l,2 ,3.
ei+ti Cj+1
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6.6 Hie joint posterior moments of the population log likelihood
functions at y

In order to find the joint posterior moments of 1=:( li»I2 »• • » )  about their 
mean, the following are required,

1. First find a(£> = D<^u = d(rl> d(r^  .... d(r*> u
dt^ri) dt^rz) dt^Tl)

where *p(r1 ,r2,..,rj).

2. Then find —  ̂= D^~ ̂log u

3. Then find = |o*-*log *1(t>]t=0

4. Then find jj.x' from Kx using the results of Appendix 2.

71



For example for 1=2 :

1. u = [1 + axDA + a2D2 + Oja2( DXD2 -DA2)] 

Dt22>U = CD2 + °>2(D1D2-Dl2)] • Dt22>“2

Dtitt22>“ = ( DlD2 ~°12 1' Dtil)o<1- Dt22>0<2

where DA=DiA and D2=D22 

for r2*l

where D' x ai *1
Let a(^  = [a(£)]o L Jt^
J * l * r 2 ) _

(c1 + t l )ri+ 1  

, then

_ (-l)riril
for (ri,r2 )*(l,l)

f h :ri-1

1 if (rlt

( - D ^ I P l if r2=0
ri~l Ci 1

(-l)r2r2ID2 if ri=0
r2~lc2 2

( -1 )ri+r2r!!r2 1(D!D2-DL
ri-1 r2-l ci1 c2 ^

(6 .6 .1 )

2 . 0<r2 )u = r2-l fr2-11 D(j2 )u>D(r2-32)log u
t2 * l J2 J t2 fc232^
D(^1^2)u =tl,t2 r2 “ j 2 )i l  &  P T 1! f"1] ^ log uj2=0 jx=0 1 32 J UlJ tltt2 ti,t2

i .e. a(rl»r2 ) = £l fr2-l] frll a(j1»j2 ) b(rl~ Jl *r2-j2 )
j2=0 j 1=0 1 32 J b iJ

1 .e. b

where a

(rl»r2 ) _ a(ri,r2 ) _ r2-l £X pr2-lj JrxJ a ,(ji,j2 ) b(rx-jlfr2-j2 )
J2=° jl=° ( 6 . 6 . 2 )

.(E) _ 0
(r)

if r=0 

if r=0
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Setting t=̂ D in equation (6.6.2) and using equation (6.6.1) gives the following 
results,

=  - 2 £ l  -  D l 2  .

(*,o)

( 1, 1)

Cl

- 6 D J * -  2 4 D i 3 -  3 6 D ! 2  -  2 4 JD j

b(̂ 3,°) _ 2d̂ 3 + 6Dl2 +
Ci C i

2 *

Cl cx

= "D12 ,

Cl

(2,1) _  2 V, - 2D12f1̂ ]
.0 ,1) = ~6D12.2 r 2Dj. + 2D^ + 1_ 

Cl ex'
( 2  2 ) 2 2  2 bQ * = -2Dx2.[Dx2 + 2DxD2] - 4D12.

3.

Di +
C2 C2J

2" 4D12 ClC2

d__log <t> (tx,t2 ) = d + d__log rd[%(v+t1+t2 )] - Jsd.logtr
dtl 11»12 2(Cx+tx) dtx

-^logCh.u] - %(v+tx+t2 ) .d log[h.u]
dtj

Setting t=0 in (6.6.3) gives,
( 1 ,0 )

(6.6.3)

K = - %dlogtr - J*logh - d/( 2cx ) + % E ^[^(v-j+l)] - %v.b'x,u j —1 u
Differentiating (6.6.3) ri times with respect to tj and setting t=0 gives,

Kri 0 = (-l)ri(ri-l)ld + - %v.b£ri,0)- %r1 .b^ri'1’
2Cxri ~ ~

0)

for ri^2.
Differentiating (6.6.3) r^ times with respect to t^, for i=l,2, and setting
t=0

gives

K = (<s)ri+rz. E ?(ri+r2_1 ^(v-j+l)] - %v.b^ri,rz) - %r1 .b^ri'X,r2)rl, r 2 j=l 0 0

-‘sr2.b^ri’r2'1) for ( r ^ r z H l , ! )

4. Appendix 2 gives a recurrence relationship relating the moments of a 
p-dimensional random variable about its mean to its cumulants. Hence the moments 
of (li,l2 ) about its mean can now be found, from the cumulants of (li»l2 ) 
obtained above, using equation (A2.2 ) from Appendix 2.
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CHAPTER 7

The general situation : multiple new observations from each of I populations, 
where the mixing parameters may be unknown

7.1 Introduction

In this chapter the general situation is considered in Which observations 
of a d-dimensional random variable X belong to one of I populations with 
probability density functions, Pi(x|©), of known but not necessarily the same 
functional form, for i=l,2,..,I, dependent on some unknown parameter vector © 
which comprises the parameters from all the I populations. This allows for the 
possibility of common parameters between populations (as for example in the case 
of Normal populations with different means but equal precision matrix T, so that 
© = ( ) .  Suppose independent random samples Xi=(x^j;j=l,2,..,n^) 
are obtained from the mixture probability density function EqiPi(x|©) and 
identified as belonging to for i=l,2,..,I. The mixing parameters
^(<11*02 »•• »^I) satisfy Eq^=l and may be unknown.

Interest usually lies in the relative likelihoods of a single future 
observation y of fixed known value belonging to n^, i.e. on qiPi(ylO), for 
i=l,2,..I. Here interest lies in the joint posterior distribution of the log 
likelihoods which is investigated using their posterior moment generating
function.

For a general result, however, consider the joint posterior moment
generating function of the log likelihoods of multiple new values
(yil»yi2»---»yimi) from each of the I populations, 11* for i=l,2 ,...,I.
The special case where mi=l and yii=y for i=l,2 ,..,I, gives the usual situation 
of interest of a single future observation y.

The log likelihood of new value y^j is given by, 
lij = log qiPi(yijl©) = log q± + l±j 
where lij = log Pi(yj.jl©) for j=l,2,..,mi and i=l,2 ,..,I.

Let 1 i=( 1 , 1 j.2 * *«»  ̂imt)' for i=l,2,..,I and let 1=( li', I2 ' »• *. ’ ) * >be a
vector of length Em^, with 1± and 1 and t^ and t similarly defined.

Let ♦j(t) be the posterior moment generating function of 1.
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In section 7.2, $j(t) is expressed as the product of two integrals, <t>(t) 
and <t>i(t), where $(t) involves the mixing parameters q only and <*»i(t), the 
posterior moment generating function of 1 , involves the combined population 
parameters 0 only, provided that © and q are assumed to have independent prior 
distributions.

In section 7.3, the integral <*<t) is obtained assuming a Dirichlet prior 
distribution for the mixing parameters q. The joint posterior moment generating 
function of the logs of the mixing parameters and also the joint posterior 
moments of the mixing parameters q and their logs lq are obtained. In section
7.4 the joint posterior cumulants of 1 are obtained in general from 4>(t) and 
4>l(t), and in particular for a single future observation y from 4» (t) and
♦l(t).

Furthermore if the I populations have no parameters in common and have
independent prior distributions for their parameters, then <t>i(t) can be
expressed as a product of the posterior moment generating functions ♦ (t) of*ili for i=l,2,..,I. Omitting the subscript i from 1^, the posterior moment 
generating function of 1^ is found for a multivariate Normal linear model 
population in section 7.5. Hence <t>i(t) can be found for multivariate Normal 
linear model populations with unequal precision matrices.

However if the I populations have parameters in common then 4»i(t) cannot be 
expressed as a product of the posterior moment generating functions of 1  ̂ for 
i=2,2,..,I, but may be obtained directly. In section 7.6, <t>i(t) is found for 
multivariate Normal linear model populations with equal precision matrices.
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7.2 The posterior moment generating function ol the log likelihood 
functions at multiple new observations from each of I populations where the 
mixing parameters are unknown

The log likelihood of new value yij is given by,
I±j = log qiPi(yijie) = log q± + lij
Where ljj = log Pi(yijlO) for j=l,2,..,n»i and i=l»2,..,I.
Let li=( I n , li 2 1 * • ♦ limi)' for i=l,2,..#I and let 1=( lx ',12 ’,.., li ’ ) ’ ,be a 
vector of length Emi, with 1± and 1 and t* and t similarly defined.
Let the posterior moment generating function of 1 ,i.e.

♦2(t) E ]

E
I m̂  tij
n n [qiPi(yij 10)]

. i=l j=l
• • I mi tij

n n [qiPi(yij I©)]
J , . i=l j=l

P<e,q|x) d© dq , (7.2.1)

where p(©,q|x) is the posterior distribution of © and q given the data x.

The likelihood of the data x=(xi ,x2,.. ,xj) given © and q is given by,

I ni
n n qiPi(xij i©)
i=l j=l

' I n±- 
n q± 

.i=l
I n±
n n Pi( xij i©) .
i=l j=i

Hence,

p(©,q|x) a
I ni
n n qiPi(Xiji©) 

. i=l j=l
•p(©»q) »

where p(©,q) is the joint prior distribution of © and q.

(7.2.2)

(7.2.3)

Assuming that the prior distributions of © and q are independent and given by 
p(©) and p(q), then their posterior distributions will also be independent,

P(©lx) a ’ I nin n Pi(xijie)
. i=i j=i

p( ©) , and (7.2.4.)

p(qlx) a
I n±
n qi p(q) (7.2.5)
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Hence 4» (t ) cam be written, as the product of two integrals, 
1

•2<t) = 4*t) . *!(t) , (7.2.6)

where <t>( t ) =
Et

n qi
i=l

ij mn
p(q|x) dq , where E = E 

3=1
(7.2.7)

and $i(t) =
I mi tij
n n [Pi(yijI©)]
i=l 3=1

p(©|x) d© (7.2.8)

If the populations Ili, i=l,2,..,I, have no parameters in common, then let 
©i be the parameters of for i=l,2,..,I, so that ©=(©i,©2 » •«t©i )• Assuming 
that the distinct parameter sets ©i have independent prior distributions p(©i) 
for i=l, 2 ,.., I, then

p(©) = n p(©i) .
i=l

In this case the posterior distributions of ©i are independent :

p(©ilxi) a
n>
n Pi( Xi j I ©i)

13=1
• P(©i) (7.2.9)

and hence <*>i(t) in equation (7.1.8) can be split into I seperate integrals,i.e.

*l(t) = n
i=l

ms
n CPi(yijl©i)]

L 3=1
p(©ilxi) d©i (7.2.10)

n (ti)
i=l 11

(7.2.11)
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Hence the posterior distributions of 1* for i=l,2,..,I are independent and their 
posterior moment generating functions can be obtained seperately. If the 
populations have probability density functions of the same functional form but 
with different parameter sets (i.e. no parameters in comnon) then the posterior 
moment generating functions of 1  ̂ for i=l,2,..,I are all of the same form, as, 
for example, in section 7.5 for the case of multivariate Normal linear model 
populations with unequal precision matrices and where for simplicity of notation 
the suffix i is dropped from 1 .̂
However when the populations have parameters in common this simplification is 
not possible, as,for example, in section 7.6 for the case of multivariate Normal 
linear model populations with equal precision matrices.
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7.3 The posterior moments of the mixing parameters and their logs

Assuming a Dirichlet Di(go) prior distribution for the mixing parameters q, 

I •» I
r ] iS^i801"1

p(q) = (7.3.1)
n r(goi)
i=l

where qj = l^E^qi and = (goi»802»• • »€oi) * then the posterior distribution 

of q given x is Di(£o+B) where n = (ni»n2,..,nj).
For a general result let p(q|x) = Di(&).

Hence <t»( t ) =

• [ 1 Etij 1 ' i I Si-1
n qi . r E 8i n qi

L i=l J Li=l J i=l

n r(gi)
i=l

I
E 8i 

Li=l
n r(gi + ctij)
i=l

E (gi + Ettj) 
i=l

n r(gjL)
i=l

(7.3.2)

ms
where Etij = E t^j‘l: 1 

j=i
The posterior moment generating function of lq = (log eg ;i=l,2,. . .1) 

4>1 (t) = E [ e* j where here t = (ti,t2 ».. ttj)

= E
I ti
n qi
i=l

I
E *ii=l

. n r(gi + t±)
i=l

(7.3.3)

E (gi + t± ) 
i=l

. n r(gi)
i=l

by setting mi=l and tii=ti for i=l,2 , . . , 1  in equation (7.3.2).
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The posterior moments of q

Hence suitable substitution for t in (7.3.3) gives the posterior moments of q. 
In particular for r^l,

E r (£ g j ) .r (g j+ r )
r(Egi+r).r(gi)

i
where E = E throughout the rest of section 7.3. 

i=l

Hence E[qi] $

E Kr 3 = -E  K1'1] •for r“-
The posterior moments of log q

The posterior cumulant generating function of log q , K (t) is given by2q
K (t) = log * (t)lq lq

= log r(Egi) - log TCEtgi+ti]) - E[iogr(gi) - iogr(gi+ti)]. (7.3.4) 

Hence the r*-*1 cumulant of 1 = log q* is given by,qi
( Kj;).

qi
,(r)
dt (r) 1K, (t)qi

„ ( r - l ) ,  v r - 1 ) ,  „= » ( g i )  - * (C gi) •
t=o

In particular, E( 1 ) = E( log qi) = (Kj.) = V( g±)  - V(Zg±)
qi qi

Furthermore

(t) = -
<r)

K, (t) = -9(Eri-1)CE(gi+ti)3aq d t ( L )  2<1
for r?s© with at least two ri’s non-zero, where r=( ri,r2 , . . ,rj).

Hence (K ) = -»(Eri‘1 >[Egi]
L  ̂ q

and in particular cov( log qi:L»l0g q±2) = -^^[Egi] , for q±i^i 2
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7.4 Combining the moments of the log likelihood functions with the 
moments of the logs of the mixing parameters

Prom equation (7.2.6) the posterior cumulant generating function of 1 is 
given by,

Kj(t) = log <t>(t) + Ki(t) , where «&(t) is given by (7.3.2). (7.4.1)

Hence the rth posterior cumulant of I, where r=(rij; j=l,2,.. ,mi;i=l,2,.. ,1) is 
given by,

(K )7 =r 1
,<£>

Ldt<r)
log <*(t)

. t=0
+ (K ),r 1

(7.4.2)

and hence the posterior cumulants and moments of 1 can easily be found.

In particular for a single future value y

Set m^=l and y ^  for i=l,2,..,I, and hence from (7.4.1) and (7.4.2),

KI(t) = Klq(t> + Kl(t)

and (K ), = (K ). + (K )_r 1 r  lq r 1
The posterior cumulant generating function and cumulants of lq=logq are given in 
section 7.3.
The posterior cumulant generating function and curaulants of 1 for multivariate 
Normal linear model populations with equal precision matrices are given in 
section 7.6.3 for the case of a single future observation y.

For populations with no parameters in common then from section 7.2,
I

♦  (t) =  n  4> (ti) and hence 
1 i=l 11

I
K (t) = E K (ti) and

1 i=l Xi

(K ). =r 1

I
£

i=l( K r, >1.
and so the populations can be dealt with seperately and later the cumulants 
combined. Omitting the subscript i from lj. and r^, the posterior cumulant 
generating function and cumulants of each lĵ can be found for multivariate 
Normal linear model populations with unequal precision matrices from sections 
7.5.8 and 7.5.9, and for exponential family populations from section 4.1.
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7.5 Evaluating ♦i(t) for a multivariate Normal linear model population.

7.5.1 Introduction

Let x =(xjl,X2»• • ,x^) be a random sanqple from a d-dimensional multivariate Normal 
linear model population given by

Xj* = zj'B + , where cjM/Mb^(OvT) independently for j=l,2,..,n.

Hence X = ZB + e , where e ** Non>c|(0»In»T )» a Matrix Normal distribution 
defined by (7.5.5), and
X = (xi,X2,.. tXn)' is a nxd matrix of observations,
Z = (Zi,r2»••»*n)* is a nxk known design matrix,
« 55 («1 »«2* • • *6n )f is a nxd matrix of errors, and 
B is a kxd matrix of unknown regression parameters.

Interest centres on the joint posterior moment generating function 4»j(t) of 
the log likelihood functions of possible future observations (yj;j=l,2 ,..,m) 
defined by the same model, i.e.

yj* = wj'B + ej* , where ej^No^OjT) independently for j=l,2,..,m.

Hence Y = WB + e , where e ~  Nom ̂ cj( 0, Im , T ) , and
Y = (yi,Y2» • • ,ym ) ’ is a mx<  ̂ matrix of future observations,
W = (wi,w2» • • )' is a n***- known future design matrix, and
e = (el*e2» * • »®m) * is a mxd matrix of errors.

Hence 4>i(t) = ECe*-*1] ,
where here t=(tltt2,..t ^ ) ’ , 1=(lx,12,..»lm )’ and lj = log p(yj|B,T,Wj) 
for j=l,2,..m.

i.e. *i(t) =
m t j' 
n [p(yj IB,T,wj)]HII■»n

p(B,TIX,Z ) dB dT (7.5.1)

where p(B,T|X,Z) = p(B|T,X,Z).p(T|X,Z) is the joint posterior distribution of B 
and T given the observed data X and the known design matrix Z.

Hence 4>i(t) = J  G(T) p(T|X,Z) dT

m tj
where G(T) = n (P(yj IB,T,Wj )]

. j=l

(7.5.2)

p(B|T,X,Z) dB (7.5.3)
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7.5.2.The joint posterior distribution of B and T given observed data X and
known design matrix Z.

Assuming vague prior knowledge for (B.T).
p(B,T) a |TJ"%(d+1> and so

Ap<B,T|X,Z) = NoWikjd(B,Z’Z,n-k,S) ,
a Matrix Normal-Wishart distribution, (an obvious generalisation of the
multivariate Normal-Wishart distribution), defined below by equation (7.5.5), A A Awhere S = (X-ZB)*(X-ZB) and B = (Z'Z) Z'X provided Z ’Z is non-singular.

Assuming a conjugate prior distribution for (B,T), 

p(B,T) = NoWik#d(bo,Co,v0,ho) ,
where v0Xd-l and Cq and ho are symmetric positive definite, then 
p(B,T|X,Z) = NoWiktd(b1 ,C0+Z’Z,v0+n,h1 ) (7.5.4)
where b2 = (C0+Z,Z)‘1(C0b0+Z,X)
and hi = h0 + bo'CQbo + X'X - (C0b0+Z*X),(C0+Z,Z)‘1(C0b0+Z,X).
[Note that letting v=-k, Co»0, hQ->0 in the conjugate prior gives the correct 
posterior distribution for (B,T) for vague prior knowledge.]

For a general result let the posterior distribution for (B,T) be given by. 
p( B ,T|X,Z ) = NoWiktd(b,C,v,h) , 
i.e. p(B|T,X,Z) = Noktd(b,C,T)

( 2ir)%kd
exp -%tr[(B-b)*C(B-b)T]

and p(T|X,Z ) = Wid(v,h)
= (%h 1 |T 1 %( )

rd( *sv) e3q>[_1str(hT)]
(7.5.5)
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7,5,3 Evaluating G(T)

Prom equation (7.5.3),

G(T)
• m | T 1 ̂n ----r-t expC-J^yj- )’T(yj- )]
J L j=i L (2tt)* J

t ! %k i r i r l— -- exp -istr[(B-b)’C(B-b)T) dB
(2^)^ 1 J

ICI* ITI**” * ^ exp -%tr[H(B).T] dB ,

where H(B) = [Etj(yr  B^Xy-ps'^)f ] + (B-b)’C(B-b)

= (Y-WB)*A(Y-WB) + ( B-b ) *C( B-b ) ,
A A= (B-B ) * ( W* AW+C )( B-B ) + V ,

by completing the square in B, where
A = diag(tx,t2,. .tt,n) ,
A _iB = (WAWtC) (W'AY+C'b) ,

AV = Y* AY + b'Cb - (b*C+Y* AW)B ,

(7.5.6)

(7.5.7)

(7.5.8)

m
and E = E throughout sections 7.5.3 and 7.5.4..

3=1
Now integrating out B in equation (7.5.6) to the normalising constant of a 
Matrix Normal distribution gives normalising constant

(2ir)%kd |T|"^k 1WAW-C| _15d from NOKtdCB»W*AW+C,T] in the notation of (7.5.5).

%d -%d %Etj
Hence G(T) = |C| |W'AW+C| |TI exp[-%tr(VT)] , (7.5.9)

Awhere V is defined by (7.5.8) and B by (7.5.7).



7.5.4.Evaluating »i(t)

Hence substituting (7.5.9) into (7.5.2) and integraing out T to the normalising 
constant of a Wishart, Wi<j(v+Etj ,h+V), distribution gives

IC |W  I h i %v r d [% (v+ctj ) ]  

IWAW+CI1̂  | h + V | ^ V+Etj *  Td(%v)
( 7 . 5 . 1 0 )

where V, given by (7.5.8), can be rewritten by completing the square in Y, i.e.

V = (Y-Y*)’A(Y-Y*) + E , where (7.5.11)

A = [A - AW( W'A&H-C )_1W  A] ,

Y* = A" 1AW(WAVH-C)“1C'b = Wb , and 

E = -Y**AY* - b*C( W  AJH-C )_3-C*b + b'Cb = 0 ,

(7.5.12)

the results being obtained after some algebra.

Hence V = ( Y-Wb) • A( Y-Wb) (7.5.13)



7.5.5 The joint predictive distribution for Y = (yi ,y?,. • ,ym)'

Setting tj=l for j=l,2,..,m gives A=Im and

kd %vi c r  lh|* rd [%( v+m)]
p(Y|X,Z,W)

IWWfCI^ 1 lh+(Y-Wb),A1(Y-Wb)|ls(V+m) rd(%v) tt̂
(7.5.14)

where Ax = [I - W(W'WfC)"1W ’] (7.5.15)
i.e. given X,Z and W, then Y has a Matrix t distribution 

Y|X,Z,W ^  tjn>dCWb,A1 '1 ,h,v-d+l] , and (7.5.16)
Y* |X,Z,W —  t^jnKWbr.h.Ai'^v-d+l] 

in the notation of Box and Tiao (1973).

The predictive distribution for Y was first obtained by Geisser (1965) for 
vague prior knowledge about B and T, and has been considered more recently by 
Broemeling (1985,Ch8) for a general conjugate prior, however, apart from some 
typing errors in the result and omitting the normalising constant, Broemeling 
apparantly fails to recognise the dramatic simplification of Y* to Wb and E to 0 
and his resultant predictive distribution for Y is unneccessarily complicated.
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7.5.6 Simplification of 4>i(t)

Simplification of cam be obtained by using the partitioned matrix result

(Mi M3 = |M*| |M1 -M3M4 '1M2I = | Hx | | M4, -M2M^ “ ̂M3 1 (7.5.17)
|m2

Letting (MltM2,M3 ,M4.) = (A_1,W ,-W,C) gives IWAW+Cj = | CI f Im+AWC" XW' I.

Letting (M1 ,M2,M3 ,M4 ) = (AfW'AtAW,W'A»fC) gives
fA| = lAMCj IW'AW+d ' 1 = |A| Ua+AWC"1** | _1 , where A is given by (7.5.12).

Letting (M1 ,M2 ,M3 ,M4.) = (h,( Y-Wb), -( Y-Wb)' ,A- 1 ) gives 
|h + (Y-Wb)'A(Y-Wb)| = |h| |Im + A( Y-Wb )h_1( Y-Wb ) ’ |

Hence

♦l(t)
TdC^v+Etj)]

|Iin+A(Y-Wb)h-1( Y-Wb) ’ |*S<v+Etj> |h|JsEtJ rd(%v)

(7.5.18)

Let D = ( Y-Wb )h_1( Y-Wb) ’ , then the (i,j)t *1 element of D is given by

Dij = (Yi-b’Wi ),h “1 (yj-b,Wj) , for i=l,2,..,m and j=l,2,..,m. (7.5.19)
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7.5.7 Evaluation of the elements of matrix A

The diagonal element of matrix A. for i=1.2....m is given by

Ajj = tj - tjWj'(C + EtfcWfcWK'ritjWj

tj.ic -tjWjWj'+ EtxWkWK’l
I C + «***»*'I ’
mwhere E = E throughout section 7.5.7,

(7.5.20)

by using (7.5.17) with [HltM2 ,M3 = [tj ,tjWj ,tjWj * ,C+EtxwJcwk * ]

Also using (7.5.17) again with
[Ml,M2,M3,M4] = [C,(t1w1 ,t2w2 ,.. ,tmwm )' ,-(wlfw2 ,.. ,wm ),Im j gives 
lC+Etxwxwx’1 = IC| |Im+Ae| , (7.5.21)
where the ( i o )***1 element of matrix e=WC-1W  is given by eij^Wi’C^-Wj , 
and the (i,j)th element of matrix Ae is given by (Ae)ij=tjeij#
The numerator in equation (7.5.20) can be similarly obtained.

The (i, i)t *1 off diagonal element of matrix A is given by

Aij _ " tiwi'(c + ^ k wkwk') ^ j wj »
for i=l,2 ,..,m and j=l,2 ,..m with i*j.

Using equation (7.5.17) with [Mi ,M2 ,M3,M4] = [1 ,tjwj ,tjWi’ ,C+Etxwxwx' ] gives 

|C -titjWjWi'4- E tkwxvrx'l
1+A C + E t^w^wx* f (7.5.22)

The denominator in (7.5.22) is the same as in (7.5.20) and hence can be obtained 
using (7.5.21).

To obtain the numerator in equation (7.5.22) use (7.5.17) with

[Mi ,M2,M3,M4] = (C,(t1w 1 ,t2w2,. . ttroWj^tiWi)’ ,-(w1 ,w2,. . tW^-tjWj ),Iafi] giving

IC-titjWjWi'+Etxwxwx’ l=Um4-l H *1*1,t2w2,.. .taW^.t^Wi )*C’1(w1 ,w21. . ,wm , -tjWj )|
(7.5.23)

Bence both numerator and denominator in 1+A-jj can easily be obtained. Matrix A 
is then easily obtained from A±j and Ajj.
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In conclusion note that <fri(t) depends on the data x only through h.v.e and D 
where e^j = Wi*C_1Wj and Dij = (yi-b'WiJ'h'^yj-b'Wj) for i=l,2,..,m and 
j=l,2,..,m. Ibis is easily shown by substituting the results for the elements of 
A from section 7.5.7 into equation (7.5.18), together with (7.5.19) and also 
noting that \ Im+AMC^W | = |Im+Ae| and is easily obtained as for (7.5.21).
Hence to conclude the joint posterior distribution of the log likelihood 
functions 1=( 11# 12,.., lm ) where lj = log p(yj|0 ) depends on the observed data x 
only through the quantities h,v,e and D.

A[Note, in particular, that for vague prior knowledge (b,C,v,h) = (B,Z'Z,n-k,S) 
A A Awhere S = (X-ZB)*(X-ZB) and B = (Z'Z)"1Z ,X ]
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Set tj=0 for j=2,3,..,m to give An=ti and Aij=0 for (i, j )*( 1,1), and omitting 
the suffix 1 from li,ti,yi and to give from (7.5.18),

7.5.8 The posterior moment generating function of the log likelihood function
l=log p(y{B.T.w) at a single future value y.

*l<t)
rdC«v+t)J

[l+tw'C'-^w]1̂  [l+An(y-b,w),h"1(y-b*w)]lŝ V+t^|h|Jst TrJ*<it rd(%v)
(7.5.24)

where A n  = t - tw'(tww'+C)-1wt = -----------
[l+tWC_1w]

(7.5.25)

using (7.5.17).

Predictive distribution for a single future observation y

Setting t=l in equation (7.5.24.) gives the predictive distribution for y

p(y|X,Z,w) =
rdC%(v+DJ

[l+w’C'^w]^ (l+An(y-b'w)*h'1(y-b’w )]iŝ V+1 ̂ Ihl*5 tt̂  rd(%v)
(7.5.26)

where here A n  = [l+w'C-1w ] -1 , and

rd[is(v-»-i)j r[%(v+i)]
rd(%v) r[%(v-d+i)]

i.e. the predictive distribution of y is the multivariate Student t 
distribution,
p(y|X,Z,w) = Std [v,b'w,v_1( 14w’C_1w)h] ,

in the notation of Aitchison and Dunsmore (1975), and 

p(y|X,Z,w) = t^jCb’w ^  v-d+1 )_1( l+w’C ^ w ^ v - d + l ]  , 
in the notation of Box and Tiao (1973).
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7,5.9 The posterior moments of the log likelihood function at a single future
value y

Equation (7.5.24.) for ♦j(t) is in the same form as equation (2.2.2) of chapter 2 
for the case of a multivariate Normal population except that c in chapter 2 is 
here replaced by (w'C_1w )_1 and D=(y-b),h"1(y-b) in chapter 2 is here replaced 
by (y-b*w),h'1(y-b,w), and hence the resulting equations (2.3.4.) for the moments 
of the log likelihood function are the same with the appropriate substitutions 
for c and D. Note also that the values for the parameters (b,C,v,h) are 
different here, as discussed in section 7.5.2.
Here for vague prior knowledge,
p(B,T) a and hence set (b,C,v,h) = (B,Z'Z,n-k,S), where

A A AS=(X-ZB ) *(X-ZB ) and ^ ( Z ’Z ^ Z ' X  .
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7.6 Evaluating for Multivariate Normal linear model populations
with equal error precision matrices.

7.6.1 Introduction

Observations belong to one of I multivariate Normal linear model populations, 
for i=l, 2,.., I , having equal error precision matrix T.

Let (xii,xi2» • • ̂ i n ^  a random sample from population n^, a d-dimensional 
multivariate Normal linear model population, i.e for i=l,2,..I,

Xij' = Zij'Bi + «ij^ » where 6ij-jNd<j(0,T) independently for j=l,2,..,n^ ,

Hence X± = ZiB^ + , where ei'vNo^dC 0,Ini»T) a Matrix NormalV
distribution defined by (7.5.5), and

xi = (xii,Xi2,..»Xini)’ is a n$xd matrix of observations, 

zi = (zil»zi2*••»zin^ )* *s a nix*i known design matrix,

€i = (€il»6i2» • • »cinj^)' is a nix^ matrix of errors, and 
Bi is a k^xd matrix of unknown regression parameters.

r i
Hence X = ZB + € , where e ̂  Non ^(0 tIntT) , n = E n^ , k = E k^ and

i=l i=l

X = (X2 ' ,X2 ’ . ,Xj' )' is a nxd matrix of observations,
Z = mat-diag( Zi * ,Z2 ',.. ,Zj ’ ) ’ is a nxk matrix diagonal design matrix, 

e = ( , ̂ 2 ’»• •»eIf )' is a nxc* matrix of errors, and
B = (B^',B2 ’,. . »Bj’ )* is a kxd matrix of unknown regression parameters.
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Interest centres on the joint posterior moment generating function <t>i(t) of 
the log likelihood functions of possible future observations 
(yij ; j=l,2 ,.. ,mi}i=l,2 ,.. ,1 ) defined by the same model, i.e. for i=l,2,..,l,

Yi j * = + eij* , where eij^Nod(0,T) independently for j=I,2,..,m.

Hence Y± = W-jBi + e± , where ei~N d m>d(0,Imi,T) , and
L

Yi “ (yil.yi2 .*-.yimi )’ is a “i*** matrix of future observations, 

wi = (wil»wi2* • • *wimi)' is a mixM  known future design matrix, and 
ei = (eii »e-j?,.. ,e-,Tn̂ )' is a m^xd matrix of errors.

I
Hence Y = WB + e . where e ̂  Nbm M  0,Im ,T) , m= E m-i and

i=l
Y = (Y^*, Y2 '»• •»Yj' )' is a mxd matrix of future observations,

W = mat-diag( ’ ,W2 *,.. ,W*' )' is a mxk matrix diagonal future design matrix,and

e = (e^ *,e2 ',..,ej' ) * is a mxd matrix of errors.

The model is now in the form of section 7.5 and hence the results of section 7.5 
can be used with appropriate substitutions.
In particular from (7.5.18),

• I m^ tij
*l<t) = n n Cp(yijlB,T,wij)]

. L
p(B,T|X,Z) dB dT (7.6.1)

rdCJ5<v+EEtij)

I Im+AWC

where EEtij =

"1VT 1 ̂  | Im4A( Y-Wb )h_1( Y-Wb) ’ j ̂  v+EEtij )
(7.6.2)

I HH•He

E E tij , m = E mi , k = E k^ ,
i=l j=l i=l i=l

A = mat-diag(AltA2,.. ,Aj) where A± = diag(t±1 ,ti2,.. . t ^ ) , and

A = [A~AW( W* AW+C ) _1W* A] .
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7.6.2 Case where C is matrix diagonal

For vague prior knowledge the parameter C in the posterior distribution of (B,T) 
is matrix diagonal, C = Z'Z = mat-diag[Zj/Zi,Z2 ,Z2,.. *z i 'z i ].
Also, provided that the parameter Cq of the conjugate prior distribution for 
(B,T) is matrix diagonal, i.e. Cq = mat-diag[C20»C20t • • »clo3» "then C will also 
be matrix diagonal, i.e. C = mat-diag[C2o+zl ’zl*c20+z2 *z2 »• • *cIO+zl’zlJ •
Note that the condition for Cq to be matrix diagonal is equivalent to assuming 
independent prior distributions for Bi;i=l,2,..1 given T.

If C is mat-diagfCi«C?...«Ct 1 then

A = mat-diagOi - AiWiCWi’AiWi+Ci)‘1Wi,Ai ;i=l,2,..,I] ,

[Im+AWC"1*']

|Im+AWC"^W* |

= mat-diag[Imi +■ ;i=l,2 ,..,I] , and hence

I
= n i i mi + AiWiCi-1* ! ' !  .

i=l
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7.6.3 The posterior moment generating function »i(t) of the log likelihood 
functions where 1^= log p-;(y(BtT tw) is the log likelihood of a
single future value y belonging to I!-, for i=l«2 ,..,I.

First set ms=l for in (7.6,2) and assume C is mat-diagfCi .. .Crl.

Since «i=l, A^=ti, W±=s*±' and Y^sy^' for i=l,2,..,I and hence using (7.5.17),

A = diag [ti - tjWi*(tjWjWi* +C^)_1Witi }i=l,2,..,I]

^i
= diag »i=l»2,»»»I t

I I
Um+AWC'1** | = n [l+tiWi'Ci_1Wi] where here m = E = I , and

i=l i=l

tiCYi-bi'Wil'h'^yj-bj’Wj ) 
l+t^Wi’Ci Ŵi

for i=l,2 ,..,I and j=l,2,..,I.

[Im + A(Y-Wb)h’1 (Y-Wb)']ij = 8ij + 

where l 1 if i=j

, (7.6.3)

How also set Wj=w .for_i=l,2,.. ,1 1 ^
"fj,r <jHS *X

^^ij[Im + AD]ij = 8 ij + ----------- , (7.6.4)
l+tjW'Ci"*w

where D = (Y-Wb )h_1( Y-Wb)' and

Dij = (y”bi*w),h ”i(y-bj *w) , and (7.6.5)
0 if i*j

Aij = t . <7‘6 *6 >----^ ----- if i=j
l+tiW^i'^

and hence,

*l<t)
rd[%(v+Eti )]

‘ I *sd] (̂v+Eti) ijEti JjdEti
n [ l+ t iW C i'3̂ ]  II+ADI |h | tr rd(*v)

,i=l

(7.6.7)

where A, D and [I+AD] are Ixl matrices with (ijj)^ 1 elements defined by (7.6.6),
(7.6.5) and(7.6.4) respectively.
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The equation (7.6.7) for <t>i( t ) is now in the same form as equation (6.2.6 ) 
for the case of multivariate Normal, N°d(Mi »T )» populations, except that c^ in 
chapter 6 is here replaced by (v’C^ " ^ ) '1 and Dij = (y-b^)*h_1(y-bj) in chapter 
6 is here replaced by (y-bi*w)’h~1(y-bj’w) and hence section 6.3 and the results 
of section 6.4 apply with the appropriate substitutions for Ci;i=l,2,..,1 and 
Dij»i-*i»2 , •.I j j=l ,2 ,.. ,1 .
Note also that the values of the parameters (b,C,v,h) are different here as 
discussed in sections 7.5.2 and 7.6.2.
Here for vague prior knowledge about (B,T),

p(B,T) a and hence set (b,C,v,h) = (B,Z’Z,n-k,S) , where
A A 1S = (X-ZB) * (X-ZB) = E Si

i=l
A AS± = (Xi-ZiBiJ'Ui-ZiBi) for i=l,2,. .,I ,

Z'Z = mat-diag(Zi'Zi ;i=l,2,..,I) ,
A A A AB* = (B1 *,B2',..,BI') ,
A .Bi = (Zi'Zf)"-̂ Zi*Xi for i=l,2,.. ,1 ,

I
k = E Kj = IK,

i=l

I
n = E nj . 

i=l
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7.6,4 Special case of 1=2 populations

Let L = I3.-I2 * hence

‘ tL ' t(li-l2 )
*L(t) = E e = E e 11»12
Hence from (7.6.7),

+ L ( t )  = where
[ l + t W C i ' ^ ] ^  | I + A D |^ V 

X+AD| = [1 + a^D^i + a2®22 ala2( ̂ 11^22 '^12^ ) ] and

(7.6.8)

ai = ----------- for i=l, 2 . (7.6.9)
14tjW*Ci~*W

Ihe equation (7.6.8) for <$l( t ) is now in the same form as equation (3.2.5) of 
chapter 3 with appropriate substitutions for c^;i=l,2 and j;i=l,2;j =1,2 , 
changes in the parameters (b,C,v,h) as discussed in section 7.6.3, and with 
ai;i=l,2 as defined by equation (7.6.9). Hence the results of section 3.3 for 
the posterior moments of L can be applied directly after these substitutions and 
changes.
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CHAPTER 8

How stable is the predictive density function?

8.1 Introduction

Let x=(x1 ,x2,.. ,x„) be a random sample of observations of a random variable 
X with probability density function p(x|0), xeRx* Interest centres on the 
likelihood function p(y|0 ) and the log likelihood function log p(yi©) of a 
possible future value y of the random variable X, where y varies over the same 
range, i.e. Rx. In order to investigate the posterior distributions of the 
functions of 0 , p<yl©) and log p(y|0 ), consider values yi,y2»**»ym fro® the 
range of X. The posterior moment generating function of 1=(1^,12,.., lm ), 
where lj = log P(yjl0) for j=l,2,..,m is given by 4>i(t) from chapter 7, where 
t=( ti»t2 ,.. jtjn) and the number of populations considered is 1=1 , and hence the 
results of chapter 7 can be used.

The posterior moments of £=(Pi *P2 » • • »Pm)» Vfbere Pj = p(yj|0 ) for j=l,2,..,m,

(Mr)p = E
m r-
n Pj ' 
j=i

(8 .1 .1 )

are obtained from ^(.t) by substituting t=r, where r=(rltr2 ,.. ,rm ).

The posterior cumulants of 1_, (Kr )j_ are obtained from the cumulant generating 
function for 1_, Kj/t) = log 4>i(t), since,

(Kx )l =
.<£>
dt(r)

Kl(t) = Kla)(0) (8 .1 .2 )
. t=0

In particular the posterior mean, variance and higher moments of the functions 
p(y|0 ) and log p(yl©) for yeRx are obtained by setting m=l and omitting the
subscript 1  from yi»Pi»li and t^ in equations ( 8 . 1 . 1 )  and ( 8 . 1 . 2 ) ,

E[p(y 10)] = (Mi)p = *lU> ,
V[p<yle)] = (fi2 )p - (Hi )p2 = *1(2) - *l(l)2 .
( M 3 ' ) p  =  ( M 3 > p  -  3 ( M 2 ) p < M 1 ) p  +  2 ( p 1 ) p 3  =  « > l ( 3 )  -  3 * 1 ( 2 ) * 1 ( 1 )  +  2 4 > l ( l ) 3  ,

( M 4 ' ) p  =  ( M ^ ) p  ~ 4 (  A 3  ) p (  M l  ) p  +  6 (  P 2  ) p (  M l  ) p 2  ’  3 ( M l ) p ^

= ♦!(*) - 4$i(3)*i(l) + 6*i(2)4>i(l)2 - 3*i(l>'4 , and (8.1.3)

E[log p(yie)J = (Ki)i = ,
v(log p(yie>] = (ic2 )i = K j<2 >(0) ,
(M3')l = <Ks)l = >Cl(3 >(0) ,
<M4’>1 = (K/;>1 - 3(K2 )l2 = Kl(4)(0) 3Kj( 2 )( 0 )2 (8.1.4)
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Note that the posterior mean of the function p(y|0), for yeRx, is the 
predictive density function p(y|x). The posterior moments of p(yl©) and log 
p(y|0 ) cam be used to obtain credibility interval bands for each of the 
functions, and hence to investigate the stability of the posterior distributions 
of the functions. In particular, for function p(y|G), this will indicate the 
stability of the posterior distribution of the function p(yl©) about its 
posterior mean, the predictive density function p(y|x).

Furthermore, the posterior correlation coefficient between the likelihood 
functions at two different values y^ and y2 , i.e. Pi = p(yil0 ) and P2 = P(y2 l©)> 
can easily be found since,

Cov(pltp2)
P<Pl,P2) = -------------

CV(Pi )V(p2 )]

E(PiP2 )-E(P! )E(p2 ) 

CV(p1 )V(p2 )]%

where E(PlP2) = ll»l2( 1 ,1 )

and V( Pi) and V( p2 ) can be obtained using (8.1.3).

(8.1.5)

The posterior correlation coefficient between the log likelihood functions 
at two different values yi and y2, i.e. li = log p(yil©) and 12 = log p(y2 l©) 
can also easily be found since,

C o v d ^ ) ^l.l^i.l*
P(ll,l2 > =

[V(ii)v(l2 )r CV(1 1 )V(12 )] 

_ ~<1»1>

% * (8 .1 .6 )

where (K )_ = K'-’r^O.O) ,1,1 li,l2 li»l2
and V(li) and V( 12 ) can be obtained using (8.1.4)

Investigation of the credibility interval band for the likelihood (or log 
likelihood) function about its mean, the predictive density function, together 
with the posterior correlation coefficients above, will help to understand the 
structure or character of the predictive density function, or rather, that of 
the posterior distribution of the likelihood (or log likelihood) function.
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8.2 Exponential family populations

For an Exponential family population, the posterior moment generating 
function ♦iCt) of the log likelihood functions of m future observations 
(yi,y2».. »ym) is given by (4.2.6 ) and for a single future observation y by 
<4.2.9).

Hence from (4.2.9), 

E[p(yl©)3 = 4*i<l) c[v,o].b(y) 
c[v+l,w+s(y)] *

V[p<y I©) 4*1(2) - 4>i(ly where,

- ... = e[i/,M].b<y)2
1V ' c[v*+2,urt-2s(y)] ( 8 .2 . 1 )

and the higher moments of p = p(yl©) are obtained from (4.2.9).

Also,

E[log p(yI©)] = (*i)i = c[v+t,oH-ts(y)] Jt=0 + log b(y) ,

i < 2 )
v [ l o g  p ( y I © ) ]  =  ( K 2 ) l  =

d t ( 2 )log c[v/+t,w+ts(y)] ( 8 .2 . 2 )
t=0

and the higher cumulants of 1 are given by (4.2.12).

Also the posterior correlation coefficient between p(yil©) and p(yl©) is given 
by (8.1.5) where by setting m=2 and (t^,t2 ) = (1,1) in (4.2.6),

ECP1P2J * = cfu^j.bCy! )b(y2 )
ll,l2( * ' c[v+2,aH-s(y1 )+s(y2 )j (8.2.3)

and the posterior correlation coefficient between log p ( y i l © )  and log p ( y 2 l© )  i s  

given by (8.1 .6 ) where from (4.2.6),

1,1 li,l2 - [itj 5tJl0g C C u+ti+t2»Cl>+tls( yi )+t2s( Y2 ) ] ] t-o (8.2.4)
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Example : Ganma population distribution for random variable X.

Por a Gamma population distribution for X, 4>i(t) is given by equation (4.3.3) 
for general m and by (4.3.5) for w=l.
Hence from (4.3.5),

E [P < y ie ) ]  = * i ( l )  = yk 1 r(g+X)
r(k ) r ( g ) (h+y)g+k *

V[p(yl©)3 = 4>i(2) - 4>i(t)2 where,

♦l(2 ) =
y2(k-3.) hg r(g+2k)

r (k )2 T(g) (h+2y )g42k
(8.2.5)

and the higher moments of p = p(yl©) are obtained from (4.3.5).

Also,

E[log p(yI©)] = (Ki)i = (k-l).logy + k.\j/(g) - log[T(k)] - k.logh - ,
h

V[log p(yI©)] = (K2)i = k2 .vp<1 >(g) + y_[2hk-gy] ,
. 2

(8 .2 .6 )

and the higher cumulants of 1 = log p(yi©) are given by (4.3.8).

Also the posterior correlation coefficient between p(yil©) and p(y2 l©) is given 
by (8.1.5) where setting n^2 and (tj_,t2 ) = (1,1) in (4.3.3) gives,

ECPlP^ *U.12 (1,1)

y i * '1 y2 k 1 h8 r(g+ 2 k) 
r (k )2 r (g )  [h+yi+y2]6+2k

(8.2.7)

and the posterior correlation cofficient between 1^ = log p(yil©) 
and 12 = log p(y2 l©) is given by (8.1.6) where from (4.3.3),

^  22 = k2-'̂ 1)<s) + g-yi«y2 - k(yi+y2)
h2 h
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Setting k=l in the results for a Ganna, Ga(k,0), population distribution gives 
the results for an Exponential, Ex(©), population distribution for X.

Ihe posterior moments of p = p<yj©) are obtained by setting k=l in (8.2.5).
The posterior central moments of 1 = log p(yl©) are given by (4.3.9).

Consider the following sample of size 4 from an Exponential, Ex(0), 
population taken from Aitchison and Dunsmore (1975, Chll), x = (4-7,17,32,19).

The predictive density function p(y|x) is given by setting k=l in (4.3.6) 
and by setting (g,h) = (nk,nX) = (4,115) if vague prior knowledge is assumed for 
©. The posterior moments of either p(yl©) or log p(yl©) can be calculated and 
95% posterior credibility intervals obtained using Pearson curves. By 
considering a sequence of possible future values, y=0,5,10,..,100, a credibility 
interval band cam be obtained for p(yl©) or log p(yl©). In the diagram below the 
predictive density function p(y|x) = E[p(y|©)] is plotted together with the 
credibility interval band for p(y|©), and from this plot the lack of stability 
of the predictive density function can be observed.

It is interesting to note that the posterior variance of log p(yl©) has a 
single turning point, a minimum value when y = h/g, i.e. y = X assuming vague 
prior knowledge for ©. For the example above X = 28.75.

However the turning points of the variance of p(y|©) are given by the 
equation,

g.hg.(h+2y)8+3 = (g+2).(h+y)2g+3 . (8.2.9)

Substituting w = gy/h into (8.2.9) results in the elimination of h, and 
hence the number of turning points of the variance of p(yl©) depends only on g. 
By considering the resulting left and right functions in (8.2.9), it can be 
shown that for integer g^3, equation (8.2.9) has no positive solutions for y, 
while for integer g^4, equation (8.2.9) has exactly two positive solutions for w 
both in the range (1,2) and hence the corresponding solutions for y are in the 
range (h/g,2h/g). Indeed as g-x» the solutions for w denoted by w^ and W2 

converge to the values 1 and 2 respectively and hence the corresponding 
solutions for y converge to the values h/g and 2h/g. Note that for vague prior 
knowledge about parameter ©, h/g = X.

Exponential population distribution for X.
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This is also verified by numerical calculation of the solutions w^ and W2

for different values of g,

g 4 5 6 7 8 9 10 50 100
Wi 1.221 1.152 1.117 1.095 1.080 1.069 1.061 1.010 1.005
"2 1.806 1.884 1.922 1.943 1.957 1.966 1.973 1.977 1.9997

In conclusion the variance of p<yl©) has a minimum value at y slightly 
greater than h/g and a maximum value at y slighly smaller than 2h/g.

In the example above, if vague prior knowledge is assumed for ©, then (g,h) 
= (4,115), and equation (8.2.9) has exactly two solutions at y=35 and y=52,each 
to the nearest integer. So the posterior variance of p(yl©) has a minimum value 
at y=35 and a maximum value at y=52.
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Figure 6. Posterior credibility interval band for the likelihood function around its posterior mean, 
the predictive density function.



8.3 Multivariate Normal linear model population

If random variable X has a multivariate Normal linear model population 
distribution, then 4>i(t) is given by (7.5.18) for general m and by (7.5.24) for 
m=l.
Hence.

E[p(yl©)] = 4q(l) is given by equation (7.5.26) , and

V[p(yie)] = <*»i(2) - <l>i(l)2 where <tq(2) is given by setting t=2 in (7.5.24),

rd C%(v+2 )]
<X» 1 ( 2 ) = ------------------------------------------------------------

[I+2w,C“1w]W  [l+A11(y-b,w)'h"1(y-b'w)]ls(v+2)|h| rrd rd(%v)

where ---------  from (7.5.2) ,
1+2W'C'1W

rd C%(v+2)] r [W v + i)]  r[ij(v+2 )]

31x1 rd(isv) = r [ « v + i - d ) ]  r[%(v+2-d )]  *

Higher central moments of p(yl©) are obtained by setting t=3,4,.. in equation
(7.5.24) and using (8.1.3).

Also the central moments of log p(y|©) are obtained using (8.1.4) from the 
cumulants of log p(yI©) which in turn are found from equations ( 2 . 3 ^ with 
appropriate substitutions as described in section 7.5.9. In particular,

E[log p(yl©)] = -Ĵ dlogrr - —  - %log|h| - %vD + % E >P[%(v-i+l)] and
2C i=l

V[log p(yl©)] = — r +
2c

v-c'
c .

d
D + %vD* + (%)2.r )[%(v-i+l)]

i=l (8.3.1)

where c = [ w ' C ~ * w ] a n d  D = (y-b'w),h"1(y-b'w).
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The joint posterior moment generating function of It = log p(yi IQ) and 1q - loe
p < y ? .ig - ) .

To obtain the posterior correlation coefficients p(Pi,p2 ) and P(li»l2)» the

joint moment generating function of li and 12, i.e. ♦, , (titto), is required.11»12
Setting m=2 in (7.5.18) gives,

rd[%(v+t1+t2 )]
* l 1 . l a < t l *t2 )  = | l2+a * c -lW. ,W 1 1 2+AD|« ’ + tl + t* > Ih |« t l+ t2  >***< * * **  >rd( %v )

(8.3.2)

Where D = (Y-Wb)h_1(Y-Wb)’ , then the (i,j)^1 element of D is given by 
Dij = (yi~b'Wi),h “1(yj-b,Wj) , for i=l,2 and j=l,2.

Also, using the results of section 7.5.7, A is a 2x2 matrix with elements A^j 
given by,

tj.( 1+t2e22 ̂ 
Al1 ” g(ti,t2 ) t

■t2( 1+tieil) 
Az2 ” g(ti,t2 ) and,

tlt2e12
*12 = - g(t1>t2 ) and hence,

|I2+AD| = 1 + i [b+St1t2] and, (8.3.3)

|I2 + AWC~^-W | = g , where,

g = g(ti,t2 ) = (1 + tlell + *2e22 + tlt2Cene22-e122 J) , n00

b = b(ti,t2 ) = ti(l+t2e22 )Dn + t2(l+t^en )D22 - 2tjt2e12D12 * (8.3.5)

6 = DHD22 - D122 and (8.3.6)

e^j = Wi'C-1Wj for i=l,2 and j=l,2. (8.3.7)
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The joint posterior moments of and P2 are now easily found by appropriate 
substitution for (ti,t2 >. In particular the posterior correlation coefficient 
between p! and P2 is given by (8.1.5) where

The posterior correlation coefficient between pt = p(y-i 10) and Po ~ p(y?iQ)

E(PiP2) = ♦, , (1,1)
A l »  x2

%( v-d+2)= _______ rc%(v+i)l r[%(vt-2)] gny_____[______  (8.3.8)
Ul( v + 2  \ d  * '  ’(8 ll+ t> n + 6 )^ v ihl ir r[% (v+l-d)] r[ij(v+2 -d )]

where,

8ll = S(l»l) = 1 +ell + e22 + elle22 " e122 31x1 (8.3.9)

^11 = to(l,l) = (l+e22)Dll + (1+®H )°22 ~ 2e12D12 * (8.3.10)

The posteior correlation coefficient between 1 t= 1 o r  p(yi | e )  and l?=log p(y?|Q)

Ihe joint posterior cumulants of 1^ and l£ are easily found since for 
<rl»r2 )M1.1).

(K r  ), 1rl»r2 11»12
d ( n )  d ( r 2 > 

.«!<'!> dt2(rz> 108 * l a , l 2 < t l ’ t 2 ) J(tl,t2 )=(0,0)

= D < ^ ) log

+ D( o - ) 2 } [ - ‘sf v + t 1+ t 2 ) • !og  |I2+AD| ]

+ log rd[is(v+t1+t2 )] | .
*°,0) L J (8.3.11)
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(8.3.12)

Differentiating (8.3.12) (r^-l) tiroes with respect to t^ using De Moivre’s 

theorem and setting (ti,t2 )=(0,0) gives, for rj^l,

D(0^0°>l08 8(tl»t2> = -<ri-l>enD|^'j,0)log g(tltt2 ) = (~l)ri ^rx-lHexi1

Purther differentiating (8.3.12) r2 tiroes with respect to t2 and setting 

(tlft2 )=(0,0) gives, for (rltr2 )*(2,l),

Evaluating d{ * r log

*(ti,t2 ) = gCtj^ta).^ log g(t1(t2 )

((rl»r2)
( 0,0 lo g  g ( t i , t 2 ) - ( r i - l ) e 11D ^ ^ ,r2 > lo g  g ( t l t t 2 ) 

-r2e22D [ ^ 2'1>log g C t ^ )

-r2(r i -1 ) ( ® n e 22 e i 22 )d | * ’Tz " 1 )lo g  g ( t 1 ( t 2 ) .

(8.3.13)
In particular,

D(o!ojl08 8(tl»fc2> = eH  t D(o[o)108 8(tl»fc2) = e22 >

and D[o]o)log 8(tl»t2> = ’e122 •

Evaluating q ^ q \2 * [ ( v+t] +12 ). log \ I2-fAD 1 ]

D ^ O ^ U v + t i + t ^ . l o g  | I2+AD|] = v d [ 5 ^ T 2>1° 8 ^2+ADI

+ riD̂ ô o"),r2 )lc>8 112+ADI

+ *2D{o}6*2 1)log II2+ADI 
where JI24-ADJ is given by equation (8.3.3).

In particular,

log 1i2+a d I

ooHOv'o'II ! U 2+AD1 = Du  .

4°o:i] log 1i2+a d | = »f8:S j1 ii2+adi = d22 ,

°K-M log 1i2+a d | - 2 - “D12 - 2e12D12
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Evaluating D ^ o ^ 2 * [log rd[fr(v+tj+tg )] ]

D(ri,r2)[log FdC^v+ti+tz)] ] = (Js)ri+r2 E »(ri+r2"1 >[^(^2+12-1+1)]
i=l

D/n1A\2>tlo« rd C % ( ^ 1+t2)3 1 = (%)ri+r2 * »(ri+r2’1)[%(v-i+l)j (8.3.15)
1=1

Hence the posterior correlation coefficient between It and 1?

is given by equation (8.1.6) where from (8.3.11) setting (r2 ,r2 )=(1,1),

d m(K, . ). . = %de122 + <sv(D122 + 2e12D12) - <s(Dirt-D22) + (“s)2 £ » CWv-i+l)]-L»J‘ ■ll»-Ll
(8.3.16)

Note that from equation (8.3.1),
dV( 1 j ) = %dej j2 + %v(Djj2 + 2ej jDjj ) - Djj + (%)2 E L1s(v-i+1))

X=1 (8.3.17)
and of course p(l2 ,l2 )=l if (y2»wl )=(y2»w2 ) since then D22=D12=D22 arK̂  
622=622=622 and so V( I2 ) = V( 12 ) = Cov(l2 ,l2 >-
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CHAPTER 9

Combining subsets of variables

9.1 Introduction

Suppose the d variables of the d dimensional random variable X are divided 
into R subsets of variables, Xr; r=l,2,..,R, which are to be modelled 
separately, where

R
PX*X,Q) = 11 PX (xri*(r-l)»®r) (9.1.1)r=l r

and © = (©i,©2» ♦ • »®r ) is a parameter vector combining the parameters of the R 
models, x<r ) = (xr ,xr_i,.. ,xx ) for rll and p(xilx^0)»©i) = P<xil©i) » where xr 
is the observed value of the variable subset Xr.

Later in section 9.1 the restricted case where the R parameter vectors ©j- 
have no parameters in common is considered. In section 9.2 the special case 
where the first variable subset X^ is a single randon variable indicating 
population membership is considered. This is the usual situation in discriminant 
analysis where if X^ is assumed to have a multinomial distribution with 
parameter vector ©^, then ©^ is the mixing parameters q. It is shown how the 
joint posterior cumulant generating functions of the I population log likelihood 
functions for the new observation y can be obtained by combining the R separate 
joint posterior cumulant generating functions from the R models for Xr, for 
r=l,2,..,R. In section 9.3 the situation is considered where, for a particular 
value of rAl, the I population models for Xr, p(xr |xr_i,xr_2 ,... ,X2 ,X}=i,8r) 
for i=l,2 ,..,I have no parameters in common, and it is shown how the joint 
cumulant generating function of the I population log likelihood functions for a 
new observation y can be expressed as a product of the I serarate cumulant 
generating functions. Two examples are considered. In the first example, given 
the value of the categorical variable X, indicating population membership, and 
given the parameter sets ©r, for r=l,2 ,..,R, the subsets of variables, 
X2,X3,..,Xr , are independent. The second example includes as a special case the 
* location linear discriminant model*. Finally in section 9.4 the special case of 
just two populations is considered.
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Let x represent a random sample of n observations of random variable X, and 
Xj>r represent the observed value of variable subset Xr for observation j for 
j=l,2,..,n and r=l,2,..,R.
Prom (9.1.1) the likelihood of the data x is given by 

n R
L = n n p ,(r-l) *®r) (9.1.2)

j= l  r= l r

Suppose the R parameter vectors ©j- have no parameters in common and also assume 
that the ©y have independent prior distributions p(©r ) for r=l,2,..,R, then

R
p<0) = n Pi&r) (9.1.3)

r=l

Hence from (9.1.2) and (9.1.3), the posterior distributions of the ©j. for 
r=l,2,..,R will be independent and given by

n
P(©r |x) a p(©r ). n px (Xj>r |Xj r _2 )»©r) (9.1.^)

j=l r

The predictive density function of a possible future observation y given the 

data x is
R

Px(ylx) = n px  (yr iy(r-i)»x ) ( 9 . 1 .5 )
r=l r

Where ) = | P(yr ly(r-l)»er)-P(erix > der (9.1.6)
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9.2 Case where the first variable subset represents population
membership

For the special case where the first variable subset represents a single 
random variable indicating population membership, i.e. x^=i when observation x 
belongs to population for i=l,2,..,I, then,

Rn Pr,i(y»®r)r=lp(yi=iiy2»y3»• • »yR.©) = ---------------  » a«dX R
E n Pr,i<y»er)i=l r=l
R
n Pr,i(y»3S)

P<yi=ily2 ty3 » * • ,yR,x) = --------------  , whereX R
E n Pr,i(y»2£) 
i=l r=l

Pr,i(y»®r) p<yriyr-i»yr-2»• • *y2»yi=i»er) for rSs2
p(yi=i|©l) for r=l

Pr,i(y.x) p<yriyr-i»yr-2»- • »y2»yi=i»2s)
p(yi=i|x)

for r^2 
for r=l

(9.2.1)

(9.2.2)

(9.2.3)

(9.2.4.)

In discriminant analysis interest centres on which population the new 
observation belongs to, i.e. the value of y^ given the values of y2»y3>-*»yR and 
the past data x, i.e. p(yi=iIy2»y3»• • »yR»2S)• T° find this the predictive density 
functions pr^(y,x) f°r r=l,2,..,R and i=l,2,..,I can be obtained seperately and 
later combined as in (9.2.2).
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Interest here centres on the relative likelihoods of the new observation 
belonging to each population n*, i.e.

R
p<yi=i,y2»y3.--»yRi©) = n Pr,i(y.©) »r=l
for i=l,2,..,1.

In particular interest here centres on the joint moment generating function of 
the log likelihoods of the new observation y belonging to population n^, for 
i=l,2,..,I, i.e. the joint moment generating function of (l±; i=l,2,..,I),
where,

R R
li = log p(yi=i,y2,y3, • • ,y&ie) = e log pr,i(y,e) = e irir=l r=1
where lri = log Pr,i(y»Q ) for r=l,2,..,R and i=l,2,..,I.

Let 1 = then

+1(t> = Ejexp(t'l)] = E[exp( § till)] = E[exp(i£i ^  tilri)]

R f 1 ,= n E exp( r tilri)r=l L i=l J
since lr^ depends only on the parameter set ©j- and the ©j- have independent 
posterior distributions given the data x, and hence,

♦2<t)
R
n <*> (t) r=l ir (9.2.5)

where t = (tx,t2,. . »t! ) and = (lri »*r2»••tlri ) for r=l,2,..,R.

Hence the cumulant generating function of 1_, Kj/t), is given by,

K2(t) log ^(t) RE log * (t)r=l Ar
R

= I k (t) *-% ir (9.2.6)

So the posterior cumulant generating function of 1 can be obtained simply by 
summing the posterior cumulant generating functions of for r=l,2,..,R. The 
posterior cumulants and moments of 1 can then easily be obtained from K^(t).
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Example 1 As a simple illustration of the above notation, consider the special 
case where random variable X comprises just two subsets of variables, the first 
Xjl, being the categorical variable indicating the population of membership and 
the second, X2 , comprising all the other variables.
Prom (9.2.2),

p( y 2 1 y i = i»*) • p ( y i= i I x )p(yi=iiy2»x) = ---------------------I
e p^iyi^.s^p^i^i*)i=l

Here © = (©i,©2 >» where ©2 combines the parameters of the models for , i.e. 
P(y2lyi»©2) over all possible values of y^, i.e. for yi=l,2,..,I, and ©1 is the 
parameters of the model for ylt i.e. P(yil©i). If X^ has a multinomial 
distribution given ©^, then ©1 is the multinomial parameter vector, i.e. ©1 = q, 
the mixing parameters, in the notation of chapter 7 and p(yi=i|0i) = qi, for 
i=l, 2,.., I .
Note that from section 7.3,

p(yi=ijx) = E[p(yx=i l©i)] = Efqi]
Jl8i

where for vague prior knowledge about ©^ = q, Si = n^, for i=l,2,..,I, where n^ 
is the number of observations in the data x with X^ = i, i.e. the number of 
observations in x from population Ilj.

Also from (9.2.6),

Kl{“) = Kll(-) + Kl2<-)
and from equation (7.3.4),

I I IK, (t) = log r[ e gi) - log r[ e (gi+ti)] - E [logr(gi) - iogr(gi+ti)]Al i=l i=l x=l

ITiis situation was discussed in section 7.4.



9.3 Populations with no parameters in common

The parameter set ©j. combines the parameters from the I sets of models for 
p(xr |xr_i,xr-2».. ,X2,xx=i,0r ), for i=l,2,..,I. Suppose that for some value of 
r\l these I sets of models have no parameters in common.
Then let ©*. = (©n,©r2 , • • >©rl )•
Let random variable X comprise r subsets of variables Xi,X2 ,..tXR> Where as in 
section 9.2, X^ indicates the population of membership.
Bence p(xr |xr.1,xr_2,.. ,x2,x1=i,©r ) = p<xr |xr_1,xr.2,.. ,x2,x1=i,©ri), for
i=l,2,..,I and some r\l.
Suppose independent random samples Xi = (xii,x^2 » • • »xin^) ere identified as 
belonging to Ili, for i=l,2,..,I.
Let Xij = (Xij>r ; r=l,2,..,R), where Xij>r is the observed value of variable 
subset Xr for the j*-*1 observation identified as belonging to population n^, for 
i=l,2,..,R, j=l,2,..,nj[ and i=l,2v..,I.
Assume that the parameters , i=l, 2,.., I, have independent prior
distributions, p( ), then,

I
P(©r) = .n p<©ri) . (9.3.1)i=l
From (9.1.4),

r I ] 1 nip(©r lx) a I n p(©ri)j. n n P(̂ Ci j ,r lxij ,(r-1 ) *®ri ) »
1-1 J i=l j=l

I
= n 

i=l
nl

P(®ri)« H P(xij tr lxij ,(r-l) »©ri ) 
j=l

(9.3.2)

Hence the 0^, i=l,2,..,1, have independent posterior distributions,

ni
p(©rilx) a P(®ri )* ^ P(xij ,r fxij ,(r-1)»®ri ) • (9.3.3)

j=l
Hence for i=l,2,..,I, and r=2,3,..,R, (9.2.3) gives,
Pr,i(y»©> = P(yriXr-l»yr-2» * • »X2»yi=i»0ri) » (9.3.4)
and (9.2.4) gives,
Pr,i<y»x> = p<yriyr-i»yr-2» • • .y2»yi=i»x>

= J P(yr iyr-ltyr-2 »* • tyatyi^tQri)*^^!!*) <J©ri • (9.3.5)
Equations (9.3.4) and (9.3.5) can be substituted directly into equations (9.2.1) 
and (9.2.2).
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Furthermore

(£) = E [exp( E tilri)lAr L i=l J

= n EjexjKtiIrt)]r=l
since lr-̂ depends only on parameter &r± and the ©j-i have independent posterior 
distributions given the data x, and hence,

( t )  = n 4> ( t i )=1 1n

and so K (t) = E K (t*)Ar i=l iri <9.3.6)

Note that the mixing parameters are coninon to all populations, n^;
i=l,2,..,I, and hence result (9.3.6) does not apply for r=l.

If, for r«2,..tR, the I sets of models for p(xr |xr-i ,xr_2 ,. . *X2 ,xi=i,©ri ) have 
no parameters in common, and the prior distributions of the ©rj are all 
independent then,

K_ (t) = E K. <t±) for r=2,3,..,R,Ar i=l 1ri
and hence from (9.2.6),

K (t) = Z K <t) = K (t) + Z Z K (ti)I r=l ir il 1=2 1=1 2ri
Hence the posterior cumulants and moments of _1 can easily be found.

(9.3.7)
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Example 2 Suppose that the R sets of models for p(xr | x ( ) , © r ) for r=l,2,..,R 
have no parameters in common and also that, given the value of the categorical 
variable X^ indicating the population of membership and given the parameter sets 
© t , r=l,2,..,R, the subsets of variables X2,X3,..,Xr  are independent, then for a 
new observation y, (9.2.3) gives,

Pr,i(y»©r) P(yrlyi=i»®r) for P < yi= il© l) for r=l
and (9.2.4) gives,

Pr,i(y»2£) p<yriyi=i.x)
p(yi=i|x)

for r^2 
for r=l

where p(yrlyi=i,x) = J P(yr lyi=i«dr)*P(®rl2) <*©r

(9.3.8)

(9.3.9)

From (9.2.6),
RK,(t) = E K. (t) . (9.3.10)i r=l Ir

If further, for one or more values of r(\l), the I models for p(xr |xi=i,©ri ) for 
i=l,2,..,I, have no parameters in common, then from (9.3.6),

IK, <t) = E K (ti) . (9.3.11)ir i=l J-ri

Hence if the I models for p(xr Ix ^ i , © ^ ), for i=l,2,..,I, are members of the
Exponential family with no parameters in common e.g. Gamma, Binomial or Poisson,
then K (t*) can be obtained from section 4 *24 and if the I models are 1rimultivariate Normal linear models with unequal error precision matrices, then
K. (^i) can be obtained from section 7.5, for i=l,2,.., I .Equation (9.3.11) can *rithen be applied to obtain K (t).ir
If, however, the I models for p(xr |xi=i,©ri ), for i=l,2,..,I, have parameters in
common, e.g. multivariate Normal linear model populations with equal error
precision matrices, then (9.3.11) cannot be applied, but K (t) can beirobtained directly.
For the equal error precision matrix case, K (t) can be obtained fromir
section 7.6.
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Example 3 Suppose the random variable X comprises three subsets of variables, 
the first being the categorical variable indicating population of membership, 
the second X2 comprising all other categorical variables and the third X3 

comprising continuous variables only.

Assuming as usual a multinomial model for p<xil©i>, then models are required for 
p(x2 lxi,©2 ) and p<x3 |x2 ,x1 ,©3 ).
A possible model for p<X3lx2,xi,©3 ) is the multivariate analysis of variance 
(MANOVA) model. In the case of equal population error precision matrices, then 
in the notation of section 7.6,
X3 — ZB + e

where Nont<j(0,In ,T), 03 = (B,T) and Z is the design matrix for the MANOVA
model chosen based on the categorical variables X2.
The cumulant generating function for I3 = (log P(y3 ly2 ,yi=i,©3 ); i=l,2,..,I) was 
obtained in section 7.6.

If unequal error precision matrices are assumed for the populations then 

X3i = ziBi + €i
where No (0,1 ,T. ), independently for i=l,2,..,I,n i , d  n^ 1

©3i = (Bi,Ti) and Z± is the design matrix for the observations from population 
ITi (i.e. for which X^=i) for the MANOVA model chosen based on the categorical 
variables X2. The cumulant generating function for 13  ̂ = log p(y3 iy2,yi=i,©3i) 
was obtained in section 7.5.

A possible model for p(x2 |xi,©2 ) is the simple multinomial model. If the equal 
error precision matrix case above is combined with a simple multinomial model 
for fKx2 |xi,©2 ) this gives the 'location linear discriminant model' discussed 
extensively from a Classical viewpoint by Krzanowski (1975, 1979, 1980) and also 
by Vlachonikolis and Mariott (1982). A general algorithm for maximum likelihood 
estimation in the presence of missing values which can be applied to the 
'location linear discriminant model' has been given by Little and Schluchter 
(1985).
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9.4 Special case of two populations

From equation (9.2.5), provided that the R sets of models for 
p(xr Ix̂ r _2 ) )  have no parameters in common then,

R<Mt) = n ♦. (t) . (9.4.1)A r=l Ar “
R

Let L = lj - l£ , where H  = c Iri for r=l,2, then,r=l

*L(t) ♦ll.l2(t,-t) »

R= n <*> (t,-t) using (9.4.1), and hence,r=l *rl»*r2

R R,
K(t) = E K. (t,-t) * X * .  Ct) U  (9.4.2)L r=l 1rl*1r2 r--t * *
If the populations rij and II2 have no parameters in common (apart from the mixing 
parameters ©1 ), then lri and 1^  have independent posterior distributions for 
r=2,3,..,R, and hence from (9.4.2),

R RK (t) = K (t,-t) + Z K (t) + E K (-t)I* 1 1 1 »ll2 r=2 1rl r=2 1r2 (9.4.3)

In the particular case where the random variable X is seperated into just two 
subsets of variables, the first being X^, the categorical variable indicating 
population if membership, then (9.4.2) gives,

K_(t) = K. (t,-t) + X (t,-t) = k , ( t ) > K L U) (9.4.4)
11 1 » 112 121»I22 S  *

and (9.4.3) gives,

K (t) = K. . (t,-t) + K (t) + K (-t) , (9.4.5)L 111»112 X21 l Z 2

where from equation (7.3.4) with 1=2,

k 2 (t.-t) = ~log r<gi> * log r<82) ■** loe r(gx+t) * log r(g2-t) .

Hie cumulants and moments of L can be found from XL(t) and the posterior 
distribution of L approximated using Pearson curves. The posterior distribution 
of P can then be obtained by transformation as in section 1.3.
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CHAPTER 10

Using the extra information concerning the parameters from new observations of 
unknown population membership

10.1 Introduction

So far the posterior distribution of P has been approximated using 
information about the unknown parameters 0 given by the random samples, 
2Ll»2£2» • • »2£l from n^,^,. . ,rii, respectively. Any information about 0 in the new 
observation y has not been used. This would be appropriate if the information 
about © from y was negligible compared with the information from the random 
samples or if it was not certain that the new observation y was sampled 
(independently) from the combined population distribution.

Suppose however there are one or more new observations, of unknown 
population membership, which are confidently believed to have been randomly 
drawn from the combined population distribution. Let xi»2£2>• • *2Sl b® independent 
random samples obtained by mixture sampling and identified as belonging to 
nl»n2»***nI respectively and let y = (yi»y2 »• • *yin) ^  a random sample of m new 
observations, of unknown population membership, obtained independently of 
* 1 »*2»• • »2£l from the combined population distribution E<liPi(yl0)- Let y, not 
neccessarily one of (yi»y2» • • »yjn)» a new observation for which an estimate, 
posterior distribution and credibility interval for P is required.
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It is interesting to note, as pointed out in section 5.7 of Titterington, 
Smith and Makov (1985), that if a logistic model relates the probability of 
population membership to the variables measured, i.e.

p(y,i|/3,y) = p(i|y,/3).p(y|y) , where,

p<yenily,/3) = exp<j3i'y ).p(yenI ly,/3) , for i=l,2,.. ,1-1, (10.1.1)

then the uncategorised new observations provide no information at all about 0, 
since no parametric distributional model is thereby specified concerning the 
population distributions and hence uncategorised observations provide no extra 
information to assist with the estimation of /3 and hence p(yelli ly,/3).
If, however, a discriminant analysis model is appropriate with the population 
distributions specified in functional form but with unknown parameters, i.e.

p(y,i|q,0) = P(yli,e).p(i|q) = qiPi(yie) , (10.1.2)

then the uncategorised observations provide information about the parameters © 
and q as in equation (10.2.1) below, and hence provide extra information to 
assist with the estimation of © and q and hence qiPi(yl0).
The two alternative models (10.1.1) and (10.1.2) have been mixed by Anderson
(1979).

121



10,2 •Estimative* estimate of P

The 'estimative* estimate of P cannot be found explicitly. The maximum 
likelihood estimates of 0 can be obtained, however this will, in general, 
require numerical maximisation of the likelihood function which may be difficult 
particularly when the number of parameters in 0 is large. The likelihood 
function is given by

L(2Ll»2S2»----- »3Si,z;q,©) f n S1 qiPiCxiji©)]. n f c qiPiCyil©)]. (1 0 .2 .1 ) Li=l j=l J J j=lLi=l J J

This corresponds to the likelihood function defined by equation (1.2.3) 
from Titterington, Smith and Makov (1985, Chi). In their section 4..3, they 
discuss use of the EM algorithm (Dempster, Laird and Rubin, 1977), or the 
alternative numerical algorithms, Newton-Raphson (NR), and the Method of Scoring 
(MS), to obtain maximum likelihood estimates of the parameters. In their section
6.4.2 they reconsider the problem by regarding the data as incomplete, the 
incompleteness referring to the absence of the indicator variables which would 
identify the true population of membership of each of the new observations. A 
general form of recursive algorithm for maximum likelihood estimation, together 
with its asymptotic properties is considered. Titterington (1984) gives 
regularity conditions for unique maximum likelihood estimates. Redner and Walker 
(1984) applied the EM algorithm to Normal mixtures and found that although 
convergence may sometimes be slow, only a few iterations are required to get 
close to the maximum value of the likelihood function. This suggests a composite 
algorithm, in which a few EM algorithms are followed by a few further iterations 
of the much faster MS or NR algorithms.

A general algorithm for maximum likelihood estimation in the presence of 
missing values has also been considered by Little and Schluchter (1985).

The value or efficiency of unclassified observations relative to classified 
observations in terms of asymptotic error rates has been investigated by O'Neill
(1978) for equal covariance multivariate Normal populations. O ’Neill found that 
the asymptotic relative efficiency increases rapidly with the separation of the 
populations. Ganesalingam and McLachlan (1979) have investigated the relative 
efficiency for small samples and found it generally higher than the asymptotic 
value.
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10.3 ’Predictive* estimate of P

The ’p r e d ic t iv e '  e s t im a te  o f  P ca n  be o b ta in e d  e x p l i c i t l y ,  p ro v id e d  t h a t  

th e  m ix in g  p a ra m ete rs  a re  known, s in c e  from  a  f u l l y  Bayes a p p ro a ch ,

p < yj€ llk  f o r  j = l , 2 , ----- . m l X i , ^ , ------ , X I , Z )

*p<2l̂ 1’̂ 2f-- »^I’yj,snk.i for j=1»2»---
I I I r m

. C E . . . . . E  n a  .p(Zl2LL»X2»------ ,2£l»yi«£nfc f o r  j = l , 2 , --------,m>i l = l  i 2=i inf=l Lj=i kjj J * j

Where k j  e ( 1 , 2 , . . . . , I )  f o r  j = l  , 2 , . . . .  ,m, and  

w here p < z l x i , X 2 , ----- .x ^ y j is n  f o r  j = l , 2 , ------ ,m)

i s  th e  j o i n t  p r e d ic t iv e  d i s t r i b u t i o n  o f  th e  m new o b s e r v a t io n s  y ,  i . e .  

P<Z<^1*X2»----- »£i ,y je l l  f o r  j = l , 2 , ------ ,m)

kj

= |  FKziQryj6^  for j= l* 2 , ----- .m).p<Ql2ii,X2»------ ,xj)de

The m a rg in a l p(yjen^ Ixx,^, • • •. ,xi»Z) for any j«s(l,2,----- ,m)

can  th e n  be o b ta in e d  s in c e

p<y-j€nk |̂x1,x2,-- ,xi,£)

I I I I
= E .............. E E ......... E p<yj«srL f o r  j = l , 2 ,

k i= l  k  j  - i= l  k  j+ i= l kj^pl j
. . . ,ral2£i------»2Sl»Z)
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Pirst consider the case where the populations have no parameters in common.

If the populations n^, ri2,....,nj have no parameters in coninon then the 
joint predictive distribution of y factorises into the product of the joint 
predictive distribution of the sets of observations belonging to the separate 
populations since the integration over © can be factorised into integrations 
over each of the population parameter sets separately, e.g.

P< Yl, 72 > Y3 * YCI *1 ♦ *2 »Ylenl > 72€nl > Y3^nZ > >

= p<yi»y2 i*i *2?2 »yieni »y2*ni ) *p<y3 .y^i^i »*2 »y3en2 »y^n2 >

Hence essentially all that is required is the joint predictive distribution 
for m new observations y given that all the m new observations come from the 
same population n, when an independent random sample x of size n from n is 
available, i.e.

P<Xi£>£€ll»Z€n) = | p(yl©).p(©lx)de = ^  n^p(yj |0^.p<0|x)d©
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The following results are obtained for different population distributions. 
Gamma population n 
P<yjIQ) = Ga(k,e) ,
p(0|x) = Ga(g,h) ,

p<jr!x,xen,2€n) =  ̂n y^'1] .h8r(mk+g)

[r(k)]m .r(g).(h+ “ y )mk+g 
J=1 j

where yjAO for j=l,2,.... ,m, from ( 4..3.4.).

Binomial population II 
P<YjlO) - Bi(k,Q) ,

p<0|x) - Be(g,h) ,

p<2lx,xent2<5n) ' ■ M l  B[g+jl 1yj - h+mk- j i iy j ]
jr-llyjj J* B(g,h)

where yj=0,l,2,....,k for j=l,2,....,m, from (4..4-.4.).

Poisson population IT 
p(yj|Q) = Po(0) ,

p<Ojx) = Ga(g,h) ,

p<5r|x,xen,jren) = h8 . r( g+ E^y )

r(g).[ n y !].(h-ha)g+Cyj Lj=l J J
where yj=0,l,2,3,.... for j=l,2,. .. . ,m, from (4.5.4).

Multivariate Normal population IT 
P<yjlQ) = P(yjlH.T) = Nod(M,T) ,
P<0|x) “ p(M»T|x) = NoWid( /3,c,g,h) ,

*Zl*.S«n.JE«n> - [^]d/2 ' rdĈ vJ.rr
M 7 / 1___
IH,(v+m)/2

where H — h + S + mc_.(y-/3)(y-0)’ , 
X m+c

and S - E (yj-yHyi-y)* .Z j=l J J

(10.3.1)
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Equation (10.3.1) was obtained from (7.5.14.) by the following substitutions

k = 1,

Y = [yi»y2» • • »ym]' » a mxd matrix, 

X = (xi»x2>••»*n]' , a nxd matrix, 
W = (1,1,..,1]• , a mxl vector,

Z - [1,1,..,1]' , a nxi vector,

B - ji* , a lxd vector, 

b = 0 ’ , a lxd vector,

C - c , a scalar, and

m+clm] where is the mxm matrix with all elements equal to 1.

Multivariate Normal linear model population n 

P(yjl©) = p(yj IB,T) = Nbd(wj'B,T) ,

p(0|x) = p(B,T|x) = NOWi-jc>d(b,C, v,h) from (7.5.5), then

p(y|x,xen,x€ll) = tmtd[Wb,AjL_1 ,h,v-d+l] , given by equation (7.5.14.).
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Wow consider the case where the populations have parameters in common.

Suppose the populations ni,Il2,. ... ,nj have parameters in common. Then the 
joint predictive distribution of y does not factorise as above. Instead the 
joint predictive distribution of the observations

n=<m.yi2.... yim. >1
from population for i=l,2,...,I, is given by 

P<Zl >Z21-- ,Zl1*1 >*2---->*I .Zi^i ,Z2en2----»Zl*nI)

= K j a  j i P ( y i J 19 , y i j * n i ) ]  . p <© Ix i >2£2* ------ , * i )  <3®

where is an independent random sample from population rî  for i=l,2,....,1.

Multivariate Normal populations 

Using the notation of Chapter 6 :

P<Yij ie,yij6ni) = p(yij Iji.T.yijelli ) = Nod(Aii,T)

p(0|x1 ,x2 ,---,xj) = p ^ T J X i , ^ , ----,xj) = No^i^gjC.v.h^NcWi^d^CjVjh) ,
where b = (/3i ,/32, . . ,/3j) • and C = diag(Ci,C2,.. ,cj) are Ixd olp»A u x  <n«Stncw 

P<Zl»Z2>-- »Xll2£l>£2»---*2l»Zlen1,226n2,---»Zl€nl)

l f Cj 1^/z 1 . rHĈ v-t-an. )] . ihiy/*
i=l LCi+miJ J rd [isv] .rrdEmi/2 |H|(v+n”i)/2

(10.3.2)

where H = h + E S + E ^ j - .  (7±-0±)(y±-0±)' i=l Zi i=l mi+ci

and S = Ex(yii-7i)(yij-5'i)'Z i j= l
is the corrected sum of squares and products matrix for the new observations 

from IT*, for i=l,2,. ... ,1.
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Equation (10.3.2) is obtained from (7.6.2) by the following substitutions :
Itij = 1 for i-l,2,..,mi and i=l,2,..,I, so that A = Im where m = E t

Iki = 1 for i-1, 2,.., I , so that k = E k, = I,i-1
W = mat -diag(Wi’W2 ’,.. ,Wj' )' , a mxl matrix diagonal design matrix, with 
Wi* = [1,1,..,1] , a lxn»i vector,

Z = mat-diag(Zi'Z2 ’,. . ,Zi' ) ’ , a nxi matrix diagonal design matrix, with
I

Z±' = [1,1,..,1J , a lxni vector, and n = E n^i-1 *
Y and X are as defined in section 7.6.1,

B = (i±i,J±2, • • »£i)’ . a Ixd matrix, 

b = (Pit&2*••*&1)' » a Ixd matrix, and 
C - diag(ci,c2,..,cj) , a Ixl matrix,

W ’W - dic^(mi,m2,. . ,mj ), and

A = mat-diag[Ai,A2 ,.. ,Aj] , where A* _1_
m-j+ĉ 1mi] for i=l,2,..,I.

Multivariate Normal linear model populations

P<yij!Q»w1j,yijeni ) = p(yij |B,T,Wij ,yijelli) = Nod(wij‘Bi»T > , 
as in section 7.6.1,

p(©|X,Z) = p(B,T|X,Z) = NoWiX>d(b,C,v,h) ,

P<Zl>X2» • • »Xl •x »z »w »Zlenl»X2<£n2> • • »XlerTI ) is given by substituting A = Im into
Iequation (7.6.2), where m - L m±.
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10.4. Credibility interval for P

Por the situation of two populations, and II2, the posterior distribution 
of P can be obtained by transformation from the posterior distribution of the 
log likelihood ratio L at a particular new value y (not neccessarily one of the 
uncategorised observations (yi»y2>••*Ym) also obtained from the mixture 
distribution). The posterior distribution of L can be approximated once its 
posterior moments have been found, i.e.

E(Lr ) = | I-r.iKeixx.a.z) de .

2 2  2  r m 1
But p<©|]c1,X2 ,y) = E C.....E n q .P(©lxi»X2*Z»yjenis for j=1.2,..,m) ,12~1 1nr--L«-j=i ijJ J j

provided that the mixing parameters are known and hence,

E(Lr ) = 2 2 2-E . L,--- Lii=l i2=l im=l
m -I for j=l,2, ,m). (10.4..1)

But E(Lr jxi , x ? . y ^  for j=l,2,. ... ,ra) can be found for specific population

distributions from the results already obtained in earlier chapters since 
(xi ,x?,y.yjglli- for j=l,2,.... ,m) reduces to just two independent random 
samples from populations IIi and ri2 (some new observations yj are now added to 
the random sample xi while the rest are added to the random sample X2 ) anĉ  this 
is exactly the situation considered in Chapters 2,3,4. and 7. Hence essentially 
the posterior moments of L are a weighted average of the posterior moments of L 
given different allocations of the yj to populations IIi and IT2 .

Por two populations with no parameters in common the cumulants of L can be 
found using (1.4..2) from the seperate cumulants of 1^ for i=l,2, (given in 
chapters 2 for multivariate Normal populations with unequal covariance matrices, 
and chapter 4. for Exponential family populations and in particular Gamma, 
Binomial and Poisson populations and chapter 7 for multivariate Normal linear 
model populations with unequal error covariance matrices, using equation
(1.4.3).

Finally for 1=2 populations E(Lr ) can then be found using equation (10.4..1) 
for r=l,2,3,4. and hence the posterior distribution of L given xi> 2S2 X can 
be approximated using either Pearson curves or, if appropriate, a Normal 
approximation, and the posterior distribution of P obtained by transformation.
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For the situation of more them two populations, interest centres on the 
posterior moment generating function of the I population log likelihood 
functions at a particular new value y, i.e. <t>i(t), where t: = (t^,t2 ,.. ttj) and 
I = (li,l2,..,lx ), where 1  ̂= log Pi(yie), for i=l,2,..,1.
Hence,

♦l<£) = E[e£ “ j = | er- ~.p<©lx1,x2 ,.. ,xj,y) d0 .

But p<eix1,x2 ,. . ,xi»X) =
X X I  r ID I. n q  .p<e|Xi,X2 » * • »2Sl»Z»yjeni for j=l,2 , . . ,m) , (10.4..2)11--L 12~± 1nr--L'-j=l 1jJ J

provided that the mixing parameters are known and hence,

♦l<t)
I I 

= . E . E . . 
11 - 1 12“ -̂

I r m
. . .E  1 n q .

«■ j = l  * j j
| -E[e£  “  1251.252.- •>25l>Z>yj€nj  f o r  j = l , 2 , ----- ,m

But E r t'i,[e-----151.252. • .25l»Z.yj«n i f o r  j = l , 2 , . . . .  ,mj can be  fo u n d  f o r  s p e c i f i c

population distributions from the results already obtained in earlier chapters

since,
(x-i ,x?,.. ,x t ,yjyj<sn-,- for j=l,2,.... ,m) reduces to just I independent random 
samples from populations (for j=l,2,..,m, the new observation yj is
now allocated to population . and so is added to the random sample x ^  ).
This is exactly the situation considered in earlier chapters 4,6 and 7. Hence 
essentially the posterior moment generating function of 1 is a weighted average 
of the posterior moment generating functions of _1 given different allocations of
the yj to populations ni,Il2 ,.. ,nj.

For I populations with no parameters in common, the moment generating 
function of 1_ can be obtained from the moment generating function of 1^ using 
equation (7.3.3).

Finally <*>j/t) can be found using (10.4.2).
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CHAPTER 11

Conclusions

11.1 Summary

A method of approximating the posterior distribution of P, the probability 
that a new observation y belongs to one of two populations with no parameters in 
caramon has been developed and applied generally to Exponential family 
populations and specifically to multivariate Normal and Normal linear model 
populations with unequal covariance matrices, Ganma, Binomial and Poisson 
populations. The posterior moment generating function of the log likelihood 
function at y has been derived and the posterior moments of the likelihood, log 
likelihood and log likelihood ratio functions have been found. The method has 
been extended to populations with parameters in common and applied to 
multivariate Normal and Normal linear model populations with equal covariance 
matrices, for which the posterior moment generating function and moments of the 
log likelihood ratio L has also been found.

The posterior distribution of L has been approximated either using Pearson 
curves or using a Normal approximation. The posterior distribution of P has been 
obtained by transformation from the posterior distribution of L. A credibility 
interval for P can be obtained from the corresponding credibility interval for 
L.

The method has been generalised to the situation where the new observation 
y belongs to one of more than two populations (with or without parameters in 
common). For multivariate Normal or Normal linear model populations with equal 
covariance matrices this involved finding the joint posterior moment generating 
function and moments of the log likelihood functions at y and the joint 
posterior moments of the likelihood functions at y, using the recurrence 
relationship derived between the multivariate moments and cumulants of a random 
variable.

The method has also been generalised to the situation where the mixing 
parameters are unknown and the random samples were obtained by mixture sampling 
from the combined population distribution, and their population of membership 
subsequently identified.
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A method of combining subsets of variables modelled seperately has been 
shown, including as a special case the situation of independent subsets of 
variables.

A method of using the extra information concerning the unknown population 
parameters, provided by new uncategorised observations sampled independently 
from the mixture distribution has been shown.

Pinally the stability of the predictive density function has been 
considered. A method of obtaining credibility interval bands for the likelihood 
and log likelihood functions has been given. For the likelihood function, this 
gives a credibility interval band around the predictive density function. The 
joint posterior moment generating function of the log likelihood functions at 
multiple new values yi,y2, • ♦ • *ym> îas been obtained generally for an Exponential 
family population and specifically for the Gamma, Binomial, Poisson and 
multivariate Normal linear model populations. In particular the posteripr 
correlation coefficients between the likelihood and log likelihood functions at 
different values y^ and y2 has been obtained.

The relationship between Pp the ’predictive* estimate of P and E(P) the 
posterior expected value of P has been investigated in Appendix 1, showing that 
E(P) averages P over the posterior distribution of the parameters 0 given the 
independent random samples xi and X2» while Pp averages P over the posterior 
distribution of © given xi» *2 ar)d the new observation y, specifically assuming 
that y has been sampled independently from the combined population 
distribution.
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11.2 Practical uses

The posterior distribution and credibility interval for P quantify the 
uncertainty about estimates of P and illuminate the relationship between the 
different estimates. Others have found that the 'estimative* and 'predictive* 
estimates of P can differ dramatically in their practical implications. In 
chapter 2 an example was considered in which this occurred. It was found that 
although Pe amd Pp were not statistically different (both lying within the 
credibility interval obtained) they were dramatically different in their 
practical implications with Pe extremely close to 1. The examples of posterior 
distributions for P obtained in chapter 2 were of two types either ' stable' , in 
which case further sampling would only serve to provide a slightly more accurate 
estimate of P, or 'unstable* in which came further sampling would be of 
considerable value for deciding at which extreme, 0 or 1, P lies.

The extremism of Pe (paticularly when the sample sizes are small relative 
to the number of parameters) may well be am example of a more general problem of 
extremism among non-linear functions of parameters when using maximum likelihood 
estimation where the likelihood function is skew. It should be noted however 
that Pe is not in general the maximum likelihood estimate of P even when it is 
based on replacing © by its maximum likelihood estimate ©g, because the napping 
from © to p(yl©) is not in general one to one and hence p(yl©e) is not in 
general the maximum likelihood estimate of p(yj©).

Given a particular utility loss-gain structure, relating possible actions 
to the true population of the new observation y, a point value for P would give 
a point optimum action, while a distribution for P would give a distribution of 
optimum actions or a distribution for the expected utility or gain for a 
particular action.

Finally the credibility interval band around the predictive density 
function quantifies the uncertainty or instability about the predictive density 
function, and should be of assistance in understanding its character, or rather, 
the character of the posterior distribution of the likelihood function (or log 
likelihood function). This should be of some use in the general area of informed 
prediction.
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11.3 Farther work

The coverage properties of the credibility intervals, for the probability 
of population membership of a new observation y, derived here could be 
investigated by a large scale simulation study. Work is currently being 
undertaken by Dr. Critchley and Dr. Ford, at Warwick and Glasgow universities 
respectively. They are comparing the coverage properties of several Classical 
intervals, including one based on the profile, with the corresponding Bayesian 
interval derived here, and are also comparing the intervals when applied to a 
range of practical data sets.

The general results obtained here for Exponential family populations could 
be applied to specific populations other than the ones considered here. Indeed 
populations which are not members of the Exponential family could be 
considered.

More accurate approximations to the posterior distribution of the 
likelihood and log likelihood function than the Pearson curves used here could 
be considered. Indeed the exact distribution would be desirable, though 
generally this appears intractable.

Further consideration could have been given to the choice of prior 
distribution for the parameters ©. A preposterior approach was considered in 
Appendix 5 however this is probably only sensible in the situation involving 
several populations rather than just two.

Finally the credibility interval band for the likelihood function around 
the predictive density function, developed here, could be applied to further 
practical data sets and also its coverage properties could be investigated by a 
large scale simulation study. Indeed this would seem paticularly helpful since 
the likelihood (or log likelihood) functions are the 'building blocks' for the 
probability of population membership.
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11.4 General comment

Itie problem of finding the posterior distribution of P when discriminating 
between any two populations which have no parameters in common essentially 
becomes one of finding the posterior distribution of the likelihood (or log 
likelihood) function evaluated at the known new observation y for each 
population separately. Assuming that the parameter sets of the two populations 
have independent prior distributions then the likelihood (or log likelihood) 
functions will have independent posterior distributions and so the posterior 
distribution of P can easily be found by transformation. It does not in 
principle matter whether the data is continuous, discete or categorical or a 
mixture of these as long as a suitable model can be found separately for each 
population and as long as the posterior distribution of the likelihood (or log 
likelihood) function can be found or at least approximated separately for each 
population. The problem is essentially one of ’density estimation’ or at least 
approximation of the posterior distribution of the density function. In order to 
estimate P, 'density estimation’ is required, while to obtain an interval for P, 
the variability of the density estimate is required. Non-pjarametric approaches 
to ’density estimation’ (instead of the p>arametric approach considered here) 
have been reviewed by Seber (1984, Ch6 ) and Fryer (1977).
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APPENDICES

Appendix 1 shows the relationship between E(P), the expected value of the 
posterior distribution of P, and Pp, the Bayesian 'predictive* estimate of P. It 
is shown that the 'predictive' estimate averages the random variable P over the 
posterior distibution of O given both the independent random samples x^ and x? 
and the value of the new observation y while E(P) averages P over the posterior 
distribution of 0 given the independent random samples xi and X2 only.

Hence the Bayesian 'predictive* estimate of P will be close to E(P) if the 
information provided by the new observation y about the population parameters is 
negligable compared to that provided by the samples x^ and X£. The situation of 
more than one new observation is also considered.

Appendix 2 derives a recurrence relationship between the multivariate moments 
and cumulants of a p-dimensional random variable. The multivariate moments about 
the mean (or about zero) can then easily be found once the multivariate 
Xumulants have been obtained.

Appendix 3 gives some formulae for the Psi function and its derivatives at 
integer values and integer values plus a half, which are useful for calculating 
the posterior moments of L and hence for approximating the posterior 
distributions and credibility intervals for L and P.

Appendix 4 derives an efficient numerical method of approximation which is 
particularly useful when the Psi function and its derivatives are required at 
the same value, for use if the value is not an integer or an integer plus a 
half.

Appendix 5 develops a method of estimation of the parameters of the 
Normal-Wishart prior distribution for (m »T) for multivariate Normal populations 
with unequal means and unequal covariance matrices.
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APPENDIX 1

The relationship between the expected value of the posterior distribution of P 
and the predictive estimate of P

In this appendix the relationship between E(P), the mean of the posterior 
distribution of P = P(Q,y), which can be used as an estimate of P, and the more 
usual Bayesian 'predictive* estimate Pp of P is shown, and the situation where 
each is appropriate is explained. A comparison of the extension of each of the 
two estimates to the case where there is more than one new observation of 
unknown population origin is also given.

Treating P as a random variable, the expected value, E(P), of its posterior 
distribution, given independent random samples and X2 from populations and 
112 respectively, can be considered as simply an estimate of P subject to a 
squared error loss function since

E(P) = | P.p<eixi,x2 ) <ae » <a i .i )
where P is given by equation (1.1.1). Alternative estimates of P using different 
loss functions could be obtained, e.g. the median or mode of the posterior 
distribution of P.

However, assuming known prior probabilities q^ and q2 , then the usual 
Bayesian 'predictive* estimate Pp of P is given by,

Pp = iK y ^ n jjy .X i,^ )  =_____ qijpi(yixi,x2)_______ = q iP i(y lx i,* 2 )
qiPi(yi2LL»252)+q2P2<yi2Si»2S2) p < y i x i , * 2 )

qiPi(yie) p<eixi,x2) d©
p( y|xi,X2 )

_ qiPi(yte) p(y»otxi,x2) de 
p<yi©,xi,x2) P(yixi,x2>

_ j qiPi(yie).p<eiy>xitX2) de 
J p<yi©)

= Jp.p<eiy,xi,X2 ) de , (A1.2)

i.e. Pp = E(P|y,xi,X2 ) , and the Bayesian 'predictive' estimate of P, Pp , has 
been shown to be equal to the ejqpected value of P over the predictive 
distribution of Q given y, and jtg*
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The difference between the estimate E(P) in (Al.l) and the 'predictive* 
estimate Pp in (A1.2) cam clearly be seen. The 'predictive* estimate averages 
the random variable P over the posterior distribution of 0 given both the data 
xi and 252 a™* the v5*lue of the new observation y, while the estimate E(P) 
averages P over the posterior distribution of 0 given 2£i and X2 only.

Hence, if the information about © from y was negligible compared with the 
information from the random samples or if it was not certain that the new 
observation was sampled (independently) from the combined population 
distribution then E(P) is appropriate rather than Pp.

More than one new observation

Furthermore if there are m new observations (yj;j=l,2,...m) independently 
sampled from the combined population distribution, which are to be allocated, 
then the fully Bayes approach gives, assuming and q2 are known, for m=2,

p<y1€ni,y2«£nj lyi,y2,25l»2S2 ) qjqiP( yi > y2 1 y i€ni > 72^ 1 , jgi, jg2 >
kli ill qkqi p<yi.y2iyi^.y2«n1.2&.22>

which is different from the product p(yT€JIj |yi ,xi ,x? ) .p(y?€llj |y? ,xi ,x? ) for 
i=l,2 and j=l,2 since y^ and y2 are not independent given (yi efl-i .ŷ eflj ,xi ,x«?) 
unless i»*sj.

Consequently the marginal probability given by
p(y16ni |y1 ,y2 ,x i,X 2 > = jf jF K y i^ n i.y ^ n j lyi»y2 »251̂ 252 ) »

is different from p(yi€11-̂ 1 y ^ x ^ , ^  )♦
If however it is not certain that the new observations (yi;i=l,2) were 

randomly and independently obtained from the combined population distribution 
then as before E(P) is appropriate for p<yi€rii lyi,y2 ,xi,X2 ). This problem is 
discussed further in Chapter 10.
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APPENDIX 2

A recurrence relationship relating the multivariate moments of a p-diinensional 
random variable to its multivariate cumulants

The recurrence relationships are:

ri'l r2 
«r = ■ E- . 1H=0 i2=t o - - j o  r ; ; l ! ( 3 G l .... ............................................... •>
and the same relationship holds with »M± and Kr-± replaced by and
K x-i respectively where, r=(ri,r2,---,rp ), i=<ii,i2 »----,ip) and,

Ui = E^X111X2t?___ Xp1? j for i^O,

Ui' = e [ [xi-ECXx)]11 [x2-E(X2)j1 2........ [xjp-EtXj,)]1? ] for iSO,

K± = [ D ^ }[ log *(t) ]]

*<t) = E[et,x ] , t=(tltt2,.

■ d(il> d(iz> .... . .d(lP ) log <H t) for i^O
dt{^ > dt<iz> dt<,ip ) t=0

,tp) and X=(X1 ,X2,.

and K̂  - f 0 for l.'ji=l i.e. Eij=l
l Kj_ for _l'i>l i.e. Eijll

In particular,

' rr1 fr - 1 1^  ■ iiol i J Mi' K•r~ i" r;2 fr-ll .
- iiol i J Mi Kr

and
rx-l

^ 1 ^ 2  = ij=0

r2
i2&3

fri-l
l U ] (i2) Mil - i 2 Krl

for (rlfr2 H l ,0) i.e. for r ^ l  and r2^0.

for r^l (A2.1)

(A2.2)
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Proof
d_ <t>(t) = 4*t) d_ log 4>(t) (A2.3)
dt̂  dt^
Differentiating (A2.3) , with respect to t^, (r^-l) times using De Moivre's
Theorem gives,

d(rl> 4»(t) 
dti(rl>

fri"1
ix=o l i,

d< H >  0( t) d< rl~il> log $(t) 
dtl(ii) dt^ri-ij)

for rj^l

i.e S  rl>
«*-> ■ s e  ( '; ;* ] D (. l l ) 4»<t) tl ~

.< rl'^l)tl log 4>(t) for rj^l.(A2.4.)

Differentiating (A2.4-), with respect to t£, times using De Moivre's Theorem 
gives,

o < Y 2)*(t)tl »t£
ri"l r2
. E . E 13=0 l2—0 D(r1-i1,r2-i2iog

tl »t2 (A2.5)

Now differentiating (A2.5), with respect to tj, rj times for j = 3 p  gives

„(£>«/1) = r i E1  r \  r| r? fn-11 fr21 r* Dt ®'-) iiSo i,§o ioid-inio l in J U,J U

setting t = 0 gives,

ri“l r2 r3 
M = ■r 12=0 X2=0 13=0

( J ]  Dj f ’*<£> i ) l o « *(£ )
(A2.6)

, ( 1 >,

J  P E 1] E l  E l .......( £ ] » !  v .

r tf rx-Erxn iReplacing <*Kt)in(A2.6)toy<l>,( t ) = E  e— the moment generating

function of [X-E(X)J and setting t=0 gives

. rx-l r2 r3
a = E . E . E i ii=0 12s0 13=0 i a  m  E )  E l .......e j  » ;« 'pj l r-i.

where K.1 = f D<i)iog tit) I = f °L t — J t=o l for 1 i-̂ i

since log <t»(t) = log E [ -
E(X) t'X . e— E(X) + log <t>(t).

(A2.8)



APPENDIX 3

Formulae for evaluating the Psi function and its derivatives at integer values 
and integer values plus a half

For the population distributions considered here i.e. multivariate Normal 
and Normal linear model populations with equal and unequal covariance matrices, 
Binomial, Gairana and Poisson populations, if vague prior information about the 
parameters is assumed, then the formulae for the posterior moments of the log 
liXelihood ratio L involve only the values of the Psi function and its 
derivatives at integer values or integer values plus a half. Simple formulae for 
these are given below for n a positive integer, (Abramovitz and Stegun, 1965),

¥(n) = n-1-C + E X=1
1
X where C is Euler's

V( n+«s) = _r* -i- o r n 1 - loge 2
.X=l 2k -X

f

^ ^ ( n )  = rr2
6~

n -1E
X=1

1

k2
, and,

^ 1 \ n+%) _ 77,2 / nr 1
2 » L*

X=1 (2k-l)2

In general for r̂ »l,

*(r)(n) = ( -1 )r̂ "X.r! C( r+l)
n-1  E
X=1 Xr+l

^  r \  n+% ) = ( -1 )r+1.r! r+l n(2r A - 1) C( r+l) - E
X=1 (X-%)(r+l)

oo 1where C is the Zeta function and £(r+l) = E
X=1 Xr+l

and if r is an integer then C(2r) = 22r 1rr2rBr for r=l,2,3,...
(2 r)l

where Br is the rth Bernoulli number (Bi=l/6 , B2=l/30, B3=l/42, B4=l/30 etc.)

TT̂In particular £( 2 ) = —  = 1.644.93407 , C( 3) = 1.20205690 andO
C(4) = 7T

90 1.08232323.



A P P E N D IX  4

An efficient numerical method of approximation which is particularly useful 
when the Psi function and its derivatives are required at the same value-

The following Beries expansions can be used to calculate the pel function 
and its derivatives:

•*(*) = - c + * + * k(S3ET •

where C is Euler's constant, C = 0.577216,

* (r) (*) = (-1)1* 1 rl l ^
k=0 (x+k) r+"*

The convergence, however, iB slow and the summation can be replaced by 
integrals for faster evaluation. In fact to evaluate

SQ = l f(k) , 
k=kQ

we use a Taylor expansion for f ^ ( y )  about the nearest integer to y, 
integrating over the range (k - — , k + — ) and then summing over all 
k > k^ to give

" f(m) (y) ay = I f(m) 0 0  + _ L _  
k0 - 1 / 2 k=k0 y .z 2

+ __

5J24

(A4.1)

r f(m+2)
l f (k)

k=kQ

r f  W+.
k̂ k0
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Rearranging and similarly expressing the second and third summations 
in (A4.1)giveB

m = I
c=i

(m 0)

where
S =m
B.J

" . kik f(m) (k),
0
>2(j-1)

0-1
l

1-1
BlA2(j-l) ( j  > 1)

B. = 1, A. = 1 and I. = f (y)dy (j * 0)
WTJT J ko{ l/2

The importance of this is that once the I .  ( j  > 0 ) and B.  ( j  j  1 ) 

have been obtained, the (.m > 0) are easy to obtain and hence the psi 
function and its derivatives can easily be obtained at the same value x 
by choosing f(k) - 1 m

k2
Depending on the function f, if kn is small, the convergence of the I. 
to zero may be greatly increased by writing:

•M ^ r f W  (k)
k r 1s = y (k) + y

m k=k E=k,
(A4.2)

'0 1
The first (k^-k^) terms are evaluated exactly and the second summation is
approximated using the first few terms in(A4,l) e.g. f(k) = 1/k2, then
I.. = oJkQ~^+^ J  , while using (A4.2) = o|k^ . Keeping the
total number of terms n used to calculate S fixed, take k, = k. + r inm 1 0
(A4.2) then,for the greatest order of accuracyjr^ is chosen to maximiBe 

2(n-r+l) log(kQ + r)
Differentiating with respect to r gives

_ n /, \ 2(n-r^+l) n- 2 log (kQ + r ^  + 1 7 = 0
k0 + r1

The asymptotic relationship n = r^ log r^ can be used to estimate the 
optimum value r^ of r.



A P P E N D IX  5

Estimation of the parameters of the Norma1-Wlshart prior

distribution for (y,T) for multivariate Normal populations
with unequal means and unequal covariance matrices
Consider r samples of size n^ (i = 1,2,..., r) from multivariate

normal distributions mean and covariance E^ where E^ is a dxd matrix.
Let = E^  ̂for each i. Assume each has a Normal-Wishart prior
distribution p(y^,T^) where

p(pi,Ti) ■= NoWid(V,0 , n0 , v0 , H0) .

Let the sample mean and corrected sum of squares and products matrix 
be x^ and S^, with independent normal and wishart distributions 
respectively:

p (x± |yi,Ti) tr N°d ( i W . ) ,

p(Si |pi.Ti) s Wid (n. - 1, T.)

Then using the prior distributions p
integrated out from the joint distribution

joint marginal distribution M(x^,S^) where

M(xi,Si) stsi ‘v va <ni - ^ o 1

in the notation of Aitchison and Dunsmore (1975, Ch. 2).
Maximum likelihood estimators of the prior parameters could now 

r
be obtained from II M(x.,S,), however the resulting equations are

1=1 1 2complicated and require non-linear minimisation in (d +3d+4)/2 variables.
Instead consider the product L of the likelihoods of using

their common Normal-Wishart prior distribution*
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l - n [iMp.fT.)]i-i

and replace the true in this likelihood function by their unbiased
-1estimates (x^, ( n ^ - d - 1 ) ) . Estimates of the prior parameters can be

obtained by maximising the resulting 'likelihood'. 
Let = (n^-d-l)S^ \  then

r t

L<no'l,o'vo'Ho) ■ nord/2exp • TIuo'(̂ V " lrHi*i,,(no I «i H 1
Vn-d-l

x ( n |w.|ii=l
rv

*dv0

) " o
- k0H_l 2 exp[- | tr(H0 E Bj)]

trd(2 V 1

The maximum 'likelihood' equations give

r -1 r (E W.) E W.x.
1 1

*0 = rd
r r r r
(E x.’W.x.) - (E W .x .) ’ (E W.) (I W.x.)i 1 11 i 11 i 1 i 11

” 0 V
-1

and Vq is the solution of the equation

rv
r, log (-r—) - r log | E W. + 'E log W.

- r E Y(y(v +l-i)] 
i-1

which can easily be solved by the Newton-Raphson method,

145



The posterior distribution P ̂ ' TA l^/S^) of given the

sample statistics (x^,S^) and the prior distribution p(y^rT^) is given byx

p(ui,Ti |xi,Si) = NoWid (■ °n° + n* * . n0 + n., v0 + n.r H.)

where H. «= H„ + S. +
n n.0 i

(x.-iu) (x. —p_) 'i O i n» + n. i O i 00 i

As an example, suppose that samples of size 10 from each of two
* * - -ipopulations give unbiased estimates (u^,T^) = (x^,(n^-d-l)S^ ) for

*(Mi,Ti)f i’ - 1,2; r «= 2, nx «= n2 = 10, Z^ = J~0 * d * 2

Suppose

(0.0 0.0), Z. = (0.6
0.6

),

\12 = (1.0 1.0), = (

The maximum 'likelihood' equations above give

A
^0 = (0.399 0.536),

A
no ‘ 6.847, vo "
A 9.737 

j .562
3.562. 
6.697J'Ho =

The posterior distributions are therefore given by

p(p1,T1|x1,S1) *= NoWid ( (0.162 0.218), 16.847, 16.911, ( ^ ^  )

p(Ul,Tl|x2,S2) » NoWid ( (0.756 0.811), 16.847, 16.911, }
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Assuming instead vague prior knowledge

p(VirT1 |x1,S1) = NoWid ( (0.0, 0.0), 10, 9, *'q ) )

p(y2,T2|x2,S2) •= NoWid ( (1.0, 1.0), 10, 9, (3*’° °*°) )

There may be some instability in nQ and v^ when using only two populations 
so that this procedure is only recommended where several populations are 
available.
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