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A method of approximating the posterior distribution of P, the probability
that a new observation y belongs to one of two populations with no parameters in
common is developed and applied generally to Exponential family populations and
specifically to multivariate Normal linear model populations with unequal
covariance matrices, Gamma, Binomial and Poisson populations. The posterior
moment generating function of the log likelihood function at y is derived and
the posterior moments of the likelihood, 1log likelihood and L, the log
likelihood ratio function are found. The method is extended to populations with
parameters in common and applied to multivariate Normal linear model populations
with equal covariance matrices. The posterior distribution and credibility
interval for L are approximated using Pearson curves. The posterior distribution
and credibility interval for P are obtained by transformation from L.

The method is generalised to the situation where the new observation y
belongs to one of more than two populations (with or without parameters in
common). The method is also generalised to the situation where the mixing
parameters are unknown and the random samples were obtained by mixture sampling
from the combined population distribution, and their population of membership
subsequently identified. A method of combining subsets of variables modelled
seperately is shown, including the location linear discriminant model and the
situation of independent subsets of variables as special cases.

Finally the stability of the predictive density function is considered. A
method of obtaining credibility interval bands for the 1likelihood and log
likxelihood functions is given. For the likelihood function, this gives a
credibility interval band around the predictive density function. The joint
posterior moment generating function of the log likelihood functions at multiple

new values is also obtained.
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CHAPTER 1

Estimates, predictive distribution and credibility interval for P, the

probability that a new observation belongs to one of two populations

1.1 Introduction

Suppose that observations belong to one of two distinct populations [I, or
fI,, and that in population 0@ the d-dimensional random variable X has
probability density function pj(xi®) of known, but not neccessarily the same
functional form, for i=1,2, dependent on some unknown parameter vector © which
combines the parameters from both populations. This allows for the possibility
of common parameters between the populations. Suppose that independent rﬁndom
samples, X, = (X,j, j=l,n,) and X, =(x%zj, j=1,n), from I, and [, respectively,
are to be used to gain information concerning which population, II; or II,, a new
observation y belongs to. Prior to being observed y is assumed to have been
drawn from II, or I, with probabilities gq; and q, respectively,i.e. y is assumed
to have been drawn from the combined population distribution,
q,p,(yi8)+q,p,(y|i8). The probability P that the new observation y belongs to I
given the value y, the combined population parameter vector © and the prior

probabilities is,

P = _9,p,(y18) . - (1.1.1)
q,pP;(yI8) + q,pa(yi0) ‘

The purpose of this research is to develop a method for approximating the
posterior distribution and finding a credibility interval for P. The method is
outlined later in chapter 1 and is applied to multivariate Normal populations
both with equal (chapter 2) and unequal (chapter 3) covariance matrices, and to
Exponential family populations, including Gamma, Binomial and Poisson
pPopulations (chapter 4).



In chapter 5 the problem is generalised to allow the previously fixed known
prior probabilities of population membership, q; (and Q2=1-qQ;), to be unknown.
Assuming a known or vague prior distribution for qj, then random samples x; and
X3, obtained by mixture sampling, i.e. sampled from the combined population
distribution qip;(xi9) + qyp2(xi0), and then identified as belonging to M and
; respectively, can be used to update the prior distribution for q;. The number
of observations in the data set from each of the two populations gives
information concerning the distribution of q3;. If the mixing parameter q; was
unknown and the random samples were obtained by seperate sampling, then the
problem is insoluble since no information is available concerning the mixing
parameters, unless a non vague prior distribution is assumed for qj.

The problem of more than two populations is considered in chapter 6. In
chapter 7 the general situation of multiple new observations from one or more
populations, where the mixing parameters may be unknown, 1is considered and
applied to multivariate Normal linear model populations, both with equal and
unequal population error precision matrices. The stability of the predictive
density function is investigated in chapter 8. The problem of combining subsets
of variables modelled seperately is considered in chapter 9, including as a
special case the situation of independent subsets of variables. In chapter 10
the problem of using the extra information concerning the unknown population
parameters © provided by the new observations of unknown population membership
sampled from the mixture distribution is considered. Conclusions are given in
chapter 11.

The notation used for population probability density functions used
throughout this thesis is that of Aitchison and Dunsmore (1975), except where

stated otherwise.
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1.2 Estimates of P

Estimates of P using independent random samples from I3 and [I; have been
either ‘'estimative’ or 'predictive’ (Aitchison, Habbema and Kay, 1977).

An 'estimative' estimate of P, denoted by Pe, is obtained by substituting
into pj(yi©) point estimates 3 of the population parameters ©, for i=1,2. The
resulting estimates of pji(yi®), i=1,2 , are then substituted into equation

(1.1.1), giving

A
Pe = q.p.(yie) . (1.2.1)
A A

Q,;P,(yi9) + q,p(yi9)

A ‘'predictive' estimate of P, denoted by Pp, is obtained by substituting
the predictive densities pij(yixj),x3) for the population densities pj(yi®), i=1,2
, into equation (1.1.1). The predictive density is defined by

pPi(yIxy,x3) = j pi(yli®) p(8lix;,x2) d® ,

(Aitchison and Dunsmore, 1975, Ch.2), where p(®©IXx;,%x72) 1is the posterior
distribution of 8 given the independent random samples x; and x5, and assuming
either a prior distribution for @ or the limiting case of vague prior knowledge

about 9.

Hence,

Pp Q1 P1(¥IX1,X2) . (1.2.2)

Q1P1(YixX31,X2) + QzPa(yixy,x2)

The 'predictive’ estimate of P can be shown to be equal to p(yeld;ly,X;,X2)
from a fully Bayes approach, i.e.

P(yelly,X),X2) = Q1P1(¥ixXy,%2)
Q1P1(YIiX1,X2) + A2p2(YiXy,X2)

(Aitchison and Dunsmore, 1975, Ch.1ll).

11



The ‘'estimative' and ‘'predictive' estimates of P have been compared for a
particular data set concerning Conn's syndrome by Aitchison and Dunsmore( 1975,
Chll). They found that the 'estimative' and ‘predictive’ estimates of P can
differ dramatically, particularly in their practical implications. The
'‘estimative' and ‘'predictive' estimates of P have also been compared in a
simulation study by Aitchison, Habbema and Kay (1977). They also found that the
‘estimative’ and ‘'predictive' estimates of P can differ dramatically for the
multivariate Normal populations they considered, and that the ‘'predictive’
estimates of P generally gave more accurate estimates of P as judged by the
abseo\uke error in the estimate of the log likelihood ratio.

An alternative Classical estimate of P to the usual ‘estimative’ estimate
Pe has been proposed and considered by  Moran and Murphy (1979). They propose
using bias-corrected estimates of the log likelihood functions log pj(y!©) for
i=1,2, and hence obtaining estimate P, of P by transformation from (1.1.1). This
implies using a bias-corrected estimate, L,;, of the 1log 1likelihood ratio
function, L = log p3(y!8) - log pa(yi®). They found that the Classical estimate
Py, of P performed comparably with the ‘'predictive’ estimate Pp of P, as judged
by the absslute error in the log likelihood ratio, but also that all three

estimates of P, Py, Pe and Pp can differ dramatically.
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1.3 The posterior distribution and credibility interval for P

Since the ‘'estimative’ and ‘'predictive’ estimates of P can differ
considerably as shown by Aichison and Dunsmore (1975, Chll), Aitchison, Habbema
and Kay, (1977) and Moran and Murphy (1979), it would be useful to obtain a
Bayesian credibility interval for P. In particular this will throw some light on
the relationship between the 'estimative’ and ‘'predictive’ estimates of P.

If, given y, P is treated as a randon variable,(a function of the random
variables ©), then the posterior distribution of P given x, and X, can be
obtained,

In order to achieve this, the posterior moments of the logarithm of the
likelihood ratio, L, are obtained, where L=13-13, and 13 = log(pi(yi®)) for
i=1,2. The posterior distribution of L can then be approximated, either using
Pearson curves (Elderton and Johnson, 1969, Chapter 5) or, if appropriate, using
a Normal distribution. A Normal approximation may be justified in a particular
case provided calculation of the posterior skewness and kurtosis of L shows them
to be close to the values for a Normal distribution, i.e. 0 and 3 respectively.
An approximate posterior credibility interval for L can easily be obtained using
percentage points for Pearson curves, tabled in full by Johnson, Nixon and Amos
(1963), and in summary by Biometrika tables, No. 42.

The posterior distribution and credibility interval for P are obtained by

transformation from the posterior distribution and credibility interval for L

since,
P = — + (1.3.1)
1+ 32 L

Hence the posterior probability density fuctions p(P) and p(L) are related by,

P(P) = p(L)IdL/dP| = p(L)el.(qy/a2).(1 + e Lay/q;)2 ,for ospsa. (1.3.2)

[
(O]



The'problem of obtaining an interval for P has.been considered extensively
from a Classical viewpoint by Critchley and Pord. 'I’hey' pmpdse two main methods,
the first being based on finding the variance and higher moments of the bias
corrected estimate of the log likelihood ratio, L, and using these to obtain an
interval for P (Critchley and Ford, 1984, 1985). The problems with this approach
are, firstly, that the exact formulae for the variance and higher moments of I
have so far appeared intractable, at least for multivariate Normal populations
so far considered, and secondly, even when found, the formulae for the variance
and higher moments will be functions of the unknown parameters © and hence will
have to be estimated by substituting some estimate of © into the formulae. The
second Classical method they propose is to obwein an interval for the log
likelihood ratio L from its profile, (Critchley, Ford and Rijal, 1986a) and
(Critchley, Ford and Hirst, 1986).

A review of several approaches to obtaining an interval for P is given by
Critchley, Ford and Rijal (1986b), where they compare the intervals obtained for
Conn's syndrome data from Aitchison and Dunsmore (1975, Chll). They found that
their profile likelihood approach and the Bayesian approach, derived here, gave
very similar results for this particular data set. They are currently carrying
out a simulation study to compare the performance of the different approaches to

obtaining an interval for P.
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1.4 The posterior moments of L, the log likelihood function at the new

value y, when the two population distributions have no parameters in common

If the set of parameters involved in p,(yl©) is different from the set in
p.(y1©), and the two sets of parameters have independent prior distributions,
then 1; and 1, have independent posterior distributions and the posterior
cumulant generating function, Kp(t), of L can be obtained by finding the

posterior cumulant generating functions of 1, and 1, separately since,

L = 13 + 1 and hence
o (t) = z[e"L] = E[et(ll'lz)] - g[etll].s[e'tlz} = @) (£).0 (-b),

since 13 and 1, have independent posterior distributions.

Hence,
KL(t) = log ¢L(t) = log ¢11(t) + log ¢12( -t) = Kll(t) + Klz( -t) ,
i.e. KL(t) = xll(t) + Klz(-t) . (1.4.1)

Hence the rth cumulant of L, (Ky)1, is related to the rth cumulants of 1; and

15, i.e. (Kr)11 and (I(r)12 respectively, for r=1,2,..., by,

r
(Kr)L = (Kr)11 + (-1) .(Kr)12 . (1.4.2)

15



The posterior cumulant generating function and cumulants of 1; are found ,
for i=1,2 , from which the posterior cumulant generating function and cumulants
of L are obtained using (1.4.1) and (1.4.2). The posterior central moments of L,
i.e. maments of L about its mean, can then be found from its posterior € umulants
using a special case of the recurrence relationship derived in Appendix 2,

r-2 [r-l

B'y = j-E—O j } B'j Kr-j for ril, (1.4.3)
where u'y is the r*™h moment about the mean and K, is the rth cumulant.
Hence m'2 =Kz |

pu's = K3 , (1.4.4)
K, + 3u'2Ky = K4 + 3K2

i

B'4
The posterior moments of L are thus found and are used to approximate the

posterior distribution of P as explained in section 1.3.

Chapter 2 considers the case of multivariate Normal populations with unequal
means and unequal covariance matrices. This case has been considered from a
Classical rather than a Bayesian viewpoint by Crithley, Pord and Rijal (1986a,
1986b). Chapter 4 considers the case of Exponential family populations having no
parameters in common, including as examples, pairs of Gamma, Binomial and
Poisson populations, each pair having no parameters in common. The case of
multivariate Normal linear model populations with unequal covariance matrices is

considered in chapter 7.
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1.5 Posterior moments of L when the two population distributions have

parameters in common

If the populations have common parameters, then 1; and 1, will not have
independent posterior distributions and hence the moments of L cannot be found
from the moments of 1, and 1, separately, but can be found either from the joint
posterior moment generating function of 1 and 1l; or directly from the posterior
moment generating function of L itself. The posterior cumulant generating
function of L is used to obtain the posterior mean and cumulants of L, from
which the posterior moments of L about its mean are obtained using (1.4.4)
above, The posterior distribution of P can then be approximated as explained in
section 1.3.

Chapter 3 considers the case of two multivariate Normal populations with
unequal means but equal covariance matrices. Critchley and Ford (1985) and
Crichley, Ford and Hirst (1986) have considered this case using a Classical
rather than a Bayesian approcach. The case of multivariate Normal linear model

populations with equal covariance matrices is considered in chapter 7.
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1.6 Motivation for obtaining a credibility interval for P

The dramatic differences in the estimates of P, discussed in section 1.2,
indicate that the posterior distibution and, in particular, the posterior
credibility interval for P would be desirable. It is hoped that this will throw
light on the relationship between the different estimates of P.

Different new observations y could lead to the same estimate of P but have
dramatically different posterior distributions and posterior credibility
intervals and so should not be treated identically.

Prom a practical point of view, given a particular utility loss-gain-
structure, relating possible actions a to the true population IIj of the new
observation y, i.e. U(a,i), a point value for P would give a point optimum
action a (i.e. with maximum expected utility or gain over all possible actions
a), while a distribution for P would give a distribution of optimum actions a or
a distribution for the expected utility or gain for a particular action a. If
the utility structure, U(a,i,y), also depends on the value of the new
observation y, as suggested by Aitchison and Dunsmore (1975, Chl2), then since y
is known the utility structure given the value y returns to being a function of
a and i. Por example, suppose that all values of P in a credibility interval for
P lead to the same optimum action a, one would feel confident in choosing this
action. If, however, the values of P in a credibility interval for P lead to
different optimum actions a, more consideration should perhaps be given to the
choice of action, for example, by collecting further data before choosing an

action.

18



CHAPTER 2

Populations with no parameters in common: Multivariate Normal populations with

unequal means and unequal covariance matrices

2.1 Introduction

The method described in chapter 1 of approximating the posterior
distribution and credibility interval for P, the probability that a new
observation y belongs to one of two populations [ or [, where y is assumed to
have been drawn from the combined population distribution qip(yi©) + qop2(yI©)
is applied to d-dimensional multivariate Normal populations, I and Iz, with
unknown and unequal population means u3 and pu; and unknown and unequal
population covariance matrices I3 and I, respectively. Let T;=Lij 1 be the
population precision matrix for i=1,2, then © = (u;,T;,H2,T2) and the ith~‘

population density, for i=1,2, is given by

/

-d
Pi(y!i8) = pi(ylpi,Ti) = (2r) 2lTill/zexp[-'g(y-ui)’Ti(Y‘ui)] . (2.1.1)

Estimates of P

The true probability, P, that a new observation y belongs to population I is
given by substituting pPi(yl©) from equation (2.1.1), for i=1,2 into equation
(1.1.1).

The ‘estimative' estimate of P, Pg, 15 given by substituting point estimates for
(#i,Ti) into equation (2.1.1) and then substituting the resulting pj(yl®) for
i=1,2 into equation (1.2.1). The maximum likelihood estimates of (p;,Tj) are
given by (‘Zi,nisi'l) where kX{ is the mean and Sj is the corrected sum of squares
and products wmatrix for the ith random sample, xj, for i=1,2.

The ‘predictive’ estimate of P, Pp, is given by substituting the predictive
density pij(yixy,xz) for i=1,2 into equation (1.2.2), where pj(ylxy,X3) is given
by equation (2.2.2) in section 2.2, and (b,c,v,h) are the parameters of the
posterior distribution of (p3,Ti) for i=1,2. Assuming vague prior information
about the parameters (p;,Tji) then pi(yix;,x3) is given,' for 1i=1,2, by>
substituting (%j,ni,nij-1,S;) for (b,c,v,h) in equation (2.2.2), i.e.

-1/2[ 1+[;‘_Ei_i]ni ]-ni/Z (2.1.2)

Pi(ylx),X3) Finy/2) ,l [1+Qi]51 ‘

Y2, ri(ng-dy/2] ni

where D; = (y-%;) S; Ny-%;).

13



Credibility interval for P

In section 2.2 the moments of the posterior distribution of the likelihood
z=p(yip,T) considered as a function of the random variables (u,T) for a given y
are obtained, by integrating zt over the posterior distribution of (u,T) given a
random sample X=(Xj,X2,....,Xpn) from a multivariate Normal population with mean
u and precision matrix T, where X is the sample mean and S is the sample
corrected sum of squares and products matrix.

Since E(zt) = E(et198Z)  the formula obtained in section 2.2 for the
posterior moments of z is also the formula for ¢j(t), the posterior moment
generating function of the logarithm of the likelihood l=logz. In section 2.3
the posterior cumulants of 1 are obtained from log ¢3(t). Hence the posterior
cumulants of 13 [= logzj = log pji(ylui,Ti)], for i=1,2, are then obtained by
appropriate substitution for (b,c,v,h) in the results of section 2.3. If vague
prior information was assumed for (#i,Ti) then

P(u;i,Tilxj) = P(Ki,Til1%i,S1) = NoWig(®4,ni,ni-1,5i) ,
in the notation of Aitchison and Dunsmore (1975, Ch2), and hence (X;i,nj,nj-1,Si)
is substituted for (b,c,v,h) in the results of section 2.3 to give the posterior
cumulant generating function and posterior cumulants of 13 for i=1,2.

The cumulant generating function and cumulants of I=1;-1, are then found
using equations (1.4.1) and (1.4.2) since the posterior distributions of 1; and
1, will be independent. They will be independent because the population
distributions have different parameter sets (u;,T;) and (p3,Ty) respectively and
the random samples from the two populations are independent. Hence the posterior
distributions of the two sets of parameters will be independent, provided it is
assumed that the prior distributions of the two sets of parameters are
independent.

For the example in section 2.4 the cumulants of 13,1 and hence L are found
assuming independent vague prior information for the two sets of parameters
(u31,Ty) and (puz,T2). Pearson curves were then used to approximate p(L), the
posterior probability density function of L using the first four cumilants of L.
The transformation (1.3.1) gives the relationship between P and L and hence
P(P), the posterior probability density function of P is found using equation
(1.3.2). In the example in section 2.4 equal prior probabilities, q; and qz, of

population membership were assumed. The conclusions are given in section 2.5.
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2.2 The posterior moments of z, the likelihood function at y

5

P(ylip,T)

(ZV)'d/zITIl/zexp[-&(y-u)‘T(y-#)} .

where d is the dimension of the vector y, y is a new observation of known value,
and (u,T) has a Normal-Wishart posterior distribution p(u,TiR,S) given the
sample mean vector X, the sample corrected sum of squares and products matrix S

and the prior distribution p(u,T).

If p(u,T) = NoWig(pg,ng,vo.hpo), then for ngio,

p(r,TIR,S) = NOWid[M’nO'*'nva’l"nvhl} ’
_ ng+n
where hy = hg + S + nng—:';(x-uo)(x-uo)' , and n is the sample size,

(Aitchison and Dunsmore, 1975, Chz2).

If vague prior knowledge is assumed for (u,T), i.e. p(u,T) a !TI”S(d+1) y» then
p(u,TiR,S) = NoWig(%,n,n-1,S) , (Aitchison and Dunsmore, 1975, Ch2).

For a general result let p(u,TiX,S) = NoWig(b,c,v,h), then,

i eid zt.p(g,TIR,S) dudT
TAD

l l (2m)7 9t Tt expl-yt(y-p) T(y-p)I.
TMD pe

E(zb)

]

(2m)5d |cT!S exp(-%(u-b)'cT(u-b)].

ihi'sY jT18(V-d-1) exp(-%trhT]
Ta(sv) du dT ,

R d
(d-1)/% 1 rrg(v-a+idg ,

where I'g(4v) = rrd
=1

and TAO means T is positive definite.
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Completing the square. and integrating out u, gives,

ty = K g(v-det-1) _f et o
E(z%) (c.n;)”d j ITI .exp[ &tr[h + E—E‘y b)(y-b) ]T] darT,
where K = ign %7 o5 .

(2m) =) £y

By noting that the integrand above is in the form of the Wishart probability
density function, T can be integrated out to the constant of the Wishart

distribution giving,

d s(vit)
rgls(v+t)] c -4t ct
E(zt) = d . . hi % 1+|{==—]p , (2.2.1)
T S [c+t] [ [c+t] ]

where D = (y-b) h 1(y-b).

Setting t=1 gives the multivariate Student t distribution evaluated at y, i.e.,

11 h
Std [V,b, [1+E) .;]

P(yix)

s -45(v+l)

. thi [ l+[€§i}° ] ; (2.2.2)

aCC D I
S )

This 1s the predictive density function for y discussed in section 2.1.
The predictive density at y can be considered to be either the posterior
expected value of the likelihood function at y, or the estimate of the

likelihood function at y which minimises the posterior squared errror loss.
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2.3 The posterior moment generating function of l=logz, and moments of 1

The posterior moment generating function of l=logz is given by,
®1(t) = E(et:108Z] = E[2zl], which was obtained in equation (2.2.1).
On taking logs and differentiating (2.2.1) with respect to t,

d
gflog P3(t) = -%d.logm - %slogih| + .:lg.w(g(v+t-i+1)]
i=
d ctD (v+t).c2.D
- — - 5.103[1 + } - (2.3.1)
2(c+t) c+t 2 ctD]
2(c+t) [1 t o
where ¥(s) = I''(s)/I(s) is the psi (digamma) function.
2
c<.D
Now let Q = - SFr %y .fo+tactD] °
Using partial fractions,
4
a( (-1)".r1 -1y e (14eD)TH
at 2(c+t) 2[c+t+ctD]

Expressing the higher derivatives of (2.3.1) in terms of derivatives of Q and

then substitution from (2.3.2) gives the rth xumulant of 1=logz, (Ky)1 ,

(r) d -
(Ke)y = {d log ¥(t) - (!'.‘)r.E w(r 1)

[4(v-i+1)]
at(®) =0 i=

o (rm2)nr
r
2c

Jer+(d-v)(r-1)]

+ (r-2)1(-1)F

- .[-cr+v(r-1)(1+cD)].(1+cD)r"1
2C

(2.3.3)

for r>2.

23



The rth moment of l=logz about its mean, i.e. (u,' )], can now be obtained from
the kumulants of 1, given by equation (2.3.3), using the recurrence relationship
(1.4.3).

Hence,
E(1) = (K31)1 = - 5.10 r-2 - 211 Ih) - 2,1 <:3\17[!,(v-i+1)]
1)1 = . 108 2¢ 2° g - 5.i=l ’
- [ d v-C 1 2 1 d » -
V(1) = (2 )1 = (K2)1 = — + |—|.D+=v.D" +=. ¥ [(S(v-i+1)] ,
2cC o 2 4 i=1
. d 3D (v 3D2 (2v 3 1 9 (2 .
(3 )1 = (K3)1 = - = —.[— - 1} - ——{—— - l] -v.D + -1 \?( )[’g(v-1+1)],
c c (¢ 2 c 8 i=1
' 2
(}1(, )1 = (K4)1 + (KZ)I » Where,
- - 2 - 3 d
(Kg)] = _3_2 + 12(v3c)D + (3v 2:)60 + (3v-c)4b + 3vD1'+ _1__‘ T W(a)[ls(v-i-i-l)].
c (o] c c 16 i=1

(2.3.4)

If v is an integer then the value of the Psi function ¥ and its derivatives
in E(1), Ww(1), (ug')l and (}L4')1 can be found using the formulae given in
Appendix 3. If v is not an integer then an efficient numerical method of
approximation which is particularly useful when the Psi function and its
derivatives are required at the same value is given in Appendix 4.

For the examples in section 2.4 vague prior knowledge about (pui,Ti), for
i=1,2, was assumed, so that p(u;,TjiRi,Sj) = NoWi4q(®Rj,nhj,nj-1,Sj) and hence
(Xi,ni,ni-1,Sij) was substituted for (b,c,v,h) in the above formulae to give the
posterior cumulants of 1li=logzj for i=1,2. The posterior cumulants of the log
likelihood ratio L=log(z3/z3)=13-1 about its mean were then found using
equations (l1.4.2). Pearson curves were then used to approximate the posterior
distribution of L (Elderton and Johnson, 1969, Ch5) using the first four
cumulants of L. The posterior distribution of P was then obtained by

transformation using equation (1.3.1), assuming equal prior probabilities i.e.

Q1=q3.
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2.4 Examples of the posterior distribution of P

A sample of size 10 was generated from each of two populations with
multivariate Normal density functions p(yl{pu;,Tj) with mean uj and precision

matrix T; (=L 1) giving sample statistics X; and Sj for i=1,2, where,

p1' = (0.0 0.0) , Ly = :z:g g:g] ,
N R
n e Gasodn o = [N
%X, = (0.981 0.959) |, S; = :;:t:i i:gig] .

A new set of observations was indepepdently sampled from the combined population )
distribution %[p(yifu;,T3) + p(yl u2,T2)]. Four observations yl‘ to y, were chosen
from the new set having distinctly different posterior distributions p(P) as
shown by figures 1 to 4, where,

yi1 = (0.023 0.208) ,

Y2 = (-1.697 -0.4480) ,
y3 = (-1.299 -2.818) and,
Y4 = (0.006 1.962).

On each graph the following are marked,

(P;,P2) , a cental 90% credibility interval for P, i.e. equal tail areas.

T , the true value of P obtained using the true population parameters,
given by equation (1.1.1).

Q , the 'estimative' estimate of P assuming unegual covariance matrices
for the populations, and using maximum likelihood estimates
(Xj,S4i/ny) for (ui,ri) for i=1l,2, i.e. a quadratic discriminant
estimate.

E , the 'estimative' estimate of P assuming an equal covariance matrix,
L, for the two populations and using estimates (R;,(S3;+Sz)/(n3+nz-2)
for (u3,L) for i=1,2, i.e. the usual linear discriminant estimate.

B , the 'predictive’ estimate of P assuming unequal covariance matrices
and vague prior knowledge about the parameters, given by substituting
equation (2.1.2) for i=1,2 into equation (1.2.2).
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1 p(P)

Figure 1. The posterior density function p(P) for new observation Yq-
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1 p(P)

Figqure 2, The posterior density function p(P) for new observation Yoo

27

o ™



1 b (P)

Figure 3. The posterior density function p(P) for new observation Yqo
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1 b(P)

Figure 4. The posterior density function p(P) for new observation Yge
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The points y; to y; are plotted in figure 5 together with the true
chi-squared and estimated T-squared 90% confidence ellipses for a new
observation y for each of the two populations, respectively defined, for i=1,2,
by the set of y such that,

(v-8i) Li"X(y-pi) € X2; 0.90 and,

219, _'ZL] c2y's: Yym.y < 2 _ (nj-1)d
(ni-1) [ni+1 (YRi) Si (¥R < Ty 4,0.90 = (nj-d) 'd,nj-d,0.90

(2.4.1)
where n;j=10 is the sample size and d=2 is the dimension of the populations. The
suffix 0.90 refers to the upper 90% point of the distribution. Equation (2.4.1)
can be interpreted as meaning that the expected or average ¥ of new observations
captured within Rj, the region defined by (2.4.1) over a sequence of independent
random samples with sample statistics (Rj,Sj)j for j=1,2,..., each with the same
number of independently sampled new observations, is 90%.

As several of the estimates of P are close to zero or one, the following
table compares the corresponding estimates of the log likelihood ratio, L, given
by equation (1.3.1), where gQ3=Q;=0.5. The corresponding central 90% credibility
interval, (L(P;),L(P3)), 1is also given. Hence the interval and the different

esimates of L (and by transformation P) can be compared,

L(T) Q) L(E) L(B) L(Py) L(P2)
yy 0.265 0.687 0.950 0.440 -0.577 1.903
yz 1.896 5.759 3.237 2.313 -0.271 12.341
Y3 2.251 8,359 4.761 1.693 -5.815 23,287
Y4 0.243 0.948 -0.461 0.320 -1.970 4.004

Prom the above table it 1is clear that the different estimates of the log
likelihood function L can differ quite dramatically but still 1lie within the
credibility interval for L. This is particularly striking for y3. Also despite
the estimates of L being highly positive for y3, the credibility interval still
includes the value 1=0, which corresponds to P=%, indicating that the true
population of membership of y3 is not clear cut.
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Figqure 5. The true and estimated 90% confidence ellipses for a new
observation y plotted together with the new observations Y=Yy
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Denote the posterior probabiliy density function of P based on yj by Cj.
It is interesting to compare Cj; with C3. Curve C3 may be deéribed as 'unstable’
in the sence that the value of P appears likely to be at one extreme of the
interval (0,1), but which extreme is unclear. Curve C; may be described as
'‘stable’ since P appears very likely to be moderately greater than 0.5. Clearly
therefore further sampling would be of considerable value for deciding at which
extreme P lies for y3, while it would only serve to provide a more accurate
estimate of P for yj.

The following question therefore arises. From which population is further
sampling the more helpful. In order to decide this consider the mean and
variance(M and V) of the log likelihoods 135 = log p(yj11i,Ti) for j=1,2,3,4 and
population i=1,2,

i=1 i=2
M v M v
Y1 -1.924 0.143 -2.481 0.441
Y2 ~4.144 1.228 -9.266 14.170
Y3 -10.714 17.271 -18.175 63.266
Y4 -3.783 0.903  -4.576 2,497

Prom this table it can be seen that the ’'stability’ of P in C; is due to
the low variances of 133 and lz;, while the ‘'instability’ of P in C3 is due to
the large variances of 133 and 1lp3, particularly l,3. Hence it would be better
to continue sampling from the second population if firmer knowledge about the
true population to which y3 belongs is required. This is even more apparent for
yz-
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2.5 Conclusions

From section 2.4 it can be seen that even though estimates of P are close
to 0 or 1 it is still possible for the 90% credibility interval for P to be very
wide, as for example for y; . Furthermore the 90X credibility interval for P can
include both Bayesian and Classical estimates (B and Q) even when they differ
greatly, e.g.,

B Q Py Po
Y3 0.845  0.99977  0.00297 1 - 0.77x10°10
Y.  0.910  0.9969 0.433 1 - 0.44x1075

Hence, though estimates B and Q may be both well within permissible statistical

limits, they may differ immensely in their practical implications.
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CHAPTER 3

Populations with parameters in common: Multivariate Normal Populations with

unequal means but equal covariance matrices

3.1 Introduction

The method descibed in chapter 1 of approximating the posterior
distribution and credibility interval for P, the probability that a new
observation y belongs to one of two populations Nj or I, where y is assumed to
have been drawn from the combined population distribution qip1(Y1©) + Qopo(Yy|©),
is applied to d-dimensional multivariate Normal populations M and I with
unknown and unequal population means pj and up; and unknown but equal population
covariance matrix L. Let T=C 1l be the common population precision matrix, then
©=(u1,u2,T) and the ih population density , for i=1,2, is given by

d/

Pi(¥10) = pi(¥lni,T) = (2m)" lelllzeXP["i(Y'#i)'T(Y‘Mi)] : (3.1.1)

Estimates of P

The true probability, P, that the new observation y belongs to population ; is
given by substituting pj(yi8) from equation (3.1.1), for i=1,2, into equation
(1.1.1). '

The ‘estimative' estimate of P, Pg, is given by substituting point estimates for
(n;,T) into equation (3.1.1) and then substituting the resulting pj(yle) for
i=1,2 into equation (1.2.1). The maximum likelihood estimates of [u;,u3,T] are
given by [X; Xp,(ny+np )(S1+S2) 1] where ®; is the mean and Sj is the corrected
sum of squares and products matrix for the iP random sample, x;, for i=1,2.
The ‘predictive’ estimate of P, Pp, is given by substituting the predictive
density pij(ylx;,x>) for i=1,2 into equation (1.2.2), where pj(ylx;,x2) is given
by equation (2.2.2) in section 2.2 and (b,c,v,h) are the parameters of the
posterior distribution of (u;,T) given random samples x; and x; , for i=l1,2.
Assuming vague prior information about the parameters (uj,u3,T) then pij(yixXi,Xx2)
is given for i=1,2 by substituting (Xj,nj,n3+n2-2,S) for (b,c,v,h) in equation
(2.2.2) where S=S;+S,, i.e.

-1/2 ym. 3(npnz-1)/2
[ 1+[a§i1]”’ ] " n?a.l.z)

rf{(ny+ny-1)/2] ‘ [}irllls l

72, re(nging-a-1y/2]

where D; = (y-%;) S X(y-Xj).
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Credibility interval for P

In section 3.2, &p(t)=E(etl), the posterior moment generating function of
the logarithm of the likelihood ratio, L=13-1,, where 1j=log(pi(Y!®)) for i=1,2,
considered as a function of random variables (uj,u;,T) for a given y is obtained
by integrating etl over the posterior distribution of (uj,n2,T) given random
samples X3=(X33,X12,..,X1n1) and X=(xX23,X22,..,X2n2) from population II; and II;
respectively with sample means R; and X, and sample corrected sums of sqares and
products matrices s; and S; respectively.

In section 3.3 general formulae for the posterior mean and cumulants of L
are obtained. In any particular example the posterior mean and mormenks of L
about its mean can be obtained by appropriate substitution for (b;,ci,bz,c2,v,h)
in the results of section 3.3. If vague prior information is assumed for

(“1’“2’1') then

P(H1,82,TIX1,X2) = P(H1,H2,TIX1,X2,S) = NoNoWi(x3,ny,xz,nz,n+nz-2,S)
where S=S;+S;, and hence (xj,nj,Xp,nz,n1+nz-2,S) are substituted for
(b3,c;,bz,c2,v,h) in the results in section 3.3.

In section 3.4 the posterior distribution of L is approximated both using a
Normal distribution and using Pearson curves. The posterior distribution of P is
then obtained by using transformation (1.3.1). A numerical example is given in

gection 3.5.
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3.2 The posterior moment generating function of L, the logarithm of the
likelihood ratio at y.

The posterior moment generating function of L, the log of the likelihood
ratio at y, given the independent random samples x, and x, from the populations
I, and N, respectively, is given by

or(t) = E[etl] = E[[,, ] ] Iedxle)]tp(elﬁ.zz)de , (3.2.1)
2(yl®e) 2(y1©)
where p(©lx,,x,) is the posterior distribution of © given x, and x,.
Let II; be a d-dimensional multivariate Normal population, Nogq(p;i,T), with

mean pj and precision matrix T,i.e.

pi(yie) = pij(yip;,T) = |T /2 exp(-5(y-1ni) T(Y-Bi)) for i=1,2. (3.2.2)
(2n)

Let © = (py,4,,T) have a Normal-Normal-Wishart prior distribution,
p(K,,4,,T),prior that is to observing the values of x, and x,, i.e.
P(#,82,T) = NoNoWig(K;0+B101H20s0201V0s00), defined by
Py iz T)=P(s, IT)P(4, IT)P(T) where p(u;IT)=Nog(pjo,njoT) for i=1,2, and
P(T)=Wig(vy,hp) (Aitchison and Dunsmore,1975,Chapter 2).
Then, for n;,M0 and n,;,)0, the posterior distribution of © is

"

pOix,,x;) P(ey,8,,TIX, ,X;,5)

NoNoWid[nmgm+n,i, yNyotn, ,n +n,X ,nzo+nz,v°+n_‘+n2-2,h1]
n__+n n_ +n
10 1 20 2

i=1 1 +n1

If vague prior information is assumed, i.e. p{y,,},,T) « y7i-(d+1)/2 then
p(eix,,x,) = p(u,,H,,TI%X,,X,,S) = NoNoWiyq(X,,n,,X,,n,,n,+n,-2,5) ,

where X; and :_tz are the sample mean vectors, n, and n, are the sample sizes and
S, and S, are the sample corrected sum of squares and products matrices for the

random samples x, and X, respectively, and S=5,+S,.

FPor a general result let

P(OIX, X, )=p(u, ,4,,TIX,,X;,S )=NoNoWig(b,,c,,bz,c,,v,h) . (3.2.3)
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Hence substituting p,(y!©) and p,(yl©) from (3.2.2) and p(©ix,,x,) from
(3.2.3) into (3.2.1) gives,

awtry=| [ [g;%¥+ﬁ:f§%]tp(ﬂl,ﬂchlxl.xz.s) dp, dp, dT ,
d

TS0 pyer? BzeR

= [[] 171t/ (2m)-9t/2 expl-st(y-py ) T(y-pe)]
AT/ (2n)dt/2 expit(y-p, ) T(y-12)]

e, T13/2 (2m)"4/2 exp(-%(py-by)'c,T(ky-by)]
e, TI4/2 (2m) V2 expl-k(p,-by ) c,T(Bo-b2)]

AshiV/2 Ti(V-d-1)/2 exp(-xtrhT] du, du, dT,
Fa(v/z)

d
where TAO means T is positive definate, and I'q(v/z) = #3(d-1)/4  r[(v-d+j)/z].
. _ g j=1
Completing the squares in each of p; and p, and integrating out the result to
the constants of Normal distributions,
No[(cyby+ty)/(cy+t),(c3+t)T] and No[(caby-ty)/(ca-t),(ca-t)T] gives,

3 c d/2 c d/z lﬁh!v/z -d-1
(e = [EIiE ] [EZ%? } rq(v/z) I 171(v-d-1)/2 exp(-ytraT] dT,

where H = h + _c.s_t_(bl'}')(b,:f}')' - _Ez_t_(bz'Y)(bz'Y)"
c,+t c,-t

By noting that the integrand is in the form of the Wishart probability density
function, T can be integrated out to the normalising constant of the Wishart

probabillity density function giving,

ep(t) = [zfiz ]d/z [szz ]d/z _%§%;§§ ) (3.2.4)

Now by considering the determinant of a partitioned matrix of size (d+2) by
(d+2) with elements h, ([aj(b;-y),a2(b,-y)], [-(bl-y),-(bz—y)]' and I, the two

dimensional identity matrix,
2
Bl = hl.{1 + a,D; + «zD, + x;&;(DyD;-Dy3)] (3.2.5)

where a,= _c,t , a,= ._cot , Dj=(bi-y)'h ¥(bj-y) for i=1,2
c,tt c,-t

and D,,=(b,-y)'h {(b,-y).
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3.3 The Posterior Moments of L

On taking logs and differentiating ¢p(t) r times with respect to t and
setting t=0 gives the rtn cumulant of L, (Kp), i.e.,

(Kp)p = [d{X) log op(t) = (-1)T(r-1)1d 4 (r-1)1d . v{d(¥) log uj, (3.3.1)
t(T) t=0 2c,t 2c,T 2lat(T) ]t=0

where ral and u = [1 + a,D, + @zD, + &,&p(D;D,-D,2)].
Differentiating the equation, du = u d log u, (r-1) times with respect to t

dt dt
and setting t=0 gives the recurrence relationship,
r-1
d(T) log u = 1([d(T) ul - [ [r-217a{i) u d(r-1) jog u (ra1)
£(T) ]t=0 ;[(dtZr) ]t=oi=l[ i ] (1) ]t=°[dt2r-1) ]t=0]

where [d(T) ul = (-1)T-irip, 4 (-1)rip, . [c,c, ]r! (-1)F 4 2 ](D;Dz-lhi )
t(T) t=0 c, Tt c,T 1 c,+c, c,f™t Tt

for r31.

The rth moment of L about its mean, (uy )1, is now given by,

r-2
(uy' )y = B([L-E(L))F) = L {r~l] (15 )L (Kp- )L , for ril.
j=0 L ]

Hence E(L) = (Ky)y, = -;_[V(DL-DZ) + d[}_ -1 ” ’
2 C; Cy

V(L) = (u2 )1 = (K2)1, ;[v(of + D,2) + 2v[_xgl @2} + d[ 1 4 1 ” -vD,,2% ,
2

c; ¢,

(n3 ' )=(X3)L = _[v(n,.3 - D,®) + 3V[D,2 - Dzz} + 3v[n, - D ] + d[ 1 .2 ”
c, c, P c,® ¢,
P4
+3VDLZ[(DL-DZ) + [l_ '_l_]] ’ (3.3.2)
Cys €2 )

. 2
and (pg )L = (K4)p + 3(Kz)L where

(K4 )= 3[v(o_“+oz‘) + 4v{o,3+ 023] + sv[o,2+ Dzz] + l.v[D, + Dy } + d[ 1+1 ]]
Ci €z €% c® ¢ ? ¢;?

2
+6vD,; + 12vD,; [wx-nz >+[;_- 1__”2 - 6vD,3 [D;+ 1_] [Dz+ 1_] .
c, ¢C, c, c,



3.4. Approximating the Posterior Distributions of L and P

The posterior distribution of L can now be approximated using its posterior
moments either by Pearson curves (Elderton and Johnson,1969,Chapter 5), or, if
appropriate, by a Normal distribution,i.e.

L ~ N(u,06%) where u = E(L) and o = Y(L).

A Normal approximation to the posterior distribution of L may be justified in an
individual case by checking that the posterior skewness and kurtosis of L are
sufficiently close to the values 0 and 3 respectively.

Using the transformation P = [1 + (q_/q; ye L) -1 , the posterior distribution of
P can be approximated by

T = ol I Py | e

for O/P/1.

Hence, using a Normal approximation to the posterior distribution of L, a (1l-a)
credibility interval for L is given by,
(L;,L;) = (p.-zq/zc,;ﬂza/zc) , Wwhere Za/2 is the a/2 point of a Normal

distribution.

Alternatively, using a Pearson curve approximation to the posterior distribution
of L, a more accurate credibility interval (L;,L;) for L based on its first four
cumulants can be obtained. Percentage points for Pearson curves are given by

Johnson, Nixon and Amos (1963) or by Biometrika Tables, No.42.

A (1-a) credibility interval (P;,P2) for P can be obtained from the
corresponding credibility interval (L;,L;) for L by using transformation
(1.3.1), giving,

(Py,P2) = ( [1 + (ay/qg)eli)"l, (1 + (qy/qgye 2171 ) . (3.4.2)
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3.5. A numerical example of the calculations

- As an illustration of the calculations, suppose random samples each of size

10 from II; and II; give the following sample statistics,

12.88 1.85
1.85 9.89

L]

- [0.169]
- ’

- [0.981
=1 0.407

o 959] , and S = S;45; =

where (—Ki’si) are the sample mean and corrected sums of squares and products

matrix for the sample from the ith population, for i=1,2.

Assume that observations from populations I; and I[I; have bivariate Normal
distributions with unequal means uj and u; but equal precision matrix T.

If equal prior probabilities q; and q;, and vague prior information about © =
(4,,4,,T) are assumed, then in the equations for posterior mean and cumulants of

L given in section 3.3 substitute,
[(b;,c4,bz,c,,v,h} = [X,,n,,%X;,n;,n,+n,-2,S]

- [[0.159],10' 0'981],10,18, 12.88 1.85}]
0.407 0.959 1.85 9.89

For new observation, y - [0.023] s Dy = (b,-y)'h (b, -y) = 0.00495 ,
0.208

D, = (by-y)'h"(b,-y) = 0.11035, and D,, = (b,-y)'h i(b,-y) = 0.0222.
Hence for y, E(L) = 0.9486, V(L) = 0.3285 and an approximate 95% credibility
interval for L is (-0.175,2.072), using a Normal approximation to the posterior
distribution of L as in section 3.4. Hence the corresponding approximate
credibility interval for P is (0.456,0.888), using equation (3.4.2).
The posterior skewness and kurtosis of L are given by,

(p3')p = (K3)L = 0.1495

(Kg)p, = 0.1021 and so

(rs' ) = 0.1021 + (3x0.32852) =0.4258

Hence the posterior skewness of L is (v¥B3), = _£g3i)L 0.7942

and the posterior kurtosis of L is (B82),

I
~~
) 3
~
el
t
]
W
0
N
[+))
[ \M]

A more accurate credibility interval for L can be obtained by approximating the
posterior distributioﬁ of L using Pearson curves. Using percentage points for
Pearson curves, an approximate 95% credibility interval for L is given by,

(uy, - 1.5880y, , py, + 2.3080p,) = (0.03844 , 2.27143) ,

and hence an approximate 95% credibility interval for P 1is given by
(0.5096,0.9065).



CHAPTER 4

Exponential family populations with no parameters in common

4.1 Introduction

The method described in chapter 1 of approximating the posterior
distribution and credibility interval for P, the probability that a new
observation y belongs to one of two populations, where y is assumed to have
been drawn from the combined population distribution q3;p;(yi6) + qap2(yi©)
is applied to Exponential family populations, Iy and I, with unknown
parameter sets 87 and 6, respectively, having no parameters in common. Here
the parameter vector ©=(©;,8;) and the i'h population density, for i=1,2,

is given by

pi(yie) = a(ei)b(y)e (¥ TE1) (4.1.1)

where y is a d dimensional observation,
©; is a dg dimensional parameter vector,
8 is a k dimensional vector function of y, and

r is a k dimensional vector function of 6.

Estimates of P

The true probability P that the new observation y belongs to [1; is given by
substituting p;(yi©), given by equation (4.1.1), for i=1,2, into equation
(1.1.1).

The ‘estimative’' estimate of P, Pg, 1is given by substituting point
estimates of 8; into equation (4.1.1) and then substituting the resulting

pi(yle), for i=1,2, into equation (1.2.1).

The ‘'predictive' estimate of P, Pp, is given by substituting the predictive
density pij(ylxy,xs), for i=1,2, into equation (1.2.2), where p;(ylx;,Xz) is
given by equation (4.2.13) and (v,w) are the parameters of the posterior
distribution of ©3; given the random sample x;, for i=1,2, given by
(4.2.5).
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Credibility interval for P

In section 4.2 the joint posterior moment generating function of the log
likelihood functions at wmultiple new values (y3,Y2,..,¥m) from an
Exponential family population is obtained, and in particular the posterior
moment generating function of the log likelihood function 1 = log p(yi©) at
a single future value y is obtained in section 4.2.4,

The posterior cumulants of 1 are obtained from the posterior cumulant
generating function Kj(t) = log #j3(t) and hence the posterior mean and
central moments of 1 are found using equation (1.4.4). The posterior mean
and central moments of 13 = log pj(yi®), for i=1,2, are then obtained by
substituting for (v,w) the parameters of the posterior distribution of 65
into the results in section 4.2.5. The posterior moments of I=1;-1, are then
found using equations (1.4.1) and (1.4.2). The posterior distribution of L
can then be approximated either by Pearson curves using the first four
moments of L or, if appropriate, by a Normal approximation using the first
two moments. The posterior distribution of P can then be found by

transformation using equation (1.3.2).
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4.2 The_ joint posterior moment generating function of the 1log

likelihood function at multiple new values from an Exponential family

population

4.2.1 Introduction

Let X be a d-dimensional random variable with probability density function,
p(x|©6), a member of the Exponential family, i.e.

p(x18) = a(e)b(x)es(®) ¥(®) , (4.2.1)

where © is a dg dimensional parameter vector,

is a k dimensional vector function of x, and

is a k dimensional vector function of ©.

H

lLet x = (X3,X2,...,Xp) be a random sample of observations of random variable
X. Interest centres on the joint posterior moment generating function,
$3(t), of the log likelihood functions of possible future observations
(yj;j=1,2,... ,m) of the same random variable X.

ety = e[t

where here t = (t;,t2,...,tn), 1 = (13,12,...,1p),

and 15 = log pP(y;ji©) for j=1,2,..,m.
Hence

m t;
sut) = E[O, tR(y;i0)] ]

L}

I [jﬁl [P(lee)]tj}.p(elgg) do , (4.2.2)

where p(©ix) is the posterior distribution of the parameter vector © given

the random sample x.
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4.2.2 The posterior distribution of the parameter vector © given the random
sample x for an Exponential family population

The natural conjugate prior distribution for 6 is given by,

PO) = clvo,upla(e) 0@ (O (4.2.3)

where vp is a scalar, wg is a k dimensional vector and c{vg,wp] is the

normalising constant.

The posterior distribution for © given the random sample x is given by

n
p(eix) « p(e). 0 p(xjle) ,

J=1
« a(e)vew'r(e) ,
n
where v = vg + n and w = wg + ES(Xj), (4.2.4)
j=1
i.e. p(OIx) = c[v,m]a(e)vem'r(e) . (4.2.5)
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4.2.3 Evaluating &3(t)

Prom equation (4.2.2),

m T\ 3 ,
oty = | [jgl[a(e)b()'j 1SV O | ey, 01a00)e" 7 a0,

o t; v4Lt; [wHCtis(vs)]'x(©
= clv,v] [jr_rlnxyjn 3 ] Ja@)"HEs [T oo
m m
where L = T and II = ’nl throughout section 4.2.3.
J=1 3=

Hence,

clv,0].l [by;)1"3

*u(L) = cOviTE;, ofTE;5(y3)] (4.2.6)

Hence the cumulant generating function of 1 is given by,

Ki(t) log #3(t) ,

= 1log cfv,w] - log c[v+i:tj,w+!:tjs(yj)] + !:tjlog b(yj) . (4.2.7)

The predictive distribution for y=(v3,¥2,..:¥m)

Setting tj=1 for j=1,2,..,m in equation (4.2.2) gives from equation
(4.2.6),

clv,0].0 B(y;)

P(XIX) = Sfom,wtts(y;)]

(4.2.8)
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4.2.4 The posterior moment generating function and wmoments of the 1log

likelihood function at a single future value y

Setting m=1 in equation (4.2.6) and omitting the subscript 1 from 1;3,t; and
y; and setting s=s(y) gives,

cfv,0]. Byt

¢1(t) clv+t,otts] ’ (4.2.9)
Kj(t) = 1log c[v,w] - log c[vtt,wtts] + t.log Ky) , (4.2.10)
E(l) = [g—t Kl(t)}t:o = gt log c{v+t,wtts] + log B(y) , and (4.2.11)
da(r) a(r)
(Kr)1 = { E3) Kl(t)] - [—-—(7)- log c[v+t,wtts] + log ®(y)
dt dt t=0 (4.2.12)

for r»2, and hence the posterior central moments of 1, (ur’));, can be
obtained from the cumulants of 1, (Kr)3, using equation (1.4.3).

The predictive distribution for a single future value y

Setting t=1 in equation (4.2.9) gives the predictive distribution for a
single future observation y given the random sample Xx,

cv,0].b(y)

p(yix) c[vHl,wts]

(4.2.13)
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4.3 Gamma populations

4.3.1 Introduction

Suppose that in populations [I; and [I; the random variable X has Gamma
probability density functions, Ga(k;,8;) and Ga(kz,62), respectively, where
ki and ky are known but ©; and 6, are unknown parameters. Here the parameter
vector is 6=(67,6;) and the jth population density for i=1,2 is given by

e_ki yki“l

-85y
pi(yley = =i <

C(ki) '

(4.3.1)

Estimates of P

An ‘'estimative' estimate of P, Pe, is given by substituting the maximm
likelihood point estimates of ©;, Kkji/Rj, for i=1l,2, into equation (4.3.1)
and then substituting the resulting pji(yi®), for i=1,2, into equation
(1.2.1).

The 'predictive’ estimate of P, Pp, is given by substituting the predictive
density pji(yix;,x3), for i=1,2, into equation (1.2.2), where p;j(yix;,Xp) is
given by equation (4.3.6) and (g,h) are the parameters of the posterior
distribution of ©; given the random sample x; for i=1,2. Assuming vague
prior knowledge about parameter ©; then pi(yiX;,X2) is given, for i=1,2, by
substituting (njkj,njXi) for (g,h) in equation (4.3.6), i.e.

king yki-l
ki(nj+l)

r{kj(nj+1)31.(ni%¥;)
F(kinj) I'(kj).(y+njX;)

Pi(yix1,X%X2) . (4.3.2)

Credibility interval for P

The posterior mean and central moments of 13 = log pi(yl®) about, for i=1,2,
are obtained by substituting for (g,h) the parameters of the posterior
distribution of ©; into the results in section 4.3.3. If vague prior
information about ©; was assumed then (njkj,njXj) is substituted for (g,h)
in the results in section 4.3.3. The posterior moments of IL=1;-1, are then
found using equations (1.4.1) and (1.4.2). The posterior distributions of L

and P are then approximated as explained in section 4.1,
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4.3.2 The posterior moment generating function of the log likelihood

functions at multiple new values from a Gamma population

-l o-6X
Let p(xi®) o “;k)" , where k is fixed and known.
-1
Comparison with (4.1.1) gives a(e) = &%, b(x) = oo s(x)=x and r(8) = -©.

If a natural conjugate prior distribution p(©) = Ga(gg,hg) is assumed for O,
then given the random sample x=(Xj,X3,..,Xp) from the Gamma Ga(k,8)
distribution, © has a Gamma posterior distribution given by,

P(©1x) = Ga(go+nk,hg+nX)
(Aitchison and Dunsmore, 1975, Chapter 2), where R=Ixj/n.

If vague prior information about © is assumed then p(©ix) = Ga(nk,nR).

Por a general result let p(©ix) = Ga(g,h), i.e.

héet ~le-h@

Meix) = —r%)

Comparison with (4.2.5) gives v = g-1, w = h and cv,w] = _wkVl |
3

r(kv+l)

Bence from (4.2.6),

hg I‘(g+kttj) 1 y:,tj(k-l)
(L) = - - (4.3.3)
(rex)1™53 r(g) oty 1Tt

and from (4.2.8),

g (k-1)
_ h™ I(g+km) 1 y3
pP(yix) = e (4.3.4)

(r¢x)1™ r(e) [h+Ty;l
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4.3.3 The posterior moment generating function of the 1log likelihood

function at a single future value y

From equation (4.2.9),

t(k-1) . g
oy(t) = Y h_ (gttk) . (4.3.5)

(rex)1t reg) (hty)8HEE

and from (4.2.13) the predictive distribution of y is the Inverse-Beta
probability density function, given by

k-1 .8
plylx) = YN T(&¥K) = InBe[k,g,h] . (4.3.6)

r(k) I(g) (hty)8**

Bence from (4.3.5),
log ¢3(t) = t(k-1l).logy + g.logh + log(r(g+tk)] - t.log(r(k)]

- log(r(g)] - (g+tk).log{htty] ,

g_log 01((:) = (k-1).logy + k.®(g+tk) - log[r(k)] - k.log(htty] - y(g+tk)
at (htty)
™ og ep(t) = x5 T Mertry + (1T IyF Y r-2)1. [(hty k- (gy-hR)(x-1)]
at{™) (rty)T
for 2.
Hence,

(r) i T
(Re)y = |92 108 @UEN )T (T 20ey 4 (-1)F 1§77 (r-2)1(ehk-(x-1)gy)

att™) t=0 -

h

(4.3.7)
for ra2, where (Ky); is the rth cumulant of 1.
Equation (1.4.3) gives a recurrence relationship between the wmowments of a
random variable about its mean and its cumulants, hence using the resulting
equations (1.4.4),

E(1) = (K3)1 = (k-1).logy + K.¥(g) - log[(k)] - k.logh - f ,
V(1) = (uz' )1 = (K2)1 = k2.9(2)(g) + (-1).y [2hk-gy] ,
2
(u3' )1 = (K3)1 = k3.9(2)(g) + (-1)2.y2(3hk-2gy) , and (4.3.8)
w3
(a1 = (RgN + 3K}

where (K;)y = k4. 9(3)(g) + (-1)3.21.y3[4nk-3gy] .



4.3.4 Special case of Exponential populations, Ex(©;) and Ex(6»)

Since Ex(©) = Ga(l,8), the Exponential distribution Ex(6) is just a
special case of the Gamma distribution Ga(k,®) where k=1. Hence the results

in section 4.3.3 reduce to,

E(1) = ¥(g) - logh -g.y ,
h
V(1) = (p2' )1 = #(1)X(g) - ¥y [(2h-yg] ,
2
h
(13")1 = (K3)1 = ¥(2)(g) + y2(3h-2yg] , and (4.3.9)
h3
(8s')1 = (Rg)1 + 3(K)F

where (Kg)y = ¥(3)(g) - 2y3[4h-3yg] .

h4

Note that V(1) is minimised when y takes the value h/g.

Por vague prior information about © substitute (n,nX) for (g,h).
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Exponential populations example (special case of Gamma populations)

The following example is taken from Aitchison and Dunsmore, 1975, Chll.

Sample 1 : 47,17,32,19 from Ex(©; ), population I
Sample 2 : 75,31 from Ex(62), population I,
New Cases: 40,70 unknown population I or Ip

Assume fixed chosen sample sizes i.e. the data were not collected from a

‘naturally occurring experiment’, and assume equal prior probabilities

Q=q2.

‘Estimative’ estimate of P

A A
b - Qpy(v18) _ __Ex(8))
€ A A A A
qQ1P1(y10)+qzp2(yio) Ex(©; )+EX(83)
A
A A B
where for i=1,2, Ex(8;) = ©j.e i

A
and the maximum likelihood estimate of 8; is 65 = 1/Rj.

‘Predictive’ estimate of P

P = QiP1(yixy,.x2) - InBe(1l,ny,n1%;)
p Q1P1(y¥ixy,%X2)4Qop2(yix] ,X2) InBe(1l,n3,n;X; )+InBe(1l,n3,n3%R3)

assuming vague prior knowledge about ©; and &,, where for i=1,2,

ns
nj.(njxXj) 1

nj+
(niXj+y) 1

InBe(l,nj,njXj) = 1

in the notation of Aitchison and Dunsmore (1975, Ch2).
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Posterior moments of the log likelihood 15 = log pi(yiS)
E(l;) = ¥(nj) - log(nijXi) - y/Rj

v(13) = #(1)(n3) - y.[(2%;-y)/(n;%;2)

New case 1: x=40

Pe = 0.008652 = 0.49376
0.008652+0.008871
Pp = 0.007820 = 0.51991

0.007820+0.007208

Hence E(1;) = ¥(4) - loglls5 - 40/(28x75)
3
=-C+L 1 - loglls - _40 using the results of Appendix 3,
=13 28x75
= -4.88013

Similarly E(13) = -4.995376
E(L) = E(13) - E(13) = 0.115246 = pj,

V(1;) = #(1)(4) - 40 .[2*28%x75 - 40]
4%28%75%75
=n2 -C 1 - ___ 40  .[2%28%75 -40]
6 1 32 Leagx7527S
= 0.072103

Similarly V(1) = 0.175016

Hence V(L) = V(11) + V(1) = 0.247119 = o012

and an approximate 95% credibility interval for L is given by
{py-1.96%cy, , pup+l1.96%0p)] = [-0.85909,1.08958] = [L;,L,]

and an approximate 95% credibility interval for P is given by

((ave T2y 1412y 1y = [0.29753,0.7483)
New case 2: x=70

Similarly for new case 2,

Pe = 0.37698, Pp = 0.43922,
E(1l;)
V(13) = 0.435052, V(1) = 0.388615 and V(L) = 0.823667

-5.9236, E(13) = -5.5614 and E(L) = -0.3622

and an approximate 95% credibility interval for L is given by
[-2.14102,1.41662]

and an approximate 95% credibility interval for P is given by
{0.1052,0.80481].
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4.4 Binonial populations

4.4.1 Introduction

Suppose that in populations II; and M; the random variable X has Binomial
probability density functions, Bi(k,8;) and Bi(k,6;), respectively, where k
is known but ©; and 6, are unknown parameters. Here the parameter vector is
©6=(9;,6,) and the ith population density for i=1,2 is given by

pi(yle) = [;] e;7(1-64 )""’ . (4.4.1)
_ k! .
where [;] = y_—l kv)1 ° throughout section 4.4.

Estimates of P

An ‘estimative' estimate of P, Pg, is given by substituting the maximum
likelihood point estimates of ©;, Xj/k, for i=1,2, into equation (4.4.1)
and then substituting the resulting p;i(yl©), for i=1,2, into equation
(2.2.1).

The ‘'predictive’ estimate of P, Pp, is given by substituting the predictive
density p;j(ylix;,x2), for i=1,2, into equation (1.2.2), where p;i(yix;,x2) is
given by equation (4.4.6) and (g,h) are the parameters of the posterior
distribution of ©; given the random sample x; for i=1,2. Assuming vague
prior knowledge about parameter ©; then pj(yix;,x2) is given, for i=1,2, by
substituting (nj%i,nj(k-Xj)) for (g,h) in equation (4£.4.6), i.e.

[k) B(niXi+y,nj(k-Ri Hk-y)
y

Pi(yIx1,X2) ' B(nj%i,ni(k-R;j))

. (4.4.2)

Credibility interval for P

The posterior mean and central wmoments of 1§ = log pi(yl®), for i=1,2, are
obtained by substituting for (g,h) the parameters of the posterior
distribution of ©; into the results in section 4.4.3. If wvague prior
information about ©6; was assumed then (njX,nj(k-Rj)) is substituted for
(g,h) in the results in section 4.4.3, The moments of L=1;-1; are then found
using equations (1.4.1) and (1.4.2). The posterior distributions of L and P
are then approximated as explained in section 4.1.
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£.4.2 The joint posterior moment generating function of the log iikelihood

function at multiple new values from a Binomial population

Let p(x|8) = [:] e%(1-0)"* | where k is fixed and known.

Comparison with (4.1.1) gives a(®) = (1-8)K, b(x) = [:], s(x) = x, and
r(e) = logf(e/(1-9)].
If a natural conjugate prior distribution p(©) = Be(ggp,hg) is assumed for O,

then given the random sample x=(X3,X2,..,X;) from the Binomial, Bi(k,8),
distribution, © has a Beta posterior distribution given by

P(©ix) = Be(go+nX,hg+nk-nX),
(Aitchison and Dunsmore, 1975, Chapter 2), where X=Ix;/n.

If vague prior information about © is assumed then p(©ix) = Be(nX,nk-nX).

]

For a general result let p(©ix) Be(g,h), i.e.

_ e81 (1-@)h-1
MOIxX) = —grgh) .

Comparison with (4.2.5) gives v (g+h-2)/k ,

w = g-1 and c[v,w] = [B(wtl, kv-wt1]"1-

Hence from (4.2.6),

t.
v s c-Ttivs) M J
ey(r) = XETELIVILMKER Iti¥i) ["] , (4.4.3)
m
where L = _21 throughout section 4.4.2.
i=
Also from (4.2.8),
_ B(g+Ly;j,h+km-Ly;) 7 {k ]
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4.4.3 The posterior wmoment generating function of the log likelihood
function at a single future value y

From equation (4.2.9),

() = [;]t B(g+ty, hHt(k-y)) (4.4.5)

B(g,h)
and from (4.2.13) the predictive distribution of y is the Beta-Binomial
probability function given by,

- B(gty,htk-y) _ .
pyix) = [3] HELE = BeBi(k,g,h) . (4.4.6)

Hence from (4.4.5),

log #1(t) = t-loz[;] + log[I(g+ty)] + log[F(h+t(k-y))]

- log[l(gthttk)] - log(B(g,h)]

d log 3(t) = log[;] + y.¢(gtty) + (k-y).¢[htt(k-y)] - k.?(g+h+tk)

at

a™og ay(t) = y .o T Npaty) + (k-y)T o T hat(x-y)] - KT (ganaex)

c,t(lr)

for ra2.

Hence,
(r) - - -

(Ke)1 = {d——(r,mg "“t)} =y o T ey + ey Ty - xR T gy
dt t=0

(4.4.7)
for ra2, where (Kry)j is the rtP cumulant of 1.

Equation (1.4.3) gives a recurrence relationship between the moments of a
random variable about its mean and its cumulants, hence using the resulting

equations (1.4.4),

E(1) = (K3)] = los[;] + y.%(g) + (k-y).®(h) - k.¥(g+h)

V(1) = (p2')) = (K2)1 = y2.9(1)(g) + (k-y)2.9(1)(n) - x2.¢(1)(g+h)

(83" = (K3) = ¥3.¥(2)(g) + (k-y)3.¢(2)(h) - k3.¥(2)(g+n) (4.4.8)

(ha')1 = (Kg)1 + 3(K2)5

where (K¢g)1 = 4. ¢(3)(g) + (x-y)4.#(3)(h) - x4.9(3)(g+h)
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4.5 Poisson populations

4.5.1 Introduction

Suppose that in populations I3 and [ the random variable X has Poisson
probability density functions, Po(©;) and Po(63), respectively, where &
and 6, are unknown parameters. Here the parameter vector is 6=(6,,8,) and
the ith population density for i=1,2 is given by

e G g.Y

pi(yle) = —y—,——l— . (4.5.1)

Estimates of P

An ‘'estimative’' estimate of P, Pe, i8 given by substituting the maximum
likelihood point estimates of ©;, Xj, for i=1l,2, into equation (4.5.1) and
then substituting the resulting p;j(yi®), for i=1,2, into equation (1.2.1).
The 'predictive' estimate of P, Pp, is given by substituting the predictive
density pi(ylx;,X3), for i=1,2, into equation (1.2.2), where pjij(ylix;,x3) is
given by equation (4.5.6) and (g,h) are the parameters of the posterior
distribution of 6 given the random sample x; for i=1,2. Assuming vague
prior knowledge about parameter ©; then pj(yix;,xz) is given, for i=1,2, by
substituting (nijXj,nj) for (g,h) in equation (4.5.6), i.e,
(ngRi+y-1)1  ng"i¥i(nge1) (M%)

Pi(vix1,X2) = (nix- )T . (4.5.2)

Credibility interval for P

The posterior mean and central moments of 13 = log pi(yi®), for i=1l,2, are
obtained by substituting for (g,h) the parameters of the posterior
distribution of ©; into the results in section 4.5.3, If vague prior
information about ©; was assumed then (njX,nj) is substituted for (g,h) in
the results in section 4.5.3. The moments of I=1;-1; are then found using
equations (1.4.1) and (1.4.2). The posterior distributions of L and P are
then approximated as explained in section 4.1.
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4.5.2 The joint posterior moment generating function of the log likelihood

functions at multiple new values from a Poisson population

e © egx

Let p(xi®) = T

Comparison with (4.1.1) gives a(®) = e™©, b(x)
r(©) = log®.

1/x!, s(x) = x and

If a natural conjugate prior distribution p(©)

]

Ga(go,hg) is assumed for ©
then given the random sample x=(xj,X2,..,Xn) from the Poisson, Po(©),
distribution, © has a Gamma posterior distribution given by,

p(eix) = Ga(gp+nX,hg+n)
(Aitchison and Dunsmore, 1975, Chapter 2), where X=Ix;j/n.

If vague prior information about © is assumed then p(©i{x) = Ga(n®,n).

FPor a general result let p(6ix)

]

Ga(g,h), i.e.

h&.ek-1 e-h©
r'(eg)

P(8ix)

o+l
i i : - - o- =
Comparison with (4.2.5) gives v = h, w = g-1 and ¢[v,0] = gremy -

Hence from (4.2.6),
<y g

(L) = - - (4.5.3)
r(g) [meot;187T59Y3 ney 0y

m
where T = L and II =
=1 J

R=E!

1 throughout section 4.5.2.

Also from (4.2.8),

r(g+Iy;) n®
Mylx) = - . (4.5.4)
r(g) thtm1®*™in vy
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4.5.3 The posterior moment generating function of the log likelihood

function at a single future value y.

From equation (4.2.9),

I(g+ty) h &
(L) = . (4.5.5)
rg) e )¥ T oyt

Also from (4.2.13) the predictive distribution for y is the
Negative-Binomial probability function, given by,

r(g+y) n® (o2 ]
p(yix) = = NeBilg,— . (4.5.6)
r(g) [hm)®Y yi 1+h

Hence from (4.5.5),
log ¢#3(t) = 1log[r(gtty)] - t.log(I(y+1)] - log(r(g)]

+g.logh - (g+ty).log(htt] ,

d log ¢3(t) = y.?(g+tty) - log{l(y+l)] - y.log[htt] - y + (hy-g) ,
dt (htt)

aiog @y(t) = y¥ .o T Npety) - (1) Py.(x-2) + ()T Y (hy-g).(x-an

att™) (¥ 2 (ht)F

for r=2.

Hence,
(r) - -

(e = [‘1—(—,,1% mt)} =y o T ey + (13 M r201 iy (21080
dt t=0 r

h

(4.5.7)
for ra2, where (Ky); is the rth cumulant of 1.
Equation (1.4.3) gives a recurrence relationship between the moments of a
random variable about its mean and its cumulants, hence using the resulting

equations (1.4.4),

E(l) = (K3); = y.%(g) - log[I(y+l)] - y.logh - g,
h
V(1) = (u2')1 = (K2)1 = y2.9(1)(g) - 1 [2hy-g] ,
2

h

(B3')1 = (K3)3 = y3.¢(2)(g) + 1 (3hy-2g] , (4.5.8)
h3

(e 1 = (Ko + 3(K2)5

where (K;); = y%.#(3)(g) + (-1)3.21.(4hy-3g] .
né

58



CHAPTER 5

The situation where the mixing parameters are unknown and the obsgervations
are obtained by mixture sampling

5.1 Introduction

The probability P that new observation y belongs to I3, given the value
Y, the population parameters © and the prior probabilities q; and qz (=1-q)
is given by equation (1.1.1). Previously it was assumed that the prior
probability q;=p(yell;) was known (and hence Qy=1-Qq; Wwas also known).
Suppose however that q; is itself unknown and the random samples x; and x;
were obtained by mixture sampling from the combined population distribution
Qp)(xieHqpa(xi©) and then identified as belonging to II; and I
respectively, so that the number of observations from II; and fI; in the
randonA samples x; and x, respectively gives information about qj.

5.2 Estimates of P

The ‘estimative’ estimate of P, E,,is obtained by substituting into pj(yi©)
AA

point estimates (©,q;) for the population parameters (©,q;), for i=1l,2. The

resulting estimates of p;i(yi®), for i=1,2, are then substituted into

equation (1.1.1), giving,

A A
Pe = 9 -Py(¥1O) (5.2.1)

A A A A
qQ;.-p{yi8) + qz.p2(yi©)

The maximum likelihood estimate of qi is given by nj/(n3+nz), for i=1,2.

The ‘'predictive’ estimate of P is given by Pp = p(yellly,m,nz,X;,X2).
Prom a fully Bayes approach assuming prior independence of © and q; and
assuming that p(ylyelj,q;,8) = p(ylyen;,0) [=pij(yi6)] , for i=1,2, and that
P(yelljlq;,0) = p(yelljlqy) , for i=1,2, then it can be shown that,

P Myeliny,no ). (ylyelly ,x1,X7)
p P(yel; iny,ng ) . Xy iyeld ,x3,X2) + pyelaing,np) . Xyiyels,x),X0)

p(yeﬂllnl,nz)-P]_(Yh_gc_,Ez)
P(yelljing,ny).py(Yix;,X5) + p(yenzlnlynz)-pz(ylilvfz)

(5.2.2)

(Aitchison and Dunsmore, 1975, Chll),
Assuming vague prior knowledge about q; then p(yelljiny,nz) = nj/(ny+ny).



5.3 Posterior distribution and credibility interval for P

The true probability, P, that new observation y belongs to population I,

defined in equation (1.1.1), can be written as,

P = (l+e Li)y-1 (5.3.1)
where L = L + Lg.,
L=13-12 = log[pi(yi©)] - log(pz(¥i©)] ,

and Lg = lql-lq2 = log q; - log g, = log[q;/(1-ay)].

If, given y, P is treated as a random variable, (a function of the
random variables 6 and q3;), then the posterior distribution of P given
randon samples x; and x5, with sample sizes n; and n; respectively, can be
obtained.

In order to achieve this first the posterior moments of L are obtained.
The posterior distribution of L can then be approximated either using
Pearson curves or a Normal approximation. The posterior distribution of P
can then be obtained by transformation using equation (5.3.1).

The posterior distributions of L and q3 will be independent provided
the assumptions given in section 5.2 are made (Aitchison and Dunsmore,

1975, Chll), and hence their cumulant generating functions are related by,

R (E) = Ry (6) # Xty (5.3.2)
and hence, for r=1,2,..., their posterior rth cumulants are related by,

= . .3.3
(X)), (K * Ry (5.3.3)

The cetral moments of L can be obtained from its cumulants using equations

(1.4.3) and (1.4.4).
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5.4 The posterior moments of 1., the log odds for the mixing

parametexr Qg

Assuming a Beta Be(gg,hp) prior distribution, p(q;), for q;, then the
posterior distribution of qj, given random samples x; and x; of sizes n; and
np, obtained by mixture sampling and identified as coming from populations
; and M; respectively, is given by,

pP(q;In;,nz) = Be(gg+ny,hgtnz).

If vague prior information about q; is assumed then,
P(q3iny,nz) = Be(ny,nz).

For a general result let p(q;in;,n;) = Be(g,h), then

1 t g-1,_. _ h-l
z“l_q}qz]t] = J [i%}] Lt %
B(g+t,h-t)

B(g,h)

r(g+t).r(h-t)
r(g).r(h)

Let Lq = log(qy/(1-q3)] then

g = o) - e[

Iq 1-q

log °Lq(t) = log[r(g+t)] + log{r(h-t)] - log[r'(g)] - log[r(h)]

da(T) 1log @3(t)

g [dt(r) L:o

for r»1, where (Kr)Lq is the rth cumulant of Ig.

NS o(F°1)

(Kg) (g) + (-1)". (h) (5.4.1)

Equation (1.4.3) gives a recurrence relationship between the moments of a
random variable about its mean and its cumulants, hence using the resulting

equations (1.4.4),

E(Lq)

(Ky), = ¥(g) - ¥(h)

Lq

(n2")

V(Lg)

= (Kp). = ¢(1)(g) + #(1)(n)
‘g

Iq

= (K3), =¥(2)g) - #(2)n) (5.4.2)

Iq

2
= (Ra)y + 3(KZ)

(u3')

Lq

(ng')

Iq Iq

where (K()p = »(3)(g) + ¥W3)(n)
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Por vague prior information about q; substitute (nj,nz) for (g,h) in

the above results. Hence, using the results from Appendix 3,

E(Lg) = ¥(m) - ¥(np) = n?—:'iz % , for njiny,
V(Lg) = #(1)(ny) + ¥(1)(n,) = T - DIgL 1l mpll
fa) = 1 (n2) = 3 = 2 Lz

' -1 1
(3')p = (Ra) = ¥(2)(ny) - ¥(2)(ny) = z,n§§n2 i for njinz,

, 2 (5.4.3)
(s )Lq = (Ka)Lq + 3(3%)LQ. s

- w(3 3 - Mgl omppl 1

where (x4)Lq = 9(3)ny) + ¥(3)np) = 31.[2.((4) jgl j4 j§1 3‘ ,

and ¢(4) = m%/90 = 1.08232323 is the Zeta function evaluated at 4.

An alternative approach is to find the posterior distribution of
Q = q3/(1-q;) and Iq = log{qj1/(1-q;)] where, for a general result, Q; has a
Be(g,h) posterior distributibn.
Hence Q will then have an Inverted-Beta InBe(g,h,l) posterior
distribution with probability density function given by,

p(r) = 1 ,rg'l(1+r)'(g+h)

q for r)\O, (5.4.4)
B(g,h)

and Lq has the following probability density function,

p,. (s) = 1 .egs(1+es)-(g+h)

for -misitm., (5.4.5)
Iq B(g,h)

The posterior moments of Q and Lq could then be directly obtained from their

posterior probability density functions. For vague prior information about

Q3 substitute (nj3,nz) for (g,h) in the above results.
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5.5 le

In the example in section 4.3.4 the data were assumed to have been
obtained by seperate sampling and equal prior probabilities were assumed.
Assume instead that the data were obtained by mixture sampling and
subsequently identified as belonging to N3 or I, and that the mixing
probability q; is unknown. Assume a vague prior for q;.

New case 1 : x=40

n3=4 and ny=2

0.008652x( 4/6 )
0.008652x(4/6) + 0.008871x(2/6)

1}

Pe = 0.661089

= 0.007820%( 4/6 ) _
Pp = G.oo078zox(4/6) + 0.007208x(2/6) . °'684524

E(L) = 0.115246 and V(L) = 0.247119 where
L=13-13=log(p1(y©)]-loglpa(yi©)]

]
(1%

N
i

E(Lq) = ; = 0.83333 where Lg=log{q;/(1-q1)]

= 0.92876

(.ul:}“

g 1 t
j=1 2 j=1
=L 3

Hence E(L) = 0.115246 + 0.83333 = 0.948576 = {; and

V(Lq)

. II-'
N

V(L) = 0.247119 + 0.92876 = 1.17588 = GLZ

Hence an approximate 95% credibility interval for L is given by
[ur-1.960p , pr+1.960;] = [-1.17681 , 3.07396] = [Ly,Lp]

and an approximate 95% credibility interval for P is given by

Ly, -1

tave Ty (ave P2y = [0.23563 , 0.95581)

New case 2 : x=70

Pe = 0.54755 and Pp = 0.610358

E(L) = E(L)+E(Lg) = -0.3622+0.83333 = 0.47113 = py
V(L) = V(L)}+V(Lq)
A 952 credibility interval for L is given by [-2.12350,3.06576] and

0.823667+0.92876 = 1.75243 = g2

a 95% credibility interval for P is given by (0.10683,0.95546].

In conclusion, by comparison with the results of section 4.3.4, it can be
seen that the uncertainty about the mixing parameters 1leads to a much
greater posterior variance for L resulting in a much wider credibility

interval for P.
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CHAPTER 6

The situation where the new observation belongs to one of more than two

populations

6.1 Introduction

Suppose that individuals belong to one of I distinct populations fj, for
i=1,2,..,I. Independent random samples, x; = (xij, j=1,ni), from population IIj
for i=1,2,..,I are to be used to gain information concerning which population a
new observation y belongs to. Let q;j be the prior probability that y belongs to
Ij and let pj(yiB) be the 1ith population density, given the population
parameters 6, for i=1,2,..,I. The probability Pj that y belongs to 3 given the
value y, the population parameters © and the prior probabilities, for
j=1,2,..,I, is given by,

p: = qiPi(yi®)
j =

(6.1.1)

I
L gijpi(yie)
i=1

6.2 Estimates of P;

An ‘estimative' estimate of Pj, denoted by Pej, is obtained by substituting

A
point estimates © of the population parameter(s) © into (6.1.1), i.e.

A
Pej = a;pPi(y1e)) (6.2.1)
I A
.C_aqjpi(vi8)
i=1

A ‘'predictive’' estimate of Pj, denoted by Ppj, is obtained by substituting
the predictive densities pj(yixy,X2,..,Xy) for the population densities pi(yi9),
i=1,2,..,I in (6.1.1), i.e.

Ppj = qiPj(yIx%1,X2,..,X1) : (6.2.2)
I
,quip:i.(}"ﬂv&’ <o 9 XT)
1=

The ‘'predictive’' estimate of Pj can be shown to be equal .to
pP(yellyly,xy,%X2,..,X1) from a fully Bayes approach.
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6.3 Credibility interval for g;

6.3.1 Introduction

Pj can be written as,

Py = %523 = _r (6.3.1)
I
L qiz4 1+ Rj
1 I i
where Rj = 573 15 qizi and zji=pi(yi8) [= e where li=log(pi(yi©)]]

Hence approximating the posterior distribution of Pj requires approximating
the posterior distribution of Rj, which in turn depends on the posterior
distribution of either the likelihood functions at y i.e. z=(z3,z2,..,21) or the

log likelihood functions at y i.e. 1=(1l3,132,..,11).

6.3.2 Population distributions with no parameters in common.

In this case, provided independent prior distributions are assumed for the
different sets of population parameters, then the posterior distributions of zj
(or equivalently 1) for i=1,2,..,I, will be independent. Hence the moments of
Rj can be obtained from the moments of z{ obtained seperately for i=l1,2,..,I.
The moments of zj for Normal (unequal covariance matrices), Gamma, Binomial and

Poisson population distributions are obtained in chapters 2 and 4.

I
since Rj = 1 L Qi%i , and hence,
AZj  ir
-1 I
E(R) =  (1/ay).E(z}) I asf(z;)
iz}
(6.3.2)
BR%) = (va?)Ez?) B OE ag a .z z, )
J - J 7 J iq io i1
ip=1 ip=1 1 %2 1112
iy3#j i2#3

which can be simplified, since zil and ziz are independent for ij#i;.

Similarly the higher moments of Rj can be obtained.
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6.3.3 Populations with parameters in common

In this case the posterior distributions of zj (or equivalently 1j) will not be
independent and hence the posterior moments of R cannot be found from the
seperate posterior moments of zj for i=1,2,..,I. To find the posterior moments

of Rj the joint posterior moments of 2=(2z3,23,..,21) must be obtained, since

I -1 -1
E(Rj) = io, (2195 ) -E(24Z5 )
i%j
(6.3.3)
E(R;%) = = g( %) E(z, z. z.%)
3 - il=l iz=l qi]_q‘iij * i]_ iz j
i.l#j iz#j

and similarly for higher moments of Rj.

Consider the example of multivariate Normal opulations Nog(pi,T), for
i=1,2,..,I, with unequal means but equal covariance matrices I (where T™r-1 is
the common precision matrix). In section 6.4 the joint posterior moment
generating function of 1=(1l3,12,..,1y) 1is obtained. In section 6.5 the joint
posterior moments of z=(zj,z2,..,27) are obtained , and in section 6.6 the joint

posterior moments of 1 are obtained.

6.3.4 Conclusions

once the posterior moments of Rj are found, the posterior distribution of
Ry can be approximated (for example by using Pearson curves) and hence the
posterior distribution of Pj can be obtained by transformation using equation
(6.3.1).

Furthermore, the joint posterior moments of (Rj33=1,2,..,I-1) can be
obtained similarly and their joint posterior distribution approximated. Hence
the joint posterior distribution of (Pj;j=1,2,..,1-1) can be obtained by
multivariate transformation from (Rj; j=1,2,..,1-1), where each seperate

univariate transformation from Rj to Pj is given by equation (6.3.1).
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6.4 The joint posterior moment generating function of the population
log likelihood functions at y )

The joint posterior moment generating function of the log of the likelihood
functions 1=(1;,17,...,11), where 1lj=log(pi(yi®)] for i=1,2,..,I, at y, given
the independent random samples x;,X7,..,Xy, from populations Mm,l,,..,01
respectively, is given by

®1(t) = Efe™ 1)

E[iilltpi(yle) ti]

I ts
[ [tpscvion™|p(orx, xzr - - oxxree (6.4.1)
where p(©ix,,X,,..,Xy) is the posterior distribution of © given x,,X,,..,XJ.

Let NI be a d-dimensional multivariate Normal population, Nog4(pj,T), with

mean u; and precision matrix T,i.e.
Pi(¥18) = pi(yipri,T) = 1T+ 2 exp(-%(y-pi) T(y-pi)l , (6.4.2)
(2m)9/2

for i=1,2,..I.

Let € = (u,T) have a Normall-wishart prior distribution, p(u,T), prior that is

to observing x,,x,,..,Xy, i.e.
p(u,T) = NOIWid(EOyBOyVotho) ’

where po=(H310,420:-HT0) and ng=(njg,nzq,..,nyo),» defined by,

P(U,T)=P(u g IT).P(HIT)...P(pugiT).XT) ,

where p(piiT)=Nog(Hie,nicT) for i=1,2,..,I and p(T)=Wig(ve,hgy).
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Then, for njoM0 for i=1,2,..,I, the posterior distribution of © is

p(elllezt-"!l) p(Evr|§L'iz,"thos)

NoIWig{up,np,vp,hpl ,

"

where up=(pujp,Hzp,.. HIp) and pijp = Niolig+n;R; ,

njotn;
np=(nyp,nzp,..,n1p) and njp = njo*n;j ,
I
Vp =vg+ Inj -I and
P07 a0
h h £ (X X )
p = hotS+ L [ njong (Xi-Bio)XXi-Bio)'] »
i=1 n:%-r*; ]

I
where S = .!:1 Sij , and subscript p indicates parameters of the posterior
i=

distribution of © and where nj, Xj and S; are the sample size, the mean and the
corrected sum of squares and products matrix for the ith random sample x; for
i=1,2,..,I.

If vague prior information is assumed, i.e. p(u,T) « |T| (4+1)/2 then,
P(©lx,,X;,..,Xr) = P(4,TIX,S) = NolWig(%,n,En;j-1,S)
where X=(X;,%X2,....,X1y) and n=(n3,nz,..,ny).

For a general result let
P(OIxX,,Xz,..,X1) = P(#,TIX,S) = NoIwig(b,c,v,h) , (6.4.3)

where b=(b;,b,....,by) and c=(c;,c2,....,C1).
Hence substituting pj(yi®) from (6.4.2) for i=1,2,..,I, and
P(©iX;,X,,..,X7) from (6.4.3) into (6.4.1) gives,

I ta
¢1(t) = I JJ [il_ll[pi(ymi,r)] 1 ].p(g,'rlzl,gz,...x_pS) dp dr ,
TS0 p,eRd  prerd

= {f...] [iél"r'ti/z(2")-dti/zeXP("sE_’()"#i)'T(Y‘#i)]]

I
.[igllci'rl*/‘ (2n) "2 exp[-'s(ui-bi)'CiT(ui-bi)l]

A§ni¥/2  yTi(V-d-1)/2 exp(-%trhT] du, dp,....duy 4T,
Fa(v/2)

d
where TAO means T is positive definate and Iq(v/z) = 73(d-1)/4 g rr(v-d+j)/2].
=1
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Completing the squares in each of the uj and integrating out the result to
the constants of Normal RNof{(cjbj+tjy)/(ci+tj),(cj+t;j)T] distributions for
i=1,2,....,I gives,

]d/=] |§h1¥/2. a1
Fal¥vl (2m)

e (t) = jT1(v-9-1)/2 exp[ -4trHT) dT,

[1:1 c1+t1 dtti I

I
where H =h + ¢ citi (bi-y)Xbi-y)'.

i=1 cjitt;
By noting that the integrand is in the form of the Wishart probability density
function, T can be integrated out to the normalising constant of the Wishart
probability density function giving,

_ d/2 1 | rals(v+fti)) . [h{¥/2 . (6.4.4)
*(t) = 1=1[c1+t1] ] ralvl.m drt;/2 gy (VI )/2

Now by considering the determinant of a partitioned matrix A of size (d+I) by
(d+I) with elements A;,Az,A3 and A4 given by

h, [oa(b,-y),a2(by-y),..,ax(br-y)], [-(b1-y),-(b2-¥),....,-(br-y)]’ and the I
dimensional identity matrix respectively, then

-1 -l
Al = [A] A3] = [A41.1A1-A3A, Azl = [A)1.1A4-AxAy Azl »
Az A,
and hence [H{ = (h{|.|u] where, (6.4.5)
u = 1+a3Dyy aiDy2 ... x1D11

azD2y 1l+azDy2 .... a2D21

. . LI ]

arlry ayDr2 .... l+arDry

where aj= _c¢jty ,for i-1,2,..,I, and Dijz(bi-y)'h'*(bj-y)
ci+t;

for i=1,2,..,I and j=1,2,..,IL.

Hence from (6.4.4) and (6.4.5),

*(t) = [ ﬁ [_Qi__]d/z ] . Fal%(v+Iti)] . (6.4.6)

j=1 lci+ty rd[&v].ﬂdtti/zlul(v+tti)/2lhltti/2
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6.5 The joint posterior moments of the population likelihood functions

at y

Let zi=pi(yI©) be the iM population likelihood function at y, for i=1,2,..,I.
I ts

Since ®3(t) = E[ nzg 1] ’
i=1

the joint posterior moments of 2z=(z;,%Z2,....,2Z3) can be found from ¢3(t) by
appropriate substitution for t in the results of section 6.4.
For example E(zjz2z3) is obtained by substituting t=(1,1,1,0,....,0) in

section 6.4 giving

. d/2 v/2
E(zy2zo23) = [ﬁ [“;_,_1 } ] ’ rd[’s(wa;;/z : thl(v+3 2 ’
= ralsvl.n J:{
where [Hi = |h|.lul and
u = 1+a3Dy3 ajyD;32 ayDj 3 0O.... 0
azD21  1+axyDoo aD23 0 .... 0
a3D33 a3D32 1l+a3D33 0 .... 0
0 (o] o] 1....0
(0] (o] (0] 0O .... 1
where aj = cjt; = ¢j for i=1,2,3.
citty citl

70



6.6 The joint posterior moments of the population log likelihood

functions at y

In order to find the joint posterior moments of 1=(1;,13,..,1y) about their

mean, the following are required,

1. Pirst find a'%) = Diz)u = alf1) 4(r2) 4tm)
B ae§™1) ae{r2)  acftD

where r=(rj,rp,..,ry).

2. Then find b'E) = th)log u

3. Then find K= [D(E)
r t

log "1‘9] =0

4. Then find p,' from Ky using the results of Appendix 2.
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For example for I=2 :

1. u=[1+ ayD; + GZDZ + axaz(DLDZ-Dli)]

D(rz)u = ([Da + az(D3yD2-D32)} . D(rz)az for ro>l
t2 t2
(ry,rz) (ry) (r2)
D u = D -D . D ay. D fo
ty,to (D1D2-D12). Dy =’ t, 2
_9nT1 2 98\ T1
where Dérl)al . (1) rilii and [Dirl)d ]t—o - lg -i !
1 (cptty)t 1 - eyt
(r) _ (r)
Let aQ = [a ]EFQ ,» then
af)rl’rZ) =11 if (r1,72)=(0,0)
(-1)"ry1py if rp=0
clrl—l
tz -
(-1) “xa1Dp if r;=0
czrz-l
ri+r .
(-1) 1" 2r 175 1(D3D3-D38)  if (r3,r3)=(0,0)
ry-1_ rp-1
c1 c2

2. Dirz)u - rzél [rg-l] Dijz)u‘oirz-Jz)
2 jp=o0 b 32 2 2
Dtye e =i B[ (]
fe. a(TUTR) Tl E (21 [m)

32=0 j1=0 2 1
j.e. plTreT2) _ J(r1,T2) T2zl [1
J2=0 j)=0
where a'(z) = [ 0 if r=0
‘) f =0

log u

(31,32) (ri-31,r2-32)
D u.D
ti,t2 t;,ts

a(jl,jz) b(r1'31:r2'j2)

log u

where D,=D,, and D,=D,,

for (ri,rz)»(1,1)

(6.6.1)

[rZ'l] [rl] ar(31,32) (Tr1-31,72-32)

j2 ja
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Setting t=0 in equation (6.6.2) and using equation (6.6.1) gives the following

results,

(1,0) _ (2,0) _ 2 (3,0) _ 3 2
bQ =Dy , bg '"'=-2D0y - D" , bg 7 =2D;" + 6D + 6012 '

Cy cy . Cy
(4,0) _ 4 3 2
bQ = -6Dy - 24Dp - 36DJ2 - 24013 i
c1 c1 ci

(1,1) 2
b, =Dz ,
b(z'l) = 201% [Dl + 1 ]

[o] * - ’

A%4 c1

(3,1) _ _ 2 2
bg = -6D35.(D; + 22; + ii} ,

ci1 ©

(2,2) 2 2 2 2
bO 4 = -2Dj3.(Dj2 + 2D;D3] - 4012.[2l + 22] - 40;2 ,

- c2 € Cic2

3.

d log ¢ (ti,t2) = - d + d log Igli(v+ty+ty)] - Yd.logrm
dt; 1,12 2(c3+ty) dty

-%log{h.u] - %(v+tj+ty).d 1loglh.u] . (6.6.3)
dty
Setting t=0 in (6.6.3) gives,
d (1,0)
X = - %dlogm - %logh - d/(2cy) + % T P[%(v-j+1)] - %v.b' ™’
1,0 j:l 9_

Differentiating (6.6.3) r; times with respect to t; and setting t=0 gives,

d -
= (O 4 (0™ £ R T w1 - geplTUO) gy (T

ry J -

(ry-

K
r;,0
2cy

for ria2,

Differentiating (6.6.3) rj times with respect to tj, for i=1,2, and setting

=0
gives
ad _ -
K - (&)r1+rz. o gl T1¥T2 le&(v-j+1)] . gv‘b(rl.rz) -y p(T1-1,72)
1
ry,r2 j=1 2] (]
(r1,r2-1)

-5r2.b0

for (r3,r2)>(1,1)

4. Appendix 2 gives a recurrence relationship relating the moments of a
p-dimensional random variable about its mean to its cumulants. Hence the moments
of (13,12) about its mean can now be found, from the cumulants of (13,12)
obtained above, using equation (A2.2) from Appendix 2.
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CHAPTER 7

The general situation : multiple new observations from each of I populations,

where the mixing parameters may be unknown

7.1 Introduction

In this chapter the general situation is considered in which observations
of a d-dimensional random variable X belong to one of I populations Mj with
probability density functions, p;(xi9), of known but not necessarily the same
functional form, for i=1,2,..,I, dependent on some unknown parameter vector ©
which comprises the parameters from all the I populations. This allows for the
possibility of common parameters between populations (as for example in the case
of Normal populations with different means but equal precision matrix T, so that
6=(K31sH2,..,41,T) ). Suppose independent random samples xi=(xij;j=1,2,..,ni)
are obtained from the mixture probability density function Iqijpij(x!8) and
identified as belonging to nj for i=1,2,..,I. The mixing parameters
a=(q3,4d2,..,97) satisfy Igj=1 and may be unknown.

Interest usually lies in the relative 1likelihoods of a single future
observation y of fixed known value belonging to 0j, i.e. on qjpij(yie), for
i=1,2,..I. Here interest lies in the joint posterior distribution of the 1log
likelihoods which 1is investigated using their posterior moment generating
function.

For a general result, however, consider the joint posterior moment
generating function of the log likelihoods of wmultiple new values

(yil,yig,...,yimi) from each of the I populations, i for i=1,2,...,I.

The special case where mj=1 and yj;=y for i=1,2,..,I, gives the usual situation

of interest of a single future observation y.

The log likelihood of new value Yij is given by,
133 = log qjPi(yijle) = 1log qj + 1jj
where lij = log pi(yijle) for j=1,2,..,mjy and i=1,2,..,I.

Let li=(lil,liz,..,1imi)' for i=1,2,..,I and let 1=(13',12',..,11')’' ,be a
vector of length Imj, with 14 and I and tj and t similarly defined.

Let ¢;(t) be the posterior moment generating function of 1.
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In section 7.2, ¢;(t) is expressed as the product of two integrals, &(t)
and ¢3(t), where ¢(t) involves the mixing parameters q only and ¢3(t), the
posterior moment generating function of 1, involves the combined population
parameters © only, provided that © and q are assumed to have independent prior
distributions.

In section 7.3, the integral #&(t) is obtained assuming a Dirichlet prior
distribution for the mixing parameters gq. The joint posterior moment generating
function of the 1logs of the mixing parameters and also the joint posterior
moments of the mixing parameters q and their logs lq are obtained. In section
7.4 the joint posterior cumulants of 1 are obtained in general from &(t) and
$31(t), and in particular for a single future observation y from qu( t) and
®1(t).

Furthermore if the I populations have no parameters in common and have
independent prior distributions for their parameters, then ¢j(t) caﬁ be
expressed as a product of the posterior moment generating functions ¢1i( t) of
1; for i=1,2,..,I. Omitting the subscript i from 1j, the posterior moment
generating function of 13 is found for a multivariate Normal 1linear model
population in section 7.5. Hence ¢3(t) can be found for multivariate Normal 7
linear model populations with unequal precision matrices.

However if the I populations have parameters in common then ¢j(t) cannot be
expressed as a product of the posterior moment generating functions of 15 for
i=1,2,..,I, but may be obtained directly. In section 7.6, ®j(t) is found for

multivariate Normal linear model populations with equal precision matrices.
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7.2 The posterior moment generating function of the log likelihood

functions at multiple new observations from each of I populations where the

mixing parameters are unknown

The log likelihood of new value yjj is given by,
135 = log qjpi(yjjie) = log q; + 1jj
where 133 = log pi(yijl®) for j=1,2,..,m; and i=1,2,..,I.
Let li=(lil,liz,..,limi)' for i=1,2,..,I and let 1=(1;',12',..,11')' ,be a
vector of length Imj, with Ij and I and t; and t similarly defined.

Let ¢;(t) be the posterior moment generating function of 1 ,i.e.

E [et'z}

@, (1)

I m§ tij
= E [ o o [aipi(yijl®)]
i=1 j=1

I mj tij
JJ [ o0 [qiPi(¥ijie)] } p(e,aix) do dq , (7.2.1)
i=1 j=1

where p(©8,q{x) is the posterior distribution of © and q given the data x.

The likelihood of the data x=(%;,X2,..,Xr) given © and q is given by,

I nj I nj I nj
n n qipi(xijle) = I qy n n pi(xijle) . (7.2.2)
i=1 j=1 i=1 i=1l j=1
Hence,
I nj
pP(8,alx) « o 0 qjpi(xijle) |}.p(e,q) , (7.2.3)
i=1 j=1

where p(8,q) is the joint prior distribution of 8 and q.

Assuming that the prior distributions of © and q are independent and given by
pP(©) and p(q), then their posterior distributions will also be independent,

I nj :

P(B8lx) «o [ n n pi(xjjlie) } p(9) ,and (7.2.4)
i=1 j=1
I nj

p(aix) « { oI qji p(q) . (7.2.5)
i=1
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Hence ¢1( t) can be written as the product of two integrals,

Ol(t) = &t) . $(t) , (7.2.6)
I Ttyij m4
where ¢(t) = J{ n aqj p(qlix) dg , where L = [ , (7.2.7)
i=1 j=
I mj tij
and ®1(t) = { { o n(pi(yijle)] } p(elx) de . (7.2.8)
i=1 j=1

If the populations I, i=1,2,..,I, have no parameters in common, then let
84 be the parameters of Mj for i=1,2,..,I, so that 6=(6,,67,..,67). Assuming
that the distinct parameter sets 63 have independent prior distributions p(©5)
for i=1,2,..,I, then

I
P(8) = np(6;y) .
i=1
In this case the posterior distributions of 8; are independent :
nj
P(Biixi) « | I pi(xij161)|.-P(61) (7.2.9)
j=1

and hence ¢3(t) in equation (7.1.8) can be split into I seperate integrals,i.e.

nj my tij
$(t) = 1 o {pi(yijlei)] pP(©e4l1xi) 484 ’ (7.2.10)
i=1 j=1
I
= I ¢, (ty) . (7.2.11)
i=1 1
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Hence the posterior distributions of 13 for i=1,2,..,I are independent and their
posterior moment generating functions can be obtained seperately. If the
populations have probability density functions of the same functional form but
with different parameter sets (i.e. no parameters in common) then the posterior
moment generating functions of 1; for i=1,2,..,I are all of the same form, as,
for example, in section 7.5 for the case of multivariate Normal linear model
populations with unequal precision matrices and where for simplicity of notation
the suffix i is dropped from 1j.

However when the populations have parameters in common this simplification is
not possible, as,for example, in section 7.6 for the case of multivariate Normal

linear model populations with equal precision matrices,
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7.3 The posterior moments of the mixing parameters and their logs

Assuming a Dirichlet Di(gg) prior distribution for the mixing parameters q,

I I .
) 8oi-1
P(q) - R (7.3.1)
I (goi)
i=1

I~ '
where gy = 1—i£lqi and go = (801,802:--+801),» then the posterior distribution

of q given x is Di(ggo+n) where n = (n3,nz,..,ny).

Por a general result let p(qlx) = Di(g).

I Ltij I I gi-1
T g . r L gj I g

. : . dq,
Hence &¢(t) = 1=1 1_11 1=1 ,
I r(gi)
i=1
I I
F | Cegi|. Tr(gi+ Itij)
i=1 i=1
= , (7.3.2)

I I
r [ L (gi + Ttij) }- nr(gi)
i=1 i=1

mj
where Etij = L tij
j=1

The posterior moment generating function of 1q7= (log a@53i=1,2,..,I)

¢, (t) = E [ et 1q ] where here t = (tj,tz,..,t1)
q

I ti
= E I qj

L i.:l

i=1
= s (7.3.3)

[ I I
r L gy |. OT(gy + t4)

I I
r [ L (gi + ti) }- I r(gi)
i=1 i=1

by setting mj=1 and tj;=tj for i=1,2,..,I in equation (7.3.2),
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The posterior moments of q

Hence suitable substitution for t in (7.3.3) gives the posterior moments of q.

In particular for ral,

T r(cgq).r(gi+r)
= [o7] - R
9 I(Tgi+r).1(281)
I
where L = [ throughout the rest of section 7.3.
i=1
Hence E(q;] = :—2 :
T (git+r-1) [ r-l]
= 2L - -7 .
and E [qi ] (tg+z-1) E qi , for ril

The posterior moments of lop q

The posterior cumulant generating function of log q , Kl (t) is given by
q

K. (t) = 1log &. (t)
1q 1q

log I'(Cgi) - log L(Z[gi+ti]l) - Clogl(gi) - logl(gitti)l. (7.3.4)

Hence the r™P cumulant of lq_ = log qQj is given by,
i

(r) - -
d w(r 1) _ W(r 1)

(Ky) = —— K. (%) = (ei) (Zgi)

1 r 1

Qi dti( ) qj t=0
In particular, E(lq.) = E(log qj) = (Kl)1 = ¥(gj) - ¥(Zgi) .

i ai
Purthermore
(x)
r 4a*= Lri-1
o'k (t) = R, (6 = P D)
for r>0 with at least two r;'s non-zero, where r=(rj,rp,..,rr).
Hence (K_) = 9P Dpe.y
r'lq

and in particular cov(log qil,log qiz) = -w(l)[:gi] , for qjij#ajiz.
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7.4 Combining the moments of the log likelihood functions with the

moments of the logs of the mixing parameters

FProm equation (7.2.6) the posterior cumulant generating function of 1 is

given by,

K (t) = log &(t) + Ky(t) , where &ty is given by (7.3.2). (7.4.1)

Hence the r'M posterior cumulant of 1, where r=(rjj;j=1,2,..,m;;i=1,2,..,I) is
given by,

d(_1:) .
(Kr)l = d-:-(z)log ¢(t)1:_=9_ +(!<£)1 , (7.4.2)

and hence the posterior cumilants and moments of 1 can easily be found.

In particular for a single future value vy

Set m3j=1 and yjj for i=1,2,..,I, and hence from (7.4.1) and (7.4.2),

K(8) = K (6) +X(t)
and(K£)1 = (K£)1q+(K£)1 .

The posterior cumulant generating function and cumulants of 1q=logq are given in
section 7.3.

The posterior cumulant generating function and cumulants of 1 for multivariate
Normal linear model populations with equal precision matrices are given in

section 7.6.3 for the case of a single future observation y.

Por populations with no parameters in common then from section 7.2,

I
¢ (t) = T ¢ (tj) and hence
1 . 14
i=1
I
K (t) = LK, (tj) and
1 . 15
i=1
I
(K_I_')l =i:1(Kri)li ’

and so the populations can be dealt with seperately and later the cumulants
combined. Omitting the subscript i from 13 and rj, the posterior cumulant
generating function and cumulants of each 13 can be found for multivariate
Normal linear model populations with unequal precision matrices from sections

7.5.8 and 7.5.9, and for exponential family populations from section 4.1.
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7.5 BEvaluating ¢93(t) for a multivariate Normal linear model population.

7.5.1 Introduction

Let x=(x;,X2,..,X,) be a random sample from a d-dimensional multivariate Normal

linear model population given by

x3' = zj'B + ej' , where ej~Nog(0,T) independently for j=1,2,..,n.

Hence X = 2B + ¢ , where e~Nop g(0,I,,T), a Matrix Normal distribution
defined by (7.5.5), and

X = (x3,X2,..,Xp)’ is a nxd matrix of observations,

Z = (21+22,..52n)' 1is a nxk known design matrix,
€ = (€31,€2,..,€n)"' 1s a nxd matrix of errors, and
B

is a kxd matrix of unknown regression parameters.

Interest centres on the joint posterior moment generating function ¢3(t) of
the log likelihood functions of possible future observations (yj;j=l,2,..,m)
defined by the same model, i.e.

y;' = wj'B + ej‘ , where ej~Nod(0,T) independently for j=1,2,..,m.

Hence Y = WB + e , where e~Nom,d(O,Im,T) , and
Y

(Y1:¥25--+¥Ym)’ is a mxd matrix of future observations,

w

it

(W31,W2,..,Wq)’ is a mxk known future design matrix, and

e

(ey1,e2,..,eq)' is a mxd matrix of errors.
Bence ¢3(t) = E[et'lj
where here t=(t;,tz,..,tm)' , 1=(13,12,..,1y)" and 15 = log p(y;IB,T,w;)

for j=1,2,..m.

p(B,TIX,Z) dB dT , (7.5.1)

m t;
i.e. ¢3(t) = JJ { n {p(y;iB,T,wj)]
j=1

where p(B,Ti{X,Z) = p(BIT,X,Z2).p(TiX,Z) is the joint posterior distribution of B
and T given the observed data X and the known design matrix Z.

Hence ¢j(t) = j G(T) p(TiX,Z) 4T (7.5.2)
m tj

where G(T) = J [ n [p(leB,T,Wj)] ] pBIT,X,Z) dB (7.5.3)
j=1
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7.5.2.The joint posterior distribution of B and T given observed data X and

known design matrix Z.

Assuming vague prior knowledge for (B,T),

P(B,T) « {T1-%(d+1) and so

A
P(B,TIX,Z) = NoWiy 4(B,Z'Z,n-k,S) ,

a Matrix Normal-Wishart distribution, (an obvious generalisation of the
multivariate Normal-Wishart distribution), defined below by equation (7.5.5),

A A A -
where S = (X-ZB)'(X-ZB) and B = (Z'Z) 1Z'x provided Z'Z is non-singular.

Assuming a conjugate prior distribution for (B,T),

P(B,T) = NoWiy 4(bo,Co,v0,ho) »

vhere vgid-1 and Cg and hg are symmetric positive definite, then

P(B,TIX,Z) = NoWiyx q(b1,Co+Z'Z,vg+n,hy) (7.5.4)
where by = (Cg+2'2) 1(Cgbg+2'X)

and hy = hg + bg'Cgobg + X'X - (Cobg+2'X)’'(Co+Z'Z) 1(Cobg+2'X).

[Note that 1letting v=-k, Cg»0, hp>»0 in the conjugate prior gives the correct
posterior distribution for (B,T) for vague prior knowledge.]

Por a general result let the posterior distribution for (B,T) be given by,

P(B,TIX,Z) = NOWik’d(b,C,v,h) ’
i.e. p(BIT,X,2) NO’k,d(b,C,T)

Yk ohd
= PR ep[-strts-myraesmyT |
(2m)
and p(TIX,2) = Wig(v,h)
v s(v-d-1)
_ Ishi ré?siv) exp(-§tr(hT)] .

(7.5.5)
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7.5.3 Evaluating G(T)

Prom equation (7.5.3),

N INT Th 5
&(T) = n | exwpl-gy;-  )Tyy- N
kd j
j=1 (2m)
13 ‘
.-l-'r—llf—'%:-gexp{-!;tr[(a-b)'C(B-b)’r]] a
(2r)
= c1 ¥ 'T"s:::t_j) Je‘xp{ -lstr[H(B).T]] daB (7.5.6)
(2")’9!1( j)
where H(B) = [Ttj(y;j-gw;¥j-v'w)'] + (B-b)'C(B-b) ,
= (Y-WB)'A(Y-WB) + (B-b)'C(B-b) ,
A A
= (B-B)"(W'AWC)(B-B) + V
by completing the square in B, where
A = diag(ti,tz,..,tm) ,
A -
B = (wawc) Y(wiavic'b) (7.5.7)
A
V = Y'AY + b'Cb - (b'C+Y'AW)B , (7.5.8)

m
and L = [ throughout sections 7.5.3 and 7.5.4.

Now integrating out B in equation (7.5.6) to the normalising constant of a

Matrix Normal distribution gives normalising constant

A
(2m)skd 15K |weawc| %9 from Noy y4[B,W'AWHC,T] in the notation of (7.5.5).

%d -%d It;
Bence G(T) = ICl |W'AWC] IT1 exp[ -5tr(vT)] , (7.5.9)

A
where V is defined by (7.5.8) and B by (7.5.7).
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7.5.4.Evaluating ¢y(t)

Hence substituting (7.5.9) into (7.5.2) and integraing out T to the normalising
constant of a Wishart, Wid(v+r.tj,h+V), distribution gives

ic1¥ 1n1® rqrs(vere;)]
ep(t) = _ _ (7.5.10)
tweawtct T v SRS pooey o T9EES

where V, given by (7.5.8), can be rewritten by completing the square in Y, i.e.

vV = (Y-Y*)'a(Y-Y*) + E , where (7.5.11)
A = [a- awwawc)lwa) (7.5.12)
¥ = a"law(wrawc)"lc'b = Wb , and

E = -Y*AY* - b'c(w'amc) lc'b + b'cb = 0 ,

the results being obtained after some algebra.

Hence V = (Y-Wb)'A(Y-Wb) (7.5.13)
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7.5.5 The joint predictive distribution for Y = (y3,¥2:..,¥m)’

Setting tj=1 for j=1,2,..,m gives A=Iy and

xd

1c1¥9 1Y rgry(vem))

p(YiX,Z2,W) =

d 5(v+m)

Ldm

IW'WHC| ¥ |h+(Y-Wb)'Aj(Y-Wb)| rg(sv) =

where A; = [I - W(W'W+C) 1w’}

i.e. given X,Z and W, then Y has a Matrix t distribution,
YIX,2Z,W ~ tp gq(Wb,A;71,h,v-d+1] , and

Y'IX,2,W ~ td,m[(Wb)',h,Al'l,v-d+1]

in the notation of Box and Tiao (1973).

The predictive distribution for Y was first obtained by Geisser (1965) for

(7.5.14)

(7.5.15)

(7.5.16)

vague prior knowledge about B and T, and has been considered more recently by

Broemeling (1985,Ch8) for a general conjugate prior, however,

apart from some

typing errors in the result and omitting the normalising constant, Broemeling

apparantly fails to recognise the dramatic simplification of Y* to Wb and E to O

and his resultant predictive distribution for Y is unneccessarily complicated.
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7.5.6 Simplification of #,(t)

Simplification of ¢j(t) can be obtained by using the partitioned matrix result

My M3] = IMglIMy-MaMg IMal = My Mg -MpMy ~1Mg | (7.5.17)
Mz M

Letting (M;,Mp,M3,M;) = (A™L1,W',-W,C) gives IW'AWHC| = [C||Iytawc iw'y,

Letting (M;,Mz,M3,M;) (A,W'A,AW,W'AWHC ) gives

Al = jalictiw amc] L = jAl | Igtawc lw' -1 | where A is given by (7.5.12).

Letting (Mj,Mz,M3,M;) = (h,(Y-Wb),-(Y-Wb)',A"1) gives
th + (Y-Wb)'A(Y-Wb)| = |h{|Ig + A(Y-Wb)h 1(Y-Wb)'|

Hence

Fals(v+It;)]

(L) =

fgtawc-Iwe 159 |1 eacy-wh)h(y-woye  SOVPEES) g WEES RATES ooy
(7.5.18)
Let D = (Y—Wb)h‘l(Y-Wb)' , then the (i,j)th element of D is given by
Dij = (yi—b'wi)‘h'l(yj-b'\vj) , for i=1,2,..,m and j=1,2,..,m. (7.5.19)
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7.5.7 Evaluation of the elements of matrix A

The (i,j)P diagonal element of matrix A, for j=1,2,..,m is given by

Ajj = tj - thj'(C + ttkwk\\'k')'ltjwj

tj.1C -tjwiw;j'+ Ctyxwiwy 'l (7.5.20
- | C + Ctywewk'l ’ +5.20)

where L = kgl throughout section 7.5.7,

by using (7.5.17) with [M;,Mp,M3,M;] = [tj,thj,thj',C+ttkwkwk']

Also using (7.5.17) again with

[My,M2,M3,M] = [C,(tiwy,towa,..,tnwWn)' ', (W1, W2,..,Wp),In] gives
IC+Etywiwi ' | = ICI [ Igptael , (7.5.21)
where the (:i.,j)th element of matrix e=wc lw' is given by eijwi'C'le ’

and the (i,3)t™" element of matrix ae is given by (4e)jj=tieij,

The numerator in equation (7.5.20) can be similarly obtained.

‘The (:i.,j)th off diagonal element of matrix A is given by

Aij = - tjwij'(C + ka(hq(')"ltj_wj '
for i=1,2,..,m and j=1,2,..m with i#j.
Using equation (7.5.17) with [M;,Mp,M3,M;] = [l,tjwj,tiwi',c+ttkwkwk’] gives

IC -tjtjwiwi'+ L Trwkwy'!l
| C+ T tywxwk'l

1+A53 . (7.5.22)

The denominator in (7.5.22) is the same as in (7.5.20) and hence can be obtained

using (7.5.21).
To obtain the numerator in equation (7.5.22) use (7.5.17) with
(M3,M2,M3,M] = [C,(tywy,towWa, .. ,tyWm,tiwi) ', -(W1,W2, .., Wy, “thj )y Im1] giving

IC-tijtjwiwj ' +Etxwewik ' I1=1Ipey +H(tawr,tow2, .. ,tmwm,tiwi)’c'l(wl,wz, oo sWm, “tiwji)l

(7.5.23)
Hence both numerator and denominator in 1+Aij can easily be obtained. Matrix A
is then easily obtained from Ajj and Ajj.

88



.

In conclusion note that ¢3(t) depends on the data x only through h,v,e and D

where ejj = Vi'C-lﬂj and Dyjj = (yi-b'wi)'h'l(}'j-b'wj) for i=1,2,..,m and
j=1,2,..,m. This is easily shown by substituting the results for the elements of
A from section 7.5.7 into equation (7.5.18), together with (7.5.19) and also
noting that |Iy+aWC 1W'| = |Ip+tée| and is easily obtained as for (7.5.21).

Hence to conclude the joint posterior distribution of the log 1likelihood

functions 1=(13,12,..,1y) where 15 = log P(y;10) depends on the observed data x
only through the quantities h,v,e and D.

A
{Note, in particular, that for vague prior knowledge (b,C,v,h) = (B,Z2'Z,n-k,S)

A A A
where S = (X-ZB)'(X-ZB) and B = (2'2) 12'x }
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7.5.8 The posterior moment generating function of the log likelihood function

1=log p(y|{B,T,w) at a single future value y.

Set tj=o for j=2,3,..,m to give A;;=t; and 4j 570 for (i,j)#(1,1), and omitting

the suffix 1 from 1;,t;,y; and w; to give from (7.5.18),

Fals(v+t)]
(L) = d L(v+t) okt kdt ’
[1+tw'c lw] [1+A11(y-b'w)'h'l(y-b'w)] ihi ” La(%v)
(7.5.24)
where Aj; = t - tw'(tww'+C) lwt = -t (7.5.25)
(1+tw'Cc 1w]

using (7.5.17).

Predictive distribution for a single future observation vy

Setting t=1 in equation (7.5.24) gives the predictive distribution for y

Fal¥(v+l)]

yiX,z,w) =
[l+w‘c’1w]kd [1+4s.11(:,'-b'w)'h'l(y—b'w)]”(‘”'1)|h|’s s Lg(sv)

(7.5.26)
where here Aj; = [1+w'C lw]"l | and

Fals(v+1l)] Fls(v+1)]
Fa(%v) T ri(v-d+1)] O’

i.e. the predictive distribution of y 1is the multivariate Student

distribution,

p(yiX,2,w) = Stg4[v,b'w,v i(1+w'c lw)n] ,

in the notation of Aitchison and Dunsmore (1975), and
p(y1X,Z2,w) = tg(b'w,(v-d+1) 1(1+w'c lw)h,v-a+1] |,

in the notation of Box and Tiao (1973).
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7.5.9 The posterior moments of the log likelihood function at a single future
value y

Equation (7.5.24) for #3(t) is in the same form as equation (2.2.2) of chapter 2
for the case of a multivariate Normal population except that ¢ in chapter 2 is
here replaced by (w'C lw) 1l and D=(y-b)'h~1(y-b) in chapter 2 is here replaced
by (y-b'w)'h‘l(y-b'w), and hence the resulting equations (2.3.4) for the moments
of the log likelihood function are the same with the appropriate substitutions
for ¢ and D. Note also that the values for the parameters (b,C,v,h) are
different here, as discussed in section 7.5.2.

Here for vague prior knowledge,

p(B,T) « |T{%(d+1) angd hence set (b,c,v,h) = (g,z'z,n—k,S), where

A A A
S=(X-ZB)'(X-ZB) and B=(Z'Z) 1z°'X .
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7.6 Evaluating 61(tL for multivariate Normal linear model populations

with equal error precision matrices.

7.6.1 Introduction

Observations belong to one of I multivariate Normal linear model populations, I3
for i=1,2,..,I, having equal error precision matrix T.

Let (x331,Xj2,.. ,xini) be a random sample from population Nj, a d-dimensional
multivariate Normal linear model population, i.e for i=1,2,..I,

Xij' = 2ij'Bi + ej;° , where e;j~Nog(0,T) independently for j=1,2,..,m; .

. Hence Xj = 2ZjBj + ¢; , where 6i~N9r;,,d(°’InivT) a Matrix Normal
L .

distribution defined by (7.5.5), and

X3 = (Xi]1:,Xj25.- ,xini)' is a njxd matrix of observations,

%3

(211,242 °vzini)' is a niyxkj known design matrix,
€f = (éil’ein-weirxi)' is a njxd matrix of errors, and

Bj is a kijxd matrix of unknown regression parameters.

Hence X = 2ZB + € , where €~ Nop 4(0,Iy,T) , n=;n1 R k=z£.k1 and
i=1 i=1

X=(X3',%X2',..,X1')" is a nxd matrix of observations,

Z = mat-diag(2;',22',..,21' )’ 1is 2 nxk matrix diagonal design matrix,

€ = (e3',62',..,€1"')' is a nxd matrix of errors, and

B =(By',B2',..,Br")' is a kxd matrix of unknown regression parameters.



Interest centres on the joint posterior moment generating function ¢j(t) of
the log likelihood functions of possible future observations

(yij;j=l,2,..,mi;i=1,2,..,I) defined by the same model, i.e. for i=1,2,..,I,

¥Yij' = Wwij'Bj + e;j’ , where ejj~Noy(0,T) independently for j=1,2,..,m.

Hence Y; = W;jB; + e; , where ei*'NOm,d(ovai»T) , and
[N

Yy = (yil,yiz,..,yimi)' is a mjxd matrix of future observations,

3
e
|

= (wil,wiz,..,wimi)' is a mjxkj known future design matrix, and

ej = (eil,eiz,..,eimi)' is a mjxd matrix of errors.

Hence Y = WB + e , where e~ Nopy §(0,In,T) , m=_; mj and

Y= (Y1',Y2',..,¥7"')" is a mxd matrix of future ob;;ivations,

W = mat-diag(wWy',Wz',..,Wr')' is a mxk matrix diagonal future design matrix,and
e = (e;',e3"',..,e1')' is a mxd matrix of errors.

The model is now in the form of section 7.5 and hence the results of section 7.5
can be used with appropriate substitutions.

In particular from (7.5.18),

I ml tij
#1(t) = [J O 0 (p(yijlB,T,wij)] | P(B,TIX,Z) dB dT (7.6.1)
i=1 j=1

Fd[&(v+ﬁttij)

| Igrawe 1w | 5 Ipea(y-wh)h-1(y-wb) | SOVPEEEL ) (BETEL  AEDEE L ko

(7.6.2)
I my I I
where Ettij = L L tij ,m=LZm , k==LCXkj,
i=l j=1 i=1 i=1
A = mat-diag(Aj;,A2,..,Ay) where A; = diag(tij,tjz2,..,tim.) , and

p s

>
]

[A-AW(W' AWHC) 1w AT,
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7.6.2 Case where C is matrix diagonal

For vague prior knowledge the parameter C in the posterior distribution of (B,T)
is matrix diagonal, C = Z2'Z = mat-diag(Z;°'231,22'22,..,27'2y].

Also, provided that the parameter Cgo of the conjugate prior distribution for
(B,T) is matrix diagonal, i.e. Cg = mat-diag({Cjg,C20,.-,Crol, then C will also
be matrix diagonal, i.e. C = mat-diag{Cjo+Zj'2Z3,C20%22°'%2,..,Cro+21'21].

Note that the condition for Cqg to be matrix diagonal is equivalent to assuming

independent prior distributions for B;;i=1,2,..I given T.

If C is mat-diag{Cy,C2,..,Cyr] then

A = mat-diag(A; - AjWi(Wi'AjWi+Ci) wi'a; ;i=1,2,..,I1 ,
(Iptawc iwe ] = mat -diag(Im, + AjWiCi~lwi' ;i=1,2,..,I] , and hence
I
{Igtawc lw'| = n 1T + A{WiCiiwy .
i=1

oy



7.6.3 The posterior moment generating function ¢3(t) of the log likelihood

functions 1=(13,15,..,17y) where 1i= log pij(yiB,T,w) is the log likelihood of a

gsingle future value y belonging to Iy for i=1,2,..,1I.

Pirst set m;=1 for i=1,2,..,I in (7.6.2) and assume C is mat-diag[Cy,C2,..,Crl.

Since mj=1l, Aj=t;, Wj=wi' and Yi=y;' for i=1,2,..,I and hence using (7.5.17),

A = diag [tj - tjwi'(tiwiwi’'+Ci) lwity ;i=1,2,..,I]
= diag 1*tiVi'Ci-'LVi $1=1,2,..,I ,
I I
[Igtawc™1W'| = [ [14tjwi'Ci lwj] where herem=TCmj = I , and
i=1 i=1

ti(¥i-bi'wi)'h Ny j-byrws)
(Im + A(Y-WD)h'1(Y-Wb)'155 = 835 + , (7.6.3)
1+tiwi'Ci'lwi

0 if i#j

where 8335 = { 1 if i=j for i=1,2,..,I and j=1,2,..,I.

Now also set y;=y i=v,wi=w for i=1,2,..,I, asswning e same YomoWhes ot meagused
for o) T poeuldiens Yhen,

tiDij
[Im + AD]33 = &ij + —— (7.6.4)
1+t;weCi lw

where D = (Y-Wb)h 1(Y-wb)' and

Dij = (y-bi'w)'h"I(y-bj'w) , and (7.6.5)
0 if i)
Ajj = e (7.6.6)
— 2 if i=j
1+tjw'Ci 1w
and hence,
Cgls(v+ct;)]
L) = 7 d §(v+Lty) %Ct; kdrLty » (7.6.7)
n (1+tjw'cy lw] | I+AD| thi ™ rq(%v)
i=1

where A, D and [I+AD] are IxI matrices with (i,j)th elements defined by (7.6.6),
(7.6.5) and(7.6.4) respectively.

95



The equation (7.6.7) for ®j3(t) is now in the same form as equation (6.2.6)
for the case of multivariate Normal, Nog(ii,T), populations, except that cj in
chapter 6 is here replaced by (w'Cj lw)~1l and Djj = (y-bj)'h"I(y-bj) in chapter
6 is here replaced by (y-bi’w)'h‘l(y-bj'w) and hence section 6.3 and the results
of section 6.4 apply with the appropriate substitutions for c¢j;i=1,2,..,I and
Djj;i=1,2,..1;j=1,2,..,I.

Note also that the values of the parameters (b,C,v,h) are different here as
discussed in sections 7.5.2 and 7.6.2.
Here for vague prior knowledge about (B,T),

A
p(B8,T) « {T!'(d+1) and hence set (b,c,v,h) = (B,Z2'Z,n-k,S) , where

A A I
S = (X-ZB)'(X-ZB) = E S5 |,
i=1
A A .
S;j = (X3-Z2iBj)'(Xj-2jBj) for i=1,2,..,I,
Z'Z = mat-diag(2;'24 ;i=i,2,..,I) ,
A A A A
B* = (Bl'v32'9~'vBI') ’
A
By = (23'2i)12i'xy for i=1,2,..,I,
I
k = T ki = IK‘ ond
i=1
I
n = Lnj.
i=1
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7.6.4 Special case of I=2 populations

Let L = 13-1 , hence

tL t(ll-lz)
s - ] )

% t,-t
13,1,0E )
Hence from (7.6.7),
vy -Lag'
o(t) = (1 twcz’Sdlw] g vhere
(1+tw'cy"lw]® |1+AD|
II+AD| = (1 + ajDyy + agDop + Cxlaz(DllDzz-Dlzz)]
t;
a3y = —— for i=1,2.
1+tiw'Ci'1w

The equation (7.6.8) for ¢p(t) is now in the same form as equation (3.2.5) of
chapter 3 with appropriate substitutions for cj;i=1,2 and Dij;i=l,2;j=l,2 ,
changes in the parameters (b,C,v,h) as discussed in section 7.6.3, and with
aj;i=1,2 as defined by equation (7.6.9). Hence the results of section 3.3 for

the posterior moments of L can be applied directly after these substitutions and

changes.
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CHAPTER 8

Bow _stable is the predictive density function?

8.1 Introduction

Let x=(x3,X2,..,Xp) be a random sample of observations of a random variable
X with probability density function p(xi{©), xeRx. Interest centres on the
likelihood function p(yl©) and the log 1likelihood function log pP(yi©) of a
possible future value y of the random variable X, where y varies over the same
range, i.e. Ry. In order to investigate the posterior distributions of the
functions of ©, p(yi6) and log p(yl©), consider values y;,¥2,..,¥Ym from the
range of X. The posterior moment generating function of 1=(13,15,..,1p),
where lj = log p(yjle) for j=1,2,..,m is given by ¢j(t) from chapter 7, where
t=(t;,t2,..,ty) and the number of populations considered is I=1, and hence the

results of chapter 7 can be used.
The posterior moments of p=(p3,P2)..+Pm), Where Pj = p(yj!e) for j=1,2,..,m,
m rj

(kr)p = E[ I pj
j=1

’ (8.1.1)

are obtained from ¢3;(t) by substituting t=r, where r=(r;,r2,..,rp).

The posterior cumulants of 1, (Kp)j; are obtained from the cumulant generating

function for 1, Kj(t) = log ®3(t), since,

Ki(t) K3 —'(0) . (8.1.2)

{d(z)
(Kr)y =
* e

=0

In particular the posterior mean, variance and higher moments of the functions
p(yi8) and log p(y|®) for yeRxy are obtained by setting m=1 and omitting the
subscript 1 from y;,p3;,1; and tj in equations (8.1.1) and (8.1.2),

E(p(yi®)] = (m1)p = *1(1) ,
VIp(y1©)] = (m2)p - (B1)p? = @1(2) - ¢1(1)?,
(B3")p = (B3)p - 3(p2)p(B1dp + 2(p1)p> = @1(3) - 3¢3(2)e1(1) + 201(1)3 ,
(Ba')p = (M4dp - 4(u3)p(H1)dp + 6(u2)p(K1)p? - 3(u1)p*
= $3(4) - 491(3)%1(1) + 6¢1(2)¢1(l)2 - 3¢1(1)4 , and (8.1.3)
E(log yl@)] = (k1)1 = K1(1)o),
Vilog p(yI©®)] = (K2)1 = Ki{2)o0),
(k3')1 = (x3)1 = K130y,
(Bs')1 = (Kg)1 - (K212 = K1(4)(0) - 3K;(2)(0)2 . (8.1.4)
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Note that the posterior -mean of .the function p(y|8), for yeRy, is the
predictive density function p(yix). The posterior momenfs of p(yie) and log
pP(yl8) can be used to obtain credibility interval bands for each of the
functions, and hence to investigate the stability of the posterior distributions
of the functions. In particular, for function p(yl®), this will indicate the
stability of the posterior distribution of the function p(yi8) about its
posterior mean, the predictive density function p(yix).

Furthermore, the posterior correlation coefficient between the likelihood
functions at two different values y; and yz, i.e. py = p(y110) and py = p(y218),

can easily be found since,

Cov(pi.P2) E(p1P2)-E(P1)E(P2) (
(P1,P2) = = ’ 8.1.5)
[V(P1)V(P2)]* (V(p1V(P2)1%
where E(pipz) = (my 1)p o = @ ) (1,1)

and V(p;) and V(py) can be obtained using (8.1.3).

The posterior correlation coefficient between the log likelihood functions
at two different values y; and y5, i.e. 1 = log p(yii©) and 1l; = log p(y219)

can also easily be found since,

Cov(l,,15) (y,2015,1,
p(1ly,12) = - X =  C (8.1.6)
(V(131)V(12)] (V(11)V(12)]
_ Lf1,1)
where (Kl,l)ll,lz = xll,lz(o’o) ’

and V(1;) and V(1,) can be obtained using (8.1.4).

Investigation of the credibility interval band for the likelihood (or log
likelihood) function about its mean, the predictive density function, together
with the posterior correlation coefficients above, will help to understand the
structure or character of the predictive density function, or rather, that of

the posterior distribution of the likelihood (or log likelihood) function.
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8.2 Exponential family populations

Por an Exponential family population, the posterior moment generating
function ¢3(t) of the 1log likelihood functions of m future observations
(Y1+:Y2s--»¥Ym) 18 given by (4.2.6) and for a single future observation y by
(4.2.9).

Hence from (4.2.9),

clv,w].b(y)

Elp(yi®)] = #1(1) = iy ors(y)]

Vip(yle) = &3(2) - ¢3(1)2 where,

_ cfv,wl.b(y)?
$1(2) = s wizs(y)] (8.2.1)

and the higher moments of p = p(y|©) are obtained from (4.2.9).

Also,

E(log p(y10)] = (K1)1 = -[Jglog clwt,wits(y)] | o + log B(Y) ,
4(2)

Vilog p(yi©)} = (K21 - -ﬁlog clvtt,utts(y)] ’ (8.2.2)
dt t=0

and the higher cumulants of 1 are given by (4.2.12).

Also the posterior correlation coefficient between p(y3;1i©) and p(yl®) is given
by (8.1.5) where by setting m=2 and (tj,t>) = (1,1) in (4.2.6),

clv,w].b(yy)b(y2)
clv+2,wts(yy )+s(y2)] '’

E(pipz] = ¢ 4 (1,1) (8.2.3)

and the posterior correlation coefficient between log p(y;1©) and log p(y2!©) is
given by (8.1.6) where from (4.2.6),

d d
= { — —— 4 + + . .4
(K [dtl d'tzlog clv+ty+ty,wttys(yy )+tas(y2)] }tTO , (8.2.4)

1,1 )11,12
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Example : Gamma population distribution for random variable X.

Por a Gamma population distribution for X, ¢3(t) is given by equation (4.3.3)
for general m and by (4.3.5) for m=1.
Hence from (4.3.5),

k-1 .g
Elptyle)] = eya) = L HEW -
F(k) I'(g) (h+y)
VIp(yl©)] = @3(2) - ¢3(t)? where,
2(k-1) . g
®1(2) = h” '(g+zk) (8.2.5)

ro0)? r(g) (mezy)s

and the higher moments of p = p(yi{8©) are obtained from (4.3.5).

Also,
E(log p(yl©)] = (K1)1 = (k-1l).logy + k.¥y(g) - log[l(k)] - k.logh - gy ,
h
Vllog P(yi©)] = (K3); = k2.w(l)g) +y (2hk-gy] , (8.2.6)
2
h

and the higher cumulants of 1 = log p(yi®) are given by (4.3.8).

Also the posterior correlation coefficient between p(y;i©) and p(y;1i8) is given
by (8.1.5) where setting m=2 and (t;,tz) = (1,1) in (4.3.3) gives,

k-1 k-1
v1 ¥2 h® r(g+2x)

E(pip2] = ¢ (1,1) = ' (8.2.7)
11,12 r(x)% r(g) [htyp+y18T K

and the posterior correlation cofficient between 13 = log p(y3ii8)
and 1, = log p(y2Ii©) is given by (8.1.6) where from (4.3.3),

= k2.¥(1)(g) + g.y1.y2 - k(y1tyz)
hZ h

(

K
1,1)11,12 (8.2.8)
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Exponemtial population distribution for X.

Setting k=1 in the results for a Gamma, Ga(k,8), population distribution gives
the results for an Exponential, Ex(8), population distribution for X.

The posterior moments of p = p(yl©) are obtained by setting k=1 in (8.2.5).
The posterior central moments of 1 = log p(y!©) are given by (4.3.9).

Consider the following sample of size 4 from an Exponential, Ex(8),
population taken from Aitchison and Dunsmore (1975, Chll), x = (47,17,32,19).

The predictive density function p(ylx) is given by setting k=1 in (4.3.6)
and by setting (g,h) = (nk,nX) = (4,115) if vague prior knowledge is assumed for
©. The posterior moments of either p(yi©) or log p(yi®) can be calculated and
95% posterior credibility intervals obtained wusing Pearson curves. By
considering a sequence of ‘possible future values, y=0,5,10,..,100, a credibility
interval band can be obtained for p(yl©) or log p(yl©). In the diagram below the
predictive density function p(ylx) = E(p(yi®)] is plotted together with the
credibility interval band for p(yl|®), and from this plot the lack of stability
of the predictive density function can be observed.

It is interesting to note that the posterior variance of log p(yl€) has a
single turning point, a minimum valueuwhen y = h/g, i.e. y = X assuming vague
prior knowledge for ©. For the example above X = 28.'75.

However the turning points of the variance of p(yi©) are given by the

equation,

g.h8. (h+2y)8Y3 = (g+2).(hty)2E? . (8.2.9)

Substituting w = gy/h into (8.2.9) results in the elimination of h, and
hence the number of turning points of the variance of p(yl8) depends only on g.
By considering the resulting left and right functions in (8.2.9), it can be
shown that for integer g=3, equation (8.2.9) has no positive solutions for vy,
while for integer g>4, equation (8.2.9) has exactly two positive solutions for w
both in the range (1,2) and hence the corresponding solutions for y are in the
range (h/g,2h/g). Indeed as gyo the solutions for w denoted by w; and wp
converge to the values 1 and 2 respectively and hence the corresponding
solutions for y converge to the values h/g and 2h/g. Note that for vague prior
knowledge about parameter 6, h/g = X.
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This is also verified by numerical calculation of the solutions wj and w,

for different values of g,

g 4 5 6 7 8 9 10 50 100
wp 1.221 1.152 1.117 1.095 1.080 1.069 1.061 1.010 1.005
w, 1.806 1.884 1.922 1.943 1.957 1.966 1.973 1.977 1.9997

In conclusion the variance of p(y|©) has a minimum value at y slightly

greater than h/g and a maximum value at y slighly smaller than 2h/g.

In the example above, if vague prior knowledge is assumed for 6, then (g,h)
= (4,115), and equation (8.2.9) has exactly two solutions at y=35 and y=52,each
to the nearest integer. So the posterior variance of p(y(©) has a minimum value

at y=35 and a maximum value at y=52.
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8.3 Multivariate Normal linear model population

If random variable X has a multivariate Normal linear model population
distribution, then #;(t) is given by (7.5.18) for general m and by (7.5.24) for.

m=1.
Hence,
E(p(yi®)] = ¢j3(1) is given by equation (7.5.26) , and
VIp(y1©)] = @3(2) - ¢1(1)2 where ¢)(2) is given by setting t=2 in (7.5.24),
Fal%(v+2)]
*1(2) = i Gviz) .. _d
(1+2w'Clwl™ (144;(y-b'w)'h"I(y-b'w)] Ihi 7 Tg(%v)
where Aj; = ——2>  from (7.5.2) ,
1+2w'C 1w
Fal%(v+2)] Cls(v+1l)] Ts(v+2)]
and —p vy © COR(ed)] Fik(vrz-d)] °

Higher central moments of p(y|©) are obtained by setting t=3,4,.. in equation
(7.5.24) and using (8.1.3).

Also the central moments of log p(yi©) are obtained using (8.1.4) from the
cumulants of log p(y|®) which in turn are found from equations (z.igésﬁwith
appropriate substitutions as described in section 7.5.9. In particular, '

d

E{log p(yiB)] = -%dlogm - g—c - klogih!| - &vD + & T P{%(v-i+l1l)] and
i=1
d v-c 2 29 (1)
Vilog p(ylie)] = — + {———}D + KvD + (%) .z ¥ [%(v-1+1)]
2¢c c i=1 (8.3.1)

where ¢ = [w'c”l'w]'l and D = (y-b'w)'h'l(y-b'w).
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‘The joint posterior moment generating function of 17 = log p(y316) and 1, = log

P(y216)

To obtain the posterior correlation coefficients p(p;,pz) and p(1l3,12), the

joint moment generating function of 1 and 1, i.e. ¢ 12(tl,tz), is required.
?

1
Setting m=2 in (7.5.18) gives,

Fal%s(v+ty+ty)]

(t,t2) = % k(v+t1+t2)1h13(t1+t2)n5d(tl+t2)

¢
13,12

[Iz+awc 1w 1" (I,+AD| ra(%v)

(8.3.2)
where D = (Y-Wb)h‘l(Y—Wb)' , then the (i,j)th element of D is given by
Dij = (yi-b'wi)'h"I(yj-b'wj) , for i=1,2 and j=1,2.
Also, using the results of section 7.5.7, A is a 2x2 matrix with elements Ajj
given by,

ti(1+toesr)
An = g(t3,t2) ’

to(1+tje;y)

2 2 gy MY
titzern

Ay, = - E?EITE;7 and hence,

[Io+AD| = 1 + % [(b+st tp] and, (8.3.3)
I + awc™lw'| = g , where,

g = B&(t1,tz) = (1 + tjejy + taezs + titplerjerzz-e1z?]) (8.3.4)
b = b(ty,tz) = tj(l+tpepy)Dyy + ta(l+tje;;)Dypy - 2tjtreyoDyn , (8.3.5)
& = DjiDpz - D322 and (8.3.6)
ejj = wi'C’lwj for i=1,2 and j=1,2. ‘ ‘ (8.3.7)
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The posterior correlation coefficient between p3; = p(y;(6) and p>» = p(y219)

The joint posterior moments of p; and p; are now easily found by appropriate
substitution for (t;,tz). In particular the posterior correlation coefficient

between p; and p, is given by (8.1.5) where

E(pip2) = &) ;. (1,1)
_ ClE(v1)] Tis(v2)] g1y 0 o2 e
(811+bn+6)”(v+2) fhi nrd I'[s(v+1-d)] F{&(v+2-d)]
where,
g11 = 8(1,1) = 1 +ejy + ez + ejjepp - €32 and (8.3.9)
byl = b(1,1) = (14ezz)D13 + (1+e13)Dy2 - 2e12D32 . (8.3.10)

The posteior correlation coefficient between li=log p{y3;10) and lo=log p(vy>i6)

The joint posterior cumulants of 13 and 1, are easily found since for

(r1’r2)>(ltl)c

d(rl) d(rz)

X = log ¢ t;,t
( rl.rz)ll.lz Ltl(rl) cnzz(rz) OF 11,12( 1,t2) Ltl,tz)_:(o,o)

pl{T1,T2)

(rlorZ) _
D(o,O) [ kd.log g(t;3,t3) }

(ry,rz)

* P(0,0)

[-%(V+t1+t2).10g |12+ADI ]

(rlyrz)

* D(0,0)

[ 108 ratscverezd |
(8.3.11)
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Evaluating DY 532%2)r10g g(t

d d
ary Mt1t2) = a(tytz).ge- log (t1,t2) (8.3.12)

Differentiating (8.3.12) (r;-1) times with respect to t; using De Moivre's
theorem and sgetting (t;,t3)=(0,0) gives, for r;al,

y "1,0
Dgolo))log g(ty,tz) = ~(r1-l)e110(r1 )

-1
(0,0y 108 &(tn,tz) = (-1) 1 (xp-1)1ey ]t

Purther differentiating (8.3.12) r; times with respect to t; and setting

(ti,t2)=(0,0) gives, for (r;,rz)>(2,1),

(ry-1,r3)
(0,0)

D(rl’rZ)

(0,0) log g(t;,tz) = -(ry-1)e;;D log g(t;,t2)

ry,ry-1
-r2922D§of6)2 ) 108 8(ty,t2)

ryi-1l,ro-1
-rz(rl'l)(ellezz'elzz)Dgofo)' 2 )108 g(ty,t2) .
(8.3.13)
In particular,
(1,0) _ p{1:0) _
0(0'0)108 g(ty,t2) = ey (0 0)108 g(ty,tz) = ez2 ,
(l'l) —_ . 2
and D(o,0)1°8 g(ty,t2) = -e12°.
Evaluating D 135 2)[(v+t: +to).log |Io+AD|]
0,0) 172 2
D{ 51552 [(v+ty4ty). log 1I4AD1] = vD{5l3}2 108 11+aDI
-1
+ 110{510) "2 )10 (124D
ry,ro-1)
+ rzoéofa)z log |Iy+AaD| (5.3.14)

where {I»+AD| is given by equation (8.3.3).

In particular,

1, 1,0
so ; log {I+AD{ = DgO:O; {I2+ADlI = D33 |
0,1 0,1

Dsozog log {Ix+AD| = Dgo:o; |I2+AD| = D33 ,

2
-Dy2 - 2e32D;2

D§ %; log (Ix+AD|
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Evaluating Dsg%égz)[log Fgls(v+ti+ts)] ]

4
(5)F1T2 5 G TIMT2 ") Gie t,-i41)]
i=1

D(rl’rz)[log Fal%s(v+ty+ta)] ]

d
(% )r1+r2 £ \P( ri+rs-1)

i=1

D(rl.rz)[

(0,0) log rg{&(v+ty+ty)] ]

[%(v-i+1)] (8.3.15)

Hence the posterior correlation coefficient between 17 and 15

is given by equation (8.1.6) where from (8.3.11) setting (rj,r2)=(1,1),

d
(Rya1,,1, ~ sde1a? + §v(Dyp2 + 2e31pD12) - %(D131+D22) + (%)% T (1) [y (v-it1)]
’ ’ i=1
(8.3.16)
Note that from equation (8.3.1),
4 (1)
V(135) = 4dejj? + 5v(Dj;2 + 2e33D35) - Djj + (%)% £ ¥ T [5(v-i+1)]
1=l (8.3.17)

and of course p(l3,12)=1 if (yj3,w;)=(y2,w2) since then Djj=Dj2=Dz2 and
ejj=ejz=ezs and so V(13) = V(1lz) = Cov(1y,13).
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CHAPTER 9

Combining subsets of variables

9,1 Introduction

Suppose the d variables of the d dimensional random variable X are divided
into R subsets of variables, X,; r=1,2,..,R, which are to be modelled
separately, where

R
px(xle) = 0py (XpiX(r-1),6r) (2.1.1)
r=1 °%

and & = (6,62,..,85) is a parameter vector combining the parameters of the R
models, X(ry) = (Xr,Xr-1,..,X1) for ril and p(Xx311X%X(0),01) = P(X3110;) , where x,
is the observed value of the variable subset X,.

Later in section 9.1 the restricted case where the R parameter vectors 6,
have no parameters in common is considered. In section 9.2 the special case
where the first variable subset X3 1is a single randon variable indicating
population membership is considered. This is the usual situation in discriminant
analysis where if X; is assumed to have a multinomial distribution with
parameter vector ©;, then & is the mixing parameters q. It is shown how the
joint posterior cumulant generating functions of the I population log likelihood
functions for the new observation y can be obtained by combining the R separate
joint posterior cumulant generating functions from the R models for Xy, for
r=1,2,..,R. In section 9.3 the situation is considered where, for a particular
value of rAl, the I population models for Xy, P(XrlXy.3,Xy-2,...,%X2,X1=1,8p)
for i=1,2,..,I have no parameters in common, and it is shown how the joint
cumulant generating function of the I population log likelihood functions for a
new observation y can be expressed as a product of the I serarate cumulant
generating functions. Two examples are considered. In the first example, given
the value of the categorical variable X, indicating population membership, and
given the parameter sets 6,, for r=1,2,..,R, the subsets of wvariables,
X2,X3,..,XR, are independent. The second example includes as a special case the
*location linear discriminant model’. Finally in section 9.4 the special case of

just two populations is considered.
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Let x represent a random sample of n observations of random variable X, and
xj,r represent the observed value of variable subset X, for observation j for
j=1,2,..,n and r=1,2,..,R.

From (9.1.1) the likelihood of the data x is given by

n R
L = 00 n Py (x5,rl%j,(x-1)Sr) (9.1.2)
j=1r=1 "7

Suppose the R parameter vectors 6, have no parameters in common and also assume
that the &, have independent prior distributions p(6r) for r=1,2,..,R, then

R
p(e) = I p(8y) (9.1.3)

r=1

Hence from (9.1.2) and (9.1.3), the posterior distributions of the &, for
r=1,2,..,R will be independent and given by

n

P(6rlx) « pP(Sr). l'IL"‘xr(xj,rh‘j,(r-l)ver) (9.1.4)
=

The predictive density function of a possible future observation y given the

data x is

R

PAylx) = 0 pxr(yrIY(r-l).z_c) (9.1.5)
r=1

where er(yrlY(r-l)'E) = Jp(yrl}’(r-l).er).p(erlg) dey . (9.1.6)
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9.2 Case where the first wvariable subset represents population

membership

Por the special case where the first variable subset X; represents a single
random variable indicating population membership, i.e. xj=i when observation x

belongs to population NI for i=1,2,..,I, then,

R
n pr,i(y’er)
. r=1
P(y1=11¥2,¥3,..,YR)O) = I R y and (9.2.1)
L n Pr,i(Yaer)
i=1 r=1
R
n pr,i(}'vz)
. r=1
P(Y1=11y2,¥3y.«»YRyX) = - » where (9.2.2)
L I pr,i(Ytlt_)
i=1l r=1
; - P(YrIYr-loYr-z,--,Yz,Y1=i,9r) for r22
Pr,i(y,8y) = {p(y1=itel) for r=1 (9.2.3)
. _ yrlYr-1+s¥r-25-- y¥2,¥1=1,X) for r=2
Pr,i(y,x) = {p(y1=i|:_<) for =1 (9.2.4)

In discriminaht analysis interest centres on which population the new
observation belongs to, i.e. the value of y; given the values of y3,y3,..,YR and
the past data x, i.e. p{y1=ily2,¥3,..»¥YR)X). To find this the predictive density
functions Pr,i(y,x) for r=1,2,.. ,R and i=1,2,..,I can be obtained seperately and
later combined as in (9.2.2).
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Interest here centres on the relative likelihoods of the new observation

belonging to each population IIj, i.e.

R

p(Y1=iaYZ9Y39¢~,YRle) = n Pr,i(Y9e) y
r=1

for i=1,2,..,I.

In particular interest here centres on the joint moment generating function of
the log 1likelihoods of the new observation y belonging to population Ij, for

i=1,2,..,I, i.,e. the joint moment generating function of (13; i=1,2,..,I),

where,
R R

13 = log pP(y31=i,y2,¥3,..,¥YRI®) = L log Pr j(y,8) = L lrj
r=1 r=1

where lyj = 1log pr,6i(y,8) for r=1,2,..,R and i=1,2,..,I.

et 1 = (13,12,..,11), then
I I R
¢1(£) = E[exp(_g'l)] = E[exp( R tili)] = E[exp(.r z tilri)]
= i=1 i=1 r=1
R I
= I E[exp( L tijlej )]
r=1 i=1

since 1,4 depends only on the parameter set 6, and the &, have independent

posterior distributions given the data x, and hence,

R
o (L) = 10 ¢ () , (9.2.5)
1 r=1 1r

where t = (tj,tp,..,ty) and 1y = (1p1,1p2,..,1p1) for r=1,2,..,R.

Hence the cumulant generating function of 1, Kj(t), is given by,

R R

K.(t) = log ¢ (t) = L log ¢, (%)
1 r=1

. K. (t) . (9.2.6)
=X

y=2 ir

So the posterior cumulant generating function of 1 can be obtained simply by
summing the posterior cumulant generating functions of 1, for r=1,2,..,R. The

posterior cumulants and moments of 1 can then easily be obtained from KI(E ).

113



Example 1 As a simple illustration of the above notation, consider the special
case where random variable X comprises just two subsets of variables, the first
X3, being the categorical variable indicating the population of membership and
the second, X;, comprising all the other variables.

Prom (9.2.2),

p(y2ly1=i,x).p(y1=ilx)

y1=ilyz,x) = I
iglp(yz!y1=i,zs)-p<y1=ilzs)

Here © = (©7,62), where 6; combines the parameters of the models for y;, i.e.
P(y21y1,82) over all possible values of y;, i.e. for y;=1,2,..,I, and 67 is the
parameters of the model for y;, i.e. pP(y1i€1). If X3 has a multinomial
distribution given 6;, then ©; is the multinomial parameter vector, i.e. & = q,
the mixing parameters, in the notation of chapter 7 and p(y;=il6;) = qj, for
i=1,2,..,I.

Note that from section 7.3,

P(y1=ilx) = E(p(y1=il€;)] = E[qj] = -pob- ,
L 8i
1=1

where for vague prior knowledge about ©; = q, g; = ny, for i=1,2,..,I, where nj
is the number of observations in the data x with X3 = i, i.e. the number of

observations in x from population IIj.
Also from (9.2.6),

K (t) = K, (t) + K (1) ’
E P R 12~
and from equation (7.3.4),
I I I
Ky, (&) = log LT gil - log FLE (gi*ti)] - I [logf(gi) - logh(gs+ti)]

This situation was discussed in section 7.4.
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9.3 Populations with no parameters in common

The parameter set 6, combines the parameters from the I sets of models for
P(XyplXy-3,Xr-2,..,X%X2,%X3=1,8¢), for i=1,2,..,I. Suppose that for some value of
rAl these I sets of models have no parameters in common.

Then let 6 = (6y¢31,6r2,..,8¢1)-

Let random variable X comprise r subsets of variables X;,X2,..,XRr, where as in
section 9.2, Xj indicates the population of membership.

Hence p(XrlXr-1,Xr-2,..,X2,X1=1,8¢) = P(XplXy-1,Xr-2,..,%2,%X1=1,8¢3), for
i=1,2,..,I and some ril,

Suppose independent random samples xj = (xil,xiz,..,xini) are identified as
belonging to nj, for i=1,2,..,I.

Let Xjj = (xij,r s r=1,2,..,R), where Xij,r is the observed value of variable
subset X, for the jth observation identified as belonging to population IIj, for
i=1,2,..,R, j=1,2,..,n; and i=1,2,..,I.

Assume that the parameters 6., i=1,2,..,I, have independent prior
distributions, p(6yj), then,

I
P8yr) = iglp(eri) . (9.3.1)
From (9.1.4),
I I nj
P(6rlx) «a [.[I p(eri)}. o o p(Xij,riXij,(r-1):9ri) ,
=1 i=1 j=1
I nj
= 1 [p(eri)- 0 p(Xij,rlxij,(r-1)+Sri) . (9.3.2)
i=1 j=1

Hence the 6, i=1,2,..,I, have independent posterior distributions,

ni
P(Brjix) o« p(6rji). np(xij,rlxij,(r-l),eri) . (9.3.3)
J=1
Bence for i=l,2,..,I, and r=2,3,..,R, (9.2.3) gives,
Pr,i(Yoe) = p(Yr'Yr-ler-ZQ‘O’YZQYJ.:i,eri) ’ (9.3.4)
and (9.2.4) gives,
pr,i(y’i)

p(Yr'Yr-l’Yr-Z, ce9¥Y2 ’Y1=i9§)

I P(YrlYr-1+¥r-2+++9¥2:,¥151,0ri ) .P(OrjlX) dOr; . (9.3.5)
Equations (9.3.4) and (9.3.5) can be substituted directly into equations (9.2.1)

and (9.2.2).
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FPurthermore,

¢, ()

I
E{exp( R tilri)] ,
i=1

I

rirlr:[exzx tilr)]

since 1y depends only on parameter 6yj and the ©,j have independent posterior

distributions given the data x, and hence,

I
¢1 (%) = igl °1 .(ti) ’
v 4 ri
I
and so K. (t) = L K (ty) . (9.3.6)
1y i=1 1ri

Note that the mixing parameters ©; are common to all populations, Mj;

i=1,2,..,I, and hence result (9.3.6) does not apply for r=1.

If, for r=2,..,R, the I sets of models for pP(XylXy_3j,Xr.2,..,%X2,X3=1,68¢4) have
no parameters in common, and the prior distributions of the 8, are all

independent then,

K, (&) =
1y i=1

[Ryla

K (ti) for r=2,3,..,R,
lrj

and hence from (9.2.6),

R R I
Kl(_t_) = rgl x_l-r gy = xh(g)+r£2 51 xlri(ti) . (9.3.7)

Hence the posterior cumulants and moments of 1 can easily be found.
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Example 2 Suppose that the R sets of models for p(xplx(r-1),6¢) for r=1,2,..,R
have no parameters in common and also that, given the value of the categorical
variable Xj indicating the population of membership and given the parameter sets
©y, r=1,2,..,R, the subsets of variables X3,X3,..,XR are independent, then for a

new observation y, (9.2.3) gives,

. P(yrly1=i,6¢) for 2
Pr,i(¥,8¢) { p(y1=iley ) for r=1 (9.3.8)
and (9.2.4) gives,

. — Hyrly1=i,x) for 2
Pr,i(y,x) = { p(y;=il5) for =1 (9.3.9)
where p(yrly1=i,x) = [ P(yelyi=i,8¢).p(Erix) dor |
Prom (9.2.6),

R
K(t) = LK, (t) . (9.3.10)
pY r=1 1lr

If further, for one or more values of r(il), the I models for p(X,Iix3=1,8,i) for
i=1,2,..,I, have no parameters in common, then from (9.3.6),

I
xlr(_t_:_) = iglxlri(ti) . (9.3.11)
Hence if the I wmodels for pP(Xyi%x3=1,8¢4), for i=1,2,..,I, are members of the
Exponential family with no parameters in common e.g. Gamma, Binomial or Poisson,
then xlri( tj) can be obtained from section4 24 and if the I models are
multivariate Normal linear models with unequal error precision matrices, then
Klri(ti) can be obtained from section 7.5, for i=1,2,..,I.Equation (9.3.11) can
then be applied to obtain K.l.r(lt').

If, however, the I models for p(X,|ixX3;=1,8,i), for i=1,2,..,I, have parameters in
common, e.g. miltivariate Normal 1linear model populations with equal error
precision matrices, then (9.3.11) cannot be applied, but Klr(g) can be
obtained directly.

Por the equal error precision matrix case, Klr (t) can be obtained from

section 7.6.
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" Example 3 Suppose the random variable X comprises three subsets of variables,
the first X; being the categorical variable indicating population of membership,
the second X; comprising all other categorical variables and the third X3

comprising continuous variables only.

Assuming as usual a multinomial model for p(x;16;), then models are required for
P(x2ix3,8,) and p(x3i/x3,x;,83).

A possible model for p(x3ix2,Xx;,83) is the multivariate analysis of variance
(MANOVA) model. In the case of equal population error precision matrices, then

in the notation of section 7.6,
X3 = ZB + €

where € ~ Nop,4(0,In,T), ©3 = (B,T) and Z is the design matrix for the MANOVA
model chosen based on the categorical variables X5.
The cumulant generating function for 13 = (log p(y3lyz,y31=i,83); i=1,2,..,I) was

obtained in section 7.6.

If unequal error precision matrices are assumed for the populations then
X3i = 2B + €;

where ¢j~~ No (0,I _,Ti), independently for i=1,2,..,I,
i

nj,d n

934 = (B1,T{) and Zj is the design matrix for the observations from population
Ij (i.e. for which X;=1) for the MANOVA model chosen based on the categocrical
variables X;. The cumulant generating function for 133 = log p(y3ly2,y1=1,83i)

was obtained in section 7.5.

A possible model for p(xzix;,87) is the simple multinomial model. If the equal
error precision matrix case above is combined with a simple multinomial model
for p(x2i{%;,82) this gives the 'location linear discriminant model®' discussed
extensively from a Classical viewpoint by Krzanowski (1975, 1979, 1980) and also
by Vlachonikolis and Mariott (1982). A general algorithm for maximum likelihood
estimation in the presence of missing values which can be applied to the
'location linear discriminant model' has been given by Little and Schluchter
(1985).
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9.4 Special case of two populations

Prom equation (9.2.5), provided that the R sets of models for

P(XrlX(r-1),8r) have no parameters in common then,

R
e (t) = o e (t) . (9.4.1)
1 r=1 1r

R
let L=1; - 1 , where 14 = € 1,3 for r=1,2, then,
r=1

¢L(t) = ¢11’12(t.-t) ’
R
= 11 ¢ (t,-t) using (9.4.1), and hence,
r=1 Ilr1,1r2
R R ,
K (t = L K t,-t = K, (C e ka= lp - 9.4.2
AR o1 Mlppa10 5 ?‘; L9 whee ke dn -l ( )

If the populations [Ij and II; have no parameters in common (apart from the mixing
parameters ©37), then 1,7 and 1,5, have independent posterior distributions for
r=2,3,..,R, and hence from (9.4.2),

R R
K.(t) = K (t,-t) + T K, (t) + £ K, (-t) . (9.4.3)
L 131,112 =2 In1 r=2 Ix2

In the particular case where the random variable X is seperated into just two
subsets of variables, the first being X3, the categorical variable indicating

population if membership, then (9.4.2) gives,

t) = X t,-t) + K t,-t) = I 9.4.4
KL( ) 111:112( ) 121’122( ) k’m )+ KL,}*) ( )
and (9.4.3) gives,

K.(t) = K (t,-t) + K. (t) + K. (-t) 9.4.5)
AR 131,132 7 ) 121 122 ’ (

where from equation (7.3.4) with I=2,

K (t,-t = =log I'(gy) - log I'(go) + log Ir(gi+t) + log ' -t
117,132 © ) g1 2 1 (g2-t)

The cumulants and moments of L can be found from Kp(t) and the posterior
distribution of L approximated using Pearson curves. The posterior distribution

of P can then be obtained by transformation as in section 1.3.
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CHAPTER 10

Using the extra information concerning the parameters from new observations of

unknown population membership

10.1 Introduction

So far the posterior distribution of P has been approximated using
information about the unknown parameters © given by the random samples,
X3,X2,..,XT from My,0,..,[0y, respectively. Any information about © in the new
observation y has not been used. This would be appropriate if the information
about 6 from y was negligible compared with the information from the random
samples or if it was not certain that the new observation y was sampled
{ independently) from the combined population distribution.

Suppose however there are one or more new observations, of unknown
population membership, which are confidently believed to have been randomly
drawn from the combined population distribution. Let x;,X,..,Xy be independent
random samples obtained by mixture sampling and identified as belonging to
m;,Mz,..,0r respectively and let y = (y1,¥2,-.,¥Ym) be @ random sample of m new
observations, of unknown population membership, obtained independently of
X31,X2,..,Xy from the combined population distribution ZIq;pij(yi8). Let y, not
neccessarily one of (yj1,¥2,..,Ym), D€ @ new observation for which an estimate,

posterior distribution and credibility interval for P is required.
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It is interesting to note, as pointed out in section 5.7 of Titterington,
Smith and Makov (1985), that if a logistic model relates the probability of
population membership to the variables measured, i.e.

p(y,118,v) = p(ily,B).p(yly) , where,
P(yelljly,B) = exp(Bi'y).p(yenply,s8) , for i=1,2,..,I-1, (10.1.1)

then the uncategorised new observations provide no information at all about B,
since no parametric distributional model is thereby specified concerning the
population distributions and hence uncategorised observations provide no extra
information to assist with the estimation of B8 and hence p(yefi;ly,B).

if, however, a discriminant analysis model is appropriate with the population

distributions specified in functional form but with unknown parameters, i.e.

y,ilq,8) = p(yli,®).p(ilq) = gqjpi(yie) , (10.1.2)

then the uncategorised observations provide information about the paraﬁeters e
and q as in equation (10.2.1) below, and hence provide extra information to
assist with the estimation of © and q and hence q;pi(yI|9).

The two alternative models (10.1.1) and (10.1.2) have been mixed by Anderson
(1979).
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10.2 'Estimative’' estimate of P

The 'estimative' estimate of P cannot be found explicitly. The maximum
likelihood estimates of © can be obtained, however this will, in general,
require numerical maximisation of the likelihood function which may be difficult
particularly when the number of parameters in © 1is large. The 1likelihood

function is given by

I

ny m I
L(X1,X2,....,X1,¥;9,8) = [,H [ QiPi(xijle)]-.n [_8 qipi(lee)]- (10.2.1)
i=1 j=1 j=1ti=1

This corresponds to the 1likelihood function defined by equation (1.2.3)
from Titterington, Smith and Makov (1985, Chl). In their section 4.3, they
discuss use of the EM algorithm (Dempster, Laird and Rubin, 1977), or the
alternative numerical algorithms, Newton-Raphson (NR), and the Method of Scoring
(M3S), to obtain maximum likelihood estimates of the parameters. In their section
6.4.2 they reconsider the problem by regarding the data as incomplete, the
incompleteness referring to the absence of the indicator variables which would
identify the true population of membership of each of the new observations. A
general form of recursive algorithm for maximum likelihood estimation, together
with its asymptotic properties is considered. Titterington (1984) gives
regularity conditions for unique maximum likelihood estimates. Redner and Walker
(1984) applied the EM algorithm to Normal mixtures and found that although
convergence may sometimes be slow, only a few iterations are required to get
close to the maximum value of the likelihood function. This suggests a composite
algorithm, in which a few EM algorithms are followed by a few further iterations
of the much faster MS or NR algorithms,

A general algorithm for maximum likelihood estimation in the presence of
missing values has also been considered by Little and Schluchter (1985).

The value or efficiency of unclassified observations relative to classified
observations in terms of asymptotic error rates has been investigated by O'Neill
(1978) for equal covariance multivariate Normal populations. O'Neill found that
the asymptotic relative efficiency increases rapidly with the separation of the
populations. Ganesalingam and McLachlan (1979) have investigated the relative
efficiency for small samples and found it generally higher than the asymptotic

value.
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10.3 'Predictive’' estimate of P

The ‘predictive’ estimate of P can be obtained explicitly, provided that

the mixing parameters are known, since from a fully Bayes approach,

p(yjenkj for j=1,2,....,MIX]1,X2,.0..,XT,Y)

m
[éllqki].p(zlgl,zz,....,_g_r,yjenki for j=1,2,....,m)

I I I m
il-—zz:l 12§1“i,;,§1 {jglqkj] zlﬁ,zz,....,lc_r,yjenkj for j=1,2,....,m)
where kj € (1,2,....,I) for j=1,2,....,m, and

where p(¥yI1X3,X2,....,X1,¥jel for j=1,2,....,m)
kj
is the joint predictive distribution of the m new observations y, i.e.
P(Ylxy,X2,....,X7,yj€0  for j=1,2,....,m)
k.
J

= { p(zie,yjenkj for j=1,2,....,m).p(OlX],X2,....,X1)dO

The marginal p(yjenk_l_:ﬂ,:_g,....,ggl,z) for any je(1,2,....,m)
J

can then be obtained since
P(y3e .ljﬂ’:_‘zi-"~9}ﬂ!z)
h] “kJ X

I I I I
= L.......L L.....C p(yjenk_ for j=1,2,....,MiX7,X25+...,XT7,Y)
k=1 kj -1=1 kj+l=l Kyp=1 3
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Pirst consider the case where the populations have no parameters in common.

If the populations M3, M03,....,[0f have no parameters in common then the
joint predictive distribution of y factorises into the product of the joint
predictive distribution of the sets of observations belonging to the separate
populations since the integration over © can be factorised into integrations

over each of the population parameter sets separately, e.g.
P(Y1:Y2:Y3,Y41%X1,%X2,y1€0) ,¥2¢€M; ,y3€l2,y74€3)

= P(¥1,¥21%X1,X2,¥1<¢0),¥2¢l ). P(¥3,Y41X),X0,¥3€l2,y4€y)

Hence essentially all that is required is the joint predictive distribution
for m new observations y given that all the m new observations come from the
same population I, when an independent random sample x of size n from I is

available, i.e.

m
P(ylx,xell,yell) = | p(yl©).p(61x)d6 = | 0 p(y;le)p(8ix)de
=1 7

12y



The following results are obtained for different population distributions.

Gamma population T
Myjle) = Ga(k,e) ,

polx) = Ga(g,h) ,

m -
pyix,xem,gem) = [ my5?

Oy, }.hgl‘(mk+g)
i=1 3 ]

m

m mk+

[r(x)1".r(g).(h+ Ly ) &
=1 j

where ¥ 320 for j=1,2,....,m, from (4.3.4).

Binomial population II
p(y3j10) = Bi(x,0) ,

p(9ix) = Be(g,h) ,

m

m B[g+.!: y., h+tmk-_.LT y.}
=173 =17 ]

tx,xell erz-[n[k}]. J

My 1x,xell,yell) j=1l¥j B(g,h) ’

where yj=0,1,2,....,k for j=1,2,....,m, from (4.4.4).

Poisson population I
p(yj19) = Po(®) ,

p(9ix) = Ga(g,h) ,

m
ylx,xel,yel) = n . I g+j§1yj)

m| -
F(g).[ n y.!].(h+m)g+ty3

j=1"3
where ¥50,1,2,3,.... for j=1,2,....,m, from (4.5.4).

Multivariate Normal population II
p(lee) = p(Yj“-‘oT) = NOd(I.L,T) ’

P(eix) = p(u,TIx) = NoWig(B,c,g,h) ,

d/2
Dylx,xel,yel) = [ < + Laf4(v+m)] . {h|v/2

c+m md/2 [H] (v+m)/2

Calsv].m

where H = h +S_ +me .(Y-BX(¥-8) ,
L e

m
anrd S = T - -9
Y j=l(yJ INY;-7)
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Equation (10.3.1) was obtained from (7.5.14) by the following substitutions :
k=1,

Y

]

(Y1:¥2)+»¥Ym]' » @ mxd matrix,

»
i

{x1,%2,..,%Xp]" , @ nxd matrix,

w={1,1,..,1]' , a mxl vector,

N
il

f1,1,..,1]' , a nxl vector,
B =u', a lxd vector,
b=p'", a lxd vector,

Cc =c¢ , a scalar, and

Ay = [Im - »—l—lm} , where 1y is the mxm matrix with all elements equal to 1.

Multivariate Normal linear model population Il

P(yjle) = p(y;1iB,T) = Nog(w;'B,T) ,
p(9ix) = p(B,Tix) = NoWik’d(b,C,v,h) from (7.5.5), then

Py ixX,xell,yell) = tm,d(Wb,Al'l,h,v-d«l-l] , given by equation (7.5.14).
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Now consider the case where the populations have parameters in common,

Suppose the populations 0,Mz,....,[0; have parameters in common. Then the
joint predictive distribution of y does not factorise as above. Instead the

joint predictive distribution of the mj observations
Yi=(YilsYi2s e ’Yimi)

from population i for i=1,2,...,I, is given by

P(Y1:¥2rc ey YTIXL X2,y 0o vy XT,¥15M,¥2€02, . ... ,¥7€l0T)

I

my
- L3, jElP(Yijieinjéﬂi)] . P(8IX1,X2,- .-+ X) 4O

where Xji is an independent random sample from population [Ij for i=1,2,....,I.

Multivariate Normal populations

Using the notation of Chapter 6 :

P(yijl®,yijeli) = p(vijln,T,yijelj) = Nog(ki,T)

P(OIXy,X3,....,X1) = P(4,TIX],X25....,X1) = NOIWid(Q,E,Voh)‘-‘No""il,d(bacyvyh) ’
where b = (B3,B82,..,8r)' and C = diag(cy,C2,..,C1) are Ixd and IxT maknces

P(Y1+¥2s e+ 2 ITIXT 1 X2y 4o X1, Y1601 ,y26€02,....,77€1)

= [I [—J—-C‘ ]d/‘ ] . Cals(v+tmi)] . |n|¥/2 " (10.3.2)
i=1lei+my Lalyv].ndTmV2 gy (V4ERi)/2
here H = h+ 5 + £ ™S (g .pyyi-8e)
where = ) e 1753
i=1l ¥i  i=1 mitcy 1T

and Eiyi5-91)yi;-91)

s = ij-Yi 1j°71

Yi j=1 Vi3I

is the corrected sum of squares and products matrix for the m; new observations

yi from Iy, for i=1,2,....,I.
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Equation (10.3.2) is obtained from (7.6.2) by the following substitutions :

I
tjj = 1 for i=1,2,..,mj and i-1,2,..,I, so that A = Iy where m = .Elmi ,

kj = 1 for i-1,2,..,I, so that k = iglki = I,

W = mat-diag(Wy'Wp',..,Wr')’' , a mxI matrix diagonal design matrix, with
wi' =[(1,1,..,1] , a 1xmj vector,

Z = mat-diag(2;'22',..,21"')' , a nxI matrix diagonal design matrix, with

I
z;y' = {1,1,..,1)] , @ 1xnj vector, and n = L nj

Y and X arg ag defined in section 7.6.1,
B = (43,42,..541)" , @ Ixd matrix,

b = (B1,82,.+,81)' , 2 Ixd matrix, and
C = diag(c3,C2,..,C1) , a IXI matrix,
W'W = diag(m;,mz,..,my), and

A = mat-diag(A;,Ap,..,Ar] , where Aj = [I - 1

——.1 i= PR
- my+o; mi] , for i=1,2,..,I

Multivariate Normal linear model populations

P(¥i310,wij,yijelly) = p(y1ij1B,T,wij,¥ijelli) = Nog(wij'Bi,T) ,

as in section 7.6.1,

p(81X,Z) = p(B,TIX,Z) = NoWiy q(b,C,v,h) ,

P(¥Y1,¥Y2y . ¥11X,Z,W,y el ,y2¢ll,..,y7<lly) is given by substituting A = Iy into
I

equation (7.6.2), where m = .21mi.
1=
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10.4 Credibility interval for P

For the situation of two populations, I3 and II;, the posterior distribution
of P can be obtained by transformation from the posterior distribution of the
log likelihood ratio L at a particular new value y (not neccessarily one of the
uncategorised observations (y3,¥2,...¥m) also obtained from the mixture
distribution). The posterior distribution of L can be approximated once its

posterior moments have been found, i.e.

E(LT) = f LF.p(O1x1,%2,y) dO .

2 2 2 m
But p(©lxy,X2,Y) = i§:1 1251”i,;,§1{321qij}'p(e'x—’-’iz’z'yjénij for j=i1,2,..,m) ,

provided that the mixing parameters are known and hence,

2 2 2 m
Ty = r : €14 j= . 4.
E(L ) i§=l izgi‘.iﬁ'—};l[jglqij‘]'z(z‘ “ﬂv}_(zyzaYJenlj for J 1,2, . om) (10 4 l)
But E(Lrlgl,gz,z,yjenij for j=1,2,....,m) can be found for specific population

distributions from the results already obtained in earlier chapters since
(El,gz,z,yjenij for j=1,2,....,m) reduces to just two independent random
samples from populations I3 and [I; (some new observations yj are now added to
the random sample x; while the rest are added to the random sample X;) and this
is exactly the situation considered in Chapters 2,3,4 and 7. Hence essentially
the posterior moments of L are a weighted average of the posterior moments of L
given different allocations of the Y3 to populations Iy and 5.

For two populations with no parameters in common the cumulants of L can be
found using (1.4.2) from the seperate cumulants of 14 for i=1,2, (given in
chapters 2 for multivariate Normal populations with unequal covariance matrices,
and chapter 4 for Exponential family populations and in particular Gamma,
Binomial and Poisson populations and chapter 7 for multivariate Normal 1linear
model populations with unequal error covariance matrices, using equation
(1.4.3).

Pinally for I=2 populations E(LY) can then be found using equation (10.4.1)
for r=1,2,3,4 and hence the posterior distribution of L given x;, X and y can
be approximated using either Pearson curves or, if appropriate, a Normal

approximation, and the posterior distribution of P obtained by transformation.
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FPor the situation of more than two populations, interest centres on the
posterior moment generating function of the I population 1log 1likelihood
functions at a particular new value y, i.e. ¢3(t), where t = (t;,t3,..,ty) and
1= (1,13,..,11), where 1 = log pj(yi®), for i=1,2,..,I.

Hence,
t'1 t'1
$1(t) = E[e— —] = I e~ —.p(8ix3,X3,..,X1,Y) dO .

But 9(8131,52,-.:&’2) =
I I I

m
ilgl 1251""5 { 1q ].p(elgl,gz,..,gl,z,yjenij for j=1,2,..,m) , (10.4.2)

provided that the mixing parameters are known and hence,

t) = . . cean A I = . s€ll3 j= PP

®u8) = L) Ly 1m§1[3-§1%j} ele®'d iz %, X1y vjeny for 3=1,2,.....m |
t'l . e

But Ele— *lgl,gz..,gI,z,gjeni for j=1,2,....,m can be found for specific

population distributions from the results already obtained in earlier chapters

since,

(51,52,..,§I,xjyjeni for j=1,2,....,m) reduces to just I independent random
samples from populaticns f3,flz,..,0r (for j=1,2,..,m, the new observation yj is
now allocated to population nij and so is added to the random sample Eij ).
This is exactly the situation considered in earlier chapters 4,6 and 7. Hence
essentially the posterior moment generating function of 1 is a weighted average
of the posterior moment generating functions of 1 given different allocations of
the Y3 to populations Mj,H0z,..,07.

For I populations with no parameters in common, the moment generating
function of 1 can be obtained from the moment generating function of 1 using
equation (7.3.3).

Finally ¢3(t) can be found using (10.4.2).
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CHAPTER 11
Conclusions

11.1 Summary

A method of approximating the posterior distribution of P, the probability
that a new observation y belongs to one of two populations with no parameters in
common has been developed and applied generally to Exponential family
populations and specifically to multivariate Normal and Normal 1linear model
populations with unequal covariance matrices, Gamma, Binomial and Poisson
populations. The posterior moment generating function of the 1log 1likelihood
function at y has been derived and the posterior moments of the likelihood, log
.likelihood and log ,likej.,ihood ratio functions have begn found.' The method has
been extended to populations with parametéré in céumon and applied to
multivariate Normal and Normal linear model populations with equal covariance
matrices, for which the posterior moment generating function and moments of the
log likelihood ratio L has also been found.

The posterior distribution of L has been approximated either using Pearson
curves or using a Normal approximation. The posterior distribution of P has been
obtained by transformation from the posterior distribution of L. A credibility
interval for P can be obtained from the corresponding  credibility interval for
L.

The method has been generalised to the situation where the new observation
y belongs to one of more than two populations (with or without parameters in
common). Por multivariate Normal or Normal linear model populations with equal
covariance matrices this involved finding the joint posterior moment generating
function and moments of the 1log 1likelihood functions at y and the joint
posterior moments of the likelihood functions at y, using the recurrence
relationship derived between the multivariate moments and cumulants of a random
variable,

The method has also been generalised to the situation where the mixing
parameters are unknown and the random samples were obtained by mixture sampling
from the combined population distribution, and their population of membership
subsequently identified.
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A method of combining subsets of variables modelled seperately has been
shown, including as a special case the situation of independent subsets of
variables.

A method of using the extra information concerning the unknown population
parameters, provided by new uncategorised observations sampled independently
from the mixture distribution has been shown.

FPinally the stability of the predictive density function has been
considered. A method of obtaining credibility interval bands for the likelihood
and log likelihood functions has been given. For the likelihood function, this
gives a credibility interval band around the predictive density function. The
joint posterior moment generating function of the log likelihood functions at
multiple new values yj,¥2,...,¥m, has been obtained generally for an Exponential
family population and specifically for the Gamma, Binomial, Poisson and
multivariate Normal 1linear model populations. In particular the posterior
correlation coefficients between the likelihood and log likelihood functions at
different values y; and y; has been obtained.

The relationship between Pp the ‘'predictive' estimate of P and E(P) the
posterior expected value of P has been investigated in Appendix 1, showing that
E(P) averages P over the posterior distribution of the parameters © given the
independent random samples xj; and X5, while Pp averages P over the posterior
distribution of & given xj, X and the new observation y, specifically assuming
that y has Dbeen sampled independently from the combined population

distribution.
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11.2 Practical uses

The posterior distribution and credibility interval for P quantify the
uncertainty about estimates of P and illuminate the relationship between the
different estimates. Others have found that the ‘estimative’' and ‘predictive’
estimates of P can differ dramatically in their practical implications. In
chapter 2 an example was considered in which this occurred. It was found that
although P, and Pp were not statistically different (both 1lying within the
credibility interval obtained) they were dramatically different in their
practical implications with P extremely close to 1. The examples of posterior
distributions for P obtained in chapter 2 were of two types either ‘stable’, in
which case further sampling would only serve to provide a slightly more accurate
estimate of P, or ‘unstable’ in which case further sampling would be of
considerable value for deciding at which extreme, 0 or 1, P lies.

The extremism of Pe (paticularly when the sample sizes are small relative
to the number of parameters) may well be an example of a more general problem of
extremism among non-linear functions of parameters when using maximum likelihood
estimation where the 1likelihood function is skew. It should be noted however
that Pe is not in general the maximum likelihood estimate of P even when it is
based on replacing 6 by its maximum likelihood estimate 6, because the mapping
from © to p(yi®) is not in general one to one and hence p(yl6g) is not in
general the maximum likelihood estimate of p(yie).

Given a particular utility loss-gain structure, relating possible actions
to the true population of the new observation y, a point value for P would give
a point optimum action, while a distribution for P would give a distribution of
optimum actions or a distribution for the expected utility or gain for a
particular action.

Pinally the credibility 1interval band around the predictive density
function quantifies the uncertainty or instability about the predictive density
function, and should be of assistance in understanding its character, or rather,
the character of the posterior distribution of the likelihood function (or log
likelihood function). This should be of some use in the general area of informed

prediction.
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""11.3 Purther work

The coverage properties of the credibility intervals, for the probability
of population membership of a new observation y, derived here could be
investigated by a large scale simulation study. Work is currently being
undertaken by Dr. Critchley and Dr. Ford, at Warwick and Glasgow universities
respectively. They are comparing the coverage properties of several Classical
intervals, including one based on the profile, with the corresponding Bayesian
interval derived herxre, and are also comparing the intervals when applied to a
range of practical data sets.

The general results obtained here for Exponential family populations could
be applied to specific populations other than the ones considered here. Indeed
populations which are not members of the Exponential family could be
considered.

More accurate approximations to the posterior distribution of the
likelihood and log likelihood function than the Pearson curves used here could
be considered. Indeed the exact distribution would be desirable, though
generally this appears intractable.

Purther consideration could have been given to the chdice of prior
distribution for the parameters ©. A preposterior approach was considered in
Appendix 5 however this is probably only sensible in the situation involving
several populations rather than just two.

Finally the credibility interval band for the likelihood function around
the predictive density function, developed here, could be applied to further
practical data sets and also its coverage properties could be investigated by a
large scale simulation study. Indeed this would seem paticularly helpful since
the 1likelihood (or log likelihood) functions are the 'building blocks' for the
probability of population membership.
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1l.4 General comment

The problem of finding the posterior distribution of P when discriminating
between any two populations which have no parameters in common essentially
becomes one of finding the posterior distribution of the likelihood (or log
likelihood) function evaluated at the known new observation y for each
population separately. Assuming that the parameter sets of the two populations
have independent prior distributions then the 1likelihood (or log 1likelihood)
functions will have independent posterior distributions and so the posterior
distribution of P can easily be found by transformation. It does not in
principle matter whether the data is continuous, discete or categorical or a
mixture of these as long as a suitable model can be found separately for each
population and as long as the posterior distribution of the likelihood (or log
likelihood) function can be found or at least approximated separately for each
population. The problem is essentially one of ’'density estimation’ or at least
approximation of the posterior distribution of the density function. In order to
estimate P, 'density estimation’ is required, while to obtain an interval for P,
the variability of the density estimate is required. Non-parametric approaches
to ‘'density estimation' (instead of the parametric approach considered here)

have been reviewed by Seber (1984, Ch6) and Fryer (1977).
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APPENDICES

Appendix 1 shows the relationship between E(P), the expected value of the
posterior distribution of P, and Pp, the Bayesian °'predictive’ estimate of P, It
is shown that the 'predictive' estimate averages the random variable P over the
posterior distibution of © given both the independent random samples x3 and xp
and the value of the new observation y while E(P) averages P over the posterior
distribution of © given the independent random samples x3 and X7 only.

Hence the Bayesian 'predictive’ estimate of P will be close to E(P) if the
information provided by the new observation y about the population parameters is
negligable compared to that provided by the samples Xy and xX. The situation of

more than one new observation is also considered.

Appendix 2 derives a recurrence relationship between the multivariate moments
and cumulants of a p-dimensional random variable. The multivariate moments about
the mean (or about zero) can then easily be found once the multivariate

kumilants have been obtained.

Appendix 3 gives some formulae for the Psi function and its derivatives at
integer values and integer values plus a half, which are useful for calculating
the posterior moments of L and hence for approximating the posterior

distributions and credibility intervals for L and P.

Appendix 4 derives an efficient numerical method of approximation which is
particularly useful when the Psi function and its derivatives are required at

the same value, for use if the value is not an integer or an integer plus a
half.

Appendix 5 develops a method of estimation of the parameters of the

Normal -Wishart prior distribution for (u,T) for multivariate Normal populations

with unequal means and unequal covariance matrices.
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APPENDIX 1

The relationship between the expected value of the posterior distribution of P

and the predictive estimate of P

In this appendix the relationship between E(P), the mean of the posterior
distribution of P = P(8,y), which can be used as an estimate of P, and the more
usual Bayesian 'predictive’ estimate Pp of P is shown, and the situation where
each is appropriate is explained. A comparison of the extension of each of the
two estimates to the case where there is more than one new observation of
unknown population origin is also given.

Treating P as a random variable, the expected value, E(P), of its posterior
distribution, giveh independent random samples X3 and x; from populations [ and
I; respectively, can be considered as simply an estimate of P subject to a

squared error loss function since

E(P) = I é.p(elggl.gz) de , (Al.1)
where P is given by equation (1.1.1). Alternative estimates of P using different
loss functions could be obtained, e.g. the median or mode of the posterior
distribution of P.

However, assuming known prior probabilities q; and q3, then the usual
Bayesian 'predictive’ estimate Pp of P is given by,

Pp = yel11y,X1,X2) = qQ1P1(YiXy,%X2) = qQ1P1(yix}3,X2)
QP1(¥Ix%X3,X2)+A2P2(Y X%y ,%X2) PYixy,x2)

f a1py(718) p(elxy,xp) d@
p(Y‘Z‘_]nﬁZ)

) [ a1p1(718) B(¥,81xX),%z) de
p(Y'e’x_}_,EZ) p(Y‘x_'Lv&)

= I qP1(Y18).p(Oly,Xx1,X2) dE
yio)

[P-p(ely,ﬁyzz) de , : (A1.2)
i.e. Pp = E(Ply,X;,X2) , and the Bayesian 'predictive’ estimate of P, Pp, has

been shown to be equal to the expected value of P over the predictive
distribution of © given vy, x and x,.
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The difference between the estimate E(P) in (Al.1) and the ‘’'predictive’
estimate Pp in (Al.2) can clearly be seen. The ‘'predictive' estimate averages
the random variable P over the posterior distribution of © given both the data
x3 and X and the value of the new observation y, while the estimate E(P)
averages P over the posterior distribution of © given x; and x; only.

Hence, if the information about © from y was negligible compared with the
information from the random samples or if it was not certain that the new
observation was sampled (independently) from the combined population
distribution then E(P) is appropriate rather than Pp.

More than one new observation

Purthermore if there are m new observations (yj;jzl,z,...m) independently
sampled from the combined population distribution, which are to be allocated,
then the fully Bayes approach gives, assuming Q3 and qz are known, for m=2,

1q 3 4 M3,X3,X
p(y1efs,y2el;ly1,¥2,X1,X2) = Q193 Y1, Y2 ly1elyi,y2€lly,X),X2) ,

kgl 121 axd1 P(Y1,¥21y1elk,yaelly,X1,X2)

which is different from the product p(yleﬂily1,§1,§2).p(Y2enjIyg,gl,§2) for
i=1,2 and j=1,2 since y; and y, are not independent given (y;ellj,yzellj,X3,X2)
unless i#j.

Consequently the marginal probability given by
P(y1elli 1¥1,¥2,X1,X2) = jglp(neﬂi,néﬂj!V1,Yz.§1y£z) ,
is different from p(yielily1,X1,X2).

If however it is not certain that the new observations (yj;i=1,2) were
randomly and independently obtained from the combined population distribution
then as before E(P) is appropriate for p(yiellly1,¥2,X1,X2). This problem is
discussed further in Chapter 10.
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APPENDIX 2

A recurrence relationship relating the multivariate moments of a p-dimensional

random variable to its multivariate cumulants

The recurrence relationships are:

ri-1 rp Irp
i go i 50"i‘§o [ i i il i Kr-i for r>(1,0,0,...,0)
h L 2 o= 1 213 P

and the same relationship holds with uy ,uj and Kp.j replaced by u:', #i' and

By =

K'r-j respectively where, r=(T1,%2,....,Tp), i=(i1,iz,....,ip) and,

pi = E[xlllxzf?. ... Xp P } for i0,

uy' o= E{ [xl_g(xl)]il {xz-z(x2>]iz.........[xp-E(xp)]ip ] for ix0,

Kj = ( D:i:'l‘){ log #(t) ”t:o = {d(ll) ali2) | q0ip) 14 @(g)l for ix0
T | at{1) ge{i2) at$'p) t=0
L) = B[et'x ] » E=(t1,t2,....,tp) and X=(X1,Xz,.....,Xp)
and Ki' = { 0 for 1'i=1 i.e. Lij=l
Kj for 1°'iil i.e. CijlMl

In particular,

] r-1 r-1 . [ r-2 r-1 .
Hy = 150[ i ] Ki Ky-i = 150[ i } Bi Kr-i for r=1 (A2.1)
and

ry-1 r2 . .

e %) ) s s

Friwre = ;%0 i,5 { iy ip) Pliriz Kry-iy,7p-ip (Az.2)

for (r;,r2)>(1,0) i.e. for ri;2l1 and ry=0.
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Proof
d e(t) = #t)d log &(t) (a2.3)
dty dat;

Differentiating (A2.3) , with respect to tj, (rj-l1) times using De Moivre's

Theorem gives,

a(ty) ety _ rizl [rl-l] d(11) o(t) alTi-11) 10g #(t) for ry21

dtl(rl) iy=0 iy dtl( il) dtl( rl-il)

. (ry) _ gzl [rl'l] (i) (ry-i3) .
i.e, Dtl L) = 1150 i Dtl (L) . Dtl log #(t) for ry>1.(A2.4)

Differentiating (A2.4), with respect to t;, rp times using De Moivre's Theorem

gives,
ri-1 rp - . - -
(r3y,r2) {rl-l] [rz] (11,123 (rl-ll,r2-12i
D t)y =. L . . : D £ty D o t A2.5
tr,t2 T8 TiiBo .80 [ iy ) lig) Peilen HE) ey g ¥Lt) )

Now differentiating (A2.5), with respect to tj, rj times for j=3,....,p gives

ry-1 rp r3 Ip

(r) - [rrl] [rz] [ra] [rp] (1) (x-1i)
Do) =5 1,80 13803580 L5y | izl lig) oo lip) Pg ®(®) P 7loe &(B)
(A2.6)
setting t = 0 gives,
rl‘l rz r3 rp r
- n B &
“_l_!'_ 1120 izgo i3§0 “"‘ipgo [ iy iz iz) "0t ip p_'.i; Kz-i (A2.7)

the moment generating

Replacing ¢(E) in (A2.6) by ¢v(£) =E [ eE'[X"E(x)] ]

function of [X-E(X)] and setting t=0 gives

. 1Tl 12 713 Ip - .
g = . L. .E . T viooo.L {r? 1] [1.'2] [’.’3] [?P] n. K . (A2.8)
r 13=0 12=0 13=0 1p=0 13 iz i3 ip) "1 x-i
. - (i) ' ] { 0 for 1'i=1
were k= [ ogtos o) | = { g wr 130

since log ¢(t) = log E [ e-ti E(X)‘ eE X }

= -£'E(X) + log #(t).
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APPENDIX 3

Formulae for evaluating the Psi function and its derivatives at integer values

and integer values plus a half

For the population distributions considered here i.e. multivariate Normal
and Normal linear model populations with equal and unequal covariance matrices,
Binomial, Gamma and Poisson populations, if vague prior information about the
parameters is assumed, then the formulae for the posterior moments of the log
likelihood ratio L involve only the values of the Psi function and its
derivatives at integer values or integer values plus a half. Simple formulae for

these are given below for n a positive integer, (Abramovitz and Stegun, 1965),

n-1

¥(n) = -C+ krl % where C is Euler's constant i.e. C = 0.577215665,
_ n 1
P(ntg) = -C+ 2[ z *-1 loge 2 } ’
k=1 2
2 n-1
\P(l)(n) = g— - ot 1—2 , and,
k=1 k
2 n
o negy = = . 4 p L,

k=1 (2k-1)°

In general for r2>1,

n-1
oy = (-1)r+l.rl[ C(r+l) - L "%Ii
k=1 k
+ n
W (ney) = (-1)r+l.r1[ (2" -1y grt1y - & 1 )
k=1 (k-%)
® 1
where { is the Zeta function and {(r+l) = ¢ ,
r+l
k=1 k
and if r is an integer then ¢{(2r) = 22r-1ﬂ2rB for r=1,2,3,...
(2r)!t

where By is the rth Bernoulli number (By=1/6, By=1/30, B3=1/42, B4=1/30 etc.)
. w2
In particular {(2) = g~ = 1.64493407 , {(3) = 1.202056%0 and

b
{(4) = 5g = 1.08232323.
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APPENDIX 4

An efficient numerical method of approximation which is particularly useful

when the Psi function and its derivatives are required at the same value

The following series expansions can be used to calculate the psi function
and its derivatives:

—

1
Y¥(x) = -C+o +x 1 T(xak)
where C is Buler's constant, C = 0.577216,

v ) o ()™ ] 1

k=0 (x+k) T

The ‘convergence, however, is slow and the summution can be replaced by

integrals for faster evaluation. In fact to evaluate

«©

S = L (k) ,

0

we use a Taylor expansion for f(m)(y) about the nearest integer to y,
integrating over the range (k - %, k +~%) and then summing over all
k ?ko to give

©

I (m) (y) day = E £(m) (x) + _1_ E i‘(m)rz)(k)
ko -1/2 k;kO 3!22 =ko
4
+o 1 E f(m+ )(k)+...
5324 k:ko
(24.1)
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Rearranging and similarly expressing the sccond and third summations
in (Ad.l)gives

Sm = z BjIm+2(j-1) (m’_O)
5=1
where
n Kk
o (3> 1)
B. = - 1 B.A . j > 1
=G L 172(3-1
J 22(J-1 1£1 )
Byo=ta= 1 ear= 3 Dy 2o

ko=1/2
The importance of this is that once. the I, (350) and B; (3 1)
have peen obtained, the Sm (m3 0) are easy to obtain and hence the psi
function and its derivatives can easily be obtained at the same value x
by choosing f£(k) =_1
k2-
Depending on the function f, if k

0 is small, the convergence of the Ij

to zero may be greatly increased by writing:
k1—1
) (@) (k) + 7 £(m) (k) (A4.2)
o K=k =
=k 1
The first (k1-k0) terms are evaluated exactly and the second summation is
approximated using the first few terms in(M.l)(e.gS (k) = 1/k2, then
_ -(3+1) . C (A4.2 _ -(j+1 .

I, = ofky ™ ] , vhile using (A4.2) I = O[k1 J . Keeping the

total number of terms n used to calculate Sm fixed, take k, = ko + r in

1
(R4.2) then,for the greatest order of accuracy, T, is chosen to maximise
2(n-r+1) log(ko + )

Differentiating with respect to r gives

2(n—r1+1)

ko + r1

The asymptotic relationship n=r

- 2 log (ko + r1) +

log r, can be used to estimate the

1 1

optimum value r, of r.
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APPENDIX 5

Estimation of the parameters of the Normal-Wishart prior

distribution for (u,T) for multivariate Normal populations

with unequal means and unequal covariance matrices
Consider r samples of size ny (L =1,2,..., r) from multivariate

normal distributions mean ¥y and covariance Zi where Zi is a dxd matrix.
Let Ti = Ei-l for each i. Assume each (ui,Ti) has a Normal-Wishart prior

distribution Ixui,Ti) where

p(ui,Ti) = Nowxd(uo, Ny Voo HO) .

Let the sample mean and corrected sum of squares and products matrix
be Ri and Si' with independent normal and wishart qistributions

respectively:
P(xilui'Ti) = Nod (”i'niTi)'
p(silui'Ti) = Wld(ni -1, Ti).

Then using the prior distributions p(uiTi), the wy and Ti can be
integrated out from the joint distribution of §i and Si to obtain their

joint marginal distribution M(;i’si) where

<l n
o |o

)

5|H

- 1
M(xi,Si) = StSi ["o"’o' (n_ +

. (n, - 1)s_1]
a i 0 i (0]

in the notation of Aitchison and Dunsmore (1975, Ch. 2).
Maximum likelihood estimators of the prior parameters could now
be obtained from ; M(;i,si), however the resﬁlting equations are
complicated and rzgiire non-linear minimisation in (dz+3d+4)/2 variables.
Instead consider the product L of the likelihoods of QiiTi) using

their common Normal-Wishart prior distribution:

14y



r
L = 1 [“(”i'Ti)]
1=l
and'replace the true (uiTi) in this likelihood function by their unbiased
. - -1 .
estimates (xi,(ni-d-—l)si ). Estimates of the prior parameters can be

obtained by maximising the resulting 'likelihood'.

-1

rd/2 1 S | r
L(no,uo,vo,ﬂo) = ng exp - E[UO-(i Wi) Ewixil'(no i Wi ) ]
. vo-d-1
x (1 Iwil z ™5 .
i=1 2 1
s Iuol exp(- 3 tr(Hg i W)l

22 gz v’”

The maximum 'likelihood' equations give

r -1 r
v = (L W,) I W.x
0
1 i 1 i7i
nO r r r -1 r
(Z x.'W.x.) - (Z Wox.,)'(Z wW.) (I wW,x,)
1 i i7i 1 i1 1 i 1 i1
H, = (; W)t
) ™o ;4

and Yo is the solution of the eguation

v, r r
rq log () - x log | §4wi| +'§ log [wil

4
-r I ?(5(vo+l-i)] = 0
i=1

which can easily be solved by the Newton-Raphson method.
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The posterior distribution P(ui'Tilxi'si) of (ui;Ti) given the

sample statistics (;i,si) and the prior distribution P(”i'Ti) is given by:

n + n. X,
¥ i%i

- 00
P(“i'Tilxi'si) = NoWid (-—;;—;—;;—- s Ny + D0 Vo + o0, Hi)
n_n,
where H, = H_ + S, + ——Q—l——-(; u ) (. ~p )
i (0] i ng + n, i’o i’o

As an example, suppose that samples of size 10 from each of two

A & - -
populations give unbiased estimates (u 'Ti) = (xi,(ni-d-l)si 1) for

i
o T _S i

(hoT)y £= 1,23 r=2,n =n,=10, I; =357, d =2
Suppose:-

. ” 1l 0.6

L5 Wi (0.0 0.0, 21 - (0.6 1 Vo

N » 5 0

n, = (.0 1.0}, 22 = | o} 1 ).

The maximum 'likelihood' equations above give

My = (0.399 0.536),
» 3
n, .= 6.847, A 6.911,
e (9.737 3.562)
o) 3.562 6.697""'

The posterior distributions are therefore given by

17.383 8.631

8.631 14.865) )

Pluy Ty |x;,8;) = NoWwi ( (0.162 0.218), 16.847, 16.911, (

46,207 4.696

4.696 14.572) )

PuysTy|x,,8,) = Nowis( (0.756 0.811), 16.847, 16.911, (
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Assuming instead vague prior knowledge

- . 7-0 4.2
p(ul,Tllxl,Sl) = NoWig{ (0.0, 0.0), 10, 9, (7, 7.0) )

- . 35,0 0.0
p(uz,Tzlxz,Sz) = NoWiy( (1.0, 1.0), 1o, 9, (0 ;00

- ~
There may be some instability in ng and Vo when using only two populations
so that this procedure is only recommended where several populations are

available.
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