Imperial College of Science, Technology and Medicine
University of London
Department of Computing

A Configuration Language for
Distributed Programming

Naranker Dulay

A thesis submitted in partial fulfilment of the requirements for the degree of
Doctor of Philosophy in the Faculty of Engineering of the University of
London, and for the Diploma of Imperial College of Science,
Technology and Medicine

February 1990

Abstract

Most conventional languages for distributed programming combine the notions
of algorithmic programming, non-local interaction and program structuring
within a single programming language. This leads to programs that hide their
structure and that lack the ability to support dynamic program modification at a
high level of abstraction.

This thesis presents an alternative approach to developing distributed programs
that separates the structural organisation of a distributed program from the
algorithmic implementation of its parts and leads to distributed programs that
are easier to describe, construct and manage. This is achieved by using a separate
language, termed a configuration language, to describe the structure of a
distributed program and for its construction and reconfiguration.

The configuration language is declarative and supports both modular
construction and type safe interactions. The language allows hierarchic,
replicated, variant, parameterised, switching and recursive program structures to
be specified. An interactive version of the language includes further declarations
to dynamically modify the structure of running programs. The implementation
model for the language supports incremental development. It allows program
sub-structures to be compiled in isolation on possibly heterogeneous hosts and
then safely configured into the running program.

This thesis presents

* the configuration language for the description of the structural topology of a
distributed system programmed as a set of configuration-independent
processes.

® an abstraction mechanism, called a group module for structuring systems as
a hierarchy of interacting subsystems.

¢ a method for transforming the hierarchic structure (and possibly recursive)
of a program into a more efficient heterarchic structure.

e techniques for efficiently compiling distributed programs constructed with
this language into distributable units called nodes.

e techniques for distributing and reconfiguring the nodes of a distributed
program across a heterogeneous collection of processors.

A set of example programs that demonstrate both the utility and expressive
power of the language are given. The language has been implemented within the
context of the Conic environment and is in use at several institutions around the
world.

Acknowledgements

This is the 'thank you' page. As such, it is often skipped by the reader, but to the
author it is perhaps the most important page of all. Without the help and
friendship of the people mentioned below, the work in this thesis would not have
taken on its final form.

First and foremost, I would like to thank my thesis supervisor Jeff Kramer, for his
guidance, encouragement and patience throughout the development of this
work.

The comments of Morris Sloman and Jeff Magee who took time to read a draft of
this thesis are also much appreciated.

The work in this thesis is the result of many fruitful collaborations and
discussions with members of the Distributed Programming Group at Imperial
College. I am especially indebted to Jeff Kramer, Morris Sloman and Jeff Magee
for giving me the opportunity to work in such a stimulating environment and for
supporting me in my work. I would also like to especially thank Kevin Twidle,
Keng Ng and Anthony Finkelstein for their encouragement and support. Special
thanks also go to Anne O'Neill for her prompt and efficient service. In addition
collective thanks go to the remaining members of the group, past and present.

‘The system described in this thesis is the result of the cooperative efforts of a
number of people. In particular Jeff Magee was responsible for the design and
implementation of the Conic run-time executive, the virtual target concept, the dl
program, the spy utility, and the implementation of Batcher's bitonic sort
described in this thesis. Kevin Twidle was responsible for the design and
implementation of the interactive configuration manager (Iman) and the node
server. Keng Ng was responsible for the design and implementation of
ConicDraw, the graphical configuration manager.

This work and my stay at Imperial College has been supported by funding from
British Coal, and the Science and Engineering Research Council.

To Satpal and Jes
-

Contents

Chapter One Introduction 13
1.1, INEOAUCHOM .ottt en st s b 13
1.2. The Problem ENVIrONMENt........cocovivirrisiinciniiiiinii s ssssssensanines 14
1.3. The Conic TOOLKit ..ottt 15
1.4. Thesis ODJECHVESuouireiiircriirtctse sttt es s sees 15
1.5. Thesis OULHNE ..ottt e eas 16
Chapter Two Distributed Programs 18
2.1, INETOUCHON ...covreiicrctctttt ettt bbb bbb s 18
2.2. Distributed Programming Models..........cccccoeininimniininccinccncncne. 19
2.3. Program Structuring MechaniSms............ccocimninnncninncneneiesescencscenes 20
24. ReqUITEMENLS ...ooomereetie ettt se e oo senasans 21
24.1. Separate Structural Specifications..........ccceeverenieineninnisescisincicnnces 22
2.42. Conceptual Simplicity and Clarityc.cocoeveeniiennencnieissensennrenne 24
2.4.3. Declarative Specificationccecuvrrrerernrneininsssnteeese s 24
2.4.4. Executable Specification........cccceeeueeerinvereeenencieinseteicctssse e 25
2.45. EXPressive POWET ...t et e ssnons 25
2.4.6. MOAUIATItY ...ttt e 26
2.4.7. CONCUITENCY ..coceuirerinirrrcieresrsisissses e iessssissssssesesssssssessssssssssssessssess 26
2.4.8. Scalability.....cccocouirreiir e 27
2.49. Interacton Safety ... s 27
2.4.10. Adaptability ...ttt 27
2.4.11. Independence........irieneiinnieeneiierse s ss 28
25. Critical Summaries of Other Systems.........ccccceuvirrrieiniererrreernsissseensses 28
25.1. CCSiircrice s e s 28
252, COMICBA......coitiercteeeee ettt st 29

253, DICOM cettiieiiiiiitcie s e ss ettt e 29
2.54. DPLA82uuiicteese ettt e e 30
255, DTttt et s 30
256, DUITA ..ottt ettt e 30
2.5.7. GATP it 31
258, HPC oo s 31
2.5.9. Lady ..o s 32
2.5.10. MUPPEeL...oiiirrriiriee ettt s 32
2.5.11. NEetSIa coviieeeriiiictciect e e b e 32
2.5.12. RINCluuucueirciircrcnitcsie st sses e sassssesss s sasnsssesesssaesan s 33
2.513. SHIE ettt s 33
2.6. Chapter SUIMMATYccccceueveeniisrirsetesssnsinisssst st istsesesstss s ssassssessssssssases 33
Chapter Three The Configuration Language 35
3.1, PIOCESSES....couvuiuiiririirasietiiisieti ettt ss s b e s s s s st b s b e b sa b s 35
3.1.1. Direct Process Binding.........ccoevumeernieererenreenteeeenrenciererssieeeseeensnnne 37
3.1.2. Indirect Process BIiNding........ccoouvururrmmiresmnrennnceitriinceseneesenessns 37
3.2, BINAINGS ..coivoirreririrnriieiriinnieesi sttt s e 38
3.3, POTtS.ccuiiiiiicictiiienee ettt st et e b n e s n s 38
3.3. 1. NOHEY POIES cucvvrececierriirrcerireetniieietss s sssessses st ssess st sssssssssens 41
3.3.2. Fan-In, Fan-Out......ccouiioiiiiiiceccrceciecece e csssecnssaeeeesecsenneesnnes 42
3.3.3. ReOVIBW..uecrcervtitiirteitctiie ettt s snss st s ss s s snes 43
3.4, Group MOQUIES.........cciiiiititciniciciinetense et ssasssssssssasssessas 43
3.4.1. ENCapSUlatioN........ccoeiereeeeninieiesisississsienstssssessssssssissssssscsssensssenacs 43
3.4.2. Hierarchic BINAingccooeommeeenennnintsetcensteenaene 44
3.43. Inheritance (Incremental SErUCtUIINg)......cccouvvrerneurrnreinesesinnisenincs 46
3.44. Coalescing. Multicasting and Loop Backs........cccceeerrneinicnnace, 48
3.45. BiNdiNG RUIES......cuuouiereteeetettcteet ettt 49
3.4.6. Final COMMENLtccoovvurimiriritmnititiitiee et assenes 51
3.5. ParameteriSation.........coooeuirireerineiietniniiiesesnee st sssssnss s s 52
3.6. RepliCAtioN.....coveiirrtreeeeente e 52
3.7 VaTAtOM .ttt cres et en s s b et sasb b sanees 54
3.8, RECUISION ...cucoitereteniriretetetctetetnts st e e e s s s s s s e 54
3.9. Dynamic MOdification.......c.ccceuurcminsemniisninniissiesctssiseetisectsenenensssicnsiaians 55
3.10. Interaction Safety ...t e 55
3.10.1. POrt TYPES....civiieeeeiretetitititiees st 56
3.10.2. Port type compatibility ..o 57

3.11.

3.10.3. Extended Message TYPeSccwewruiveuiumsesniemsenernienieicisnanaseenseses
3.104. Extended type compatibility..........cccvuiioniiniiiniee
3.10.5. Definition MOAUIESccocevmriiiiiiiiiiii e
Chapter SUMMATY ..o et

Chapter Four Examples

4.1.
4.2.
4.3.
44.
4.5.

Simple Flow Control Protocol ...t
Dining PhilOSOPRErS ..ot
RUN-TIME EXCCUVE..c..eecueiicriereerreecreeieerteeeeesaestresreessasssreesecsssassrassunsnssesssesnees
BatCher's BitONIC SOTLOT......cceeirreerrenreerrenreereesranssessesseessessaessessesssessssssassasssesseenes
Chapter SUMMATYceeeieirmimrintnsseeisnssssssss sttt s ssssnssssssnseses -

Chapter Five Implementation Model

5.1.
5.2.
5.3.
54.
5.5.
5.6.

Development Cycle.......cirieimiinrnnsinnsnisssssss s e
AN EXAMPLe..iee ettt st st s
Chapter SUMMATY ..ottt st s sens

" Chapter Six Compilation Techniques

6.1.
6.2.
6.3.

INEOAUCHOMN ...ttt et s s bt
Node COMPIIatioN.........ccoueeertrerieiciiniersnnstes sttt se s sessssesens
SYINDOL FALES ..u.ouvrevrrerncistenieiseretstns sttt st st sttt s ssssan s sssnsessscncsncs
6.3.1. Symbol File Organisation........ccccoeeeemeeenieunninisnisenieieseecseninennens
6.3.2. Symbol File SYNtaX........ccocoerrrerrrermrinrsiiireisrseiess s
6.3.3. Magic Number Sectioncc.coeeuerriniinirciniennineniiisessieenns
6.3.4. Directory Table SeCtion......cccocceummieiuiiiiernineeseeee e
6.3.5. Component SECHOMccceueiierrienrrititie ettt
6.3.5.1. Consistency Checking Algorithm.......c.cccouvieniecinnnnnnc.
6.3.6. Parameters SECHOMNccovueeeetniemetnretisis s s
6.3.7. Identifier SECHON.......ccccivirerrrriririniiiiereree ettt sttt aseaenas
6.3.7.1. Reading Identifier Descriptionsccceeveurerescencisuninnnnenes
6.3.7.2. Identifier Visibility e s
6.3.7.3. Writing Identifier Descriptionsc.ccecoevveeerevccnnicnennces
6.3.7.4. Type Structure Descriptionsoveeeveveeienncnencccnnncnenenen.

7

57
58
58
59
61
61
63
66

71
75

77

6.3.7.5. Reading Type Structures............ccoceeevvvrcrcninmninsicccunicenens 100

6.3.7.6. Writing Type Structures...........oeeeoevecinniniiiiiceee 101

6.3.8. Type Extension Section........cccoeemurruemieririiniicicieieecc e 101
6.3.8.1. Tag Identificationccoeeiueueiiieiiiiiieee 105

6.3.9. Debugging SeCtionccoovinieinininiiiiicii e 106

6.3.10. Additional Facilities......cocouvurrermrreeiiiiiiiireee e 106
6.4. Code GeneratioN.........ccvueuvuiviinininirisirirnrernic e s s 107.
6.5. Link-loading....ccecevverimninimiiniiiniienieiiiinnieiciet st 108
6.6. Project Management SUPPOTt......coueuureereiererirnrinseinieisstsesie e nsseeees 109
6.7. Chapter SUMMATYcooeiruiireriiireeinieierss s s sss s sass st snss s s s 109
Chapter Seven Run-time Techniques 111
7.1, INEOAUCHON w.coviiiircertttct it s e 111
7.2, Node ElabOration ...t s sans 112
7.21. Node Elaboration Proceduresccucemmisesesnsiniccncnsesesencnnacns 113
7.2.1.1. The create_group function.........ccccceceeeeeernneceeesnrescennens 115

7.2.1.2. The link_group procedure..........ccooeovirevesnnrsiressninnncncnes 115

7.22. PerfOIMANCEccoviuirirmmnuiririnieenenetie e esese e ssss s sssasasssass 117

7.3. INOde Creation........cccovmimiiiririininiiniseinerenenenesesie e e s e s sssasasssass 118
7.3.1. Direct Creation........ccoeeiiieverencrerererneseieeessssssses s esssnens 118

7.3.2. Indirect Execution via VT'Sccuuemerrnrneseeeecisiese e 118

7.3.3. Target Creation.........rieiereeneseinsnsisnssssssssssnsissssssssssssssssssssons 119

7.4. Node BiRAING......ccoevurrmrenirirerriteniiiicnretenerenie s rssasene 120
7.4.1. Canonical Data Representation (CDR).........cccccovverniiurcncninenennn. 120

74.2. Node binding compatibility..........cccocovuurrenrrunrererinenrierieesisiinrenenn, 121

7.4.3. Heterogeneous Message Passingccccvvevevenieninererneccecnesencnnees 121

7.5. Node Configuration.........cririniininirenseniisnenissne s sssenes 122
7.6. Querying Node SITUCLUTE..........ccovveerniietntniesereer sttt ses 124
7.7. Node DebUuGgINgcccovuriurerrentrmreresrnrinissisesssisissssssssssssssssssssssssssessssens 125
7.7.1. Post-Mortem DUMPSccoceervrerrmrerenirnninsessssississ e sses s ese e 125

7.72. NodePlayback......cciiniiniitesisis sttt ... 125

7.7.3. Message MONIOTINGccoueeeereiititienesiencnnirnnisnsse e isesassssss s e 126

7.74. Final CommEents........coeiiiiirriiirinieieesse et ssnese e 127

7.8. Chapter SUMMATYccococriniremrirnriiiemssennesssereesesess s sssssss e ssssssssssssssans 127

Figures

Chapter Eight Conclusion 129
8.1. Summary Of WOTK ..ot s 129
8.2. Critical EValUatiON........cccoeceiviiiiiimminiiiiiiicee e 130
8.3. Some Suggestions for Future Work.........cccoeeeeieiieieeinnecsieieeeecns 132
8.4. Final REMArKScoveuiiiriiiicisiiiiiricrcten et 134
References 135

Appendix I Definition of the Conic Configuration Language 145

Appendix II Symbol File Syntax 158

Figures

Figures

Fig 3.1 Process DefiMitioN........ocvecreiereririinieireeesereteiss ettt 36
Fig 3.2 Multiple Process DefiRitions..........coceivueennininsesinieicsense e 36
Fig 3.3 Instantiation Of ProCeSSeSccoueuireuivireriiiiiineeiniie ettt 36
Fig 3.4 Multiple Instantiation of @ Processcccceceeveviniicecinisnennssinnceene 37
Fig 3.5 BINAING Of PTOCESSESvrrvevevririreiiretitnisntttsietetesst s s ssseses 38
Fig 3.6 = Process POILScccoceeeuerreuriueinsiestesesissessstsstesstss s isss s s st sssssssssssssssas 39
Fig3.7 Binding of Process POTtS........cccoveveeivererssinnnerirssnisssinsss st sssssessesens 39
Fig3.8 Process EXitPOItScccccovmiiminmreriinesiesnsiststse st 39
Fig 3.9 Process ENTYPOIES.......cucueuereieieininiiieestcininii sttt 40
Fig3.10 Bindings of Process Exitports to Process Entryportsc.c.cococvcvncncnes 40
Fig3.11 Process NOHfYPOItS.....ccovumnuniieeintirctnininne e 42
Fig3.12 Fan-INM.iciceinectnntes s st st es s s ss s ss s s sses s s nsssss s 42
Fig 3.13 FaN-OUt...crcenncinntsieenstcte s issssssss st ssssssasssssssssssssssssssssssonss 42
Fig3.14 Example of a Group Module...........cccuuemirervennsiernniesiericissinnsnssnesisenncs 43
Fig3.15 Multiple Instantiation of a Group Module..........cccccouorervennrencinencnce 44
Fig3.16 Inbound Hierarchic Binding........ccoeoeuvviermemniecininnesisininisseiesteecicnne 44
Fig 3.17 Outbound Hierarchic Binding........ccooenenenieen. 45
Fig 3.18 Forwarded Hierarchic Bindingcccooveveienenenncniiniccicicnen, 45
Fig3.19 Example of a Perfect Shuffle Switching Structure..........ccoccouveenncence. 46
Fig3.20 Example of a Logical BUSccouoiemnvneiniccees 46
Fig3.21 Transitive BIRAINGScovvetreriereteeeecre s 46
Fig3.22 Incremental Structuring of COMpPONentsccoeeeemrieeniseisienscrsrsnsennan 47
Fig3.23 Incremental Structuring from Several Components.........cccooevnurerrennes 47
Fig3.24 Overriding COMPONENLSccoeurrrreeiniernreeinistitesennnisisssssstsesasensesnees 48
Fig3.25 Hierarchic CoaleSCng..........cccouuimvirereirineciiieiinreresenescrieess s ssssssnas 48
Fig3.26 Hierarchic Multicasting........cccocoeoveemmuereeinieiniiirieieceeeieeese s 48
Fig3.27 LOOP Back BINAING . covevevvvvvveeuesmmrersreesssssssssssssssessssssssssssssesessssssssssasennss 49
Fig3.28 Circular Bindingccocoemummeerieeeeesnesrste et e 49

Fig 3.29
Fig 3.30
Fig 3.31
Fig 3.32
Fig 3.33
Fig 3.34
Fig 3.35
Fig 3.36
Fig 3.37
‘Fig 4.1
Fig 4.2
Fig 4.3
Fig 4.4
Fig 4.5
Fig 4.6
Fig 4.7
Fig 4.8
Fig 4.9
Fig 4.10
Fig 4.11
Fig 4.12
Fig 4.13
Fig 5.1
Fig 5.2
Fig 5.3
Fig 5.4
Fig 5.5
Fig 5.6
Fig 5.7
Fig 5.8
Fig 6.1
Fig 6.2
Fig 6.3
Fig 6.4
Fig 6.5
Fig 6.6
Fig 6.7

Geometric Representation of a Componentooueuvveiivrciniicninieieenen. 50
Geometric Representation of an EXitportcoueiiviiiiiiiniinnenens 50
Geometric Representation of an ERtryport. ... 50
Legal BINAINgGSoooviiiiirier et 51
Illegal BINAINGSovviiiiiiinieti s 51
Replicated Instantiation.......coeveveeeiiininiiiiice e 53
Two-dimensional Replicated Instantiation ..o, 53
Recursive StruCturingcccceemiiiieeeeeteceee e e 55
Example of a Type Hierarchycoeveusrenissnierscsenineisceiseinnsiseinicnes 58
Flow Control Protocol Example..........oeeeveeennneineesneeeneenens 62
Flow Control Protocol Group Module...........corioioniiiiieiie 63
Dining Philosophers Example........ccccouuviiiinineniiiecscienisenesesnaens 64
Dining Philosophers Example with Window Components................. 65
Executive Group Module..........ieeiiiniieieeeieecce s 66
Console Group Module..........ciiniceinisene e 69
Comms Group Module.........cuueuueeireieeniinninseiiseness st snaees 70
COMPATatOr PrOCESScoveriniiieirnstess st e rssssssss e sssssessesssns 71
Bitonic Sorting AlGOrithm ..o 71
Sort Group Module for N=8........ccueeeiennnniriieneeiiesesssissssesse s 72
Sort Group Module for Base Case..........coouunerreeriininintnenssninisiceeene 73
Bitonic Group Module for N=8.......ccccccouieminninneisnnnietnineiesstsennene 74
Bitonic Group Module for Base Caseccceovuveniiinneninenscnnninccncncenens 75
Host/Target ENVIIONMENLc.coeueerereiniireiesiesresreiessesesisssessssssasssssssseses 78
Node DiStriDUHONcucuutctciteiintcetensse s s essssees 82
Distributed Programs with NOEs..........cccecveuerrreriineerereiinnesersinnerissnnnns 82
Structure of Configuration Management System............cccovueereverieenes 83
Node Development...........ooiieermnnennninetenesee s eaes 84
Node Reconfigurationccueveuereenseuerinieecesese et 84
Diner and Table NOes.........ccouueviniiiniinciiiniice ittt 85
Dining Philosophers System as Configured Nodes..........cccocverrunencce. 85
Node Compilation System.......coeeeuueeereceriiceeeeinenies s 88
Organisation of Component Records...........ccouuevrunenieeieerenceinncnennnnn, 93
Organisation of Identifier Recordscemeveveunviiniecernnniinnnnncnnnn. 96
Example of an Identifier/ Type Network........ccccoeceeuirerrereenninrirsncsnnnnas 98
Type Hierarchy for X......etcct s 102
Type Hierarchy for Y ...t 103
Type Hierarchy for Z ... 104

Fig 6.8
Fig 7.1
Fig 7.2
Fig7.3
Fig7.4
Fig7.5
Fig 7.6
Fig7.7
Fig 7.8
Fig7.9
Fig 7.10

Labelled Type Hierarchy for X, Y, Z......cccvvnnnn, 105
Example Node for Elaboration..............cccceeevennininiiinicccnee, 113
Node after the Create_Group FUNCHONccocevveviiiiniii 114
Node after the Link_Group Procedureccocovvenniinncnenennns 114
Node Elaboration Figures for Batcher's Bitonic Sort.............ccoeeeveeeve. 117
System of Dining PRIIOSOPRETSoccccvvvvrevrerevvorrssovsres s 123
Example of a ConicDraw Window ... 124
Example of a Post Mortem DUmpcccovemiiieniinicinieneseseeeee 125
Example of Node Playback.......ccoeeevivirnienrninineiciernseeciereiene e 126
Inter-node Link prior t0 Spy.....cccuueeerernenninienrernininsess st 126
Inter-node Link with Spy Filter ..o 127

12

Chapter One Introduction

11. INTRODUCTION

The structure of distributed programs and the extent to which that structure is
visible significantly affects the clarity of distributed programs [Ossher87]. Clarity,
in turn, can favourably affect other important goals for distributed programs
such as modularity, reusability, reliability and modifiability as well as aiding
distributed program design and debugging [DeRemer76, Horning73]. For these
reasons, distributed program structuring and the clarity of its specification are of
central importance to distributed program development.

Distributed programs consist of collections of smaller components. The precise
nature of these components depends on the nature of the distributed
programming system being used, but typically comprise executable components,
such as processes, modules, and procedures, as well as non-executable
components such as data variables, files and communication buffers . The
organisation and interaction of the components of a distributed program together
constitute the structure of a distributed program and as the demands for
distributed programs increases, so does the requirement for mechanisms and
notations specifically for organising and managing the structural complexity of
resultant programs [Randell86].

Most current languages have some mechanisms for structuring programs. For
example, many languages include import-export declarations which describe and
control the interactions between modules and have data structuring mechanisms
which specify the organisation and interaction of the data used within a
program. Such mechanisms are quite good for small sequential programs that
consist of an amorphous collection of modules, but are bad at describing the
richer variety of program structures possible for distributed programs. New,
more flexible program structuring mechanisms are needed for describing the
structural complexity of distributed programs.

13

Chapter One Introduction

As DeRemer and Kron point out in their seminal work [DeRemer76], the process.
of Structuring programs, which they term "programming-in-the-large”, is an
intellectually different activity from algorithmic programming. Many current
languages for distributed programming tend to combine the notions of program
structuring, algorithmic programming, and non-local interaction within a single
programming language. Unfortunately, this leads to programs that hide their
structure and are harder to design, construct, and debug as well as being more
difficult to manage and dynamically modify.

A number of distributed programming systems have recognised the different
processes involved by embodying notations for program structuring within a
separate linguistic framework. Such languages have been called a variety of
names in the literature including module interconnection languages
[DeRemer76], graphical interconnection languages [Weide82], network
specification languages [LeBlanc82] and configuration languages [Dulay87,
Lee86]. This thesis focuses on the provision of an integrated program structuring
language and toolkit for the development of distributed programs.

12. THE PROBLEM ENVIRONMENT

Compared to single processor computer systems, distributed computer systems
promise many important advantages, for example high availability,
expandability, performance, resource sharing, de-centralisation, and cost-
effectiveness [LeLann81]. Higher availability results from the replication of
resources such as processors and file systems that is a common feature of
distributed systems. The failure of a single resource in the system need only
result in graceful degradation. Similarly expansion of a running distributed
system can carried out with little or no effect on existing users. Distributed
systems can in general be extended to a much greater degree before the onset of
performance bottlenecks. Claims for infinite expandability have been made for
some distributed architectures e.g. hypercubes [Sietz85]. Many distributed
systems are also designed to offer higher performance, e.g. speed, throughput,
problem-solving capacity. This is achieved by parallel execution of programs.
The above characteristics make distributed systems the preferred approach to the
future computing requirements of many organisations.

Many flavours of distributed system are now available, for example, shared
memory multi-processors such as the Sequent Balance [Thakkar88], tightly
coupled point-to-point computers such as the NCUBE [Hayes86], and loosely

14

Chapter One Introduction

coupled networked computers such as clusters of Sun workstations. In the
research community, on-going work on fine-grained machines such as dataflow
machines, graph reduction machines and connectionist machines may lead to
highly parallel systems. Modern machines also feature greater connectivity
ability, and the growing trend towards opens systems is likely to accelerate as
demands from users for sharing and exploitation of computing resources
increase. Computer systems can no longer operate in "splendid" isolation and
must be programmed for coordinated operation [Sloman87].

A uniform approach to programming these heterogeneous distributed systems
will clearly be needed. One way of tackling this, is by reconsidering the
requirements for distributed programming and seeing if a simpler, more natural
programming paradigm can be developed.

1.3. THE CONIC TOOLKIT

The work in this thesis has been implemented and is available as part of the
Conic toolkit at Imperial College [Dulay87]. The Conic toolkit has been
developed over the last 10 years and is in use in institutions around the world.
The toolkit provides a comprehensive set of language and run-time tools for
program compilation, configuration, execution and debugging in a distributed
environment. Conic programs may be run on a set of interconnected host
computers running the Unix operating system and/or on target machines with
no resident operating system.

The starting point for the work in this thesis was the original Conic system
completed in 1984 (called Conic84 in this thesis) and described in [Kramer83,
Magee84]. This provided a rudimentary configuration language for structuring
process control applications running on a set of bare targets. The system also
lacked adequate language and tool support for the development of large
distributed programs running in a heterogeneous host-target environment. The
work in this thesis helps remedy these problems by providing more scalable
solutions for distributed program development.

14. THESIS OBJECTIVES

The objective of the thesis is to show that the single language style of distributed
programming is ill-suited to large-scale distributed programming, and that a
dual language approach that separates distributed programs into structural
components and programming components is both clearer and efficiently
realisable. The thesis presents a integrated language and set of tools and

15

Chapter One Introduction

techniques to demonstrate this. In particular the thesis presents:

* anew advanced declarative configuration language for the description of the
structural topology of a distributed system programmed as a set of
configuration-independent processes.

* anew abstraction mechanism, called a group module for structuring systems
as a hierarchy of interacting subsystems. The mechanism combines
modularity with expressive power, while the structures produced by the
mechanism are capable of being dynamically reconfigured.

* techniques for efficiently and safely compiling distributable units called
nodes from large numbers of separately compilable sub-components. The
techniques employ a new symbol file design for efficiently representing the
interfaces of separately compilable sub-components. Symbol files are also
used to track object files in the host file system.

* anew technique for performing type extension checks in constant time rather
than linear time.

* an algorithm for transforming the hierarchic (and possibly recursive)
structures of a group module into a more efficient heterarchic structure at
run-time.

* techniques for distributing and reconfiguring the nodes of a distributed
program across a heterogeneous collection of processors.

* tools to support the construction and debugging of distributed programs.

1.5. THESIS OUTLINE

This organisation of this thesis is as follows: Chapter 2 reviews the general
properties of distributed programs and discusses the approaches taken to
programming them. It then proceeds to identify the key requirements for
producing flexibly-structured distributed programs. Existing approaches are
critically examined in relation to these requirements. Chapter 3 describes an
advanced fully implemented language, termed a configuration language for
producing flexibly-structured distributed programs. The language is based on a
new structuring mechanism, termed a group module that satisfies the
requirements identified in Chapter 2. Chapter 4 demonstrates the power and
applicability of the language with a variety of examples. Chapter 5 presents an
implementation model for realising the configuration language on a
heterogeneous distributed platform. Chapter 6 describes how large numbers of

16

Chapter One Introduction

separately compilable units are efficiently and safely compiled into runnable
units called nodes. Chapter 7 describes the run-time techniques for efficiently
elaborating program structures at run time, as well as techniques for distributing
program structures onto processors. Chapter 8 presents conclusions, a critical
evaluation of the configuration language and suggests directions for future work.
A definition of the configuration language is given in Appendix I. A definition of
the syntax of the configuration language compiler's symbol files is given in
Appendix II

17

Chapter Two Distributed Programs

21. INTRODUCTION

A distributed program can be considered as a set of distinct nodes which are
spatially separated, and which interact with one another by exchanging
messages. Distribution results in concurrent execution, non-determinism, and
non-neglible message transmission delays between nodes compared to the time
between events occurring within a single node.

Distributed programs distinguish themselves from other categories of programs
by being subject to de-centralised decision making, to continuous change and
evolution, to the need for node negotiation and co-operation, and to the sudden
unavailability of resources [Hewitt85].

Techniques for improving reliability and availability, for locating services or
objects given some symbolic or indirect name, for migrating data and program
code are primarily associated with distributed programs. Distributed
programmers often incorporate techniques that are designed to perform well in
the presence of high communication latency, being optimised for this property at
the expense of other costs that would be relatively more significant in a system
having lower communication latencies. Distributed programmers also tend to
optimise for low communications bandwidth.

Distributed applications are diverse, they range from computation-intensive
applications such as, parallel algorithms for solving the optimisation problems,
to data-oriented applications, such as the provision of database services,
transaction-processing, and mail services, to control-oriented applications, such
as the co-ordination of robots in a factory plant.

Although the underlying reasons for many distributed programs are better
performance, fault-tolerance, perhaps the most important reason for their use, is
that they often offer a simpler or more natural solution to the problem.

18

~ Chapter Two Distributed Programs -

Constructing, maintaining and understanding distributed programs, like any
large program, is difficult. Understanding its structure is an important first step,
but this is itself a complex task. There is a clear need for well chosen program
structuring mechanisms to provide assistance in this task.

This chapter identifies the key requirements for producing flexibly-structured
distributed programs. These requirements are also examined in relation to other
work. The chapter first overviews the models and program structuring
mechanisms used in distributed programming. The actual language developed to
meet these requirements is described in the next chapter.

2.2. DISTRIBUTED PROGRAMMING MODELS
Distributed programming systems can be considered to belong to one of two
models, termed the implicit model and the explicit model.

The implicit model is characterised by the automatic compilation of a program
into distributable parts. Examples include vectorising and parallelising compilers
of sequential languages such as Fortran [Kuck77, Albert88] and C [Quinn88] and
parallel implementations of functional languages such as Hope [Moor82] and
Lisp [Larus88]. In addition programming systems in this model normally require
special-purpose hardware for efficient execution, for example, the Connection
Machine [Hillis85] and Flagship [Watson87]. Although functional programming
languages are capable of yielding maximal concurrency, they lack the ability to
handle non-determinism and cannot effectively model history-sensitive
computations required in distributed programming. Logic programming appears
to be even more poorly suited to programming distributed systems [Hewitt85,
Kahn88].

The explicit model is characterised by the explicit programming of a distributed
program of interacting parts. Examples include message-passing systems such
Argus [Liskov84], CSP [Hoare84], SR [Andrews88], Actors [Agha86], and
Parlog86 [Ringwood86], shared memory systems such as Linda [Carriero89], and
hybrid systems such as Unity [Chandy88] that can be transformed to use
message-passing or shared memory. In addition programming systems in this
model are normally extended with extra mechanisms for concurrency and
remote interaction such as processes, remote procedure calls, message-passing
primitives, mailboxes, tuple-spaces, logic variables and difference lists.

19

Chapter Two Distributed Programs

2.3. PROGRAM STRUCTURING MECHANISMS

Program structuring mechanisms can be classified according to the "grain" of
atomic parts that they manipulate. For imperative programming languages,
procedures could be considered a fine-grain program structuring mechanism
since they group together a set of atomic statements. Modules then act as
medium-grain program structuring mechanism for procedures and interact by
export-import declarations which provide the names of directly callable
procedures. Most imperative programming languages do not, however, provide
any further mechanisms for structuring modules into larger granules.

Object-oriented programming languages provide a more hierarchical
mechanism, the class, which can be used to structure both methods (the fine-
grain mechanism) and classes themselves [Stefik86]. Classes interact by calling
the inherited methods of their parent classes.

Functional programming languages provide a different mechanism altogether,
the high-order function. This can be used to compose very powerful and general
functions from simpler ones [Backus78, Hughes88]. The requirement for modular
program structuring mechanisms still exists however [MacQueen86].

Most distributed programming systems belonging to the explicit model provide
concurrent processes and some mechanism for organising them, although many
of these mechanisms are just extended forms of modules, classes or abstract data
types, for example Argus provides guardians [Liskov83] and SR provides
resources [Andrews88].

Some distributed programming systems have aimed to increase program
structuring ability by providing more general structuring mechanisms based on
explicit components interconnection. Examples include agents in CCS [Milner80],
stations an networks in Conic84 [Magee84], subsystems in Dicon [Lee86], nodes
in DPL-82 [Ericson82], translations in DTL [Hughes83], tasks in Durra
[Barbacci88], agents in Garp [Kaplan88], shells in HPC [LeBlanc85], teams and
systems in Lady [Wybrabietz85], nets in Muppet [Muhlenbein88], networks in
Netsla [LeBlanc82], nodes and configurations in RNet [Coulas88], and boxes in
Stile [Weide82].. Earlier examples include C/Mesa [Mitchell79], Intercol
[Tichy79], MIL75 [DeRemer76], and PCL [Lesser79].

The need for powerful structuring mechanisms has also been addressed in
related areas. For example (i) the hardware description languages Fable
[Ossher83] HISDL [Lim82], and Strict [Campbell86] provide abstraction grids,

20

Chapter Two Distributed Programs

structures, and blocks respectively (ii) the design method Mascot 3 [Bate86]
provides subsystems, (iii) the specification system Statemate [Harel88] provides
statecharts.

The mechanisms propoéed however, fail to adequately meet one or more key
requirements for structuring distributed programs identified in the next section.

24. REQUIREMENTS
The key requirements for structuring distributed programs are summarised
below:

Separate Structural Specifications
The specification of a distributed programs structure must be separated from its
programming and not included within it.

Conceptual Simplicity and Clarity
Structural specifications must be clear and readable, and act as an aid to readers
in understanding the program.

Declarative specification
Structural specifications must be declarative, they should describe program
structures, and not detail how those structures are to be used.

Executable specification

The structural mechanism must be realisable, that is, amenable to
implementation and tool support. Specified program structures must be built
automatically without further transformations by the user.

Expressive power
The structuring mechanism must be sufficiently expressive to be able to specify a
rich set of program structures.

Modularity

The structuring mechanism must promote modularity through re-usability and
information hiding.

Concurrency

The structuring mechanism must be able to express concurrent program
structures.

Scalability
The structuring mechanism must be able to handle large programs. Structure
specifications must not grow unmanageably large and complex as program size

21

Chapter Two Distributed Programs

increases.

Interaction Safety
The structuring mechanism must ensure that unintended interactions are not

introduced into the program.

Adaptability
The structuring mechanism must be capable of supporting modifications to the
structure of a running program.

Independence
The structuring mechanism must be capable of supporting different

programming languages.

Although the requirements for structuring distributed programs summarised
above are motivated in part by the nature of the Conic environment available at
Imperial, they are not peculiar to the Conic environment or to distributed
programming. Large, complex programs arise in many contexts and a
structuring mechanism that could be used to specify their structure also, would
be of general use.

We now discuss each of the above requirements in more detail.

24.1. Separate Structural Specifications

The structure of a large distributed program can be exceedingly complex, yet an
appreciation of it is crucial to an understanding of the program. It is, in fact, so
important, that one generally tries to understand the overall structure before
examining the details. The many advantages of "structured-programming" derive
from the fact that good structure is an important aid to people in their
understanding and managing of complexity. These advantages only apply if the
structure is readily apparent.

The fundamental advantage of having explicit and separate structural
specifications is that they provide a means to communicate program structure
between people [DeRemer76]. The designer of a distributed program will
generally have a mental picture of the programs structure. That picture affects
his understanding of the program, his design decisions, and ultimately the
details of the program itself. A reader of a distributed program, particularly a
reader unfamiliar with it, is likely to derive great benefit from knowing the
structural model that the program designer used.

By separating out the structural specification of a distributed program other
22

Chapter Two Distributed Programs

advantages accrue, for example, (1) the structural specifications of a program can
be perused separately from the algorithms, and used as an index into the
program, since structural information is grouped together, rather being scattered
throughout the program (2) structural specifications can be wholly or partially
constructed before the program is written, and then used to direct program
development, (3) the structural specification is suited to providing a convenient
repository for information about a program, such as documentation, (5) the
structural specification is a valuable representation of a program, of use to
software tools that manipulate programs, for example, compilers, browsers and
command shells, debuggers, and simulators (e.g digital circuit simulators),
visualisation tools, and load balancing programs. Structural specifications can
also act as input for expert systems.

Separation of distributed programs into a structural part and a programming
part can lead to programs that are easier to design, construct and debug,
programs that easier to distribute and manage, as well as programs that are -
easier to change.

The separation of the structure of a program from its programming has been
adopted and applied in several systems, for example: Dicon, DTL, Durra, Garp,
Lady, C/Mesa, Muppet, Netsla, and RNet. The separation of structural concerns
can also be found in Fable, HISDL, Mascot 3, Statecharts and Strict.

The formal system CCS [Milner80] incorporates a structuring mechanism, but
this is embedded within the behaviour of CCS agents, and not separated from it.
DPL-82 and Stile employ hierarchic program structuring based on dataflow
graphs, but each allows programming statements to be embedded: Dijkstra's
guarded command language [Dijkstra75] in Stile, and Pascal in DPL-82. HPC
requires special user-written processes to define and manage the structure of
programs. No notation is provided for structural descriptions.

The functional languages DL [MacQueen86] and Peeble [Burstall84] address
structural issues by extending the type system of the language to include module
types. This provides a formal semantic framework for analysing the underlying
notions of program structuring mechanisms, but does not clearly separate them
from the programming.

Modular languages such as Ada [Ada83] and Modula2 [Wirth82]; distributed
languages such as Argus, Linda, NIL [Strom83] and SR; declarative languages
such as Prolog [Clocksin81], Scheme[Abelson85] and Miranda [Turner86]; object-

23

Chapter Two Distributed Programs

oriented languages such as C++ [Stroustrup86], Emerald [Black87], and Smalltalk
[Goldberg83] all fail to provide explicit and separate structural specifications for
programs.

The formalism in Durra also includes non-structuring specifications based on
path expressions and real-time logic for timing and ordering of message queues,
and behavioural specifications based on Larch [Guttag85]. Ideally the structuring
mechanism should be orthogonal to other kinds of specification, and capable of
independent consideration and development. The inclusion of such formalisms
leads to configuration languages that are harder to use well, harder to define

semantically and harder to implement. |

24.2. Conceptual Simplicity and Clarity

Hoare has written of programming languages [Hoare68] that: "The most valuable
feature of a programming language is that it provides the programmer with a
conceptual framework which enables him to think more clearly about his
problems and about effective methods for their solution; and it gives him a
notational technique which enables him to express his thoughts clearly". This
remark is equally true of structuring mechanisms and their realisation in
distributed programs. Structure specifications should be clear and readable, and
act as an aid to readers in understanding programs. Ideally they should be
sufficiently simple to write and manipulate so as to enable non-programmers to
construct their own programs in a do-it-yourself manner with little effort.

Conceptual simplicity is best achieved in systems that economise on concept(s)
and/or that have a sound underlying mathematical framework. A good example
which combined both of these principles is CCS.

Many systems fail to provide simple structuring mechanisms, for example
C/Mesa makes heavy use of defaults, and although these can greatly simplify
program structure, they can also obscure a great deal of the structure concerned.
C/Mesa also suffers from the multiplicity of ways of specifying the same
program structure.

24.3. Declarative Specification

The configuration language must be declarative, it should enable the
specification of a distributed program's structure without requiring information
on how the structure is to be realised. Declarative specifications are more concise
than non-declarative ones and more amenable to analysis, transformation,

24

Chapter Two Distributed Programs

augmentation, and manipulation. Most structuring mechanisms are declarative
for these reasons. The notions of execution state or control should not be
encompassed by the language. Different strategies should be applicable to
elaborating the structure, for example, lazy evaluation.

2.4.4. Executable Specification
The division of a distributed program into structural parts and programmed
parts should constitute a complete program that is capable of efficient execution
on existing distributed computers.

Non-executable structural specifications act as design specifications only, and
require an additional transformation before a complete program can be
constructed. Furthermore, this transformation needs to be carried out each time it
is desired to change the structure of a program. Having an executable
mechanism alleviates the need for further transformations and enables rapid
prototyping of distributed programs.

The languages Dicon, Durra, Lady, Muppet, Netsla and Rnet have been
implemented on distributed computer systems, while Garp, C/Mesa, and Stile
have been implemented on single processor systems. DTL has been implemented
using an abstract virtual machine interpreter, and subset of CCS called LL
[Thorelli85] has been used as an object module link-loading language.

24.5. Expressive Power

Program structuring mechanisms must be sufficiently rich to cope with the wide
diversity of distributed programs that arise in practice. The structuring
mechanism of configuration languages should aim for expressive power that
increases the applicability or flexibility of the approach.

Examples of useful program structures include: hierarchic structures, replicated
structures (arrays), parameterised structures, variant structures, recursive
structures (e.g trees), switching structures, and dynamic structures. Of these,
hierarchical structuring is the most essential, without it large programs cannot be
well-structured [Dijkstra71]. The absence of any of the other forms of structuring
will limit the applicability of the structuring mechanism.

Most existing configuration languages have hierarchical structuring but tend to
lack the remaining forms. Durra for example has hierarchical structuring and a
form of dynamic structuring, but lacks replicated and recursive structures. Rnet
only allows two levels of hierarchic structuring, while C/Mesa lacks hierarchic

25

Chapter Two Distributed Programs

structures altogether. The structuring mechanism of DTL provides replication
and recursion plus three composition operations, pipeline composition, disjoint
parallel composition, and cyclic composition which it is claimed are sufficient for
structuring any concurrent program. Since CCS is a mathematical theory, it
allows the full power of mathematics to be used if desired, e.g subscripting,
conditional expressions, operator definitions, recursion.

24.6. Modularity

Configuration languages must promote the proven notions of re-usability and
information hiding [Parnas72b]. This can be achieved by making program
structuring mechanisms modular and abstract. Modularity encourages top-down
design and testing of modular parts in isolation. With modularity, large
distributed programs can be specified and studied in increasing order of
complexity while reducing an explosion of details, leading to better
comprehensibility.

The program structuring mechanism should also support abstraction and ensure
that interactions take place through well-defined interfaces that lead to context-
independent (loosely coupled) modules. Interfaces should be minimal and define
only needed information and nothing more, further no information should be
provided about the underlying structure behind the interface [Parnas72a].

The absence of modularity and abstraction leads to large monolithic programs
that are hard to understand, hard to maintain, and non-reusable.

Most configuration languages provide a controlled interface to their structuring
mechanism thus supporting context independent modules.

24.7. Concurrency

The division of programs into a collection modules was an important step in
increasing programmer productivity, but the style of sequential processing
carried out by a such programs is clearly inadequate for the kinds of distributed
computer systems that are available today, that range from fine-grained dataflow
computers, to large-scale computing networks. Program structuring mechanisms
should therefore not limit the degree of concurrency which a distributed
program may require. Sequential programming solutions are often just special
cases of more general concurrent solutions, in which programs can be written
more €asily and be better understood as set of simple concurrently interacting
components instead of as one sequential component.

26

Chapter Two Distributed Programs

Systems which require sophisticated compilers and-or specialised hardware
suffer performance loss by not being able to easily extract or express the right
level of concurrency for efficient execution.

2.4.8. Scalability

Scalability is an important criteria for evaluating program structuring
mechanisms. Aesthetically, scalable mechanisms are more elegant and robust.
Practically, scalable mechanisms imply less work in the future adapting to new
technologies. Ideally structure specifications should not grow unmanageably
large and complex as structure size and complexity increases. Good expressive
capabilities are obviously needed, but also support for complexity management
techniques, such as divide-and-conqueor, and separation of logical concerns.
Techniques that are successful in dealing with small programs often break down
in the face of the complexity of large programs, so scalable solutions are
important.

24.9. Interaction Safety

The utility of a configuration language increases enormously if provision is made
in the structuring mechanism to prevent unintended and undesirable
interactions between the parts of a distributed program [Horning73]. Allowing
precise controls on the interactions can contribute significantly to reductions in
the complexity of distributed programs.

A popular technique is to provide type checking of the interfaces of program
parts when structuring programs. This is provided for example in HPC, C/Mesa,
Lady, Netsla, and Stile. Assertions and constraints also help ensure against
undesirable interactions. Rnet provides for consistency checks of timing
specifications although these are too primitive to be of practical use.

2.4.10. Adaptability

All programming systems support change by recompilation and re-execution.
Some distributed applications also require support for dynamically modifying
the structure of programs at run-time. The structuring mechanism must be
capable of supporting such modifications.

Both Netsla and Durra allow pre-planned changes to be specified within a
configuration specification activated by the satisfaction of an event. CCS does not
support change, although lazy elaboration of recursive agents can be used to

27

Chapter Two Distributed Programs

simulate a dynamic structures. HPC has an elaborate model for dynamically re-
structuring of programs, but this relies on special user-supplied processes to
control changes. In Garp components can replace themselves with a new set of
components when they terminate. Systems that allow program structures to be
manipulated as values in programs such as NIL possess dynamic re-
configuration ability, but fail in the requirement for separate structural
specifications, which should extend to structural modifications.

The ability to perform unplanned (or evolutionary) modifications to the structure
of a running program is also important [Kramer85, Kahn88]. Most programming
systems in existence lack such ability. '

24.11. Independence

The configuration language should be independent of particular programming
languages. This increases its generality and utility as language for building
distributed programs, and could allow programs to be composed of components
written in different programming languages.

Most structural approaches are unfortunately coupled to a particular
programming language, for example, DTL is coupled to a programming
language based on attributed translation grammars, Garp is coupled with LISP,
Lady is coupled with CSSA, RNet is coupled with Concurrent Euclid.

The structuring mechanism of Durra is programming language independent,
although message transformation functions need to explicitly included in the
structural specification. Dicon is notable for allowing program parts to be
implemented in C, Lisp or Prolog.

Distributed program structures should also be specified independently of the
actual architecture on which they will be run on. Mapping the parts of a
distributed program to computing resources should be deferred until program
execution is needed. Dicon and Rnet fail in this regard, as the mapping of
programs is made a function of their program structuring mechanism.

2.5. CRITICAL SUMMARIES OF OTHER SYSTEMS

251. CCS

CCS provides a formal framework and notation for reasoning about about
concurrent programs. CCS is declarative but fails to provide a separate
configuration language for structuring programs. Processes in CCS are called

28

Chapter Two Distributed Programs

agents. Three program structuring operators are provided for agents: a
composition operator for linking agents, a restriction operator for hiding agent
interfaces, and a relabelling operator for renaming agent interfaces. CCS
programs can be constructed hierarchically, modular interfaces are not provided.
Rather the language requires that agents hide interfaces by the extensive use of
the restriction operator. Since CCS is a mathematical theory, it also admits
mathematical devices such as universal quantifiers, subscripting, conditional
expressions, and operator definitions. It would be of interest to know of any
distributed implementations of CCS and of what features were dropped or
included in order to get a practical system. Although dynamically evolving
configurations can sometimes be described by recursive definitions, CCS fails to
adequately address the issue of dynamic structuring. The major contribution of
CCS is in fact, its rich underlying theory of concurrent systems.

2.5.2. Conic84

Conic84 provides a rudimentary configuration language for structuring
distributed process control applications running on bare targets. Three different
levels of structuring are provided: modules which declare a set of concurrent
tasks, stations which interconnect modules and can be distributed, and networks
which interconnect stations into a distributed program. Conic84 fails to support
arbitrary levels of hierarchical structuring. No support is provided for
parameterised, replicated, variant, switching, or recursive program structures.
Conic84 also fails to support more than one programming language. The major
contribution of Conic84 is its support for the online reconfiguration of program
structures.

2.5.3. Dicon

Dicon provides a configuration language for structuring distributed real-time
programs. At its lowest level are distributable granules, which can be written in
C, Lisp or Prolog. Granules can be interconnected to form subsystems, or
interconnected with subsystems to form a system. It is not clear whether
subsystems can nest. No support is provided for parameterised, replicated,
variant, switching, or recursive structures, or for modifying the structure of
running programs. The language is also complex since it allows non-structural
specifications such as resource requirements, real-time constraints, process
assignment constraints and process control statements to be included.

29

Chapter Two Distributed Programs

2.54. DPL-82

DPL-82 employs hierarchic program structuring based on dataflow graphs, but
fails to provide a separate configuration language. DPL-82 programs are
structured into nodes. Nodes are written in a mixture of Pascal and Lisp. Pascal
is used to write the computations performed by a node, while Lisp is used for
creating, connecting, activating and terminating nodes. Lisp is also used to send
results from one node to another. No support appears to be provided for variant,
switching or recursive structures, or for modifying the structure of running
programs. DPL-82 also lacks a distributed implementation.

2.5.5. DTL

DTL is a novel language for concurrent programming. It includes both structural
components called concurrent translations, and programming components called
sequential translations. Concurrent translations are used to specify networks of
sub-translations (either concurrent or sequential). Parameterisation, replication
and recursion plus three composition operators: pipeline, parallel, and cycle are
provided for expressing network descriptions. These it is claimed are sufficient
for structuring any concurrent program. DTL does not appear to support
switching structures or variant structures however. DTL also fails to support
unplanned modifications to the structure of running programs. The interface of a
sequential translation consists of a typed input stream and a typed output
stream. Sequential translations are written as a set of production rules over the
input and output streams of the translation. DTL has been implemented using an
abstract virtual machine interpreter but lacks a distributed implementation. The
choice of an abstract syntax-directed programming language also seems very
limiting.

2.5.6. Durra

Durra provides a configuration language for distributed real-time applications
such as robot control. Durra supports hierarchical structuring of interconnected
networks of processes called tasks. Parameterised, replicated, variant, switching,
and recursive program structures are not supported however. Durra
configurations can specify functional and timing specifications but Durra lacks
tools to check, analyze or enforce such specifications. These specifications also
increase the complexity of the language. Durra allows pre-planned changes to be
specified within a configuration specification activated by the satisfaction of

30

Chapter Two Distributed Programs

some event. Again these appear not to be implemented. Durra is claimed to be
programming language independent, although only C is supported. Durra
programs can run on heterogeneous machines, although message transformation
functions need to be explicitly supplied and configured between processes
running on heterogeneous machines. This implies prior knowledge of the
physical configuration on which programs will run and leads to machine-
dependent configuration specifications. |

2.5.7. Garp

Garp provides a formalism (part graphical) for writing concurrent programs with
reconfigurable structures. Garp employs graph grammar specifications for
describing the legal structures a system can evolve to. At the lowest level,
processes called agents can terminate themselves by performing a rewrite action,
that replaces the agent with a new structure described by a graph grammar
production. Existing links to and from the terminating agent are relinked to
agents in the replacement structure. The interface of the replaced agent must
therefore match the interface of the replacement structure. The top level of a
Garp program is normally a dummy agent that immediately terminates and
replaces itself by the actual structure of the program as specified by the top-level
graph grammar production. Garp only supports agents in Lisp and lacks a
distributed implementation. Garp also lacks modularity. It is not clear whether
Garp supports replicated, variant or switching structures. Garp is interesting for
its treatment of preplanned changes to its program structure, although pure
interconnection changes are very cumbersome and inefficient. They require a
new agent to unnecessarily replace the existing one, plus the coping of the state
variables from the old agent to the new via parameters. Unplanned
reconfigurations to the structure of a program are not handled in Garp.

258. HPC

HPC does not provide an explicit configuration language, but rather a model for
dynamically reconfiguring hierarchic process structures. HPC programs are
structured hierarchically into shells. Each shell can include one privileged
process called a controller that is responsible for all high-level operations on
components in the shell. Controllers configure components, perform interaction
checks, create sub-controllers, interact with parent controllers and child sub-
controllers, and ensure application consistency. Controllers must be written by
the programmer. If a shell does not include a controller, its components are

31

Chapter Two Distributed Programs

transparent to the parent shell and its controller. If a shell does include a
controller, the components of the shell are hidden from the parent shell.
Although the use of user-written controller processes to manage levels of the
hierarchy may lead to greater flexibility, it also increase the burden of
programming needed to build an application, as well as introduce further
sources of error.

2,59. Lady-

Lady is a configuration language for distributed operating systems. Three
different levels of structuring are provided: modules which declare a set of
processes and monitors, teams which interconnect modules, and systems which
interconnect teams into a distributed program. In addition to direct
interconnections, Lady also supports indirect interconnections via logical buses.
Lady fails to support arbitrary levels of hierarchical structuring or replicated,
variant, switching, and recursive program structures. The structure of running
programs can be manipulated but only from within the programming language.
Lady thus fails to preserve the separation of programming from configuration.
Unplanned reconfigurations to the structure of a program are not supported.

2.5.10. Muppet

Muppet provides a configuration language for parallel programming. Muppet
programs are structured hierarchically into process nets and specified
graphically. Replicated structures can be defined in predefined regular
topologies such as grids and trees. It is not clear whether programmers can
specify their own topologies, and if so whether this is done declaratively.
Muppet also allows weights to specified for processes and interconnections.
These are used as hints when mapping processes to processors. Muppet supports
two programming languages, Concurrent Modula2 and Occam. Occam program
running on transputers, must however, perform their own routing. No support is
proVided for modifying the structure of running programs.

2.5.11. Netsla

Netsla is configuration language for distributed programs. Netsla programs are
structured hierarchically into networks of processes. Parameterised, replicated,
variant, switching, and recursive program structures are not supported however.
Netsla is notable for handling dynamic modifications to the structure of a
program entirely at the configuration level. This is done by the inclusion of a

32

Chapter Two * Distributed Programs

complex sublanguage for reconfiguration based on event handling.
Reconfigurations taking place at different levels require serialisation however.
Netsla also fails to support unplanned modifications or more than one
programming language.

2.5.12. Rnet

Rnet provides a rudimentary configuration language for distributed real-time
programs. Two levels of structuring are provided: nodes which declare a set of
processes and networks which interconnect the processes in one node to the
processes in other nodes. Rnet fails to support arbitrary levels of hierarchical
structuring. No support is provided for parameterised, replicated, variant,
switching, or recursive program structures, or for modifying the structure of
running programs Rnet also fails to support more than one programming
language and lacks modularity.

2.5.13. Stile

Stile employs hierarchic program structuring based on dataflow graphs, but fails
to separate this from the programming. No support appears to be provided for
parameterised, replicated, variant, switching or recursive structures or for
modifying the structure of running programs. Stile also fails to support more
than one programming language, and lacks a distributed implementation.

2.6. CHAPTER SUMMARY

This chapter has argued for a structural approach to distributed programming,.
The approach abstracts out the structure of a program into a form that can be
used to design and construct the program as well as be used to reconfigure the
program. The separation of a distributed program into two different levels of
abstraction, one for program structure and one for program implementation
provides a conceptual framework in which distributed applications can be
clearly specified and easily developed.

The properties and requirements of a structuring mechanism to capture
structural specifications were identified and discussed. First and foremost that
the mechanism be conceptually simple, and include the minimal number of
concepts required to enable distributed programs to be clearly structured. The
mechanism must also be expressive enough to handle a wide variety of
distributed applications. The mechanism should also be capable of scaling up for
large applications. The mechanism should promote modularity while preserving

33

Chapter Two Distributed Programs

safety when structuring. The mechanism should be capable of efficient realisable.
In addition structural specifications should be declarative, and independent of
particular programming languages and architectures.

This chapter has also examined existing approaches to structuring and building
distributed programs, and shown how these approaches fail to fulfil the
requirements identified.

Chapter Three The Configuration Language

This chapter describes a fully realised configuration language for structuring
distributed programs. This language aims to meet the requirements for
structuring distributed programs identified in Chapter 2. The concepts and
mechanisms in the language are described and small examples of their use given.
Diagrams are used to show the structures and reinforce the descriptions. The
description of the language is followed by a summary of the language and on
how it successfully meets the requirements set out in Chapter 2. A definition of
the language is given in Appendix L

3.1. PROCESSES

Processes (tasks) are used in our configuration language as the smallest
components in structuring distributed programs. The choice of such autonomous
components is based on their suitability for distributed programming
[Kramer85]. Other kinds of component may be more appropriate in other
contexts. Parallelism within processes is left for programming language
compilers to identify and translate for given target machines.

Process components are defined in suitable process programming languages, but
minimally must make available to the configuration language a process name.
For example, the process specification:

Task Module P
Internals
End

defines a process! component with name P:

1 Historically the configuration language has always used the word task instead of process.

35

Chapter Three The Configuration Language

Fig 3.1 Process Definition

Component definitions act as templates or types, from which one or more
component instances can be created. The keyword module is used to emphasise
the modular nature of process definitions.

Given a set of named process definitions, P1, P2, and P3:

Task Module P1 Task Module P2 Task Module P3
Internals Internals Internals
End End End
P1 P2 P3

Fig 3.2 Multiple Process Definitions
we can declare a set of process instances X1, X2, X3, with the configuration
specification:

Use P1;P2; P3;
Create X1:P1; X2:P2; X3:P3;

X1:P1 xX2:P2 X3:P3

Fig 3.3 Instantiation of Processes

The identification of component definitions is termed context definition. Context
definition serves to make available to the configuration, a set of component
definitions, in this case, process definitions, which can used for declaring sub-
component instances within the configuration.

The declaration of component instances is termed component instantiation. The
ability to create more than one instance of a component is a highly desirable
requirement and so the component types used in our configuration languages
can all be multiply instanstiated, as in:

Use P1;
Create X1:P1; Y1:P1; Z1:P1;

36

Chapter Three The Configuration Language

X1:P1 Y1:P1 Z1:P1

Fig 3.4 Multiple Instantiation of a Process

Configuration specifications of this form are conceptually simple, clear, and
declarative. They do not however, explicitly expose the underlying interaction
structure of a distributed program. The need to show such structure in
configuration specifications is important as it allows processes to defined in a
configuration-independent way. Configuration-independent processes can be
written without knowing which processes they will interact with.

3.1.1. Direct Process Binding

The interaction structure of a distributed program can be specified by binding
processes together. However, approaches where the binding of processes is
embedded within the component programming language are less amenable to
reconfiguration. The alternative to direct process binding is indirect process
binding.

3.1.2. Indirect Process Binding

Two approaches to indirect process binding have been explored, the process
network approach and the global or shared memory approach. The first is the
natural analogue of actual computer networks, and is adopted in our
configuration language. The process network approach has also be modelled in
functional programs [Turner87] and concurrent logic programs [Shapiro84].

The shared memory approach as exemplified by the Linda system [Carriero89],
totally uncouples processes. The basis of Linda is a logically-shared associative
memory through which distributed processes communicate. Processes never
exchange information directly but rather write to, and read from a global
associative memory. Because of its conceptual simplicity and elegance, Linda is
an appealing approach, particularly for applications where the processes which
send data do not care which processes are to receive it or at what time. Ensuring
that unintended interactions do not occur, is left to the programmer.

The implementation of logically-shared associative memory, in a distributed
environment can be highly inefficient compared to the process network approach
where the communication structure of processes is known. Doubts also exist as to

37

Chapter Three The Configuration Language

whether global memory systems can be made to work efficiently and reliably for
distributed systems with large numbers of processors. Since Linda can easily be
simulated in the process network model by providing one or more processes to
act as the logically-shared memory, and binding all other processes to these
processes it appears that the network model is more general.

By making interaction structure and interaction safety a configuration concern,
and by making process binding indirect, leads to distributed programs as
reconfigurable networks of loosely-coupled, configuration-independent
processes.

3.2. BINDINGS
The interaction structure of distributed programs can be specified by
enumerating the possible process interactions. For example

Link X1 toX2;
X2 to X3;
X2 to X4;

X1 X2

xa/\m

Fig 3.5 Binding of Processes

This is a simple, yet powerful approach to structuring distributed programs.
Configuration specifications of this form do not however meet the requirement
for interaction safety. In order to restrict and prevent unintended interactions, the
declaration of the services provided by and/or required by individual
components must be made, and checks done to ensure that process requirements
and process provisions are bound safely. Having such precise controls
contributes to reductions in software errors.

3.3. PORTS

Ports are used to explicitly identify the interaction points of a component. Ports are
declared within component definitions, and implicitly instanstiated during
component instantiation. Component can have has many ports as required.

38

Chapter Three The Configuration Language

Given a process P1 with port Q1, and component P2 with port Q2:

Task Module P1 Task Module P2
Port Q1 Port Q2
End End
P1 P2

A fe

Fig 3.6 Process Ports

we can declare and bind instances X1 and X2 of these process definitions as
follows:

Use P1; P2;
Create X1:P1; X2:P2;
Link X1.Q1 to X2.Q2;

X1:P1 X2:P2

Q1 HQZ

Fig 3.7 Binding of Process Ports

In order to satisfy the interaction safety requirement, ports are further refined
into exitports, and entryports.

An exitport specifies a service required by a component, for example, the process
definition:

Task Module Pdef
Exitport sin : real Reply real
Exitport open : string Reply integer
End

Pdef

sin
open

Fig 3.8 Process Exitports

specifies a process Pdef with requirements for services sin and open. Services
model synchronous communication and are analogous to functions in procedural
languages. Currently services are declared with a single argument called the
request type, and a single result called the reply type.

port name : request type reply reply type
39

Chapter Three The Configuration Language

An entryport specifies a service provided by a component, for example, the
process definition:

Task Module Qdef
Entryport cos : real Reply real
Entryport sin : real Reply real
Entryport open : string Reply integer
Entryport close : integer Reply integer
End

Qdef.

sin
cos

open
close

Fig 3.9 Process Entryports
specifies a process Qdef that provides services sin, cos, open and close.

Safe interaction binding is handled by allowing binding of compatible ports only.
Ports are compatible only if one port is an exitport, the other an entryport, and
the corresponding request and reply types are identical. For example, in the
following

Use Pdef; Qdef;

Create P1: Pdef; P2: Pdef; Q: Qdef;
Link Pl.sin to Q.sin

Link Pl.open to Q.open

Link P2.sin to Q.cos

Link P2.open to Q.close

P1:Pdef

sin

open

Fig 3.10 Bindings of Process Exitports to Process Entryports

the only illegal binding is the last one, where the request types are not the same.
The binding of P2.sin to Q.cos is legal, since the safety rules have been met. The
safety rule does not require port names to be identical as in CCS, nor that
interaction safety is left to user-supplied processes to check as in HPC.

40

Chapter Three The Configuration Language

Ideally it would be desirable to attach the behaviour specification of services to
ports, and match on some form of behavioural equivalence. This has, however
been difficult to implement in practice, although systems such as Inscape
[Perry87] show promise.

The division of ports into exitports (requirements) and entryports (provisions)
[Tichy79, Wolf85] is crucial to ensure configuration-independent components. In
languages without this' division, the binding between modules is normally
determined by explicit imports made in the the specification parts of modules.
The binding forms an implicit dependency graph that constitutes the interaction
structure of the program. This form of binding is inadequate since the
relationships between modules are direct, e.g module A imports and calls service
R from module B where module B, is named explicitly within module A. That is,
the provider of a service R is named directly. Omitting the name of the provider
and stating only the name of the service in the requirer would lead to modules
that are loosely coupled, configuration independent and re-configurable.

In systems such as [Minsky83, Wolf85], modules can name not only the items to
export, but also which modules can import them. This gives the module
implementor greater control on the usage of modules but also leads to inflexible
tightly coupled modules, that are less re-usable.

A more deductive approach is taken in [Levy84] where the requirements of a
module are automatically determined by the programming language compiler in
terms of the functions called but not defined within the module. A unifying
algorithm is later invoked that attempts to find matching provisions for each
requirement, based on the name and parameters of functions. Although the
deduction of requirements and the use of unification for automatically
generating the interaction structure of a program may be convenient it leads to a
programming style, that fails to exploit the interaction structure of programs and
which relies on a global name space for functions. Problems can occur if there are
functions whose names and parameters clash.

3.3.1. Notify Ports

The configuration languages also supports the declaration of ports, called notify
ports for defining asynchronous interactions. Notify ports are declared without
reply parts, as in:

Task Module N
Exitport xp : integer
Entryport ep : real

41

Chapter Three The Configuration Language

Xp
ep

Fig 3.11 Process Notifyports

End

Notify exitports send out values only, while notify entryports receive values
only. We call the argument type of a notify port a notify type. The binding rule
for notify ports requires one port to be a notify exitport, the other to be a notify
entryport and the notify types to be the same.

3.3.2. Fan-In, Fan-Out

The binding rules of our language do not preclude the binding of entryports to
more than one exitport, or exitports to more than one entryport. Many-to-one
bindings of the form:

S
ep
C1 Q2 c3
xp xXp Xp

Fig3.12 Fan-In

are allowed, as are one-to-many bindings of the form:

M
xp
R1 R2 R3
ep ep ep

Fig3.13 Fan-Out

Fan-in is useful for specifying server-client interactions, while fan-out is useful
for multi-destination interactions. The number of entryports sent to, and the

42

Chapter Three The Configuration Language

number of results returned by ports that fan-in and fan-out is programming
language dependent.

3.3.3. Review

Given a structuring mechanism with processes, bindings and ports it is possible
to build distributed programs simply, clearly and safely, but the mechanism is
not scalable or modular. A mechanism for treating collections of processes as
components is needed.

34. GROUP MODULES

Group modules (groups) are the means to specifying large structures in a
modular way. Groups unify the concepts so far presented into a coherent and
flexible structuring mechanism.

3.4.1. Encapsulation

Groups firstly provide an encapsulation mechanism for program structures. The
following group definition encapsulates the three sub-components X1, X2 and
X3:

Group Module Alpha
Use P;
Create X1:P; X2:P; X3:P;
Link X1.xp to X2.ep
Link X2.xp to X3.ep
End

Alpha

P1.P P2:P P3:P
+e" ""H"*’ ""H e" ""+

Fig 3.14 Example of a Group Module

Group definitions can be substituted for process definitions, for example in
context definitions, and instantiation declarations. Like processes, groups can be
multiply-instantiated, as in the following

Use Alpha;
Create A : Alpha; B: Alpha;

Chapter Three The Configuration Language

A:Alpha ' B:Alpha

P1:P P2: P3:.P P1:P P2:P P3:P_

:P
o U S
b xp| EP *P] |ep xp ep xp| 1ep x| kp xp

Fig 3.15 Multiple Instantiation of a Group Module

The uniform treatment of groups and processes, leads to a black-box approach to
components in our language. It is not possible to distinguish between
components that are atomic (processes) and components that are compound
(groups). Processes can be replaced by groups and vice-versa.

Since groups can be instantiated in other groups, groups support hierarchic
program structuring better than modular programming languages which
disallow modules of modules or multiple instantiation of a single module.

34.2. Hierarchic Binding

Groups also support structural abstraction and modular decomposition. This is
achieved with the same mechanism used for processes, namely ports. Group
ports are declared in a similar way to process ports.

Group Module
Exitport.....
Entryport
<rest>

End

Only the name of the group, and the names of ports are visible outside the group
definition. The correspondence between group ports and instances declared
within the group is specified by hierarchic binding declarations of the form:
Inbound Hierarchic Binding:
Link groupEntryport to InstanceEntryport
Gdef

P:Pdef
ep Xp
$_+ €p x].& #

Fig 3.16 Inbound Hierarchic Binding

Outbound Hierarchic Binding:
4

Chapter Three The Configuration Language

Link InstanceExitport to GroupExitport
Gdef

P:Pdef
ep Xp

S TR

Fig 3.17 Outbound Hierarchic Binding

The first form exports out a group provision of a sub-instance, the second form
exports out a group requirement of a sub-instance. An additional binding rule is
also allowed:

Forwarded Binding:
Link groupEntryport to GroupExitport
Gdef
P:Pdef

e

Fig 3.18 Forwarded Hierarchic Binding

This defers the provision of a service by forwarding it back out of the group as a
requirement, ie. this states that the group cannot fulfil the service, but wishes to
export it out as a requirement. In fact forwarded binding is useful rule as it
allows the declaration group modules that act as switching structures, for example
the group:

45

Chapter Three The Configuration Language

Fig 3.19 Example of a Perfect Shuffle Switching Structure

is interconnected as a perfect shuffle [Stone71]. Another use for forwarded
binding is in the declaration local logical buses. These comprise a single group
module with a forwarded binding as in:

Fig 3.20 Example of a Logical Bus

Components binding to the logical bus do not have to specify and therefore
know the number or names of their bound counterparts. Forwarded binding also
displays the transitive property:

F1:Fdef F2:Fdef

bttt

Fig 3.21 Transitive Bindings

3.4.3. Inheritance (Incremental Structuring)

Inheritance allows new components to be constructed from old components, new
services to added or existing services to be changed. Inheritance-based languages
are thus suited to programming applications in an incremental fashion. The
grouping mechanism is sufficiently powerful to construct components by
defining the differences. The following examples illustrate this.

46

Chapter Three

The Configuration Language

A new component can be defined as an incremental additional to an existing one,

as in:

Trig

S:Sine

C:Cosine

sin

cos

sin

cos

Fig 3.22 Incremental Structuring of Components

New components can be constructed from several existing components also:

SuperTrig
| T:Trig A:Angle C:Coord
sin cos degree radian polar
sin | cos polar

Fig 3.23 Incremental Structuring from Several Components

Conflicts are handled by renaming, since name overloading is not supported.

It is important to note that the atomic components of groups are concurrently
active processes, whereas most inheritance languages support passive class
hierarchies. In our groups, component requirements can be inherited, whereas in
inherited languages only component provisions in the form of methods are

inherited.

A new component can be defined that overrides an existing component:

47

Chapter Three ‘ The Configuration Language

Trig
S:Sine SC:SinCos
sin sin cos
X
sin cos

Fig 3.24 Overriding Components

3.4.4. Coalescing. Multicasting and Loop Backs

Other forms of group binding are also supported in the language including
coalescing, multicasting, and loop backs.

Coalescing (Multiplexing)
Several sub-component requirements can be bound to one requirement:

Trig

T:Triangle C:Circle E:Eclipse

sin sin sin

sin

Fig 3.25 Hierarchic Coalescing

Multicasting
A single service provision can be bound to several sub-component provisions:
Trig
T:Triangle C:.Circle E:Eclipse
sin sin sin
sin

Fig 3.26 Hierarchic Multicasting

Multicasting could be treated as a form of overloading, with one or more of the

48

Chapter Three The Configuration Language

bound sub-components responding to the service with responses being based on
the contents of the message. This semantic would be better suited to
configuration languages with untyped or polymorphic port types.

Loop Backs

The rules for component binding allow group entryports to be bound to group
exitports. This rule allows for a component exitport can be bound back to a
entryport of the same component. This allows the configuration programmer to
either provide his own service, or use a service provided by the component (see
below), or ignore the requirement.

Trig
S:Sine User
sin func
sin func

Fig 3.27 Loop Back Binding
A possibility exists for establishing circular binding, such as:
Fdef

ep xp

Fig 3.28 Circular Binding

Circular bindings are currently considered as null bindings and silently ignored.
They should probably be made illegal.

34.5. Binding Rules |
The binding rules for the configuration language are presented below.
Geometrical representations are used to simplify the definitions.

A component (group or process) is represented by a quadrilateral:

49

Chapter Three The Configuration Language

Outside

Boundary
Inside

Fig 3.29 Geometric Representation of a Component

Components can nest. Boundaries cannot intersect. A port is represented by a

triangle Dcutting across a component boundary like u> (i.e. not bisecting an
angle). The side of the triangle with one angle is labelled '+'. The side of the

s
triangle with two angles is labelled '-', ie u>

An exitport is represented by a port with the '+' side of the port on the outside of
the component boundary:

NE T

Z

(A

Fig 3.30 Geometric Representation of an Exitport

An entryport is represented by a port with the '-' side of the port on the outside of
the component boundary:

A\ 4
+ = - + V+
4 b
/\+
JAY

Fig 3.31 Geometric Representation of an Entryport

Given the definitions above, a binding is represented by a line from the '+' side of
one port to the '-' side of another port. Bindings are not allowed to cross
component boundaries. Ports can be bound to several other ports. The first

50

Chapter Three The Configuration Language

configuration below is legal, the second is illegal.

P

Fig 3.32 Legal Bindings

7
+ -

+ W

JAY WV

Fig 3.33 Illegal Bindings

Interaction safety is ensured by labelling ports with a tuple representing their
port types, either (requestType, replyType) or (notifyType). Bindings are type-
safe if the tuples of the ports at each end of a binding line are 'compatible’.
Currently compatibility is defined if tuples have the same cardinality, and pair-
wise elements of the tuple are type equivalent.

3.4.6. Final Comment

Groups are a powerful mechanism for structuring large distributed programs in
a modular way. In order to increase the expressiveness of our language we need
to add mechanisms for parameterisation, replication, variation and recursion.

51

Chapter Three The Configuration Language

3.5. PARAMETERISATION

Parameters are used to control the size and topology of configuration structures

and also to supply initial values to atomic components. Group parameter

declarations are written in the style of Pascal value parameter declarations?, for

example: '
Group Module A (a:integer; ch:char)

Given a parameterised component definition, actual parameters can be supplied

during component instantiation, for example

Use thermometer;
Create celsius : thermometer (45,'C")
Create fahrenheit : thermometer (93,'F)

Default parameterisation simplifies component instantiation further and is also
supported, for example:

Group Module thermometer (initial:integer=98; unit:char='F)

3.6. REPLICATION
Replicated or array structures occur so frequently in practice that their inclusion
in the configuration language is almost obligatory. '

Replication occurs in three places in the configuration language, replicated
component instances, replicated ports, and replicated binding. The mechanism
used to define replicated structures is universal quantification. Each replicated
declaration is prefixed by one or more quantifiers of the form:

ForAll BoundlIdentifier : [LowValue .. HighValue]

where Boundldentifier takes on successive values starting from LowValue and
ending with HighValue. LowValue and HighValues are expressions3 of integer,
char, or boolean type. LowValue and HighValue must be of the same type.
Group parameters can be used in bound expressions to control the size and
topology of replicated structures. For historical reasons the keyword Family can
be used in place of the keyword ForAll.

Replicated component instances are declared by suffixing the instance name with
the bound identifier(s) specified in square brackets, for example:

Create ForAll I : [1..10]
All]: At (D

2 Only value parameters of the simple types integer, char, boolean, real and string are currently allowed.
3 Expressions are the simple expressions of Pascal, except that it is possible to call imported functions,
provided they do not reference non-local data.

52

Chapter Three The Configuration Language

Al1}:At Al2]:At A[10]:At

cm - - -ea- -

Fig 3.34 Replicated Instantiation

Note the passing of the bound identifier I as a parameter to individual replicated
instances. Multi-dimensional component instances* can be declared by supplying
more quantifiers , for example:

Create ForAllI:[1..10], K: [1..8]
A[LK] : At (IK)

A[1,1]:At A[1,2]:At Al18]:At

«c e ®mmeaw-:

' . \
' N '
' \ \
. \

A[10,1]):At A[10,2]):At A[10,8]:At

Fig 3.35 Two-dimensional Replicated Instantiation

Replicated ports can be declared analogously to replicated component instances,
for example:

Entryport ForAll1:[10..15]

func [I] : integer Reply char
Exitport ForAll1:[10..15]

files [I] : string Reply integer

If the bound identifier(s) are not actually used in the declaration then short forms
of the replicated component instantiation, replicated port declarations can also be
used. These replace the bound identifier in the declaration by the desired lower
and upper bounds, for example:

Create A[1..10] : At
Entryport func [10..15] : int Reply char
Exitport files [10..15] : string Reply int

Quantifiers are also needed for the binding declaration, to allow replicated
component instances and replicated ports to be bound:

Link ForAl K:[0.N]
A[K].xp to filesXp [N-K]

4 Multi-dimensional replicated structures are not currently implemented.

53

Chapter Three : The Configuration Language

Replicated ports and replicated component instances are selected by supplying
an indexing expression in square brackets after the replicated port/instance
name. This expression can include group parameters as well as bound identifiers.
Quantified binding declarations often take more than one quantifier, for
example,

Link ForAllT:[1..10],K:[1..20]
A[ll.xp[K] to P.ep[K];

Distributed programs with quite complex interaction topologies can be expressed
using such quantifiers, e.g. pipes, rings, grids, hypercubes, butterflies, switching
networks and tree topologies.

3.7. VARIATION

It is often convenient to allow a group to have the potential to define more than
configuration structure, and to be able to defer the choice until the group is
instantiated. This can be achieved by allowing component instantiation and
component binding declarations to be prefixed by a boolean guard.

When Guard Create......
When Guard Link ...

Typically the guard includes one or more group parameters which control the
form of variant structure produced.

Guards are disallowed for port declarations. This is to ensure that groups have
fixed interfaces. A more fluid configuration language could include this as a
possible extension.

3.8. RECURSION

A structure is said to be recursive if it is defined in terms of itself. Recursion is a
powerful program structuring mechanism for distributed programs. The
characteristic feature of recursive structures is their ability to vary in size.

In the configuration language group names can be used within their own
definition, for example:

Group Module a
Createaa:a;
Create b;
End

54

Chapter Three The Configuration Language

aa:a

aa:a

aa:.a

Fig 3.36 Recursive Structuring

This particular example defines an infinite distributed program configuration,
and is not useful in practice, unless a lazy evaluation scheme is used for
elaborating configuration specifications. In order to limit recursion, guards and
parameterisation can be used, for example:

Group Module a (k:integer)
When k>0 Create aa : a (k-1);
When k>0 Create b;

End

In this example it is worth noting the existence of an empty group instance in the
limiting case.

39. DYNAMIC MODIFICATION
In order to perform dynamic modifications to the structure of a running
program, declarations are also needed to remove instances and bindings. The
form of these declarations’ is simply:

Remove Instance

Unlink port from port

3.10. INTERACTION SAFETY

The request, reply and notify types that can be specified for a port are not
restricted to simple types such as integer, real, and character. The configuration
language supports a much richer collection of types. The typing language used to
describe port types is the type definition sublanguage of Pascal, enhanced with
the type extension mechanism of Oberon [Wirth88a, Wirth88b]

5 Currently these declarations only be applied dynamicaily to the top-level structure of a distributed
program,

55

Chapter Three The Configuration Language

Many distributed programming systems are typeless, or provide a poor selection
of types. Pascal was chosen because it has a rich set of types, and a type checking
philosophy that values secure programming. Typeless programs are often harder
to debug, while type-poor programs often require greater effort by the
programmer.

In addition to using Pascal types for port types, the configuration language has
also adopted the strong typing rules of Pascal for parameter conformance and
binding compatibility.

In fact port definition can be considered an issue orthogonal to the configuration
languages, other typing systems or interface definition languages [Hayes87]
could be employed without adversely affecting the configuration language.

3.10.1. Port Types

The port types supported by the configuration language are the standard types
integer, real, char, and boolean, plus the types byte (a subrange of 0 to 255),
natural (an unsigned integer), longint, and signaltype (for void values).
Enumerated, subrange, array, record, and set types are also supported, as are
packed types. The remaining types, pointer types, variant record types, and file
types are either disallowed or supported to a lesser degree.

Pointer types and types with embedded pointer types need to be disallowed, as
they imply the possibility of non-exclusive access to data values by concurrent
processes. Pointer passing between distributed or heterogeneous address spaces
is also problematic. A pointer passing semantic that requires complete copying of
the entire pointed at heap or a semantic that requires backward communication
to the originating processor to dereference pointers are possible remedies,
although ones with a high implementation overhead.

For efficiency reasons, pointer types are currently allowed as message types for
bound processes which reside within a shared address space. This concession
allows two or more processes to reference a common (and usually large) data
structure. Mutual exclusion is left to the programmer to ensure.

Untagged variant records are disallowed as port types since it not possible to
know which variants in a value are current.

File types and types with embedded file types are prohibited since Pascal defines
no semantic for file assignment.

56

Chapter Three The Configuration Language

3.10.2. Port type compatibility

The compatibility rule used is Pascal type equivalence, not Pascal assignment
compatibility. Assignment compatibility complicates the semantics by requiring
coercion considerations to be addressed, particularly in hierarchical bound ports
that are multi-cast or coalesced. For example, if a group exitport of type real, is
bound hierarchically to local a exitport of type integer, and also to a local exitport
of type real, is the binding allowed? Similar considerations apply for subrange

types.

The use of a type equivalence rule for component binding greatly simplifies the
understandability of the configuration language without unduly affecting
expressibility.

3.10.3. Extended Message Types

The type language also includes the type extension mechanism of Oberon
[Wirth88a, Wirth88b]. This allows record types to be defined incrementally, and
the strict type equivalence rule to be relaxed to a subtype equivalent rule.
Extended types are similar to the class concept found in object-oriented
. languages, although in the framework of Pascal, procedures and functions are
not types, and so cannot be fields of records. The following example illustrates
their declaration:

type A= record
al: integer;

end;
B= record (A)
bl : real;
end;

C= record (B)
cl: packed array [1..10] of char;
end;
D= record (A)
di, d2: char;
end;

The type hierarchy can be drawn as follows:

57

Chapter Three The Configuration Language

Fig 3.37 Example of a Type Hierarchy

Types B and D are extensions (or subtypes) of type A. Type C is an extension (or
subtype) of type B and also of A. A is a supertype of types B,C,and D. Bis a
supertype of C. Thus type B has fields al and b1, type C has fields al, bl and cl1.
Type D has fields al, d1, and d2.

A record type may have many subtypes but only one supertype. Extension of
variant records is not allowed. Extending a non-variant record to have variants is
allowed, but makes the extended record non-extendable.

3.10.4. Extended type compatibility

The type equivalence binding rule for ports of extended types can be relaxed to
subtype compatibility in the following way: allow an outgoing port to be bound
to incoming port if the outgoing port's request type is equivalent to, or an
extension of the incoming port's request type, and if the incoming port's reply
type is equivalent to, or an extension of the outgoing port's reply type. More
concisely, if given a binding

Outgoing Port Incoming Port
RequestA Reply ReplyA B»—————» RequestB Reply ReplyB
then the binding is subtype compatible if
(RequestA >= RequestB) and (ReplyB >= ReplyA)
where >=is the type relation "is-equivalent-to-or-an-extension-of"

As in Oberon, the type extension mechanism is applicable to types that are
pointers to extended records.

3.10.5. Definition Modules
In order to modularise and make orthogonal the declaration and use of port

58

Chapter Three The Configuration Language

types a special component called a definition module is provided. Definition
modules serve to define the port types of a distributed program in a
configuration language and programming language independent manner. The
following example illustrates their syntax and use.

define M:a,b, ¢, z; {definition M exports a,b,cand z}
use A xy; {import x and y from definition module A}
B: z<y>; {import y from definition B, but rename to z)

type a=array [1..10] of x;
w=array [y] of real; {w is not exported}
b=record ch:char; pin:w end;
c=set of char;

end.

Types to be exported "outside" the definition module are listed after the
definition module name. Components may use the type definitions exported
from a definition module by a context definition, which serves to make the types
listed after the definition module name, known within the scope of the using
component. Renaming can be used to distinguish two imported types with the
same name.

Definition modules allow the message types for a distributed program to be
consistently used by several components without resorting to re-definition in
each component. In comparison, include files suffer from the lack of visibility
controls on types, and lead to unnecessary processing of redundant types.

3.11. CHAPTER SUMMARY

This chapter has presented a declarative configuration language that fulfils the
requirements for structuring distributed programs identified in Chapter 2. A
single powerful structuring mechanism called a group module forms the basis of
the language.

Group modules are based on a minimal number of concepts, atomic processes,
ports, instances and bindings. Processes are the unit of concurrency and
programming in our model. Processes can be programmed in any suitable
programming language. Groups are the unit of configuration and can
encapsulate both processes and subgroups

A uniform approach is taken in the treatment of groups and processes. Both
define a component type that can be used to instantiate components at higher
levels of configuration. This enables the specification of arbitrarily large program
hierarchies.

59

Chapter Three The Configuration Language

Component types are defined solely in terms of a port interface that abstracts and
hides the internal details of the component, thus promoting modularity. Ports are
declared within a component definition and define the interaction points of the
component. Ports are thus the only 'gateways' into and out of a component. Ports
are directed and define either a service requirement (entryports) or a service
provision (exitports). The inclusion of the service requirements of a component
in the interface of components leads to loosely coupled components and
components that can be reconfigured. Bindings establish the interaction topology
of a distributed program. Binding declarations require two ports, one providing
a service and other requiring the service. Bindings can be one-to-one, one-to-
many, and many-to-one.

Interaction safety is ensured by typing ports and requiring bound ports to be
type compatible. A rich selection of types is also supported.

The provision of quantifiers, guards and parameters enable replicated, variant,
and recursive structures to be expressed simply and clearly. This yields a very
powerful configuration language.

The next chapter demonstrates the power and applicability of the language with
a concrete set of examples. Chapter 5, 6 and 7 show how configuration
specifications can be compiled and efficiently executed in a distributed
environment.

60

Chapter Four Examples

This chapter demonstrates the power and applicability of the configuration
language with a series of graduated examples. The first example presents the
structure of a simple flow communication subsystem and is used to introduce the
definition, instantiation and interconnection of components. The second example
presents the structure of a distributed solution to the dining philosophers
problem and demonstrates the application of replicated component instances.
The third example presents the structure of a distributed run-time executive and
demonstrates the use hierarchic structuring. The final example presents the
structure of parallel solution to Batcher's bitonic sorting algorithm and
demonstrates the application of recursive configuration structures.

41. SIMPLE FLOW CONTROL PROTOCOL

This first example illustrates simple configuration instantiation and
interconnection of a small program. The program simulates a flow control
communication subsystem between a producer process and consumer process.
The structure of the simulation pipeline is shown below:

61

Chapter Four Examples
producer consumer
out | in
‘ £\

tx net rx

fuser commsout g Sy din dout B DS commsin »
; ; user g
ticks control <€ 9 cout cin ¢ & control

ticks timer

Fig 4.1 Flow Control Protocol Example

The simulation is implemented by the tx, timer and rx modules which provide
the implementations for error and flow control, and the net module which
simulates a physical network that may lose, corrupt or duplicate messages. The
structure shown can be described with the configuration description:

group module flowcontrol (messages:integer; bias:integer=>5);

use consumer; producer; sender; receiver;
net; timer;
create consumer; producer (messages); tx:sender; rx:receiver;

net (bias); timer;

link producer.out to tx.user;
timer.ticks to tx.ticks;
net.cout to tx.control;
tx.commsout to net.din;
net.dout to rx.commsin;
rx.control to net.cin;
rx.user to consumer.in;

end.

Apart from some parameterisation the description is a straightforward encoding
of the graphical form. The use clause selects the component types required, the
create clause instantiates a single instance of each, and the link clause
interconnects the instances in the required topology. The example illustrates a
flat program structure, equivalent in power to a programming language with a
import-export modular structure, such as Modula2, although in our language the
bindings are separated from the module, and parameterisation of modules is
allowed.

Note that the configuration description does not indicate whether a module is a
primitive process module or a configuration module, nor does it indicate the

62

Chapter Four ' Examples

types or directionality of bound ports. This is also reflected in the graphical
description which for space restrictions also omits module type names and
parameter information of components.

The configuration header for flowcontrol illustrates the definition of both a
mandatory parameter (messages) and optional parameters (bias). The first is
passed down to the producer module, the second to the net module. Apart from
the configuration header, other configuration declarations can be specified in any
order.

It is worth noting that this example is a little artificial since for 'real' systems the
communication structure would probably be abstracted into a separate group
module as in:

commsin out [~

Fig 4.2 Flow Control Protocol Group Module
The use of hierarchic structuring is considered further in the third example.

4.2. DINING PHILOSOPHERS

The second example introduces replicated component instantiation and binding.
- The program provides a solution to the classic dining philosophers problem
[Dijkstra68] devised for assessing the capabilities® of synchronization primitives.

The problem involves five philosophers seated around a table. In the middle of
the table is a bowl with an infinite supply of spaghetti. Half way between each
philosopher is a single fork. Philosophers spend their time moving from a
thinking to hungry to eating and back to thinking state. A philosopher must hold
both adjacent forks in order to eat spaghetti from the bowl. The circular structure
implied by the problem of philosophers and forks around a table can be used to
obtain a simple solution to this problem. For 4 philosophers we would require

6 Prohibit starvation, free from deadlock and maximise parallelism.

63

Chapter Four Examples

the following configuration structure:

fork[2] phil(2] fork[1]
rplp rf 1f rp |
leave _sit
table
B £+
TE’: = sit leave 8 =
= & - =
» 5 :<; B -E-;
sit leave
Ip 1f rf Ip
fork(3] phil[0] fork[0]

Fig 4.3 Dining Philosophers Example

A configuration description for this structure is given below where Ip=leftphil,
rp=rightphil, If=leftfork, rf=rightfork:

group module diners (n:integer=4);

—assert n >=2
- dining philosopher modules
use table; phil; fork;

create table(n);

create forall k:[0..n-1]
phil(k] : phil(thinktime=2000,eattime=2000);
forklk] : fork;

link forall k:[0..n-1]
phil(k].sittable to table.sit;
phil(k].leavetable to table.leave;

phil(k].rightfork to fork[k].leftphil;
phil{(k+1) mod n].leftfork
to fork[K].rightphil;

- create and bind display windows for program
use windman;

create forall k:[0..n-1]
pwin[k] : windman (0,(k+1)*14-13,(k+1)*14-5,8,17);
fwin(k] : windman (0,(k+1)*14-5,(k+1)*14+1,8,17);

link forall k:[0..n-1]

Chapter Four Examples

phil[k].std_write to pwin[k].window;
fork[k].std_write to fwin[k].window;
end.
In the description parameterisation is used to dimension the number of
philosophers and forks, and to pass to the philosopher processes the length of the
periods for thinking and eating. The forall clauses act as universal quantifiers
over the create and link declarations and range from 0 to the number of
philosophers minus 1. The bound identifier k is used in expressions to link the
philosophers and forks in a ring, as well as in expressions for calculating the
display coordinates for a set of window modules. The window modules are
declared for each philosopher and fork and are used to animate the output of the
program. For 4 philosophers the configuration structure with the window
modules is:

fwin(1]

fork[1]

table

[€lumd
[€lryd

sit leave

sit leave

pwin(1]

fork(3]]

fwin[3] pwin(0] fwin[0]

Fig 4.4 Dining Philosophers Example with Window Components

where lp=leftphil, rp=rightphil, lf=leftfork, rf=rightfork, w=window, and
sw=stdwrite.

The configuration also makes use of bindings that fan-in into the table

65

Chapter Four Examples

entryports. A more modular solution to this problem would group together a
philosopher, a fork and two windows into a single group module, and perform
circular binding of an array of such groups.

4.3. RUN-TIME EXECUTIVE

The third example demonstrates the use of group modules for hierarchically
structuring programs. The example presents the overall structure of a Conic run-
time executive and is described more fully in [Magee86]. In Conic each
distributable part of a program requires an instance of such an executive in order
to enable that part for execution. The executive described enables execution
under Unix® . The structure of the executive is shown below

executive

kernel

&3 stderror

read write i
internode go)

console timeman comms

Fig 4.5 Executive Group Module

These modules provide various services for distributable program parts
including: local process creation, scheduling, and interaction (kernel), reporting
process crashes (dumpman), file I/O (fileman), terminal I/O (console), remote
process interaction (comms), dynamic reconfiguration (linkman and modman),
configuration structure inspection (structman), and a clock timer (timeman),

In Conic, every process component is supplied with a set of standard ports: a
stderror for reporting errors in the process, ports stdfile, stdread, stdwrite for

® Unix is a registered trademark of AT&T.

66

Chapter Four Examples

performing I/O and a stdconfig port for requesting dynamic configuration events.
In order to reduce the profusion of linking that would be required to link these
ports for each process, the Conic kernel implements a default linking rule for
these ports. Each standard port that is not explicitly linked is automatically
linked to whichever ports the corresponding kernel standard port is linked to e.g.
for the kernel above every unlinked stdread port would be linked to
fileman.read. Again for simplicity the standard ports of processes have been
omitted from diagrams.

The interface to the executive consists of a port for forwarding error output
(error), a port for directly writing to the console (Cwrite), a port for access the
structural topology of a distributable part (structreq), and a set of ports for
performing dynamic reconfiguration operations (connect, status, portname,
Sstatus and control)

The configuration description for this executive is given below:

group module executive (ticktime:natural=1000);

-- basic system modules
use kernel; timeman; dumpman; fileman;
create kernel; timeman(ticktime); dumpman; fileman;

- configuration management modules

use manage: connectT,linkstatusT,controlT sifrecT;
serverdefs:status_rec;

use linkman; modman;
create linkman; modman;

exitport Sstatus : status_rec;

entryport connect : connectT reply signaltype;
status : signaltype reply linkstatusT;
portname : integer reply sifrecT;
control : controlT reply status_rec;

link connect to linkman.connect;
status to linkman.status;
portname to linkman.portname;
control to modman.control;

modman.Sstatus to Sstatus;

— Internode Communication subsystem

use comms;

create comms;

link kernel.internode to comms.internode;
comms.go to modman.start;

67

Chapter Four Examples

-- Console subsystem

use console;
create console;
use types: rw_req;

exitport error :rw_req reply integer;
entryport Cwrite : rw_req reply integer;

link fileman.chan(0] to console.read;
fileman.chan[1] to console.write;
fileman.chan{2] to error;
Cwrite to console.write;
- Structure Query Handling
use structure:structureB;
structman;

create structman;

use structure:structureB;
entryport structreq: integer reply structureB;
link structreq to structman.structreq;

-- Define default links for tasks —

link kernel.std_config ~ to modman.ctl;
kernel.std_file to fileman.open;
kernel.std_write to fileman.write;
kernel.std_read to fileman.read;
kernel.std_error to dumpman.report;
end.

The configuration illustrates the form of declaration of interfaces, in particular
the requirement to use context definitions to import port types. Two of the
instances declared within this executive, console and comms, are in fact group
modules with an internal substructure.

The console consists of a terminal driver that performs asynchronous read and
write services for processes. The terminal driver also handles various Unix
signals [Leffler89], such as input available (SIGIO), stop output (SIGTSTP),
continue output (SIGCONT). These signals are caught by separate signal handler
processes and passed to the terminal driver. The structure of the console is:

68

Chapter Four

Examples

console
read write
terminal
read write
si giO mpx

out out

io int quit hup tstp cont

Fig 4.6 Console Group Module

The configuration description being:

group module console (ttymode:integer=0);

use

types: rw_req;

entryport read, write : rw_req reply integer;

use terminal;
create terminal (ttymode);
link read to terminal.read;
write to terminal.write;
-~ Unix Signal handlers
use signals:SIGIO SIGINT,SIGQUIT,SIGHUP, SIGTSTP,SIGCONT;
handler;
create io:handler (SIGIO);
int:handler (SIGINT);
quit:handler (SIGQUIT);)
hup:handler (SIGHUP);
tstp:handler (SIGTSTP);
cont:handler (SIGCONT);
link io.out to terminal.sigio;
int.out, quit.out, hup.out, tstp.out, cont.out to terminal.mpx
end.

The comms group consists of a socket driver that utilises the socket facilities of
BSD Unix [Leffler89] to perform non-local interactions. Messages destined for
remote port are directed from the kernel to the internode port and onto the
ipcout process which prefixes additional control information to the message
before passing it on to the socket driver for transmission. Incoming messages are
passed by the socket driver to special buffer processes that strip the control prefix
information from the message and pass the message directly to the recipient

69

Chapter Four | Examples

process. If the incoming message requires a reply the buffer process blocks
awaiting the rely from the recipient message. Once received this is passed to the
socket driver for transmission back to the sender. The structure of the comms
system is:

comms(maxbuff)
A—

internode

driver

remote

ipcout start<

buf [1] buf [2] buf [maxbuf]

Fig 4.7 Comms Group Module

The go port is used to inform processes that the socket driver is ready to transmit
data. The configuration description for the socket driver is shown below where
buf=buffer, gf=getframe, tr=transmit

group module comms (maxbuf:integer=8);
use ipcin; ipcout; socdriver;

create ipcout;
driver:socdriver;

create forall k:[1..maxbuf]
buffer{k]:ipcin;

link forall k:[1..maxbuf]
buffer{k].getframe to driver.rxpacket;
buffer{k].transmit to driver.txpacket;

link ipcout.transmit to driver.txpacket;
— external interface
use ipc: bufferT;

entryport internode:bufferT reply signaltype;
exitport go:signaltype;
link internode to ipcout.remote;

driver.go to ipcout.start,go;
end.

70

Chapter Four Examples

The number of buffer processes is dimensioned according to the parameter
passed. If no parameter is passed, 8 buffer processes are created.

44. BATCHER'S BITONIC SORTER
The final example is an implementation of Batcher's bitonic sorting algorithm
[Batcher68] and illustrates the use of recursive configurations. The algorithm is

specifically designed for parallel execution, when it can sort N elements in time
O(logaN)2.

The algorithm uses a sophisticated network of primitive comparator elements
that take 2 numbers as input and output the minimum and the maximum of the
two numbers as outputs. In Conic this can be represented by a task:

comparator

Fig 4.8 Comparator Process

Batcher's sorting network takes an unsorted sequence of numbers, transforms
this into a bitonic sequence, and then transforms the bitonic sequence into a
sorted sequence. '

UNSORTED () -> BITONIC (S) -> SORTED (S)
A sequence is bitonic if it consists of two subsequences, one ascending and the
other descending, or the sequence can be cyclically shifted into two such
subsequences. The ascending and the descending sequences can be generated
from the original sequence by subdividing it into two, sorting each subsequence
separately, and reversing the elements in the second sorted subsequence, ie:

/ SUBSEQ-1 —# SORT

N

SEQ BITONICSEQ

SUBSEQ-2 —» SORT REVERSE/

Fig 4.9 Bitonic Sorting Algorithm

Thus for sorting 8 elements we would have the following sorting network:

71

Chapter Four Examples

inp[0] inp(1] inp[2] inp[3] mp[4] inp[5] inpl6] inp(7]

i I descend »

inp[0] inpl1] inp{2] inp[3 mp[O] inp[1] in[2] ir\p3
out[0] out[1] out[2] out[3 ut[O] out[1] out[2] out[3
\"f & k2 A R 3

ascend

bitonic

nP[O] iP[l] inp(2] inp[3] i[4] in[5] inp 6l inp[]
out[O] out[1] out{2] out(3] out[4] out(5] out[6] out[7]

[111

0ut[0] out{1] out[2] out[3] out(4] out[5] out(6] out[7l

Fig 4.10 Sort Group Module for N=8

Each subsequence (ascend and descend) is sorted with its own recursive sort sub-
configuration. The configuration language description for sort is:

group module sort(n:integer);

entryport input[0..n-1]:integer;
exitport output[0..n-1]:integer;

use bitonic;
create bitonic(n);

when n>2 create
ascend:sort (n=n div 2);
descend:sort (n=n div 2);

when n>2 link forall k:[0..(n div 2) -1]

input(k] to ascend.input{k]; -- subsequence 1
input{(n div2) +k] todescend.input(k]; - subsequence 2
ascend.outputk] to bitonic.input{kl; - sorted subsequence 1
descend.output[(n div 2)-1-k] — reverse of sorted subseq 2
to bitonic.input{(n div 2)+k];

- base case

when n=2 link forall k:(0..1]
input[k] to bitonic.input(k];

- always

link forall k:[0..n-1]
bitonic.output(k] to output(k];
end.

Chapter Four Examples

This configuration illustrates (i) the declaration and use of arrays of groups ports,
(ii) the use of multiple recursive instantiation, (iii) the use of guarded
declarations to stop infinite recursion. For the base case, n=2 we would have the
following configuration structure for sort:

inp[0] inpl(1]

~ [Ninplor inpi1) |
bitonic| oyt[0] out(1]

ot[O] out(1]
Fig 4.11 Sort Group Module for Base Case

The bitonic part of the network structure relies on the following recursive rule
due to Batcher:

A network for sorting a bitonic sequence of 2n numbers aj to azn, can be
constructed from n comparison elements and two bitonic sorters for n numbers.
The comparison elements must form the two sequences (1) min (aj,an+1),
min(az,an+2) ... min(ap,a2n) and (2) max (a1,an+1), max(@z,an+2) ... max(anp,azp).
Batcher shows that each of these two sequences is also bitonic, therefore they can
each be recursively sorted by a bitonic n sorters. Finally since no number of (1) is
greater than any number of (2) the output of one bitonic sorter is the lower half of
the sort, and the output from the other is the upper haif.

The network for an 8 element bitonic sequence is:

73

Chapter Four Examples

inp[0} inl] inp] inp[3] inpl4] inp[5] inpl6é] inp[7]

cef

o p[O] in[ll inp(2] inp3] hig mp[O] mp[l] mp[2] mp[3]
t[0] out[1] out[2] out] 0ut[0] out(1] of] out[3]
out[0] out[1] out[2] ot[3] Out[4] out[5] out6] out[7]

Fig 4.12 Bitonic Group Module for N=8

The configuration language description for bitonic networks is:

group module bitonic(n:integer);

entryport input(0..n-1]:integer;
exitport output{0..n-1]:integer;

use comparator;

create forall k:[0..(n div 2)-1]
cefk]:comparator;

link forall k:(0..(n div 2)-1]
input(k] to celk].a;
input{(n div 2)+k] to ce[kl.b;

when n>2 create
low:bitonic(n=n div 2);
high:bitonic(n= n div 2);

when n>2 link forall k:[0..(n div 2)-1]

cefk].low to low.input(k];
ce[kl.high to high.input[k];
low.output{k] to output(k];
high.output(k] to outputl(n div 2)+k];
when n=2 link
ce[0).low to output([0];
ce[0].high to output{1];
end.

For the base case, n=2 we would have a configuration consisting of a single

. 74

Chapter Four Examples

comparator:

s

x(.;.-
a b
low high
ik

out[0] out[1]

inp(0] inp(1]

cel0}]

Fig 4.13 Bitonic Group Module for Base Case

In order to complete the sorted, we need an interface module that reads in n=2P
numbers passes them to the sorting network, and outputs the result.
group module batcher (n:integer=8);

use executive; sort; interface;

create executive;
sort(n);
interface (n);

link forall k:[0..n-1]
interface.out[k]} to sort.input(k];
sort.output(k] to interface.inp(k];
end.

Although this example illustrates the expressive power of the configuration
language, the algorithm itself is quite unsuited to todays technology. For
example a bitonic sorter for 2P numbers would require (p2+p)2P-2 comparators. A
sequence of length 256 would require 4608 comparators, while a sequence of
length 1024 would require 28,160 comparators. Nevertheless, this and similar
algorithms can be readily expressed within our language. This example is also
interesting in that the structure of the program is of far more interest and
complexity than the algorithmic parts.

4.5. CHAPTER SUMMARY

This chapter has demonstrated the power and applicability of the configuration
language described in Chapter three with a series of graduated examples that
illustrated many features of the language.

The first example, a simple flow control pipeline, introduced group module
definition, context definition, component instantiation, component bindings,
parameter declarations and parameter passing.

75

Chapter Four Examples

The second example, the structural part of a solution of the dining philosophers
problem, demonstrated the use of replicated instantiation and binding, as well as
the use of parameters to control the dimensionality of replicated forall
declarations and in the declaration of a ring structure.

The third example, a run-time executive for Conic, introduced the use of
hierarchic structuring: groups with subgroups, groups ports and hierarchic
binding. This example also highlights an implementation-defined rule for
performing default bindings of standard ports based on the bindings defined for
the standard ports of the kernel instance within the executive.

The final example, an implementation of Batcher's bitonic sorter demonstrates
the use of recursive structuring: recursive instantiation, guarded instantiation
and guarded binding. The example also uses replicated ports and replicated port
bindings.

All the examples described have been successfully run within a distributed
environment. The next chapter introduces the implementation model used to
execute distributed programs constructed with our configuration language.
Chapters 6 details the techniques used for the compilation of programs, while
Chapter 7 continues with the techniques used for the execution of programs.

76

Chapter Five Implementation Model

This chapter introduces an implementation model for the Conic configuration
language described and demonstrated in the previous two chapters. The model
is designed to act as a framework for constructing efficient implementations of
configuration-based distributed programs. The chapter gives an overview of the
distributed environment in which the language is used, and discusses the main
design objectives for our implementation. The overall structure and strategies of
the model are then introduced.

5.1. INTRODUCTION

The use of a powerful configuration language for structuring distributed
programs raises many difficult and interesting implementation issues, for
example, can configuration specifications be compiled, if so how are compiled
configuration specifications elaborated, how should group modules be
distributed, at what levels of specification should dynamic reconfiguration be
supported, how can data to be sent between heterogeneous processors, how can
the current configuration structure of a program be queried?

The model has been influenced by a number of factors, in particular, by the Conic
distributed programming environment in which it works. This environment is
particularly interesting for its emphasis on supporting heterogeneity. Although
our implementation model was developed for this environment it is sufficiently
general to be adaptable to other environments also.

Distributed programs in the Conic environment are developed for a network of
computers. Logically this network can be viewed as follows:

Chapter Five Implementation Model

HOST HOST | €4— » | HOST HOST
/ Lz

@ TARGET @ 4> (tarcer) (TARGET

Fig 5.1 Host/Target Environment

Conic programs can run on both hosts and targets. Hosts are used for program
compilation, execution, and debugging. Hosts also run the Conic dynamic
configuration management software, and provide file and terminal I/O services
for targets. Targets are typically used for executing components that control
particular hardware, or components that require a predictable response. Targets
have also been used for their raw performance capability, since they do not have
a host operating system overhead.

All the hosts currently run some variant of the Unix operating system [Bach86,
Leffler89]. This is both an advantage and a disadvantage. The advantages stem
from being able to exploit underlying host mechanisms in the implementation
model. For example, all our hosts provide sockets, a network-transparent IPC
mechanism. Obviously this may not be possible in non Unix environment, or
mixed operating system environments, where bridging software may be needed.
The disadvantages stem from the lack of mechanisms for concurrent and
distributed program execution, for example, many systems still do not support
light-weight processes, dynamic loading of object code, remote execution or
process migration. These mechanisms are hard to provide without extensive
modifications of the underlying Unix kernel. A target-only execution
environment is obviously better suited to developing such mechanisms. We have
attempted to address some of these issues directly, for example, with the
provision of a nodes, which provide fast light-weight process execution, and
virtual targets which enable distributable parts to be created on remote
computers without the overheads of logging onto the remote computers.

78

Chapter Five Implementation Model

The network currently consists of 25 SUN 3 hosts running SunOS 3/4 Unix, 3
DEC VAX hosts running BSD 4.3 Unix, 11 HP 9000-300 hosts running System 5
Unix, 8 Motorola MC680x0 targets controlling a variety of real-time equipment,
and 1 DEC LSI-11 target. These are interconnected via multiple Ethernets. Users
can, and do, develop configuration-based distributed programs that run across a
heterogeneous selection of these computers.

5.2. IMPLEMENTATION OBJECTIVES
The implementations objectives for the model are summarised below:

Efficient implementation.

Configuration-based distributed programs should be as efficient as other styles
of distributed program.

Portable implementation.

The implementation model should produce portable implementations.
Components should be runnable on a variety of hosts and target processors.

Support distributed development.

The implementation model should support distributed development of
programs. It should be possible to develop parts of distributed program in
isolation, and then configure them into a running program.

Tool Support.

The implementation model should utilise existing tools and resources where
appropriate. The model should permit the integration of new tools in simple and
coherent manner.

Since an efficient implementation is also more likely to be used than an inefficient
one, efficient techniques are also needed to convincingly demonstrate the
scalability of the language and implementation model. The implementation
model aims to minimise file costs, memory usage, execution time, and network
communication costs.

Portability is an important implementation objective in such environment. A
high degree of portability has been achieved by adopting a high-level language
approach to implementation. Rather than the traditional approach of generating
low-level code, the configuration language (CL) compiler generates "human-
readable” procedures In addition all the tools, and run-time support components
have themselves been configured with the Conic CL and programmed with the

79

Chapter Five Implementation Model

Conic programming language (PL).

Our implementation model supports distributed development and distributed
execution of programs. It allows components to be developed entirely
independently by different people on heterogeneous hosts, and then be safely
configured into a running system. Target components can be cross-compiled,
downloaded into a bare machine, and linked into a running system. The range of
configuration options available to users is the same for components running on
targets as for cdmponents running on hosts.

Existing mechanisms and tools have been adopted whenever this was cost-
beneficial to the implementation effort. This is important and gives the
implementation model a looser, and more flexible structure. The CL compiler, for
example uses the standard Unix link-loaders. A utility that generates Makefile
descriptions? from configuration descriptions is also provided.

53. NODES

The key issue addressed by the model is at what level components are to be run,
distributed, and reconfigured. This is itself dependent on the nature of the
execution environment. Ideally one should be able to assign each component to
its own processor. This is rarely possible in practice, since the number of
components in a program normally outnumber the number of available
processors. Next, one could consider automatically partitioning the components
into sets according to the number of processors, and let each processor, multi-
program the components in its assigned set. This approach is better suited to
homogeneous shared multi-processor environments, where there is no
advantage in having control of where components are placed. Where the user has
special knowledge of the mapping constraints of his program and environment, a
technique is needed to let users control the placement of components.

One approach is to allow users to specify locations in the create clause of the
configuration language. Each create clause could then optionally specify a
location for the created component instance, for example in

create instance:type (parameters) [at location]

location could specify either another component instance with which the created
instance was to be co-located or an actual machine designator (e.g. the machine

7 Makeis a tool for controlling the initiation of a sequence of Unix commands, based on the dependency
relations and modification dates of files.

80

Chapter Five Implementation Model

name or machine internet address) at which the created instance is to be created.

create A: At at129.21.12.32
create B: Bt at A

If the location were omitted, the created instance could be located at the same
location as the encapsulating group instance, i.e the location would be deferred
until an instance of the group type is created. In this way each component in the
program can be labelled with its eventual location.

This is quite an attractive approach for some programs, but was rejected in
favour of simpler less predetermined approach that deferred such decisions until
run-time.

In Dicon [Lee86], processors are assigned exclusively to particular programs
unless the processor is specified as shared in the configuration specification. It is
also possible to state that two components are to be co-located.

Another possibility would be to define a separafe mapping language for
specifying the location of components [DeRemer76]. The disadvantage with this
approach is that it requires the mapping language to be as expressive as the
configuration language. An important consideration in mapping components in
heterogeneous networked environments, is the relatively large differences in
communication costs between components running on the same machine and
components running on different machines.

A second important consideration in deciding on the unit of distribution is the
relatively poor implementations of processes provided by Unix operating
systems, which often limit the number of processes allowed, and impose
relatively high scheduling and interprocess communication costs on the
processes they support. These constrain the degree of concurrency allowed, and
have been reduced by providing light-weight processes within a Unix process,
e.g. Unix processes with over 100 Conic tasks have no noticeable affect on the
performance of Unix .

For simplicity, and because of the considerations discussed above, the
implementation model defines a distributed program to consist of a flat network
of interconnected nodes, where nodes are group modules whose sub-instances
are loaded within a single address space when the node is created. Nodes thus
act as the unit of distribution within the model, with the actual distribution of
nodes left to the responsibility of users.

81

Chapter Five Implementation Model

<

Conic Node(s)

Physical Network

Fig 5.2 Node Distribution

The number of components (groups and tasks) allowed within a node is limited
only by the memory limitations imposed by the running computer. Each node
includes a special executive sub-component which is responsible for all aspects of
node management, including intra-node component interaction and scheduling.
On Unix machines nodes are run as Unix processes.

 executive:-

components

nodes

: executive

Fig 5.3 Distributed Programs with Nodes

Nodes are also the unit of reconfiguration supported by the model. Once
distributed and started, the node executive periodically reports the status of the
node to a global name server. This maintains a register of all reporting nodes and
their location. Nodes can then be configured by interactive tools called

82

Chapter Five Implementation Model

configuration managers, that query the server for the names and locations of
nodes within an program. Two configuration managers are provided, iman that
runs on Unix hosts and has a textual command interface, and ConicDraw that
runs on Apple Macintosh® 's and has a graphical iconic interface. ConicDraw
interacts with the rest of Conic system through gman to which it linked over a
serial link. Gman is a specially modified version of iman that runs on Unix hosts
and which performs the actual configuration queries and commands on behalf
ConicDraw. The configuration management system is outlined below:

Configuration Managers
configure configure <>
’_—+ query query | —
iman gman ConicDraw
query
Node Server
status

status status
configure configure

Application Nodes
Fig 5.4 Structure of Configuration Management System

Once the location of a node is known it can then be directly queried, instructed to
bind or unbind ports, stopped, restarted or removed from a configuration
manager.

54. DEVELOPMENT CYCLE

The development cycle of a distributed program within the model consists of a
node compilation phase, in which a runnable node is produced from a set of
compiled sub-components and a run-time phase, in which the nodes produced
from the compilation phase are distributed, elaborated, and configured into a
running program:

® Appleis a registered trademark of Apple Computer Inc.
83

Chapter Five Implementation Model

components nodes machines running program

D R
= Pa—— N2
O
0
O
O
O
O —
O
NODE NODE NODE ELABORATION
COMPILATION DISTRIBUTION & CONFIGURATION

Fig 5.5 Node Development

Once started, running programs can be re-configured by interacting with a
configuration manager. New nodes can be compiled and configured into the
program while existing nodes can be relinked or removed from the program:

running program reconfigured program

Fig 5.6 Node Reconfiguration

5.5. AN EXAMPLE
The components in the dining philosophers example given in Section 4.2, can be
grouped into diner nodes and a table node:

84

Chapter Five Implementation Model

table

sit leave

Fig 5.7 Diner and Table Nodes

and the nodes configured as:

&"P 1f

leave sit

us

aaed|

ds

sit

1f e |

Fig 5.8 Dining Philosophers System as Configured Nodes

Further details on how to configure this example are given in Section 7.5.

5.6 CHAPTER SUMMARY

This chapter has introduced an overall model for the implementation of our
configuration language within a distributed environment. The model makes a
number of simplifying assumptions in order to allow efficient implementations
to be developed. A unit of distribution and reconfiguration called the node is
defined. Nodes are groups whose sub-components will share a single address
space. On Unix hosts, nodes map onto Unix processes. There are no restriction on
the number of sub-components allowed within a node, or the number of nodes

85

Chapter Five Implementation Model

within a program, except those due to lack of memory or operating system
resources. The mapping of nodes to processors is left to users, although tools are
also provided.

For presentation the tools and techniques used in the model have been loosely
grouped into those associated with language compilation and those associated
with run-time execution and support. Chapter 6 describes the techniques for
language compilation, and Chapter 7 continues by describing the techniques
used for run-time execution and support.

Chapter Six Compilation Techniques

6.1. INTRODUCTION

This chapter presents techniques to support the separate compilation of group
modules and definition modules that are efficient and ensure early detection of
the use of inconsistent types and components. In order to cater for distributed
programs built from large numbers of separately compilable units, the
techniques employ a new symbol file design for efficiently representing the
interfaces of separately compiled units. Our symbol files are also used to .
automatically track object files in the host file system, alleviating the
programmer from explicitly having to specify which objects files will be required
to link-load a node. A new technique for performing type extension checks in
constant time rather than linear time is also presented. Our techniques are fast,
simple and scalable.

Unlike other systems, which elaborate (instantiate and bind) program structures
at link-load time, we adopt a more dynamic approach and elaborate the
structures within a node at execution time. This is done by generating object code
to elaborate group modules. This results in a system that is both very fast and
very flexible, particularly when parameterised structures are required. Further
the generated code can be called dynamically to create new structures while the
node is running.

6.2. NODE COMPILATION

To build a runnable node, each sub-component of the node is separately
compiled. Groups are compiled by the configuration language (CL) compiler,
which produces code to elaborate instances of the group, processes are compiled
by the programming language (PL) compiler, and definition modules are
compiled by a definition module compiler3.

8 In fact definition modules are currently compiled by the PL compiler.

87

Chapter Six Compilation Technigues

Once all sub-components have been compiled, the node group is itself compiled
by the CL compiler, and all object files link-edited by the host or target link-
editor into a runnable executable.

A number of files are produced when a component is successfully compiled: a
symbol file for all processes, groups, and definition modules, an object file for all
processes and groups, and linker file for all node groups. The transformations
used to produce nodes is outlined below:

S i Compil Compiled Eil

——’ sy} Symbol
> YMEile

Defmmon DL - Definition Module Compiler
Module PL - Programming Language Compiler

Object File CL - Configuration Language Compiler
ob]

l—+<> *
@Symbol

File

Task Module ‘
Object File
/ A== O — O

—
. \> . Symbol Link Editor Conic Node

File
Group Module

Lmker File
(nodes only)
Fig 6.1 Node Compilation System

Symbeol files hold a special compiled form of the component, used when the
component is referenced in further components. Symbol files also keep track of
the object files that will be needed in final link loading. Object files hold the
machine code version of a component. Linker files hold the names of all files that
the link-loader will require to create a node.

When it is not possible to modify the PL compiler to directly read and write
symbol files, an alternative technique would be to use the CL compiler to
describe the process, and to add a pragma in the description to indicate the name
of the object files that implement the process as is done in Dicon [Lee86]. For

example:
group module fortranProcess; {Configuration Description for a PL component)
objects “"fortran.o”; {Object file pragma}
use <PL Components> {Each PL component is described by a similar}

{description}

88

Chapter Six Compilation Techniques

<Port Declarations>

-- No BindingAllowed
end.

The Conic PL is currently used to describe the interface of components written in
other programming languages, for example, Fortran and C.

The host Unix link-editor, 1d, is used to generate the final runnable node. Cross-
compilation to a machine that is different from the host, requires a machine-
specific linker.

6.3. SYMBOL FILES

Symbol files hold a special compiled form of a component, read by compilers and
debugging tools whenever a description of a component or of items within a
component is required, for example, whenever a 'use’ declaration is encountered.
Symbol files are distinguished from object files, in that they do not normally
include executable code, only information for use during compilation. A good
implementation of symbol files is essential if the system is to be used for the
practical construction of very large programs. In line with Lampson's advice in
[Lampson83], our implementation aims to fast and simple. It also aims to be
scalable .

Symbol files are used to ensure that strong type checking is maintained across
separate compilations, that inconsistent use of components is detected and
reported as earlier as possible in compilation, and that visibility rules are
preserved.

In contrast to source code based symbol files our symbol files abstract out the
essential details of a component, by recording the internal representations of
items built by compilers during compilation in binary form. They are thus faster
to process and more compact than systems that use modified source files
[Foster86], since they do not require each compiler to have a parser for the type
description language. In a "sense", they can be considered as a medium for
holding completely abstract language independent descriptions of objects such as
components and types.

Our symbol files also attempt to track the location of associated object files in the
host file system. This is a very convenient facility and alleviates the programmer
from explicitly having to specify which objects files will be required to link-load a
node.

Our symbol files are also used for implementing a new technique for performing

89

Chapter Six Compilation Techniques

sub-type compatibility checks. The technique trades symbol file space and some
static type-hierarchy evaluation for fast constant-time run-time evaluation.

Our symbol files are complete. Reading one symbol file does cannot cause further
symbol files to be read. Our symbol files are also minimal. Only information that
is directly relevant to exported items is recorded. In contrast to [Sweet85] our
symbol files occupy little space.

Since symbol files are written once but often read many times, our symbol files
are optimised for reading. They need only be read once during a compilation,
and are organised for one-pass sequential reading without backtracking.

In [Robbins84] a single random access, global symbol table database is built and
updated for each program. This solution has the advantage of opening a single
symbol file for user-written component, but becomes costly when pre-existing
symbol files have to be merged into the program's symbol file. The central
database idea is also advocated in [Rudmik82] which also stores intermediate
code in the database.

6.3.1. Symbol File Organisation
Symbol files are organised into the following sections:

Symbol File
Magic Number Section
Directory Table Section

Component Section
Parameters Section
Identifier Section
Type Extensions Section
Debugging Section

The key sections are the component section which holds information on the
component and all components used by the component, and the identifier section
which holds information on all items exported from the component, and on any

auxiliary items that are needed to complete description.

6.3.2. Symbol File Syntax

The format of symbol files is given in a boxed form of BNF. Terminal symbols are
written in UPPERCASE. Non-terminals are written in lowercase with the first
letter of each word in upper case. Non-terminals may be prefixed by a label and
colon (:). Labels are used purely for exposition. A * suffix denotes zero or more
repetitions. A + suffix denotes one or more repetitions. Productions are shown
boxed, with the rule specified in the box and the non-terminal above the box.

90

Chapter Six Compilation Techniques

6.3.3. Magic Number Section
Each symbol file begins with a two byte number, called the magic number.

Magic Number Section
Magic Number : Integer |

The magic number is used to prevent other tools, particular text processing tools,
such as editors from attempting to read the file. On Unix, such tools, often check
that the first byte of a file is an acceptable Ascii code before reading the
remainder of the file. For compilers, the magic number provides a useful check
that the file to be read is actually the kind of file expected, and not some other
kind of file. The following magic numbers are currently employed:

Definition module symbol files: 21923
Task Module symbol files: 21924
Group symbol files: 21925

Changing the magic numbers accepted and written effectively invalidates
existing classes of symbol files. This may be useful where a major revision of the
programming system has been made, and the implementors require all existing
components to be re-compiled.

6.3.4. Directory Table Section
A table of file directory names follows the magic number.

Directory Table Section
Length : Integer
Directory Name: String *

This table is used as a hint in tracking the location of object files for subsequent
link-loading into an executable node. The table consists of an integer length field
followed by that number of strings, each string holding the pathname of a Unix
directory, for example:

3

/usr/lib/conic/module
/users/nd/example/ward
/usr/lib/conic/sort

Directory names are implicitly numbered from 1 onwards, and the numbers used
as references in the component descriptions of the component section.

Duplicate directory names are not permitted to occur within a directory table.
This rule greatly reduces the size of symbol files when many components occur
in the same directory. For example a distributed program having 20 components
in one directory, where the length of the directory name is 50 characters, would
take up one 50 character string, plus 20 2-byte indices, rather than 20 times

91

Chapter Six Compilation Technigues

50=1000 characters, a saving of 910 bytes.

6.3.5. Component Section

The component section holds the component description of the compiled
component (the first description) along with the component descriptions (the
remaining component descriptions) of all components directly and indirectly
referenced by the component. Descriptions of dependent components are used to
check consistent use of components during compilation, and are also used to
track the location of object files automatically. The component section consists of

Component Section
Comp : Component ID +
Null

where a Component ID (Identifier Description) is

Component ID
Name : String
Comp Number : Integer
Home : Integer
Time Stamp

The name field identifies the name of the component type. The component
number field provides a reference number for item descriptions in the Identifier
Section, and type extension relationships in the Type Extensions Section. The

home field specifies in which directory the component was compiled, and
therefore in which directory its object file may be found. The home field indexes
the nth directory specified in the directory table part of the symbol file.
Timestamp is a 6-byte tuple that uniquely identifies the component. Timestamps
are created when the component is compiled and consist of:

Time Stamp
Epoch : Longint
Unix Process Id : Integer
On Unix, the time in seconds since 1970, is used as the epoch, while the Unix

Process-Id of the compiler process is used to differentiate between two
compilations started during the same epoch second.

In addition to the fields above, component type descriptions hold other attributes
such as whether a component is executable or not, and estimates of the minimum
memory requirements of a component.

6.3.5.1. Consistency Checking Algorithm
Timestamps are used to check that interdependent components are consistently
used. The algorithm used to check consistency follows.

Each compiler maintains a table of all component descriptions read from

92

Chapter Six Compilation Techniques

imported symbol files. Each time a component type description is read, the
component type table is searched for a component of the same name. If no entry
is found, then the read component is added to the end of the table. If an entry is
found, then the timestamp of the stored component is compared to the
timestamp of the read component. If the timestamps are unequal then this
implies inconsistent versions of a component and gives rise to a compilation
error. An array which maps symbol file component numbers to compiler
components is used during symbol file read.

INDEX coMP
Name
1 3
(1] (11 || Time Stamp
2 " Other Fields
Name
Bl 6 (2 [[_Time Stamp
Other Fields
------ Component Records
m]] 2 (3]
" Name |
(n]

Time Stam
Other Fields

Fig 6.2 Organisation of Component Records

COMP Table of known components known to compiler. COMP [1] holds the
information for the component being compiled.

INDEX An array of indexes to component records in COMP. INDEX is used to
map symbol file component numbers compiler to component numbers.
A new INDEX map is need for each symbol file read.

read Nth Component ID into C
if C.name in COMP
then let E=Entry found in COMP.
if C.timestamp = E.timestamp
then Let INDEX [N] = Index of E in Comp
else Dependency Error
endif
else let E=New Entry in COMP
Copy CtoE
let INDEX[N] = Index of E in Comp
endif

Checksums can be used as an alternative to timestamps, [Bron85] suggests the

93

Chapter Six Compilation Techniques

use of a component checksum calculated on the exported items of a component
instead of timestamps as component signatures and link-time checking instead
of compile-time checking. Thus when a component A is link-edited to a
component B, a check is made that the code of B bears the same checksum as was
valid for B when B was used during the compilation of A. Accidental checksum
equivalences can be reduced by the use of longer checksum values. Checksums
are quite attractive as a means of determining whether a component may have
changed its interface or whether two components have the same interface.

6.3.6. Parameters Section

The parameters section specifies the formal parameters of the first componeht in
the symbol file. When read these parameters are chained together and the first
parameter linked into the component description by the compiler.

Parameters Section

Parameter Identifier
Null

The format and handling of parameter identifiers is identical to other identifiers
described in the Identifier Section below.

6.3.7. Identifier Section

The identifier section of a symbol file is used to record the descriptions consists
of named port identifiers, user-defined type identifiers, constant identifiers,
record fields and parameter identifiers.

Identifier Section
Identifier *
Null

where

Identifier
(Port Identifier | Type Identifier | Constant ldentifier | Field Identifier | Parameter ldentifier
| Nil Identifier)

Identifier descriptions (except for the Nil Identifier) consist of a set of common
fields followed by some identifier specific fields.

Common Id Part
Id Name : String
Owner : Integer
Id Type : Type Structure
Next : Identifier

The common fields specify the name of the identifier, a reference to its owning
component, a detailed description of the type of the identifier, and a next field
which is used to chain a sequence of identifiers together, such as the enumerated
constants of an enumerated type, the fields within a record and the parameters of

94

Chapter Six Compilation Technigues

a component. Within the CL compiler each identifier description is translated
into a pointer to an identifier record. The Nil Identifier is used to represent and
generate a nil pointer.

Nil Identifier
[Id Kind : Null]

Ports descriptions hold additional information on whether the port is an
entryport or an exitport, and a number that indicates the declaration position of
the port within the component, i.e the nth declared port.

Port Identifier
ID Kind: PORT
Common Id Part
Port Kind: (EP | XP)
Port Number : Integer

Type descriptions hold no additional information.

Type Identifier
Id Kind : TYPE
Common Id Part

Constant description hold the value of the constant, for simplicity this is held in
either integer form or string form. Real constants for example, are held in string
form. The type of the constant can be deduced from examination of the Id Type
field in the Common Id part of the description.

Constant Identifier
Id Kind : CONSTANT
Common Id Part
Value : (Integer | String)

Field descriptions hold additional information on the offset of the field within the
record.

Field Identifier
Id Kind : FIELD
Common Id Part
Offset : Integer

Parameter descriptions hold additional information on the position of the
parameter in the parameters declaration.

Parameter Identifier
Id Kind : PARAMETER
Common Id Part
Parameter Position : Integer

The missing productions are defined in Appendix II.

6.3.7.1. Reading Identifier Descriptions

Within the compiler, identifier descriptions (except field names) are attached to
their defining components in alphabetically ordered binary trees of identifier
records:

95

Chapter Six

(1

(2]

{31

[n]

Compilation Technigues
COMP Name
Name Other Fields Identifier Records
Other Fields Left | Right
Locals — Aé‘ \
Name Name
Nam‘e Other Fields Other Fields
Other Fields ~ Left | Right Left | Right
Locals
Name Component Records
Other Fields / Name
Locals | Other Fields
Left | Right
Name Name
Other Fields Other Fields
Left | Right Left | Right

Fig 6.3 Organisation of Identifier Records

The procedure for reading identifier descriptions is thus

The procedure for skipping identifiers is identical to the above, except that read
descriptions are never inserted into component identifier trees. Identifier chains,

if next Identifier.Kind=NULL then
return nil

otherwise

read next Identifier.(Id Kind, Name, Owner) Into [

let L.owner = INDEX [l.owner] (Remap component number}

let Tree = COMP [l.owner].locals

skip over rest of description (Id Type, Next, & identifier specific information)

read rest of description into I.(Id Type, Next & identifier specific information)

if Lname in Tree
then
return pointer to entry in Tree
else Insertlinto Tree
return pointer to I
endif

for example the Next part of an identifier description, are read by recursively

calling the read procedure above.

6.3.7.2. Identifier Visibility

Identifiers are made visible in the scope of the importing component, by
inserting a copy of the identifier record into the identifier tree for the importing
component namely COMP[1].1ocals. For enumerated types, all the enumerated
constants of the type need to copied.

96

Chapter Six Compilation Techniques

6.3.7.3. Writing Identifier Descriptions
The procedure for writing an identifier is

if Identifier is nil

then write NULL

else write Identifier.(kind,name,owner,type,next)
write Identifier specific information

endif

6.3.7.4. Type Structure Descriptions
All identifiers have a type. Type structure descriptions record type information.
Types in Pascal can be highly inter-related, for example types can be included
within other types, or recursively used. Types can also be mutually
interdependent. In order to handle such degrees of type usage the compiler
builds and maintains a network of type structures. For example, the type
definitions
range = 1..80;
colour = (blue, green, red);
rope = record
len : range;
seg : array [range] of colour;

end;
ptr = ~ rope;

are represented by the following identifier/type network:

97

Chapter Six Compilation Techniques

range | _ldiype
TYPER
)Aﬁ Rig}\
Idtype [colour red [
TYPE| CONST D
Left Right Right E
/ \ N
rope T
CONST TYPE ;
[
E
Idtype R
S
len &ﬁ seg
FIELD FIELD
Idtype
i il b - - il el A Al —_ = ;’____*_

- SUBRANGE TS
/ BaseType YT
Y First Y / IndexType P R
(RECORD) @:@ EU
C
Element Type | T.
INTEGER *

Fig 6.4 Example of an Identifier/ Type Network

The type structures in such a network must be traversed and written to a symbol
file, whenever an identifier is exported. Note that some type structures, for
example, records and enumerated types require identifier descriptions (e.g. of
fields and enumerated constants) to be written. Conversely when a symbol file is
read the unrolled type structures need to relinked into the compilers network of

types. Two identifiers have the same type if they point to the same type
structure.

All type structure descriptions are labelled by an integer key. The key is used to
indicate whether a type structure is of a standard type (keys 1 to 20), of a user-
defined type (keys 21+), or whether the structure is referenced by an type
identifier that has not yet been written (key 0).

Type Structure

(Standard Type | Embedded Type | Read type [Message Type | Subrange Type |
Enumerated Type | Array Type | Record Type | Set Type | Pointer Type)

98

Chapter Six Compilation Techniques

The standard type NIL is used to represent a nil pointer.

Standard Type
Key : (NIL | BOOLEAN | CHAR | INT | REAL | BYTE | NATURAL | LONGINT | STRING

If a type description has already been written to the symbol file, it is represented
solely by the key used in first description of the type.

Read Type
(Key : Integer]

User defined type structures written for the first time consist of a set of common
fields followed by some type structure specific fields. The common fields specify

a key (in the range 21+) which is used to identify the particular type structure,
the size of the type structure in bytes, and whether the type is packed or not.

Common Type Part
Key : Integer
Byte Size : Integer
Packed : Boolean

Message type structures also record the request type and reply type of the port.

Message Type
Common Type Part
Form : MESSAGE
Request Type : Type Structure
Reply Type : Type Structure

Enumerated type structures also record the first enumerated type constant,
which chains the remaining constants.

Enumerated Type

Common Type Part
Form : ENUMERATED
First : Constant Identitier

Subrange type structures also record the low and high values of the subrange,
and the base type of the subrange.

Subrange Type
Common Type Pant
Form : SUBRANGE
Low Value : Integer
High Value : Integer

Base Type : Type Structure

Array type structures also record the index type and element type of the array.
Array Type
Common Type Part
Form : ARRAY

Index Type : Type Structure
Element Type : Type Structure

Record type structures also record the super type of the record (if an extension)
and the first field of the record which chains the remaining fields.

Record Type
Common Type Part
Form : RECORD
Super Type : Type Structure

99

Chapter Six Compilation Techniques

[First: Field [dentifier |
Set type structures also record the base type of the set.

Set Type
. Common Type Part
Form : SET
Base Type : Type Structure

Pointer type structures also record the base type of the set.

Pointer Type
Common Type Part
Form : POINTER
Base Type : Type Structure

A special mechanism for recording embedded type identifiers is needed to
enable one-pass writing and reading of symbol files. Embedded type identifier
descriptions are signalled by key 0. The key of the new identifiers type follows
the identifier description

Embedded Types
Zero Key : Integer
Type Identifier
New Kay : Integer

6.3.7.5. Reading Type Structures
Types must maintain their definition across a distributed program, although they
may only be visible in some of the components.

The following data structure is needed during each symbol file read:

STRUCT An array of pointers to read type structures records. STRUCT is used
to map keys within the symbol file to type structure records within
the compilers type network. STRUCT [1..20] is reserved and used to
map the keys of the standard types to standard type structures
records.

HighKey is initialised to 20 at the start of each symbol file read, and updated
each time a new user-defined type structure is read.

The procedure for reading a type structure is then

read Key
if Key=0
then read Type Identifier | (Embedded Type)
read key
Point STRUCT [Key] at 1.(Id Type)
elsif Key > HighKey (New User-defined Type }
then read rest of structure into a new type structure S
Point STRUCT (Key] at S
HighKey := Key
else (Standard Type or Read Type)
endif
return STRUCT(key]

100

Chapter Six Compilation Techniques

The procedure for skipping type structure is identical to the above, except that a
dummy type structure S is used, and the skip identifier procedure used for
embedded types.

6.3.7.6. Writing Type Structures ,

When a type structure is written for the first time it is preceded by the next
available key, which is saved in the type structure. On the second and
subsequent writes, only the saved key is written out. Keys are generated in
ascending order starting from 21.

The keys of user-defined type structure are initially zero. They keys of standard
type structures are initialised to a value in the range 2 to 20. Key 1 is used to
indicate a nil pointer.

Key 0 is a special key that allows a type identifier description to be embedded
with a type structure description. This is needed to enable one pass traversal of
the compiler identifier/type network. It is also necessary to read types in
dependency order. If a type A refers to another type B, then the description of B
must precede the description of A. This however would require a search of the
type dependencies before the type is written. To avoid this, we allow a type
structure description to be interrupted mid-stream with declarations of referred
identifiers.

The procedure for writing a type structure S is then

if S=nil
then writel
elsif Skey>0 { Standard Type or previously written User Defined type]

then write S.key
elsif a typeidentifier I points to S and has not yet being written
then write0
write identifier [
set S.key to next key
write S.key
else set S.key to next key
write S.(key, common part, specific part)
endif

6.3.8. Type Extension Section

Symbol files also play an important role in the implementation of a new
technique for checking subtype compatibilities, dynamically, for example being
able to check the predicate

ExTypeOf (object, Type) : boolean
== TRUE if Typeof(Object) is an extension of Type,
FALSE otherwise

101

Chapter Six Compilation Techniques

Wirth proposes a technique for implementing such type tests that requires a run-
time linear search of the type hierarchy.

Our technique uses symbol files to record local type hierarchies of a component.
The CL and PL compilers merge the local type hierarchies of read symbol files,
and output the merged hierarchy in their own symbol file. In this way the type
hierarchy is incrementally built and cascaded up the configuration hierarchy.
During node compilation, a complete type hierarchy exists for the node. This
type hierarchy is then labelled and the labels used to generate data that can be
used to perform type tests in constant time.

The following example will serve to demonstrate the technique,

Given the type hierarchies:

define X: A,B,C

type A=record ... end; B=record (A) ... end; C=record (A) ... end;
end.

and component no: X=1; type structure keys: A=9, B=27, C=33 we have

10

Fig 6.5 Type Hierarchy for X

The symbol file for X would have the following type extension section

Subtype Supertype
1 27 1 9
1 33 1 9
1 9 0. 0
where
Type Extension Section
Extension *
Null
and
Extension

Subtype Owner : Integer
Subtype Key : Integer
Supertype Owner : Integer
Supertype Key : Integer

Note that no information needs to be recorded on the types themselves, only
information on their subtype relationships needs to be recorded. A supertype
with component number 0 and key 0 is used to terminate a hierarchy.

102

Chapter Six = Compilation Techniques

It is important that new extensions can be defined in other components, for
example given

define Y: D,E;

use X:A;

type D=record (A) ... end; E=record (D) ... end;
end.

and component nos: Y=1, X=2; type structure keys: D=18, E=41 we have

Fig 6.6 Type Hierarchy for Y

The symbol file for Y would hold the following table of extensions

Subtype Supertype
1 41 1 18
1 18 2 9
1 9 0 0
Plus the non-directly used extensions of X
2 27 2 9
2 33 2 9

We also define a further set of types as below:

define Z: F,G,H;

use Y:D;

use X:C;

type F=record (D) ... end; G=record (D) ... end; H=record (C) ... end;
end.

and component nos: Z=1, Y=2, X=3, type structure keys: F=72, G=31, H=18 we
have:

103

Chapter Six Compilation Techniques

Fig 6.7 Type Hierarchy for Z

The symbol file for Y holds the following table of extensions

Subtype Supertype
1 72 2 18
1 31 2 18
1 18 3 33
2 18 3 9
3 33 3 9
3 9 0 0
Plus the non-directly used extensions of Y
2 41 2 18
Plus the non-directly used extensions of X
3 27 3 9

The merging procedure implied above is repeated until node compilation.
Although we have shown the full type hierarchies in this example, in practice,
compilers need only record a new branch of the type hierarchy if an explicit type
test is made in the component.

During node compilation the merged type hierarchy is labelled with a pair of
tags, the first tag specifies a type number for the type, the second tag specifies the
highest tag in the type's subtype hierarchy. An inorder traversal of the type
hierarchy is employed to label the type hierarchy as follows:

function label_type (P:Type; var tag:integer):integer;
var highest_tag:integer;
begin

tag:=tag+1;

PA.tag:=tag;

highest_tag:=tag;
foreach subType of P do

let S=subType;

highest_tag:=highest_tag max label _type (S,tag);
end;

104

Chapter Six Compilation Techniques

PA.maxtag:=highest_tag;
return highest_tag;
end;

For the example the labelled hierarchy would be:

(4.4] 6,61 (7,71 [8.8]

Fig 6.8 Labelled Type Hierarchy for X, Y, Z
where the types are labelled with [tag, maxTag]

In order to check that an object is an extension of a type X, the type test merely
needs to check that the tag of the object is within the pair of tags for the type,
namely:

Tag(Object) >= X.tag and tag(Object) <= X.maxTag
To check for a proper subtype, the check is:

Tag(Object) > X.tag and tag(Object) <= X.maxTag
To check for exact type equality the test is:

Tag(Object) = X.tag
Object tags can be set with the assignment:

Tag(Object) := X.tag
The number of extensions that a type has is:

X.maxTag - X.tag

6.3.8.1. Tag Identification

Since the extent of the type hierarchy is not known when a component is
compiled, it must be possible for separately compiled components to be able to
address Type tags at the time of compilation. Because types are uniquely keyed
within a component, and components are uniquely identified by a timestamp, a

105

Chapter Six Compilation Techniques

component can safely address type tag data by referencing external tag
identifiers that include these attributes, for example:

TYPE_<timestamp>_<id no>
For each node, the CL compiler then generates a tag identifier entry to satisfy the
references made from the constituent components.

For the example, given:

TimeStamp(X)=891025132232
TimeStamp(Y)=891025184330
TimeStamp(Z)=891026101938

the CL would generate the following tag identifier data for link-loading;:

Tag Identifier Tag MaxTag

TYPE_891025132232_9 1 8 {A)
TYPE_891025132232_27 2 2 (B}
TYPE_891025132232_33 3 4 {C)
TYPE_891025184330_18 5 8 (D}
TYPE_891025184330_41 6 6 {E)
TYPE_891026101938_72 7 7 (F}
TYPE_891026101938_31 8 8 (G}
TYPE_891026101938_18 4 4 {H}

In addition to tag identifier generation, the CL compiler could be extended to
generate type specific data, for example, a tag indexed table holding the size of
types which can used by memory allocator/deallocator libraries.

SIZE [1] <size_of_A>
SIZE [2] <size_of B>
SIZE [3] <size_of C>
SIZE [4] <size_of_H>
SIZE [5] <size_of_D>
SIZE [6] <size_of E>
SIZE [7] <size_of_F>
SIZE [8] <size_of G>

6.3.9. Debugging Section

The debugging section is optional and can be used by compilers to record
additional for debugging purposes. Since the information in the debugging
section is not needed during compilation, and can be lengthy, it is placed at the
end of the symbol file, alleviating compilers from having to skip over it. The
Conic PL compiler for example, uses the debugging section to record the variable
identifiers declared within a process.

6.3.10. Additional Facilities

A directory search capability is provided for the location for the symbol files. By
default if a symbol file is not found in the current directory it is searched for in a
set of standard directories. This allows users to override standard

106

Chapter Six ’ Compilation Techniques

implementations of modules with their own versions, provided their is no
inconsistent usage in the application. The search path can also be specified by
users for greater control, and is useful where whole sets of symbol files are to
moved within the file system or to different host file system. Symbol files are not
currently shareable for heterogeneous targets. This is for two main reasons.
Firstly, the size of types for each machine may be different, for example, integers
may be 2 bytes on one machine 4 bytes on another. Secondly, our system
currently supports conditional compilation of source files, allowing machine-
dependent compilation of parts of a component, and this sometimes leads to
types, and configuration specifications tailored to a particular machine.
Currently multiple symbol files have to be built, one for each variant machine

type.

Because symbol files hold useful information but in binary form, a utility called
show is provided that displays the information in symbol files in a human-
readable form.

64. CODE GENERATION

The basic code generation strategy of the CL compiler is to produce an
implementation module for each group module. For portability the generated
code is emitted in a high-level language rather than in assembly or machine

language.
The basic outline of the implementation module generated for a group is:

module group

function create_group(parameters).group_ptr;
{sets up the group instance hierarchy for the group)
{described in section 7.2 }

end

procedure link_group(G:group_ptr; parameters);
{sets up a flat interconnection network for a group instance hierarchy}
{described in section 7.2 }

end

function query_group (parameters):query_ptr
{generates the configuration structure of a group}
{described in 7.6}

end

type extension data

{data for PL compilers to perform constant time subtype tests}
{described in section 6.3.8.)

107

Chapter Six Compilation Techniques

endmodule
The group elaboration procedures create_group and link_group are used to create
and bind new instances of the group. The query_group function generates the
configuration structure of a group instance. For nodes two extra procedures are
also emitted:

procedure elaborate_node;
link_node (create_node(Unix_arguments),Unix_arguments)
{Converts Unix arguments and calls the top-level group procedures)
{described in section 7.1}

end

procedure node_interface;
{Makes calls that pass back descriptions of node's ports}
{described in section 7.4.1}

end

The first is a environment hook that retrieves the Unix arguments for the node
process and calls the elaboration procedures for the node group. The second is
used when dynamically binding nodes to retrieve information on the types of
node ports and also to convert incoming messages from heterogeneous
machines.

In order to generate these procedures in a single pass without forward
references, the compiler builds and keeps configuration information until the end
of the group module is reached. Only if no errors are found is the code emitted.
By deferring code generation until the end of compilation, gives scope for
additional optimisations.

6.5. LINK-LOADING

The CL compiler produces a linker file for each node. This file lists the names of
all component object files needed to execute the node. The linker file is generated
during node compilation by scanning the component table for the directory
names of executable components. The CL compiler then attempts to open for
each executable component the object file:

directory name /component name.o

If this fails, a search is made for the component, first in the current directory, and
then in a set of standard directories. It is also possible for users to specify a set of
directories for the CL compiler to search. If the object file is not found, a warning
is generated. There is scope for potential inconsistency at this point, since the
scheme for checking consistency of components is based only on symbol files,
checks are also needed to ensure that referenced object files are also consistent.

108

Chapter Six Compilation Techniques

This can be done by recording component timestamps within the object file and
checking them against those present in the node's symbol table [Mitchell79]. An
alternative is to defer consistency checking until node elaboration time.

Once the linker file is written, it is passed to the Unix link-loader along with the
names of some run-time libraries, to generate a runnable node.

Runnable nodes for Unix have the same format as other executable Unix
programs. Nodes can thus be used and manipulated like other Unix programs.
For example, nodes can be renamed and used like other programs. No special
command is required to run nodes.

6.6. PROJECT MANAGEMENT SUPPORT

A consistency management tool such as Make [Feldman79] on Unix is useful for
program development, as it helps ensure that changes to components cause the
recompilation of dependent components. Since writing Makefiles by hand is
error-prone and tedious [Walden84], a tool called ma is provided that
automatically generates a '‘Makefile' for a component. Ma works by scanning the
source of the component, along with the sources of all directly and indirectly
used components to form a 'use’ dependency graph of components. This graph is
then translated into Makefile format. The Makefile produced by ma also adds
rules that allow components to compiled multiple machine types. More
sophisticated consistency management techniques such as smart recompilation
are an obvious enhancement [Tichy86, Schwanke88] that could be used by the
configuration and programming language compilers in conjunction with Make.

6.7. CHAPTER SUMMARY

This chapter has described the techniques used to compile configuration
specifications into executable objects. Principal among these is the use of a new
compact symbol file design. Symbol files are designed to (i) preserve strong type
checking and visibility rules across separate compilations, (ii) provide earlier
detection of inconsistent component usage, (iii) track the location of associated
object files in the host file system, (iv) perform compile-time determination of the
type hierarchy within nodes and (v) record additional debugging information in
a fast, simple and scalable way.

A number of additional tools are provided: ma which produces Makefiles from
available component source files, show which displays the contents of symbol
files in human readable for, pm which using debugging information written in

109

Chapter Six Compilation Techniques

process component symbol files to list in source-level style the values of variable
of crashed processes. |

For each group module code is generated to create and bind new instances of
that group and to query the configuration structure of the group. Data is also
emitted for PL compilers to perform subtype tests in constant time.

The next chapter continues the description of the implementation model by
describing the techniques used to elaborate, distribute, configure and query
nodes.

110

Chapter Seven Run-time Techniques

In this chapter the techniques used to elaborate, distribute, and configure Conic
nodes within the Conic environment are presented.

71. INTRODUCTION

Given a set of compiled nodes, techniques are needed for elaborating the
configuration structure within nodes, for distributing nodes to remote machines,
for binding distributed nodes together, and for reconfigure running nodes.
Ideally these techniques should be fast, simple and scalable.

In our approach nodes are dynamically elaborated at run-time. This speeds up
development times considerably and also saves on the file space that would be
needed to hold elaboration data. Dynamic elaboration is particularly useful
where nodes are parameterised, and the parameters are used to control the size
or topology within the node, or where the code used to elaborate particular
groups is to be invoked by process components. In approaches that statically
elaborate configurations, these advantages are lost.

Support is also provided to distribute nodes to remote Unix machines. In order to
overcome the short-comings of the remote execution facilities available under
Unix, special nodes, called virtual targets (vt's) are provided which can be left as
daemons on those machines at which new nodes are to be created. An interactive
and extended version of configuration language create declaration can then be
used to instruct the virtual target to create a new local node instance by-passing
the normal Unix verification procedures.

Because we allow nodes to be independently developed and dynamically bound
into a running program, support needs to provided to ensure that the interaction
safety mechanisms of the language are enforced. This is achieved through the use
of type descriptors called canonical data representations (CDRs) that are
automatically generated by the configuration language compiler for use in
checking the safety of node interactions.

111

Chapter Seven Run-time Techniques

CDRs are held within nodes along with the names of node ports and node port
types. Such data can be accessed by configuration managers through a set of
standard ports provided for each node. In order for a configuration manager to
bind to these ports, it must find out the "internet" address of the node. This is
achieved by querying a global name server that holds the names of all nodes in
all programs. Each node periodically (every 10 seconds) reports its name and
address to this server. If the server crashes, the information is automatically
recovered by restarting a new server at the same address. Thus programs can
continue running in the presence of server crashes. Once the address of a node is
known to a configuration manager, it can interrogate the node for the names,
types, and CDRs of its ports, and use the information provided to bind (and
unbind) nodes together.

Support is also provided to allow tools to retrieve the actual configuration
hierarchy built during elaboration. This information is be used, for example, by a
graphical configuration manager to view and manage distributed program
structures.

7.2. NODE ELABORATION

A distributed program specified using the Conic configuration language can
have a very large and complex structure. Such programs are hard to efficiently
. execute within a heterogeneous distributed environment without transforming
the program's configuration structure into a simpler, more efficient one.

A transformational approach, that maps the hierarchic topology of Conic
configuration structures into a flat, non-hierarchic topology of interconnected
primitive processes at run-time is adopted. An alternative to this approach
would be to omit the transformation and use hierarchic configuration structures
directly for inter-process communication. This implies a traversal by the run-time
system of the interconnection path from the sending process to each
corresponding interacting process. When both interacting processes are within
the same group the interconnection path is of length 1. If one process is in group
that is the parent of the other, then the interconnection path is of length 2. In
general the path length is equal to the number of group module boundaries
crossed by the traversal.

By flattening the group hierarchy within a node we reduce the interconnection
path to length 1 for all intra-node communications within a node and to length 3
for all inter-node communications, an important improvement in efficiency.

112

Chapter Seven Run-time Techniques

The use of flat process topology within nodes also simplifies the data structures
maintain by the underlying communication system.

7.2.1. Node Elaboration Procedures
For each group the CL compiler generates two procedures to elaborate the group:

e a create_group function that takes the formal parameters of the group and
returns a pointer to a group instance data structure. This structures holds
pointers to each sub-instance, and information on the hierarchic links of the
group. The pointers are set by calling (i) for each sub-group instance, its
corresponding create_group function, and (ii) for each sub-process instance a
kernel function to create the task instance.

* a link_group procedure that takes a pointer to the group instance data
structure generated by create_group and generates the flat interconnections
for the processes within the group. For this the node is treated as a process in
order to generate flat interconnections to and from the node.

The following example illustrates the results after these procedures a little
further.

Given a node:

<,

0/19

Fig 7.1 Example Node for Elaboration

After the create_group function we have:

113

Chapter Seven Run-time Techniques

5

Fig 7.2 Node after the Create_Group Function

And after a subsequent link_group procedure we have:

Fig 7.3 Node after the Link_Group Procedure

For nodes an additional procedure, elaborate_node is called by the node kernel
to elaborate the node. The procedure needs to converts any Unix arguments
supplied to actual group parameters.

procedure elaborate_node;
link_node (create_node(get_unix_arguments), get_unix_arguments)
end

The complete elaboration of any group can be made dynamically from within a
running node by making the following procedure call:

link_group (create_group (parameters), parameters)

114

Chapter Seven Run-time Techniques

7.2.1.1. The create_group function
Generated create_group functions take the following general form:

function create_group (formal parameters of group) : group_ptr;
var G : group_ptr;

begin
G := newgroup (no. of instances of group, no. of ports of group);
if group is a node then create_node (no. of ports of group) endif;
foreach instance 1 declared in group do
if 1 isa group then
GAlnst[ord I]:=create_I (actual parametersof 1)
else {1 is a process }
GAlInst [ord I] :=create_task (I, actual parameters of 1);
endif
endfor
foreach hierarchic link XtoY.Z or Y.Z toX do A
GA.Port[ord X]:=add_link (G, ord Y, ord Z); (-- Saves datain G}
endfor
return G
end

The newgroup function allocates memory for the group instance data structure.
This structure consists of an instance table for the sub-instances of the group and
a port table form holding information on the hierarchic links made to the port.
Each sub-instance and port of the group is given an ordinal value by the
compiler to uniquely index these tables.

The instance table is set by calling (i) for each sub-group instance, its
corresponding create_group function, (ii) for each sub-process instance the kernel
function create_task to create the task instance. The create_task function returns a
unique process number for each created task instance within the node. Process
number 0 is used to designate node ports.

Hierarchic link information is saved in a port table. Each entry consists of a list of
linked tuples of the form <instance no, port no>. An instance number of zero is
used to signify a forwarded link.

If the group is a node an additional kernel call is made to inform the kernel of the
number of node ports to cater form.

7.2.1.2. The link_group procedure

Generated link_group procedures take the following general form:
procedure link_group (G:group_ptr; formal parameters of group);
begin

115

Chapter Seven Run-time Techniques

foreach non-hierarchic link W.Xto Y.Z do
walk_link (port (G, W, X), port(G,Y,Z))
endfor

foreach subgroup instance of group do
link_I (GA.Inst [ord 1], actual parameters of 1);
endfor
end

The port function constructs a port descriptor from the specified instance
number, port number. The descriptor holds information on the type of instance
(group or task), its process number if a task instance, and the type port (exitport
or entryport).

The walk_link procedure generates all possible flat links between two linked
ports. The link_group procedure must also call the corresponding link_group
procedure of each sub-group instance.

The walk_link procedure takes a link between two non-hierarchic ports and
generates calls of all the possible flat interconnections. This is done by locating
each task exitport connected to the supplied exitport, and linking it each task
entryport connected to the supplied entryport.

procedure walk_link (XP, EP)
{ Expand group exitports }

begin
if XP is a task_port then
walk_eport (XP,EP)
else { XP is a group port }
foreach internal port IP linked hierarchically up to XP do
walk_link (IP, EP)
endfor
endif
end

Whenever an exitport is hierarchically linked to a sub-group exitport, the
walk_link procedure is recursively invoked with the sub-group exitport as the
parameter. Whenever the exitport is hierarchically linked to a sub-task exitport,
the walk_eport procedure is invoked to expand the entryport side of the link. In
this way all described task-to-task links can be generated.

The walk_eport procedure is similar to the walk_link procedure except that on
encountering a task entryport a kernel call is made to generate the flat link.

procedure walk_eport (XP, EP)
(Expand group entryports }
begin
{assert XP is a task exitport }
if EP is a task port then
do_flat_link (XP, EP) { - Kernel routine }
else (EP is a group port }

116

Chapter Seven Run-time Techniques

foreach internal port IP linked hierarchically down from EP do
walk_cport (XP, IP)
endfor
endif
end

Hierarchic links to a node port are also flattened in this way, with the node
considered a task instance with process number 0.

7.2.2. Performance

The table below presents times for elaborating Batcher's bitonic sorter example
from Chapter 4. The times were measured on a lightly loaded SUN 3/60
workstation using the Unix ftime() procedure. Each case was run 3 times. The
worst time measured is used in the table.

Elements Tasks Links Time (secs)
2 13 15 0.040
4 18 27 0.060
8 36 67 0.100
16 92 187 0.280
32 252 523 0.700
64 684 1419 1.880
128 1804 3723 5.280
256 4620 9483 12.470

Fig 7.4 Node Elaboration Figures for Batcher's Bitonic Sort

Elements is number of elements to be sorted, and is passed to the node as a
parameter when the node is executed. Tasks is the number of primitive processes
created. For each case, Tasks includes 12 executive tasks. Links is the number of
flat process-to-process links established. For each case, Links includes 11
executive links. Default links are not included in the Links figures. Time is the
time taken to elaborate the node and generate a flat interconnection structure.
Time includes the time taken by the Conic run-time kernel to allocate memory
for each task, as well as the time taken to initialise kernel data structures. Time
also includes the time taken to perform default links for each task.

117

Chapter Seven Run-time Technigues

7.3. NODE CREATION

Nodes can be created in one of two ways. Firstly since nodes are treated
uniformly like other compiled programs on Unix, they can always be directly
executable. For remote Unix execution, direct execution can be cumbersome and
slow, requiring logging into each host in turn in order to run a node. The Unix
remote command invocation facility, rsh, can be several orders of magnitude
slower than local invocation [Bhattacharyya88]. In order to speed remote node
creations, special nodes called virtual targets (vt) provided. These also increase
the flexibility of the system by allowing resources for the node, such as a display
windows to be easily created.

7.3.1. Direct Creation
Nodes compiled for Unix hosts can be distributed and execution started, by
logging onto the desired host, and executing the command:

node parameters - instance system

where node is the name of the link-loaded node file, parameters are zero or more
actual parameters, instance is the instance name for the node (if omitted this
defaults to the process-id under Unix and the node name on targets), system is the
name of the system under which the node is to be registered (if omitted this
defaults to the user's login name). System can be treated like a name for the
program.

The parameters supplied are passed as actual parameters to the node's
configuration specification.

7.3.2. Indirect Execution via VT's

Alternatively, nodes can be created via special vt nodes.. Vt's provide a Conic
message passing interface for receiving Unix commands from remote machines
and executing them. Once started, vt's can be left to run in isolation, as daemon
shells on the remote host. Vt 's expect create messages of the form:

"node parameters - instance system"

from remote nodes, in particular from the Conic configuration managers iman
and ConicDraw. When a vt is started without parameters all received create
requests are executed directly. When a vt is started with parameters, the
parameters are assumed to name a Unix command to prefix before all received
create requests. By supplying parameters to the vt, it is possible to create

118

Chapter Seven Run-time Techniques

additional resources or context for each created node. For example, to create an X
windows [Scheifler86] for each node, or to run each created node under the Unix
debugger adb, we can start the following vt 's:

vt xterm -e - window mysystem
vt adb - debug yoursystem

The parameters of a vt normally name a Unix shell script that performs more

complex resource allocation operations prior to node execution.

Vt 's are distributed and started like other nodes (ie. directly by logging into the
remote host, or via other vt's), for example

vt vtparameters - vtinstance system

Once a create message is received, vt's construct a new Unix command by
prefixing their own parameters before the create request, i.e.

vtparameters node parameters - instance system

This command is then executed using the 'exec’ system call.

Node creation messages can be sent to vt's with the iman command
create instance node parameters at vtinstance

The use of virtual target names instead of actual machine names also means that
node creation -scripts are machine independent. Executing the same sequence of
node creation commands at different times may result in nodes running on
different machines, since virtual targets can be removed and recreated elsewhere.

7.3.3. Target Creation
To create a node on a target, the download command dl can be used, for

example;
dl target node parameters - instance system

or if a downloading vt is running, i.e: if the vt was started with a command of the

form:
vt dl target - vtinstance system
the configuration manager command:
create instance node parameters at vtinstance

can be used instead.

119

Chapter Seven Run-time Technigues

In addition to the object code and initialised data for the node, the downloader
also sets up a Unix-like process stack, ie. setting up argv, argp, and envp. This
involves downloading the node arguments and a set of environment variables to
the target. The use of Unix-like process environment allows many parts of the
Conic run-time system to remain common to hosts and targets.

74. NODE BINDING
Provided the message types of the two ports are compatible, node ports can be
bound with the interactive configuration manager command:

link node.exitpoft to node.entryport

The choice of Pascal's name equivalence semantic to check intra-node binding is
difficult to enforce when nodes may be developed and run independently on
heterogeneous hosts. An implementation would require distribution and sharing
of symbol files across the hosts. Therefore strict name equivalence was dropped
in favour of weaker structural type checking, implemented by generating
Canonical Data Representations for message types.

74.1. Canonical Data Representation (CDR)

Canonical data representations are used for validating node binding commands,
for transformation of messages across heterogeneous boundaries, and for
monitoring messages sent from a node.

For each node the CL compiler generates a node_interface procedure makes
kernel calls to set up the CDRs for the message types of each node port.

procedure node_interface;
{Makes kernel calls that describe the node ports}
foreach nodeport do
nodeport (porttype, portname, requestCDR, replyCDR)
end
end

CDRs are strings which are generated by unrolling the type structure of a
message type and are formed as follows:

1) Standard types are represented by a single lowercase letter: integer by i,
real by 'r', natural by 'n’, longint by 'I', char by 'c’, boolean and byte by 'b'. If a
standard type can be packed and occurs within a packed type, uppercase is
used.

2) Subranges are represented by the appropriate base type representation.
3) Enumerated types are represented by 'b' if the cardinality of the type is > 255,
120

Chapter Seven Run-time Technigues

otherwise by 'i'.

4) Arrays are represented by the an integer representing the number of
elements in the array, followed by the representation of the element type in
parenthesis. Parenthesis are normally omitted if the element type is not of set
type, array type or record type.

5 Records are represented by the conjunction of the representations of their
fields.

6) Sets are represented by an integer representing the set size, followed by the
letter 's'

For example the type

record
low : integer;
value : real;
name : packed array [5..10] of char;
dates : array [1..10] of record
year : 1900...2001;
month : (jan, feb, mar, apr,may, jun, jul, aug, sep, oct, nov,dec);
day :1..31;
end;
capabilities : array {1..99,1..4] of set of char;
end;

is described by the CDR "ir6C10(ibb)99(4(256s))"

For stronger checking, greater type discrimination could easily be added, by
explicitly adding special letters for enumerated types, subrange types, and record

types.

7.4.2. Node binding compatibility

To check that two message types are compatible, the CDR strings are checked for
string equivalence. For extended types the CDR of the supertype needs to be a
leading substring of the CDR of the subtype.

For increased speed hashed CDRs could be used to check binding [Scott88], at
the cost of occasional invalid binding. Hashed CDRs are more useful where the
type checks need to made for each message received. In our system, checks are
only required on binding, which is relatively infrequent compared to the number
of messages subsequently transmitted on the bound ports.

7.4.3. Heterogeneous Message Passing
CDRs are also used by the run-time system to convert incoming messages from

121

Chapter Seven - Run-time Technigues

dissimilar machines into local format, for example a real value sent from a VAX
is converted automatically to its equivalent bit pattern on a Motorola 68000. Since
CDRs are held at both the sending node and the receiving node there is no need
to send CDRs as a part of a message.

To offset the cost of including conversion code of each machine type, run-time
systems could convert outgoing messages into some standard format, such as
ASN.1 [ISO85]. This results in two message conversions per message
transmission, even if machine types are the same, but does mean that future
machine types can be accommodated without having to write new conversion
routines for the machine type.

Machine types could be extended to include a sub-field for indicating the
programming language used to program the component. This field could then be
used to initiate inter-language data type conversions, for example, converting
matrices held column-wise in Fortran, into the row-wise matrices of another

language.

7.5. NODE CONFIGURATION

Two interactive configuration managers are currently provided for node
configuration. Iman which provides a textual interface and ConicDraw which
provides a graphical interface. The principal configuration commands accepted
by Iman are:

manage system { switches context to system }
create instance type [parameters] at VTinstance

remove instance

link instance.exitport to instance.entryport

unlink instance.exitport from instance.entryport

Given virtual targets alpha, beta, gamma, delta and epsilon running on various
machines, the dining philosophers system

122

Chapter Seven Run-time Technigues

albert

brian

sit leave

g If

Fig 7.5 System of Dining Philosophers

can be distributed and configured as follows:

create albert philosopher at alpha

create brian philosopher atbeta

create colin philosopher at gamma

create david philosopher at delta

create table table at epsilon

link albert.If to brian.rp link albert.leave to table.leave link albert.sit to table.sit
link brian.If to colin.rp link brian.leave to table.leave link brian.sit to table.sit
link colin.If to david.rp link colinleave to table.leave link colin.sit to table.sit

link david.If to albert.rp link david.leave to table.leave link david.sit to table.sit
start albert startbrian start colin start david

The start command sends a message to a node, informing it that it has been
configured. This message can be received by any or all the processes within a
node and for example, used by them to begin interaction. A complementary
command called stop is also available which sends a message to a node
informing informing it that it is to be reconfigured. Again this can be received by
any or all the processes within a node and for example, used by them to suspend
interactions. A more declarative and rigorous approach to change management is
described in [Kramer88].

In addition to performing node configuration commands, Iman allows queries to
made on the current configuration state of a program using the commands:

nodes { lists the node instances within managed system }
lInodes { provides a more detailed listing than nodes }
systems { lists names of all running systems }

123

Chapter Seven Run-time Techniques

ports instance { lists ports of instance }
Hinks instance { lists links of instance }

ConicDraw is similar to Iman but commands are performed graphically
[Kramer89]. Linking, for example, is accomplished by drawing a line from the
exitport of one node to the entryport of another. Currently the structure of
running programs is displayed on, and manipulated from, Apple Macintosh
computers, e.g.

e

diners

Fig 7.6 Example of a ConicDraw Window

ConicDraw interacts with nodes through a specially modified version of Iman
called Gman, to which it linked over a serial link.

7.6. QUERYING NODE STRUCTURE

The internal details and structure of a node can also be queried at run-time.
Requests for the internal structure of a node are answered by a special process in
the executive called structman. This holds a representation of the current
configuration hierarchy for the node. Procedures to produce the hierarchy are
generated by the Configuration Language compiler in an analogous way to the
procedures for node elaboration.

Replies from structman return the structure of the node in a coded ascii format
which is designed for compactness. These replies are used by ConicDraw when

124

Chapter Seven Run-time Techniques

displaying the internal hierarchy of a node. An interesting addition to ascii
representation would be to return structural data as Prolog clauses. These could
then be used directly by analysis tools written in Prolog.

7.7. NODE DEBUGGING

Several tools are provided to help in debugging nodes. A tool for viewing the
variables of crashed processes, a tool for viewing the source lines executed by
processes within a node, and a tool for viewing the messages sent between
nodes.

7.7.1. Post-Mortem Dumps

When a process crashes, or under program control, a dump of the process
memory is performed by the run-time executive. A tool, called pm is provided
which when invoked reads the debugging section of the process symbol file, and
provides a listing of the contents of the process memory in high level form, e.g:

Node alpha, Instance 23, module=t3, clock=2000, failed at line 337 because: task completed

VARIABLES:-
al= (-1000, -900, -800, -700, -600, -500, -400, -300, -200, -100, 0, 100, 200, 300, 400, 500, 600, 700,

800, 900, 1000);
c=("a','v,'¢,'2,'7,"",'a,"",'x,"y,'0,'¢,'3,'0,'0, 0, ", 0#C, 0#C, 0#C);
2="2;
colors=[green..orange |;
cset=['C..'+ At ()]
head= HEAP (251588700) ~

RECORD

val=200 |
next= HEAP (251588694) A
RECORD
val=199 |
next= NIL
END

END;
input=File not Open;
k=3;
letters=['0".."9' 'a'..'z'];
r=2.029297e+00

Fig 7.7 Example of a Post Mortem Dump

7.7.2. Node Playback

The processes within a node can be specially compiled to log to a tracefile
information on their name and the source line number of each line executed. A
tool called pb is also provided which when called reads the tracefile, and plays

125

Chapter Seven

Run-time Techniques

back in separate windows the lines logged by the processes.

-------- rev.tas 7

i, j, k:integer;
begln
i =0, j =0,
wrlteln("' 30,
qush(output)
i ¥ 1;
aetlon
J=g+
actlon
k :=k + 1,

receive sngn

commi t;
end;
delay(1);

end;

writeln(’

delay¢100);
end.

abor

‘.30

7

309
310
311
312
>313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

I
|
Kkl
"l
I
|
l
|
|
|
al
|
|
t|
|
‘|
|
[
|
I
Il 329

kernel .
{procedure joinkid(
procedure joinkid;
var p, q: PaidlLst;
begin
if (oldk <> newk

tas 1

D)
p := kidmaplold
whlle <p < nll
q =P,
putlnkld(new
end;

pr =
while (pr <> ni
if (pr.rely

putinrel{ne
end
else

rmfromdep{n
qr := pr; pr
end;
pd : kidmaplol

I
11
i
I
11
I
|
11
ki |
I
kldmap[olll
|1
I
11
|
I
I
11
11
I
while (pd <> nill

snd.tas G6--—————-
i, j, k:integer;
begin
i :=0; j = 0; k
writeln('Hello, S
flush(output)
i =i+ 1,
action
=g+
action
k :=k + 1;

end;

send signal t

commi t;

end;

wri
del
end.

teln('Snd, i:'

|

|

|

|

|

|

I

|

|

|

I
commit; }
|

|

|
ay<100); :
|

|

|

single step

Fig 7.8 Example of Node Playback

Pb accepts commands to play forward one line at a time, to play forward until

the next process switch, and to play continuously forward. Pb can also play

tracefiles backwards, either one line at a time, until the previous process switch

or continuously until the first logged line. This is useful where a node has

crashed and the programmer does not wish to play the entire execution from the

beginning i.e he only wishes to know which lines were last executed.

7.7.3.
The messages sent on any inter-node link can be intercepted and listed by a filter
called spy. Spy takes the same arguments as the link command. When invoked

Message Monitoring

spy relinks the two node ports concerned to itself.

For example, if before spying we have:

colin

1f

david

p

Fig 7.9 Inter-node Link prior to Spy

After the command spy colin If to david.rp, we would have:

126

Chapter Seven Run-time Techniques

colin spy david

B ¥ D k> Tp
out

Fig 7.10 Inter-node Link with Spy Filter

Before performing relinking, spy also interrogates the sending node for the CDRs
of its port's request and reply types. The basic action of spy is then to repeatedly:

receive msg from in;

use requestCDR to list msg in human readable form
send msg to out await reply -msg

use replyCDR to list reply-msg in human readable form
send reply-msg to in

The original link is restored by spy before it terminates.

7.7.4. Final Comments

The debugging tools currently available work in isolation, the next logical step
would be integrate them with ConicDraw. Hopefully this would lead to a
comprehensive debugging system for distributed programs.

Although these debugging tools are available we have found that the most
effective debugging tool is still careful thought and analysis.

7.8. CHAPTER SUMMARY

This chapter has presented an algorithm for dynamically elaborating the
configuration structures of the language. The elaboration algorithm generates
and transforms the hierarchic instance and interaction topology of a node into a
more efficient flat topology while maintaining the hierarchic representations. The
hierarchic representation is used by a graphical configuration manager to view
the configuration structure of nodes. Results showing the performance of the
algorithm for elaborating the structure of Batcher's sorter have also been given.

The CL compiler supports interaction safety of independently developed
components by generating canonical data representation (CDR) strings of
declared node port types. CDR strings can be used to check that bound node
ports are compatible. CDRs have also been profitably used for heterogeneous
message conversions, and monitoring inter-node messages.

Tools have also been provided for querying the structure of nodes, and for
debugging nodes. Existing techniques in the Conic toolkit for distributing,
configuring, and viewing distributed programs structured with this language

127

Chapter Seven Run-time Technigues

have also been outlined.

128

Chapter Eight Conclusion

8.1. SUMMARY OF WORK

The work described in this thesis was motivated by the inadequacy of existing
languages for developing distributed programs. The approach advocated has
been to provide a separate and specialised language, termed a configuration
language for structuring distributed programs that is lucid, flexible and practical.
This is used in conjunction with a language for programming, to provide a
complete notation for writing distributed programs.

The configuration language designed has attempted to fulfil the key
requirements for structuring distributed programs identified in Chapter 2 of the
thesis. Principal among these was the need to specify distributed program
structures separately from the algorithmic implementation of programs. This
goal has been met by the provision of a completely separate language that
incorporates a new program structuring mechanism called the group module.
The mechanism is powerful and allows hierarchic program structures based on
primitive concurrent processes to be expressed as well as replicated, variant,
parameterised and recursive program structures. Specified program structures
are both modular and reusable and can be used to build ever larger programs in
a scalable way. The language is declarative and aims to be independent of
particular programming languages. The language also supports type-safe
composition of distributed program parts. The language has been efficiently
implemented on an existing distributed system, and is designed to support
modifications to the structure of running programs.

In addition many of the program structures described by the language can be
represented graphically which can act as a further aid to readers.

The thesis has also presented an implementation model for implementing the
configuration language. The model focuses on providing efficient and pragmatic
solutions to support large-scale distributed development within an

129

Chapter Eight Conclusions

heterogeneous environment.

The compilation techniques presented employ a new symbol file design for
efficiently representing the interfaces of separately compilable units. Symbol files
are also profitably used in the development of a new technique for performing
type extension checks in constant time rather than linear time. Symbol files are
also used to track object files in the host file system. A tool has been provided to
automatically generate Makefiles from component sources.

Unlike other systems, which elaborate program structures at link-load time, we
present a new technique for elaborating program structures at execution time.
This uses a recursive algorithm for transforming the hierarchic structures of
group modules into a more efficient heterarchic structure for use by the run-time
system.

Canonical data representations (CDRs) have been used to check that bound
nodes interact safely, and allows independently developed nodes to be
incrementally added to a running program. CDRs have also been profitably
used for heterogeneous message conversions, and monitoring inter-node
messages.

Tools have also been provided for querying the structure of nodes, and for
debugging nodes.

Existing techniques in the Conic toolkit for distributing, configuring, and
viewing distributed programs structured with this language have been also been
outlined.

The configuration language and tools described have been implemented and are
available as part of the Conic Toolkit which is use in institutions around the
world. The configuration language is also being used used as the starting point
within Esprit project 2080 for building reconfigurable and extensible parallel and
distributed systems (REX).

8.2. CRITICAL EVALUATION

The configuration language shares similar aims to many existing languages for
program structuring. It provides a very abstract program structuring mechanism
that has much greater expressive power than hitherto provided by others.

The use of a declarative language has resulted in clearer program descriptions.
Few concepts are needed to master the language. The language supports
abstraction and information hiding. The language also encourages top-down

130

Chapter Eight Conclusions

design. The structures described form abstract types that can be reused in
different contexts.

The language and structuring mechanism has also been implemented in more
dynamic and flexible way. Configuration structures are compiled not interpreted,
and elaborated at run-time rather than link-load time. At run-time an algorithm
is provided to transform the recursive interaction topology of a program into a
more efficient flat topology for use by the run-time system. The implementation
also provides query support that allows tools to query the structure of running
programs.

The granularity and nature of the atomic components for our configuration
language has focussed the language firmly on the issues of combining
programming-in-the-large with distributed programming. Because of their
concurrent nature and by our use of typed message-passing ports, processes can
be considered as abstract computers, and configuration structures as
interconnected networks of abstract computers.

The configuration language could be improved in a number of areas. The ability
to group together a collection of ports, and treat them as a structured port would
be a useful addition. Such collections could be considered as port records or port
sets. For example, a set of file ports could be described and used as follows:

define filesystem : fileinterface
exitport open: filename reply filedescriptor
exitport close: filedescriptor reply signaltype
exitport read: readrequest reply buffer
exitport write: writerequest reply signaltype

portset fileinterface = (open, close, read, write)
end
task module client

use filesystem : fileinterface

<rest>
end

task module server
use filesystem : fileinterface (reversed)
<rest>

end

group module example
use filesystem : fileinterface (reversed)
use client; server;
bind client.fileinterface to server.fileinterface
bind server fileinterface to example.fileinterface
end

The reversed operator above, is used to reverse the directionality of ports ie.

131

Chapter Eight Conclusions

change entryports into exitports and entryports into exitports. Like CCS, binding
could be done on the basis of identically named ports of complementary port
types. Set operators such as union and intersection could also included for
constructing new portsets. A more radical proposal would be to omit port
directionality and port typing from configuration specifications altogether, and
relying on the compiler to infer types and directionality. This would make
configuration specifications less verbose, but may also be lead to less clear
specifications.

A major omission in the language is the lack of dynamic program structuring at
all levels, for example, being able to describe and initiate possible changes to the
topology of a group module. Ideally such changes should be specified at the
configuration level.

A first attempt at expressing such changes, resulted in many new concepts, such
as (i) unbounded port families, (ii) guards that intercept incoming messages and
trigger local reconfigurations, (iii) schemes to generate new instance names and
select old names, and (iv) exception clauses to activate when failures arose.
Difficulties also arose in realising an efficient protocol for concurrently activated
changes when changes were at different levels of the configuration hierarchy,
distributed and caused interference. Because of these complexities and for
pragmatic reasons, this solution was not pursued.

An important stumbling block was also that including the conditions for
reconfiguration actions within the configuration language, led to a language
approaching the power of a programming language. A way of simplifying the
approach would have been to separate out the two areas of concern, (i) what the
change is, and (ii) when the change is to be initiated, by making the
configuration language responsible for describing what changes are possible, and
leaving it to the programming language to control when those changes should be
initiated.

A more radical alternative would be to consider if some form of lazily evaluation
strategy for the configuration language would help.

83. SOME SUGGESTIONS FOR FUTURE WORK

The node model, although efficient and practical, is not as appealing as a fully
distributed implementation of group structures. Such an implementation model
would allow programs to have arbitrary configuration levels above the node
level. In highly parallel computers such as hypercubes and transputer arrays,

132

Chapter Eight Conclusions

what is required is for the programmer to defer the selection of the mapping
strategy until program startup time. Although the programmer could currently
map each process into a separate node, the current implementation model does
not provide for the hierarchic or recursive construction of node structures. A
number of difficult problems need to be overcome however, for example, how
and where is information on the structure of (recursively) distributed groups
held, can such groups be efficiently managed and reconfigured, can a distributed
implementation cope with failures and network partitioning, can reconfiguration
actions be successfully serialised?

The ability to break the rigid modular hierarchy of group modules is sometimes
desirable. Currently if a program needs to connect to an existing instance, e.g. a
known service, such a running file manager the configuration programmer has to
either (i) 'float up' the required ports from the client component to the client node
and link these to the server components, or (ii) pass down to the client an
instance parameter that identifies the server. In either case, a great deal of
unnecessary and cumbersome configuration programming is needed at each
configuration level above the client level.

A possibility would be to allow known instances to be directly specified within a
configuration whenever required, for example with the declaration:

requires server:servertype;
These instances would be made known when created with for example, the
declaration:

create server : servertype;
provides server;

Such extensions do imply the existence of a global namespace for heterarchically
accessible instances. Rules and mechanisms for defining, creating, searching, and
deleting namespaces, as well as a rule for resolving instance name-clashes are
also required.

Another possibility would be to see if a wider spectrum of programming
language components could be integrated, for example Prolog, ML and
Smalltalk. The integration and interaction of the typing systems used in these
language presents many interesting problems however.

Behavioural and other specifications, such as performance and fault-tolerant
specifications could also be integrated. One way to tackle this would be by a
family of interacting companion languages that can inherit the structural
description of a program as framework for their own specifications. This

133

Chapter Eight Conclusions

suggests a ramified approach to distributed program specification with the
configuration language sitting at the apex.

Finally the lack of a complete formal definition could be addressed.

84. FINAL REMARKS

The main contribution of this work has been to demonstrate the practicality and
versatility of a dual language approach to distributed program development. The
approach provides an abstract declarative language for structuring distributed
programs as sets of hierarchically interconnected concurrently executable
program parts. The language can be coupled with one or more programming
languages to provide a complete programming system for distributed programs
with a clear and manageable structure.

Perhaps the most pleasing results of this work has been the unexpected
application areas that the language has been put to use by colleagues and
students. The language has been used in the construction of distributed process
control programs for small networks of machines controlling mining equipment,
and for distributed servers, databases and games. The language has also been
used for simulation studies, for writing protocols, for building an object-oriented
management system, for writing multi-loop self-tuning adaptive controllers and
for the implementation of parallel algorithms, for example, for the travelling
salesman problem, fast-fourier transformations, image processing and neural
networks. The entire Conic run-time and support system is also structured with
the language.

134

References

[Abelson85] H. Abelson, G. J. Sussman and J. Sussman, "The Structure and
Interpretation of Computer Programs”, MIT Press, 1985.

[Ada83] "Reference Manual for the Ada Programming Language", ANSI/MIL-STD-
1815A, American National Standards Institute, 1983.

[Agha86] Gul Agha, "An Overview of Actor Languages", ACM SIGPLAN Notices,
Vol 21, No 10, October 1986, Pages 58-67.

[Albert88] E. Albert, K. Knobe, J. Lukas, and G. L. Steel Jr., "Compiling Fortran 8x
Array Features for the Connection Machine Computer", In ACM SIGPLAN
PPEALS 1988 Parallel Programming Experiences with Applications,
Languages and Systems, New Haven, Connecticut, July 19-21, 1988,
SIGPLAN Notices, Vol 23, No 9, September 1988, Pages 42-56.

[Andrews88] Gregory R. Andrews, Ronald A. Olsson, Michael Coffin, Irving
Elshoff, Kelvin Nilsen, Titus Purdin, and Gregg Townsend, "An Overview
of the SR Language and Implementation", ACM TOPLAS, Vol 10, No 1,
January 1988, Pages 156-177.

[Bach86] Maurice J. Bach, "The Design of the UNIX Operating System", Prentice-
Hall International, 1986.

[Backus78] John Backus, "Can Programming Be Liberated from the von Neumann
Style? A Functional Style and Its Algebra of Programs", CACM, Vol 21, No 8,
August 1978, Pages 613-640.

[Barbacci88] Mario R. Barbacci, C. B. Weinstock, and J. M. Wing, "Programming at
the Processor-Memory-Switch Level", In Proc. of the 10th Intl. Conf. on
Software Engineering, Singapore, April 11-15, 1988. Pages 19-28.

135

References

[Batcher68] K. E. Batcher, "Sorting Networks and their Applications", In Proc. 1968
Spring Joint Computer Conf., AFIPS Press, 1968, Pages 307-314.

[Bate86] George Bate, "Mascot 3, an informal introductory tutorial”, IEE Software
Engineering Journal, Vol 1, No 3, May 1986, Pages 95-102.

[Bhattacharyya88] Mitali Bhattacharyya, David Cohrs and Barton Miller, "A
Visual Process Connector for Unix", IEEE Software, Vol 5, No 4, Pages 43-50.

[Black87] Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy and L.
Carter, "Distribution and abstract data types in Emerald", IEEE Trans. on
Software Engineering, Vol SE-13, No 1, January 1987, Pages 65-76.

[Bron85] C. Bron, E. J. Dijkstra and T. J. Rossingh, "A note on the checking of
interfaces between separately compiled modules”, ACM SIGPLAN Notices, Vol
20, No 8, August 1985, Pages 60-63.

[Burstall84] Rod Burstall, "Programming with Modules as Typed Functional
Programming", In Proceedings of the Intl. Conf. on Fifth Generation
Computer Systems 1984, edited by ICOT, November 1984, Pages 103-112.

[Campbell86] R. H. Campbell, A. M. Koelmans and M. R. McLauclan, "STRICT: a
design language for strongly typed recursive circuits”, Tech. Rept. 211,
Computer Laboratory, University of Newcastle upon Tyne, April 1986.

[Carriero89] Nicholas Carriero and David Gelernter, "Linda in Context", CACM ,
Vol 32,No 4, April 1986, Pages 444-458.

[Chandy88] K. Mani Chandy and Jayadev Misra, "Parallel Program Design: A
Foundation", Addison-Wesley, 1988.

[Clocksin81] William F. Clocksin and Christopher S. Mellish, "Programming in
Prolog", Springer-Verlag, 1981.

[Coulas87] Michael F. Coulas, Glenn H. MacEwen, and Genevieve Marquis,
"RNet: A Hard Real-Time Distribued Programming System", IEEE Trans. on
Computers., Vol 36, No 8, August 1987, Pages 917-937.

[DeRemer76] Frank DeRemer and Hans H. Kron, "Programming-in-the-Large
versus Programming-in-the-Small", IEEE Trans. on Software Engineering ,
Vol 2, No 2, June 1976, Pages 80-86.

136

References

[Dijkstra68] E. W. Dijkstra, "Co-operating Sequential Processes”, In Programming
Languages, Editor F. Genuys, Academic Press, 1968, Pages 43-112.

[Dijkstra71] E. W. Dijkstra, "Hierarchical Ordering of Sequential Processes”, Acta
Informatica, Vol 1, 1971, Pages 115-138.

[Dijkstra75] E. W. Dijkstra, "Guarded Commands, Nondeterminacy and Formal
Derivation of Programs”, CACM, Vol 18, No 8, August 1975, Pages 453-457.

[Dulay87] Naranker Dulay, Jeff Kramer, Jeff Magee, Morris Sloman and Kevin
Twidle, "Distributed System Construction: Experience with the Conic Toolkit",
In Experiences with Distributed Systems, Editor Jurgen Nehmer, Springer-
Verlag, LNCS 309, 1987, Pages 189-212.

[Ericson82] Lars Warren Ericson, "DPL-82: A Language for Distributed Processing",
In Proc. 3rd Intl. Conf. on Distributed Computer Systems, Miami/Fort
Lauderdale, 18-22 October 1982, IEEE, Pages 526-531.

[Feldman79] S. I. Feldman, "Make - A Computer Program for Maintaining Programs",
Software - Practice and Experience, Vol 9, April 1979, Pages 255-266.

[Foster86] David G. Foster, "Separate Compilation in a Modula 2 Compiler", Software
- Practice and Experience, Vol 16, No 2, February 1986, Pages 101-106.

[Goldberg83] A. Goldberg and D. Robson, "Smalltalk 80: The Language and its
Implementation”, Addison-Wesley, 1983.

[Guttag85] John V. Guttag, James J. Horning, and Jeannette M. Wing, "The Larch
Family of Specification Languages", IEEE Software, Vol 2, No 5 September
1985, Pages 24-36.

[Harel88] David Harel, "On Visual Formalisms", CACM, Vol 31, No 5, May 1988,
Pages 514-530.

[Hayes86] John P. Hayes, Trevor Mudge, Quentin F. Stout, Stephen Colley and
John Palmer, "A Microprocessor-based Hypercube Supercomputer”, IEEE
Micro, Vol 6, No 5, October 1986, Pages 6-17.

[Hayes87] Roger Hayes and Richard D. Schlichting, "Facilitating Mixed Language
Programming in Distributed Systems", Vol SE-13, No 12, December 1987,
Pages 1254-1264.

137

References

[Hoare68] C. A. R. Hoare, "Record Handling", In Programming Languages, Editor
F. Genuys, Academic Press, 1968, Pages 291-347.

[Hoare84] C. A. R. Hoare, "Communicating Sequential Processes”, Prentice-Hall
International, 1984.

[Hewitt85] Carl Hewitt, "The Challenge of Open Systems", Byte, April 1985, Pages
223-242. :

[Hillis85] W. D. Hillis, "The Connection Machine", MIT Press, 1985.

[Horning73] J. J. Horning and B. Randell, "Process Structuring", Computer
Surveys, Vol 5, No 1, March 1973, Pages 5-30.

[Hughes83] J. W. Hughes and M.S. Powell, "DTL: A Language for the Design and
Implementation of Concurrent Programs as Structured Networks", Software -
Practice and Experience, Vol 13, 1983, Pages 1099-1112.

[Hughes89] John Hughes, “"Why Functional Programming Matters", The Computer
Journal, Vol 32, No 2, April 1989, Pages 98-107.

[ISO85] "Specification of Abstract Syntax Notation One (ASN.1)", Draft International
Standard ISO/DIS 8824, TC97, 6 June 1985.

[Kahn88] Kenneth M. Kahn and Mark S. Miller, "Language Design and Open
Systems", In The Ecology of Computation, Editor B. A. Huberman, Elsevier
Science Publishers B. V. (North-Holland), 1988.

[Kaplan88] Simon M. Kaplan and Gail E. Kaiser, "Garp: Graph Abstractions for
Concurrent Programming”, In 2nd European Symp. on Programming ESOP
'88, Nancy, France, March 1988, Editor H. Ganzinger, Springer-Verlag,
LNCS 300, Pages 191-205.

[Kramer83] Jeff Kramer, Jeff Magee, Morris Sloman, and Andrew Lister, "CONIC:
an integrated approach to distributed computer control systems", IEE Proc., Vol
130, Part E, No 1, January 1983, Pages 1-10.

[Kramer85] Jeff Kramer and Jeff Magee, "Dynamic Configuration of Distributed
Systems", IEEE Trans. on Soft. Eng., Vol SE-11, No 4, April 1985, Pages 424-
436.

138

References

[Kramer88] Jeff Kramer and Jeff Magee, "A Model for Change Management", In
Proc. Workshop on the Future Trends of Distributed Computing Systems
in the 1990s, Hong Kong, 14-16 September 1988, IEEE, Pages 286-295.

[Kramer89] Jeff Kramer, Jeff Magee, Keng Ng, "Graphical Configuration
Programming", IEEE Computer, Vol 22, No 10, Pages 53-65.

[Kuck77]1 D. J. Kuck, "A Survey of Parallel Machine Organisation and Programming",
ACM Computing Surveys, Vol 9, Pages 29-59.

[Lampson83] Butler W. Lampson, "Hints for Computer System Design", ACM
Operating Systems Review, Vol 17, No 5, Proc. 9th ACM Symp. on
Operating Systems Principles, Bretton Woods, New Hampshire, 10-13
October 1983. Pages 33-48. Also in IEEE Software, Vol 1, January 1984,
Pages 11-28.

[Larus88] J. R. Larus and P. N. Hilfinger, "Restructuring Lisp Programs for
Concurrent Execution”, In ACM SIGPLAN PPEALS 1988 Parallel
Programming Experiences with Applications, Languages and Systems,
New Haven, Connecticut, July 19-21, 1988, SIGPLAN Notices, Vol 23, No
9, September 1988, Pages 100-110.

[LeBlanc82] Richard J. LeBlanc and Arthur B. Maccabe, "The Design of a
Programming Language Based on Connectivity Networks", In IEEE Proc. 3rd
Intl. Conf. on Distributed Computing Systems, Florida, October 1982,
Pages 532-541.

[LeBlanc85] Thomas J. Le Blanc and Stuart Friedberg, "HPC: A Model of Structure
and Change in Distributed Systems", IEEE Trans. on Computers, Vol 34, No
12, December 1985, Pages 1114-1129.

[Lee86] I. Lee, N. Prywes and B. Szymanski, "Partitioning of Massive/Real-Time
Programs for Parallel Processing", In Advances in Computers, Vol 25, Editor
M. C. Yovits, Academic Press, 1986, Pages 215-275.

[Leffler89] Samuel J. Leffler, Marshall Kirk McKusick, Michael J. Karels, John S.
Quaterman, "The Design and Implementation of the 4.3BSD UNIX Operating
System", Addison-Wesley, 1989.

139

References

[LeLann81] Gerard LeLann, "Motivations, Objectives and Characterization of
Distributed Systems", In Distributed Systems - Architecture and
Implementation, Editors B. W. Lampson, M. Paul and H. J. Siegert,
Springer-Verlag, 1981, Pages 1-9.

[Lesser79] V. Lesser, D. Serrain and J. Bonar, "PCL - A Process Oriented Job Control
Language", In Proc. 1st Intl. Conf. on Distributed Computer Systems, Pages
315-329.

[Levy84] Michael R. Levy, "Type Checking, Separate Compilation adn Reusability", In
Proc. ACM SIGPLAN '84 Symp. on Compiler Construction, SIGPLAN
Notices, Vol 19, No 6, June 84, Pages 285-289.

[Lim82] Willie Y-P. Lim, "HISDL: A Structure Description Language", CACM Vol
25, No 11, November 1982, Pages 823-830.

[Liskov83] Barbara Liskov and Robert Scheifler, "Guardians and Actions: Linguistic
support for robust, distributed programs", ACM TOPLAS, Vol 5, No 3, July
1983, Pages 381-404.

[Liskov84] Barbara Liskov, "Overview of the Argus Language and System",
Programming Methodology Group Memo 40, MIT Laboratory for
Computer Science, Februrary 1984.

[MacQueen86] David MacQueen, "Using Dependent Types to Express Modular
Structure", In 13th Annual ACM Principles of Programming Languages
Symposium, St. Petersburg, January 1986, Pages 277-286.

[Magee84] Jeffrey N. Magee, "Provision of Flexibility in Distributed Systems", PhD,
Department of Computing, Imperial College, University of London.

[Magee86] Jeff Magee, Jeff Kramer and Morris Sloman, "The Conic Support
Environment forDistributed Systems", In Proc. of the NATO Advanced
Study Institute on Distributed Operating Systems : Theory and Practice,
Altinyunus, Cesme, Turkey 18-29, 1986. Published as Distributed
Operating Systems, Editors Yakup Paker, Jean-Pierre Banatre, Muslim
Bozyigit, NATO ASI Series, Vol F28, Springer Verlag, 1987, Pages 289-310.

[Milner80] Robin Milner, "A Calculus of Communicating Systems", Springer-Verlag,
LNCS 92, 1980.

140

References

[Minsky83] Naftaly H. Minsky, "Localility in Software Systems", In Proc. 10th ACM
Symp. on POPL, Austin, Texas, January 24-26, 1983. Pages 299-312.

[Mitchell79] James G. Mitchell, William Maybury and Richard Sweet, "Mesa
Language Manual, Version 5.0", Xerox Parc Rept. CSL-79-3 , Palo Alto
Research Center, April 1979.

[Moor82] I. W. Moor, "An Applicative Compiler for a Parallel Machine", In Proc.
ACM SIGPLAN 82 Symp. on Compiler Construction, Boston, SIGPLAN
Notices, Vol 17, No 6, June 1982, Pages 284-293.

[Muhlenbein88] H. Muhlenbein, Th. Scheider, and S. Streitz, "Network
Programming with MUPPET", Journal of Parallel and Distributed
Computing, Vol 5, 1988, Pages 641-653.

[Ossher83] Harold L. Ossher and Brian Reed, "Fable: A Programming Language
solution to IC process automation problems", In Proc. SIGPLAN '83 Symp. on
Prog. Lang. Issues in Software Systems, San Francisco, June 27-29, 1983,
SIGPLAN Notices, Vol 18, No 6, June 1983, Pages 137-148.

[Ossher87] Harold L. Ossher, "A Mechanism for Specifying the Structure of Large,
Layered Systems", In Research Directions in Object-Oriented Programming,
Editors: B. Shriver and P. Wegner, MIT Press, 1987, Pages 219-252.

[Parnas72a] David L. Parnas, "A Technique for Software Module Specification with
Examples", CACM, Vol 15, No 5, May 1972, Pages 330-336.

[Parnas72b] David L. Parnas, "On the Criteria for Decomposing Systems into
Modules", CACM, Vol 15, No 12, December 1972, Pages 1053-1058.

[Perry87] Dewayne E. Perry, "Software Interconnection Models", In Proc. 9th Intl.
Conf. on Software Engineering, Monterey, California, March 1987, Pages
61-69.

[Quinn88] M. J. Quinn, P. J. Hatcher and K. C. Journdenais, "Compiling C*
Programs for a Hypercube Multicomputer”, In ACM SIGPLAN PPEALS 1988
Parallel Programming Experiences with Applications, Languages and
Systems, New Haven, Connecticut, July 19-21, 1988, SIGPLAN Notices,
Vol 23, No 9, September 1988, Pages 57-65.

141

References

[Randell86] B. Randell, "System Design and Structuring", The Computer Journal,
Vol 29, Vol 4, August 1986, Pages 300-306.

[Ringwood88] G. A. Ringwood, "Parlog86 and the Dining Logicians", CACM, Vol
31, No 1, January 1988, Pages 10-25.

[Robbins84] David C. Robbins, "Engineering a High-Capacity Pascal Compiler for
High Performance”, In Proc. ACM SIGPLAN '84 Symp. on Compiler
Construction, SIGPLAN Notices, Vol 19, No 6, June 84, Pages 300-309.

[Rudmik82] A. Rudmik and B. G. Moore, "An Efficient Separate Compilation
Strategy for Very Large Programs", In Proc. ACM SIGPLAN 82 Symp. on
Compiler Construction, Boston, SIGPLAN Notices, Vol 17, No 6, June
1982, Pages 301-307. |

[Scheifler86] R. W. Scheifler and J. Gettys, "The X Window System", ACM Trans. on
Graphics, Vol 5, No 2, April 1986, Pages 79-109.

[Schwanke88] Robert W. Schwanke and Gail E. Kaiser, "Smarter Recompilation”,
ACM TOPLAS, Vol 10, No 4, October 1988, Pages 627-632.

[Scott88] Michael L. Scott and Raphael A. Finkel, "A Simple Mechanism for Type
Security Across Compilation Units", IEEE Trans. on Soft. Eng., Vol 14, No 8,
August 1988, Pages 1238-1239.

[Seitz85] C. L. Sietz, "The Cosmic Cube", CACM, Vol 28, No 1, January 1985, Pages
22-33.

[Shapiro84] Ehud Shapiro, "Systolic Programming: A Paradigm of Parallel
Processing"”, In Proc. of the Intl. Conf. on Fifth Generation Computer
Systems 1984, edited by ICOT, November 1984, Pages 458-470.

[Sloman87] Morris Sloman and Jeff Kramer, "Distributed Systems and Computer
Networks", Prentice-Hall International, 1987.

[Stone71] H. S. Stone, "Parallel Processing with the Perfect Shuffle", IEEE Trans. on
Computers, Vol C-20, No 2, February 1971, Pages 153-161.

[Stefik86] Mark Stefik and Daniel G. Bobrow, "Object-Oriented Programming:
Themes and Variations", The AI Magazine, January 1986, Pages 40-62.

142

References

[Strom83] Robert E. Strom and Shaula Yemini, "NIL: An Integrated Language and
System for Distributed Programming", In Proc. SIGPLAN '83 Symp. on Prog.
Lang. Issues in Software Systems, San Francisco, June 27-29, 1983,
SIGPLAN Notices, Vol 18, No 6, June 1983, Pages 73-82.

[Stroustrup86] Bjarne Stroustrup, "An Overview of C++", ACM SIGPLAN Notices,
Vol 21, No 10, October 1986, Pages 7-18.

[Sweet85] Richard W. Sweet, "The Mesa Programming Environment", In ACM
SIGPLAN 85 Symp. on Lang. Issues in Prog. Environments, Seattle,
Washington, 25-28 June 1985, SIGPLAN Notices, Vol 20, No 7, July 1985,
Pages 216-229.

[Thakkar88] Shreekant Thakkar, Paul Gifford and Gary Fielland, "The Balance
Multiprocessor System", IEEE Micro, Vol 8, No 1, February 1988, Pages 57-
69.

[Thorelli85] Lars-Erik Thorelli, "A Language for Linking Modules into Systems", BIT,
Vol 25, 1985, Pages 358-378.

[Tichy79] W. F. Tichy, "Software Development based on Module Interconnection”, In
Proc. 4th Intl. Conf. on Software Engineering, Munich, September 1979,
Pages 29-49.

[Tichy86] W. F. Tichy, "Smart Compilation", ACM TOPLAS, Vol 8, No 3, July 1986.

[Turner86] David Turner, "An Overview of Miranda", ACM SIGPLAN Notices, Vol
21, No 12, December 1986, Pages 158-166.

[Turner87] David Turner, "Functional Programming and Communicating Processes",
In Proc. of the Conf. on Parallel Architectures and Languages Europe
(PARLE), Amstersdam, The Netherlands, June 15-19 1987, Editors J. W. de
Bakker, A. J. Nijman and P. C. Treleaven, LNCS 259, Springer-Verlag,
Pages 54-74.

[Walden84] K. Walden, "Automatic Generation of Make Dependencies”, Software -
Practice and Experience, Vol 14, No 6, June 1984, Pages 575-585.

143

References

[Watson87] P. Watson and 1. Watson, "Evaluating Functional Programs on the
FLAGSHIP machine", In Proc. 1987 Conf. on Functional Programming
Languages and Computer Achitecture, Portland, Oregon, 1987, Pages 80-
97.

[Weide82] Bruce W. Weide, Mark E. Brown, Jose A. S. Alegria, and Glen Meyer,
"A Graphical Interconnection Language and its Application to Concurrent
Programming", In Proc. 20th Annual Allerton Conference on
Communication, Control and Computers, University of Illinois, October
1982.

[Wirth82] Niklaus Wirth, "Programming in Modula-2", Springer-Verlag, 1982.

[Wirth88a] Niklaus Wirth, "Type Extensions", ACM TOPLAS, Vol 10, No 2, April
1988, Pages 200-214.

[Wirth88b] Niklaus Wirth, "The Programming Language Oberon", Software -
Practice and Experience, Vol 18, No 7, July 1988, Pages 671-690.

[Wolf85] Alexander L. Wolf, Lori A. Clarke and Jack C. Wileden, "Ada-Based
Support for Programming-in-the-Large"”, IEEE Software, Vol 2, No 2, March
1985, Pages 58-71.

[Wybrabietz85] Dieter Wybrabietz and Rolf Massar, "An Overview of LADY - A
Language for the Implementation of Distributed Operating Systems", SFB 124,
Report No 12/85, Universitat Kaiserlautern, Fachbereich Informatik, 1985.

144

Appendix I Conic Configuration Language
Definition

Version 3.0

N. Dulay
J. Kramer
J. Magee
M. Sloman
K. Twidle

July 1988

Department of Computing
Imperial College
University of London
180 Queens Gate
London SW7 2BZ

ABSTRACT

Conic provides an integrated approach to the design, implementation and management
of distributed computer systems. The software methodology distinguishes between the
programming of individual software modules and the configuration of a system from
a set of instances of such modules. This distinction facilitates the programming of task
modules without knowledge of the configuration in which they will be used, and also
allows modification of a configuration without recompilation of its constituent
modules.

This report defines the configuration language for Conic in which sequential task
modules are identified, instantiated and interconnected into group modules. The
configuration language also allows group modules to be identified, instantiated and
interconnected allowing distributed systems to be built by hierarchic composition of
task modules and group modules.

Keywords
Distributed programming; configuration language; message passing; module;
port; task; interprocess communication.

Acknowledgements

Acknowledgement is made to the National Coal Board for a grant in aid of
these studies, but the views expressed are those of the authors and not neces-
sarily those of the Board.

145

Appendix [Conic Configuration Language Definition

Contents

1. Introduction
1.1 Configuration Language Overview
1.2 Programming Language Overview

2. Notation and Vocabulary
2.1 Syntax
2.2 Special Symbols and Word Symbols
2.3 Comments
2.4 Identifiers
2.5 Expressions

3. Group Modules
3.1 Group Module Heading
3.2 Constant Definitions
3.3 Context Definitions (The Use Construct)
3.3.1 Importing Module Types
3.3.2 Importing Constants and Datatypes
3.4 Group Module Interface (Port Declarations)
3.5 Module Instantiation (The Create Construct)
3.6 Module Interconnection (The Link Construct)

References

Appendix A Examples

146

Appendix |

1. Introduction

This report defines the Conic configuration
language for building distributed systems. This
is the language used to specify module instances
and their interconnections [3]. The language
used to program task modules is defined in a
companion report [1].

1.1. Configuration Language Overview

Systems in Conic consist of interconnected sets
of module instances, described by a
configuration specification. Systems may be
implemented as distributed or non-distributed
configurations on single or multiprocessors. The
configuration specification identifies the module
types from which the system will be con-
structed, declares the instances of these types
which will exist in the system and describes the
interconnection of the instances by the links
between their exitports and entryports. These
three functions are termed context definition,
module instantiation and module interconnec-
tion respectively.

The module types used in a configuration
specification may be task modules containing a
single sequential task or collections of modules
called group modules. In Conic, group modules
are configuration specifications and so define a
module type that can be used in other
configuration specifications. This allows systems
to be constructed by the hierarchic composition
of primitive task modules and composite group
modules. Group modules that are distributable
are termed nodes. The components of a node
may share procedure and function code and pass
pointer values in messages.

1.2. Programming Language Overview

The Conic programming language [1] is defined
as an extension to ISO Pascal [4]. The unit of
programming is the task module. The task
module interface is specified by declaring typed
entryports and exitports, and by declaring task
module parameters. The other main extension
to Pascal is the inclusion of message communi-
cation primitives.

The primitive operations on ports are sending
and receiveing messages. The primitive opera-
tions support two types of message transaction:
request-reply and notify. The request-reply
transaction provides bidirectional, synchronous
message passing, while the notify transaction is
unidirectional and asynchronous. A fail clause
may be used to withdraw from a request-reply
send. There is, in addition, a select statement

Conic Configuration Language Definition

provided for selection from one of a set of ports
from which messages may be received. Within a
select, a guard can be used to mark a receive
statement as ineligible for selection. A timeout
can be used to withdraw from the select. In the
case of the request-reply transaction, two further
operations are provided: forward, in order to
pass a request on to a third party for service,
and abort, to cause the current transaction to
fail.

In addition to the task module unit, a definition
module unit is provided enabling tasks to be
constructed in modular way.

2. Notation and Vocabulary

2.1. Syntax

The syntax is given as in the extended form of
traditional BNF used in the Pascal Standard [4]
and the Conic Programming Language Report
[1], except that the metasymbol xyz (shown
bolded) is used as an alternative to the
metasymbol "xyz" to represent terminal sym-
bols. The metasymbol [construct]* -- for zero or
more repetitions is used rather than the
metasymbol {construct}. UPPERCASE letters
are not significant in non-terminal meta-
identifiers, but serve as additional comments.

2.2. Special Symbols and Word Symbols

The Conic configuration language vocabulary
consists of special symbols, identifiers, numbers
and strings.

special-symbol =
II[" I ll]" I "(Il I ")" I ":" I ";" I l'," I ".Il I "..'l
(I B I L R B I A Bl P
| |'<l' l ">" I Il<='l I ll>=N I ll_" I WOrd-
symbol .

word-symbol =
and | at | const | create | div | end |
entryport | exitport | family | from |
group | link | mod | module | not | or |
reply | to | use | when .

2.3. Comments
The constructs

{ any sequence of characters not containing
a right brace "}"

or

-- any sequence of characters not containing
a new line

Appendix 1

may be inserted between any two identifiers,
constants and special symbols as a comment.
Comments may be nested, and do not affect the
meaning of the specification. The dclimiters (*
and *) may be used for the delimiters { and)
respectively.

2.4. Identifiers

Identifiers are used as names of constants, data-
types, ports, definition modules, module types,
module instances and ranges. Their association
must be unique within their scope of validity,
i.e. within the scope in which they are defined.
The scope of a constant, datatype, port,
definition module, module type or module
instance identifier extends from its defining
point (the point at which it is first introduced)
to the end of the configuration specification. The
scope of a range identifier extends from its
defining point to the end of the construct in
which it is defined.

id =
identifier .
identifier =
[letter | break-char]
[letter 1 digit | break-char]* .

letter =
"a" l llb" l "c" I "dll I "ell l l'fll I llg“ I "h"

|
"i" l "jn ' "k" I "l" I nmvl I "nu l "o" l "pll I

q I "rl' | IIS" I "[" I "u" I "v" I "wll I "xll I
"yll I n_un .

digit =
"0" I "1" I l|2" I "3" I "4" I IISII l "6" I "7" I
"8[' l "9" .

break-char =

" on

Identifiers may be of any length. All characters
(except embedded break-char’s) are significant
in distinguishing between identifiers. No
identifier may have the same spelling as a
word-symbol. The case (upper or lower) of
letters is not significant.

The following identifiers are pre-defined:

constants false, true, maxint, maxnat, maxlon-
gint and signalvalue.

datatypes boolean, char, integer, real, byte,
natural, longint, address, signaltype,
and string.

ports implementation-defined.

148

Conic Configuration Language Definition

2.5, Expressions

Expressions are a subset of the more general
expressions found in Pascal and the Conic pro-
gramming language. The main restriction is that
variables, set expressions, and the value nil are
prohibited, and that functions can only take
value parameters. Range identifiers are allow-
able factors. Expressions are evaluated as in
Pascal and the Conic programming language.

expr =
expression .

expression =
simple-expression [
simple-expression] .

relational-operator

simple-expression =

[sign] term [adding-operator term]* .
term =

factor [multiplying-operator factor]* .

factor =
not factor | "(" expr ")" | CONSTANT-id |
RANGE-id | number | character-string |
string-string | function-designator .
relational-operator =
"=l' | "<>" l "<Il I I'>" I I1<=1l I l'>="
adding-operator =
"+" l ll_ll I or .
multiplying-operator =
"** 1" 1 div I mod | and .
sign =
l|+" | ll_" .
number =
unsigned-integer | unsigned-real .
unsigned-integer =
digit [digit 1* ["#" type-suffix] |
binary-digit [binary-digit 1* "#2"
[type-suffix] |
octal-digit [octal-digit]* "#8"
[type-suffix] |
digit { hex-digit]* "#16"
[type-suffix] .
type-suffix =
"C" l l|n" l "lll .
binary-digit =
IVOII I "1" .
octal-digit =
"0" I lll" I "2" | "3" l "4" I "5" I 116" I |l7ll .
hex-digit =

digi[, "an I "b" l "C" ' "dn l uen ‘ "]0! .

Appendix |

Conic Configuration Language Definition

unsigned-real =
digits "." digits ["e" [sign] digits] |
digits "e" [sign] digits .

character-string =
" * " string-element [string-clement]* " °

n

string-element =
any-character-except-single-quote |

string-string =
" " " string-char [string-char J* " " ",

string-char =
any-character-except-double-quote

I nonnon

3. Group Modules

A configuration specification defines a group
module type (possibly with formal parameters)
from which group module instances (with actual
parameters) can be created. The specification
identifies the component module types (which
may be task module types or group module
types), declares instances of these types, and
describes the interconnection of these instances
by the links between their exitports and
entryports. These three functions are termed
context definition, module instantiation and
module interconnection respectively. Like the
task module, the group module may have a
message passing interface consisting of typed
entryports and exitports. These ports can be
linked to the ports of constituent module
instances with the link construct (section 3.5).

In this report the word module is used as gen-
eric term for the terms task module and group
module.

configuration-specification =
group-module-header
[specification-part]*
end "." .

specification-part =
constant-definition | context-definition |
port-declaration | module-instantiation |
module-interconnection .

3.1. Group Module Heading

The group module header specifies the name of
the group module type and the formal parame-
ters of the group module if any.

group-module-header =
group module GROUP-MODULE-id

(X1

["(" formal-parameters ")"] ";" .

formal-parameters =
parameter-specification
[";" parameter-specification J* .

parameter-specification
constant-parameters | instance-parameters .

constant-parameters =
CONSTANT-id ["," CONSTANT-id J*
STANDARD-DATATYPE-id
[default-value].
default-value =

"_n

=" constant .

instance-parameters =
MODULE-INSTANCE-id
"," MODULE-INSTANCE-id]*
":" MODULE-TYPE-id .

The formal parameters of a group module can
be constant parameters or instance parameters.
Constant parameters specify a constant identifier
and its datatype. Instance parameters specify a
module instance identifier and its module type,
which must be imported into the group module
via a context definition (section 3.3.1).

The value of a parameter is set by the
corresponding actual parameter when the group
module is instantiated.

The standard datatype identifiers boolean, char,
integer, real, byte, natural, longint, address, sig-
naltype and string are provided for all group
modules. Their definitions are the same as those
in the Conic programming language (1] and
Pascal [4].

Default values can be specified for constant
group module parameters. Group modules with
default values need not have the corresponding
actual parameters supplied.

Examples

group module bank (name:string="Midland’; sortcode:longint);
group module employee (name:string; branch:bank);

group module line (x,y:real=0.0);

3.2. Constant Definitions

As in Pascal, constant definitions can be used to
introduce identifiers that denote specific constant
values.

Appendix |

constant-definition =
const constant-definition-part ";"
{ constant-definition-part ";"]* .
constant-definition-part =
CONSTANT-id "=" constant .

constant =
[sign] (number | CONSTANT-id) |
character-string | string-string .

Examples

const
max_ports=45;
zero=0.0;
day="monday’;
month="july";

3.3. Context Definitions (The Use Construct)

The types and constants from which the group
module is constructed need to be imported into
the group module by one or more context
definitions.

context-definition =
[from-clause]

"

use context [";" context]* ";" .

from-clause =
from character-string .

context =
module-type-context | datatype-context .

The from-clause specifies an implementation-
dependent environment (e.g. a file, directory,
pathname, database etc.) from which the
specified definition modules can be accessed. If
the from-clause is omitted, some default
implementation-defined environment is assumed.

3.3.1. Importing Module Types

The module types from which the group module
is constructed need to be imported into the
group module by one or more module type con-
texts.

module-type-context =
MODULE-TYPE-id .

Module type
identifiers used to name the module in
corresponding task or group module header.

Examples

from ' lusr/liblwindows’ use
window, menu_manager, cursor,;

identifiers correspond to the
the

from ' .[msdos’ use
dos_filesys;

use

150

Conic Configuration Language Definition

lance_driver;

3.3.2. Importing Constants, Datatypes and
Functions

Common constants, datatypes, and functions can
be imported from definition modules [1] using
a datatype-context, which make them known
inside the module.

datatype-context =
DEFINITION-MODULE-id ":"

object ["," object 1* .

object =
LOCAL-id ["<" EXTERNAL-id ">"].

Definition-module-id specifies the name of the
definition module from which the specified
definitions are to be imported. The name that
the definition, is to be known as, within the
importing module is specified by local-id.
External-id specifies the name that the definition
is known as, within the specified definition
module, if omitted, external-id defaults to
local-id.

Note: Imported functions must not access vari-
ables global to the function, and only value
parameters are permitted in imported functions.

Examples

from ' lusr/lib/sys:[usr{fred/mydir’ use
object_defs : object_size, object_type;

use
ascii : newline <lf>, return <cr>, stx;

34. Group Module Interface (Port Declara-
tions)

Like task modules, group modules may have
message passing interfaces that are specified by
port declarations which specify a port name and
its port type. Ports can be connected to the ports
of instantiated modules with the link construct
(section 3.6).

Appendix I

port-declaration =
(entryport | exitport)
port-declaration-part
[";" port-declaration-part J* ";" .

port-declaration-part =

port-list ":" REQUEST-MSG-TYPE-id

[reply REPLY-MSG-TYPE-id] .

port-list =

port-declarer ["," port-declarer]* .
port-declarer =

PORT-id [range] .
range =

"[" expr ".."

expr "]" .

Message type may be any standard type or any
imported datatype. Ports are declared with a
port type which defines the type of value which
may be sent or received (the port request type),
and for request-reply transactions, the type of
value which may be a reply (the port reply
type). Notify entryports and notify exitports
have no reply parts.

Families of entryports and exitports can be
declared by suffixing a range with the port
identifier. This is analogous to declaring arrays
in Pascal. Ranges are restricted to being

subranges.
Examples
exitport

getch : char reply signaltype;
entryport

openfile : open_req reply file_id;
exitport

alarms [char] : boolean;

entryport
std_channel [0.2] : channel_req reply integer;

3.5. Module Instantiation (The Create Con-
struct)

Module instances are created from module types
by one or more module instantiations. A module
instantiation declares the name of the module
instance, specifies the module type from which
it is to be instantiated and optionally specifies a
location for the created instance. If the module
type has parameters, actual parameters may also
need to be specified.

Families of module instances can be declared
by defining a range identifier and an associated
range, and using the range identifier to index
family instances. The effect of a module family
declaration is to repeat the create construct over
the specified range with range-identifier taking
successive values of the range. The scope of
range-identifier is restricted to the create con-

151

Conic Configuration Language Definition

struct in which it is defined.

module-instantiation =
[when guard]
create [family range-declarer]
[at location]
instance-declaration
[";" instance-declaration 1* ["}"]

guard =

BOOLEAN-expression .
range-declarer =

RANGE-id ":" range .
location =

instance-name

instance-declaration =
[instance-declarer ":"]
MODULE-TYPE-id
["(" actual-parameters ")"] .

instance-declarer =
MODULE-INSTANCE-id
["[" RANGE-id "]" 1.
actual-parameters =

actual-parameter ["," actual-parameter]*

actual-parameter =
positional-parameter | named-parameter |
location .

positional-parameter =
expression

named-parameter =
CONSTANT-id "=" expression

instance-name =
MODULE-INSTANCE-id ["[" expr "]"]

Actual parameters must correspond in type to
the formal parameters of the specified module

type.

Actual parameters in create clauses can be
specified by name (position-independent) or by
position. Named parameters can be mixed with
positional parameters. If the parameter follow-
ing a named parameter is an un-named parame-
ter, it is assumed to correspond to, the formal
parameter following the formal parameter
corresponding to the named actual parameter.
Note: if an positional-parameter expression
starts with an identifier that is the same name as
any formal parameter of the module to be
created, then a named parameter must be used,
even if it is only of the form
parametername=parametername.

Appendix I

If the specified module type has no default
values, and no named parameters are used, then
the actual parameters used must correspond in
number, order and type to the formal parameters
of the specified module type.

If a module instance name is not specified the
module type identifier is overloaded and used as
the module instance name. A module type
identifier may only be overloaded once.

If a module instantiation begins with a when-
clause, then the instance declarations following
are only elaborated if the guard evaluates to
true.

Instantiation of a module type causes the
entryport and exitport names of the module type
to be "inherited" by the module instance. The
ports of an instantiated module are selected by
prefixing the port name by the instantiated
module name followed by a dot character (sec-
tion 3.6).

Location specifies a module instance at which
the created instances are to be co-located. If the
location is omitted, the created instances will be
located at the same location as the encapsulating
group module instance i.e. the location is
deferred until an instance of the group module
type is created.

Examples

create family k : [1..max_alarms]
alarm : window (0.k+(k-1)*15,k+k*15,12,18);

create
interrupt : handler (signal=SIGINT),

create family k : [1..elements] at transputer [k]
[t [k]: fast_fourier;

creale
driver : serial_driver (retries=10),;

when n>0 create
next : myself (n=n-1);

3.6. Module Interconnection (The Link Con-
struct)

Modules are connected together by linking
source ports to sink ports. A source port is
either a group module entryport (section 3.4) or
a module instance exitport. A sink port is either
a group module exitport or a module instance
entryport. Linked ports must be of the same port
type. '

Families of modules and/or families of ports
can be linked by defining one or more range
identifiers and associated ranges, and using the
range identifiers as constants in expressions that
index the port or module families. The effect of

152

Conic Configuration Language Definition

a family linkage is to repeat the link construct
over the specified ranges with range-identifiers
taking successive values of their corresponding
range. When more than one range is specified,
repetitions are nested and performed in an
analogous way to nested loops in Pascal; the
first range being the outermost range, the last
range being the innermost range. The scope of a
range-identifier is restricted to the link construct
in which it is defined.

module-interconnection =
[when guard]
link [family-part]
link-specification
{";" link-specification J* ";" .
link-specification =
source-port-list to sink-port-name |
source-port-name to sink-port-list

source-port-list =
source-port-name ["."
*.

sink-port-list =
sink-port-name ["," sink-port-name]* .

source-port-name

source-port-name =

ENTRYPORT-id |
instance-name "." EXITPORT-id
([expr)" 1.
sink-port-name =
EXITPORT-id |
instance-name "." ENTRYPORT-id
["{" expr"]"1].
family-part =

family range-declarer
["," range-declarer J* .

Entryports may have more than one exitport
linked to them. Notify exitports may be linked
to more than one notify entryport. Request-
reply exitports cannot be linked to more than
one request-reply entryport.

If a module interconnection begins with a
when-clause, then the links specifications fol-
lowing are only elaborated if the guard evalu-
ates to true.

Examples

link
multiplexor.transmit to line_driver.transmit;
link family k:(1..n]
worker(k].transmit to line_driver.transmit;
worker(k].received to line_driver.received;

link family k:[0..no_of_windows-1]
alarm{k].owt_string to window[k] . window;
window(k].write_out to console.write_string,

Appendix |

link family j:[0. ports-1]

ringxp [j] to ring.ep [(j+1) mod ports]

link family m:{1..mm], p

alpha[m] xport(p] to[alpha]{m] eport(p],

beta[m].eport[p],
gamma([m].eport;

gamma(m] xport[p] to delta.eport[p],

group_xport[p];

epsilon[m] xport[p],
group_entryport to zeta{m].eport[p];

when (mm>4) and (pp>4)
link family m1:{1..mm], pl:[1..pp],

m2:{1.mm], p2:[1..pp]

PP
psi[ml] xport[pl] to omega[m2].eport[p2];

References

(1]

(2]

(3]

(4]

Dulay N., Kramer J., Magee J., Sloman
M., Twidle K.: 'The Conic Programming
Language - Version 3.0°, Conic
Programmer’s Manual, Dept. of Comput-
ing, Imperial College, July 1988.

Sloman M., Kramer J.: 'Distributed Sys-
tems and Computer Networks’, Prentice-
Hall International, 1987.

Dulay N., Kramer J.,, Magee J., Sloman
M., Twidle K.: ’Distributed System Con-
struction: Experience with the Conic
Toolkit’, Proc. Intl. Workshop on Experi-
ences with Distributed Computer Systems,
Kaiserslautern, Germany, September 1987,
Publ. in Lecture Notes in Computer Sci-
ence 309, Springer-Verlag, pp 189-212.

ISO 7185: ’Specification for Computer
Programming language Pascal’, Intema-
tional Standards Organisation. Also pub-
lished as BS 6192:1982 by the British
Standards Institute.

153

Conic Configuration Language Definition

Appendix 1

Conic Configuration Language Definition

APPENDIX A EXAMPLES

Example 1 -- The Neo-Classic Patient Monitoring System

GROUP MODULE nurse (maxbed:Integer);

USE
monmsg: bedtype, alarmstype;
ENTRYPORT
AlarmIn(1..maxbed] :alarmstype;
EXITPORT
BedOut(1.maxbed] :signaitype REPLY bedtype;

USE

" execcom; windman;

CREATE exec:execcom;
ErrorW:windman(3,1,80,19,21);

LINK
exec.error TO ErrorW.window;

{ patlent monltoring modules }

USE
disp; ncom; bedsel; alrm;

CREATE
display : disp(2);
command : ncom;
window : windman(0,15,65,1,11);

selector ; bedsel;
LINK
display.beddetalls TO selector.BedIn;
d_bedselect TO sel hedsel

display.stdwrite TO window.window;

CREATE FAMILY k:[1.maxbed]
AlarmD{k] : alrm(k);

AlarmW(k] : windman(0,k+(k-1)*15,k+k*15,12,18);

LINK FAMILY k:[1-maxbed]
AlarmD{k).std_write TO AlarmW[k].Window;
AlarmiIn(k] TO AlarmD[k]alarminput;
selector.BedOut(k] TO BedOut{k];

154

Appendix I

GROUP MODULE patlent;

USE

monmsg: bedtype, alarmstype;
EXITPORT

alarmoutput : alarmstype;
ENTRYPORT

BedlIn : signaltype REPLY bedtype;

USE
execcom; windman;

CREATE
exec:execcom;

ErrorW:windman(6,1,80,13,15);

LINK
exec.error TO ErrorW.window;

(patient monitoring modules }

USE
sim; monit; dlsp; com;

CREATE
scanner : sim(2);
monltor : monlt;
display : dlsp(2);
command : com;
window : windman(0,15,65,1,11);

LINK
scanner.sensoroutput TO monltor.sensorinput;
display.beddetalls TO itor.beddetalls;

d patlent TO itor.change;
display.stdwrite TO window.window;
BedIn TO monitor.beddetails;
monitorAlarmOutput TO AlarmOutput;
END.

GROUP MODULE ward (nbed:Integer);

USE
patient;
nurse;
transputer;

CREATE FAMILY k:(l.nbed+1}
node : transputer(k);

CREATE AT node[nbed+1}
nurse (nbed);

CREATE FAMILY k:(1.nbed) AT node[k]
bed(k]:patient;

LINK FAMILY k:[1.nbed]
nurse.BedOut(k] TO bed(k].BedIn;
bed{k]alarmoutput TO nurse.Alarmin[k];

155

Conic Configuration Language Definition

Appendix 1 Conic Configuration Language Definition

Example 2 -- Batcher’s Bitonic Sort

8
GROUP MODULE batcher(n:integer=8);
#include <node.h>

USE sort;
Interface;
CREATE
sort(n=n);
interface(n=n);

LINK FAMILY [:[0.n-1]
Interfaceout{i] TO sortinput{i];
sort.output{l] TO Interface.inp(l];
END.

GROUP MODULE sort(n:integer);

ENTRYPORT Input{0.n-1]:integer;
EXITPORT output{0..n-1]:integer;

USE bltonic;
CREATE bitonic(n=n);

LINK FAMILY [:(0.n-1)
bitonic.output(i] TO output{l];

WHEN n>2 CREATE
ascend:sort(n= n DIV 2);
descend:sort(n= n DIV 2)

WHEN n>2 LINK FAMILY [[0.(n DIV 2) -1]
Input(l] TO ascend.input(l];
Input{(n DIV 2) +I] TO descend.Input(i];
ascend.output{l] TO bltonic.Input(i];
descend.output[(n DIV 2)-1.i] TO bitonlc.input{(n DIV 2)+l];

WHEN n=2 LINK FAMILY 1:(0..1)
Input(l] TO bitonlc.lnput(l);

GROUP MODULE bltonic(n:Integer);

ENTRYPORT Input{0.n-1}):integer;
EXITPORT output[0.n-1]:integer;

USE comparator;

CREATE FAMILY [:{0.(n DIV 2)-1)
ce{l}:comparator;

LINK FAMILY §(0-(n DIV 2)-1]
Input(l] TO cel)a;
Input[(n DIV 2)+i] TO ce[l].b;

WHEN n>2 CREATE
low:blitonic(n= n DIV 2);
high:bitonic(n= n DIV 2);

WHEN n>2 LINK FAMILY ©:{0..(n DIV 2)-1}
ce[illow TO low.inputil];
ce[l).high TO hightnput{l];
fow.output{l) TO output{l};
high.output{l] TO output{(n DIV 2)+1];

WHEN n=2 LINK
ce[0)low TO output{0];
ce[0).high TO output[l];
END.

156

Appendix I

TASK MODULE comparator;

ENTRYPORT
a,b:integer;
EXITPORT
fow,high:integer;
VAR
av,bv:integer;
BEGIN
Loor
RECEIVE av FROM 1;
RECEIVE bv FROM b;
IF av<=bv THEN BEGIN
SEND av TO low;
SEND bv TO high;
END
ELSE BEGIN
SEND bv TO low;
SEND av TO high;
END;
END;
END.

TASK MODULE Interface(n:integer);
EXITPORT
out(0..127):Integer;
ENTRYPORT
Inp{0..127]:Integer;
VAR
Input,outputstext;
I,v:Integer;
BEGIN
LooP
write(n:1,">');
flush(output);
FOR k=0 TO n-1 DO
BEGIN
read(v);
SEND v TO out[l};
END;
readin;
write(’sorted:- *);
FOR 1:=0 TO n-1 DO
BEGIN

RECEIVE v FROM Inp(i});

write(* °,v:1);
END;
writeln;
flush(output);

157

Conic Configuration Language Definition

Appendix II Symbol File Syntax

Metalanguage
The format of symbol files is given in a boxed form of BNF as defined below:
Terminal symbols are written in UPPERCASE.

Non-terminals are written in lowercase with the first letter of each word in upper
case.

Non-terminals may be prefixed by a label and colon (:). Labels are used purely
for exposition.

A * suffix denotes zero or more repetitions.
A + suffix denotes one or more repetitions.

Productions are shown boxed, with the rule specified in the box and the non-
terminal above the box.

Symbol File
Magic Number Section
Directory Table Section

Component Section
Parameters Section
Identifier Section
Type Extensions Section
Debugging Section

Magic Number Section
[Magic Number : Integer |

Directory Table Section
Length : Integer
Directory Name: String *

Component Section
[Comp : Component ID + |

158

Appendix 11 ‘ Symbol File Syntax

| Null]

Component 1D
Name : String
Comp Number : Integer
Home : Integer
Time Stamp

Time Stamp
Epoch : Longint
Unix Process Id : Integer

Parameters Section

Parameter Identifier
Null

Identifier Section
Identifier *
Null
Identifier
(Port Identifier | Type Identifier | Constant Identifier | Field Identifier | Parameter Identifier
| Nil Identifier)

Common Id Part
Id Name : String
Owner : Integer
Id Type : Type Structure
Next : Identifier

Nil Identifier
| Id Kind : Null

Port Identifier
ID Kind: PORT
Common Id Part
Port Kind: (EP | XP)
Port Number : Integer

Type ldentifier
Id Kind : TYPE
Common Id Part

Constant Identifier
Id Kind : CONSTANT
Common Id Part
Value : (Integer | String)

Field Identifier
Id Kind : FIELD
Common Id Part
Offset : Integer

Parameter Identifier
Id Kind : PARAMETER
Common Id Part
Parameter Position : Integer

Type Structure
(Standard Type | Embedded Type | Read type | Message Type | Subrange Type |
Enumerated Type | Array Type | Record Type | Set Type | Pointer Type)

159

Appendix I ~ Symbol File Syntax

Standard Type
[Key : (NIL | BOOLEAN | CHAR | INT | REAL | BYTE | NATURAL | LONGINT | STRING) |

Read Type
[Key : Integer |

Common Type Part
Key : Integer
Byte Size : Integer
Packed : Boolean

Message Type
Common Type Part
Form : MESSAGE
Request Type : Type Structure
Reply Type : Type Structure

Enumerated Type
Common Type Part
Form : ENUMERATED
First : Constant ldentifier

Subrange Type
Common Type Part
Form : SUBRANGE
Low Value : Integer
High Value : Integer

Base Type : Type Structure

Array Type
Common Type Part
Form : ARRAY
Index Type : Type Structure
Element Type : Type Structure

Record Type
Common Type Part
Form : RECORD
Super Type : Type Structure
First : Field Identifier

Set Type

Common Type Part
Form : SET
Base Type : Type Structure

Pointer Type
Common Type Part
Form : POINTER
Base Type : Type Structure

Embedded Types
Zero Key : Integer
Type Identifier
New Key : Integer

Type Extension Section
Extension *
Null

160

Appendix I Symbol File Syntax

Extension
Subtype Owner : Integer
Subtype Key : Integer
Supertype Owner : Integer
Supenrtype Key : Integer

String
Non-Zero Bytes : Byte *
Null

Longint
Low Integer : Integer
High Integer : Integer

Integer
Low Byte : Byte
‘High Byte : Byte

Null
[Zero Value : Byte |

Byte
| Value in 0..255 B

161

