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Abstract

Most conventional languages for distributed programming combine the notions 
of algorithmic programming, non-local interaction and program  structuring 
within a single programming language. This leads to programs that hide their 
structure and that lack the ability to support dynamic program modification at a 
high level of abstraction.

This thesis presents an alternative approach to developing distributed programs 
that separates the structural organisation of a distributed program  from the 
algorithmic implementation of its parts and leads to distributed programs that 
are easier to describe, construct and manage. This is achieved by using a separate 
language, term ed a configuration language, to describe the structure of a 
distributed program and for its construction and reconfiguration.

The configuration language is declarative and supports both m odular 
construction and type safe interactions. The language allows hierarchic, 
replicated, variant, parameterised, switching and recursive program structures to 
be specified. An interactive version of the language includes further declarations 
to dynamically modify the structure of running programs. The implementation 
model for the language supports incremental development. It allows program 
sub-structures to be compiled in isolation on possibly heterogeneous hosts and 
then safely configured into the running program.'

This thesis presents

• the configuration language for the description of the structural topology of a 
distributed system program m ed as a set of configuration-independent 
processes.

• an abstraction mechanism, called a group module for structuring systems as 
a hierarchy of interacting subsystems.

• a method for transforming the hierarchic structure (and possibly recursive) 
of a program into a more efficient heterarchic structure.

• techniques for efficiently compiling distributed programs constructed with 
this language into distributable units called nodes.

• techniques for distributing and reconfiguring the nodes of a distributed 
program across a heterogeneous collection of processors.

A set of example programs that demonstrate both the utility and expressive 
power of the language are given. The language has been implemented within the 
context of the Conic environment and is in use at several institutions around the 
world.
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Chapter O ne Introduction

1.1. INTRODUCTION
The structure of distributed programs and the extent to which that structure is 
visible significantly affects the clarity of distributed programs [Ossher87]. Clarity, 
in turn, can favourably affect other important goals for distributed programs 
such as modularity, reusability, reliability and modifiability as well as aiding 
distributed program design and debugging [DeRemer76, Horning73]. For these 
reasons, distributed program structuring and the clarity of its specification are of 
central importance to distributed program development.

Distributed programs consist of collections of smaller components. The precise 
nature  of these components depends on the nature of the distributed 
programming system being used, but typically comprise executable components, 
such as processes, m odules, and procedures, as well as non-executable 
components such as data variables, files and communication buffers . The 
organisation and interaction of the components of a distributed program together 
constitute the structure of a distributed program  and as the dem ands for 
distributed programs increases, so does the requirement for mechanisms and 
notations specifically for organising and managing the structural complexity of 
resultant programs [Randell86].

Most current languages have some mechanisms for structuring programs. For 
example, many languages include import-export declarations which describe and 
control the interactions between modules and have data structuring mechanisms 
which specify the organisation and interaction of the data used w ithin a 
program. Such mechanisms are quite good for small sequential programs that 
consist of an amorphous collection of modules, but are bad at describing the 
richer variety of program  structures possible for distributed programs. New, 
more flexible program structuring mechanisms are needed for describing the 
structural complexity of distributed programs.
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Chapter One Introduction

As DeRemer and Kron point out in their seminal work [DeRemer76], the process 
of structuring programs, which they term "programming-in-the-large", is an 
intellectually different activity from algorithmic programming. Many current 
languages for distributed programming tend to combine the notions of program 
structuring, algorithmic programming, and non-local interaction within a single 
program m ing language. Unfortunately, this leads to programs that hide their 
structure and are harder to design, construct, and debug as w ell as being more 

difficult to manage and dynamically modify.

A num ber of distributed programming systems have recognised the different 
processes involved by embodying notations for program structuring within a 
separate linguistic framework. Such languages have been called a variety of 
nam es in the lite ra tu re  including m odule in terconnection languages 
[DeRemer76], graphical interconnection languages [Weide82], netw ork 
specification languages [LeBlanc82] and configuration languages [Dulay87, 
Lee86]. This thesis focuses on the provision of an integrated program structuring 
language and toolkit for the development of distributed programs.

1.2. THE PROBLEM ENVIRONMENT
Compared to single processor computer systems, distributed computer systems 
prom ise m any im portan t advantages, for exam ple h igh  availability, 
expandability, performance, resource sharing, de-centralisation, and cost- 
effectiveness [LeLann81]. Higher availability results from the replication of 
resources such as processors and file systems that is a common feature of 
distributed systems. The failure of a single resource in the system need only 
result in graceful degradation. Similarly expansion of a running distributed 
system can carried out with little or no effect on existing users. Distributed 
systems can in general be extended to a much greater degree before the onset of 
performance bottlenecks. Claims for infinite expandability have been made for 
some distributed architectures e.g. hypercubes [Sietz85]. M any distributed 
systems are also designed to offer higher performance, e.g. speed, throughput, 
problem-solving capacity. This is achieved by parallel execution of programs. 
The above characteristics make distributed systems the preferred approach to the 
future computing requirements of many organisations.

Many flavours of distributed system are now available, for example, shared 
memory multi-processors such as the Sequent Balance [Thakkar88], tightly 
coupled point-to-point computers such as the NCUBE [Hayes86], and loosely
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Chapter One Introduction

coupled netw orked computers such as clusters of Sun workstations. In the 
research community, on-going work on fine-grained machines such as dataflow  
machines, graph reduction machines and connectionist machines m ay lead to 
highly parallel system s. Modern m achines also feature greater connectivity  
ability, and the growing trend towards opens systems is likely to accelerate as 
dem ands from users for sharing and exploitation of com puting resources 
increase. Computer system s can no longer operate in "splendid” isolation and 
must be programmed for coordinated operation [Sloman87].

A uniform approach to programming these heterogeneous distributed systems 
will clearly be needed. One way of tackling this, is by reconsidering the 
requirements for distributed programming and seeing if a simpler, more natural 
programming paradigm can be developed.

1.3. THE CONIC TOOLKIT
The work in this thesis has been implemented and is available as part of the 
Conic toolkit at Im perial College [Dulay87]. The Conic toolkit has been 
developed over the last 10 years and is in use in institutions around the world. 
The toolkit provides a comprehensive set of language and run-time tools for 
program compilation, configuration, execution and debugging in a distributed 
environment. Conic programs may be run  on a set of interconnected host 
computers running the Unix operating system an d /o r on target machines with 
no resident operating system.

The starting point for the work in this thesis was the original Conic system 
completed in 1984 (called Conic84 in this thesis) and described in [Kramer83, 
Magee84]. This provided a rudimentary configuration language for structuring 
process control applications running on a set of bare targets. The system also 
lacked adequate language and tool support for the developm ent of large 
distributed programs running in a heterogeneous host-target environment. The 
work in this thesis helps remedy these problems by providing more scalable 
solutions for distributed program development.

1.4. THESIS OBJECTIVES
The objective of the thesis is to show that the single language style of distributed 
programming is ill-suited to large-scale distributed programming, and that a 
dual language approach that separates distributed program s into structural 
components and program m ing components is both clearer and efficiently 
realisable. The thesis presents a integrated language and set of tools and
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Chapter One Introduction

techniques to demonstrate this. In particular the thesis presents:

• a new advanced declarative configuration language for the description of the 
structural topology of a d istributed system program m ed as a set of 
configuration-independent processes.

• a new abstraction mechanism, called a group module for structuring systems 
as a hierarchy of interacting subsystems. The mechanism  combines 
modularity with expressive power, while the structures produced by the 
mechanism are capable of being dynamically reconfigured.

• techniques for efficiently and safely compiling distributable units called 
nodes from large numbers of separately compilable sub-components. The 
techniques employ a new symbol file design for efficiently representing the 
interfaces of separately compilable sub-components. Symbol files are also 
used to track object files in the host file system.

• a new technique for performing type extension checks in constant time rather 
than linear time.

• an algorithm  for transform ing the hierarchic (and possibly recursive) 
structures of a group module into a more efficient heterarchic structure at 
run-time.

• techniques for distributing and reconfiguring the nodes of a distributed 
program across a heterogeneous collection of processors.

• tools to support the construction and debugging of distributed programs.

1.5. THESIS OUTLINE
This organisation of this thesis is as follows: Chapter 2 reviews the general 
properties of distributed program s and discusses the approaches taken to 
program m ing them. It then proceeds to identify the key requirem ents for 
producing flexibly-structured distributed programs. Existing approaches are 
critically examined in relation to these requirements. Chapter 3 describes an 
advanced fully implemented language, termed a configuration language for 
producing flexibly-structured distributed programs. The language is based on a 
new  structuring  m echanism, term ed a group m odule that satisfies the 
requirements identified in Chapter 2. Chapter 4 demonstrates the power and 
applicability of the language with a variety of examples. Chapter 5 presents an 
im plem entation m odel for realising the configuration language on a 
heterogeneous distributed platform. Chapter 6 describes how large numbers of
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Chapter One Introduction

separately compilable units are efficiently and safely compiled into runnable 
units called nodes. Chapter 7 describes the run-time techniques for efficiently 
elaborating program structures at run time, as well as techniques for distributing 
program structures onto processors. Chapter 8 presents conclusions, a critical 
evaluation of the configuration language and suggests directions for future work. 
A definition of the configuration language is given in Appendix I. A definition of 
the syntax of the configuration language compiler's symbol files is given in 
Appendix II.
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Chapter T w o D istributed  Programs

2.1. INTRODUCTION
A distributed program can be considered as a set of distinct nodes which are 
spatially separated, and which interact w ith one another by exchanging 
messages. Distribution results in concurrent execution, non-determinism, and 
non-neglible message transmission delays between nodes compared to the time 
between events occurring within a single node.

Distributed programs distinguish themselves from other categories of programs 
by being subject to de-centralised decision making, to continuous change and 
evolution, to the need for node negotiation and co-operation, and to the sudden 
unavailability of resources [Hewitt85].

Techniques for improving reliability and availability, for locating services or 
objects given some symbolic or indirect name, for migrating data and program 
code are prim arily  associated w ith d istribu ted  program s. D istributed 
programmers often incorporate techniques that are designed to perform well in 
the presence of high communication latency, being optimised for this property at 
the expense of other costs that would be relatively more significant in a system 
having lower communication latencies. Distributed programmers also tend to 
optimise for low communications bandwidth.

Distributed applications are diverse, they range from computation-intensive 
applications such as, parallel algorithms for solving the optimisation problems, 
to data-oriented applications, such as the provision of database services, 
transaction-processing, and mail services, to control-oriented applications, such 
as the co-ordination of robots in a factory plant.

Although the underlying reasons for many distributed program s are better 
performance, fault-tolerance, perhaps the most important reason for their use, is 
that they often offer a simpler or more natural solution to the problem.

18



Chapter Two Distributed Programs

Constructing, maintaining and understanding distributed programs, like any 
large program, is difficult Understanding its structure is an important first step, 
but this is itself a complex task. There is a clear need for well chosen program 
structuring mechanisms to provide assistance in this task.

This chapter identifies the key requirements for producing flexibly-structured 
distributed programs. These requirements are also examined in relation to other 
work. The chapter first overviews the m odels and program  structuring 
mechanisms used in distributed programming. The actual language developed to 
meet these requirements is described in the next chapter.

2.2. DISTRIBUTED PROGRAMMING MODELS
Distributed programming systems can be considered to belong to one of two 
models, termed the implicit model and the explicit model.

The implicit model is characterised by the automatic compilation of a program 
into distributable parts. Examples include vectorising and parallelising compilers 
of sequential languages such as Fortran [Kuck77, Albert88] and C [Quinn88] and 
parallel implementations of functional languages such as Hope [Moor82] and 
Lisp [Larus88]. In addition programming systems in this model normally require 
spedal-purpose hardware for efficient execution, for example, the Connection 
Machine [Hillis85] and Flagship [Watson87]. Although functional programming 
languages are capable of yielding maximal concurrency, they lack the ability to 
handle non-determ inism  and cannot effectively model history-sensitive 
computations required in distributed programming. Logic programming appears 
to be even more poorly suited to programming distributed systems [Hewitt85, 
Kahn88].

The explicit model is characterised by the explicit programming of a distributed 
program  of interacting parts. Examples include message-passing systems such 
Argus [Liskov84], CSP [Hoare84], SR [Andrews88], Actors [Agha86], and 
Parlog86 [Ringwood86], shared memory systems such as Linda [Carriero89], and 
hybrid systems such as Unity [Chandy88] that can be transform ed to use 
message-passing or shared memory. In addition programming systems in this 
model are normally extended with extra mechanisms for concurrency and 
remote interaction such as processes, remote procedure calls, message-passing 
primitives, mailboxes, tuple-spaces, logic variables and difference lists.
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Chapter Two Distributed Programs

2.3. PROGRAM STRUCTURING MECHANISMS
Program structuring mechanisms can be classified according to the "grain" of 
atomic parts that they manipulate. For imperative program m ing languages, 
procedures could be considered a fine-grain program structuring mechanism 
since they group together a set of atomic statements. Modules then act as 
medium-grain program structuring mechanism for procedures and interact by 
export-im port declarations which provide the names of directly callable 
procedures. Most imperative programming languages do not, however, provide 
any further mechanisms for structuring modules into larger granules.

O bject-oriented program m ing languages provide a m ore hierarchical 
mechanism, the class, which can be used to structure both methods (the fine- 
grain mechanism) and classes themselves [Stefik86]. Classes interact by calling 
the inherited methods of their parent classes.

Functional programming languages provide a different mechanism altogether, 
the high-order function. This can be used to compose very powerful and general 
functions from simpler ones [Backus78, Hughes88]. The requirement for modular 
program structuring mechanisms still exists however [MacQueen86].

Most distributed programming systems belonging to the explicit model provide 
concurrent processes and some mechanism for organising them, although many 
of these mechanisms are just extended forms of modules, classes or abstract data 
types, for example Argus provides guardians [Liskov83] and SR provides 
resources [Andrews88].

Some distributed program m ing systems have aimed to increase program  
structuring ability by providing more general structuring mechanisms based on 
explicit components interconnection. Examples include agents in CCS [Milner80], 
stations an networks in Conic84 [Magee84], subsystems in Dicon [Lee86], nodes 
in DPL-82 [Ericson82], translations in DTL [Hughes83], tasks in Durra 
[Barbacd88], agents in Garp [Kaplan88], shells in HPC [LeBlanc85], teams and 
systems in Lady [Wybrabietz85], nets in M uppet [Muhlenbein88], networks in 
Netsla [LeBlanc82], nodes and configurations in RNet [Coulas88], and boxes in 
Stile [Weide82].. Earlier examples include C /M esa [Mitchell79], Intercol 
[Tichy79], MIL75 [DeRemer76], and PCL [Lesser79].

The need for powerful structuring mechanisms has also been addressed in 
related areas. For example (i) the hardw are description languages Fable 
[Ossher83] HISDL [Lim82], and Strict [Campbell86] provide abstraction grids,
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Chapter Two Distributed Programs

structures, and blocks respectively (ii) the design method Mascot 3 [Bate86] 
provides subsystems, (iii) the specification system Statemate [Harel88] provides 
statecharts.

The mechanisms proposed however, fail to adequately meet one or more key 
requirements for structuring distributed programs identified in the next section.

2.4. REQUIREMENTS
The key requirements for structuring distributed programs are summarised 
below:

Separate Structural Specifications
The specification of a distributed programs structure m ust be separated from its 
programming and not included within it.

Conceptual Simplicity and Clarity
Structural specifications must be clear and readable, and act as an aid to readers 
in understanding the program.

Declarative specification
Structural specifications must be declarative, they should describe program 
structures, and not detail how those structures are to be used.

Executable specification
The structu ra l m echanism  m ust be realisable, tha t is, am enable to 
implementation and tool support. Specified program structures m ust be built 
automatically without further transformations by the user.

Expressive power
The structuring mechanism must be sufficiently expressive to be able to specify a 
rich set of program structures.

Modularity
The structuring mechanism must promote modularity through re-usability and 
information hiding.

Concurrency
The structuring mechanism m ust be able to express concurrent program  
structures.

Scalability
The structuring mechanism must be able to handle large programs. Structure 
specifications m ust not grow unmanageably large and complex as program size
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increases.

Interaction Safety
The structuring mechanism m ust ensure that unintended interactions are not 
introduced into the program.

Adaptability
The structuring mechanism must be capable of supporting modifications to the 
structure of a running program.

Independence
The structuring  m echanism  m ust be capable of supporting  different 
programming languages.

Although the requirements for structuring distributed programs summarised 
above are motivated in part by the nature of the Conic environment available at 
Imperial, they are not peculiar to the Conic environm ent or to distributed 
program m ing. Large, complex program s arise in m any contexts and a 
structuring mechanism that could be used to specify their structure also, would 
be of general use.

We now discuss each of the above requirements in more detail.

2.4.1. Separate Structural Specifications
The structure of a large distributed program can be exceedingly complex, yet an 
appreciation of it is crucial to an understanding of the program. It is, in fact, so 
im portant, that one generally tries to understand the overall structure before 
examining the details. The many advantages of "structured-programming" derive 
from the fact that good structure is an im portant aid to people in their 
understanding and managing of complexity. These advantages only apply if the 
structure is readily apparent.

The fundam ental advantage of having explicit and  separate structural 
specifications is that they provide a means to communicate program structure 
betw een people [DeRemer76]. The designer of a distributed program  will 
generally have a mental picture of the programs structure. That picture affects 
his understanding of the program , his design decisions, and ultim ately the 
details of the program itself. A reader of a distributed program, particularly a 
reader unfamiliar with it, is likely to derive great benefit from knowing the 
structural model that the program designer used.

By separating out the structural specification of a distributed program  other
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advantages accrue, for example, (1) the structural specifications of a program can 
be perused separately from the algorithms, and used as an index into the 
program, since structural information is grouped together, rather being scattered 
throughout the program (2) structural specifications can be wholly or partially 
constructed before the program is written, and then used to direct program 
development, (3) the structural specification is suited to providing a convenient 
repository for information about a program, such as documentation, (5) the 
structural specification is a valuable representation of a program , of use to 
software tools that manipulate programs, for example, compilers, browsers and 
command shells, debuggers, and simulators (e.g digital circuit simulators), 
visualisation tools, and load balancing programs. Structural specifications can 
also act as input for expert systems.

Separation of distributed programs into a structural part and a programming 
part can lead to program s that are easier to design, construct and debug, 
program s that easier to distribute and manage, as well as program s that are 
easier to change.

The separation of the structure of a program from its programming has been 
adopted and applied in several systems, for example: Dicon, DTL, Durra, Garp, 
Lady, C/M esa, Muppet, Netsla, and RNet. The separation of structural concerns 
can also be found in Fable, HISDL, Mascot 3, Statecharts and Strict.

The formal system CCS [Milner80] incorporates a structuring mechanism, but 
this is embedded within the behaviour of CCS agents, and not separated from it. 
DPL-82 and Stile employ hierarchic program  structuring based on dataflow 
graphs, but each allows programming statements to be embedded: Dijkstra's 
guarded command language [Dijkstra75] in Stile, and Pascal in DPL-82. HPC 
requires special user-written processes to define and manage the structure of 
programs. No notation is provided for structural descriptions.

The functional languages DL [MacQueen86] and Peeble [Burstall84] address 
structural issues by extending the type system of the language to include module 
types. This provides a formal semantic framework for analysing the underlying 
notions of program structuring mechanisms, but does not clearly separate them 
from the programming.

M odular languages such as Ada [Ada83] and Modula2 [Wirth82]; distributed 
languages such as Argus, Linda, NIL [Strom83] and SR; declarative languages 
such as Prolog [Clocksin81], Scheme[Abelson85] and Miranda [Tumer86]; object-
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oriented languages such as C++ [Stroustrup86], Emerald [Black87], and Smalltalk 
[Goldberg83] all fail to provide explicit and separate structural specifications for 
programs.

The formalism in Durra also includes non-structuring specifications based on 
path expressions and real-time logic for timing and ordering of message queues, 
and behavioural specifications based on Larch [Guttag85]. Ideally the structuring 
mechanism should be orthogonal to other kinds of specification, and capable of 
independent consideration and development. The inclusion of such formalisms 
leads to configuration languages that are harder to use well, harder to define 
semantically and harder to implement.

2.4.2. Conceptual Simplicity and Clarity
Hoare has written of programming languages [Hoare68] that: "The most valuable 
feature of a programming language is that it provides the programmer with a 
conceptual framework which enables him to think more clearly about his 
problems and about effective methods for their solution; and it gives him a 
notational technique which enables him to express his thoughts clearly". This 
rem ark is equally true of structuring mechanisms and their realisation in 
distributed programs. Structure specifications should be clear and readable, and 
act as an aid to readers in understanding programs. Ideally they should be 
sufficiently simple to write and manipulate so as to enable non-programmers to 
construct their own programs in a do-it-yourself manner with little effort.

Conceptual simplicity is best achieved in systems that economise on concept(s) 
an d /o r that have a sound underlying mathematical framework. A good example 
which combined both of these principles is CCS.

Many systems fail to provide simple structuring mechanisms, for example 
C /M esa makes heavy use of defaults, and although these can greatly simplify 
program structure, they can also obscure a great deal of the structure concerned. 
C /M esa also suffers from the multiplicity of ways of specifying the same 
program structure.

2.4.3. Declarative Specification
The configuration language m ust be declarative, it should enable the 
specification of a distributed program's structure without requiring information 
on how the structure is to be realised. Declarative specifications are more concise 
than non-declarative ones and more amenable to analysis, transform ation,
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augmentation, and manipulation. Most structuring mechanisms are declarative 
for these reasons. The notions of execution state or control should not be 
encompassed by the language. Different strategies should be applicable to 
elaborating the structure, for example, lazy evaluation.

2.4.4. Executable Specification
The division of a distributed program into structural parts and programmed 
parts should constitute a complete program that is capable of efficient execution 
on existing distributed computers.

Non-executable structural specifications act as design specifications only, and 
require an additional transform ation before a complete program  can be 
constructed. Furthermore, this transformation needs to be carried out each time it 
is desired to change the structure of a program . Having an executable 
mechanism alleviates the need for further transformations and enables rapid 
prototyping of distributed programs.

The languages Dicon, Durra, Lady, M uppet, Netsla and Rnet have been 
implemented on distributed computer systems, while Garp, C /M esa, and Stile 
have been implemented on single processor systems. DTL has been implemented 
using an abstract virtual machine interpreter, and subset of CCS called LL 
[Thorelli85] has been used as an object module link-loading language.

2.4.5. Expressive Power
Program structuring mechanisms m ust be sufficiently rich to cope with the wide 
diversity of distributed program s that arise in practice. The structuring 
mechanism of configuration languages should aim for expressive power that 
increases the applicability or flexibility of the approach.

Examples of useful program structures include: hierarchic structures, replicated 
structures (arrays), param eterised structures, variant structures, recursive 
structures (e.g trees), switching structures, and dynamic structures. Of these, 
hierarchical structuring is the most essential, without it large programs cannot be 
well-structured [Dijkstra71]. The absence of any of the other forms of structuring 
will limit the applicability of the structuring mechanism.

Most existing configuration languages have hierarchical structuring but tend to 
lack the remaining forms. Durra for example has hierarchical structuring and a 
form of dynamic structuring, but lacks replicated and recursive structures. Rnet 
only allows two levels of hierarchic structuring, while C /M esa lacks hierarchic
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structures altogether. The structuring mechanism of DTL provides replication 
and recursion plus three composition operations, pipeline composition, disjoint 
parallel composition, and cyclic composition which it is claimed are sufficient for 
structuring any concurrent program. Since CCS is a mathematical theory, it 
allows the full power of mathematics to be used if desired, e.g subscripting, 
conditional expressions, operator definitions, recursion.

2.4.6. M odularity
Configuration languages must promote the proven notions of re-usability and 
information hiding [Parnas72b]. This can be achieved by making program 
structuring mechanisms modular and abstract. Modularity encourages top-down 
design and testing of m odular parts in isolation. W ith m odularity, large 
distributed program s can be specified and studied in increasing order of 
complexity while reducing an explosion of details, leading to better 
comprehensibility.

The program structuring mechanism should also support abstraction and ensure 
that interactions take place through well-defined interfaces that lead to context- 
independent (loosely coupled) modules. Interfaces should be minimal and define 
only needed information and nothing more, further no information should be 
provided about the underlying structure behind the interface [Pamas72a].

The absence of modularity and abstraction leads to large monolithic programs 
that are hard to understand, hard to maintain, and non-reusable.

Most configuration languages provide a controlled interface to their structuring 
mechanism thus supporting context independent modules.

2.4.7. Concurrency
The division of programs into a collection modules was an im portant step in 
increasing program m er productivity, but the style of sequential processing 
carried out by a such programs is clearly inadequate for the kinds of distributed 
computer systems that are available today, that range from fine-grained dataflow 
computers, to large-scale computing networks. Program structuring mechanisms 
should therefore not lim it the degree of concurrency which a distributed 
program may require. Sequential programming solutions are often just special 
cases of more general concurrent solutions, in which programs can be written 
more e'asily and be better understood as set of simple concurrently interacting 
components instead of as one sequential component.
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Systems which require sophisticated compilers and-or specialised hardware 
suffer performance loss by not being able to easily extract or express the right 
level of concurrency for efficient execution.

2.4.8. Scalability
Scalability is an im portant criteria for evaluating program  structuring 
mechanisms. Aesthetically, scalable mechanisms are more elegant and robust. 
Practically, scalable mechanisms imply less work in the future adapting to new 
technologies. Ideally structure specifications should not grow unmanageably 
large and complex as structure size and complexity increases. Good expressive 
capabilities are obviously needed, but also support for complexity management 
techniques, such as divide-and-conqueor, and separation of logical concerns. 
Techniques that are successful in dealing with small programs often break down 
in the face of the complexity of large program s, so scalable solutions are 
important.

2.4.9. Interaction Safety
The utility of a configuration language increases enormously if provision is made 
in the structuring  m echanism  to prevent unin tended and undesirable 
interactions between the parts of a distributed program [Horning73]. Allowing 
precise controls on the interactions can contribute significantly to reductions in 
the complexity of distributed programs.

A popular technique is to provide type checking of the interfaces of program 
parts when structuring programs. This is provided for example in HPC, C/Mesa, 
Lady, Netsla, and Stile. Assertions and constraints also help ensure against 
undesirable interactions. Rnet provides for consistency checks of timing 
specifications although these are too primitive to be of practical use.

2.4.10. Adaptability
All programming systems support change by recompilation and re-execution. 
Some distributed applications also require support for dynamically modifying 
the structure of program s at run-time. The structuring mechanism m ust be 
capable of supporting such modifications.

Both Netsla and Durra allow pre-planned changes to be specified within a 
configuration specification activated by the satisfaction of an event. CCS does not 
support change, although lazy elaboration of recursive agents can be used to
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simulate a dynamic structures. HPC has an elaborate model for dynamically re­
structuring of programs, but this relies on special user-supplied processes to 
control changes. In Garp components can replace themselves with a new set of 
components when they terminate. Systems that allow program structures to be 
m anipulated as values in program s such as NIL possess dynam ic re­
configuration ability, but fail in the requirem ent for separate structural 
specifications, which should extend to structural modifications.

The ability to perform unplanned (or evolutionary) modifications to the structure 
of a running program is also important [Kramer85, Kahn88]. Most programming 
systems in existence lack such ability.

2.4.11. Independence
The configuration language should be independent of particular programming 
languages. This increases its generality and utility as language for building 
distributed programs, and could allow programs to be composed of components 
written in different programming languages.

Most structural approaches are unfortunately  coupled to a particular 
program m ing language, for example, DTL is coupled to a program m ing 
language based on attributed translation grammars, Garp is coupled with LISP, 
Lady is coupled with CSSA, RNet is coupled with Concurrent Euclid.

The structuring mechanism of Durra is programming language independent, 
although message transformation functions need to explicitly included in the 
structural specification. Dicon is notable for allowing program  parts to be 
implemented in C, Lisp or Prolog.

Distributed program  structures should also be specified independently of the 
actual architecture on which they will be run  on. M apping the parts of a 
distributed program to computing resources should be deferred until program 
execution is needed. Dicon and Rnet fail in this regard, as the m apping of 
programs is made a function of their program structuring mechanism.

2.5. CRITICAL SUMMARIES OF OTHER SYSTEMS

2.5.1. CCS
CCS provides a formal framework and notation for reasoning about about 
concurrent program s. CCS is declarative b u t fails to provide a separate 
configuration language for structuring programs. Processes in CCS are called
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agents. Three program  structuring operators are provided for agents: a 
composition operator for linking agents, a restriction operator for hiding agent 
interfaces, and a relabelling operator for renaming agent interfaces. CCS 
programs can be constructed hierarchically, modular interfaces are not provided. 
Rather the language requires that agents hide interfaces by the extensive use of 
the restriction operator. Since CCS is a mathematical theory, it also admits 
mathematical devices such as universal quantifiers, subscripting, conditional 
expressions, and operator definitions. It would be of interest to know of any 
distributed implementations of CCS and of what features were dropped or 
included in order to get a practical system. Although dynamically evolving 
configurations can sometimes be described by recursive definitions, CCS fails to 
adequately address the issue of dynamic structuring. The major contribution of 
CCS is in fact, its rich underlying theory of concurrent systems.

2.5.2. Conic84
Conic84 provides a rudim entary  configuration language for structuring 
distributed process control applications running on bare targets. Three different 
levels of structuring are provided: modules which declare a set of concurrent 
tasks, stations which interconnect modules and can be distributed, and networks 
which interconnect stations into a distributed program. Conic84 fails to support 
arbitrary  levels of hierarchical structuring. No support is provided for 
parameterised, replicated, variant, switching, or recursive program structures. 
Conic84 also fails to support more than one programming language. The major 
contribution of Conic84 is its support for the online reconfiguration of program 
structures.

2.5.3. Dicon
Dicon provides a configuration language for structuring distributed real-time 
programs. At its lowest level are distributable granules, which can be written in 
C, Lisp or Prolog. Granules can be interconnected to form subsystems, or 
interconnected w ith subsystems to form a system. It is not clear whether 
subsystems can nest. No support is provided for param eterised, replicated, 
variant, switching, or recursive structures, or for modifying the structure of 
running programs. The language is also complex since it allows non-structural 
specifications such as resource requirements, real-time constraints, process 
assignment constraints and process control statements to be included.
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2.5.4. DPL-82
DPL-82 employs hierarchic program structuring based on dataflow graphs, but 
fails to provide a separate configuration language. DPL-82 program s are 
structured into nodes. Nodes are written in a mixture of Pascal and Lisp. Pascal 
is used to write the computations performed by a node, while Lisp is used for 
creating, connecting, activating and terminating nodes. Lisp is also used to send 
results from one node to another. No support appears to be provided for variant, 
switching or recursive structures, or for modifying the structure of running 
programs. DPL-82 also lacks a distributed implementation.

2.5.5. DTL
DTL is a novel language for concurrent programming. It includes both structural 
components called concurrent translations, and programming components called 
sequential translations. Concurrent translations are used to specify networks of 
sub-translations (either concurrent or sequential). Parameterisation, replication 
and recursion plus three composition operators: pipeline, parallel, and cycle are 
provided for expressing network descriptions. These it is claimed are sufficient 
for structuring any concurrent program . DTL does not appear to support 
switching structures or variant structures however. DTL also fails to support 
unplanned modifications to the structure of running programs. The interface of a 
sequential translation consists of a typed input stream and a typed output 
stream. Sequential translations are written as a set of production rules over the 
input and output streams of the translation. DTL has been implemented using an 
abstract virtual machine interpreter but lacks a distributed implementation. The 
choice of an abstract syntax-directed programming language also seems very 
limiting.

2.5.6. Durra
Durra provides a configuration language for distributed real-time applications 
such as robot control. Durra supports hierarchical structuring of interconnected 
networks of processes called tasks. Parameterised, replicated, variant, switching, 
and  recursive program  structures are not supported  how ever. D urra 
configurations can specify functional and timing specifications but Durra lacks 
tools to check, analyze or enforce such specifications. These specifications also 
increase the complexity of the language. Durra allows pre-planned changes to be 
specified within a configuration specification activated by the satisfaction of
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some event. Again these appear not to be implemented. Durra is claimed to be 
program m ing language independent, although only C is supported. Durra 
programs can run on heterogeneous machines, although message transformation 
functions need to be explicitly supplied and configured between processes 
running on heterogeneous machines. This implies prior knowledge of the 
physical configuration on which programs will run and leads to machine- 
dependent configuration specifications.

2.5.7. Garp
Garp provides a formalism (part graphical) for writing concurrent programs with 
reconfigurable structures. Garp employs graph gram m ar specifications for 
describing the legal structures a system can evolve to. At the lowest level, 
processes called agents can terminate themselves by performing a rewrite action, 
that replaces the agent with a new structure described by a graph grammar 
production. Existing links to and from the terminating agent are relinked to 
agents in the replacement structure. The interface of the replaced agent must 
therefore match the interface of the replacement structure. The top level of a 
Garp program  is normally a dum my agent that immediately terminates and 
replaces itself by the actual structure of the program as specified by the top-level 
graph gram m ar production. Garp only supports agents in Lisp and lacks a 
distributed implementation. Garp also lacks modularity. It is not clear whether 
Garp supports replicated, variant or switching structures. Garp is interesting for 
its treatm ent of preplanned changes to its program structure, although pure 
interconnection changes are very cumbersome and inefficient. They require a 
new agent to unnecessarily replace the existing one, plus the coping of the state 
variables from  the old agent to the new  via param eters. U nplanned 
reconfigurations to the structure of a program are not handled in Garp.

2.5.8. HPC
HPC does not provide an explicit configuration language, but rather a model for 
dynamically reconfiguring hierarchic process structures. HPC program s are 
structured hierarchically into shells. Each shell can include one privileged 
process called a controller that is responsible for all high-level operations on 
components in the shell. Controllers configure components, perform interaction 
checks, create sub-controllers, interact with parent controllers and child sub- 
controllers, and ensure application consistency. Controllers m ust be written by 
the programmer. If a shell does not include a controller, its components are

31



Chapter Two Distributed Programs

transparent to the parent shell and its controller. If a shell does include a 
controller, the components of the shell are hidden from the parent shell. 
Although the use of user-written controller processes to manage levels of the 
hierarchy may lead to greater flexibility, it also increase the burden of 
program m ing needed to build an application, as well as introduce further 
sources of error.

2.5.9. Lady
Lady is a configuration language for distributed operating systems. Three 
different levels of structuring are provided: modules which declare a set of 
processes and monitors, teams which interconnect modules, and systems which 
interconnect teams into a d istributed  program . In addition  to direct 
interconnections, Lady also supports indirect interconnections via logical buses. 
Lady fails to support arbitrary levels of hierarchical structuring or replicated, 
variant, switching, and recursive program structures. The structure of running 
programs can be manipulated but only from within the programming language. 
Lady thus fails to preserve the separation of programming from configuration. 
Unplanned reconfigurations to the structure of a program are not supported.

2.5.10. M uppet
M uppet provides a configuration language for parallel programming. M uppet 
program s are structured  hierarchically into process nets and specified 
graphically. Replicated structures can be defined in predefined regular 
topologies such as grids and trees. It is not clear whether program m ers can 
specify their own topologies, and if so w hether this is done declaratively. 
M uppet also allows weights to specified for processes and interconnections. 
These are used as hints when mapping processes to processors. Muppet supports 
two programming languages, Concurrent Modula2 and Occam. Occam program 
running on transputers, must however, perform their own routing. No support is 
provided for modifying the structure of running programs.

2.5.11. Netsla
Netsla is configuration language for distributed programs. Netsla programs are 
structured hierarchically into networks of processes. Parameterised, replicated, 
variant, switching, and recursive program structures are not supported however. 
Netsla is notable for handling dynamic modifications to the structure of a 
program  entirely at the configuration level. This is done by the inclusion of a
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complex sublanguage for reconfiguration based on event handling. 
Reconfigurations taking place at different levels require serialisation however. 
Netsla also fails to support unplanned modifications or more than one 
programming language.

2.5.12. Rnet
Rnet provides a rudimentary configuration language for distributed real-time 
programs. Two levels of structuring are provided: nodes which declare a set of 
processes and networks which interconnect the processes in one node to the 
processes in other nodes. Rnet fails to support arbitrary levels of hierarchical 
structuring. No support is provided for param eterised, replicated, variant, 
switching, or recursive program  structures, or for modifying the structure of 
running program s Rnet also fails to support more than one program m ing 
language and lacks modularity.

2.5.13. Stile
Stile employs hierarchic program structuring based on dataflow graphs, but fails 
to separate this from the programming. No support appears to be provided for 
param eterised, replicated, variant, switching or recursive structures or for 
modifying the structure of running programs. Stile also fails to support more 
than one programming language, and lacks a distributed implementation.

2.6. CHAPTER SUMMARY
This chapter has argued for a structural approach to distributed programming. 
The approach abstracts out the structure of a program into a form that can be 
used to design and construct the program as well as be used to reconfigure the 
program. The separation of a distributed program into two different levels of 
abstraction, one for program  structure and one for program  implementation 
provides a conceptual framework in which distributed applications can be 
clearly specified and easily developed.

The properties and requirem ents of a structuring m echanism  to capture 
structural specifications were identified and discussed. First and foremost that 
the mechanism be conceptually simple, and include the minimal num ber of 
concepts required to enable distributed programs to be clearly structured. The 
mechanism m ust also be expressive enough to handle a w ide variety of 
distributed applications. The mechanism should also be capable of scaling up for 
large applications. The mechanism should promote modularity while preserving
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safety when structuring. The mechanism should be capable of efficient realisable. 
In addition structural specifications should be declarative, and independent of 
particular programming languages and architectures.

This chapter has also examined existing approaches to structuring and building 
distributed program s, and shown how these approaches fail to fulfil the 
requirements identified.
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This chapter describes a fully realised configuration language for structuring 
d istributed program s. This language aims to meet the requirem ents for 
structuring distributed programs identified in Chapter 2. The concepts and 
mechanisms in the language are described and small examples of their use given. 
Diagrams are used to show the structures and reinforce the descriptions. The 
description of the language is followed by a summary of the language and on 
how it successfully meets the requirements set out in Chapter 2. A definition of 
the language is given in Appendix I.

3.1. PROCESSES
Processes (tasks) are used in our configuration language as the smallest 
components in structuring distributed programs. The choice of such autonomous 
com ponents is based on their suitability for d istributed  program m ing 
[Kramer85]. Other kinds of component may be more appropriate in other 
contexts. Parallelism  w ithin processes is left for program m ing language 
compilers to identify and translate for given target machines.

Process components are defined in suitable process programming languages, but 
minimally m ust make available to the configuration language a process name. 
For example, the process specification:

Task Module P
Internals

End

defines a process1 component with name P:

1 Historically the configuration language has always used the word task instead of process.
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P

Fig 3.1 Process Definition

Component definitions act as templates or types, from which one or more 
component instances can be created. The keyword module is used to emphasise 
the modular nature of process definitions.

Given a set of named process definitions, PI, P2, and P3:
Task Module PI Task Module P2 Task Module P3

Internals Internals Internals
End End End

PI P2 P3

Fig 3.2 Multiple Process Definitions

we can declare a set of process instances XI, X2, X3, with the configuration 
specification:

Use P1;P2;P3;
Create XI: PI; X2:P2; X3:P3;

XlrPl X2:P2 X3:P3

Fig 3.3 Instantiation of Processes

The identification of component definitions is termed context definition. Context 
definition serves to make available to the configuration, a set of component 
definitions, in this case, process definitions, which can used for declaring sub­
component instances within the configuration.

The declaration of component instances is termed component instantiation. The 
ability to create more than one instance of a component is a highly desirable 
requirement and so the component types used in our configuration languages 
can all be multiply instanstiated, as in:

Use PI;
Create XI: PI; Yl.-Pl; Z l . P l ;
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X1:P1 Y1:P1 Z1:P1

Fig 3.4 Multiple Instantiation of a Process

Configuration specifications of this form are conceptually simple, clear, and 
declarative. They do not however, explicitly expose the underlying interaction 
structure of a distributed program. The need to show such structure in 
configuration specifications is important as it allows processes to defined in a 
configuration-independent way. Configuration-independent processes can be 
written without knowing which processes they will interact with.

3.1.1. Direct Process Binding
The interaction structure of a distributed program  can be specified by binding 
processes together. However, approaches where the binding of processes is 
embedded within the component programming language are less amenable to 
reconfiguration. The alternative to direct process binding is indirect process 
binding.

3.1.2. Indirect Process Binding
Two approaches to indirect process binding have been explored, the process 
network approach and the global or shared memory approach. The first is the 
natu ra l analogue of actual com puter netw orks, and is adopted  in our 
configuration language. The process network approach has also be modelled in 
functional programs [Tumer87] and concurrent logic programs [Shapiro84].

The shared memory approach as exemplified by the Linda system [Carriero89], 
totally uncouples processes. The basis of Linda is a logically-shared associative 
m em ory through which distributed processes communicate. Processes never 
exchange information directly but rather write to, and read from a global 
associative memory. Because of its conceptual simplicity and elegance, Linda is 
an appealing approach, particularly for applications where the processes which 
send data do not care which processes are to receive it or at what time. Ensuring 
that unintended interactions do not occur, is left to the programmer.

The implementation of logically-shared associative memory, in a distributed 
environment can be highly inefficient compared to the process network approach 
where the communication structure of processes is known. Doubts also exist as to
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whether global memory systems can be made to work efficiently and reliably for 
distributed systems with large numbers of processors. Since Linda can easily be 
simulated in the process network model by providing one or more processes to 
act as the logically-shared memory, and binding all other processes to these 
processes it appears that the network model is more general.

By making interaction structure and interaction safety a configuration concern, 
and by making process binding indirect, leads to distributed programs as 
reconfigurable netw orks of loosely-coupled, configuration-independent 
processes.

3.2. BINDINGS
The interaction structure of d istributed  program s can be specified by
enumerating the possible process interactions. For example

Link XI to X2;
X2 to X3;
X2 to X4;

XI X2

Fig 3.5 Binding of Processes

This is a simple, yet powerful approach to structuring distributed programs. 
Configuration specifications of this form do not however meet the requirement 
for interaction safety. In order to restrict and prevent unintended interactions, the 
declaration of the services provided by a n d /o r  required by individual 
components m ust be made, and checks done to ensure that process requirements 
and process provisions are bound safely. Having such precise controls 
contributes to reductions in software errors.

3.3. PORTS
Ports are used to explicitly identify the interaction points of a component. Ports are 
declared within component definitions, and implicitly instanstiated during 
component instantiation. Component can have has many ports as required.
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Given a process PI with port Q l, and component P2 with port Q2:
Task M odule PI Task M odule P2

Port Q l Port Q2
End End

P2

<> Q2

Fig 3.6 Process Ports

we can declare and bind instances XI and X2 of these process definitions as
follows:

Use PI; P2;
Create X I: PI; X2:P2;
Link XI .Ql to X2.Q2;

PI

Ql

X1:P1 X2:P2

Fig 3.7 Binding of Process Ports

In order to satisfy the interaction safety requirement, ports are further refined 
into exitports, and entryports.

An exitport specifies a service required by a component, for example, the process
definition:

Task Module Pdef
Exitport s in : real Reply real 
Exitport open: string Reply integer

End

Fig 3.8 Process Exitports

specifies a process Pdef with requirements for services sin and open. Services 
model synchronous communication and are analogous to functions in procedural 
languages. Currently services are declared with a single argum ent called the 
request type, and a single result called the reply type.

port name: request type reply reply type
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An entryport specifies a service p ro v id e d  by a com ponent, for exam ple, the
process definition:

Task M odule Qdef
Entryport cos : real R eply real 
Entryport sin : real R eply real 
Entryport open : string R eply integer 
Entryport close : integer R ep ly  integer

End

Qdef

|> sin

E ►cos
[►open
[►close

Fig 3.9 Process Entryports

specifies a process Qdef that provides services sin, cos, open and close.

Safe interaction binding is handled by allowing binding of compatible ports only. 
Ports are compatible only if one port is an exitport, the other an entryport, and 
the corresponding request and reply types are identical. For example, in the 
following

Use Pdef; Qdef;
Create P I : Pdef; P 2: Pdef; Q : Qdef;
Link PI .sin to Q.sin 
Link PI .open to Q.open 
Link P2.sin toQ.cos 
Link P2.open to Q.close

Pl.-Pdef

Fig 3.10 Bindings of Process Exitports to Process Entryports

the only illegal binding is the last one, where the request types are not the same. 
The binding of P2.sin to Q.cos is legal, since the safety rules have been met. The 
safety rule does not require port names to be identical as in CCS, nor that 
interaction safety is left to user-supplied processes to check as in HPC.
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Ideally it would be desirable to attach the behaviour specification of services to 
ports, and match on some form of behavioural equivalence. This has, however 
been difficult to implement in practice, although systems such as Inscape 
[Perry87] show promise.

The division of ports into exitports (requirements) and entryports (provisions) 
[Tichy79, Wolf85] is crucial to ensure configuration-independent components. In 
languages w ithout this division, the binding between modules is normally 
determined by explicit imports made in the the specification parts of modules. 
The binding forms an implicit dependency graph that constitutes the interaction 
structure of the program . This form of binding is inadequate since the 
relationships between modules are direct, e.g module A imports and calls service 
R from module B where module B, is named explicitly within module A. That is, 
the provider of a service R is named directly. Omitting the name of the provider 
and stating only the name of the service in the requirer would lead to modules 
that are loosely coupled, configuration independent and re-configurable.

In systems such as [Minsky83, Wolf85], modules can name not only the items to 
export, bu t also which modules can im port them. This gives the module 
implementor greater control on the usage of modules but also leads to inflexible 
tightly coupled modules, that are less re-usable.

A more deductive approach is taken in [Levy84] where the requirements of a 
module are automatically determined by the programming language compiler in 
terms of the functions called but not defined within the module. A unifying 
algorithm is later invoked that attempts to find matching provisions for each 
requirement, based on the name and param eters of functions. Although the 
deduction of requirem ents and the use of unification for autom atically 
generating the interaction structure of a program may be convenient it leads to a 
programming style, that fails to exploit the interaction structure of programs and 
which relies on a global name space for functions. Problems can occur if there are 
functions whose names and parameters clash.

3.3.1. N otify Ports
The configuration languages also supports the declaration of ports, called notify
ports for defining asynchronous interactions. Notify ports are declared without
reply parts, as in:

Task Module N
Exitport x p : integer 
Entryport e p : real
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XP
__________ e P <3

Fig 3.11 Process Notifyports

Notify exitports send out values only, while notify entryports receive values 
only. We call the argument type of a notify port a notify type. The binding rule 
for notify ports requires one port to be a notify exitport, the other to be a notify 
entryport and the notify types to be the same.

3.3.2. Fan-In, Fan-Out
The binding rules of our language do not preclude the binding of entryports to 
more than one exitport, or exitports to more than one entryport. Many-to-one 
bindings of the form:

S

Fig 3.12 Fan-In

are allowed, as are one-to-many bindings of the form:

M

Fig 3.13 Fan-Out

Fan-in is useful for specifying server-client interactions, while fan-out is useful 
for m ulti-destination interactions. The num ber of entryports sent to, and the
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number of results returned by ports that fan-in and fan-out is programming 
language dependent.

3.3.3. R eview
Given a structuring mechanism with processes, bindings and ports it is possible 
to build distributed programs sim ply, clearly and safely, but the mechanism is 
not scalable or modular. A mechanism for treating collections of processes as 

components is needed.

3.4. GROUP MODULES
Group m odules (groups) are the means to specifying large structures in a 
m odular way. Groups unify the concepts so far presented into a coherent and 
flexible structuring mechanism.

3.4.1. Encapsulation
Groups firstly provide an encapsulation mechanism for program structures. The 
following group definition encapsulates the three sub-components XI, X2 and 
X3:

Group Module Alpha 
Use P;
Create X1:P; X2:P; X3 : P;
Link Xl.xp to X2.ep 
Link X2.xp to X3.ep

End

Alpha

Fig 3.14 Example of a Group Module

Group definitions can be substituted for process definitions, for example in 
context definitions, and instantiation declarations. Like processes, groups can be 
multiply-instantiated, as in the following 

Use Alpha;
Create A : Alpha; B: Alpha;
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Fig 3.15 Multiple Instantiation of a Group Module

The uniform treatment of groups and processes, leads to a black-box approach to 
com ponents in our language. It is not possible to d istinguish between 
components that are atomic (processes) and components that are compound 
(groups). Processes can be replaced by groups and vice-versa.

Since groups can be instantiated in other groups, groups support hierarchic 
program  structuring better than m odular program m ing languages which 
disallow modules of modules or multiple instantiation of a single module.

3.4.2. Hierarchic Binding
Groups also support structural abstraction and modular decomposition. This is
achieved with the same mechanism used for processes, namely ports. Group
ports are declared in a similar way to process ports.

Group M odule....
Exitport....
Entryport....
<rest>

End
Only the name of the group, and the names of ports are visible outside the group 
definition. The correspondence between group ports and instances declared 
within the group is specified by hierarchic binding declarations of the form:

Inbound Hierarchic Binding:

Link groupEntryport to InstanceEntryport

Gdef

P:Pdef

Fig 3.16 Inbound Hierarchic Binding 

Outbound Hierarchic Binding:
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Link InstanceExitport to GroupExitport

Gdef

P:Pdef

ep xp
l>  1 > ep xp£ * |  ►

Fig 3.17 Outbound Hierarchic Binding

The first form exports out a group provision of a sub-instance, the second form 
exports out a group requirement of a sub-instance. An additional binding rule is 
also allowed:

Forwarded Binding:

Link groupEntryport to GroupExitport

Gdef

Fig 3.18 Forwarded Hierarchic Binding

This defers the provision of a service by forwarding it back out of the group as a 
requirement, ie. this states that the group cannot fulfil the service, but wishes to 
export it out as a requirement. In fact forwarded binding is useful rule as it 
allows the declaration group modules that act as switching structures, for example 
the group:
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Fig 3.19 Example of a Perfect Shuffle Switching Structure

is interconnected as a perfect shuffle [Stone71]. Another use for forwarded 
binding is in the declaration local logical buses. These comprise a single group 
module with a forwarded binding as in:

Fig 3.20 Example of a Logical Bus

Components binding to the logical bus do not have to specify and therefore 
know the number or names of their bound counterparts. Forwarded binding also 
displays the transitive property:

Fl:Fdef F2:Fdef

f t ^  k fe
ep xp

w p
ep  xp

*

Fig 3.21 Transitive Bindings

3.4.3. Inheritance (Incremental Structuring)
Inheritance allows new components to be constructed from old components, new 
services to added or existing services to be changed. Inheritance-based languages 
are thus suited to programming applications in an incremental fashion. The 
grouping mechanism is sufficiently powerful to construct components by 
defining the differences. The following examples illustrate this.
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A new  component can be defined as an incremental additional to an existing one, 
as in:

Trig

Fig 3.22 Incremental Structuring of Components

New components can be constructed from several existing components also:
SuperTrig

Fig 3.23 Incremental Structuring from Several Components

Conflicts are handled by renaming, since name overloading is not supported.

It is im portant to note that the atomic components of groups are concurrently 
active processes, whereas most inheritance languages support passive class 
hierarchies. In our groups, component requirements can be inherited, whereas in 
inherited languages only component provisions in the form of methods are 
inherited.

A new component can be defined that overrides an existing component:
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Trig

3 .4 .4. C o a le s c in g . M u ltic a s tin g  a n d  L o o p  B a ck s

Other forms of group binding are also supported in the language including 
coalescing, multicasting, and loop backs.

C o a le s c in g  (M u ltip le x in g )

Several sub-component requirements can be bound to one requirement:

Trig

Fig 3.25 Hierarchic Coalescing

M u ltic a s tin g

A single service provision can be bound to several sub-component provisions:

Trig

Fig 3.26 Hierarchic Multicasting

Multicasting could be treated as a form of overloading, with one or more of the
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bound sub-components responding to the service with responses being based on 
the contents of the message. This semantic w ould be better suited  to 
configuration languages with untyped or polymorphic port types.

L o o p  B a ck s

The rules for component binding allow group entryports to be bound to group 
exitports. This rule allows for a component exitport can be bound back to a 
entryport of the same component. This allows the configuration programmer to 
either provide his own service, or use a service provided by the component (see 
below), or ignore the requirement.

F ig  3.27  L o o p  B ack B in d in g

A  p o ssib ility  exists for establishin g circular b in d in g, such as:

F ig  3.28  C ircular B in d in g

C ircu la r  b in d in g s are cu rren tly con sid ered as n u ll b in d in g s a n d  silen tly  ign ored. 

T h e y  sh o u ld  p ro b a b ly  b e  m a d e  illegal.

3 .4.5 . B in d in g  R u le s

T h e  b in d in g  ru le s  fo r th e  c o n fig u r a tio n  la n g u a g e  are p r e s e n te d  b e lo w .  

G eo m etrical representations are u sed  to sim p lify  the definitions.

A  co m p o n en t (grou p or process) is represented b y  a quadrilateral:
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O utside

Boundary

Fig 3.29 Geometric Representation of a Component

Components can nest. Boundaries cannot intersect. A port is represented by a

[>  Dl>triangle cutting across a component boundary like ^  (i.e. not bisecting an
angle). The side of the triangle with one angle is labelled The side of the

triangle with two angles is labelled ie ^

An exitport is represented by a port with the V  side of the port on the outside of 
the component boundary:

Fig 3.30 Geometric Representation of an Exitport

An entryport is represented by a port with t h e s i d e  of the port on the outside of 
the component boundary:

Fig 3.31 Geometric Representation of an Entryport

Given the definitions above, a binding is represented by a line from th e '+' side of 
one port to the side of another port. Bindings are not allowed to cross 
component boundaries. Ports can be bound to several other ports. The first
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configuration below is legal, the second is illegal.

Interaction safety is ensured by labelling ports with a tuple representing their 
port types, either (requestType, replyType) or (notifyType). Bindings are type- 
safe if the tuples of the ports at each end of a binding line are ’compatible'. 
Currently compatibility is defined if tuples have the same cardinality, and pair­
wise elements of the tuple are type equivalent.

3.4.6. Final Comment
Groups are a powerful mechanism for structuring large distributed programs in 
a m odular way. In order to increase the expressiveness of our language we need 
to add mechanisms for parameterisation, replication, variation and recursion.

51



Chapter Three The Configuration Language

3.5. PARAMETERISATION
Parameters are used to control the size and topology of configuration structures 
and also to supply initial values to atom ic com ponents. Group parameter 
declarations are written in the style of Pascal value parameter declarations2, for 

example:

Group Module A (a:integer; ch:char)

Given a parameterised component definition, actual parameters can be supplied
during component instantiation, for example

Use thermometer;
Create Celsius : therm om eter (45,'C')
Create fahrenheit: thermometer (93,’F)

Default parameterisation simplifies component instantiation further and is also 
supported, for example:

Group Module thermometer (initial:integer=98; unit:char=’F)

3.6. REPLICATION
Replicated or array structures occur so frequently in practice that their inclusion 
in the configuration language is almost obligatory.

Replication occurs in three places in the configuration language, replicated 
component instances, replicated ports, and replicated binding. The mechanism 
used to define replicated structures is universal quantification. Each replicated 
declaration is prefixed by one or more quantifiers of the form:

For All Boundldentifier : [ LowValue.. HighValue ]

where Boundldentifier takes on successive values starting from LowValue and 
ending with HighValue. LowValue and HighValues are expressions3 of integer, 
char, or boolean type. LowValue and HighValue m ust be of the same type. 
Group param eters can be used in bound expressions to control the size and 
topology of replicated structures. For historical reasons the keyword Family can 
be used in place of the keyword ForAll.

Replicated component instances are declared by suffixing the instance name with
the bound identifier(s) specified in square brackets, for example:

Create ForAll I : [1..101 
A[I]: At (I)

2 Only value parameters of the simple types integer, char, boolean, real and string are currently allowed.
3 Expressions are the simple expressions of Pascal, except that it is possible to call imported functions, 

provided they do not reference non-local data.
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A[1 ]: At A[2]:At A[10]:At

Fig 3.34 Replicated Instantiation

N ote the passing of the bound identifier I as a parameter to individual replicated
instances. Multi-dimensional component instances4 can be declared by supplying
more quantifiers, for example:

Create ForAll I : [ 1..10 ], K : [ 1..8 1 
A [I,K ]:A t(I,K )

A[l,l]:At

*
i

A[10,l]:At

A[l,2]:At

i
i
i

A[10,21:At

A[l^]:At

\i
\\

A[10,8]:At

Fig 3.35 Two-dimensional Replicated Instantiation

Replicated ports can be declared analogously to replicated component instances,
for example:

Entryport ForAll I : [ 10..15 ]
func [I]: integer Reply char 

Exitport ForAll I : [ 10..151
files [IJ: string Reply integer

If the bound identifier(s) are not actually used in the declaration then short forms 
of the replicated component instantiation, replicated port declarations can also be 
used. These replace the bound identifier in the declaration by the desired lower 
and upper bounds, for example:

Create A[1..10]: At
Entryport func [10..151: int Reply char 
Exitport files [10..15J: string Reply int

Quantifiers are also needed for the binding declaration, to allow replicated
component instances and replicated ports to be bound:

Link ForAll K : [ 0..N 1
A[K].xp to filesXp [N-K]

4 Multi-dimensional replicated structures are not currently implemented.
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Replicated ports and replicated component instances are selected by supplying 
an indexing expression in square brackets after the replicated port/instance 
name. This expression can include group parameters as well as bound identifiers. 
Quantified binding declarations often take more than one quantifier, for 
example,

Link ForAU I : [ 1..10 ], K: [ 1..20 ]
A[I].xp[K] to P.ep[K];

Distributed programs with quite complex interaction topologies can be expressed 
using such quantifiers, e.g. pipes, rings, grids, hypercubes, butterflies, switching 
networks and tree topologies.

3.7. VARIATION
It is often convenient to allow a group to have the potential to define more than
configuration structure, and to be able to defer the choice until the group is
instantiated. This can be achieved by allowing component instantiation and
component binding declarations to be prefixed by a boolean guard.

When Guard Create....
When Guard L ink...

Typically the guard includes one or more group parameters which control the 
form of variant structure produced.

Guards are disallowed for port declarations. This is to ensure that groups have 
fixed interfaces. A more fluid configuration language could include this as a 
possible extension.

3.8. RECURSION
A structure is said to be recursive if it is defined in terms of itself. Recursion is a 
powerful program  structuring mechanism for d istributed program s. The 
characteristic feature of recursive structures is their ability to vary in size.

In the configuration language group names can be used within their own
definition, for example:

Group Module a
Create a a : a;
Create b;

End
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a

aa:a

aa:a

b□ b□

Fig 3.36 Recursive Structuring

This particular example defines an infinite distributed program configuration,
and is not useful in practice, unless a lazy evaluation scheme is used for
elaborating configuration specifications. In order to limit recursion, guards and
parameterisation can be used, for example:

Group Module a (k:integer)
When k>0 Create a a : a (k-1);
When k>0 Create b;

End
In this example it is worth noting the existence of an empty group instance in the 
limiting case.

3.9. DYNAMIC MODIFICATION
In order to perform  dynamic modifications to the structure of a running 
program, declarations are also needed to remove instances and bindings. The 
form of these declarations5 is simply:

Remove Instance

Unlink p o r t from port

3.10. INTERACTION SAFETY
The request, reply and notify types that can be specified for a port are not 
restricted to simple types such as integer, real, and character. The configuration 
language supports a much richer collection of types. The typing language used to 
describe port types is the type definition sublanguage of Pascal, enhanced with 
the type extension mechanism of Oberon [Wirth88a, Wirth88b]

5 Currently these declarations only be applied dynamically to the top-level structure of a distributed 
program.
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Many distributed programming systems are typeless, or provide a poor selection 
of types. Pascal was chosen because it has a rich set of types, and a type checking 
philosophy that values secure programming. Typeless programs are often harder 
to debug, while type-poor program s often require greater effort by the 
programmer.

In addition to using Pascal types for port types, the configuration language has 
also adopted the strong typing rules of Pascal for parameter conformance and 
binding compatibility.

In fact port definition can be considered an issue orthogonal to the configuration 
languages, other typing systems or interface definition languages [Hayes87] 
could be employed without adversely affecting the configuration language.

3.10.1. Port Types
The port types supported by the configuration language are the standard types 
integer, real, char, and boolean, plus the types byte (a subrange of 0 to 255), 
natural (an unsigned integer), longint, and signal type (for void values). 
Enumerated, subrange, array, record, and set types are also supported, as are 
packed types. The remaining types, pointer types, variant record types, and file 
types are either disallowed or supported to a lesser degree.

Pointer types and types with embedded pointer types need to be disallowed, as 
they imply the possibility of non-exdusive access to data values by concurrent 
processes. Pointer passing between distributed or heterogeneous address spaces 
is also problematic. A pointer passing semantic that requires complete copying of 
the entire pointed at heap or a semantic that requires backward communication 
to the originating processor to dereference pointers are possible remedies, 
although ones with a high implementation overhead.

For efficiency reasons, pointer types are currently allowed as message types for 
bound processes which reside within a shared address space. This concession 
allows two or more processes to reference a common (and usually large) data 
structure. Mutual exclusion is left to the programmer to ensure.

Untagged variant records are disallowed as port types since it not possible to 
know which variants in a value are current.

File types and types with embedded file types are prohibited since Pascal defines 
no semantic for file assignment.
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3.10.2. Port type compatibility
The com patibility rule used is Pascal type equivalence, not Pascal assignm ent 
compatibility. Assignm ent compatibility complicates the semantics by requiring 
coercion considerations to be addressed, particularly in hierarchical bound ports 
that are multi-cast or coalesced. For example, if a group exitport of type real, is 

bound hierarchically to local a exitport of type integer, and also to a local exitport 
of type real, is the binding allowed? Similar considerations apply for subrange 

types.

The use of a type equivalence rule for component binding greatly simplifies the 
understandability of the configuration language w ithout unduly affecting 
expressibility.

3.10.3. Extended Message Types
The type language also includes the type extension mechanism of Oberon 
[Wirth88a, Wirth88b]. This allows record types to be defined incrementally, and 
the strict type equivalence rule to be relaxed to a subtype equivalent rule. 
Extended types are similar to the class concept found in object-oriented 
languages, although in the framework of Pascal, procedures and functions are 
not types, and so cannot be fields of records. The following example illustrates 
their declaration:

type A = record
a l : integer;

end;
B = record (A)

b l : real;
end;

C = record (B)
cl: packed array [1..10] of char;

end;
D = record (A)

d l, d 2 : char;
end;

The type hierarchy can be drawn as follows:
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Fig 3.37 Example of a Type Hierarchy

Types B and D are extensions (or subtypes) of type A. Type C is an extension (or 
subtype) of type B and also of A. A is a supertype of types B, C, and D. B is a 
supertype of C. Thus type B has fields a l and b l, type C has fields a l, b l and cl. 
Type D has fields a l, d l, and d2.

A record type may have many subtypes but only one supertype. Extension of 
variant records is not allowed. Extending a non-variant record to have variants is 
allowed, but makes the extended record non-extendable.

3.10.4. Extended type compatibility
The type equivalence binding rule for ports of extended types can be relaxed to 
subtype compatibility in the following way: allow an outgoing port to be bound 
to incoming port if the outgoing port's request type is equivalent to, or an 
extension of the incoming port's request type, and if the incoming port’s reply 
type is equivalent to, or an extension of the outgoing port's reply type. More 
concisely, if given a binding

Outgoing Port Incoming Port

RequestA R eply ReplyA |>  ►  RequestB Reply ReplyB

then the binding is subtype compatible if

(RequestA >= RequestB) and (ReplyB >= ReplyA)

where >= is the type relation "is-equivalent-to-or-an-extension-of"'

As in Oberon, the type extension mechanism is applicable to types that are 
pointers to extended records.

3.10.5. Definition Modules
In order to modularise and make orthogonal the declaration and use of port
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ty p es  a sp ec ia l c o m p o n en t ca lled  a d e fin itio n  m o d u le  is p r o v id e d . D efin itio n  

m o d u le s  s e r v e  to  d e f in e  th e  p o r t ty p e s  o f  a d is tr ib u te d  p ro g ra m  in  a 

con fig u ra tio n  la n g u a g e  and p rogram m in g  la n g u a g e  in d e p e n d e n t m anner. The  

fo llo w in g  ex a m p le  illustrates their syn tax  and use.

type a=airay [1..10] o f x;
w =airay [y] o f real; {w is not exported)
b=record chrchar; pin:w end; 
c=set o f  char;

end.

Types to be exported "outside" the definition m odule are listed after the 
definition module name. Components may use the type definitions exported 
from a definition module by a context definition, which serves to make the types 
listed after the definition module name, known within the scope of the using 
component. Renaming can be used to distinguish two imported types with the 
same name.

Definition modules allow the message types for a distributed program  to be 
consistently used by several components without resorting to re-definition in 
each component. In comparison, include files suffer from the lack of visibility 
controls on types, and lead to unnecessary processing of redundant types.

3.11. CHAPTER SUMMARY
This chapter has presented a declarative configuration language that fulfils the 
requirements for structuring distributed programs identified in Chapter 2. A 
single powerful structuring mechanism called a group module forms the basis of 
the language.

Group modules are based on a minimal number of concepts, atomic processes, 
ports, instances and bindings. Processes are the unit of concurrency and 
program m ing in our model. Processes can be program m ed in any suitable 
program m ing language. Groups are the un it of configuration and can 
encapsulate both processes and subgroups

A uniform approach is taken in the treatment of groups and processes. Both 
define a component type that can be used to instantiate components at higher 
levels of configuration. This enables the specification of arbitrarily large program 
hierarchies.

use A: x, y; 
B: z<y>;

defin e M: a, b, c, z ; {definition M exports a,b,c and z }

{import x and y from definition m odule A} 
{import y from definition B, but rename to z)
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Component types are defined solely in terms of a port interface that abstracts and 
hides the internal details of the component, thus promoting modularity. Ports are 
declared within a component definition and define the interaction points of the 
component. Ports are thus the only ’gateways' into and out of a component. Ports 
are directed and define either a service requirement (entryports) or a service 
provision (exitports). The inclusion of the service requirements of a component 
in the interface of components leads to loosely coupled components and 
components that can be reconfigured. Bindings establish the interaction topology 
of a distributed program. Binding declarations require two ports, one providing 
a service and other requiring the service. Bindings can be one-to-one, one-to- 
many, and many-to-one.

Interaction safety is ensured by typing ports and requiring bound ports to be 
type compatible. A rich selection of types is also supported.

The provision of quantifiers, guards and parameters enable replicated, variant, 
and recursive structures to be expressed simply and clearly. This yields a very 
powerful configuration language.

The next chapter demonstrates the power and applicability of the language with 
a concrete set of examples. Chapter 5, 6 and 7 show how  configuration 
specifications can be compiled and efficiently executed in a distributed 
environment.

60



Chapter Four Exam ples

This chapter demonstrates the power and applicability of the configuration 
language with a series of graduated examples. The first example presents the 
structure of a simple flow communication subsystem and is used to introduce the 
definition, instantiation and interconnection of components. The second example 
presents the structure of a distributed solution to the dining philosophers 
problem and demonstrates the application of replicated component instances. 
The third example presents the structure of a distributed run-time executive and 
demonstrates the use hierarchic structuring. The final example presents the 
structure of parallel solution to Batcher's bitonic sorting algorithm  and 
demonstrates the application of recursive configuration structures.

4.1. SIMPLE FLOW CONTROL PROTOCOL
This first exam ple illustra tes sim ple configuration instan tiation  and 
interconnection of a small program. The program  simulates a flow control 
communication subsystem between a producer process and consumer process. 
The structure of the simulation pipeline is shown below:
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producer consumer

Fig 4.1 Flow Control Protocol Example

The simulation is implemented by the tx, timer and rx modules which provide 
the implementations for error and flow control, and the net m odule which 
simulates a physical network that may lose, corrupt or duplicate messages. The 
structure shown can be described with the configuration description: 

group m odule flowcontrol (messages:integer; bias:integer=5);

u se  consumer; producer;
net; timer;

sender; receiver;

create consumer; producer (messages); tx:sender; rx:receiver; 
net (bias); timer;

lin k  producer.out 
timer.ticks 
net.cout 
tx.commsout 
net.dout 
rx.control 
rx.user

end.

to tx.user; 
to tx.ticks; 
to tx.control; 
to nebdin; 
to rx.commsin; 
to nebcin; 
to consumer.in;

Apart from some parameterisation the description is a straightforward encoding 
of the graphical form. The use clause selects the component types required, the 
c rea te  clause instantiates a single instance of each, and the l in k  clause 
interconnects the instances in the required topology. The example illustrates a 
flat program  structure, equivalent in power to a programming language with a 
import-export modular structure, such as Modula2, although in our language the 
bindings are separated from the module, and parameterisation of modules is 
allowed.

Note that the configuration description does not indicate whether a module is a 
primitive process module or a configuration module, nor does it indicate the
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ty p es  or d irec tio n a lity  o f  b o u n d  ports. T his is  a lso  reflected  in  th e  grap h ica l 

d e sc r ip t io n  w h ic h  for sp a ce  restr ic tion s a lso  o m its  m o d u le  ty p e  n a m es  and  

param eter in form ation  o f  com p on en ts.

T he c o n fig u ra tio n  h ea d er  for flo w c o n tro l illu stra tes  the d e f in it io n  o f  b o th  a 

m a n d a to r y  p aram eter  (messages) and  o p tio n a l param eters (bias). T he first is 

p a ssed  d o w n  to the p rodu cer m o d u le , the seco n d  to the n et m o d u le . A part from  

the configu ration  header, other configuration  declarations can be sp ec ified  in  any  

order.

It is worth noting that this example is a little artificial since for 'real’ systems the 
communication structure would probably be abstracted into a separate group 
module as in:

com m s

Fig 4.2 Flow Control Protocol Group Module 

The use of hierarchic structuring is considered further in the third example.

4.2. DINING PHILOSOPHERS
The second example introduces replicated component instantiation and binding. 
The program  provides a solution to the classic dining philosophers problem 
[Dijkstra68] devised for assessing the capabilities6 of synchronization primitives.

The problem involves five philosophers seated around a table. In the middle of 
the table is a bowl with an infinite supply of spaghetti. Half way between each 
philosopher is a single fork. Philosophers spend their time m oving from a 
thinking to hungry to eating and back to thinking state. A philosopher m ust hold 
both adjacent forks in order to eat spaghetti from the bowl. The circular structure 
implied by the problem of philosophers and forks around a table can be used to 
obtain a simple solution to this problem. For 4 philosophers we w ould require

6 Prohibit starvation, free from deadlock and maximise parallelism.
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the following configuration structure:

fork[2] phil[2] fork[l]

Fig 4.3 Dining Philosophers Example

A configuration description for this structure is given below where lp=leftphil, 
rp=rightphil, lf=leftfork, rf=rightfork:

group m odule diners (n:integer=4);
— assert n >=2

— dining philosopher m odules
u se  table; phil; fork;

create table(n);

create forall k:[0..n-H
p h il[k ]: phil(thinktim e=2000/eattime=2000); 
fork[k] :fork;

lin k  forall k:[0..n-l]
phil[k].sittable to table.sit;
phil [k].leave table to table.leave;

phil[k].rightfork to fork[k] Jeftphil;
phil[(k+l) m od nj.leftfork

to fork[k].rightphil;

— create and bind display w in d ow s for program
u se  wind man;

create forall k:[0..n-l]
p w in [k ]: w indm an (0,(k+l)*14-13,(k+l)*14-5,8,17); 
fwin[k] : w indm an (0,(k+l)*14-5,(k+l)*14+l,8,17);

lin k  forall k:[0..n-l]
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phil[k].std_  w rite  to pw in[k].w indow ; 
fork[k].std_w rite to fwinfk]. w indow ;

end.

In the description param eterisation is used to dimension the num ber of 
philosophers and forks, and to pass to the philosopher processes the length of the 
periods for thinking and eating. The forall clauses act as universal quantifiers 
over the create and lin k  declarations and range from 0 to the number of 
philosophers minus 1. The bound identifier k is used in expressions to link the 
philosophers and forks in a ring, as well as in expressions for calculating the 
display coordinates for a set of window modules. The window modules are 
declared for each philosopher and fork and are used to animate the output of the 
program . For 4 philosophers the configuration structure with the window 
modules is:

Fig 4.4 Dining Philosophers Example with Window Components

w here lp=leftphil, rp=rightphil, lf=leftfork, rf=rightfork, w =w indow , and 
sw=stdwrite.

The configuration also makes use of bindings that fan-in in to  the table
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entryports. A more m odular solution to this problem would group together a 
philosopher, a fork and two windows into a single group module, and perform 
circular binding of an array of such groups.

4.3. RUN-TIME EXECUTIVE
The third example demonstrates the use of group modules for hierarchically 
structuring programs. The example presents the overall structure of a Conic run­
time executive and is described more fully in [Magee86]. In Conic each 
distributable part of a program requires an instance of such an executive in order 
to enable that part for execution. The executive described enables execution 
under Unix® . The structure of the executive is shown below

dum pm an

report

fileman

error open*}  
< |  chan[21 read* |  

wri

chan[01 chan[l]

Cwrite

executive

kernel

* |  stderror

stdfile 
-^ stdread  
-^ std w rite

stdconfig |  ►
intem ode

console timeman com m s

linkm an

m odm an
portname

Sstatus.

structman
r -S l --------3 ! - ,

1— V ----------- 1read write in tem ode g0| structreq

Fig 4.5 Executive Group Module

These m odules provide various services for distributable program  parts 
including: local process creation, scheduling, and interaction (kernel), reporting 
process crashes (dumpman), file I /O  (fileman), terminal I /O  (console), remote 
process interaction (comms), dynamic reconfiguration (linkman and modman), 
configuration structure inspection (structman), and a clock timer (timeman),

In Conic, every process component is supplied with a set of standard ports: a 
stderror for reporting errors in the process, ports stdfile, stdread, stdwrite for

® Unix is a registered trademark of AT&T.
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performing I/O  and a stdconfig port for requesting dynamic configuration events. 
In order to reduce the profusion of linking that would be required to link these 
ports for each process, the Conic kernel implements a default linking rule for 
these ports. Each standard port that is not explicitly linked is automatically 
linked to whichever ports the corresponding kernel standard port is linked to e.g. 
for the kernel above every unlinked stdread port w ould be linked to 
fileman.read. Again for simplicity the standard ports of processes have been 
omitted from diagrams.

The interface to the executive consists of a port for forwarding error output 
(error), a port for directly writing to the console (Cwrite), a port for access the 
structural topology of a distributable part (structreq), and a set of ports for 
performing dynamic reconfiguration operations (connect, status, portname, 
Sstatus and control)

The configuration description for this executive is given below:
group m odule executive (ticktime:natural=1000);

— basic system  m odules
use kernel; timeman; dumpman; fileman;
create kernel; timeman(ticktime); dumpman; fileman;

— configuration m anagement m odules

use manage: connectT,linkstatusT,controlT,sifrecT;
serverdefs:status_rec;

use linkman; modman;
create linkman; modman;

exitport S sta tu s: status.rec;
entryport con n ect: connectT reply signaltype;

s ta tu s: signaltype rep ly  linkstatusT; 
portnam e: integer reply sifrecT; 
co n tro l: controlT reply status_rec;

link connect
status
portname
control
modman.Sstatus

to linkman.connect; 
to linkman.status; 
to linkman.portname; 
to modman.control; 
to Sstatus;

— Intem ode Com m unication subsystem

u se comms;
create comms;

link kem el.intem ode
com m s.go

to com m s.intem ode; 
to modman.start;
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— Console subsystem  
use console;
create console;

use types: rw_req;
exitport error : rw_req reply integer;
entryport C w rite: rw_req reply integer;

link  fileman.chan[0] 
filem an.chan[l] 
fileman.chan[2] 
Cwrite

to console.read; 
to console, write; 
to error;
to console.write;

— Structure Q uery H andling

use structurerstructureB;
structman; 

create structman;

use s tructure:s tructureB;
entryport structreq: integer reply structureB;
lin k  structreq to structman.structreq;

— Define default links for tasks —

link

end.

kem el.std_config
kem el.std_file
kem el.std_write
kem el.std_read
kemel.std_error

to modman.ctl; 
to fileman.open; 
to fileman. write; 
to fileman.read; 
to dumpman.report;

The configuration illustrates the form of declaration of interfaces, in particular 
the requirement to use context definitions to im port port types. Two of the 
instances declared within this executive, console and comms, are in fact group 
modules with an internal substructure.

The console consists of a terminal driver that performs asynchronous read and 
w rite services for processes. The terminal driver also handles various Unix 
signals [Leffler89], such as input available (SIGIO), stop output (SIGTSTP), 
continue output (SIGCONT). These signals are caught by separate signal handler 
processes and passed to the terminal driver. The structure of the console is:
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con so le

Fig 4.6 Console Group Module

The configuration description being:
group m odule console (ttymode:integer=0);

use types: rw_req;
entryport read, w r ite : rw_req reply integer;

use terminal;
create terminal (ttymode);

link  read to terminal.read;
write to terminal.write;

— Unix Signal handlers
use signalsiSIGIO^IGINT^IGQUIT^IGHUP^IGTSTP^IGCONT;

handler;

create iorhandler (SIGIO);
intthandler (SIGINT); 
quit:handler (SIGQUIT);} 
hup:handler (SIGHUP); 
tstprhandler (SIGTSTP); 
contrhandler (SIGCONT);

lin k  io.out to  terminal.sigio;
in to u t, q u itou t, hup.out, tstp.out, cont.out to terminal.mpx

end.

The comms group consists of a socket driver that utilises the socket facilities of 
BSD Unix [Leffler89] to perform non-local interactions. Messages destined for 
remote port are directed from the kernel to the intem ode port and onto the 
ipcout process which prefixes additional control information to the message 
before passing it on to the socket driver for transmission. Incoming messages are 
passed by the socket driver to special buffer processes that strip the control prefix 
information from the message and pass the message directly to the recipient
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process. If the incoming message requires a reply the buffer process blocks 
awaiting the rely from the recipient message. Once received this is passed to the 
socket driver for transmission back to the sender. The structure of the comms 
system is:

Fig 4.7 Comms Group Module

The go port is used to inform processes that the socket driver is ready to transmit 
data. The configuration description for the socket driver is shown below where 
buf=buffer, gf=getframe, tr=transmit

group m odule com m s (maxbuf:integer=8);

use ipcin; ipcout; socdriver;

create ipcout;
driver.socdriver;

create forall k:[l..maxbuf]
buffer(k]:ipdn;

lin k  forall k:[l..maxbuf]
buffer[k].getframe to driver.rxpacket; 
buffer[k].transmit to driver.txpacket;

lin k  ipcout.transmit to driver, txpacket;

— external interface

u se  ipc: bufferT;
entryport intemode:bufferT reply signaltype;
exitport gorsignaltype;

link

end.

intem ode
driver.go

to ipcout.remote; 
to ipcout.start,go;
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The num ber of buffer processes is dimensioned according to the param eter 
passed. If no parameter is passed, 8 buffer processes are created.

4.4. BATCHER'S BITONIC SORTER
The final example is an implementation of Batcher's bitonic sorting algorithm 
[Batcher68] and illustrates the use of recursive configurations. The algorithm is 
specifically designed for parallel execution, when it can sort N elements in time 
0(log2N)2

The algorithm uses a sophisticated network of primitive comparator elements 
that take 2 numbers as input and output the minimum and the maximum of the 
two numbers as outputs. In Conic this can be represented by a task:

comparator

a b 
low  high

Fig 4.8 Comparator Process

Batcher's sorting network takes an unsorted sequence of numbers, transforms 
this into a bitonic sequence, and then transforms the bitonic sequence into a 
sorted sequence.

UNSORTED (S) -> BITONIC (S) -> SORTED (S)
A sequence is bitonic if it consists of two subsequences, one ascending and the 
other descending, or the sequence can be cyclically shifted into two such 
subsequences. The ascending and the descending sequences can be generated 
from the original sequence by subdividing it into two, sorting each subsequence 
separately, and reversing the elements in the second sorted subsequence, ie:

y  SUBSEQ-1 —-► SO RT------------------

BITONICSEQ
j

X  SUBSEQ-2 —-►  SORT REVERSE'

Fig 4.9 Bitonic Sorting Algorithm

Thus for sorting 8 elements we would have the following sorting network:
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inp[0] inp[l] inp[2] inp[3] inp[4] inp[5] inp[6] inp[7]

out[0] out[l] 0ut[2] out[3] out[4] out[5] out[6] out[7]

Fig 4.10 Sort Group Module for N=8

Each subsequence (ascend and descend) is sorted with its own recursive sort sub­
configuration. The configuration language description for sort is: 

group m odule sort(n.integer);

entryport input[0..n-l]:integer; 
exitport output[0..n-l]:integer;

u se  bitonic;
create bitonic(n);

w h en  n>2 create
ascendrsort (n=n d iv  2); 
descend:sort (n= n d iv  2);

w h en  n>2 lin k  forall k:[0..(n d iv  2) -1]
inputfk] to ascend.input[k]; -  subsequence 1
input[(n d iv  2) +k] to descend.input[k]; — subsequence 2

ascend.output[k] to bitonic.input[k]; -  sorted subsequence 1 
descend.output[(n d iv  2)-l-k] — reverse of sorted subseq 2

to bitonic.input[(n d iv  2)+k];

~  base case
w h en  n=2 lin k  forall k:[0..1]

input[k] to bitonic.input[k];

— alw ays
lin k  forall k:[0..n-l]

bitonic.output[k] to output[k];
end.
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This configuration illustrates (i) the declaration and use of arrays of groups ports, 
(ii) the use of m ultiple recursive instantiation, (iii) the use of guarded 
declarations to stop infinite recursion. For the base case, n=2 we would have the 
following configuration structure for sort:

inp[0] inp[l]

f  jr
ii

bitonic 0 
- 5

np[01 inp[l] 
ut[0] ou t[l]  
7  V

E_____1  l _______-----------------y---------- *--------------
out[01 ou t[l]

Fig 4.11 Sort Group Module for Base Case

The bitonic part of the network structure relies on the following recursive rule 
due to Batcher:

A netw ork for sorting a bitonic sequence of 2n numbers ai to a2n/ can be 
constructed from n comparison elements and two bitonic sorters for n numbers. 
The comparison elements m ust form the two sequences (1) m in (ai,an+i), 
min(a2,an+2 ) ... min(an/a2n) and (2) max (ai,an+i), max(a2,an+2)... max(an/a2n)- 
Batcher shows that each of these two sequences is also bitonic, therefore they can 
each be recursively sorted by a bitonic n sorters. Finally since no number of (1) is 
greater than any number of (2) the output of one bitonic sorter is the lower half of 
the sort, and the output from the other is the upper half.

The network for an 8 element bitonic sequence is:
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inp[0] inp[l] inp[2] inp[3] inp[4] inp[5] inp[6] inp[7]

out[0] out[l] out[2] out[3] out[4] out[5] out[6] out[7]

Fig 4.12 Bitonic Group Module for N=8

The configuration language description for bitonic networks is:
group m odule bitonic(n:integer);

entryport input[0..n-l]:integer; 
exitport output[0..n-l] integer;

u se  comparator;

create forall k:[0..(n d iv  2)-\]
ce[k] :comparator;

lin k  forall k:[0..(n d iv  2)-l ]
input(k) to ce[k].a;
input[(n d iv 2)+k] to ce[k].b;

w h en  n>2 create
low:bitonic(n= n d iv  2); 
high:bitonic(n= n d iv  2);

w h en  n>2 lin k  forall k:[0..(n d iv  2)-l]
ce[k].low  to low.input[k];
ce[k].high to high.input[k];
Iow.outputfk] to output[k];
high.output[k] to output[(n d iv  2)+kl;

w h en  n=2 link
ce[01.1ow  to output[0];
ce[0].high to output[l];

end.

For the base case, n=2 we would have a configuration consisting of a single
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comparator:

inp[0] inp[l]

Fig 4.13 Bitonic Group Module for Base Case

In order to complete the sorted, we need an interface module that reads in n=2P 
numbers passes them to the sorting network, and outputs the result, 

group m odule batcher (n:integer=8);

use executive; sort; interface;

create executive; 
sort(n); 
interface (n);

lin k forall k:[0..n-l]
interface.out[k] to sort.inputfk];

end.
sort.output[kl to interface.inp[k];

Although this example illustrates the expressive power of the configuration 
language, the algorithm  itself is quite unsuited to todays technology. For 
example a bitonic sorter for 2P numbers would require (p2+p)2P"2 comparators. A 
sequence of length 256 would require 4608 comparators, while a sequence of 
length 1024 would require 28,160 comparators. Nevertheless, this and similar 
algorithms can be readily expressed within our language. This example is also 
interesting in that the structure of the program  is of far more interest and 
complexity than the algorithmic parts.

4.5. CHAPTER SUMMARY
This chapter has demonstrated the power and applicability of the configuration 
language described in Chapter three with a series of graduated examples that 
illustrated many features of the language.

The first example, a simple flow control pipeline, introduced group module 
definition, context definition, component instantiation, component bindings, 
parameter declarations and parameter passing.
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The second example, the structural part of a solution of the dining philosophers 
problem, demonstrated the use of replicated instantiation and binding, as well as 
the use of param eters to control the dim ensionality of replicated forall 
declarations and in the declaration of a ring structure.

The third example, a run-tim e executive for Conic, introduced the use of 
hierarchic structuring: groups with subgroups, groups ports and hierarchic 
binding. This example also highlights an im plementation-defined rule for 
performing default bindings of standard ports based on the bindings defined for 
the standard ports of the kernel instance within the executive.

The final example, an implementation of Batcher's bitonic sorter demonstrates 
the use of recursive structuring: recursive instantiation, guarded instantiation 
and guarded binding. The example also uses replicated ports and replicated port 
bindings.

All the examples described have been successfully run  within a distributed 
environment. The next chapter introduces the implementation model used to 
execute distributed programs constructed with our configuration language. 
Chapters 6 details the techniques used for the compilation of programs, while 
Chapter 7 continues with the techniques used for the execution of programs.
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This chapter introduces an implementation model for the Conic configuration 
language described and demonstrated in the previous two chapters. The model 
is designed to act as a framework for constructing efficient implementations of 
configuration-based distributed programs. The chapter gives an overview of the 
distributed environment in which the language is used, and discusses the main 
design objectives for our implementation. The overall structure and strategies of 
the model are then introduced.

5.1. INTRODUCTION
The use of a powerful configuration language for structuring distributed 
program s raises m any difficult and interesting im plem entation issues, for 
example, can configuration specifications be compiled, if so how are compiled 
configuration specifications elaborated, how  should group m odules be 
distributed, at w hat levels of specification should dynamic reconfiguration be 
supported, how can data to be sent between heterogeneous processors, how can 
the current configuration structure of a program be queried?

The model has been influenced by a number of factors, in particular, by the Conic 
distributed programming environment in which it works. This environment is 
particularly interesting for its emphasis on supporting heterogeneity. Although 
our implementation model was developed for this environment it is sufficiently 
general to be adaptable to other environments also.

Distributed programs in the Conic environment are developed for a network of 
computers. Logically this network can be viewed as follows:
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Conic programs can run on both hosts and targets. Hosts are used for program 
compilation, execution, and debugging. Hosts also run  the Conic dynamic 
configuration management software, and provide file and terminal I /O  services 
for targets. Targets are typically used for executing components that control 
particular hardware, or components that require a predictable response. Targets 
have also been used for their raw performance capability, since they do not have 
a host operating system overhead.

All the hosts currently run some variant of the Unix operating system [Bach86, 
Leffler89]. This is both an advantage and a disadvantage. The advantages stem 
from being able to exploit underlying host mechanisms in the implementation 
model. For example, all our hosts provide sockets, a network-transparent IPC 
mechanism. Obviously this may not be possible in non Unix environment, or 
mixed operating system environments, where bridging software may be needed. 
The disadvantages stem from the lack of mechanisms for concurrent and 
distributed program execution, for example, many systems still do not support 
light-weight processes, dynamic loading of object code, remote execution or 
process migration. These mechanisms are hard to provide w ithout extensive 
m odifications of the underlying Unix kernel. A target-only execution 
environment is obviously better suited to developing such mechanisms. We have 
attem pted to address some of these issues directly, for example, w ith the 
provision of a nodes, which provide fast light-weight process execution, and 
virtual targets which enable distributable parts to be created on remote 
computers without the overheads of logging onto the remote computers.
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The network currently consists of 25 SUN 3 hosts running SunOS 3 /4  Unix, 3 
DEC VAX hosts running BSD 4.3 Unix, 11 HP 9000-300 hosts running System 5 
Unix, 8 Motorola MC680x0 targets controlling a variety of real-time equipment, 
and 1 DEC LSI-11 target. These are interconnected via multiple Ethernets. Users 
can, and do, develop configuration-based distributed programs that run across a 
heterogeneous selection of these computers.

5.2. IMPLEMENTATION OBJECTIVES
The implementations objectives for the model are summarised below:

Efficient implementation.

Configuration-based distributed programs should be as efficient as other styles 
of distributed program.

Portable implementation.

The im plem entation m odel should produce portable im plem entations. 
Components should be runnable on a variety of hosts and target processors.

Support distributed development.

The im plem entation m odel should support distributed developm ent of 
programs. It should be possible to develop parts of distributed program  in 
isolation, and then configure them into a running program.

Tool Support.

The implementation model should utilise existing tools and resources where 
appropriate. The model should permit the integration of new tools in simple and 
coherent manner.

Since an efficient implementation is also more likely to be used than an inefficient 
one, efficient techniques are also needed to convincingly dem onstrate the 
scalability of the language and implementation model. The implementation 
model aims to minimise file costs, memory usage, execution time, and network 
communication costs.

Portability is an im portant implementation objective in such environment. A 
high degree of portability has been achieved by adopting a high-level language 
approach to implementation. Rather than the traditional approach of generating 
low-level code, the configuration language (CL) compiler generates "human- 
readable” procedures In addition all the tools, and run-time support components 
have themselves been configured with the Conic CL and programmed with the
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Conic programming language (PL).

Our implementation model supports distributed development and distributed 
execution of program s. It allows components to be developed entirely 
independently by different people on heterogeneous hosts, and then be safely 
configured into a running system. Target components can be cross-compiled, 
downloaded into a bare machine, and linked into a running system. The range of 
configuration options available to users is the same for components running on 
targets as for components running on hosts.

Existing mechanisms and tools have been adopted whenever this was cost- 
beneficial to the im plem entation effort. This is im portant and gives the 
implementation model a looser, and more flexible structure. The CL compiler, for 
example uses the standard Unix link-loaders. A utility that generates Makefile 
descriptions7 from configuration descriptions is also provided.

5.3. NODES
The key issue addressed by the model is at what level components are to be run, 
distributed, and reconfigured. This is itself dependent on the nature of the 
execution environment. Ideally one should be able to assign each component to 
its own processor. This is rarely possible in practice, since the num ber of 
components in a program  norm ally outnum ber the num ber of available 
processors. Next, one could consider automatically partitioning the components 
into sets according to the number of processors, and let each processor, multi- 
program the components in its assigned set. This approach is better suited to 
hom ogeneous shared  m ulti-processor environm ents, w here there is no 
advantage in having control of where components are placed. Where the user has 
special knowledge of the mapping constraints of his program and environment, a 
technique is needed to let users control the placement of components.

One approach is to allow users to specify locations in the create clause of the 
configuration language. Each create clause could then optionally specify a 
location for the created component instance, for example in

create instanceitype (parameters) [ at location ]

location could specify either another component instance with which the created 
instance was to be co-located or an actual machine designator (e.g. the machine

7 Make is a tool for controlling the initiation of a sequence of Unix commands, based on the dependency 
relations and modification dates of files.
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name or machine internet address) at which the created instance is to be created.
create A: At at 129.21.12.32 
create B: Bt at A

If the location were omitted, the created instance could be located at the same 
location as the encapsulating group instance, i.e the location would be deferred 
until an instance of the group type is created. In this way each component in the 
program can be labelled with its eventual location.

This is quite an attractive approach for some programs, but was rejected in 
favour of simpler less predetermined approach that deferred such decisions until 
run-time.

In Dicon [Lee86], processors are assigned exclusively to particular programs 
unless the processor is specified as shared in the configuration specification. It is 
also possible to state that two components are to be co-located.

Another possibility would be to define a separate m apping language for 
specifying the location of components [DeRemer76]. The disadvantage with this 
approach is that it requires the m apping language to be as expressive as the 
configuration language. An important consideration in mapping components in 
heterogeneous networked environments, is the relatively large differences in 
communication costs between components running on the same machine and 
components running on different machines.

A second important consideration in deciding on the unit of distribution is the 
relatively poor implementations of processes provided by Unix operating 
systems, which often limit the num ber of processes allowed, and impose 
relatively high scheduling and interprocess communication costs on the 
processes they support. These constrain the degree of concurrency allowed, and 
have been reduced by providing light-weight processes within a Unix process, 
e.g. Unix processes with over 100 Conic tasks have no noticeable affect on the 
performance of U nix .

For sim plicity, and because of the considerations discussed above, the 
implementation model defines a distributed program to consist of a flat network 
of interconnected nodes, where nodes are group modules whose sub-instances 
are loaded within a single address space when the node is created. Nodes thus 
act as the unit of distribution within the model, with the actual distribution of 
nodes left to the responsibility of users.
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Fig 5.2 Node Distribution

The number of components (groups and tasks) allowed within a node is limited 
only by the memory limitations imposed by the running computer. Each node 
includes a special executive sub-component which is responsible for all aspects of 
node management, including intra-node component interaction and scheduling. 
On Unix machines nodes are run as Unix processes.

Fig 5.3 Distributed Programs with Nodes

Nodes are also the un it of reconfiguration supported by the model. Once 
distributed and started, the node executive periodically reports the status of the 
node to a global name server. This maintains a register of all reporting nodes and 
their location. Nodes can then be configured by interactive tools called
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configuration managers, that query the server for the names and locations of 
nodes within an program. Two configuration managers are provided, iman that 
runs on Unix hosts and has a textual command interface, and ConicDraw that 
runs on Apple Macintosh® 's and has a graphical iconic interface. ConicDraw 
interacts with the rest of Conic system through gman to which it linked over a 
serial link. Gman is a specially modified version of iman that runs on Unix hosts 
and which performs the actual configuration queries and commands on behalf 
ConicDraw. The configuration management system is outlined below:

Configuration Managers

Fig 5.4 Structure of Configuration Management System

Once the location of a node is known it can then be directly queried, instructed to 
bind or unbind ports, stopped, restarted or removed from a configuration 
manager.

5.4. DEVELOPMENT CYCLE
The development cycle of a distributed program  within the model consists of a 
node compilation phase, in which a runnable node is produced from a set of 
compiled sub-components and a run-time phase, in which the nodes produced 
from the compilation phase are distributed, elaborated, and configured into a 
running program:

® Apple is a registered trademark of Apple Computer Inc.
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components nodes machines running program

NODE
COMPILATION

NODE NODE ELABORATION
DISTRIBUTION & CONFIGURATION

Fig 5.5 Node Development

Once started, running programs can be re-configured by interacting with a 
configuration manager. New nodes can be compiled and configured into the 
program while existing nodes can be relinked or removed from the program:

running program reconfigured program

Fig 5.6 Node Reconfiguration

5.5. AN EXAMPLE
The components in the dining philosophers example given in Section 4.2, can be 
grouped into diner nodes and a table node:
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Fig 5.7 Diner and Table Nodes 

and the nodes configured as:

Fig 5.8 Dining Philosophers System as Configured Nodes 

Further details on how to configure this example are given in Section 7.5.

5.6. CHAPTER SUMMARY
This chapter has introduced an overall model for the implementation of our 
configuration language within a distributed environment. The model makes a 
number of simplifying assumptions in order to allow efficient implementations 
to be developed. A unit of distribution and reconfiguration called the node is 
defined. Nodes are groups whose sub-components will share a single address 
space. On Unix hosts, nodes map onto Unix processes. There are no restriction on 
the num ber of sub-components allowed within a node, or the number of nodes
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within a program, except those due to lack of memory or operating system 
resources. The mapping of nodes to processors is left to users, although tools are 
also provided.

For presentation the tools and techniques used in the model have been loosely 
grouped into those associated with language compilation and those associated 
with run-time execution and support. Chapter 6 describes the techniques for 
language compilation, and Chapter 7 continues by describing the techniques 
used for run-time execution and support.
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6.1. INTRODUCTION
This chapter presents techniques to support the separate compilation of group 
modules and definition modules that are efficient and ensure early detection of 
the use of inconsistent types and components. In order to cater for distributed 
program s built from large num bers of separately compilable units, the 
techniques employ a new symbol file design for efficiently representing the 
interfaces of separately compiled units. Our symbol files are also used to 
autom atically track object files in the host file system , alleviating the 
programmer from explicitly having to specify which objects files will be required 
to link-load a node. A new technique for performing type extension checks in 
constant time rather than linear time is also presented. Our techniques are fast, 
simple and scalable.

Unlike other systems, which elaborate (instantiate and bind) program structures 
at link-load time, we adopt a more dynamic approach and elaborate the 
structures within a node at execution time. This is done by generating object code 
to elaborate group modules. This results in a system that is both very fast and 
very flexible, particularly when parameterised structures are required. Further 
the generated code can be called dynamically to create new structures while the 
node is running.

6.2. NODE COMPILATION
To build a runnable node, each sub-component of the node is separately 
compiled. Groups are compiled by the configuration language (CL) compiler, 
which produces code to elaborate instances of the group, processes are compiled 
by the program m ing language (PL) compiler, and definition m odules are 
compiled by a definition module compiler8.

8 In fact definition modules are currently compiled by the PL compiler.
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Once all sub-components have been compiled, the node group is itself compiled  
by the CL compiler, and all object files link-edited by the host or target link- 
editor into a runnable executable.

A number of files are produced when a component is successfully compiled: a 
sym b o l f ile  for all processes, groups, and definition m odules, an object f i le  for all 
processes and groups, and lin ker  f i le  for all node groups. The transformations 

used to produce nodes is outlined below:

Source Files Compilers Compiled Files

Fig 6.1 Node Compilation System

Symbol files hold a special compiled form of the component, used when the 
component is referenced in further components. Symbol files also keep track of 
the object files that will be needed in final link loading. Object files hold the 
machine code version of a component. Linker files hold the names of all files that 
the link-loader will require to create a node.

When it is not possible to modify the PL compiler to directly read and write 
symbol files, an alternative technique w ould be to use the CL compiler to 
describe the process, and to add a pragma in the description to indicate the name 
of the object files that implement the process as is done in Dicon [Lee86]. For 
example:

group m odule fortranProcess; {Configuration Description for a PL component)
objects "fortran.o"; {Object file pragma)
u se  <PL Com ponents> {Each PL com ponent is described by a similar)

{description}
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<Port Declarations>

-- No BindingAllowed 
end.

The Conic PL is currently used to describe the interface of components written in 
other programming languages, for example, Fortran and C.

The host Unix link-editor, Id, is used to generate the final runnable node. Cross- 
com pilation to a machine that is different from the host, requires a machine- 
specific linker.

6.3. SYMBOL FILES
Symbol files hold a special compiled form of a component, read by compilers and 
debugging tools whenever a description of a component or of items within a 
component is required, for example, whenever a 'use' declaration is encountered. 
Symbol files are distinguished from object files, in that they do not normally 
include executable code, only information for use during compilation. A good 
implementation of symbol files is essential if the system is to be used for the 
practical construction of very large programs. In line with Lampson's advice in 
[Lampson83], our implementation aims to fast and simple. It also aims to be 
scalable.

Symbol files are used to ensure that strong type checking is maintained across 
separate compilations, that inconsistent use of components is detected and 
reported as earlier as possible in compilation, and that visibility rules are 
preserved.

In contrast to source code based symbol files our symbol files abstract out the 
essential details of a component, by recording the internal representations of 
items built by compilers during compilation in binary form. They are thus faster 
to process and more compact than systems that use m odified source files 
[Foster86], since they do not require each compiler to have a parser for the type 
description language. In a "sense", they can be considered as a m edium  for 
holding completely abstract language independent descriptions of objects such as 
components and types.

Our symbol files also attempt to track the location of associated object files in the 
host file system. This is a very convenient facility and alleviates the programmer 
from explicitly having to specify which objects files will be required to link-load a 
node.

Our symbol files are also used for implementing a new technique for performing
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sub-type compatibility checks. The technique trades symbol file space and some 
static type-hierarchy evaluation for fast constant-time run-time evaluation.

Our symbol files are com plete . Reading one symbol file does cannot cause further 
sym bol files to be read. Our symbol files are also m in im a l. Only information that 
is directly relevant to exported items is recorded. In contrast to [Sweet85] our 
sym bol files occupy little space.

Since symbol files are written once but often read many times, our symbol files 
are optimised for reading. They need only be read once during a compilation, 
and are organised for one-pass sequential reading without backtracking.

In [Robbins84] a single random access, global symbol table database is built and 
updated for each program. This solution has the advantage of opening a single 
symbol file for user-written component, but becomes costly when pre-existing 
symbol files have to be merged into the program 's symbol file. The central 
database idea is also advocated in [Rudmik82] which also stores intermediate 
code in the database.

6.3.1. Symbol File Organisation
Symbol files are organised into the following sections:

________ Symbol File________
Magic Number Section Directory Table Section 
Component Section 
Parameters Section 
Identifier Section Type Extensions Section ______Debugging Section______

The key sections are the component section which holds information on the 
component and all components used by the component, and the identifier section 
which holds information on all items exported from the component, and on any 
auxiliary items that are needed to complete description.

6.3.2. Symbol File Syntax
The format of symbol files is given in a boxed form of BNF. Terminal symbols are 
written in UPPERCASE. Non-terminals are written in lowercase with the first 
letter of each word in upper case. Non-terminals may be prefixed by a label and 
colon (:). Labels are used purely for exposition. A * suffix denotes zero or more 
repetitions. A + suffix denotes one or more repetitions. Productions are shown 
boxed, with the rule specified in the box and the non-terminal above the box.
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6.3.3. Magic Number Section
Each symbol file begins with a two byte number, called the magic number.

Magic Number Section 
f  Magic Number: Integer 1

The magic number is used to prevent other tools, particular text processing tools,
such as editors from attempting to read the file. On Unix, such tools, often check
that the first byte of a file is an acceptable Ascii code before reading the
remainder of the file. For compilers, the magic number provides a useful check
that the file to be read is actually the kind of file expected, and not some other
kind of file. The following magic numbers are currently employed:

Definition m odule sym bol files: 21923
Task M odule sym bol files: 21924
Group sym bol files: 21925

Changing the magic numbers accepted and written effectively invalidates 
existing classes of symbol files. This may be useful where a major revision of the 
programming system has been made, and the implementors require all existing 
components to be re-compiled.

6.3.4. Directory Table Section
A table of file directory names follows the magic number.

Directory Table Section 
Length: Integer ____ Directory Name: String *

This table is used as a hint in tracking the location of object files for subsequent 
link-loading into an executable node. The table consists of an integer length field 
followed by that number of strings, each string holding the pathname of a Unix 
directory, for example:

3
/u sr /lib /c o n ic /m o d u le  
/u se r s /n d /e x a m p le /w a r d  
/u s r /  lib /c o n ic / sort

Directory names are implicitly numbered from 1 onwards, and the numbers used 
as references in the component descriptions of the component section.

Duplicate directory names are not perm itted to occur within a directory table. 
This rule greatly reduces the size of symbol files when many components occur 
in the same directory. For example a distributed program having 20 components 
in one directory, where the length of the directory name is 50 characters, would 
take up one 50 character string, plus 20 2-byte indices, rather than 20 times
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50=1000 characters, a saving of 910 bytes.

6.3.5. Component Section
The component section holds the component description of the compiled
component (the first description) along with the component descriptions (the
remaining component descriptions) of all components directly and indirectly
referenced by the component. Descriptions of dependent components are used to
check consistent use of components during compilation, and are also used to
track the location of object files automatically. The component section consists of

_____ Component Section
Comp: Component ID +

___________ Null___________
where a Component ID (Identifier Description) is

_______ Component ID_______
Name; String Comp Number: Integer Home: Integer

________ Time Stamp________
The name field identifies the name of the component type. The component
number field provides a reference number for item descriptions in the Identifier
Section, and type extension relationships in the Type Extensions Section. The
home field specifies in which directory the component was compiled, and
therefore in which directory its object file may be found. The home field indexes
the nth directory specified in the directory table part of the symbol file.
Timestamp is a 6-byte tuple that uniquely identifies the component. Timestamps
are created when the component is compiled and consist of:

________ Time Stamp________
Epoch: Longint Unix Process Id : Integer

On Unix, the time in seconds since 1970, is used as the epoch, while the Unix 
Process-Id of the compiler process is used to differentiate betw een two 
compilations started during the same epoch second.

In addition to the fields above, component type descriptions hold other attributes 
such as whether a component is executable or not, and estimates of the minimum 
memory requirements of a component.

6.3.5.I. Consistency Checking Algorithm
Timestamps are used to check that interdependent components are consistently 
used. The algorithm used to check consistency follows.

Each compiler maintains a table of all component descriptions read from
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imported symbol files. Each time a component type description is read, the 
component type table is searched for a component of the same name. If no entry 
is found, then the read component is added to the end of the table. If an entry is 
found, then the timestamp of the stored component is com pared to the 
timestamp of the read component. If the timestamps are unequal then this 
implies inconsistent versions of a component and gives rise to a compilation 
error. An array which maps symbol file component numbers to compiler 
components is used during symbol file read.

INDEX COMP

[1]

[2]
[3]

[m]
Component Records

Fig 6.2 Organisation of Component Records

COMP Table of known components known to compiler. COMP [1] holds the 
information for the component being compiled.

INDEX An array of indexes to component records in COMP. INDEX is used to
map symbol file component numbers compiler to component numbers.
A new INDEX map is need for each symbol file read.

read N th C om ponent ID into C 
if  G nam e in COMP 
then le t E=Entry found in COMP 

i f  C .tim estam p = E. timestamp 
then  Let INDEX [N] = Index of E in Com p  
else  D ependency Error 
en d if

e lse  le t E =N ew  Entry in COMP 
C opy C to E
let INDEX[N] = Index of E in Comp

en d if

Checksums can be used as an alternative to timestamps, [Bron85] suggests the
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u se  o f  a co m p o n en t ch eck su m  ca lcu lated  o n  the exp orted  item s o f a co m p o n en t  

in stea d  o f tim estam p s as co m p o n en t sign atu res and lin k -tim e ch eck in g  in stead  

o f c o m p ile -t im e  ch eck in g . T h u s w h e n  a c o m p o n e n t A  is lin k -e d ite d  to a 

co m p o n en t B, a check is m a d e  that the cod e  o f B bears the sam e ch eck su m  as w as  

v a lid  for B w h e n  B w a s u sed  d u rin g  the com p ila tion  o f  A . A ccid en ta l ch eck su m  

eq u iv a len ces  can be red u ced  b y  the u se  o f lo n g er  ch eck su m  va lu es. C h eck su m s  

are q u ite  attractive as a m ean s o f d e term in in g  w h eth er  a co m p o n en t m ay  h ave  

ch an ged  its in terface or w h eth er  tw o  com p on en ts  h ave  the sa m e  interface.

6.3.6. Parameters Section
The parameters section specifies the formal parameters of the first component in
the symbol file. When read these parameters are chained together and the first
parameter linked into the component description by the compiler.

_____ Parameters Section
Parameter Identifier ___________ Null___________

The format and handling of parameter identifiers is identical to other identifiers 
described in the Identifier Section below.

6.3.7. Identifier Section
The identifier section of a symbol file is used to record the descriptions consists
of nam ed port identifiers, user-defined type identifiers, constant identifiers,
record fields and parameter identifiers.

_______Identifier Section______
Identifier *___________ Null___________

where
__________ Identifier_________________________________________________
( Port Identifier | Type Identifier | Constant Identifier | Field Identifier | Parameter Identifier 
I Nil Identifier)___________________________________________________

Identifier descriptions (except for the Nil Identifier) consist of a set of common
fields followed by some identifier specific fields.

______ Common Id Part______
Id Name: String Owner: Integer Id Type : Type Structure 

_______ Next: Identifier_______
The common fields specify the name of the identifier, a reference to its owning 
component, a detailed description of the type of the identifier, and a next field 
which is used to chain a sequence of identifiers together, such as the enumerated 
constants of an enumerated type, the fields within a record and the parameters of
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a co m p o n en t. W ith in  the CL com p iler  each  id en tifier  d escr ip tio n  is translated

in to  a po in ter  to an id en tifier  record. T he N il  Identifier is u sed  to rep resen t and

gen era te  a nil pointer.

________ Nil Identifier________
| Id Kind : Null |

P orts d e sc r ip t io n s  h o ld  a d d itio n a l in fo rm a tio n  o n  w h e th e r  th e p o r t is an

en tryp ort or an ex itport, and  a nu m ber that ind icates the declaration  p o sitio n  o f

the port w ith in  the com p on en t, i.e  the nth  declared  port.

________Port Identifier_______
ID Kind: PORT Common Id Part Port Kind: (EP | XP)

_____Port Number: Integer_____
Type descriptions hold no additional information.

_______ Type Identifier_______
Id Kind : TYPE_______Common Id Part______

Constant description hold the value of the constant, for simplicity this is held in
either integer form or string form. Real constants for example, are held in string
form. The type of the constant can be deduced from examination of the Id Type
field in the Common Id part of the description.

______Constant Identifier_____
Id Kind: CONSTANT 

Common Id Part Value : (Integer I String)
Field descriptions hold additional information on the offset of the field within the 
record.

_______ Reid Identifier_______
Id Kind: FIELD Common Id Part_______ Offset: Integer_______

Param eter descriptions hold additional information on the position of the
parameter in the parameters declaration.

_____ Parameter Identifier
Id Kind: PARAMETER Common Id Part Parameter Position: Integer

The missing productions are defined in Appendix H

6.3.7.I. Reading Identifier Descriptions
Within the compiler, identifier descriptions (except field names) are attached to 
their defining components in alphabetically ordered binary trees of identifier 
records:
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Fig 6.3 Organisation of Identifier Records

The procedure for reading identifier descriptions is thus
if  next Identifier.Kind=NULL then  

return n il 
otherw ise
read next Identifier.Gd Kind, N am e, Owner) Into I
le t I.owner = INDEX [I.owner] {Remap com ponent number}
let Tree = COMP [I.owner].locals

if  I.name in  Tree
then sk ip  over rest o f description (Id Type, Next, & identifier specific information)

return pointer to entry in Tree 
else  Insert I into Tree

read rest o f description into I.(Id Type, N ext & identifier specific information) 
return pointer to I

en d if

The procedure for skipping identifiers is identical to the above, except that read 
descriptions are never inserted into component identifier trees. Identifier chains, 
for example the Next part of an identifier description, are read by recursively 
calling the read procedure above.

6.3.7.2. Identifier Visibility
Identifiers are m ade visible in the scope of the im porting component, by 
inserting a copy of the identifier record into the identifier tree for the importing 
component namely COMP[l].locals. For enumerated types, all the enumerated 
constants of the type need to copied.
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6.3.7.3. Writing Identifier Descriptions
T he p roced u re for w ritin g  an identifier  is

if  Identifier is n il 
then w rite NULL
else write Identifier.(kind,name/Owner.type^ext)

w rite Identifier specific information
en d if

6.3.7.4. Type Structure Descriptions
All identifiers have a type. Type structure descriptions record type information. 
Types in Pascal can be highly inter-related, for example types can be included 
w ithin other types, or recursively used. Types can also be m utually  
interdependent. In order to handle such degrees of type usage the compiler 
builds and m aintains a network of type structures. For example, the type 
definitions

range = 1..80;
colour = (blue, green, red); 
rope = record

le n : range;
s e g : array [range] o f colour; 

end;
ptr = A rope;

are represented by the following identifier/type network:
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Fig 6.4 Example of an Identifier/Type Network

The type structures in such a network m ust be traversed and written to a symbol 
file, whenever an identifier is exported. Note that some type structures, for 
example, records and enumerated types require identifier descriptions (e.g. of 
fields and enumerated constants) to be written. Conversely when a symbol file is 
read the unrolled type structures need to relinked into the compilers network of 
types. Two identifiers have the same type if they point to the same type 
structure.

All type structure descriptions are labelled by an integer key. The key is used to
indicate whether a type structure is of a standard type (keys 1 to 20), of a user-
defined type (keys 21+), or whether the structure is referenced by an type
identifier that has not yet been written (key 0).

_______ Type Structure______________________________________________
( Standard Type | Embedded Type | Read type |Message Type | Subrange Type |Enumerated Type | Array Type I Record Type I Set Type | Pointer Type )__________
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The standard  typ e N IL  is u se d  to represent a n il pointer.

_______ Standard Type______________________________________________
Key : ( NIL | BOOLEAN | CHAR | INT | REAL | BYTE | NATURAL | LONGINT | STRINGJ______________________________________________________

If a typ e  d escrip tion  has a lready been  w ritten  to the sy m b o l file, it is  rep resen ted

so le ly  b y  the key  u sed  in  first d escrip tion  o f  the type.

_________Read Type_________
r  K ey : Integer 1

U ser d e fin ed  ty p e  structures w ritten  for the first tim e co n sist o f  a se t o f  com m on

fie ld s  fo llo w e d  b y  so m e  ty p e  structure sp ecific  fie ld s. T he co m m o n  fie ld s  sp ecify

a key (in the range 21+) which is used to identify the particular type structure,
the size of the type structure in bytes, and whether the type is packed or not.

_____ Common Type Part
Key: Integer Byte Size: Integer ______ Packed : Boolean______

Message type structures also record the request type and reply type of the port.
_______ Message Type_______

Common Type Part Form : MESSAGE Request Type : Type Structure 
Reply Type : Type Structure

Enumerated type structures also record the first enum erated type constant,
which chains the remaining constants.

______ Enumerated Type______
Common Type Part Form: ENUMERATED 

First: Constant Identifier
Subrange type structures also record the low and high values of the subrange,
and the base type of the subrange.

_______ Subrange Type_______
Common Type Part 
Form: SUBRANGE 
Low Value: Integer 
High Value: Integer Base Type : Type Structure

Array type structures also record the index type and element type of the array.
_________Array Type_________

Common Type Part 
Form: ARRAY 

Index Type : Type Structure Element Type : Type Structure
Record type structures also record the super type of the record (if an extension)
and the first field of the record which chains the remaining fields.

________ Record Type________
Common Type Part Form: RECORD Super Type : Type Structure
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|_______F irst: Field Identifier [
Set ty p e  structures a lso  record the base  typ e  o f the set.

__________Set Type_________
Common Type Part Form : SET

Base Type : Type Structure
P ointer typ e  structures also record the base  typ e  o f the set.

________ Pointer Type________
Common Type Part 
Form : POINTER Base Type : Type Structure

A special mechanism for recording em bedded type identifiers is needed to
enable one-pass writing and reading of symbol files. Embedded type identifier
descriptions are signalled by key 0. The key of the new identifiers type follows
the identifier description

______ Embedded Types______
Zero Key: Integer Type Identifier

______ New Key : Integer______

6.3.7.5. Reading Type Structures
Types must maintain their definition across a distributed program, although they 
may only be visible in some of the components.

The following data structure is needed during each symbol file read:

STRUCT An array of pointers to read type structures records. STRUCT is used 
to map keys within the symbol file to type structure records within 
the compilers type network. STRUCT [1..20] is reserved and used to 
map the keys of the standard types to standard type structures 
records.

HighKey is initialised to 20 at the start of each symbol file read, and updated 
each time a new user-defined type structure is read.

The procedure for reading a type structure is then
read Key 
i f  Key=0
then read Type Identifier I { Embedded T y p e }

read key
Point STRUCT [Key] at I.(Id Type)

e ls if  Key > HighKey ( N ew  User-defined T y p e}
then read rest o f structure into a new  type structure S 

Point STRUCT [Key] at S 
H ighKey := Key

else  [Standard Type or Read T y p e }
en d if
return STRUCT[key]
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The procedure for skipping type structure is identical to the above, except that a 
dum m y type structure S is used, and the skip identifier procedure used for 
embedded types.

6.3.7.6. Writing Type Structures
When a type structure is written for the first time it is preceded by the next 
available key, which is saved in the type structure. On the second and 
subsequent writes, only the saved key is written out. Keys are generated in 
ascending order starting from 21.

The keys of user-defined type structure are initially zero. They keys of standard 
type structures are initialised to a value in the range 2 to 20. Key 1 is used to 
indicate a nil pointer.

Key 0 is a special key that allows a type identifier description to be embedded 
with a type structure description. This is needed to enable one pass traversal of 
the compiler identifier/type network. It is also necessary to read types in 
dependency order. If a type A refers to another type B, then the description of B 
m ust precede the description of A. This however would require a search of the 
type dependencies before the type is written. To avoid this, we allow a type 
structure description to be interrupted mid-stream with declarations of referred 
identifiers.

The procedure for writing a type structure S is then
if  S=nil 
then  w rite 1
e ls if  S.key > 0 { Standard Type or previously written User Defined ty p e }
then w rite S.key
e ls if  a type identifier I points to S and has not yet being written  
then w rite 0

w rite identifier I 
set S.key to next key 
w rite S.key

else  set S.key to next key
w rite S.(key, com m on part, specific part)

en d if

6.3.8. Type Extension Section
Symbol files also play an im portant role in the im plem entation of a new
technique for checking subtype compatibilities, dynamically, for example being
able to check the predicate

ExTypeOf (object, T y p e ): boolean
== TRUE if Typeof(Object) is an extension of Type,

FALSE otherwise
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Wirth proposes a technique for implementing such type tests that requires a run­
time linear search of the type hierarchy.

Our technique uses symbol files to record local type hierarchies of a component. 
The CL and PL compilers merge the local type hierarchies of read symbol files, 
and output the merged hierarchy in their own symbol file. In this way the type 
hierarchy is incrementally built and cascaded up the configuration hierarchy. 
During node compilation, a complete type hierarchy exists for the node. This 
type hierarchy is then labelled and the labels used to generate data that can be 
used to perform type tests in constant time.

The following example will serve to demonstrate the technique,

Given the type hierarchies: 
defin e X: A,B,C

type A=record ... end; B=record (A ) ... end; C=record ( A ) ... end;
end.

and component no: X=l; type structure keys: A=9, B=27, C=33 we have

Fig 6.5 Type Hierarchy for X

The symbol file for X would have the following type extension section
Subtype Supertype
1 27 1 9
1 33 1 9
1 9  0 0

where
Type Extension Section 

Extension *___________ Null___________
and

______Extension_____
Subtype Owner: Integer Subtype Key: Integer Supertype Owner: Integer 
Supertype Key: Integer

Note that no information needs to be recorded on the types themselves, only 
information on their subtype relationships needs to be recorded. A supertype 
with component number 0 and key 0 is used to terminate a hierarchy.
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It is im portant that new extensions can be defined in other components, for
example given

d efin e  Y: D,E;
use X:A;
type D=record ( A ) ... end; E=record ( D ) ... end;

end.

and component nos: Y=l, X=2; type structure keys: D=18, E=41 we have

Fig 6.6 Type Hierarchy for Y

The symbol file for Y would hold the following table of extensions
Subtype Supertype
1 41 1 18
1 18 2 9
1 9  0 0

Plus the non-directly used extensions of X
2 27 2 9
2 33 2 9

We also define a further set of types as below:
defin e  Z: F,G,H; 

use Y:D; 
use X:C;
type F=record (D ) ... end; G=record ( D ) ... end; H=record (C ) ... end;

end.

and component nos: Z=l, Y=2, X=3, type structure keys: F=72, G=31, H=18 we 
have:
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Fig 6.7 Type Hierarchy for Z

The symbol file for Y holds the following table of extensions
Subtype Supertype
1 72 2 18
1 31 2 18
1 18 3 33
2 18 3 9
3 33 3 9
3 9 0 0

Plus the non-directly used extensions of Y
2 41 2 18

Plus the non-directly used extensions of X
3 27 3 9

The m erging procedure implied above is repeated until node compilation. 
Although we have shown the full type hierarchies in this example, in practice, 
compilers need only record a new branch of the type hierarchy if an explicit type 
test is made in the component.

During node compilation the merged type hierarchy is labelled with a pair of
tags, the first tag specifies a type number for the type, the second tag specifies the
highest tag in the type's subtype hierarchy. An inorder traversal of the type
hierarchy is employed to label the type hierarchy as follows:

function  label_type (P:Type; var tag:integer):integer;
var highest_tag:integer;
b eg in

tag:=tag+l;
PA.tag:=tag;

highest_tag:=tag; 
foreach subType of P do 

let S=subType;
highest_tag:=highest_tag max label _type (S,tag);

end;
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PA.maxtag:=highest_tag; 
return highest_tag;

end;

For the example the labelled hierarchy would be:

Fig 6.8 Labelled Type Hierarchy for X, Y, Z 

where the types are labelled with [tag, maxTag]

In order to check that an object is an extension of a type X, the type test merely 
needs to check that the tag of the object is within the pair of tags for the type, 
namely:

Tag(Object) >= X.tag and tag(Object) <= X.maxTag 

To check for a proper subtype, the check is:

Tag(Object) > X.tag and tag(Object) <= X.maxTag 

To check for exact type equality the test is:

Tag(Object) = X.tag

Object tags can be set with the assignment:

Tag(Object) := X.tag

The number of extensions that a type has is:

X.maxTag - X.tag

6.3.8.I. Tag Identification
Since the extent of the type hierarchy is not known when a component is 
compiled, it must be possible for separately compiled components to be able to 
address Type tags at the time of compilation. Because types are uniquely keyed 
within a component, and components are uniquely identified by a timestamp, a
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com ponent can safely address type tag data by referencing external tag 
identifiers that include these attributes, for example:

TYPE_<timestamp>_<id no>

For each node, the CL compiler then generates a tag identifier entry to satisfy the 
references made from the constituent components.

For the example, given:
TimeStamp(X)=891025132232
TimeStamp(Y)=891025184330
TimeStamp(Z)=891026101938

the CL would generate the following tag identifier data for link-loading:
Tag Identifier Tag MaxTag
TYPE_891025132232_9 1 8 {A }
TYPE_891025132232_27 2 2 (B )
TYPE_891025132232_33 3 4 1C )
TYPE 891025184330 18 5 8 {D }
TYPE_891025184330_41 6 6 { E }
TYPE_891026101938_72 7 7 IF )
TYPE 891026101938 31 8 8 (G )
TYPE_891026101938_18 4 4 {H }

In addition to tag identifier generation, the CL compiler could be extended to
generate type specific data, for example, a tag indexed table holding the size of
types which can used by memory allocator/deallocator libraries.

SIZE [1] <size_of_A>
SIZE [2] <size_of_B>
SIZE [3] <size_of_C>
SIZE [4] <size_of_H>
SIZE [5] <size_of_D>
SIZE [6] <size_of_E>
SIZE [7] <size_of_F>
SIZE [8] <size_of_G>

6.3.9. Debugging Section
The debugging section is optional and can be used by compilers to record 
additional for debugging purposes. Since the information in the debugging 
section is not needed during compilation, and can be lengthy, it is placed at the 
end of the symbol file, alleviating compilers from having to skip over it. The 
Conic PL compiler for example, uses the debugging section to record the variable 
identifiers declared within a process.

6.3.10. Additional Facilities
A directory search capability is provided for the location for the symbol files. By 
default if a symbol file is not found in the current directory it is searched for in a 
set of standard  directories. This allow s users to override  standard
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implementations of modules with their own versions, provided their is no 
inconsistent usage in the application. The search path can also be specified by 
users for greater control, and is useful where whole sets of symbol files are to 
moved within the file system or to different host file system. Symbol files are not 
currently shareable for heterogeneous targets. This is for two main reasons. 
Firstly, the size of types for each machine may be different, for example, integers 
may be 2 bytes on one machine 4 bytes on another. Secondly, our system 
currently supports conditional compilation of source files, allowing machine- 
dependent compilation of parts of a component, and this sometimes leads to 
types, and configuration specifications tailored to a particular machine. 
Currently m ultiple symbol files have to be built, one for each variant machine 
type.

Because symbol files hold useful information but in binary form, a utility called 
show  is provided that displays the information in symbol files in a human- 
readable form.

6.4. CODE GENERATION
The basic code generation strategy of the CL compiler is to produce an 
implementation module for each group module. For portability the generated 
code is emitted in a high-level language rather than in assembly or machine 
language.

The basic outline of the implementation module generated for a group is: 
m odule group

function  create_gro«p(parameters):group_ptr;
{sets up the group instance hierarchy for the group}
{described in section 7.2}

end

procedure link_group(G:group_ptr; parameters);
{sets up a flat interconnection network for a group instance hierarchy} 
{described in section 7.2}

end

function  query_group (parameters):query_ptr
{generates the configuration structure of a group}
{described in 7.6}

end

type extension data
{data for PL com pilers to perform constant time subtype tests}
{described in section 6.3.8.}
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endm odule

The group elaboration procedures create_group and link_group are used to create 
and bind new instances of the group. The query_group function generates the 
configuration structure of a group instance. For nodes two extra procedures are 
also emitted:

procedure elaborate_node;
link_node ( create_«ode(Unix_arguments)/Unix_arguments)
{Converts Unix arguments and calls the top-level group procedures)
{described in section 7.1}

end

procedure nodejnterface;
{Makes calls that pass back descriptions of node's ports)
{described in section 7.4.1)

end

The first is a environment hook that retrieves the Unix arguments for the node 
process and calls the elaboration procedures for the node group. The second is 
used when dynamically binding nodes to retrieve information on the types of 
node ports and also to convert incoming messages from heterogeneous 
machines.

In order to generate these procedures in a single pass w ithout forward 
references, the compiler builds and keeps configuration information until the end 
of the group module is reached. Only if no errors are found is the code emitted. 
By deferring code generation until the end of compilation, gives scope for 
additional optimisations.

6.5. LINK-LOADING
The CL compiler produces a linker file for each node. This file lists the names of 
all component object files needed to execute the node. The linker file is generated 
during node compilation by scanning the component table for the directory 
names of executable components. The CL compiler then attempts to open for 
each executable component the object file:

directory name /component name.o

If this fails, a search is made for the component, first in the current directory, and 
then in a set of standard directories. It is also possible for users to specify a set of 
directories for the CL compiler to search. If the object file is not found, a warning 
is generated. There is scope for potential inconsistency at this point, since the 
scheme for checking consistency of components is based only on symbol files, 
checks are also needed to ensure that referenced object files are also consistent.
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This can be done by recording component timestamps within the object file and 
checking them against those present in the node's symbol table [Mitchell79]. An 
alternative is to defer consistency checking until node elaboration time.

Once the linker file is written, it is passed to the Unix link-loader along with the 
names of some run-time libraries, to generate a runnable node.

Runnable nodes for Unix have the same format as other executable Unix 
programs. Nodes can thus be used and manipulated like other Unix programs. 
For example, nodes can be renamed and used like other programs. No special 
command is required to run nodes.

6.6. PROJECT MANAGEMENT SUPPORT
A consistency management tool such as Make [Feldman79] on Unix is useful for 
program development, as it helps ensure that changes to components cause the 
recompilation of dependent components. Since writing Makefiles by hand is 
error-prone and tedious [Walden84], a tool called m a is provided that 
automatically generates a 'Makefile' for a component. Ma works by scanning the 
source of the component, along with the sources of all directly and indirectly 
used components to form a 'use' dependency graph of components. This graph is 
then translated into Makefile format. The Makefile produced by ma also adds 
rules that allow components to compiled m ultiple m achine types. More 
sophisticated consistency management techniques such as smart recompilation 
are an obvious enhancement [Tichy86, Schwanke88] that could be used by the 
configuration and programming language compilers in conjunction with Make.

6.7. CHAPTER SUMMARY
This chapter has described the techniques used to compile configuration 
specifications into executable objects. Principal among these is the use of a new 
compact symbol file design. Symbol files are designed to (i) preserve strong type 
checking and visibility rules across separate compilations, (ii) provide earlier 
detection of inconsistent component usage, (iii) track the location of associated 
object files in the host file system, (iv) perform compile-time determination of the 
type hierarchy within nodes and (v) record additional debugging information in 
a fast, simple and scalable way.

A number of additional tools are provided: ma which produces Makefiles from 
available component source files, show  which displays the contents of symbol 
files in human readable for, pm  which using debugging information written in
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process component symbol files to list in source-level style the values of variable 
of crashed processes.

For each group module code is generated to create and bind new instances of 
that group and to query the configuration structure of the group. Data is also 
emitted for PL compilers to perform subtype tests in constant time.

The next chapter continues the description of the implementation model by 
describing the techniques used to elaborate, distribute, configure and query 
nodes.
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In this chapter the techniques used to elaborate, distribute, and configure Conic 
nodes within the Conic environment are presented.

7.1. INTRODUCTION
Given a set of compiled nodes, techniques are needed for elaborating the 
configuration structure within nodes, for distributing nodes to remote machines, 
for binding distributed nodes together, and for reconfigure running nodes. 
Ideally these techniques should be fast, simple and scalable.

In our approach nodes are dynamically elaborated at run-time. This speeds up 
development times considerably and also saves on the file space that would be 
needed to hold elaboration data. Dynamic elaboration is particularly useful 
where nodes are parameterised, and the parameters are used to control the size 
or topology within the node, or where the code used to elaborate particular 
groups is to be invoked by process components. In approaches that statically 
elaborate configurations, these advantages are lost.

Support is also provided to distribute nodes to remote Unix machines. In order to 
overcome the short-comings of the remote execution facilities available under 
Unix, special nodes, called virtual targets (vt's) are provided which can be left as 
daemons on those machines at which new nodes are to be created. An interactive 
and extended version of configuration language create declaration can then be 
used to instruct the virtual target to create a new local node instance by-passing 
the normal Unix verification procedures.

Because we allow nodes to be independently developed and dynamically bound 
into a running program, support needs to provided to ensure that the interaction 
safety mechanisms of the language are enforced. This is achieved through the use 
of type descriptors called canonical data representations (CDRs) that are 
automatically generated by the configuration language compiler for use in 
checking the safety of node interactions.
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CDRs are held within nodes along with the names of node ports and node port 
types. Such data can be accessed by configuration managers through a set of 
standard ports provided for each node. In order for a configuration manager to 
bind to these ports, it must find out the "internet" address of the node. This is 
achieved by querying a global name server that holds the names of all nodes in 
all programs. Each node periodically (every 10 seconds) reports its name and 
address to this server. If the server crashes, the information is automatically 
recovered by restarting a new server at the same address. Thus programs can 
continue running in the presence of server crashes. Once the address of a node is 
known to a configuration manager, it can interrogate the node for the names, 
types, and CDRs of its ports, and use the information provided to bind (and 
unbind) nodes together.

Support is also provided to allow tools to retrieve the actual configuration 
hierarchy built during elaboration. This information is be used, for example, by a 
graphical configuration manager to view and manage distributed program  
structures.

7.2. NODE ELABORATION
A distributed program specified using the Conic configuration language can 
have a very large and complex structure. Such programs are hard to efficiently 
execute within a heterogeneous distributed environment w ithout transforming 
the program’s configuration structure into a simpler, more efficient one.

A transform ational approach, that maps the hierarchic topology of Conic 
configuration structures into a flat, non-hierarchic topology of interconnected 
primitive processes at run-time is adopted. An alternative to this approach 
would be to omit the transformation and use hierarchic configuration structures 
directly for inter-process communication. This implies a traversal by the run-time 
system  of the interconnection path  from the sending process to each 
corresponding interacting process. When both interacting processes are within 
the same group the interconnection path is of length 1. If one process is in group 
that is the parent of the other, then the interconnection path is of length 2. In 
general the path length is equal to the num ber of group m odule boundaries 
crossed by the traversal.

By flattening the group hierarchy within a node we reduce the interconnection 
path to length 1 for all intra-node communications within a node and to length 3 
for all inter-node communications, an important improvement in efficiency.
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The use of flat process topology within nodes also simplifies the data structures
maintain by the underlying communication system.

7.2.1. Node Elaboration Procedures
For each group the CL compiler generates two procedures to elaborate the group:

• a create_group function that takes the formal parameters of the group and 
returns a pointer to a group instance data structure. This structures holds 
pointers to each sub-instance, and information on the hierarchic links of the 
group. The pointers are set by calling (i) for each sub-group instance, its 
corresponding create_group function, and (ii) for each sub-process instance a 
kernel function to create the task instance.

• a link_group procedure that takes a pointer to the group instance data 
structure generated by create_group and generates the flat interconnections 
for the processes within the group. For this the node is treated as a process in 
order to generate flat interconnections to and from the node.

The following example illustrates the results after these procedures a little
further.

Given a node:

Fig 7.1 Example Node for Elaboration 

After the create_group function we have:
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Fig 7.2 Node after the CreatejGroup Function 

And after a subsequent link_group procedure we have:

Fig 7.3 Node after the Link_Growp Procedure

For nodes an additional procedure, elaborate_node is called by the node kernel 
to elaborate the node. The procedure needs to converts any Unix arguments 
supplied to actual group parameters, 

procedure elaborate_node;
linkjio d e  ( crea\.e_node(getjunix_arguments), get_unix_arguments)

end

The complete elaboration of any group can be made dynamically from within a 
running node by making the following procedure call:

link_group ( create_group  (param eters), param eters )
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7 .2 .I .I . T h e  create_group fu n c tio n

G enerated  create_group fu n ction s take the fo llo w in g  general form:

function  create _group ( formal parameters of group ):group_ptr;
var G : group_ptr;
b egin

G := new group ( no. of instances of group, no. of ports of group ); 
if  group is a node then create_node ( no. of ports of group ) endif;

foreach instance I declared in group do 
if  I is a group then

GA.Inst [ ord I 1 := create_I ( actual parameters of I ) 
else  { I is a p rocess}

GA.Inst [ ord I ] := create_task ( I , actual parameters of I );
en d if

endfor

foreach hierarchic link X to Y.Z or Y.Z to X do
GA.Port [ ord X ]:=add_link ( G, ord Y, ord Z ); {-- Saves data in G }

endfor  

return G
end

T he n e w g r o u p  fu n ction  a lloca tes m em o ry  for th e g ro u p  in stan ce  data  structure. 

T his structure con sists  o f  an in stan ce table for the su b -in stan ces o f the g ro u p  and  

a p ort tab le form  h o ld in g  in form ation  o n  the h ierarch ic lin k s m a d e  to  th e port. 

E ach  su b -in s ta n c e  an d  p o r t o f  th e g r o u p  is g iv e n  an  o rd in a l v a lu e  b y  the  

com p iler  to  u n iq u e ly  in d ex  th ese  tables.

T h e  in s ta n c e  ta b le  is  s e t  b y  c a llin g  (i) fo r  ea ch  s u b -g r o u p  in s ta n c e , its  

co rresp o n d in g  create_group fu nction , (ii) for each  su b -p rocess in stan ce  the kernel 

fu n ction  create_task  to  create th e task instance. T he create_task fu n ction  returns a 

u n iq u e  p ro cess  n u m b er  for each  created  task in stan ce  w ith in  th e n o d e . P rocess  

n u m b er  0 is u se d  to  d es ig n a te  n o d e  ports.

H ierarch ic  lin k  in form ation  is sa v ed  in  a port table. Each en try  co n sists  o f  a lis t o f  

lin k e d  tu p les  o f  the form  c in s ta n c e  n o , p ort no> . A n  in sta n ce  n u m b er  o f  z er o  is  

u se d  to  s ig n ify  a forw ard ed  link.

If the g ro u p  is a n o d e  an ad d ition a l kernel call is  m a d e  to in form  the kernel o f  the  

n u m b er  o f  n o d e  ports to cater form .

7 .2 .I .2 . T h e  l in k _group p roced u re

G enerated  link_group p roced u res take the fo llo w in g  genera l form:

procedure link_group ( G:group_ptr; formal parameters of group ); 
b egin
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foreach non-hierarchic link W.X to Y.Z do
w a lk jin k  ( port (G, W, X ) ,  port (G, Y, Z ) )

endfor

foreach subgroup instance I of group do
link_I ( GA.Inst [ord I ], actual parameters of I );

endfor
end

T h e p o r t fu n c tio n  co n stru c ts  a p o r t d e scr ip to r  from  th e s p e c if ie d  in sta n ce  

n u m b er , p ort nu m ber. T he descrip tor h o ld s  in form ation  o n  the ty p e  o f in stan ce  

(grou p  or task), its p rocess nu m b er if  a task in stan ce, and  th e ty p e  p o rt (ex itp ort 

or entryport).

T he w a lk j in k  p ro ced u re  g en era tes  a ll p o ss ib le  flat lin k s  b e tw e e n  tw o  lin k ed  

p orts. T h e lin k_group p ro ced u re  m u st a lso  call th e c o r r e sp o n d in g  \ink_group 
p roced u re  o f  each  su b -grou p  instance.

T h e  w a lk j in k  p ro ced u re  tak es a lin k  b e tw e e n  tw o  n o n -h iera rch ic  p o rts  an d

g en era tes  ca lls  o f all th e p o ss ib le  flat in tercon n ection s. T his is  d o n e  b y  lo ca tin g

ea ch  task  ex itp o rt c o n n ec ted  to th e su p p lie d  ex itp ort, an d  lin k in g  it each  task

entryp ort con n ected  to the su p p lied  entryport.

procedure w a lk jin k  (XP, EP)
{ Expand group ex itports} 
b egin

if  XP is a task_port then
walk_eport (XP,EP) 

else  { XP is a group p o rt}
foreach internal port IP linked hierarchically up to XP do  

w a lk jin k  (IP, EP)
endfor

en d if
end

W h e n e v e r  an  e x itp o r t is  h iera rch ica lly  lin k e d  to  a su b -g r o u p  e x itp o r t, th e  

w a lk j in k  p ro ced u re  is  recu rs iv e ly  in v o k e d  w ith  the su b -g ro u p  ex itp o rt as the  

param eter. W h en ever  the ex itp ort is h ierarch ica lly  lin k ed  to  a su b -ta sk  exitport, 

th e  w a lk _ ep o rt p roced u re  is  in v o k ed  to ex p a n d  th e en tryp ort s id e  o f  th e link. In 

th is w a y  all d escr ib ed  task-to-task  lin k s can b e  generated .

T he w a lk _ ep o rt p ro ced u re  is sim ilar  to th e w a lk j in k  p ro ced u re  e x c e p t that on

en co u n ter in g  a task  en tryport a kernel call is  m a d e  to gen erate  the fla t link.

procedure walk_eport (XP, EP)
( Expand group entryports} 
b eg in

{assert XP is a task exitport} 
if  EP is a task port then

do J la tJ in k  (XP, EP) {-- Kernel ro u tin e}
else  { EP is a group p o rt}
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foreach internal port IP linked hierarchically down from EP do  
walk_eport (XP, IP)

endfor
en d if

end

H ierarch ic  lin k s  to a n o d e  port are a lso  fla tten ed  in th is w a y , w ith  th e n o d e  

co n sid ered  a task instan ce w ith  p rocess nu m b er 0.

7.2.2. P erform ance

T he tab le b e lo w  p resen ts  tim es for e lab ora tin g  Batcher's b ito n ic  sorter ex a m p le  

fro m  C h ap ter  4. T he t im es  w e r e  m e a su r e d  o n  a l ig h t ly  lo a d e d  S U N  3 /6 0  

w o rk sta tio n  u s in g  th e  U n ix  ftim eO  p roced u re. Each case w a s  ru n  3 tim es. The  

w o rst tim e m easu red  is  u se d  in  the table.

E lem en ts Tasks Links T im e (secs)

2 13 15 0.040

4 18 27 0.060

8 36 67 0.100

16 92 187 0.280

32 252 523 0.700

64 684 1419 1.880

128 1804 3723 5.280

256 4620 9483 12.470

Fig 7.4 N o d e  E laboration F igures for Batcher's B iton ic Sort

E lem en ts  is  n u m b er  o f  e lem en ts  to b e  sorted , an d  is p a s s e d  to  th e n o d e  as a 

param eter w h e n  the n o d e  is  execu ted . T asks is the n u m ber o f  p r im itiv e  p rocesses  

created . For ea ch  case , T asks in c lu d es  12 e x ecu tiv e  tasks. L inks is  th e n u m b er  o f  

f la t p r o c e ss -to -p r o c e ss  lin k s  e s ta b lish e d . For each  c a se , L in k s in c lu d e s  11 

e x e c u tiv e  lin k s. D efa u lt lin k s are n o t in c lu d e d  in  the L inks figu res . T im e is the  

tim e  tak en  to e lab orate  th e  n o d e  an d  g en era te  a flat in terco n n ec tio n  structure. 

T im e in c lu d e s  th e  tim e taken b y  th e C on ic  ru n -tim e k ern el to  a llo ca te  m em o ry  

for  each  task , as w e ll  as th e tim e taken  to in itia lise  kernel data  structures. T im e  

a lso  in c lu d es  th e  tim e taken to perform  d efau lt lin ks for each  task.
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7.3. N O D E  C R E A T IO N

N o d e s  can  b e  crea ted  in  o n e  o f  tw o  w a y s . F irstly  s in c e  n o d e s  are trea ted  

u n ifo r m ly  lik e  o th er c o m p iled  p rogram s o n  U n ix , th ey  can  a lw a y s  b e  d irectly  

execu tab le . For rem ote  U n ix  execu tion , d irect execu tion  can be cu m b erso m e and  

s lo w , req u ir in g  lo g g in g  in to  each  h o st in  turn in  order to run a n o d e . The U n ix  

rem o te  co m m a n d  in v o c a tio n  facility , rsh , can  b e  severa l o rd ers  o f  m a g n itu d e  

s lo w e r  than  loca l in v o ca tio n  [B hattacharyya88]. In order to  sp e e d  rem o te  n o d e  

crea tion s, sp ec ia l n o d e s  ca lled  v irtu a l targets (vt) p ro v id ed . T h ese  a lso  increase  

th e  flex ib ility  o f  the sy stem  b y  a llo w in g  resou rces for the n o d e , su c h  as a d isp la y  

w in d o w s  to b e  ea sily  created.

7.3.1. D irec t C reation

N o d e s  c o m p ile d  for U n ix  h o sts  can  b e  d istr ib u ted  a n d  e x e c u tio n  star ted , b y  

lo g g in g  o n to  the d esired  h ost, and  ex ecu tin g  the com m and:

node param eters  - in sta n ce  sy s te m

w h e r e  node  is the n am e o f the lin k -lo a d ed  n o d e  file , para m eters  are zero  or m ore  

actu a l p aram eters , in s ta n c e  is th e in sta n ce  n a m e for the n o d e  (if o m itte d  this  

d efau lts  to  the p rocess-id  un der U n ix  and  th e n o d e  n am e on  targets), s y s te m  is  the  

n a m e  o f  th e sy ste m  u n d er  w h ic h  the n o d e  is to b e  r eg istered  (if o m itte d  th is  

d e fa u lts  to  th e u ser's lo g in  n am e). S y stem  can b e  treated  lik e  a n a m e  for the  

program .

T h e  p a r a m e te rs  s u p p lie d  are p a s s e d  as a c tu a l p a r a m e te rs  to  th e  n o d e 's  

con figu ra tion  sp ecification .

7.3.2. In d irect E xecu tion  v ia  V T 's

A lte r n a tiv e ly , n o d e s  can  b e  created  v ia  sp ec ia l v t  n o d es . Vt's p r o v id e  a C on ic  

m e ssa g e  p a ss in g  interface for rec e iv in g  U n ix  com m an d s from  rem o te  m ach in es  

an d  e x ec u tin g  them . O nce started , vt's can  b e  le ft to run  in  iso la tio n , as d a em o n  

sh e lls  o n  the rem ote  host. V t's  ex p ect create m essa g es  o f  th e form :

"node param eters  - in sta n ce  s y s te m "

from  rem o te  n o d e s , in  particu lar from  the C on ic  co n figu ra tion  m a n a g ers  im a n  

a n d  C o n ic D r a w . W h en  a v t  is  started  w ith o u t  p aram eters a ll r e c e iv e d  create  

r e q u e sts  are e x e c u te d  d irec tly . W h en  a v t  is  s ta r ted  w ith  p a r a m e te rs , th e  

p aram eters are a ssu m ed  to n a m e a U n ix  co m m a n d  to p refix  b efore  all rece iv ed  

crea te  r eq u ests . By s u p p ly in g  p a ra m eters  to  th e  v t, it is  p o s s ib le  to  crea te
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ad d ition a l resources or con text for each  created n o d e . For exam p le , to create an X 

w in d o w s  [Scheifler86] for each  n o d e , or to run each  created n o d e  u n d er the U n ix  

d eb u g g er  adb , w e  can start the fo llo w in g  v t's:

v t xterm  -e  - w in d o w  m y sy stem

v t adb - d eb u g  y o u rsy stem

T he p aram eters o f a v t n o rm a lly  n am e a U n ix  sh e ll scr ip t that p erform s m ore  

co m p lex  resou rce  a llocation  operation s prior to n o d e  execution .

V t 's  are d istr ib u ted  and  started  lik e  other n o d e s  (ie. d irectly  b y  lo g g in g  in to  the 

rem ote  h o st, or v ia  other vt's), for exam p le

v t v tp a ra m eters  - v tin s ta n c e  s y s te m

O n ce  a crea te  m e ssa g e  is  r ec e iv ed , vt's co n stru ct a n e w  U n ix  c o m m a n d  by  

p refix in g  their o w n  param eters before the create req uest, i.e.

v tp a ra m eters  n o d e  param eters - in stan ce sy stem

T his co m m a n d  is then  ex ecu ted  u s in g  the 'exec' sy stem  call.

N o d e  creation  m essa g e s  can  b e  sen t to  vt's w ith  th e im an  co m m a n d

create in sta n ce  node param eters  at v tin s ta n c e

T he u se  o f  v irtua l target n am es in stea d  o f actual m ach in e n am es a lso  m ean s that 

n o d e  creation  scripts are m ach in e  in d ep en d en t. E xecu tin g  th e sa m e  seq u en ce  o f  

n o d e  crea tio n  c o m m a n d s  at d ifferen t tim es m a y  resu lt in  n o d e s  r u n n in g  on  

d ifferen t m ach in es, s in ce  v irtual targets can b e  rem o v ed  and  recreated  e lsew h ere.

7.3.3. T arget C reation

To create  a n o d e  o n  a target, th e  d o w n lo a d  c o m m a n d  d l can  b e  u se d , for  

exam ple;

d l target node param eters  - in sta n ce  s y s te m

or if  a d o w n lo a d in g  v t is  runn ing , i.e: if  the v t  w a s  started w ith  a co m m a n d  o f  the  

form:

v t d l target - v tin s ta n c e  sy s te m  

the con figu ration  m an ager com m and:

create in sta n ce  node param eters  at v tin s ta n c e  

can b e  u se d  instead .
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In a d d itio n  to the object co d e  and  in itia lised  data for th e n o d e , the d o w n lo a d e r  

a lso  se ts  u p  a U n ix -lik e  p rocess  stack, ie. se ttin g  u p  argv , argp , an d  e n v p . T his  

in v o lv e s  d o w n lo a d in g  the n o d e  argum ents and  a se t  o f en v iro n m en t variab les to 

the target. T he u se  o f  U n ix -lik e  p rocess e n v iro n m en t a llo w s  m a n y  parts o f  the  

C onic ru n -tim e sy stem  to rem ain  com m on  to h osts  and targets.

7.4. N O D E  B IN D IN G

P r o v id ed  the m e ssa g e  ty p es o f  the tw o  ports are com p atib le , n o d e  ports can be  

b o u n d  w ith  the in teractive configu ration  m an ager com m and:

l in k  node.exitport to node.entry port

T he ch o ice  o f  Pascal's n am e e q u iv a len ce  sem an tic  to  check  in tra -n od e  b in d in g  is 

d iffic u lt  to en force  w h e n  n o d e s  m a y  be d e v e lo p e d  an d  run  in d e p e n d e n tly  on  

h etero g en eo u s  h osts . A n  im p lem en ta tio n  w o u ld  require d istr ib u tion  a n d  sharing  

o f  sy m b o l files  across the h osts . T herefore strict n am e eq u iv a len ce  w a s  d ro p p ed  

in  fa v o u r  o f  w ea k er  stru ctu ra l ty p e  c h e c k in g , im p le m e n te d  b y  g e n e r a tin g  

C an on ica l D ata R ep resen tation s for m essa g e  typ es.

7.4.1. C an on ica l D ata  R e p resen ta tio n  (C D R )

C an on ica l data rep resen tation s are u sed  for v a lid a tin g  n o d e  b in d in g  c o m m a n d s, 

for  tr a n sfo rm a tio n  o f  m e s sa g e s  across h e te r o g e n e o u s  b o u n d a r ie s , a n d  for  

m on itor in g  m e ssa g es  sen t from  a n od e.

For ea ch  n o d e  th e  CL co m p iler  g en era tes  a n o d e_ in ter fa ce  p r o c ed u r e  m a k es

kernel calls to se t up  the C D R s for the m essa g e  ty p es  o f each  n o d e  port.

procedure node_interface;
{Makes kernel calls that describe the node ports) 
foreach nodeport do

nodeport (porttype, portname, requestCDR, replyCDR) 
end

end

C D R s are s tr in g s  w h ic h  are g e n e ra ted  b y  u n r o llin g  th e  ty p e  stru ctu re  o f  a 

m e ssa g e  ty p e  and  are form ed  as fo llow s:

1) S tan d ard  ty p es  are rep resen ted  b y  a s in g le  lo w e rc a se  letter: in teg er  b y  'i', 

real b y  'r', natural b y  'n', lo n g in t b y  T , char b y  'c', b oo lean  an d  b y te  b y  ’b'. If a 

stan d ard  ty p e  can b e  p ack ed  and  occurs w ith in  a p a ck ed  ty p e , u p p erca se  is  

u sed .

2) Subranges are rep resen ted  b y  the app rop riate  base ty p e  rep resen tation .

3) E num erated  typ es are rep resen ted  by  'b' if  th e  card inality  o f  th e ty p e  is  > 255,
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o th erw ise  b y  'i'.

4) A rra y s are r e p r e se n te d  b y  th e an in teg e r  r e p r e se n tin g  th e  n u m b e r  o f  

e lem en ts  in  the array, fo llo w e d  b y  the rep resen ta tion  o f  th e e le m e n t ty p e  in  

paren th esis. P arenthesis are n orm ally  o m itted  if the e lem en t typ e  is n o t o f  set 

typ e, array typ e  or record  type.

5) R ecord s are rep resen ted  b y  th e con ju n ction  o f  the r ep resen ta tio n s  o f  their  

fie ld s.

6) Sets are rep resen ted  b y  an in teger  rep resen tin g  the se t s iz e , fo llo w e d  b y  the  

letter 's’

For e x a m p le  th e  typ e  

record
l o w : integer; 
v a lu e : real;
nam e : packed array [5..10] of char; 
dates : array [1..10] of record 

y e a r : 1900...2001;
m onth : (jan, feb, mar, apr,may, jun, jul, aug, sep, oct, nov,dec); 
d a y : 1..31; 

end;
capabilities : array [1..99,1..41 o f set o f char;

end;

is  d escr ib ed  b y  the C D R  "ir6C 10(ibb)99(4(256s))M

For stron ger  ch eck in g , greater ty p e  d iscr im in a tio n  c o u ld  e a s ily  b e  a d d e d , b y  

e x p lic itly  a d d in g  specia l letters for en u m erated  typ es, su b ran ge typ es, an d  record  

typ es.

7.4.2. N o d e  b in d in g  c o m p a tib ility

T o check  th at tw o  m essa g e  typ es are com p atib le , th e  C D R  str in gs are ch eck ed  for  

str in g  eq u iv a len ce . For ex te n d e d  ty p es  the C D R  o f  the su p e r ty p e  n e e d s  to b e  a 

le a d in g  su b str in g  o f  the C D R  o f the su b typ e.

For in crea sed  sp e e d  h a sh e d  C D R s c o u ld  b e  u se d  to check  b in d in g  [Scott88], at 

th e  cost o f  o ccasion a l in v a lid  b in d in g . H a sh ed  C D R s are m o re  u se fu l w h e r e  the  

ty p e  ch eck s n e e d  to m a d e  for each  m e ssa g e  rece ived . In ou r sy ste m , ch eck s are 

o n ly  req u ired  o n  b in d in g , w h ic h  is rela tively  in freq u en t com p ared  to  th e nu m ber  

o f  m e ssa g e s  su b seq u en tly  transm itted  o n  th e b o u n d  ports.

7.4.3. H e te r o g e n e o u s  M e ssa g e  P a ss in g

C D R s are a lso  u se d  b y  the ru n -tim e sy stem  to con vert in c o m in g  m e ssa g e s  from
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d issim ilar  m ach in es in to  loca l form at, for exam p le  a real v a lu e  sen t from  a V A X  

is con verted  au tom atica lly  to its eq u iv a len t b it pattern  o n  a M otoro la  68000. S ince  

C D R s are h e ld  at both  the se n d in g  n o d e  and  the rece iv in g  n o d e  there is n o  n eed  

to sen d  C D R s as a part o f a m essa g e .

To o ffse t th e co st o f  in c lu d in g  co n v ers io n  co d e  o f  each  m a ch in e  typ e , ru n -tim e  

sy ste m s  c o u ld  con vert o u tg o in g  m e ssa g e s  in to  so m e  sta n d a rd  form at, su ch  as 

A S N .l  [ I S 0 8 5 ] . T h is  r e s u lt s  in  tw o  m e s s a g e  c o n v e r s io n s  p e r  m e s s a g e  

tr a n sm issio n , e v e n  if  m ach in e  ty p es  are the sa m e, b u t d o e s  m e a n  that fu tu re  

m a ch in e  ty p es  can  b e  a cco m m o d a ted  w ith o u t h a v in g  to  w r ite  n e w  co n v ers io n  

rou tin es for the m ach in e typ e.

M a ch in e  ty p e s  c o u ld  b e  e x te n d e d  to  in c lu d e  a su b -f ie ld  for  in d ic a t in g  th e  

p rogram m in g  la n g u a g e  u se d  to  program  the com p on en t. T his fie ld  c o u ld  th en  be  

u s e d  to  in itia te  in ter -la n g u a g e  d ata  ty p e  c o n v ers io n s , for e x a m p le , c o n v ertin g  

m atrices  h e ld  c o lu m n -w ise  in  Fortran, in to  th e r o w -w ise  m atrices o f  an oth er  

lan gu age.

7.5. N O D E  C O N F IG U R A T IO N

T w o  in te r a c t iv e  c o n fig u r a tio n  m a n a g er s  are c u rren tly  p r o v id e d  fo r  n o d e  

con figu ra tion . Im an w h ic h  p r o v id e s  a textu a l in terface a n d  C o n icD ra w  w h ich  

p r o v id e s  a grap h ica l interface. T he p r in cip a l con figu ra tion  c o m m a n d s accep ted  

b y  Im an are:

m a n a g e  sy stem  { sw itch es con tex t to  s y s t e m }

create in sta n ce  typ e  [ param eters  ] at V T in s ta n c e  

rem o v e  in sta n ce

l in k  in sta n ce .ex itp o r t to in sta n ce .en tryp o rt

u n lin k  in sta n ce .ex itp o r t from  in s ta n ce .en tryp o rt

G iv en  v ir tu a l targets a lpha, b eta , gam m a, d e lta  an d  e p s ilo n  ru n n in g  o n  var iou s  

m ach in es, th e d in in g  p h ilo so p h ers sy stem
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Fig 7.5 S ystem  o f D in in g  P h ilo sop h ers

can b e  d istr ib u ted  and  con figu red  as fo llow s:

create albert philosopher at alpha 
create brian philosopher at beta 
create colin philosopher at gam m a  
create david philosopher at delta 
create table table at epsilon  
lin k  albert.If to brian.rp 
lin k  brian.lf to colin.rp 
lin k  colin.lf to david .rp 
lin k  david.lf to albert.rp

link  albert.leave to table.leave 
link  brian.leave to table.leave 
lin k  colin.leave to table.leave 
lin k  david.leave to table.leave

start albert start brian start colin start david

lin k  albert.sit to table.sit 
lin k  brian.sit to table.sit 
lin k  colin.sit to table.sit 
lin k  david.sit to table.sit

T h e  start co m m a n d  se n d s  a m e ssa g e  to  a n o d e , in fo rm in g  it  th at it  h as b een  

co n fig u red . T h is m e ssa g e  can  b e  r ece iv ed  b y  a n y  or all th e  p r o c e sse s  w ith in  a 

n o d e  a n d  for e x a m p le , u s e d  b y  th em  to  b e g in  in teraction . A  c o m p le m e n ta ry  

c o m m a n d  c a lle d  s t o p  is  a lso  a v a ila b le  w h ic h  se n d s  a m e s s a g e  to  a n o d e  

in fo rm in g  in form in g  it that it is to b e  recon figu red . A g a in  th is can b e  rece iv ed  b y  

a n y  or all th e  p ro cesses  w ith in  a n o d e  and  for exam p le , u se d  b y  th em  to  su sp e n d  

in teractions. A  m ore d eclarative  and  rigorou s app roach  to ch a n g e  m a n a g em en t is 

d escr ib ed  in  [Kram er88].

In a d d itio n  to  p erform in g  n o d e  con figu ration  co m m a n d s, Im an a llo w s  q u eries to 

m a d e  o n  the current con figu ration  state  o f  a p rogram  u s in g  the com m an d s:

n o d e s  { lists  th e n o d e  in stan ces w ith in  m a n a g ed  s y s t e m }

lln o d e s  { p ro v id es  a m ore d eta iled  lis tin g  than n o d e s )

sy s te m s  { lists  n am es o f  all ru n n in g  sy ste m s }
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p orts instance { lists ports o f instance}

l l in k s  instance { lists links o f  instance}

C o n ic D r a w  is s im ila r  to Im an  b u t c o m m a n d s  are p e r fo r m e d  g r a p h ic a lly  

[K ram er89]. L in k in g , for e x a m p le , is a c co m p lish ed  b y  d r a w in g  a lin e  from  the  

e x itp o r t o f  o n e  n o d e  to th e en try p o rt o f  anoth er. C u rren tly  th e  stru ctu re  o f  

r u n n in g  p rogram s is d isp la y e d  on , an d  m a n ip u la ted  from , A p p le  M acin tosh  

com p u ters , e .g .

F ig  7.6 E xam ple o f a C on icD raw  W in d o w

C o n icD ra w  in teracts w ith  n o d e s  th rou gh  a sp ec ia lly  m o d if ie d  v e r s io n  o f  Im an  

ca lled  G m an , to w h ic h  it lin k ed  over  a serial link.

7.6. Q U E R Y IN G  N O D E  ST R U C T U R E

T h e in tern a l d e ta ils  an d  stru ctu re  o f  a n o d e  can  a lso  b e  q u e r ie d  at ru n -tim e. 

R eq u ests  for the in ternal structure o f a n o d e  are a n sw ered  b y  a sp ec ia l p rocess in  

th e  e x e c u t iv e  c a lle d  s tr u c tm a n . T h is h o ld s  a r e p re sen ta tio n  o f  th e  cu rren t  

co n fig u ra tio n  h ierarch y  for th e  n o d e . P roced u res to p r o d u ce  th e  h ierarch y  are  

g en era ted  b y  th e  C on figu ra tion  L a n g u a g e  com p iler  in  an  a n a lo g o u s  w a y  to th e  

p roced u res for n o d e  elaboration .

R ep lies  from  stru ctm an  return the structure o f  th e n o d e  in  a c o d e d  ascii form at 

w h ic h  is  d e s ig n e d  for com p actn ess. T h ese  rep lies  are u se d  b y  C o n icD ra w  w h e n
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d is p la y in g  th e  in tern a l h ierarch y  o f a n o d e . A n  in te r e stin g  a d d it io n  to  ascii 

rep resen ta tion  w o u ld  b e  to  return structural data as P ro log  clau ses. T h ese  co u ld  

th en  b e  u se d  d irectly  b y  an alysis too ls w ritten  in  P rolog.

7.7. N O D E  D E B U G G IN G

S evera l to o ls  are p r o v id e d  to h e lp  in  d e b u g g in g  n o d es . A  too l for v ie w in g  the  

variab les  o f crash ed  p ro cesses , a tool for v ie w in g  th e so u rce  lin es  e x ec u ted  b y  

p r o c e sse s  w ith in  a n o d e , and  a to o l for v ie w in g  th e  m e ssa g e s  se n t  b e tw e e n  

n o d es .

7.7.1. P ost-M ortem  D u m p s

W h e n  a p r o c ess  crash es, or u n d er  p ro g ra m  con tro l, a d u m p  o f  th e  p r o c ess  

m e m o r y  is p erform ed  b y  the ru n -tim e ex ecu tiv e . A  too l, ca lled  p m  is p r o v id e d  

w h ic h  w h e n  in v o k ed  reads the d e b u g g in g  sec tion  o f  the p rocess  sy m b o l file , and  

p ro v id es  a lis tin g  o f  the con ten ts o f  the p rocess m em ory  in  h ig h  lev e l form , e.g:

N o d e alpha, Instance 23, m odule=t3, clock=2000, failed at line 337 because: task com pleted

VARIABLES:-
a l=  ( -1000, -900, -800, -700, -600, -500, -400, -300, -200, -1 0 0 ,0 ,1 0 0 ,2 0 0 ,3 0 0 ,4 0 0 ,5 0 0 ,6 0 0 ,7 0 0 , 

800, 900,1000);
c= ( ’a', ’b’, ’c1, '2', T ,  ’ ', ’a’, ' ’, V , y , ’O’, '6*, ’3’, ’O’, ’O', ’0*,'', 0#C, 0#C, 0#C); 
c2='z';
colors=[ green..orange ]; 
cset=[ T ..V  '-'..V ’a'-.T T ]; 
head= HEAP (251588700) A 

RECORD 
val=200 I
next= HEAP (251588694) A 

RECORD 
val=199 I
next= NIL

EN D
END;

input=File not Open; 
k=3;
letters=[ ’O’..^' ’a’. /z ’ ]; 
r= 2.029297e+00

Fig 7.7 E xam ple o f  a P ost M ortem  D u m p

7.7.2. N o d e  P layb ack

T h e p r o c e sse s  w ith in  a n o d e  can  b e  sp e c ia lly  c o m p ile d  to  lo g  to  a tracefile  

in form ation  o n  their n a m e and  th e sou rce  lin e  nu m b er o f  each  lin e  ex ecu ted . A  

to o l ca lled  p b  is  a lso  p r o v id e d  w h ic h  w h e n  ca lled  read s th e  tracefile , a n d  p la y s
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back in  sep arate w in d o w s  the lin es  lo g g e d  b y  the processes.
-kerne 1 . tas 1---------

15 i, j , k: integer; || 309 {procedure j o i nk i d <I I 15 i, j, k:integer,
15 begin 1 1 310 procedure jo ink id; || 16 begin
17 i := 0; j := 0; k|| 311 var p, q: PaidLst; | | 17 i := 0; j := 0; k
18 wri teln<' ':30 ‘I I 312 begin II 18 wri telnC'Hello, S

> 19 f lush(output); II >313 if <oldk o  newk>| I 19 f lush(output);
20 i := i + 1; I I 314 p := kidmaptoldl| 20 i := i + 1;
21 action 1 1 315 while <p <> nilill 21 action
22 j := j + 1; II 315 q := p; P := 11 22 j := j + i;
23 action I I 317 putinkidCnewklI 23 action
24 k := k + 1; II 318 end; I I 24 k := k + 1;
25 receive signal| 319 pr := kidmaptol|| 25 send signal t
25 commi t; I | 320 while <pr <> ni|| 26 commi t;
27 end; I I 321 i f (pr*.rely j| 27 end;
28 delayC1); abort I I 322 puti nreI<ne|I 28 comm i t;
29 end; I | 323 end | j 29 end;
30 writelnC' ':30, ’ll 324 else II 30 wri teln('Snd, i 1
31 delayC 100); II 325 rmfromdepCnl| 31 delay(IOO);
32 end. 1 1 326 qr := pr; pr j j 32 end.
33 1 1 327 end; I| 33
34 1 I 328 pd := kidmaplol11 34
35 I I 329 while (pd < > n i|| 35

single step

Fig 7.8 E xam ple o f  N o d e  P layback

Pb accepts co m m a n d s to p la y  forw ard  o n e  lin e  at a tim e, to  p la y  forw ard  u n til 

th e  n e x t p ro cess  sw itc h , an d  to  p la y  c o n tin u o u s ly  forw ard . Pb can  a lso  p la y  

tracefiles b ack w ard s, e ither o n e  lin e  at a tim e, u n til the p rev io u s  p rocess  sw itch  

or c o n tin u o u s ly  u n til the first lo g g e d  lin e . T his is u s e fu l w h e r e  a n o d e  h as  

crashed  and  the program m er d o e s  n o t w is h  to  p la y  the en tire  ex ecu tio n  from  the  

b e g in n in g  i.e  h e  o n ly  w ish e s  to k n o w  w h ic h  lin es  w ere  la st execu ted .

7.7.3. M e ssa g e  M o n ito r in g

T he m e ssa g e s  sen t o n  an y  in ter-n od e  lin k  can b e  in tercep ted  and  lis ted  b y  a filter  

ca lled  sp y . S p y  tak es the sam e argu m en ts as the l in k  co m m a n d . W h en  in v o k ed  

sp y  relinks th e tw o  n o d e  ports con cern ed  to itself.

For ex a m p le , if b efore  s p y in g  w e  have:

colin david

Fig 7.9 In ter-node Link prior to S p y  

A fter the com m an d  s p y  co lin .lf to d av id .rp , w e  w o u ld  have:
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colin spy david

Fig 7.10 In ter-node Link w ith  Spy Filter

B efore p erform in g  relink in g , sp y  a lso  in terrogates the se n d in g  n o d e  for the CDRs 

o f its  port's req u est and  rep ly  typ es. T he basic  action  o f sp y  is th en  to repeated ly: 

receive m sg from in;
use requestCDR to list m sg in hum an readable form  
send  m sg to out aw ait reply -m sg  
use replyCDR to list reply-m sg in hum an readable form  
send  reply-m sg to in

T he orig in a l lin k  is restored  b y  sp y  before it term inates.

7.7.4. F inal C o m m en ts

T he d e b u g g in g  to o ls  currently  a v a ilab le  w o rk  in  iso la tio n , th e  n ex t lo g ic a l step  

w o u ld  b e  in teg r a te  th em  w ith  C o n icD ra w . H o p e fu lly  th is  w o u ld  le a d  to  a 

co m p reh en siv e  d e b u g g in g  sy stem  for d istr ib u ted  program s.

A lth o u g h  th ese  d e b u g g in g  to o ls  are a v a ila b le  w e  h a v e  fo u n d  th at th e  m o st  

effective  d e b u g g in g  too l is still careful th o u g h t and  analysis.

7.8. C H A PT E R  S U M M A R Y

T h is  ch a p ter  h a s  p r e se n te d  an  a lg o r ith m  for d y n a m ic a lly  e la b o r a tin g  th e  

co n fig u ra tio n  stru ctu res o f th e  la n g u a g e . T he e lab ora tion  a lg o r ith m  g en era tes  

an d  transform s the hierarchic in stan ce  an d  in teraction  to p o lo g y  o f a n o d e  in to  a 

m ore effic ien t flat to p o lo g y  w h ile  m a in ta in in g  the hierarchic rep resen ta tion s. The  

hierarch ic  rep resen ta tion  is u se d  b y  a grap h ica l co n fig u ra tio n  m an ager  to  v ie w  

th e  co n fig u ra tio n  stru ctu re  o f  n o d es . R esu lts  s h o w in g  th e  p erfo rm a n ce  o f  the  

algorith m  for elaboratin g  the structure o f  Batcher's sorter h a v e  a lso  b e e n  g iv en .

T h e CL c o m p ile r  su p p o r ts  in ter a c tio n  s a fe ty  o f  in d e p e n d e n t ly  d e v e lo p e d  

c o m p o n e n ts  b y  g e n e r a tin g  ca n o n ic a l d a ta  r e p r e se n ta tio n  (C D R ) str in g s  o f  

d ec la red  n o d e  p ort typ es. C D R  str in g s  can b e  u se d  to  ch eck  that b o u n d  n o d e  

p orts  are com p atib le . C D R s h a v e  a lso  b een  p ro fitab ly  u s e d  for h e te r o g en eo u s  

m e ssa g e  con version s, and  m on itor in g  in ter-n od e m essages.

T o o ls  h a v e  a lso  b e e n  p r o v id e d  for q u er y in g  th e  stru ctu re  o f  n o d e s , a n d  for  

d e b u g g in g  n o d e s . E x istin g  te c h n iq u e s  in  th e  C on ic  to o lk it  for d is tr ib u tin g , 

co n fig u r in g , an d  v ie w in g  d istr ib u ted  p rogram s stru ctu red  w ith  th is  la n g u a g e
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h a v e  a lso  b een  o u tlin ed .
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8.1. SUMMARY OF WORK
T he w o rk  d escr ib ed  in  th is th esis w a s  m o tiv a ted  b y  th e in a d eq u a cy  o f  e x istin g  

la n g u a g e s  for d e v e lo p in g  d istr ib u ted  p rogram s. T he ap p ro a ch  a d v o c a te d  has  

b een  to  p r o v id e  a sep ara te  an d  sp e c ia lise d  la n g u a g e , term ed  a c o n fig u ra tio n  

la n g u a g e  for structuring  d istr ib u ted  program s that is  lu c id , flex ib le  an d  practical. 

T h is is  u s e d  in  con ju n ction  w ith  a la n g u a g e  for p r o g r a m m in g , to  p r o v id e  a 

co m p le te  n o ta tion  for w r itin g  d istr ib u ted  program s.

T h e  c o n f ig u r a t io n  la n g u a g e  d e s ig n e d  h a s  a t te m p te d  to  fu lf i l  th e  k e y  

req u irem en ts for stru ctu rin g  d istr ib u ted  program s id e n tifie d  in  C hapter 2 o f  the  

th es is . P r in c ip a l a m o n g  th ese  w a s  th e  n e e d  to  s p e c ify  d is tr ib u te d  p rogram  

stru ctu res  sep a ra te ly  from  th e a lg o r ith m ic  im p le m e n ta tio n  o f  p ro g ra m s. T his  

g o a l h a s  b e e n  m e t  b y  th e  p r o v is io n  o f  a c o m p le te ly  sep a ra te  la n g u a g e  that 

in corp ora tes  a n e w  p rogram  stru ctu r in g  m e ch a n ism  c a lle d  th e g r o u p  m o d u le . 

T he m ech a n ism  is  p o w erfu l an d  a llo w s  h ierarch ic p rogram  structures b a sed  on  

p r im itiv e  con cu rren t p ro cesses  to  b e  e x p r e sse d  as w e ll  as rep lica ted , variant, 

p a ra m eter ised  an d  recu rsive  p rogram  structures. S p ec ified  p rogram  structures  

are b oth  m o d u la r  an d  reu sab le  and  can b e  u se d  to b u ild  ev er  larger p rogram s in  

a sca la b le  w a y . T he la n g u a g e  is  d ec la ra tiv e  an d  a im s to  b e  in d e p e n d e n t  o f  

p a rticu la r  p r o g r a m m in g  la n g u a g e s . T he la n g u a g e  a lso  su p p o r ts  ty p e -sa fe  

c o m p o s it io n  o f  d is tr ib u ted  p ro g ra m  parts. T h e  la n g u a g e  h as b e e n  e ff ic ie n tly  

im p le m e n te d  o n  an  e x is t in g  d is tr ib u te d  s y s te m , a n d  is  d e s ig n e d  to  su p p o rt  

m o d ifica tio n s to  th e structure o f  ru n n in g  program s.

In a d d it io n  m a n y  o f  the p rogram  stru ctu res d escr ib ed  b y  th e  la n g u a g e  can  be  

rep resen ted  g rap h ica lly  w h ich  can act as a further aid  to  readers.

T h e th es is  h as a lso  p resen ted  an im p le m en ta tio n  m o d e l for im p le m e n tin g  the  

co n figu ra tion  la n g u a g e . T he m o d e l fo cu ses  o n  p r o v id in g  e ffic ien t an d  p ragm atic  

s o lu t io n s  to  s u p p o r t  la r g e - s c a le  d is tr ib u te d  d e v e lo p m e n t  w it h in  an
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h ete r o g en eo u s  en v iron m en t.

T h e c o m p ila tio n  tech n iq u es  p r e se n te d  e m p lo y  a n e w  sy m b o l file  d e s ig n  for  

effic ien tly  rep resen tin g  the in terfaces o f sep arately  com p ilab le  un its. S y m b o l files  

are a lso  p ro fitab ly  u se d  in  th e d e v e lo p m e n t o f  a n e w  tech n iq u e  for p erfo rm in g  

ty p e  e x te n s io n  ch eck s in  con stan t tim e rather than linear tim e. S y m b o l file s  are 

a lso  u se d  to track object files  in  th e h o st file  sy stem . A  too l has b een  p r o v id e d  to 

au tom atica lly  gen erate  M akefiles from  co m p o n en t sources.

U n lik e  o th er  sy ste m s, w h ic h  e laborate p rogram  structures at lin k -lo a d  tim e, w e  

p r e se n t a n e w  tech n iq u e  for e lab oratin g  p rogram  stru ctu res at e x e c u tio n  tim e. 

T his u s e s  a r ecu rs iv e  a lg o r ith m  for tran sform in g  th e  h ierarch ic  s tru ctu res  o f  

g ro u p  m o d u le s  in to  a m ore e ffic ien t heterarchic structure for u se  b y  the ru n -tim e  

sy stem .

C a n o n ica l d a ta  rep resen ta tio n s  (C D R s) h a v e  b e e n  u s e d  to  ch eck  th at b o u n d  

n o d e s  in ter a c t sa fe ly , a n d  a llo w s  in d e p e n d e n t ly  d e v e lo p e d  n o d e s  to  be  

in c r em en ta lly  a d d e d  to  a r u n n in g  p rogram . C D R s h a v e  a lso  b e e n  p ro fita b ly  

u s e d  for h e te r o g e n e o u s  m e s s a g e  c o n v e r s io n s , a n d  m o n ito r in g  in te r -n o d e  

m essa g es.

T o o ls  h a v e  a lso  b e e n  p r o v id e d  for q u er y in g  th e  stru ctu re  o f  n o d e s , a n d  for  

d e b u g g in g  n o d es.

E x ist in g  te c h n iq u e s  in  th e  C o n ic  to o lk it  for d is tr ib u tin g , c o n fig u r in g , an d  

v ie w in g  d istr ib u ted  program s structured  w ith  th is la n g u a g e  h a v e  b een  a lso  been  

ou tlin ed .

T he con figu ra tion  la n g u a g e  and  to o ls  d escr ib ed  h a v e  b e e n  im p le m en te d  an d  are 

a v a ila b le  as p art o f  th e  C on ic  T o o lk it w h ic h  is  u s e  in  in s titu tio n s  a r o u n d  the  

w o r ld . T he co n figu ra tion  la n g u a g e  is a lso  b e in g  u se d  u se d  as th e  s tar tin g  p o in t  

w ith in  E sprit project 2080 for b u ild in g  reconfigurab le  and  ex ten sib le  para lle l and  

d istr ib u ted  sy ste m s (REX).

8.2. CRITICAL EVALUATION
T he con fig u ra tio n  la n g u a g e  shares sim ilar  a im s to m a n y  e x is t in g  la n g u a g e s  for  

p rogram  structuring . It p ro v id es  a v ery  abstract program  stru ctu rin g  m ech an ism  

that h a s m u ch  greater ex p ress iv e  p o w e r  than  h ith erto  p r o v id e d  b y  others.

T he u se  o f  a d ec lara tive  la n g u a g e  h as resu lted  in  clearer p rogram  d escr ip tion s. 

F e w  c o n c e p ts  are n e e d e d  to m a ster  th e  la n g u a g e . T h e  la n g u a g e  su p p o r ts  

ab straction  a n d  in fo rm a tio n  h id in g . T he la n g u a g e  a lso  e n c o u r a g e s  to p -d o w n
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d e s ig n . T he stru c tu res  d e scr ib e d  form  abstract ty p es  that can  b e  r eu se d  in  

d ifferen t contexts.

T he la n g u a g e  an d  stru ctu r in g  m ech a n ism  h a s a lso  b een  im p le m e n te d  in  m ore  

d y n a m ic  and  flex ib le  w a y . C onfiguration  structures are co m p iled  n o t interpreted , 

an d  e lab orated  at ru n -tim e rather than lin k -load  tim e. A t ru n -tim e an a lgorith m  

is  p r o v id e d  to transform  the recu rsive  in teraction  to p o lo g y  o f  a p rogram  in to  a 

m o re  e ffic ien t flat to p o lo g y  for u se  b y  the ru n -tim e sy stem . T he im p lem en ta tio n  

a lso  p r o v id e s  q u ery  su p p o rt that a llo w s  to o ls  to  qu ery  the structure o f  ru n n in g  

program s.

T h e g ra n u la r ity  a n d  n a tu re  o f  th e a to m ic  c o m p o n e n ts  for o u r  co n fig u ra tio n  

la n g u a g e  h a s fo c u s s e d  th e  la n g u a g e  f ir m ly  o n  th e  is s u e s  o f  c o m b in in g  

p r o g r a m m in g -in -th e -la r g e  w ith  d is tr ib u te d  p r o g r a m m in g . B ec a u se  o f  th eir  

concurrent nature an d  b y  our u se  o f  ty p ed  m e ssa g e -p a ss in g  p orts, p ro cesses  can  

b e  c o n s id e r e d  as a b s tr a c t c o m p u te r s , a n d  c o n f ig u r a t io n  s tr u c tu r e s  as  

in tercon n ected  n etw ork s o f  abstract com pu ters.

T h e con figu ration  la n g u a g e  cou ld  b e  im p ro v ed  in  a nu m b er o f  areas. T he ab ility  

to  g ro u p  togeth er  a co llectio n  o f ports, an d  treat th em  as a stru ctu red  port w o u ld  

b e  a u se fu l ad d ition . S u ch  co llection s co u ld  b e  con sid ered  as p ort records or port 

sets. For exam p le , a se t o f  file  ports co u ld  b e  d escrib ed  and  u se d  as fo llow s:

d efin e  filesystem : fileinterface
exitport open: filename rep ly  filedescriptor
exitport close: filedescriptor rep ly  signaltype
exitport read: readrequest rep ly  buffer
exitport write: writerequest rep ly  signaltype
portset fileinterface = (open, close, read, write)

end

task m odule client
use file sy stem : fileinterface 
<rest>

end

task m odule server
use filesystem  : fileinterface (reversed)
<rest>

end

group m odule exam ple
use filesystem  : fileinterface (reversed) 
use client; server;
b in d  client.fileinterface to server.fileinterface 
b in d  server.fileinterface to example.fileinterface

end

T h e r e v e r s e d  Operator a b o v e , is u se d  to  rev erse  th e d irec tio n a lity  o f  ports ie.
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ch an ge  en tryports in to  ex itports and entryports in to  ex itports. L ike CCS, b in d in g  

c o u ld  b e  d o n e  o n  th e b a sis  o f id en tica lly  n a m ed  ports o f  c o m p lem en ta ry  port 

ty p es . Set o p era to rs  su c h  as u n io n  a n d  in tersec tio n  c o u ld  a lso  in c lu d e d  for 

c o n str u c tin g  n e w  p o r tse ts . A  m o re  rad ica l p ro p o sa l w o u ld  b e  to  o m it  p ort  

d irectio n a lity  an d  p ort ty p in g  from  con figu ra tion  sp ec ifica tio n s  a ltogeth er , and  

r e ly in g  o n  th e c o m p iler  to  in fer  ty p e s  a n d  d ir e c tio n a lity . T h is w o u ld  m ak e  

c o n fig u ra tio n  sp e c if ic a t io n s  le ss  v e r b o se , b u t m a y  a lso  b e  le a d  to  le s s  clear  

specifica tion s.

A  m ajor o m iss io n  in  th e  la n g u a g e  is  th e  lack  o f  d yn am ic  p rogram  structuring  at 

all le v e ls , for ex a m p le , b e in g  able to  d escrib e  and  in itia te  p o ss ib le  ch an ges to  the  

to p o lo g y  o f  a g ro u p  m o d u le . Id e a lly  su ch  ch a n g es  s h o u ld  b e  sp e c if ied  at the  

con figu ration  level.

A  first a ttem p t at ex p ress in g  su ch  ch a n g es, resu lted  in  m a n y  n e w  con cep ts, su ch  

as (i) u n b o u n d ed  p ort fam ilies, (ii) gu ard s that in tercep t in c o m in g  m essa g e s  and  

tr igger  loca l recon figu ration s, (iii) sch em es to gen erate  n e w  in stan ce  n a m es an d  

se le c t  o ld  n a m es , and  (iv) e x c e p tio n  c la u ses  to  a c tiv a te  w h e n  fa ilu res  arose. 

D ifficu ltie s  a lso  arose  in  rea lisin g  an effic ien t protoco l for con cu rren tly  activa ted  

ch a n g es  w h e n  ch a n g es  w e r e  at d ifferen t le v e ls  o f  th e  co n fig u ra tio n  h ierarch y , 

d is tr ib u te d  a n d  c a u se d  in ter feren ce . B eca u se  o f  th ese  c o m p le x it ie s  an d  for  

pragm atic  reason s, th is so lu tio n  w a s  n o t p u rsu ed .

A n  im p o r ta n t s tu m b lin g  b lo c k  w a s  a lso  th at in c lu d in g  th e  c o n d it io n s  for  

r eco n fig u ra tio n  a c tio n s  w ith in  th e  co n fig u ra tio n  la n g u a g e , le d  to  a la n g u a g e  

ap p ro a ch in g  th e  p o w e r  o f a p ro g ra m m in g  lan gu age. A  w a y  o f  s im p lify in g  the  

app roach  w o u ld  h a v e  b een  to sep arate  o u t the tw o  areas o f  concern , (i) w h a t  the  

c h a n g e  is , a n d  (ii) w h e n  th e  c h a n g e  is  to  b e  in it ia te d , b y  m a k in g  th e  

con figu ration  la n g u a g e  resp on sib le  for d escrib in g  w h a t ch a n g es  are p o ss ib le , and  

le a v in g  it to  th e p rogram m in g  la n g u a g e  to control w h e n  th o se  ch an ges sh o u ld  be  

in itiated .

A  m ore  radical a lternative w o u ld  b e  to  con sid er  if  so m e  form  o f  la z ily  ev a lu a tio n  

stra tegy  for the con figu ration  la n g u a g e  w o u ld  help .

8.3. SOME SUGGESTIONS FOR FUTURE WORK
T he n o d e  m o d e l, a lth o u g h  e ffic ien t an d  practical, is  n o t as a p p ea lin g  as a fu lly  

d istr ib u ted  im p lem en ta tio n  o f g rou p  structures. Such an  im p lem en ta tio n  m o d e l  

w o u ld  a llo w  p ro g ra m s to  h a v e  arbitrary co n fig u ra tio n  le v e ls  a b o v e  th e  n o d e  

le v e l. In h ig h ly  p ara lle l com p u ters  su c h  as h y p ercu b es  an d  tran sp u ter  arrays,
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w h a t is  req u ired  is for th e p rogram m er to defer  the se le c tio n  o f th e  m a p p in g  

stra tegy  u n til p rogram  startup  tim e. A lth o u g h  th e program m er c o u ld  cu rrently  

m ap  each  p ro cess  in to  a sep arate  n o d e , the current im p lem en ta tio n  m o d e l d o es  

n o t p r o v id e  for th e  h ierarch ic or recu rsiv e  con stru ction  o f n o d e  stru ctu res. A  

n u m b er  o f d ifficu lt p rob lem s n e e d  to b e  o v e rc o m e  h o w e v e r , for ex a m p le , h o w  

an d  w h e r e  is  in fo rm a tio n  o n  th e  structure o f  (recu rsive ly ) d is tr ib u te d  g ro u p s  

h eld , can su ch  gro u p s be e ffic ien tly  m an aged  and  recon figu red , can a d istr ib u ted  

im p lem en ta tio n  cop e  w ith  fa ilures an d  n etw ork  p artition in g , can  recon figu ration  

actions b e  su c ce ssfu lly  seria lised?

T he ab ility  to  break  the r ig id  m o d u la r  h ierarchy o f  g rou p  m o d u le s  is so m etim es  

desirab le . C urren tly  if a program  n eed s  to  con n ect to  an e x is t in g  in stan ce , e .g . a 

k n o w n  serv ice , su ch  a ru n n in g  file  m an ager th e con figu ration  program m er has to  

either (i) 'float up' the req u ired  ports from  the c lien t co m p o n en t to  th e c lien t n o d e  

a n d  lin k  th ese  to  th e  serv er  c o m p o n e n ts , or (ii) p a ss  d o w n  to  th e  c lie n t an  

in s ta n c e  p a ra m eter  that id e n t if ie s  th e  server. In e ith er  ca se , a g rea t d e a l o f  

u n n e c e ssa r y  a n d  cu m b erso m e  co n fig u ra tio n  p ro g ra m m in g  is  n e e d e d  at each  

con figu ration  le v e l ab ove the c lien t level.

A  p o ss ib ility  w o u ld  b e  to a llo w  k n o w n  in stan ces to  b e  d irectly  sp e c if ied  w ith in  a 

con figu ration  w h e n ev er  req u ired , for ex a m p le  w ith  the declaration: 

requires serverrservertype;

T h ese  in s ta n c e s  w o u ld  b e  m a d e  k n o w n  w h e n  created  w ith  for  e x a m p le , th e  

declaration:

create server: servertype; 
provides server;

Su ch  ex ten sio n s  d o  im p ly  th e  ex isten ce  o f a g lo b a l n a m esp a ce  for h eterarch ica lly  

accessib le  in stan ces. R ules and  m ech a n ism s for d efin in g , creatin g , search in g , and  

d e le tin g  n a m esp a c e s , as w e ll as a ru le  for r e so lv in g  in sta n ce  n a m e-c la sh e s  are 

a lso  required .

A n o th er  p o s s ib il ity  w o u ld  b e  to  s e e  if  a w id e r  sp e c tru m  o f  p r o g r a m m in g  

la n g u a g e  c o m p o n e n ts  c o u ld  b e  in te g r a te d , for  e x a m p le  P r o lo g , M L  a n d  

Sm allta lk . T h e in tegra tion  an d  in teraction  o f  th e  ty p in g  sy s te m s  u s e d  in  th ese  

la n g u a g e  p resen ts m an y  in terestin g  p rob lem s h o w ev er .

B eh a v io u ra l a n d  o th er  sp e c if ic a t io n s , su c h  as p erfo rm a n ce  a n d  fa u lt-to lera n t  

sp ec if ica tio n s  c o u ld  a lso  b e  in tegra ted . O n e w a y  to  tack le  th is  w o u ld  b e  b y  a 

fa m ily  o f  in ter a c tin g  c o m p a n io n  la n g u a g e s  th a t can  in h e r it  th e  s tru ctu ra l 

d e sc r ip t io n  o f  a p ro g ra m  as fr a m e w o rk  for th eir  o w n  s p e c if ic a t io n s . T h is
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suggests a ramified approach to distributed program  specification w ith the 
configuration language sitting at the apex.

Finally the lack of a complete formal definition could be addressed.

8.4. FINAL REMARKS
The main contribution of this work has been to demonstrate the practicality and 
versatility of a dual language approach to distributed program development. The 
approach provides an abstract declarative language for structuring distributed 
program s as sets of hierarchically interconnected concurrently executable 
program  parts. The language can be coupled with one or more programming 
languages to provide a complete programming system for distributed programs 
with a clear and manageable structure.

Perhaps the m ost pleasing results of this work has been the unexpected 
application areas that the language has been p u t to use by colleagues and 
students. The language has been used in the construction of distributed process 
control programs for small networks of machines controlling mining equipment, 
and for distributed servers, databases and games. The language has also been 
used for simulation studies, for writing protocols, for building an object-oriented 
management system, for writing multi-loop self-tuning adaptive controllers and 
for the implementation of parallel algorithms, for example, for the travelling 
salesman problem, fast-fourier transformations, image processing and neural 
networks. The entire Conic run-time and support system is also structured with 
the language.
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ABSTRACT

Conic provides an integrated approach to the design, implementation and management 
of distributed computer systems. The software methodology distinguishes between the 
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1. Introduction

This report defines the Conic configuration 
language for building distributed systems. This 
is the language used to specify module instances 
and their interconnections [3]. The language 
used to program task modules is defined in a 
companion report [1].

1.1. Configuration Language Overview

Systems in Conic consist of interconnected sets 
of module instances, described by a
configuration specification. Systems may be 
implemented as distributed or non-distributed 
configurations on single or multiprocessors. The 
configuration specification identifies the module 
types from which the system will be con­
structed, declares the instances of these types 
which will exist in the system and describes the 
interconnection of the instances by the links 
between their exitports and entryports. These 
three functions are termed context definition, 
module instantiation and module interconnec­
tion respectively.

The module types used in a configuration 
specification may be task modules containing a 
single sequential task or collections of modules 
called group modules. In Conic, group modules 
are configuration specifications and so define a 
module type that can be used in other 
configuration specifications. This allows systems 
to be constructed by the hierarchic composition 
of primitive task modules and composite group 
modules. Group modules that are distributable 
are termed nodes. The components of a node 
may share procedure and function code and pass 
pointer values in messages.

1.2. Programming Language Overview

The Conic programming language [1] is defined 
as an extension to ISO Pascal [4]. The unit of 
programming is the task module. The task 
module interface is specified by declaring typed 
entryports and exitports, and by declaring task 
module parameters. The other main extension 
to Pascal is the inclusion of message communi­
cation primitives.

The primitive operations on ports are sending 
and receiveing messages. The primitive opera­
tions support two types of message transaction: 
request-reply and notify. The request-reply 
transaction provides bidirectional, synchronous 
message passing, while the notify transaction is 
unidirectional and asynchronous. A fail clause 
may be used to withdraw from a request-reply 
send. There is, in addition, a select statement

provided for selection from one of a set of ports 
from which messages may be received. Within a 
select, a guard can be used to mark a receive 
statement as ineligible for selection. A timeout 
can be used to withdraw from the select. In the 
case of the request-reply transaction, two further 
operations are provided: forward, in order to 
pass a request on to a third party for service, 
and abort, to cause the current transaction to 
fail.

In addition to the task module unit, a definition 
module unit is provided enabling tasks to be 
constructed in modular way.

2. Notation and Vocabulary

2.1. Syntax

The syntax is given as in the extended form of 
traditional BNF used in the Pascal Standard [4] 
and the Conic Programming Language Report 
[1], except that the metasymbol xyz (shown 
bolded) is used as an alternative to the 
metasymbol "xyz” to represent terminal sym­
bols. The metasymbol [construct]* -- for zero or 
more repetitions is used rather than the 
metasymbol {construct}. UPPERCASE letters 
are not significant in non-terminal meta- 
identifiers, but serve as additional comments.

2.2. Special Symbols and Word Symbols

The Conic configuration language vocabulary 
consists o f special symbols, identifiers, numbers 
and strings.

special-symbol =
T  1 "]" 1 ’ (" 1 ")" 1 1 1 1 1 11 | 11 it

1 "#" 1 1 "4." | | | | "= ' 1 "0 "
1 "<" 1 "> 
sym bol.

" 1 "<=" 1 ">=" 1 1 word-

word-symbol =
and 1 at const 1 create 1 div 1 end 1
entryport 1 exitport 1 family 1 from 1
group 1 link 1 mod 1 module 1 not 1 or 1
reply 1 to 1 use 1 when .

2.3. Comments

The constructs

{ any sequence of characters not containing 
a right brace "}"

or

any sequence of characters not containing 
a new line
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may be inserted between any two identifiers, 
constants and special symbols as a comment 
Comments may be nested, and do not affect the 
meaning of the specification. The delimiters (* 
and *) may be used for the delimiters { and } 
respectively.

2.4. Identifiers

Identifiers are used as names of constants, data­
types, ports, definition modules, module types, 
module instances and ranges. Their association 
must be unique within their scope of validity, 
i.e. within the scope in which they are defined. 
The scope of a constant, datatype, port, 
definition module, module type or module 
instance identifier extends from its defining 
point (the point at which it is first introduced) 
to the end of the configuration specification. The 
scope of a range identifier extends from its 
defining point to the end of the construct in 
which it is defined.

id =
identifier.

identifier =
[ letter I break-char ]
[ letter I digit I break-char ]* .

letter =

Appendix I

’a" 1 "b” 1 "c" 1 "d" 1 "e" 1 " f 1 "g" 11 ”h'
T* 1 y  i "k" 1 'V  1 "m" 1 "n" 1 "o" 1 "p1
■q" 1 "r" 1 "s" 1 "t" 1 "u" 1 "v" 1 "w” 11 ”x'
Y 1 "z”

0" 1 "1" 1 "2" 1 "3" 1 "4" 1 ”5" 1 "6" 11 ”7'
8" 1 ”9"

break-char =
!» tf

Identifiers may be of any length. All characters 
(except embedded break-char’s) are significant 
in distinguishing between identifiers. No 
identifier may have the same spelling as a 
word-symbol. The case (upper or lower) of 
letters is not significant

The following identifiers are pre-defined:

constants false, true, maxint, maxnat, maxlon- 
gint and signalvalue.

datatypes boolean, char, integer, real, byte, 
natural, longint, address, signaltype, 
and string.

ports implementation-defined.

Conic Configuration Language Definition

2.5. Expressions

Expressions are a subset of the more general 
expressions found in Pascal and the Conic pro­
gramming language. The main restriction is that 
variables, set expressions, and the value nil are 
prohibited, and that functions can only take 
value parameters. Range identifiers are allow­
able factors. Expressions are evaluated as in 
Pascal and the Conic programming language.

expr =
expression .

expression =
simple-expression [ relational-operator 
simple-expression ] .

simple-expression =
[ sign ] term [ adding-operator term ]* . 

term =
factor [ multiplying-operator factor ]* . 

factor =
not factor I "(" expr ")" I CONSTANT-id I 
RANGE-id I number I character-string I 
string-string I function-designator .

relational-operator =
| n<>„ | .t<., | ..y. | „<=„ |

adding-operator =
"+" I I  or .

multiplying-operator =
I y  I div I mod I and .

sign =
"+" I . 

number =
unsigned-integer I unsigned-real .

unsigned-integer =
digit [ digit ]* [ "#" type-suffix ] I 
binary-digit [ binary-digit ]* "#2"

[ type-suffix ] I
octal-digit [ octal-digit ]* "#8"

[ type-suffix ] I 
digit [ hex-digit ]* "#16"

[ type-suffix ] .

type-suffix =
V ' I V ' I 7" .

binary-digit =
"0" r r .

octal-digit =
„0» | | n | "2" | "3" | M̂ ,f | |  | u ĵtt

hex-digit =
digit l ”a” I "b" I V  I ”<T I V ’ I ”f  •
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unsigned-real =
digits digits [ "e" [ sign ] digits ] I 
digits "e" [ sign ] digits .

character-string =
" ’ " string-element [ string-element ]* " ’
ti

string-element =
any-character-except-single-quote I " ” ” " 

string-string =
" " " string-char [ string-char ]* " " " . 

string-char =
any-character-except-double-quote I " "" "

3. Group Modules

A configuration specification defines a group 
module type (possibly with formal parameters) 
from which group module instances (with actual 
parameters) can be created. The specification 
identifies the component module types (which 
may be task module types or group module 
types), declares instances of these types, and 
describes the interconnection of these instances 
by the links between their exitports and 
entryports. These three functions are termed 
context definition, module instantiation and 
module interconnection respectively. Like the 
task module, the group module may have a 
message passing interface consisting of typed 
entryports and exitports. These ports can be 
linked to the ports of constituent module 
instances with the link construct (section 3.5).

In this report the word module is used as gen­
eric term for the terms task module and group 
module.

configuration-specification = 
group-module-header 
[ specification-part ]* 
end .

specification-part =
constant-definition I context-definition I 
port-declaration I module-instantiation I 
module-interconnection .

3.1. Group Module Heading

The group module header specifies the name of 
the group module type and the formal parame­
ters of the group module if any.

Conic Configuration Language Definition

group-module-header =
group module GROUP-MODULE-id 

["(" formal-parameters ")" ] .

formal-parameters =
parameter-specification

[ parameter-specification ]* .

parameter-specification
constant-parameters I instance-parameters .

constant-parameters =
CONSTANT-id [ CONSTANT-id ]*

STAND ARD-DATATYPE-id 
[ default-value ].

default-value =
constant.

instance-parameters =
MODULE-INSTANCE-id

[ MODULE-INSTANCE-id ]* 
MODULE-TYPE-id .

The formal parameters of a group module can 
be constant parameters or instance parameters. 
Constant parameters specify a constant identifier 
and its datatype. Instance parameters specify a 
module instance identifier and its module type, 
which must be imported into the group module 
via a context definition (section 3.3.1).

The value of a parameter is set by the 
corresponding actual parameter when the group 
module is instantiated.

The standard datatype identifiers boolean, char, 
integer, real, byte, natural, longint, address, sig- 
naltype and string are provided for all group 
modules. Their definitions are the same as those 
in the Conic programming language [1] and 
Pascal [4].

Default values can be specified for constant 
group module parameters. Group modules with 
default values need not have the corresponding 
actual parameters supplied.

Examples

group module bank (name:string="Midland'; sortcode:longint); 

group module employee (name:string; branch:bank); 

group module line (x,y:real=0.0);

3.2. Constant Definitions

As in Pascal, constant definitions can be used to 
introduce identifiers that denote specific constant 
values.
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constant-definition =
const constant-definition-part

[ constant-defin ition-part]* .

constant-definition-part =
CONSTANT-id "=" constant .

constant =
[ sign ] ( number I CONSTANT-id ) I 
character-string I string-string .

Examples

const
max_ports=45; 
zero=0.0; 
d a y -’ monday' ; 
month="july" ;

33 .  Context Definitions (The Use Construct)

The types and constants from which the group 
module is constructed need to be imported into 
the group module by one or more context 
definitions.

context-definition =
[ from-clause ]
use context [ context ]* ";M •

from-clause =
from character-string .

context =
module-type-context I datatype-context.

The from-clause specifies an implementation- 
dependent environment (e.g. a file, directory, 
pathname, database etc.) from which the 
specified definition modules can be accessed. If 
the from-clause is omitted, some default 
implementation-defined environment is assumed.

3.3.1. Importing Module Types

The module types from which the group module 
is constructed need to be imported into the 
group module by one or more module type con­
texts.

module-type-context =
MODULE-TYPE-id .

Module type identifiers correspond to the 
identifiers used to name the module in the 
corresponding task or group module header.

Examples

from  'lusr/liblwindows' use
window, menu_manager, cursor;

Conic Configuration Language Definition 

lance_driver;

3.3.2. Importing Constants, Datatypes and 
Functions
Common constants, datatypes, and functions can 
be imported from definition modules [1] using 
a datatype-context, which make them known 
inside the module.

datatype-context =
DEFINITION-MODULE-id 

object [ object ]* .

object =
LOCAL-id [ "<" EXTERNAL-id ">" ] .

Definition-module-id specifies the name of the 
definition module from which the specified 
definitions are to be imported. The name that 
the definition, is to be known as, within the 
importing module is specified by local-id. 
External-id specifies the name that the definition 
is known as, within the specified definition 
module, if omitted, external-id defaults to 
local-id.

Note: Imported functions must not access vari­
ables global to the function, and only value 
parameters are permitted in imported functions.

Examples

from 'lusrlliblsys:/usrlfredjmydir’ use 
objectjdefs : object_size, objectJrype;

use
a sc ii: newline <If>, return <cr>, six;

3.4. Group Module Interface (Port Declara­
tions)

Like task modules, group modules may have 
message passing interfaces that are specified by 
port declarations which specify a port name and 
its port type. Ports can be connected to the ports 
of instantiated modules with the link construct 
(section 3.6).

from  '../msdos' use 
dosjilesys;

use
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port-declaration =
( entryport I exitport) 
port-declaration-part

[ port-declaration-part ]* .

port-declaration-part =
port-list REQUEST-MSG-TYPE-id

[ reply REPLY-MSG-TYPE-id ] .

port-list =
port-declarer [ port-declarer ]* .

port-declarer =
PORT-id [ range ] .

range =
T  expr expr T  ._________________

Message type may be any standard type or any 
imported datatype. Ports are declared with a 
port type which defines the type of value which 
may be sent or received (the port request type), 
and for request-reply transactions, the type of 
value which may be a reply (the port reply 
type). Notify entryports and notify exitports 
have no reply parts.

Families of entryports and exitports can be 
declared by suffixing a range with the port 
identifier. This is analogous to declaring arrays 
in Pascal. Ranges are restricted to being 
subranges.

Examples

exitport
getch : char reply signaltype; 

entryport
openfile : openjreq reply fd e jd ;  

exitport
alarms [char] : boolean; 

entryport
std_channel [0 .2] : channel_req reply integer;

3.5. Module Instantiation (The Create Con­
struct)

Module instances are created from module types 
by one or more module instantiations. A module 
instantiation declares the name of the module 
instance, specifies the module type from which 
it is to be instantiated and optionally specifies a 
location for the created instance. If the module 
type has parameters, actual parameters may also 
need to be specified.

Families of module instances can be declared 
by defining a range identifier and an associated 
range, and using the range identifier to index 
family instances. The effect o f a module family 
declaration is to repeat the create construct over 
the specified range with range-identifier taking 
successive values of the range. The scope of 
range-identifier is restricted to the create con­

struct in which it is defined.

module-instantiation =
[ when guard ]
create [ family range-declarer ]

[ at location ] 
instance-declaration 
[ instance-declaration ]* [ ]

guard =
BOOLEAN-expression .

range-declarer =
RANGE-id range .

location =
instance-name

instance-declaration =
[ instance-declarer ] 
MODULE-TYPE-id

["(" actual-parameters ")" ] .

instance-declarer =
MODULE-INSTANCE-id 

["[" RANGE-id "]" ] .
actual-parameters =

actual-parameter [ actual-parameter ]*

actual-parameter =
positional-parameter I named-parameter 1 
location .

positional-parameter = 
expression

named-parameter =
CONSTANT-id "=" expression

instance-name =
MODULE-INSTANCE-id [ T  expr "]" ]

Actual parameters must correspond in type to 
the formal parameters of the specified module 
type.

Actual parameters in create clauses can be 
specified by name (position-independent) or by 
position. Named parameters can be mixed with 
positional parameters. If the parameter follow­
ing a named parameter is an un-named parame­
ter, it is assumed to correspond to, the formal 
parameter following the formal parameter 
corresponding to the named actual parameter. 
Note: if an positional-parameter expression 
starts with an identifier that is the same name as 
any formal parameter of the module to be 
created, then a named parameter must be used, 
even if it is only of the form 
parametername =parametername.
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If the specified module type has no default 
values, and no named parameters are used, then 
the actual parameters used must correspond in 
number, order and type to the formal parameters 
of the specified module type.

If a module instance name is not specified the 
module type identifier is overloaded and used as 
the module instance name. A module type 
identifier may only be overloaded once.

If a module instantiation begins with a when- 
clause, then the instance declarations following 
are only elaborated if the guard evaluates to 
true.

Instantiation of a module type causes the 
entryport and exitport names of the module type 
to be "inherited" by the module instance. The 
ports o f an instantiated module are selected by 
prefixing the port name by the instantiated 
module name followed by a dot character (sec­
tion 3.6).

Location specifies a module instance at which 
the created instances are to be co-located. If the 
location is omitted, the created instances will be 
located at the same location as the encapsulating 
group module instance i.e. the location is 
deferred until an instance of the group module 
type is created.

Examples

create family k  : [1 ..max_alarms]
alarm : window (0,k+(k-l)*15,k+k*15,12,18);

create
interrupt : handler ( signal=SIGINT );

create family k  : [1..elements] at transputer [k] 
f fi  Ik]: fast_fourier;

create
driver : serial_driver (retries=10);

when n>0 create
next : myself (n=n-l);

3.6. Module Interconnection (The Link Con­
struct)

Modules are connected together by linking 
source ports to sink ports. A source port is 
either a group module entryport (section 3.4) or 
a module instance exitport. A sink port is either 
a group module exitport or a module instance 
entryport. Linked ports must be of the same port 
type.

Families o f modules and/or families of ports 
can be linked by defining one or more range 
identifiers and associated ranges, and using the 
range identifiers as constants in expressions that 
index the port or module families. The effect of

a family linkage is to repeat the link construct 
over the specified ranges with range-identifiers 
taking successive values of their corresponding 
range. When more than one range is specified, 
repetitions are nested and performed in an 
analogous way to nested loops in Pascal; the 
first range being the outermost range, the last 
range being the innermost range. The scope of a 
range-identifier is restricted to the link construct 
in which it is defined.

module-interconnection =
[ when guard ] 
link [ family-part ] 

link-specification 
[ link-specification ]* .

link-specification =
source-port-list to sink-port-name I 
source-port-name to sink-port-list

source-port-list =
source-port-name [ source-port-name
]*.

sink-port-list =
sink-port-name [ sink-port-name ]* .

source-port-name =
ENTRYPORT-id I 
instance-name "." EXITPORT-id 

["[" expr "]" ] .

sink-port-name =
EXITPORT-id 1
instance-name "." ENTRYPORT-id 

["[" expr "]" ] .

family-part =
family range-declarer

[ range-declarer ]* .

Entryports may have more than one exitport 
linked to them. Notify exitports may be linked 
to more than one notify entryport. Request- 
reply exitports cannot be linked to more than 
one request-reply entryport.

If a module interconnection begins with a 
when-clause, then the links specifications fol­
lowing are only elaborated if the guard evalu­
ates to true.

Examples

link
multiplexor.transmit to linejdriver.transmit; 

link family k:[l..n]
worker[k].transmit to linejdriver.transmit; 
worker[k] .received to line_driver.received;

link family Ic[0..no_of_windows-1]
alarmfk] .out_string to window[k],window; 
windowfk],write_out to console.write_string;
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link family j :[0..ports-1]
ringjqp [j] to ring.ep [(j+1) mod ports]

link family m:[l..mm], p:[l..pp]
alpha[m] jcportfp] to alpha[m].eport[p], 

beta[m].eport[p], 
gamma (mj.eport;

gamma[m]ocport[p] to delta.eport[p], 
group_xporl[p];

epsilon[m]jcport[p], 
group_entryport to zeta[m].eport[p];

when (mm>4) and (pp>4) 
link family m l:[l.jnm ], pl:[l..pp], 

m2:[l..mm], p2:[l..pp] 
psi[ml].xport[pl] to omega[m2] .eport[p2];
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APPENDIX A EXAMPLES

Example 1 — The Neo-Classic Patient Monitoring System

GROUP MODULE nurse (maxbedilnteger);

USE
monmsg: bedtype, alarm slype;

ENTRYPORT
Atarmln[l..maxbed] :ilarmstype;

EXIT PORT
BedOut(l_maxbed] islgnaltype REPLY bedtype;

USE
exec com; wlndman;

CREATE exec:execcom;
ErrorW:wlndman( 3,1,80,19,21);

LINK
exec.error TO ErrorW.wIndow;

( patient monitoring modules }

USE
dlsp; ncom; bedsel; alrm;

CREATE
display: dlsp(2);
command : ncom;
window ; wtndman(0,15,65,l,ll);
selector : bedsel;

LINK
dlsplay.beddetalls TO selector.Bedln; 
command.bedselect TO selector.bedselect; 
dlsplayjtdwrite TO wlndow.wlndow;

CREATE FAMILY tell.maxbed]
AlarmD(k): alrm(k);
AlarmW[k] : wlndman(0,k+(k-l)»15,k+k»15,12,18);

LINK FAMILY k:[I_maxbed]
AlarmD[k]jtd_wrlte TO AlarmW[k].Wlndow; 
Alarmln(k| TO AlarmD[k|jdarmlnput; 
selector.BedOutfk] TO BedOut(k];

END.
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GROUP MODULE patient;

USE
monmsg: bedtype, alarmstype; 

EXITPORT
alarmoutput : alarmstype; 

ENTRYPORT
Bed In : slgnaltype REPLY bedtype;

USE
execcom; wlndman;

CREATE
exectexeccom;
ErrorW:wlndman(d,l, 80,13, IS);

LINK
exec.error TO ErrorW.wIndow; 

( patient monitoring modules }

USE
sim; monlt; dlsp; com;

CREATE
scanner: slm(2); 
m onitor: monlt; 
display: d!sp(2); 
com mand: com; 
window : wlndman(0,15,65,l,ll);

LINK
scannerjensoroutput TO monltor.sensorlnput; 
dlsplay.beddetalls TO monltor.beddetalls; 
command.newpatlent TO monltorxhange; 
dlsplayjtdwrlte TO wlndow.wlndow;

Bedln TO monitor.beddetails; 
monltor-AlarmOutput TO AlarmOutput;

END.

GROUP MODULE ward (nbed:lnteger);

USE
patient;
nurse;
transputer;

CREATE FAMILY lc[l-nbed+l} 
node : transputer(k);

CREATE AT node[nbed+l] 
nurse (nbed);

CREATE FAMILY k:[X_nbed] AT node[kl 
bed[k]:patlent;

LINK FAMILY k:[l-nbed]
nurse.BedOut[k| TO bed[k].BedIn; 
bed(k]jilarmoutput TO nursewklarmln[k];

END.
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Example 2 ~  Batcher’s Bitonic Sort

»
GROUP MODULE batcher(n:lnteger=8); 
^Include <node.h>

USE sort;
Interface;

CREATE
sort(n=n);
lnterface(n=n);

LINK FAMILY l:[0_n-l]
lnterfacej)ut[l] TO 
sorLoutput[l] TO

END.

sorLlnput(l];
interface.lnp[l];

GROUP MODULE aort(n:lnt*ger);

ENTRYPORT lnput[0_n-l]:lnteger;
EXITPORT output(0_n-l]:lnteger;

USE bitonic;
CREATE bltonk(n=n);

LINK FAMILY l:[0-n-l]
bltonk.output[l] TO output{l];

WHEN n>2 CREATE
ascend:sort(n> n DIV 2); 
descend:sort(n« n DIV 2)

WHEN n>2 LINK FAMILY l:[0_(n DIV 2) -1] 
lnput[l] TO ascend.lnput[l]; 
lnput((n DIV 2) +l| TO descend.lnput[l]; 
ascen<Loutput(l] TO bltonk.lnput[l];
descend.output[(n DIV 2>l*l] TO bttonk.lnput((n DIV 2)+l);

WHEN n=2 LINK FAMILY l:[0..1]
lnput[l] TO bltonlc.lnput[l);

END.

GROUP MODULE bltonk(n:lnteger);

ENTRYPORT lnput{0_n.l]:lntet*r;
EXITPORT output[0_n-l]:lnteger;

USE comparator;

CREATE FAMILY l:[0-(n DIV 2)-l) 
ce(l]:comparator;

LINK FAMILY l:[0_(n DIV 2)-l| 
lnput[l] TO ce|l).a; 
lnput[(n DIV 2)+l] TO ce[l].b;

WHEN n>2 CREATE
low:bltonlc(na n DIV 2); 
hlgh:bltonk<n= n DIV 2);

WHEN n>2 UNK FAMILY l:[0_(n DIV 2> il 
ce(l]Jow TO k>w.lnput[l]; 
ce[l].hlgh TO hlghJnput(l]; 
k>w.output(l] TO output(l]; 
hlghjOutput[l] TO output((n DIV 2)+IJ;

WHEN n=2 LINK
ce[0].low TO output[0); 
ce[0).hlgh TO output[I];

END.
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TASK MODULE comparator;
ENTRYPORT

a,b: Integer;
EXITPORT

low,hlgh:lnteger;
VAR

av,bv:lnteger;
BEGIN

LOOP
RECEIVE av FROM a; 
RECEIVE bv FROM b;
IF av<=bv THEN BEGIN 

SEND av TO low; 
SEND bv TO high; 
END 

ELSE BEGIN
SEND bv TO low; 
SEND av TO high;

END;
END;

END.

TASK MODULE lnterface(n:lnteger);
EXITPORT

out[0..127]:lnteger;
ENTRYPORT

lnp[Q..127]:lnteger;
VAR

Input/) utpuktext;
I,v: Integer;

BEGIN
LOOP

w rltetntl/V );
fliuh(output);
FOR l:-0  TO n-1 DO 
BEGIN

read(v);
SEND v TO outflj;

END;
readln;
wrlteCsorted:- ’);
FOR l:=0 TO n-1 DO 
BEGIN

RECEIVE v FROM lnp[l]; 
wrlteO

END;
wrlteln;
flujh(output);

END;
END.
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A p p en d ix  II Sym bol File Syntax

M etalanguage

The format of symbol files is given in a boxed form of BNF as defined below: 

Terminal symbols are written in UPPERCASE.

Non-terminals are written in lowercase with the first letter of each word in upper 
case.

Non-terminals may be prefixed by a label and colon (:). Labels are used purely 
for exposition.

A * suffix denotes zero or more repetitions.

A + suffix denotes one or more repetitions.

Productions are shown boxed, with the rule specified in the box and the non­
terminal above the box.

Symbol File 
Magic Number Section Directory Table Section 
Component Section 
Parameters Section Identifier Section 

Type Extensions Section 
Debugging Section

Magic Number Section 
Magic Number: Integer

Directory Table Section 
Length : Integer 

Directory Name: String *
Component Section_____

Comp : Component ID + I
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Null
Component ID
Name : String Comp Number: Integer Home: Integer 

____Time Stamp____
Time Stamp 

Epoch : Longint Unix Process Id : Integer
Parameters Section
Parameter Identifier Null

______Identifier Section______
Identifier *

__________ Null___________
_________ Identifier_________________________________________________
( Port Identifier | Type Identifier | Constant Identifier | Field Identifier | Parameter Identifier 
I Nil Identifier)___________________________________________________

Common Id Part
Id Name : String 
Owner: Integer 

Id Type : Type Structure Next: Identifier
Nil Identifier
Id Kind : Null

Port Identifier 
ID Kind: PORT Common Id Part Port Kind: (EP | XP) 

Port Number: Integer
Type Identifier 
Id Kind : TYPE 
Common Id Part

Constant Identifier
Id Kind: CONSTANT Common Id Part 

Value : (Integer I String)
Field Identifier 
Id Kind: FIELD Common Id Part 
Offset: Integer

Parameter Identifier
Id Kind : PARAMETER Common Id Part Parameter Position : Integer

______ Type Structure_________________________________________
( Standard Type | Embedded Type | Read type | Message Type | Subrange Type | Enumerated Type | Array Type | Record Type | Set Type | Pointer Type )_____
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______ Standard Type_______________________________________________
Key : ( NIL I BOOLEAN 1 CHAR 1INT I REAL I BYTE | NATURAL | LQNGINT | STRING ) |
________ Read Type_________
_______ Key : Integer________

Common Type Part 
Key : Integer 

Byte Size : Integer 
Packed : Boolean
Message Type

Common Type Part 
Form : MESSAGE Request Type : Type Structure Reply Type : Type Structure
Enumerated Type 
Common Type Part 

Form : ENUMERATED First: Constant Identifier
Subrange Type 

Common Type Part 
Form : SUBRANGE Low Value: Integer 
High Value: Integer Base Type : Type Structure

_______Array Type_______
Common Type Part Form : ARRAY 

Index Type : Type Structure Element Type : Type Structure
_____ Record Type

Common Type Part 
Form: RECORD Super Type : Type Structure 

First: Field Identifier
______ Set Type______

Common Type Part Form : SET
Base Type : Type Structure

Pointer Type 
Common Type Part Form: POINTER 

Base Type : Type Structure
Embedded Types 
Zero Key : Integer Type Identifier 
New Key: Integer

Type Extension Section
Extension *Null
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______Extension_____
Subtype Owner: Integer Subtype Key : Integer Supertype Owner: Integer 
Supertype Key : Integer
______ String______
Non-Zero Bytes : Byte * Null

Longint
Low Integer: Integer 
High Integer: Integer

Integer
Low Byte: Byte 
High Byte: Byte

Null
Zero Value: Byte

Byte
Value in 0..255
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