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ABSTRACT

In this work the onset of Marangoni instabilities in liquid-liquid

systems with a reversible pseudo first-order chemical reaction taking place at 

the interface is investigated. This type of system is a simplified model of 

extractive processes of industrial interest in which Marangoni instabilities 

have been observed.

Since in some systems the heat of reaction may be substantial,

thermally induced Marangoni flows were considered in addition to Marangoni 

perturbations produced by local changes of interfacial tension.

In order to decouple possible gravitational instabilities due to the heat 

of reaction and thermal Marangoni instabilities, experiments were conducted

in non-reactive systems under the microgravity conditions achieved in the

NASA KC-135 parabolic flights. Results indicated that thermal effects were 

strong enough to induce Marangoni instabilities.

Stability criteria for the reactive system were derived by performing a 

linearised stability analysis of the reactive system. Although heat effects 

were at first included in the model the complexity of the resulting equations 

made the stability analysis intractable.

Neglecting heat effects, a numerical analysis of the model covering a 

wide range of conditions indicates that stationary instabilities can occur 

when the net flux is in the direction of the phase of higher diffusivity. The 

inter-relation between molecular diffusivity and rate constant of chemical 

reaction affects the minimum perturbation required to destabilize the system. 

In all cases the presence of the interfacial chemical reaction made the 

system more unstable than in the case of pure diffusional mass transfer.
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CHAPTER 1 

INTRODUCTION

The need for the understanding of spontaneous interfacial phenomena 

has been identified in several fields, such as: liquid-liquid extraction, crystal 

growth from melts, separation of immiscible alloys, formation of fibres and 

membranes and human biology.

Mass transfer across a liquid-liquid interface has been described in

terms of several theoretical models which assume simplified and idealised 

conditions. For instance, in the design of contact equipment the incomplete 

knowledge of the physicochemical and hydrodynamic effects at the phase 

boundary has not permitted the development of correlations which would 

allow a more accurate estimation of mass transfer coefficients. The problem 

is further complicated by the presence in some systems of spontaneous 

interfacial turbulence which produces greater mass transfer coefficients than 

those predicted by theoretical methods.

Spontaneous interfacial turbulence may be due to the formation of local 

interfacial tension gradients (Marangoni instabilities), the presence of

unstable density gradients (gravitational instabilities) or the interaction of 

both these effects. While interfacial tension gradients may be created by 

changes in interfacial concentrations, temperature or electrostatic charges, 

density gradients may be due to variations in temperature or volume 

contraction on mixing.

Marangoni convection has been studied for a wide variety of systems 

and stability criteria to predict the onset of instabilities have already been 

established for ternary and binary systems. However, although the stability 

criteria for these two types of systems have been generally confirmed 

experimentally, there have been disagreements which have
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indicated that other destabilising mechanisms may be present. There is 

experimental evidence that density gradients formed during the transfer of a 

solute across a liquid-liquid interface play an important role in initiating 

and promoting interfacial convection generated by interfacial tension 

gradients. In addition heat effects due to heats of solution or heats of 

reaction in systems with interfacial chemical reactions, may play an 

important role in initiating interfacial turbulence. It is therefore important 

to investigate the relevance of heat and gravitational effects on the 

mechanism of interfacial turbulence so that they can be included in the 

mathematical models developed to establish stability criteria.

The purpose of this work was to develop a theoretical model to predict 

instabilities in liquid-liquid systems when a reversible pseudo first-order 

chemical reaction occurs at the interface with the release of heat.

This work is divided into two main parts:

(i) Study of the interaction between Marangoni and gravitational 

instabilities.

(ii) Mathematical modelling and stability analysis of a system with an 

interfacial chemical reaction.

Part (i) was investigated by performing experiments in a gravitational 

environment and under the microgravity conditions achieved in the NASA 

KC-135 parabolic flights. Restrictions on the use of certain chemicals in 

the parabolic flights led to the use of binary systems at this stage of the 

work. In Chapter 3 results of these experiments are analysed and 

interpreted.

In Part (ii) a linearised stability analysis for the reactive system is 

performed and stability criteria are derived, when heat effects are neglected,
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as described in Chapter 4.

A numerical analysis of the interfacial reaction model for a wide range 

of conditions is reported in Chapter 5.
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CHAPTER 2

LITERATURE SURVEY

The literature survey presented here is divided into three main 

sections: Marangoni instabilities, gravitational instabilities and combined 

Marangoni and gravitational instabilities. Under each heading only research 

on liquid-liquid systems and relevant to the work in this thesis is included.

2.1 Marangoni instabilities

2.1.1 Systems with diffusional transfer

Marangoni instabilities are spontaneous interfacial phenomena caused 

by interfacial tension gradients at the phase boundary. These gradients arise 

from concentration, temperature or electric potential variations at the 

interface.

The first to describe and interpret the phenomena was Thomson (1) 

but it was Marangoni (2) who claimed its discovery.

It was much later that Sternling and Scriven (3) studied 

mathematically the mechanism of interfacial turbulence in systems where a 

solute is transferred between two immiscible phases and proposed stability 

criteria for the prediction of the onset of Marangoni instabilities.

Sternling and Scriven's analysis showed that the stability of these 

systems depend on the direction of solute transfer and that Marangoni 

instabilities

" are usually promoted by:

(1) solute transfer out of the phase of higher viscosity,
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(2) solute transfer out of the phase in which its diffusivity is lower,

(3) large differences in kinematic viscosity and solute diffusivity 

between the two phases,

(4) steep concentration gradients near the interface,

(5) interfacial tension highly sensitive to solute concentration,

(6) low viscosities and diffusivities in both phases,

(7) absence of surface active agents, and

(8) interfaces of large extent

The mathematical procedure for the derivation of these stability 

criteria was based on a linear stability analysis and included the growth of 

small roll cells at a plane interface. Several assumptions and simplifications 

were made in this model, e.g. heat and density effects were not taken into 

account. However, it was suggested how to include heat effects in the

analysis.

Comprehensive reviews of interfacial phenomena have been published 

by Sternling and Scriven (4), Sawistowski (5) and Berg (6).

Sternling and Scriven's work was later extended by Cho and Jones (7) 

who added heat effects due to heat of solution to the model. They 

concluded that Marangoni instabilities were dependent on the relative 

magnitude of the interfacial forces caused by temperature and concentration 

gradients and the directions of the heat and mass fluxes.

A further investigation of Marangoni instabilities in ternary systems, 

with the inclusion of heat effects was performed by Ortiz and 

Sawistowski (8) who concluded that thermal effects can only induce 

Marangoni instabilities when there is a release of heat at the interface in 

systems where the variation of interfacial tension with concentration and
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temperature is negative. However, it was found that the order of magnitude 

of the temperature driven destabilising forces is normally too small to 

modify the stability criteria established by Sternling and Scriven.

Pearson (9) proposed a mechanism for thermal Marangoni instabilities 

to explain interfacial instabilities observed in thin films. According to his 

mathematical analysis thin films can show Marangoni instabilities when the 

thickness of the film is below a critical value.

Later, Ward and Brooks (10) explained the turbulence observed at an 

interface where mass transfer occurred, in terms of the interfacial effect of 

the heat of solution on the physical properties of the system.

The occurrence of Marangoni instabilities in binary liquid-liquid

systems, i.e. systems in which the solute is also one of the phases, was 

considered theoretically impossible. In an isothermal binary system, if

equilibrium is assumed to be reached instantaneously at the interface, the

phase rule precludes any changes in interfacial concentrations. However,

interfacial turbulence was observed experimentally by Merson and Quinn (11) 

in binary systems where the solute diffused into a radially moving interface. 

The authors interpreted the phenomena in terms of the Marangoni effect and 

suggested that interfacial tension gradients could be due either to interfacial 

concentration or temperature gradients caused by heats of solution.

Similar phenomena were observed by Austin. Ying and

Sawistowski (12) who classified instabilities in binary systems into three 

types, according to the intensity of the instabilities:

(1) stable systems — diffusional mass transfer;

(2) unstable systems — weak instabilities: rippling and deformation 

of diffusional layer, slow movements;

(3) unstable systems — strong instabilities: violent movements.
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Suggestions for the cause of the phenomena were heat effects due to 

heats of solution and values of the dynamic interfacial tension, as these may 

become very important during the relaxing time of the interface.

The classification of forty-six partially miscible binary systems 

according to an increasing order of intensity of turbulence was performed by 

Ying and Sawistowski (13) using Schlieren photography.

Anomalous values for mass transfer rates calculated for the binary 

system furfural/water was reported by Davies and Thornton (14). Although 

interfacial turbulence was hardly visible the increase in mass transfer rates 

was substantial and attributed to Marangoni instabilities caused by the heats 

of mixing.

Stability criteria for partially miscible binary systems were developed 

mathematically by Ortiz and Sawistowski (15) (16). Their linearised 

stability analysis indicated that a system is stable in both directions of 

transfer provided the heat of solution and the rate of change of interfacial 

tension with temperature are of the same sign and the kinematic viscosities 

of the two phases are approximately equal. Instabilities were predicted 

when mass transfer occurred out of the phase of higher viscosity.

Ortiz and Sawistowski stability criteria have been used by Hancock, 

White and Spruiell (17) to explain the occurrence of fingering and fluted 

void structures in wet spun fibres.

Aguirre. Klinzing, Chiang, Leaf and Minkoff (18) obtained temperature 

profiles for binary systems by numerically solving a diffusion model where 

they included the heat of solution and considered its non-linear relationship 

with concentration. Temperature difference predictions using this model
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were to be found in agreement with experimental data from eight binary 

systems.

In a series of papers, Thornton and co-workers (19) (20) (21) report 

their quantitative investigations on the link between the rate of surface 

renewal due to Marangoni instabilities and mass transfer coefficients. By 

using a pendant drop they found that unless Marangoni instabilities were 

present there was no surface renewal. When Marangoni convection was 

observed mass transfer coefficients increased with the rate of surface renewal. 

Their experiments also showed that the rate of surface renewal decreased 

with surface age leading to time dependent mass transfer coefficients. Under 

the conditions of their experiments they suggested that this effect was not 

likely to be due to surface contamination but to transient changes in the 

interfacial region such as concentration variations in the layers adjacent to 

the interface.

Recently, Thornton and co-workers (22) (23) have proposed an 

equation for the mass transfer coefficients, derived from fundamentals, which 

includes the rate of surface renewal due to Marangoni instabilities. They 

have also discussed the importance of time dependent Marangoni instabilities 

on the generation of fresh surface in the design of high performance packed 

towers.

2.1.2 Systems with chemical reaction

In liquid-liquid systems, where mass transfer not only occurs by 

diffusion, but also by chemical reaction, the onset of Marangoni instabilities 

may be due to interfacial tension gradients created by changes in 

concentrations caused by the chemical reaction and/or heats of reaction.
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In this section are included theoretical and experimental results 

reported in the literature for different systems and several types of chemical 

reactions.

Interfacial turbulence observed by Sherwood and Wei (24) in the 

extraction of acetic acid from an organic solvent into an alkaline solution 

was reported to be due to heat effects from the exothermal reaction. It was 

also found that interfacial turbulence was a strong function of solute 

concentration.

Heat effects were also reported to be the cause of the Marangoni

instabilities observed by Thompson. Batev and Watson (25) in the transfer

of nitric acid, uranyl-nitrate and plutonium nitrate from an aqueous to an 

organic phase. Interfacial oscillations had also been noticed by Lewis and 

Pratt (26) for the uranyl-nitrate system and they had also suggested that 

the phenomenon was related to the heat evolved during the transfer, i.e.

heat of reaction.

In the extraction of uranium by TBP in kerosene, large irregular

drops at the top of a pulsed column were observed by Batev. Lonie. 

Thompson and Thornton (27). The irregular behaviour was attributed to 

Marangoni phenomena.

A mechanism for the onset of interfacial convection for the extraction 

of uranyl-nitrate from an aqueous solution to an organic phase was proposed 

by Thompson and Perez de Ortiz (28). According to their linearised

stability analysis of the system, the sign and magnitude of the interfacial

tension variation with both concentration and temperature and the enthalpy 

of reaction are responsible for the onset of convection.

Pichugin. Tarasov. Arutiunvan and Goryachev (29) reported on the

instabilities observed in the extraction of metals (lanthanides and some

actinides) by di(2-ethylhexyl)phosphoric acid (DEPHA). The importance of
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the concentration of extractant on the onset of interfacial turbulence is 

emphasized.

Spontaneous turbulence was also observed in the extraction of copper 

by a mixture of DEHPA and its sodium salt, DEPANa, by Nakache. 

Dupevrat and Lemaire (30) who attributed the phenomena to Marangoni 

instabilities..

Nakache and Dupevrat (31) (32) suggested that the turbulence 

observed in the reaction of an alkyl ammonium ion with KI, KBr and picric 

acid at an oil-water interface was due to Marangoni instabilities; the 

interfacial tension gradients were proposed to have been created by the 

oscillating reactions. Later, Nakache. Dupevrat and Vignes-Adler (33) 

observed spontaneous motions at an interface between two immiscible liquids 

when a chemical reaction was present. The interface was kept at constant 

temperature and there was simultaneous transfer of two solutes, in opposite 

directions, one of them surface active. The notion of "assisted desorption" 

was introduced and defined as the "assistance" provided by an interfacial 

chemical reaction which transforms a very adsorbable species, e.g. a 

surfactant, into an easily desorbable one. The mechanism of instability 

proposed includes adsorption-desorption steps as well as diffusional,

convective and chemical steps.

Another type of interfacial reaction was assumed in the studies by 

Steinchen and Sanfeld (34) (35). The conditions for the onset of instabilities 

when an autocatalytic reaction of the trimolecular type occurred at the 

interface between two immiscible liquids was analysed theoretically. It was 

suggested that the model studied could explain the deformation of biological 

cells upon the reception of a chemical message. A similar system has also
46

been analysed by Devhimi and Sanfeld (36).



11

Steinchen and Sanfeld (37) have also studied the motion induced by 

surface-chemical and electrochemical kinetics and given conditions for the 

onset of mechano-chemical instabilities.

The linear stability analysis of Steinchen and Sanfeld was extended by 

Hennenberg et al (38) to allow for any chemical reaction. The authors

concluded that an unstable reaction may induce mechanical deformation of

the interface and that although this may be a necessary condition, it is not 

a sufficient one because the chemical kinetics has to overcome the stabilizing 

effects of viscosities and densities.

A model for the stability behaviour of a fluid drop immersed in 

another fluid has been presented by Sorensen (39). Surface tension gradients 

are considered due to bulk diffusion or surface diffusion of surfactants and 

surface chemical reactions. This model predicts instabilities at low surface 

tensions and when diffusion of surfactants is from the exterior solution 

towards the inside of the drop. Importance is given to the application of 

the model to the understanding of several phenomena, e.g. detergency,

tertiary oil recovery and cytologic phenomena in the living cell (chemotaxis, 

cell division and pseudope formation).

Theoretically, Ruckenstein and Berbente (40) applied a linear stability 

analysis to a system with*a bulk chemical reaction of the first order. The 

authors found that the conditions for the occurrence of Marangoni

instabilities are very sensitive even to small values of the reaction rate 

constant. However, general criteria could not be established.

2.2 Gravitational instabilities

Gravitational instabilities are due to density gradients which may 

have been started by temperature changes or volume contraction on mixing.
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These instabilities were first observed at the beginning of this century by 

Benard (41), who observed regular cell patterns on a thin liquid layer heated 

from below. These phenomena, now also known as Benard instabilities were 

later studied mathematically by Rayleigh (42), who based his analysis on 

density stratification and derived a relation between viscous and buoyancy 

forces. This relation, the Rayleigh number, had to exceed a certain limiting 

value before any interfacial movements occurred. Benard cells could then be 

predicted using Rayleigh's quantitative criteria.

Later, Austin and Sawistowski (43) published an analysis for ternary 

systems, on the effects of density and direction of transfer on the 

gravitational stability of an interface. Their results are summarized in 

Table 2.1, where all the possible combinations of density and direction of 

transfer are presented.

The importance of the interaction between gravitational and 

diffusional processes was reported by Mel (44). The phenomena of "droplet 

sedimentation" in a continuous flowing system where an enzyme-substract 

reaction occurred was explained. He also mentions the importance of the 

lack of those instabilities in biological functions under a microgravity 

environment.

2.3 Combined Marangoni and gravitational instabilities

A liquid-liquid system may also show turbulence at the interface due 

to the combination of Marangoni and gravitational instabilities. This 

turbulence may be caused by the added effects of interfacial tension and 

density gradients at that interface. Therefore, the onset of Marangoni 

instabilities, for certain systems, can only be clearly understood when
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gravitational effects can be considered negligible. Density gradients may be 

excluded from experimental conditions in Earth laboratories, by changing the 

compositions of the phases in the system to be studied, or by performing 

experiments in a microgravity environment. Microgravity conditions are 

achieved in orbiting laboratories, sounding rockets, drop towers or parabolic 

flights. Extensive work has been done in this field and some references are 

mentioned in this literature survey.

Research in convection phenomena in fluids heated from below was 

reviewed by Ostrach (45), who also pointed out the importance of the 

phenomena in the following fields: meteorology, astrophysics, aeronautics, 

chemical engineering, nuclear power and electronics.

Pearson (9), as previously mentioned, observed that under certain 

conditions the promotion of interfacial movements in some systems, was due 

to local changes in surface temperature which affected the surface tension. 

The mechanism of thermal instability, according to his mathematical 

analysis, is dependent on the thickness of the liquid layer: thinner films 

produce Marangoni type instabilities and deeper films buoyancy driven flows.

The importance of gravitational instabilities leading to surface renewal 

and to surface tension driven instabilities was later discussed by Austin (46) 

who investigated thirty-three binary systems and observed some very 

unstable interfaces in systems which exhibit volume contraction on mixing 

e.g. transfer of acetylacetone into water.

In ternary systems, the interaction between buoyancy and interfacial 

tension driven instabilities was investigated experimentally by Berg and 

Morig (47). Density differences were obtained by changing the composition 

of the phases. They concluded that when density forces were stabilising in 

a phase, convection was confined to a zone adjacent to the interface. 

When, according to Sternling and Scriven's stability criteria, convection
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should have been present roll cells appeared which were damped and 

regenerated. When density forces were destabilizing, deep streamers were 

produced and convection in the form of roll cells was not present.

Experiments also performed with ternary systems, but under the 

microgravity conditions achieved in sounding rockets (Texus programme), 

were reported by Bruckner (48) (49). The results obtained were the ones 

predicted: less interfacial convection under microgravity than under 

gravitational conditions and violent interfacial convection was observed when 

the rocket was approaching the earth's surface.

The feasibility of producing dispersion alloys from binary systems with 

a miscibility gap was investigated by Walter (50). Results from experiments 

also conducted during the flight of Texus sounding rockets were reported. 

Under earth gravitational conditions, metallic dispersions are largely 

separated in their components due to sedimentation and buoyancy during 

cooling, through the miscibility gap. Under microgravity, samples were 

found with components largely separated. This separation, in the absence of 

buoyancy forces, is mostly attributed to Marangoni convection.

Fredriksson (51) has also studied, under microgravity, the effect of 

surface tension on the precipitation of droplets in immiscible alloys. Droplet 

movements caused by Marangoni convection produced a coarser structure of 

the alloy, due to collision of droplets. In low gravity these droplet 

movements become very important.

Also under microgravity conditions, Schwabe and Scharman (52) (53) 

(54) measured the critical Marangoni number for the transition point from 

laminar to oscillatory convection in a liquid bridge with free cylindrical 

surface (floating zone). They reported a critical Marangoni number of
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approximately 10  ̂ and although the features of the oscillatory state of 

Marangoni convection seemed to be independent of gravity the critical 

Marangoni number (Ma) depends on the magnitude and direction of the 

buoyancy force.

In the German Spacelab Mission Dl, Siekmann. Wozniak. Sruliies. 

Nahle and Neuhaus (55) carried out an experiment to observe bubble and 

drop motion induced by Marangoni convection. They concluded that for 

Marangoni numbers up to Ma =  300 and Reynolds number Re =  0.4, 

Marangoni convection could be applied for degasing of liquids under 

microgravity conditions. The authors also concluded that they found no 

indication that this type of convection could be used for the separation of 

liquid-liquid dispersions.

For most liquids, surface tension decreases with temperature. 

However, there are cases in which surface tension present extrema in their 

surface tension vs. temperature curves. In this category are included: liquid 

alloys, ceramics, some ionic surfactants and aqueous solutions of fatty 

alcohols. The influence on Marangoni convection for the case of a

water/n-heptanol solution which shows a surface tension minimum was 

investigated by Legros. Limbourg-Fontaine and Petre (56) (57) and by 

Villers and Platten (58) (59). The latter authors studied experimentally, 

using a laser velocimetry technique, Marangoni and gravitational turbulence 

in a fluid confined in a rectangular horizontal cavity. A horizontal 

temperature gradient was imposed between the lateral walls of the cavity 

where the solution of water/n-heptanol was enclosed . Movements at the 

interface should be from cold to hot regions, but they proved that for 

different layer thicknesses the behaviour changes: gravitational convection is
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favoured by thick layers and Marangoni convection by thin layers, which is 

in agreement with Pearson's mathematical analysis for thermal instabilities. 

For thicknesses of middle range two counter-rotating convective cells were 

observed.

A theoretical discussion of Marangoni and gravitational instabilities 

with emphasis on the role played by negative Rayleigh (Ra) and Marangoni 

(Ma) numbers was published by Lebon and Cloot (60). The authors 

concluded that surface tension gradients have destabilising effects when Ra 

and Ma are positive but they are stabilising when Ma is negative. When 

Ra and Ma are negative there is unconditional stability.

A numerical analysis of simulated unsteady Marangoni flows was 

performed by Napolitano. Golia and Viviani (61) and attention was focused 

on the time evolution of the velocity and temperature fields. This 

theoretical/numerical model is in good agreement with results from the 

Spacelab Mission D1 experiments, by the same authors (62).

It is interesting to mention some other published work in this field 

although it does not necessarily involve liquid-liquid systems.

The effects of non-uniform volumetric energy sources, temperature 

dependent viscosity and surface tension on Marangoni instabilities in a fluid 

layer, when a non-linear temperature profile is imposed from external 

incident radiation was recently investigated by Lam and Bavazitoglu (63). 

Critical conditions for the onset of the instabilities in a microgravity 

environment were determined using a linear stability analysis. It is 

concluded that the stability of the system depends on the sign of the 

viscosity variation with temperature; that the amount of heat generated 

internally in a phase, when external radiation is absorbed, is a destabilizing
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effect while the degree of heat transfer from fluid to gas interface is a

stabilizing factor.

Also recently, Oliver and Dewitt (64) demonstrated that irradiant 

heat may be exploited to induce droplet motion in a microgravity 

environment. The droplet was considered opaque and when it absorbed 

incident irradiant energy, temperature gradients were formed at the interface 

with consequent formation of interfacial tension gradients and droplet 

motion. An equation for the bulk droplet velocity is included and it is

suggested that although the values predicted for the drop velocity are much 

smaller than those that would be important in most density gradient flows 

on earth, the surface tension driven velocities may be very significant in a 

microgravity environment.

The effects of a magnetic field and density on the critical Marangoni 

number and on the critical wave number in an electrically conducting 

horizontal liquid layer have been studied by Maekawa. and Tanasawa (65). 

They found that the onset of Marangoni convection was suppressed by a

magnetic field and that the distance between each convection cell became 

shorter as the magnetic field increased. A relation between critical 

Marangoni number and Rayleigh number was also derived.

Marangoni and gravitational convection were also investigated by

Turner (66). He considered both gradients of temperature and concentration 

parallel to the body force direction, in order to explain some unusual 

phenomena such as salt finger and salt fountains in deep sea ocean.

In an experimental investigation Lee et al (67) studied fluid flows 

generated by natural convection due to the combined horizontal temperature 

and concentration gradients in rectangular enclosures. For the lower and
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higher buoyancy ratios a unicell flow pattern was observed and for 

intermediate ranges of buoyancy ratio a multi-layer flow pattern was 

observed. For this regime they obtained interesting temperature and 

concentration profiles.
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Gravitational stability

Relative value of Dir. of transfer Side A of Side B of

solute density interface interface

Ps<Pa<Pb A -  B stable stable

B -> A unstable unstable

P&<Ps<Pb A -+ B unstable stable

B -> A stable unstable

Pa.<Pb<Ps A -> B unstable unstable

B -i A stable stable

TABLE 2.1
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CHAPTER 3

MARANGONI INSTABILITIES UNDER MICROGRAVITY

3.1 Mechanism of interfacial turbulence

Marangoni instabilities are interfacial flows caused by local variations 

of interfacial tension, which may be due to changes in interfacial 

concentrations, temperature, interfacial electrical charge or a combination of 

these.

A general simplified mechanism for Marangoni instabilities is 

represented in Figure 3.1 for a system where a solute S, which positively 

adsorbs at the interface, is transferred from Phase A to Phase B at steady 

state. If mass transfer is accompanied by heat effects temperature as well 

as concentration profiles will develop as shown in Figure 3.1a. For the sake 

of simplicity only the effect of variations of interfacial tension with 

concentration on interfacial stability will be discussed. A plot of interfacial 

tension vs concentration is also given in Figure 3.1a for the system under 

consideration.

Ever present small movements in the phases (Figure 3.1b) may bring 

fresh material from the bulk to the interface, thus changing locally the 

interfacial concentrations and producing interfacial gradients. For instance, if 

an eddy brings fresh solute from the bulk of Phase A into an interfacial 

Point 2, the renewed interface at that point will have a lower interfacial 

tension than the neighbouring Points 1 and 3. The interfacial tension 

gradient (j i  -  7 b) causes a rapid spreading of material out of Point 2 at 

the interface (Figure 3.1c). This spreading motion compresses the adsorbed 

solute molecules at Points 1 and 3. Secondary interfacial tension gradients
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are then created and the net change in solute concentration at Points 1 

and 3 will depend on the ratio of viscosities and diffusivities of the two 

phases. Assuming that at Point 1 (and similarly at Point 3) the conditions 

will then be that , i.e. 71 < 72, spreading will occur again but

the movement will be in the opposite direction. This reverse movement 

may be either gentle, in which case it is damped and the system remains 

stable, or strong in which case turbulence will be observed in the form of 

eruptions. If the physical properties of the systems are such that 71 > 72, 

then the motion will continue in the form of roll cells. A thorough 

description of the mechanism of instabilities based on the role of the 

physical properties of different systems, is given by Sternling and 

Scriven (3).

As discussed in Chapter 2 , Sternling and Scriven (3) derived criteria 

for the prediction of the onset of Marangoni instabilities for a single solute 

transferring between two immiscible phases, in the absence of heat effects. 

They also suggested a way to include heats of solution in their model. If 

the system is binary, i.e. one of the phases is also the solute and interfacial 

equilibrium is assumed to be attained instantaneously, under isothermal 

conditions the phase rule does not allow changes in interfacial concentrations, 

thus precluding the formation of any interfacial tension gradients. These 

systems should therefore be Marangoni stable. Experimentally, however, 

turbulence was observed by several workers (12) (14) who explained it in 

terms of either variations in interfacial tension due to temperature gradients 

caused by heats of solution or by dynamic changes of interfacial tension. 

Ortiz and Sawistowsky (15) (16) performed a stability analysis of binary 

liquid-liquid systems based on thermal Marangoni disturbances and developed 

stability criteria.
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With reference to the temperature profiles in Figure 3.1 and taking 

into consideration the variation of 7  with T in binary systems, the 

mechanism of thermal instability is similar to that caused by local changes 

in interfacial concentration. The eddies from the bulk create points with 

different interfacial temperatures leading to interfacial tension gradients. 

Spreading may lead to either interfacial stability or to sustained interfacial 

turbulence depending on the relative values of the physical properties, which 

now include the thermal diffusivities of the two phases.

The stability criteria previously mentioned for ternary and binary 

systems have been derived assuming negligible density effects. However, 

gravitational instabilities may also play an important role in the interfacial 

stability and may explain disagreements between predicted stability 

behaviour and experimental observations.

In binary systems, in particular, in which the proposed destabilizing 

mechanism is purely thermal, the relevance of gravitational effects on 

interfacial convection must be established since they may be the only 

destabilizing mechanism. Besides, in some of these systems there are 

substantial volume changes on mixing which could create unstable density 

gradients.

Gravitational instabilities due to volume contraction on mixing were 

reported by Austin (43) to be sufficient to cause interfacial instabilities. He 

also suggested that gravitational instabilities may lead to the onset of 

Marangoni instabilities, i.e. structured convection rather than random eddies 

may initiate Marangoni convection.

The interaction between the two types of instabilities when 

simultaneously present is very important as it may enhance interfacial 

turbulence (43) (47) (68).
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Visually, Marangoni and gravitational instabilities are clearly different: 

gravitational instabilities are characterized by low frequency of motion and 

high depth of penetration, whereas in Marangoni instabilities the intensity of 

motion is high and the depth of penetration is low.

If thermal Marangoni disturbances were proved to be, on their own, 

strong enough to destabilize a liquid-liquid interface their effect could not be 

ignored in the mathematical stability analysis of extraction systems with 

interfacial chemical reaction, in which the heats of reaction could be an 

order of magnitude greater than the heats of solution.

Under normal gravitational conditions it is difficult to separate 

Marangoni from gravitational effects. However, if experiments were 

performed without gravity, only Marangoni instabilities could destabilize the 

interface, since convection due to unstable density gradients could not 

develop. In this way, Marangoni and gravitational instabilities could be 

decoupled.

Experiments under microgravity conditions can be conducted in orbiting 

spacelabs, drop towers, sounding rockets and parabolic flights. These 

facilities are available to European research workers through the European 

Space Agency (ESA). Thus a proposal was submitted to ESA for 

experiments on thermal Marangoni instabilities to be included in their 

ESA-NASA parabolic flights campaign in the United States.

3.2 Investigations under microgravitv

The importance of the study of Marangoni instabilities under 

microgravity conditions has been widely recognized as shown by substantial 

number of investigations published in several areas, e.g. crystal growth from
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melts and separation of immiscible alloys. However, up to now, the only 

publication related to solvent extraction is that of Bruckner’s (48) (49) who, 

as mentioned in Chapter 2, reported experiments performed on ternary 

systems under the microgravity conditions achieved in sounding rockets.

The investigation of thermally driven interfacial turbulence in 

liquid-liquid binary systems under microgravity conditions has never been 

performed before. Thus, the purpose of this study was to decouple, under 

microgravity conditions, gravitational from thermal Marangoni instabilities in 

order to establish their relative importance in the onset and sustenance of 

interfacial convection.

The experimental work presented here was carried out in the 

microgravity environment provided by the NASA KC-135 parabolic flights in 

Houston, USA.

3.3 Selected systems

Binary systems are the only type of liquid-liquid systems in which 

Marangoni instabilities have been attributed to purely thermal effects. It 

has also been suggested that the interfacial turbulence observed in the 

extraction of uranyl-nitrate with tri-n-butylphosphate in odourless kerosene, 

a system with chemical reaction, may be also due to thermal Marangoni 

disturbances (28). However, due to safety restrictions on chemicals allowed 

on board the aeroplane, this system was not permitted to be flown.

The transfer of material from the organic to the aqueous phase was 

investigated for two binary systems: acetylacetone/water and

ethylacetoacetate/water. The choice of these systems was based on their 

physical properties and the type of turbulence which had been previously
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observed under gravity. Acetylacetone/water has been classified (12) as an

unstable system with violent interfacial movements when the direction of 

transfer is from the organic to the aqueous phase; for the same direction of 

transfer, ethylacetoacetate/water shows weak instabilities (12). Both systems 

exhibit volume contraction on mixing, according to their physical properties 

which are shown in Table 3.1; thus they were both expected to exhibit 

gravitational instabilities.

The system acetylacetone/water was one of the systems selected by 

Ortiz and Sawistowski (16) to compare predicted and observed interfacial 

behaviour. The transfer of acetylacetone into water was predicted unstable. 

There are no predictions for the system ethylacetoacetate/water.

3.4 Parabolic flights

The trajectory of a KC-135 aeroplane while performing a parabolic 

flight is sketched in Figure 3.2. The parabola profile is executed from an 

altitude of 8,000 metres to an altitude of 11,000 metres. In the ascent the 

aeroplane flies with a 45° "nose high" angle, for 20 seconds, during which a 

1 .8-2.0 gravitational force is experienced. This is followed by a 25-30 

seconds period of microgravity which is achieved by manoeuvring the free 

fall of the aeroplane just leaving the engines on to compensate for the effect 

of the air drag. A dive at a 45° angle follows and a 1 .8-2.0 gravitational 

force is experienced again. The microgravity level achieved is 10"2 -  10-3. 

Figures 3.3 and 3.4 show the angles of the KC-135 while executing the 

descent (/i-g conditions) and the ascent (2-g conditions).

The experiments reported in this work were performed during three 

different parabolic flights. In each flight 25 parabolae were executed.
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3.5 Experimental

3.5.1 Experimental set-up

Figure 3.5 shows a sketch and photograph of the experimental set-up 

which consisted of a frame on which the light source, photographic camera 

and test cell were mounted. The frame was made of aluminium and was 

bolted firmly into the aeroplane floor. Light was produced by an Olympus 

microscope lamp and the camera used was a Minolta 7000. This camera 

had a "computerised back" which provided the option of continuously 

photographing the subject at a preset time interval.

The purpose of this set-up was to allow the rays of light to cross the 

liquid-liquid interface and produce an image which was captured by the 

photographic camera. The use of a Schlieren system was considered, at 

first. However, the decision to use the set-up presented here was based on 

its compactness and the quality of the images obtained during experiments 

performed prior to the microgravity work.

Although the experimental set-up was very simple, the alignment and

focusing of the light on the interface was a long and tedious procedure. A

slight change in the incidence of the light on the interface can drastically 

modify the clarity of the photographs taken. It was also difficult to focus

the camera on the interface, because the interface was only formed when the

experiment commenced.

Two different types of cells were used as described in the following 

sections. In one cell the interface was flat and in the other a drop was 

formed.
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3.5.1.1 Bicvlindrical cell

Figures 3.6 and 3.7 show a schematic drawing and a photograph of the 

bicylindrical cell. This novel cell was specifically designed for the

microgravity experiments performed in this work. Its main design 

characteristics were the following:

(i) the two phases were tightly separated before contact;

(ii) the cell could be filled leaving no air inside the chamber neither 

before nor after phases contact; this was thought to prevent 

phase mixing under gravity changes.

Using this design two cells were constructed: one made of brass and 

the other made of stainless steel. In both cases the body of the cell was 

cylindrical and had a cylindrical extension which enclosed a PTFE rod 

containing one of the liquid chambers. This "piston like" rod could be

pushed into alignment with the top chamber which was located in the main 

body of the cell. Two windows made of optical glass allowded photographs 

to be taken in a direction perpendicular to the interface.

During the experiments, a flat interface was formed between the two 

liquid phases by pushing the "piston like" chamber containing the aqueous 

phase into contact with the organic phase which was contained in the top 

chamber.

A shortfall of this cell design is that despite a careful, slow, pushing 

movement of the "piston" there was always a slight initial perturbation of 

the interface due to shear stresses.

3.5.1.2 Drop cell

Figure 3.8 shows a photograph of the drop cell. It consists of a 

stainless steel cell with two rectangular Schlieren glass windows. A syringe
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with a stainless steel needle could be inserted at the top of the cell. A 

drop of the organic phase was formed at the end of the stainless steel needle 

and suspended in the aqueous phase contained in the cell.

3.5.2 Experimental procedure

The organic phases were pre-saturated with water so that the only 

mass transfer observed was from the organic phase into the water.

A fresh interface, between the organic and the aqueous phase, was 

formed and photographed in gravity environment and the same operation 

performed under microgravity. In some experiments, the same interface was 

continuously photographed under microgravity and while gravity environment 

was re-established.

3.6 Results and discussion

The duration of the microgravity period for each parabola was 

25-30 seconds. Although short, this period was long enough to observe the 

effect of microgravity on the interfacial behaviour of the two systems 

studied. During the three flights, depending on the weather conditions and 

the pilot's abilities, there were fluctuations in the level of microgravity. An 

example of this may be seen in Figure 3.9, for one parabola.

Many photographs were taken some of which were selected to be 

discussed in this chapter.

Each binary system investigated will now be considered, in turn, in the 

next two sections.
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3.6.1 Acetvlacetone/water

Figure 3.10 shows a sequence of frames, taken at 2 second intervals, of 

a drop of acetylacetone in water under gravity conditions. Marangoni 

instabilities were observed in the form of eruptions, quite close to the 

surface of the drop (frame 1 ), which develop into streams (gravitational 

instabilities) due to density differences (frames 2 and 3). The turbulence 

observed lasted for several minutes.

A sequence of frames, taken at 1 second intervals under microgravity, 

is shown in Figure 3.12. Turbulence is confined to the area surrounding the 

drop and has almost disappeared after 8 seconds. A decrease in Marangoni 

turbulence with time has been reported by Rogers, Thompson and

Thornton (69), and Javed, Thornton and Anderson (23), for suspended 

aqueous drops in organic phases. They suggest that this decrease may be 

due to accumulation of solute in the interfacial region with the consequent 

decrease in mass transfer driving force and/or to interfacial ageing effects.

Similarly, using the bicylindrical cell under gravity conditions, the 

photograph of the flat interface in Figure 3.13 shows small convection cells 

surrounded by larger ones. Under microgravity the same system shows 

small convection cells, which seem to indicate that they were due to

Marangoni instabilities, while larger cells resulted only from the combined

effect of Marangoni and gravitational instabilities.

The observation of this system under microgravity conditions indicates 

the onset of instabilities in the absence of gravity.

Therefore, in microgravity, interfacial tension gradients caused by 

temperature differences at the interface are, for the acetylacetone/water

system, strong enough to initiate and sustain interfacial turbulence. The
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increase in duration and intensity of the instabilities under a gravity 

environment might be due to an increase in the rate of surface renewal 

caused by gravitational instabilities. The interaction between the two types 

of instabilities may be an additional factor for the difference in interfacial 

behaviour under microgravity and gravity environments.

It may then be concluded that the acetylacetone/water system:

(i) is unstable with respect to Marangoni instabilities in the absence 

of gravitational instabilities;

(ii) that gravitational instabilities not only enhance turbulence, as 

expected, but also sustain it for a longer period;

(iii) and that Marangoni instabilities do not need to be triggered by 

gravitational instabilities.

3.6.2 Ethvlacetoacetate /water

Figure 3.11 shows a sequence of frames taken at 2 second intervals 

under gravity conditions. Figure 3.14 shows a sequence of frames taken at 

1 second intervals under microgravity. The drop in the second series of 

photographs was continuously photographed, throughout and into the 

re-establishment of a gravity environment, as may be seen in Figure 3.15.

It is worth mentioning that because of the difference in the densities of 

the two phases, it is easier to observe the system when the drop of the 

more dense phase, i.e. ethylacetoacetate, is injected upwards.

While photographing the sequence in Figure 3.15, a large air bubble 

was created at the top of the drop. Air bubbles, which under microgravity 

were randomly distributed within the drop (see Figure 3.14), moved to the 

top of the drop once the gravity environment was re-established.
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This system has been classified (12) as presenting weak instabilities 

under normal gravity conditions. From the photographs taken, it may be 

concluded, that in microgravity, this system hardly showed any interfacial 

convection. However, when a gravity environment was re-established the 

system became turbulent.

From the observation of the behaviour of the ethylacetoacetate/water 

system under microgravity, it may be concluded that density gradients, 

either due to volume contraction or temperature gradients, seem to be the 

cause of the onset of the instabilities observed in a gravity environment.

There is no theoretical prediction for the stability of this system with 

respect to Marangoni disturbances. It would be interesting to know its 

heats of solution so that the criteria proposed by Ortiz and Sawistowski 

could be used to predict the interfacial behaviour of this system. 

Unfortunately values for the heats of solution are not available. If the heats 

of solution were such that the system were predicted unstable, perhaps 

stagnant layers of material at the interface would prevent any manifestation 

of interfacial turbulence until gravitational instabilities penetrated through 

that barrier. If the system were predicted Marangoni stable, then the 

turbulence observed under gravitational conditions would be purely

gravitational.

3.7 Conclusions

The conclusions obtained from the observations of the two binary 

liquid-liquid systems under microgravity are as follows:

Temperature gradients alone are sufficient to induce interfacial tension 

gradients that initiate Marangoni instabilities. Once initiated they were of
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shorter duration than instabilities developed under gravitational conditions. 

Gravitational instabilities, when present, enhanced the rate of surface 

renewal, thus helping to sustain interfacial convection.

The above conclusions indicate that if thermal Marangoni disturbances 

are strong enough to destabilize binary systems they could also induce 

instabilities in systems with heats of reaction.

For the ethylacetoacetate/water system the instabilities were very weak 

and hardly visible under microgravity. Values for the heats of solution have 

not been found in the literature, thus making it impossible to use stability 

criteria to predict the interfacial behaviour of this system. Therefore, the 

system is either only gravitationally unstable or, if Marangoni unstable, 

instabilities have to be initiated by gravitational flows.



33

n 2 5 #C (kg m -3) /}25*c (kg m '3) 
pure saturated water

water

acetylacetone

ethylacetoacetate

997.0 ( * )  -------------

972.0 (*) 1001.3 (***)

1030.0 (*) 1000.6 (**)

TABLE 3.1

(*) Handbook of Chemistry and Physics

(**) Institution of Chemical Engineers, PPDS service

(***) Austin (46)
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FIGURE 3.1a
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FIGURE 3.2

Manoeuvre profile during parabola
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FIGURE 3.5

Experimental set-up
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FIGURE 3.9

Example of a plot of the microgravity level during a parabola
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FIGURE 3.11
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FIGURE 3.15
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CHAPTER 4• —
MATHEMATICAL ANALYSIS

4.1 Introduction

In this chapter a mathematical stability analysis is applied to a 

system which consists of two immiscible liquid phases with a reversible 

chemical reaction occurring at the interface.

The procedure presented in this work follows the linear stability 

analysis used by Sternling and Scriven (3) in their study of Marangoni 

instabilities in a liquid-liquid system with diffusional mass transfer.

The mathematical description of the unperturbed system entails the 

combination of the equations of motion, molecular diffusion and chemical 

reaction with and without heat effects. Perturbations are then introduced in 

these equations that lead to a characteristic equation which describes the 

evolution of the perturbation with time.

In this chapter a characteristic equation for the case of an isothermal 

system is obtained and conditions are given for the development of a 

characteristic equation for a system with heat effects.

The mathematical manipulation of terms was performed using an 

Amdahl computer and the software package "REDUCE". Computer 

programs written for the algebraic development of the theoretical equations, 

for the isothermal case, are included in Appendix A.

4.2 Linear stability analysis

The model studied is a two-dimensional configuration of two 

semi-infinite immiscible liquid phases in contact along a plane interface.
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The phases are in thermal equilibrium and there is a chemical reaction at 

the interface. A very simplified form of a chemical reaction has been 

considered and is represented by

A + B 2 P

The interfacial chemical reaction is assumed to be a pseudo-first order 

reversible reaction, thus the flux is given by

Na =  k*i Ca -  k2 CP

The chemical reaction may or may not be accompanied by heats of 

reaction and the concentration and temperature profiles are assumed 

independent of time. The concentration of B (extractant) is considered in 

excess. A schematic drawing of the concentration and temperature profiles 

are shown in Figure 4.1.

FIGURE 4.1
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The system is initially undisturbed and an analysis is to be made of

the response of the system when two-dimensional infinitesimal disturbances 

are introduced. When the disturbances grow with time, the system is 

unstable and when they decay the system is stable.

4.2.1 Equations of motion

The Navier-Stokes equations for an incompressible Newtonian fluid in 

the absence of body forces and for two-dimensional flow are

The system is initially quiescent (creeping flow) therefore the 

non-linear terms in Equations (4.1) and (4.2) may be neglected and the 

pressure terms may be eliminated by cross-differentiation.

Subtracting Equation (4.1) from Equation (4.2)

(4.2)

ckdx bt&y v
d1v d2 u

Introducing a stream function $

(4.4)
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so that the continuity equation

(4.5)

is satisfied, Equation (4.3) becomes

A solution for #  in Equation (4.6) will be assumed to be of the form

where: $ is the x-component of the perturbation; a = 2 x / \  is the 

wavenumber; A is the wavelength and /? is the growth constant of the 

perturbation.

Substituting Equation (4.7) into Equation (4.6) the Orr-Sommerfeld 

equation is obtained for a two-dimensional disturbance in an initially 

quiescent medium,

A new variable X = ox may be introduced to simplify Equation (4.8) 

which then becomes

$  = <̂ (x) eie<y e3t (4.7)

(4.8)

ip"" - 2  ¥>" +  ¥> = (4.9)
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The solution for Equation (4.9) when 0 t  0 is

ip = Ai ex + A2 e_x + A3 ePx +A4 e'Px (4.10)

and for 0  =  0

ip =  A5 ex + A6 e_x +  A7 x ex -f As x e”x (4.11)

where p = J 1 + 

from boundary conditions.

and the constants Ai to Ag have to be evaluated

4.2 .1.1  Assumptions and boundary conditions

It is assumed that:

— the interfacial tension is sufficiently high for the interface to keep 

planar;

— the disturbance stays finite at large distances from the interface 

(boundary conditions (1) to (4));

— the interface (x=0) is a streamline (boundary conditions (5) and

(6));
— there is no slip at the interface (boundary condition (7));

— there is continuity of tangential stress at the interface (boundary 

condition (8 ));

These assumptions may be expressed in the following boundary 

conditions:

(1) Up(oo) =  0

(2) Ua(-a>) — 0
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(3) Vp(co) = 0

(4) va(-oo) =  0

(5) uP(0,y,t) = 0

(6 ) uP(0 ,y,t) =  ua(0 ,y,t)

(7) vP(0,y,t) =  va(0,y,t)

(8 )  Ty ya ~Ty yp =

4.2.1.2 Hvdrodvnamic boundary conditions

To calculate the constants in Equations (4.10) and (4.11) the above 

boundary conditions may be redefined using Equations (4.4) and (4.7):

(1 ) pp(oo) = 0

(2) ^a(“Oo) =  0
(3) ^'(oo) = 0

(4) t f a 'M  =  0

(5) pP(0) = 0

( 6 )  ^ a(O ) =  0

( 7 )  ^ p '(O )  =  ^ a '(O )

(8 ) Txya -  T’xyp = ^  at X = 0

The shear stresses on each side of the interface are defined as:

_  /'dup i ^ V p \ _  ( d 2 t y P d 2 ^ p^ (A ^rxyP -  Up ( ^  + -  /*p (fix* ^y?) (4-12)

_ _  (du& - dva) _ ,d2Va d2Va)
7-xya -  ^  +  W >  “  ~ 5 y l) (4.13)
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The dynamic interfacial tension ayy, according to the Boussinesq 

formulation (70), depends on the rate of deformation of the interface:

0 yy = ap + K (J^ +  + V at x =  0  (4.14)

<7yy =  ap + n (-^) =  ap +  //s ( ^ ^ y )  at x =  0 (4.15)

and

V  = w  + *  ^  (4-16)

Considering the static interfacial tension as a function of the 

concentrations of the two components and temperature,

dap _  dap dC& , dap dCP , dcr0 dT 
~lfy ~ 3CI 77y“ cTT cJy (4.17)

and substituting Equation (4.17) in Equation (4.16)

daw _  (dap dC& . dap dCP , dap dT
+ TKTfW ' + W  3y > + ^ (4.18)

After the substitution of Equations (4.12), (4.13) and (4.18) into 

boundary condition (8 ), this becomes

(dap <9Ca , dap dCP dap dT^ ( x

-  Pa ----- g p )  - Pp - g p ) (4.19)



Using boundary conditions (1) to (6 ), for 0 ^ 0

(fip =  A2 (e-x -  e‘PPx) for x > 0

ipa, =  Ai (ex -  ePax) for x < 0

(4.20)

(4.21)

Ai can be eliminated with boundary condition (7) so that

(pp= -  A2 ( ex -  ePax ) for x < 0 (4.22)

Similarly for 0 = 0

<Pp =  A$ x e*x for x > 0 (4.23)

<j0a = As x ex for x < 0 (4.24)

Combining Equations (4.7), (4.19), (4.20) and (4.22) and introducing

Ca -  fc7’ ^  -  H e ; and ^  -  $ r
da dat

then, for 0 j- 0

r dCa ,  dCp r dfl
x=0

= A2 fiP a2 e w  e3l (pP -  1 ) 0  +  Pp ) +  % (1 +  Pa) +  j j a (4.25)

Similarly for 0 = 0
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Equation (4.25) describes the evolution with time of a disturbance of 

wavelength A =  2n/a while Equation (4.26) gives the wavenumber of a

disturbance that neither grows nor decays with time. This is the state of 

neutral stability.

In order to obtain a and (3 from Equations (4.25) and (4.26) the
/9T1 r tf '*concentration gradients and have to be found from the equations of 

diffusion. The temperature gradient -gy has to be obtained from the

equation of energy.
^T

In the following sections the temperature gradient is assumed 

equal to zero and the characteristic equation for an isothermal system is
orn

developed. The inclusion of the temperature gradient -jjy in the

development of the characteristic equation for the case of a system with 

heat effects is considered in Section 4.6.

4.2.2 Equations of diffusion

The two-dimensional diffusion equation, for a binary mixture of 

constant mass density is given by

dC + u dC , 
^  +

dC D , d*C
^  + W T

(4.27)

where u and v are defined in Equations (4.4) and (4.7).

It is assumed that in the undisturbed system constant fluxes have 

been established and that the undisturbed concentrations are given by

x > 0Ca° = Ca + La X 

CP° = Cp + Lp x x < 0

(4.28)

(4.29)
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The concentration profiles are then disturbed by a perturbation 

G (x,y,t) caused by the perturbed velocity profiles, so that

C = C° (x) +  G (x,y,t) (4.30)

Introducing Equation (4.30) into Equation (4.27) and neglecting 

second order terms,

dG
W + u <9C°

W D ( f £  + W 7
(4.31)

The concentration perturbation is of a similar form as the one 

introduced in the equations of motion, Equation (4.7), i.e.

G = H (x) e*«y e3t (4.32)

Introducing this equation together with Equations (4.4), (4.7), (4.28) 

and (4.29) into Equation (4.31) an equation for the concentration 

disturbance, H (x), is obtained:

H " - H  =  - w  * <4-33)

The solution for this equation, for each phase, is given by,

Hp = A9 e v  + Aio e_v  -  !p (4-34)

Ha =  B9 e%x +  Bio e~%x ~ U la (4.35)
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where,

I = e<Jx J e*2<ixJ eQ* ip (dx)2 (4.36)

(4.37)

(4.38)

From the boundary conditions for the diffusion equation, constants A9, 

A10, Bg and Bio can be calculated. Values of the integrals IP and Ia may 

be found in Table 4.1, taken from Sternling and Scriven's work (3).

4.2.2.1 Boundary conditions

The boundary conditions for the diffusion equation are:

(9) and (10) The concentration disturbance vanishes at large distances from 

the interface:

(1 1) There is a chemical reaction at the interface, so that the mass balance 

is given by

C p  (00) =  C po (00) -> H P (00) =  0

C a (-00) =  C a °  (00) -» H a ( t » )  =  0

D a ( I !4) + (k2 Cp -  k'l Ca) = 0 at x=0 (4.39)

where

k ' i  =  k j  C b
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(1 2) Since the stoichiometric factors in the chemical reaction are the same, 

the fluxes of A and P at the interface are equal, i.e.

Da = (fx^  at x = 0

4.2.2.2 Calculation of Ha and HP

Expressions for Ha and HP are found by taking into consideration 

boundary conditions (9) and (10). Equations (4.34) and (4.35) become:

Hp — Aio 6 Qpx ~  Ip I p (4 .40 )

Ha =  Bg eqax — la la (4 .41 )

Introducing the concentration perturbation, defined by Equation (4.32) 

into Equation (4.30) and using boundary condition (1 1), in the undisturbed 

state, the following equation is obtained

Da a H'a(0) + [k2 HP(0) -  k'i Ha(0)] = 0 (4.42)

where, from Equations (4.40) and (4.41),

Hp(0) — Aio — lp IP(0) (4 .43)

Ha(0) = B9 -  la Ia(0) (4 .4 4 )

H'p(0) = ~~ Aio Qp ~ lp I'p(H) (4 .4 5 )

H 'a(0) =  B9 qa -  la I'a(0) (4 .4 6 )
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From boundary condition (12) in the undisturbed state and using 

Equations (4.30), (4.32), (4.40) and (4.41) the following equation is obtained:

Dp [— Aio qp — lp I'p(O)] =  Da [Bg qa — la I'a(O)] (4-47)

Constants Aio and Bg may be evaluated from Equations (4.42) and 

(4.47). Their algebraic values are presented in Output "OUT 1", in 

Chapter 5.

Aio and Bg may be introduced into Equations (4.43) and (4.44), 

respectively, and after substitution of the integrals, given in Table 4.1, the 

expressions for Ha and HP are found.

4.2.3 Calculation of A and B
dC dCTo calculate —i j p and ■ to be introduced in Equation (4.25), 

Equations (4.30) and (4.32) were used so that,

( ~ § K = o  =  H » ( ° ) ' a e h y  e3t (4-48>

< - |N x = 0  = H«(°) i a el y e0t (4.49)

Therefore, neglecting heat effects, Equation (4.25) becomes,

( dp p) —
Wty 'x=0 ”

*dy 'x=0

[ Cp Hp(0 ) i + Ca H,(0 ) i ] x= 0  "

(1 + Pp ) + £  (1 + Pa) += A2 /ip a (Pp -  1) (4.50)
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After substituting HP(0) and Ha(0) into Equation (4.49) and rearranging 

terms into dimensionless form, the characteristic equation

is obtained, where A is the dimensionless wave number and AC is the 

algebraic value developed, which is given in Output "OUT 2", in 

Appendix A.

A dimensionless growth constant B, may be defined from the 

following relationship,

Another form of the characteristic equation can be found by 

combining Equations (4.51) and (4.52),

where BC is also given in Output "OUT 2".

4.2.4 Calculation of A^o

The characteristic equation for 0 = 0 , the neutral stable condition, is 

obtained by using Equation (4.26) and a similar manipulation of terms as 

for 0 /  0. The final equation is

(4.51)

-B_ =  Pp2 _ i =  (qa2 _ i) d2 (4.52)

B = / p> 0 = BCLp (,P (4.53)

(4.54a)
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where AC^g is presented in Output "OUT 4", in Appendix A, or in 

dimensionless form:

acns “
(r2 — 1 ) f ( m + 1) r2 - Z ( r2 + 1) 1 

8 d2 [ (m r2 4- 1) -  Z J l 1 4- H&/Vp + a/*s/2/h

(4.54b)

This equation was developed by manipulating Equation (4.54a) so that 

ACns is presented as a function of the dimensionless terms r2, m and Z. 

These dimensionless terms are defined as

r9 _ Dp
r -  “d : m DP a

-  "ET and Z —

4.3 Analysis of the characteristic equation

The characteristic equation is a function of the physical properties of 

the system under study as well as the reaction constants of the interfacial 

chemical reaction involved. For each wave number a, the characteristic 

equation gives the value of the growth constant 0. The wavenumber a is 

real and positive while 0 is complex,

0 = 0r + 0i i (4.55)

The system is stable if /?r, the real part of 0, is negative for all 

values of a. If it is positive for only some values of a, the system is still 

considered unstable.

Table 4.2 shows several types of instabilities which may set in, for 

different values of 0.
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For the cases when /?r = 0, the disturbance neither grows nor decays 

with time, thus representing the boundary between stable and unstable 

states. These cases are the neutral stationary and neutral oscillatory 

regimes

The introduction of e defined in terms of a and /?,

(4.56)

simplifies the analysis of the characteristic equation, which may be 

considered now dependent only on the variable e.

From Equation (4.52)

A = B
cf7? (4.57)

the dimensionless wavenumber A, may be described now as a complex 

function of the complex variable e = er + fi i- Therefore, Equation (4.57) 

may be expressed as,

(Ar + Aj i) (f2r + e2i) — -Jp Bf 6r "h Bi + (B| £r — Bf 6i) i

(4.58)

The dimensionless wave number A is real so the imaginary part of A 

must be zero, and therefore

Bj er -  B r e\ =  0 (4.59)
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The ranges of er and t\ that satisfy this equation and respective type 

of instability regime are shown in Table 4.3.

The limiting behaviour of functions A (e) and B (e) is examined in 

the following sections so that an understanding of the stationary and 

oscillatory regimes may be obtained.

4.4 Limiting behaviour of the characteristic equation

The development of the limiting behaviour of the characteristic 

equation, for e -> 0  and e -> oo is presented in Appendix B .

When t -+ 0, A and B are of the form:

where A^g is given by Equation (4.54) and f is in Output "OUT 5" in 

Appendix A.

When 6 -» oo, A and B contain a large number of terms which the 

computer software used is unable to manipulate analytically. Consequently, 

only the limiting behaviour of the characteristic equation for very small 

values of c is analysed in this work.

4.5 Stability analysis

The boundary between stable and unstable states is represented by 

the neutral stationary and oscillatory regimes. Therefore, these regimes are 

analysed in detail in the following sections.

A — Ajyjg (1 fr) (4.60)

B  -  “ 3 ?  A N S  “  f f 2 )
(4.61)
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4.5.1 Neutral Stationary Regime: er = 0 and 6i = 0

When e = 0, Equations (4.60) and (4.61) become

A = ans

B = 0

The conditions for the onset of stationary instabilities are found when 

the dimensionless wave number for neutral stability A^g, as defined by 

Equation (4.54) is analysed.

The sign of A^g depends on the signs of (P and LP, since <*2jsjg is 

real and positive. Table 4.4 shows the sign taken by AC^g for the range 

of values used in this work and assuming that is equal to zero. For 

r2 > 1 and £P < 0, A^g has the same sign as AC^g when LP < 0. For 

LP > 0 they have the same sign when r2 < 1 for (P < 0.

By definition, e is equal to zero either when 0 =  0 or when a =  oo. 

The former case was the one analysed previously. From Equation (4.61), 

when a  =  oo, B is also zero, so the stationary instability does not grow with 

time.

When e -» 0, Table 4.5 shows the sign taken by the factor f for the 

same range of physical properties investigated before.

The final "sign analysis", for small values of e and when fP < 0, 

indicates that, for stationary instabilities to occur, mass transfer must be out 

of phase A into phase P when r2 > 1 and out of phase P into phase A 

when r2 < 1 .



66

4.5.2 Neutral Oscillatory Regime: cr = 0 and e\ i  0

The neutral oscillatory regime was analysed for small values of e, by 

considering Equation (4.61) as

B = -g i (£r + £i i) -  f (er + t\ i) 2 (4.62)

or for 6r — 0

B -  “32 ANS ei ' (4.63)

Table 4.6 shows that B takes the same sign as A^g, for different 

values of r2. The sign of A^g depends on the signs of (P and LP, as 

previously mentioned. For r2 > 1 and £P < 0, B has the same sign as

Ans when Lp < 0. For LP > 0 they have the same sign when r2 < 1 for

CP < 0. Therefore, the system seems to be unstable for the same direction

of transfer as in the case of the stationary regime. However, in order to

cover all possible unstable conditions the limit of B for e -♦ oo should be 

analysed. This is impossible with the software facilities available at the 

moment, as mentioned in Appendix B.

4.6 Energy equation for a. system with heat effects

In Section 4.2 a characteristic equation was developed for an
Qrn

isothermal system after neglecting the temperature gradient in the

equations of motion. However, the addition of heat effects requires not only 

the solution of the Navier-Stokes equation and the diffusion equation but
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also the energy equation. This equation is given by

The boundary conditions which need to be taken into consideration 

for the solution of Equation (4.64) are:

(i) the energy balance at the interface is given by

where Q is the heat of reaction, N is the flux and the subscript j can be 

either a or p depending on the direction of the chemical reaction.

(ii) there is thermal equilibrium at the interface,

The additional inclusion of the energy equation in the development of 

the characteristic equation for the described system with heat effects 

introduces such complexity in the theoretical equations that the computer 

software "REDUCE" was unable to manipulate algebraically the 

mathematical terms included in the equations. Therefore the final 

characteristic equation could not be obtained.

4.7 Conclusions

In this chapter the characteristic equation for an isothermal system 

was developed and analysed. From the stability analysis for the neutral 

stationary and neutral oscillatory regimes it was concluded that for 

stationary instabilities to occur mass transfer must be out of the phase with

Q Nj =  ktp ( - ^ )  -  kta ( - ^ i ) (4.65)

Ta = Tb (4.66)
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lower diffusivity. This is the only conclusion that could be drawn 

analytically. The quantitative effect of the chemical reaction is investigated 

numerically in Chapter 5.

Oscillatory instabilities as well as the inclusion of heat effects in the 

the characteristic equation could not be treated due to the limitations of the 

software "REDUCE". However, the equations have been developed and are 

ready to be used when more advanced software becomes available.
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^ 0 1 (0 )/a l ' ( 0 ) /a

Phase P 

x > 0

(p 2p -  1) (1 -  p P) (q2P +  p p)
(q2p -  i)  (q2p -  p '2p) w sp ■ i) ( i V  -  p 2p)

Phase A 

x < 0

...( 1 “  Pp ) (P2a “ 1) (1 -  Pp) (q2a + Pa)
1 -  Pa (q2a -  1) (q2a -  P2a) (q2a -  1 ) (q2a — P2a)

oII

Phase P 

x > 0

0 -  1/4

Phase A 

x < 0

0 -  1/4

TABLE 4.1
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Case A A Type of instability

1 < 0 < 0 stable

2 = 0 = 0 neutral stationary

3 > 0 = 0 stationary

4 = 0 > 0 neutral oscillatory

5 > 0 > 0 oscillatory

T A B L E  4.2
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Regime

er = 0 Ci = 0 neutral stationary

fr t 0 fi = 0 stationary

er = 0 fi t 0 neutral oscillatory

6r # 0 Ci t 0 oscillatory

T A B L E  4.3
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r2 > o CO Cp LP ans

> 1 + - - +

< 1 - - + -

TABLE 4.4

Typical data used to establish signs:

CB = IQ’2, DP = 10-9, /is = 0, k'i = 10-12 _ io-4 and k2 = 10'«> -  10
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r2
a c ns 1 -  f 6r Cp LP A

> 1 + + - - +

< 1 - + - + —

TABLE 4.5

Typical data used to establish signs:

CB = 10-2, Dp = 10-9, f t  = 0, k'i = 10-12 -  IQ*4 and k2 = 10' 10 -  10'
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r2 ans B Cp LP

> 1 + + - -

< 1 - - - +

TABLE 4.6

Typical data used to establish signs:

CB = 10-2, Dp = 10-9, /is = 0, k'i = lO *12 -  10'4 and k2 = 10’10 -  10*
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CHAPTER 5

NUMERICAL RESULTS AND DISCUSSION

5.1 Introduction

The characteristic equation developed in Chapter 4 was used to study 

numerically the stability of four liquid-liquid systems with interfacial 

chemical reactions. In this chapter results of that study are presented for 

the case of stationary instabilities and a comparison is made with similar 

results obtained from computations performed using Sternling and Scriven's 

characteristic equation for diffusional mass transfer.

The simulation of the systems was classified into four cases depending 

on the value of the diffusivity ratio, r2:

Case 1 ---- r2 = 4.0

Case 2 ---- r2 = 1.5

Case 3 ---- r2 = 1.0

Case 4 ---- r2 = 0.5

For each case two values of the viscosity ratio e2 were used: e2 = 0.5 

and e2 = 2 .0 .

The above data and selected values of the physical properties are 

representative of typical liquid-liquid systems.

The characteristic equation, Equation (4.51), was developed assuming 

a pseudo-first order interfacial chemical reaction of the form

A + B P
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with a flux given by

Na =  k'l Ca ~  1̂ 2 Cp

where: k'i = ki Cb; ki and k2 are the forward and the reverse reaction rate 

constants respectively; and Ca, Cb and CP are the concentrations of 

compounds A, B and P respectively.

The pseudo-forward reaction rate constant k'i and the reverse reaction 

rate constant k2 were varied so that the effect of the rate of reaction could 

be investigated.

The choice of the range of numerical values chosen for the interfacial 

reaction rate constants was guided by experimental values reported in the 

literature (71) (72).

Results presented here were obtained assuming that the variation of 

interfacial tension with concentration, (, is negative; that the composite 

surface viscosity, //s, is negligible and that the concentration of the 

extractant, Cb, is in excess. Numerical values used throughout this work 

are:

£P = -  1 x 10 "4 m3/s2

As = 0

Cb = 1 x 1 0 '2 kg/m3

5.2 Numerical calculation of a and 6

Figure 5.1 shows the flowchart used in the calculation of a^g, the 

neutral stability wavenumber. From an initial guess, a^g was iterated until 

the numerical values of each side of Equation (4.54a) were the same. The 

sign taken by the parameter LP, which determines the direction of transfer, 

is also defined to obey that equality. Taking into consideration the 

definition of wavelength as A = 2 ^/0 , wavenumbers which may lead to
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instabilities must be below the calculated value of o^g, which corresponds 

to the minimum wavelength for the onset of instabilities.

Figure 5.2 presents the flowchart for the calculation of the growth 

constant /?, for different values of wavenumber a below a^g. For each 

value of a, a correct value of (3 is obtained when, after an initial guess of 

/?, the equality given by Equation (4.51) is satisfied.

5.3 Discussion of results

The physical behaviour of the systems studied is expressed and 

discussed in terms of the relationship between the wavenumber a and the 

growth constant /?.

For each case results are presented in a table which is divided in two 

parts: the first gives computed values using Sternling and Scriven's diffusion 

model and the second computed values using the interfacial reaction model. 

The latter table contains results for different values of the pseudo-forward 

and reverse reaction rate constants, k'i and k2. Values for the physical 

properties used to obtain these numerical results are included prior to the 

tables.

Figures 5.3, 5.4, 5.6, 5.7 show plots of a vs /? for the interfacial 

reaction model for all the cases found unstable. Each curve has a maximum 

which corresponds to the wavenumber which is amplified most rapidly and 

eventually dominates the system, i.e. a^. The maximum value of a, which 

is tfjyjg, occurs when ft = 0 . Below this value instabilities grow with time.

It may also be observed that instabilities with small wavelengths have 

large growth constants and instabilities with large wavelength have small 

growth constants: large instability cells grow more slowly due to the larger
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inertia of the greater amount of fluid which has to be displaced for the 

instability to grow.

The graphs in Figures 5.3, 5.4 and 5.6 also show that the values of a 

and /? obtained from the computations of Sternling and Scriven's model are 

smaller than the ones computed using the interfacial reaction model. 

Therefore a system is more unstable when a chemical reaction occurs at the 

interface.

It is important to emphasize that this study is only concerned with 

stationary instabilities, so that when a system is referred to as being stable 

or unstable it is meant to be in terms of stationary instabilities only.

5.3.1 Effect of diffusivitv ratio r2 and viscosity ratio e2

Table 5.1 shows the effect of the diffusivity ratio in the unstable 

direction of mass transfer, Lp, for a negative system. When Lp is negative 

mass transfer occurs from phase A into phase P (forward reaction); when it 

is positive the reverse reaction is taking place and leads to the opposite 

direction of transfer.

An analysis of the results shown in Table 5.1 confirms that the 

systems studied are unstable for either the forward or the reverse reactions 

depending on whether r2 is greater or less than 1 . Thus the onset of 

stationary instabilities occurs when mass transfer is out of the phase of 

lower diffusivity. In each case the system is stable in the opposite direction 

from the one shown in the table.

Results given in Tables 5.2 and 5.3 and in Figures 5.3, 5.4 and 5.5 

suggest that for the conditions used, values of a and /? increase with 

increasing values of r2. This may be seen in Figure 5.5 for Cases 1 and 2 .
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The unstable direction corresponds to the direction of the forward reaction 

and for the same values of DP, k'i and k2 the system is more unstable when 

the ratio of diffusivities is larger, i.e. the value of Da is lower. Since 

simulations have been conducted at constant interfacial flux, a decrease in 

the value of Da results in a steeper concentration gradient for reactant A, 

thus making the system more unstable.

An analysis of Tables 5.2 -  5.5 also shows that the viscosity ratio e2 

does not affect the values of a and /?.

According to Sternling and Scriven’s work the value of the ratio of 

the viscosities becomes important when oscillatory instabilities are considered 

and they have concluded that for a negative system oscillatory instabilities 

occur when mass transfer is out of the phase of higher viscosity.

When r2 = 1 both diffusivities are exactly the same and the 

characteristic equation for neutral stability becomes zero. In Case 3a and 

Case 3b values of r2 = 1.0001 and r2 = 0.9999 were used to investigate the 

sensitivity of the system in a region close to r2 = 1 . Results obtained, 

which may be seen in Table 5.1, show that a small variation on the value 

of the diffusivity ratio produces stationary instabilities in opposite directions 

of mass transfer. Therefore, it is important to emphasize that since 

diffusivities are usually estimated from correlations or measured with 

experimental errors larger than the accuracy required by this model, the 

stability of a system in which r2  ̂ 1 is difficult to predict.

The sensitivity of the interfacial reaction model in the region of 

r2  ̂ 1 , may explain the disagreement between predictions using the Sternling 

and Scriven's model and experimental results reported by Thompson and 

Perez de Ortiz (28). They observed instabilities in the extraction
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of uranyl-nitrate from an aqueous solution to an organic phase containing 

tri-n-butylphosphate and mention that there is chemical reaction at the 

interface.

They measured the interfacial tension of this system and found that 

it increases with increasing concentrations (( > 0 ); they estimated that the 

diffusivity ratio was approximately unity and the viscosity ratio was 

approximately two. According to Sternling and Scriven's stability criteria 

this system should exhibit oscillatory instabilities. When the organic phase 

was replaced with hexane, so that the viscosity ratio modified to e2 = 0 .6 , 

instabilities were still visible. If these instabilities were purely oscillatory, 

according to Sternling and Scriven's criteria they should disappear when 

e2 < 1. However, since this system seems to have a value of r2 £ 1, from 

the conclusions mentioned previously it may still present stationary 

instabilities which are independent of the value of the viscosity ratio.

5.3.2 Effect of ki and ko

The onset of stationary instabilities in systems with an interfacial 

reaction of the type presented in this work, has been analysed for different 

values of the forward and the reverse reaction rate constants, ki and k2 

respectively.

As previously mentioned, the value of the wavenumber of neutral 

stability, i.e. o^g, suggests how unstable a system is. The calculation of 

Gr̂ g is performed, as described in Section 4.2, using Equation (4.54a). In 

this section Equation (4.54b) is used to discuss the effect of k'i and k2 on 

the values of a^g. Equation (4.54b) was developed by manipulating the 

terms in Equation (4.54a) so that AC^g is presented as a function of the
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dimensionless terms r2, m and Z. These dimensionless terms have been 

defined as

and

r2
D
U £.

a

m _  k1!

_  Dp a
~~ *2

Changes to any of these dimensionless terms may therefore affect the 

final value of a^g.

The effect on r2, m and Z of changes in the parameters which define 

them is summarized in Table 5.7.

It is important to point out that Z is also a function of a. However, 

in the discussion presented here the effect of a on the value of Z is not 

considered.

In Cases 1, 2, 3 and 4, all physical properties were kept constant and 

although variations in the pseudo forward reaction rate constant k'i are 

discussed, they correspond to changes in the forward reaction constant ki, 

with the value of Cb kept constant.

Table 5.1 shows that in Cases 1 and 2 the unstable direction of mass

transfer is when the net flux is from Phase A to Phase P. In Case 4,

instabilities occur when the net flow is from Phase P to Phase A. In order

that Cases 1 , 2 and 4 can be discussed and compared easily, for the same

direction of net flux, a system which mirrors Case 4 has been defined: 

Case 4 (rev). This case was simulated numerically by adjusting all
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parameters in such a way that properties of Phase A and Phase P in 

Case 4 became properties of Phase P and Phase A in Case 4 (rev). Having 

introduced the changes, Case 4 (rev) is unstable in the direction of the 

forward reaction. Numerical data used for Case 4 (rev) are shown in 

Table 5.6.

5.3.2 .1  Case 1 . Case 2 . Case 4 and Case 4 (rev)

The effect of k'i and k2 on Cases 1 and 2 is presented in Tables 5.1b 

and 5.2b These tables show that a change in the value of k'i, with k2 

constant, does not affect the values of either a or /?. However, a decrease 

in the value of k2, for the same value of k'i, produces an increase in the 

values of a and /?. This effect may be seen in Plots (1) and (2 ) in 

Figures 5.3 and 5.4. Therefore in Cases 1 and 2 the size of the instabilities 

is a function of k2 but remains unaffected by a variation in k'i.

Results for Case 4 and Case 4 (rev) are shown in Tables 5.5 and 5.6 

and plotted in Figures 5.6 and 5.7.

As previously mentioned, Case 4 (rev) is the one which is to be 

discussed. An analysis of the results for this case indicates that the values 

of a and /? are functions of k'i and not of k2.

Table 5.8 presents a summary of the effect of k'i and k2 on a^g for 

Cases 1 , 2 , 4 and 4 (rev).

It is important to notice that the most relevant difference between 

Case 2 and Case 4 (rev), is that although values of r2 are not very 

different, the value of DP in Case 4 (rev) is double. This increase in the 

value of DP affects the values of AC^g in Equation (4.54b). According to 

Table 5.7, when all the other parameters are kept constant, an increase in
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DP produces an increase in Z and hence a variation in AC^g. This

variation is also dependent on m, when k'i is varied. The relative

magnitude of the terms m and Z will determine the value of o^g. When 

DP increases, a variation in k2 will only affect the individual values of m 

and Z but not their value relative to each other. The relative magnitude of 

m and Z is therefore only dependent on k'i.

To understand the reason for the shift of the dependence of a^g on 

k2, in Case 2 , to k'i in Case 4 (rev), a qualitative analysis of the

mechanism of instabilities is necessary.

The rate of dissipation of an interfacial excess concentration of A 

depends on: the net rate of interfacial reaction, the rate of diffusion of A 

back to Phase A and the rate of diffusion of the product P into Phase P. 

Since the value of r2 in this discussion is always greater than unity, it is 

assumed that the diffusion of A does not contribute significantly to the

dissipation of A from the interface. The process can then be controlled by 

k'i, k2 and DP. In the lower range of values of DP considered, as in 

Cases 1 and 2 , the excess of P produced by the forward reaction remains at 

the interfacial region long enough for the reverse reaction to take part in 

the rate controlling process. Thus, the higher the value of k2, the less steep 

the interfacial concentration gradient of Cai and the more stable the system. 

This is represented in Table 5.8 and in Figure 5.5. As DP increases, the 

rate of diffusional dissipation of P increases until a point is reached when 

the reverse reaction ceases to influence the process. At this stage the 

interfacial gradient of A becomes a function of k'i.
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5.3.3 Comparison with the diffusional stability model

5.3.3.1 Cases 1 . 2 and 3

Data used in Case 1 and Case 2 was also used to compute results 

using Sternling and Scriven's diffusion model. Results are presented in

Tables 5.2a and 5.3a and plotted in Plot (3) of Figures 5.3 and 5.4. From 

these it may be seen that a system with an interfacial reaction, of the type 

assumed in this work, is more unstable than a system where interfacial mass 

transfer is by diffusion only.

Figures 5.3 and 5.4 seem to indicate that Sternling and Scriven's 

model, for the data used in this work, may be close to the case of a system 

with an interfacial chemical reaction when k2  ̂ oo (very fast reverse

reaction). At constant interfacial concentration and for a constant net flux, 

any increase in k2 is accompanied by an increase in k'i. Hence, both 

forward and reverse reactions become faster and equilibrium at the interface 

is approached. The system would then become controlled by diffusional 

transfer, i.e. the Sternling and Scriven's model.

In Case 3, values of the wavenumber and the growth constant are 

very small. Therefore the only values presented in Table 5.4, for the 

interfacial chemical reaction model and for Sternling and Scriven's model, are 

for the neutral stability case. The system is very close to stability which 

would be the case if r2 = 1 , as the characteristic equation would become 

equal to zero.

It may also be observed in Table 5.4 that although a^g is higher for 

the case of the interfacial reaction model, i.e. the system is more unstable 

than in Sternling and Scriven's case, the values of o^g are still very small: 

instabilities are of very large wavelength.
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5.4 Summary of results

It may be concluded from the results discussed in this chapter that 

the onset of stationary instabilities for a system with a reversible pseudo 

first-order interfacial chemical reaction is not only dependent on r2, but also 

in two additional dimensionless terms, i.e. m and Z. The stability analysis 

is very complex and general criteria could not be established. However, 

numerical results have been explained qualitatively and the following 

conclusions may be drawn:

(1) instabilities occur for both directions of mass transfer;

(2 ) the value of r2 controls the direction of the instabilities which is 

the same as for diffusional mass transfer: out of the phase of 

lower diffusivity;

(3) the interfacial reaction model predicts smaller cells which 

amplify more quickly (system more unstable) than those 

predicted by the diffusion model;

(4) stationary instabilities are independent of the ratio of viscosities

e2;

(5) the influence of m and Z is reflected by the effect of k’i and k2

on An s;

(6 ) and under certain circumstances, a^g is a function of k'i and 

others of k2, depending on the potential rate of diffusion in each 

phase.
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Case r2 LP

1 4.0 —

2 1.5 -

3a 1.0001 -

3b 0.9999 +

4 0.5 +

TABLE 5.1
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* CASE 1

Lp = La/r2 = -  1.0  x 105 kg/m4 

DP = 2.0 x 10-9 m2/s 

vP = 1 .0  x 1 0 '6 m2/s

As =  0

Up — 1.0 x 10_3 Kg/ms 

Aa/ Ap =  0*5 

r2 = 4.0

•  e2 = 2.0 or 0.5

a x 1 0 '5 0

9.97 0

8 .0 170

3.0 320

1.0 170

0.0 0

TABLE 5.2a

Diffusion model
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TABLE 5.2b

Interfacia] reaction model
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CASE 2

LP = La/r2 = -  1 .0  x 105 kg/m4 

DP = 2.0 x 10'9 m2/s 

i/p = 1 .0  x io-6 m2/s 

Ih =  0
/iP =  1.0 x 10_3 Kg/ms 

/ia/^p = 0*5 

r2 = 1.5 

e2 = 2.0 or 0.5

Q x 10'5 0

3.5 0

2.5 96

1.6 105

1.0 85

0.5 65

0.0 0

TABLE 5.3a

Diffusion model
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TABLE 5.3b

Interfacial reaction model



CASE 3

Lp = La/r2 = ± 1.0  x 105 kg/m4 

DP = 2.0 x io -9 m2/s 

Up = 1 .0  x io -6 m2/s 

Ih =  0
/iP = 1.0 x 10*3 Kg/ms 

Aa//̂ p =  0.5

r2 = 1.0001 (LP < 0) or 0.9999 (LP > 0) 

e2 = 2.0 or 0.5

aNS x 10 '3 p
k', k2
1.1 6 .6

Diffusion model 4.5 0 - -

Interfacial reaction 9.1 0 1 0 '12 1 0 -io

model 6 .8 0 10-12 10-2

TABLE 5.4
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LP = La/r2 = + 1 .0  x 1 0 5 kg/m4 

DP = 2.0 x 10'9 m2/s 

vP = 1 .0  x 10'6 m2/s 

=  0

HP = 1.0 x 10'3 Kg/ms 

fal Up — 0.5 

r2 = 0.5 

e2 = 2.0 or 0.5

CASE 4

a x io-5

2.6 0

2.0 50

1.19 71

0.5 50

0.0 0

TABLE 5.5a

Diffusion model
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TABLE 5.5b

Interfacial reaction model
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Lp = La/r2 = -  0 .5  x 105 kg/m4 

DP = 4.0 x 10*9 m2/s 

vP = 0.5 x 10*6 m2/s 

r2 = 2 .0

CASE 4 frev)

//s =  0
Up = 0.5 x 10*3 Kg/ms

/Ja/̂ p =  2.0
e2 = 2.0 or 0.5

k'i
1.1

k2
6 .6

0x10*5 p

io-i° 10*12 5.6 0

3.0 300

2 .0 330

1.0 240

0.0 0

1 0 '2 10-22 3.3 0

2 .0 100

1.5 120

0.5 67

0.0 0

TABLE 5.6

(continues next page)
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(cont'd)

TABLE 5.6

Interfacial reaction model
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Parameter changed Terms affected

DP r2 and Z

Da r2

k'i m

k2 m and Z

TABLE 5.7
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FIGURE 5.1

Flowchaxt for the calculation of a^g
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FIGURE 5.2

Flowchart for the calculation of /? for each a
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*

FIGURE 5.3

r2 = 4.0; k'i = l.lxlO'4 and = l-lxlO' 12

(1) k2 = 6 .6 xlO-io

(2 ) k2 = 6 .6 xl0 -2

(3) Sternling and Scriven's model
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alpha ( m —1 )

FIGURE 5.4

r2 = 1.5; k'i = 1.1x10"* and k'i = l.l*10-»2

(1) k2 = 6 .6 *10-10

(2 ) k2 = 6 .6 *1 0 '2

(3) Stemling and Scriven's model
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FIGURE 5.5

(1) r2 =  4.0; k'i =  l.lxlO'12 and k2 =  6.6x10-'°

(2) r2 = 4.0; k'i =  l.lxlO'12 and k2 =  6.6xl0-2

(3) r2 = 1.5; k', =  l.lxlO''2 and k2 = 6.6x10-'°

(4) r2 = 1.5; k'i =  l.lxlO'12 and k2 =  6.6xlQ-2

»
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C . 0 0  J .'! i i i i i i : j ! i ; i i ; m : : rri i i f r i  i | n >  i i - n — , \ i i i i i i r ; : i i i— — ;
0.00 1.00 2.00 3.00 4.00 5.00 6.00

alpha ( m - 1  )

FIGURE 5.6

r2 =  0.5; k't =  l.lxio-* and k', =  l.lx l0 ’>2

(1) k2 = 6.6*10-‘<>

(2) k2 =  6.6xl0-2

(3) Stemling and Scriven's model
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FIGURE 5.7

r2 = 2.0; k2 = 6.6X10"1 and k2 =  6.6xl0'i2

(1) k'i =  l.lxlO->o

(2) k'j =  l.lxlO'2

(3) Sternling and Scriven's model
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CHAPTER 6

CONCLUSIONS

The conclusions taken from this work may be summarized as follows:

(1) Under microgravity conditions, temperature gradients were sufficient to 

initiate Marangoni instabilities, although those initiated were of shorter 

duration than instabilities under gravitational conditions.

(2 ) The analysis of the characteristic equation, for a system with a pseudo 

first-order reversible chemical reaction and for small values of e, 

indicates that stationary instabilities occur when mass transfer is out 

of the phase of lower diffusivity, for negative systems. This agrees 

with the stability criteria established by Sternling and Scriven for a 

liquid-liquid system with diffusional mass transfer.

(3) For the unstable direction of mass transfer and for the range of values 

used, when the diffusivity ratio increases the system presents 

instabilities of smaller size and larger amplification factor.

(4) Stationary instabilities are independent of the ratio of viscosities.

(5) A system with an interfacial pseudo first-order reversible chemical 

reaction is more unstable than a system with mass transfer by 

diffusion only.

(6 ) The size of the instabilities is a function of the forward reaction 

constant or of the reverse reaction constant, depending on the potential 

rate of diffusion in each phase.
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RECOMMENDATIONS FOR FURTHER WORK

(1) The heat of solution for the system ethylacetoacetate/water should be 

calculated so that clear conclusions can be taken from the microgravity 

experiments performed in this work.

(2 ) Similar experiments to the ones executed under microgravity should be 

performed with different binary systems and with liquid-liquid systems 

with an interfacial chemical reaction. This would enable a more 

complete study of the thermal effects on the onset of Marangoni 

instabilities.

(3) If gravitational effects are found to be important in liquid-liquid 

systems with an interfacial reaction the model presented in this work 

should be modified to take these effects into account.

(4) More advanced software capabilities should be found so that:

(i) stability criteria for the system under the conditions investigated 

could be established;

(ii) a similar analysis to the one in the present work could be 

performed for oscillatory instabilities;

(iii) and the present interfacial reaction model could be extended by 

the addition of heat effects.
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APPENDIX A

COMPUTER LISTINGS AND OUTPUTS 

A.l Algebraic solution

The development of mathematical equations for the determination of 

the characteristic equation Equation (4.51) and of the equations needed for 

its analysis, was achieved using one of the University of London Computer 

Centre computers: the AMDAHL 5890. The algebraic programing system 

"REDUCE", was used to deal with very long, tedious calculations. The disc 

operating system control language used in the programs to access 

"REDUCE" was "PHOENIX 3".

Listings of the computer programs written and respective outputs are 

included in this Appendix.

The nomenclature used throughout this work, could not always be the 

same as in the computer programs. All variables are defined in the list of 

symbols included at the end of this thesis.
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s e t u p l o c a l  ( O U t = . O U t l / w / l D )  
r e d u c e  « i !  
comment  K I L L  1
comment  CALCULATI ON OF A10 AND b 9 FOK EETA i Q;
o f f  n a t ;
f a c t o r  h , m , a l f a ;  
o f f  e x p ;  
on gca ;
d i a  : = ( ( 1 - p p ) * ( q a * * 2 4 p a ) ) /  ( ( q a *  * 2 - 1 ) * ( q a * * 2 - p a * * 2 ) ) ;
d i p : = ( ( 1 - p p ) * ( q p * * 2 4 p p ) ) / ( ( q p * * 2 - l ) * ( q p * * 2 - p p * * 2 ) ) ;
i a : = ( - ( ( l - p p ) * ( p a * * 2 - l  ) ) / ( ( ! - p a ) * ( q a * * 2 - 1  ) * ( q a *  * 2 - p a  * * 2 ) ) )  ;
i p : = ( p p * * 2 - l  ) / ( (  q p*  * 2 - 1  ) * ( q p *  * 2 - p p *  * 2 ) ) ;
d n a : = D 9 * q a - l a * d i a ;
hp:  ca l 0 - l p * i p ;
h a : = b 9 - l a  * i a ;
e q l  : = d a * a l f a * d h a  + h * ( h p - m * h a ) ; 
e q 2 : = d p * ( - a l 0 * q p - l p * d i p ) - a a * ( b 9 * q a - l a * d i a ) ; 
s o l v e ( 1 s t ( e q l , e q 2 ) , l s t ( a 1 0 , b 9 ) ) ;

o u t  o u t ;
w r i t e  " o u t p u t  o u t  V ;  
a l 0 : cs o l n ( 1 , 1 ) ;  
b 9 : = s o l n ( 1  , 2  ) ; 
w r i t e " ; e n d " ; 
on n a t ;

o u t p u t  o u t  IT.

A10 := ( -  ( H * M * P A * Q A * P P * D P * L P  4 H * M * P A * Q A * D P * L P * Q P * * 2 + H* M* PA* PF  
DP* LP 4 H * M * P A * D P * L P * Q P * * 2  4 H * H * Q A * * 2  * ? P • DP * LP 4 H* H*

•  Q A * * 2 » D P * L P * Q P * * 2  4 H* r . * QA* PP * DP * L P  + H *K *QA * DP* LP* QP*  *
2 4 H * t t * P P * * 2 * D A * L A * Q P * * 2  -  H * E * P P * * 2 * D A * L A  -  H* t t * DA* LA  
• Q P * * 4  4 H * t t * D A * L A * Q P * * 2  4 K* PA* QA* * 2 * PP* DA*LP 4 H*PA*
QA * * 2 * DA * LP 4 H * P A * Q A * P P * D A * L P  + h * PA * QA* DA*LP 4 H*QA*  *
3 * PP * DA* L P  4 H * Q A * * 3 * D A * L P  4 H* QA* * 2 * PP* DA* LP 4 H * Q A * * 2  
•DA *LP -  P A * Q A * * 2 * P P * A L F A * D P * D A * L P  -  PA*QA * *  2 * ALFA*DP*
DA* LP * QP * * 2 -  P A* QA* P P * A L F A * D P * D A * L P  -  FA* QA* ALFA* DP* DA  
* LP *QP * • 2 -  Q A * * 3 * P P *  ALFA* DP* DA* LP -  QA* * 3 * AL F A* DP* DA*
LP * QP * * 2 -  Q A * * 2 * P P * A L F A * D P * D A * L P  -  QA* * 2 • ALFA* DP* DA* LP  
*QP * *  2 ) * ( PP -  1 ) ) / ( ( H * K * D P * Q P  4 H * Q A * D A -  QA• ALFA * DP• DA 
* Q P ) * ( PA 4 QA ) * ( QA 4 1 ) * ( PP * *2  -  QP* * 2 ) • ( QP * * 2 -  1 ) ) S

B9 := ( ( H * K * P A * P P * D P * L A * Q P * * 2  - 4 H * M* P A* P P * DP * L A* QP  4 H *fi * PA *DF * LA *
QP * *3 4 H*K*PA*DP*L/ - .  * Q P * * 2  4 fi * H * FP * DP * L A • QP * * 2 4 H*M*PP*DF;
•LA *QP 4 H * t t * D P » L A * Q P * * 3  4 N * K * D P * L A * Q P * * 2 4 H * PA * * 2 *Q A* *2 *
DP*LP -  H * P A * * 2 * D P * L P  4 h * P A* P P* DA * L A* QP  4 H * PA * PP* DA• LA 4 
H * P A * D A * L A * QP * *2 4 H* PA* DA* L A* QP -  H* QA» * a * D P * L P  ♦ K * Q A * * 2 *
PP* DA * LA* QP 4 h *QA * • 2  * PP * DA * LA 4 K * Q A * * 2 * DP*LP 4 r i * QA* * 2* DA  
•LA * QP• • 2  4 h * Q A * * 2 * DA* LA* QP -  PA * P?* ALFA• DP• DA * L A * Q P * *2 -  
P A * P P* AL F A* DP * DA* L A* QP  -  PA• ALFA• DP• DA * LA * QP* • 3  -  PA * ALFA*
DP* DA * LA* QP*  * 2 -  QA* * 2 * P P • AL FA* DP* DA * LA• QP* • 2  -  Q A * * 2 * P P *
ALF A* DP *DA * LA *QP -  QA * * 2 * ALFA• DP• DA * LA* QF* * 3 -  QA * * 2 * A L F A *  
D P * D A * L A * Q P * * 2 ) * ( PP -  1 ) ) / (  ( H • h*DP*QP 4 H* QA* DA -  GA *A LFA*  
DP*DA*QP)  * ( PA • *2 -  Q A * * 2  ) * ( Q A* *2 -  1 ) * ( P P  4 Q p ) * ( Q p  4 1 ) ) 5.

; e n d i
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s e t u p l o c d i  ( i n = . o u t ! / r / i b ) 
s e t u p l o c a l  ( o u t = . o u t 2 / w / f b ) 

r e d u c e  % i ! 
comment  F I L E  2
comment  CALCULATI ON OF AC AND BC FOK bETA 4 £;
o i f  e c h o ;
o f f  n a t ;
i n  i n ;
on g c d ;
o f f  f a c t o r ;
o f f  e x p ;

i a : - ( - ( ( 1 - p p ) * ( p a * * 2 - l  ) ) / ( ( 1 - p a ) * ( q a * * 2 - 1 ) * ( q a * * 2 - p a *  * 2 ) ) ) ;  
i p : = ( p p » » 2 - l ) / ( (  q p*  *  2 - 1 ) * ( q p * fc2 - p p ? * 2 ) ) ;  

t t 3 : = c p p - l ) * ( 1  + pp+n i a * (1 4 p a ) / n i p ♦ a i f  a *  n i s / n i p ) ;  
e q 3 3 : - i c * s a * ( b 9 - l a * i a ) 4 i c * s p * ( a 1 0 - l p * i p ) ; 
e q 3 : = e q 3 3 / t t 3;  F F F

gp*  * 2 : = q p l ; 
qa * * 2 : - g a l  ;

pa *  * 2 : = p a 1 ; 
i c *  * 2 :  = i d  ;
s u b ( g p l = l + e p , g a l = l 4 ( e D * d p / d a ) #p p l = l 4 ( e p * d  r / n  i u n  ) ,  p 
* ^ g / n i u p )  , l p = i c * l l p / ( a l f a * d p ) , I a = i c * l l a / ( a l f a * d a ) ,

s u b ( i c l = - 1 , e p = b e t a / ( a l f a * * 2 * d p ) , e g 5 ) ;
e q 6 : - ws;  

o u t  o u t ;
w r i t e  ’' o u t p u t  o u t 2  **; 

a c : = e q 6 * n i u p * a l f a / ( s p * l l p ) ;  
b c : = e g 6 * b e t a / ( s p * l l p * a l f a ) ; 
w r i t e " ; e n a " ;  
on n a t ;  
cjui  t ;

;a 1 = 1 4 ( ep * n i  u p / n  i  u a 
eg 3)  ;

output out2 S-
AC := ((((((PP * 1 ) *0F * LLA - (PA 4 1)*0A*LLF’ - PA “’LL F ) *ALFA**2*DA- (BETA 4 ALFA* *2*DA ) *LLP) *DP 4 (DP*ALFA**2 4 BE TA) *LLA *
DA 4 DP*PP*L LA*ALFA**2*DA)*( K * S P * SA)*H - ((PP 4 1) 4 OP) 
*(DP*ALFA**2 4 BETA) * DP* LLA * SA *A LFA *DA 4 ( ( P A * A;LF A * * 2 * DA 4
BETA  ̂ A LFA**2*DA)*QA 4 (PA 4 1 ) M B E T A  4 ALFA *•2•D A ) )*DP*LLP * 5 P * A L F A * L* A - 0 P * DP * * 2* P P •LLA * S A * A LFA * * 3 * DA ) * KIU? *
NIP) / ( ( ( M * 0 P * D P •* C< A * I • A ) * n - OP* DP*QA * ALF A *DA ) * ( ( PP 4 1)*KIP

* (PA 4 1 ) * M A  4 .n I 5 * A L K A  ) * (OP 4 PP) * ( C- P 4 1 ) * ( ^ A  4 PA) * ( « j A 4 1 ) * D P * L L P * S P * A L F A * * 2 * D A ) S

bC := ((((((PP 4 1 M 0 P - L L A  - (PA 4 1)*oA*LLP " PA * LL P ) * A LF A * * 2 - DA
- (BETA 4 A LFA * * 2 * D A )* LL P )•DP 4 (DP*ALFA**2 4 BE TA)* LLA*

DA ♦ D P * P P * L L A • A L F A * * 2*DA ) * ( H*S? 4 SA) * H -  ( ( P P  4 1)  4 QF>*(DP*A LFA * *2 4 B E T A )» DP* LLA * SA*A LFA *DA 4 ((I A *ALF A * * 2•DA 4bETA 4 ALFA**2»D A )*0A 4 (PA 4 1)*(BETA 4 ALF A * * 2 * D A ) )
•DP * L i t *S P *AL F A * DA - 0* *DP**2*PP*LLA * 5 A * ALFA * * 3♦D A )* BETA *NIP )/( < (i'-*C?*bP 4 C-A * LA ) * H - 0 P * D P * 0 A * A L F A • D A ) • ( ( P P 4 1 ) * N I F4 (PA 4 1 ) * M  A 4 M  S * A L F A ) * (0 P 4 PP)*(OP 4 1 ) M rvA
4 P A )*(QA 4 1 )*DP*LLP*3F*ALFA**tt»DA)S

;endS
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s e t u p l o c a l  ( o u t - ,  o u t 3 / w / f  b ) 
r e d u c e  £ i !  
comment  F I L E  3
comment  CALCULATION OF A1C AND U9 FOK BETA = D;
o f t  n a t ;
f a c t o r  h , m , a l f a ;
o f f  e x p ;
on q c q ;
i a : = 0 ;
i p : = C ;
d i a  : = - l / n ;
d i p  : = - l  /
g a :=1;
qp : =1;
cha  : = L 9 * q a - l a * d i a ;
]• l' : =al i > - l i * * i p  ;
h a : = b 9 - l a * i a ;
l a  ; = i c * l l a / ( a I f a * d a ) ;I p :=ic*llp/(aIfa*ap);
e q l  : = d a * a l i a * d h a + h * ( h p - i ! . * h a )  ;
eq 2 : =a p * ( - a l 0 * q p - 1 L * d i p ) - d a * ( L 9 * c a - l a * c i a ) ;solve(lstfeq1 ,eq2) , 1st (al G ,b9 )) ; 7
o u t  o u t ;
w r i t e  " o u t p u t  o u t 3 " ;  
a l G : = s o l n (1,1 );L 9 :=soln(1 ,2 ) ; write";end"; 
o n ‘nat; 
c u i t ;

OUTPUT OUT 35
Al0 := (((LLP - LLA)* H *M - ALFA*LLP*DA)*IC)/( U♦ALFA*((**DP «• DA)* h - ALF A * DP *DA ) )$
B9 := (((LLP - LLA)* K ♦ ALFA*DP*LLA)*IC)/(U*ALFA*( ( M *DP ♦ DA)* h - ALFA* DP*DA)>5
; en d$
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setuplocal (in=.out3/r) setuplocal (out = • ou tu/w/f b ) reduce »i! comment FILE ^comment CALCULATION OF ACNS;off echo; off nat; in in; on factor; on qcd; off exp; ia:=0; ip:=0; ic* *2:= -l ;
eg33:=ic*saMbS-la*ia)+ic*spMai0-lp*ip);tt3:=2*<l+nia/nip-Halta*nis)/(2*nip) ) ; eq3:=eq 33/tt3;
out out;write ’'output out u.” ; acns:=ws*niup*alt£/(sp*llp); write” ;end” ; 
on nat;
^ u i t ;

output out
ACNS := (<((LLA - LLP) *r* t*. * LA* A 1FA * LLP ) • SJ’ + < ( LLA - ALF A*LLA ) *SA ) * M U P  * M 1 J ) /  ( 4  * ( ( L * D I ♦ LA ) * V. -  DP*DA»ALFA )* (ALFA* NIS + 2 * N 1 1- * 2* NI A I * LLP * £F )::

L L T ) * K - FI*

;en d i
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se tupiocal se tupiccal recuce /ci ! coni men t commen t comment oft ecnc; cif nat; in in;

( in= « out!/r/rb)(out=.outS/w/fb )

FILE 5CA1CU LATI Cl« OF THL LI KITS 
YOU SKALL VALUES OF LP; Cl A AND FACTOK

on yc*G ; cn factor; cif exp;ia : = <-(<1-pp)*(pa** 2-1))/(<1-pc)M  qa* *2-1 )* <qa * *2-pa* ip : = (pp* *2-1 )/( (<3F * * 2-1 )*(cp**2-pp**2)) ; tt3: = (pp“l)*(l+pF + r‘ia*(l+pc)/nip+aiic*ni£/nip); eq33:=ic*sa*(b9-la*ia )+ic*sp*(c1tf-lp*ip); 
eq3 :=eq33/tt3 ;

F

*2 ) ) ) ;

q y  *2 : = upl ;‘̂c#*2;=ijci ; pp**2:=ppi; pa* * 2:=pa1 ; 
i c * *2:=ici ;sub(qpl=l +ep,qa1=l ♦ ( e p * d p / c a ) , p p 1 = 1 -*(ep*ap/niup) , pa 1 =1 M  ep * ni u p/n i l a ♦ct/niup) ,lp=ic*llp/(alfa*dp ),la = ic*iia/(clfa*oa),eq3).; 
eqb : = w£ ;
comment suD(icl=1#ep=Leta/(aiia**2*up),eqS) ; sub(ici=-i, e q 5 ); e q 6 j = w s ; r2 : =ap/aa; e 2 :=ni up/n iua ; c 2:=dp/niup;qp:=sqrt(i+ep); qa:=sqrtd + (r2*ep/2)) ; pp:=sq rt( l*(d2*ep/2) ) ; pa:=sqrt(1-'-(e2*d2 *ep / 2  ) ) ; a : = eq o * n i u p * a 1 i a/ (sp * 11 p ) ; cn exp;let ep**2=b; factor ep; n u m a ; = n u m ( a ) ;Gen a :=den(a );n2;=iterm(numa,ep);d2:=Iterm(dena,ep);nl : =nusia-n2;

g 1 : =cena-G 2;icen:=(1/ai)*(l-d2/di);proc:=numa*iden;sub (ep = ti, proc ) ;p r o g £■: = w s ;cn factor;off exp;il : = 1-proa/ans; 
f2:=(a2/dl>-(n2/n1); cut out;comment write ’'output out l> ; factor ep; lima:=proa; ans: = prcdb; i :=£2/ep;
w r i t e ” ; e n d *'; on nat; cu it ;
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o u t p u t  o u t  5 5
LIMA :=  ( ( ( ( ( ( ( ( ( **SP ♦ 3 * 5  A J * E P -  U*SA) * ( N I S ♦ ALFA 4 2»K1F 4 2 * M A )
•NIUP 4 2*EP * SP*N1P* LA ) *NI UA 4 ( MS*ALFA + 2*NIP 4 U
• N1 A) * MUP* EP* SF* DA)  *LLA -  2*( (KIS*ALFA + 4 * M P  4
2*NIA)*NIUA 4 2 * NIUF * NIA) * LLP * EF * 5F* DA ) * DP * DA 4
(2 * ( (N15 *ALFA 4 2 * M P  4 2 * i i i A ) * K l U P  4 i ,IP* DA ) * NIU A 4 <
HIS*ALFA 4 2 * hi  P * 4 *KIA) • KIUP*DA ) * DP"* 2 *LLA* EP*5 A

4 (5*LLA*EP -  4* LLA -  16*LLP*EP 4 3 *LLP) * ( K1S * ALF A 4 2 
• KI P  4 2* M  A )*NIUi i *MUP*SP*DA**2 ) *K * DP -  ( ( ( 4 * ( 2 * E P

-  1 ) * ( K15 * A L FA 4 2 * NI P 4 2 * NIA) * NIUP*SA 4 (
M S *  ALFA 4 4 * KIP 4 2*MA) *EP*SP*PA) *NIUA 4 2 
•NIUP* EP •SP*N1A*DA )* LLP -  4* (EF -  2 ) * ( M S * A L F A  4 2
• N I P  4 2*KIA ) *LLA*K1UA*MUP*SA)*DP*DA**2 -  ( ( ( ( K 1 S
•ALFA 4 4*1<1? 4 2* M  A) • DA 4 2*( MS*ALFA 4 2*
NIP + 2 • li I A ) * N1 U P ) * MU A 4 2* MUP * !1IA*DA > *LLP

-  2 * ( 2 * ( 2 * ( N I S  *A LFA 4 2 * NIP 4 2*NIA)*KIUP 4 NIP*DA)*
Kl UA 4 ( NIS* ALFA 4 2*1.11 4 4 * KIA ) *NIUP*DA ) * LLA ) * DP
*•2 * EP * SA*DA - 4 * (LI - 1) » ( N15*ALFA 4 2*i«’IP  + 2 * M A ) * L L P  
*NIUA*N1UP*SP*DA**3)  *h*ALFA 4 ( ( < KID * ALFA 4 4* NIP 4 2*
N IA ) *MUA 4 2*NIUP*MA)*LLP*EP*SF*DA -  (3*EP -  4 
) •  ( N IS*  ALFA 4 2 • 2t 1 1 4 2 • NIA) • LLA * HI UA* NI UP * SA ) *DP * *
2 * ALFA**2*DA**2 -  (2 * ( 2 * ( N I S *ALFA + 2 * M P  4 2*NIA) *NIUP

4 M1P * DA ) *N I  UA 4 ( M S  *ALF A 4 2*KIP 4 4 * M A ) * N I U P *
LA ) *DP** 3*LLA *£F* 5A* ALFA** 2* DA -  (2 • L*L'P * * 2 * LLA*NI UA*
NI UP*EP* M S *  ALFA 4 4 *h *DP * *2 * LLA * NIUA* MUP * LP * HIP 4 4* 
W*DP**2*LLA*N1UA*MUP*EP*MA 4 2 * h*DP** 2 * LLA* NIUA*EP*
M  P* DA 4 M » DP *• 2* LLA *K 1UP * EP • N IS * ALFA* DA 4 2*rt*DP**2*
LLA * KIUP * LP * NIP* DA 4 4 *K*DP** 2*LLA*NIUi* LP* NIA*DA -  K *
DP * * 2* L'LP* NI U A* i.P * 2.1 5* ALFA *D A -  4 • K* Dl * * 2* LLF * KIU A *EP*
NIP* DA -  2*f i*DP**2*LLP*NIUA*E]*KIA*DA -  2 * K * DP ** 2 * ILP *
NI UP*E1’*.:KI A* DA 4 S*L »DP*LLA*NIUA*NIUP*LF*MS*ALFA» DA
4 1 C*K*:DP*LLA*NIUA*MUP*rP* KIP* DA + IP * 15 * D P* LLA * NIU A *

NI UP*EP*.MA* DA -  4 *fc*DP*LLA* NIUA * MUP* M S *  ALFA*DA -  8*
M* DP*LLA-* NIL) A * NI U P * M P  * DA -  8 * K* DP* LLA*N IU A* NI UP * N1A *
LA -  6 *M * DL * LLP* M  UA * MUP * El * N1S * ALFA *DA -  16*«*DP»LLF  
•N I  UA* NIUP* EP * 1. IP * DA -  16* M* D P *LLF* NIUA * M  UP *EP* N IA* DA4 4*M*DP*LLP*NIUA»1«IUP*N15*ALFA* EA 4 fc* t  • DP* LLF * KlU A *
MUP*KIP*DA 4 8»K*DP*LLP*KIUA*NIUP*N1A*DA 4 4*DP*LLA*  
NIUA*NIUP*LP*NIS*ALFA*DA 4 8 *DP* 1LA*NIUA*MUP* EP* NIP*
LA 4 8*DP*LLA*MUA*MUP*LP*MA*DA 4 2 • DP *LLA * HIO A » EP *
KIP*DA**2 4 DF*LLA*MUP*EP*KIS*ALFA*DA**2 4 2*DP*LLA*  
N1UP*EP*:MP*DA**2 4 4* DF*LLA*MUP»EP*MA*DA**2 -  2*D1*
LL P * KIU A’* KI U P * EF * M  S * A LFA * DA -  U * EP* LLI * M  UA * NI UP * EP*
NIP *DA - 4* DP *LLP * M  UA *hlU P* EP * N 1A*DA - M  * LLP*NIUA*EF 
*N I S  *ALF A * DA * *2 -  4 * IF *1LP *KI U A* L F * NIT * DA * * 2 -  .2* EP* 
LLP*MUA*EP*MA*DA**2  -  2* DP * LLP * MUF *SP * I. IA • DA* * 2 4 
1LA * NI U A * M U P * EF* h IS * A LFA* DA * * 2 4 2 * LLA • NI UA * N IUP * £P*
NI P*DA* * 2 4 2*LLA*NIUft*MUP»EP»NIA»DA**2 - 4*LLA*NIUA*
NI UP *NIS*ALFA *DA**2 -  8*LLA» NI UA * NIUP* NI P * DA * • 2. -  6* 
LLA*H1UA*MUP*N1A*DA** 2 -  4»LLP* NIUA*MUP* EP*NIS* ALFA*
DA * • 2 -  6*LLP*NIUA*KIbP*tr* l . IP*DA**2  -  8*LLP*MUA* KIUP 
•EP*KIA*DA* *2 4 4*LLP*NIUA *MUP* NI5*ALFA*DA**2 4 fc* LLP 
* N1 U A * NI U P • I<1 F * DA • *2 4 6* L LF * NIU A * NIU P* KIA * D A * • 2 ) • IM *
SP 4 SA ) * h * * 2 4 4 * ( 2 *1 P -  1 )*  ( HI S*  A LFA 4 2* NIP 4 2*MA  
) * LP*LLP * NI U A *'1IUP * SI • ALFA * * 2 * LA * * 3 ) * M P ) / ( 1 6 *  (H*M»DP

4 H *LA -  LP*ALFA*L'A ) *  * 2*  ( M S *  A LFA + 2* UlY ♦ 2 * M  A ) * * 2* LLT*
M  UA*SP* L A )S

ANS := (((ri*SP 4 S A )*(LLA - LLP) *H - LP*LLA*SA*ALFA 4 LLF *SP* ALFA* L A )* KIU P * KIP ) / ( 4* ( (D *LT 4 D A )*H - DP*ALFA*DA)* (NI £ *ALFA 4 2* NIP 4 2 * h i A )* LLP *S P )S
F := (((((((NIS*ALFA 4 4*NIP 4 2*HIA)*DA 4 2*(NIS*ALFA 4 2*NIF 4 2* NIA)*N1U?)*NIUA 4 <KIS*ALFA 4 2*NIP 4 4 ♦NI A )*NIUP* DA)
•LP 4 6* ( M S  * ALFA 4 2* li I P 4 2 * NI A ) *KIUA * HI UP * DA ) * M *DP 4 ( (
<N1S*ALFA 4 4 * M P  4 2 * M A ) * DA 4 4 • ( NIL*ALFA 4 2*KIF4 2 * N1A ) * KIU P ) * it I U A * ( NI S * A LF A + 2 * M P  4 4*NIA)*
NI UP*DA ) * DP*DA 4 i**(NlS*ALFA 4 2*NI F 4 2 *MA ) * NIUA *NI UP*DA * * 2 ) * h - ( ( ( N15 * A L F A 4 u*NIF 4 2 * M A ) * D A  4 u*(NIS*ALFA 4 2* NIP 4 2 * i« IA ) * M  UI ) * NIU A 4 ( M S *  ALFA 4 2* NIP 4 4*
NIA) *  KIUP* DA) *DP* * 2* ALFA * DA -  8 * ( M S * aLFA 4 2*KIT 4 2*
KI A ) * DP * M  UA * NIUP* ALFA * LA * * 2 ) • ( ( 1* *SP 4 SA)*(LLA -  LLP)*H- DP»LLA*SA*ALFA 4 LLP*SP*ALFA * D A ) 4 ((((2*NIUA 4.DA)*LLF •NIUP - LLA* NIU A * D A )*D P - 3*LLA* N I U A * M U P * D A )*(K *SP

♦ SA)*H -  ( ( 4 • NIU A 4 DA) • LLP * SP -  5 * LLA*NIUA*SA)> DP *N1UP*ALFA*LA 4 Dp * * 2 * LLA* hIUA * SA *ALFA * D A )*((M * DP 4 D A )* H
“ DP* ALf A*DA ) * (MS*ALFA ■* 2 * M P  * 2 *M A ) ) /  ( 4 • ( ( M* DP 4 DF)

*H -  D1 *ALFA *LA) * ( (r.*SP 4 SA. )*(Ll / \  -  LLP)*H -  Dl* LLA* SA* ALFA
* LLP * S P * /i L F A. * LA ) * ( N i  5 * A L FA* -» 2 * M T  * 2 * N IA ) • M  U A *N IU ? * P A ) $
t i f i d i
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APPENDIX B

LIMITING BEHAVIOUR OF THE CHARACTERISTIC EQUATION

B.l

form

Small values of e

The radicals in the characteristic equation, Equation
ii----------  M
\ 1 +  x , which can be expanded in binomial series

(4.51), have the 

as:

(1 -  x)n =  l (B.l)

This series converges for x < 1 when n > 0 and neglecting terms of 

second and higher order, expansions of p and q are:

Pp = 1 + d2 - j - pa = 1 +  e2 d2 ~y ~ (B.2)

• qP = 1 + ~ T da = 1 + r2 -g - (B.3)

The numerator and denominator of Equation (4.51), after inserting

Equations (B.2 ) and (B.3) become of the form:

NUMA = Ni + N2 6 + N3 e2 (B.5)

D E N A  = D i  -f D 2  ( +  D 3  c2 + ...+ Ds e7(B.6)

The inverse of Equation (B.6) may be expanded for small values of e:

1 _  1DENA “ “DI ----- ( D2 c +  D3 e2 ) (B.7)
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Multiplying Equation (B.6 ) by Equation (B.7) and neglecting terms of 

second and higher order:

*

NUMA x 1 _  Nj
DENA ”  ~ U [ 1 - (

D2 _ N2

nr nt
(B.8)

or

LIMA ~ DENA _  ACNS ( 1 ” f £ ) (B.9)

where AC^g is given by Equation (4.54) and

f = D 2 n 2 
D 7  N T

(B.10)

Equations (B.5) to (B.10) are fully expanded in Output "OUT 5" in 

Chapter 5.

B.2 Large values of c

For large values of t the radicals in the characteristic equation can be 

rearranged as:

Pp =  d Je \ 1 +  (B-H)

pa = e d JT \ 1 + —ftrgFi (B.12)

qp = JT j 1 + (B.13)

qa = r JT \ 1 + 1
r7? (B.14)
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and their expansions, after neglecting terms of higher order than one, are:

pP = d J7 [ 1 +

pa =  e d JT [ 1 +  - S e W  ]

‘Ip =  [ 1 +  4 ?  _

Qa = r Jf [ 1 +  -3757"

(B.15)

(B.16)

(B.17)

(B.18)

A similar manipulation of terms as previously described for small 

values of e, was performed for the determination of the limits of A and B 

when c co. Unfortunately, the number of terms involved is so large that 

the final algebraic values are impossible to obtain with the means available 

for use.
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LIST OF SYMBOLS

The nomenclature of the computer programs is presented here in bold 

and capital letters or normal if it is the same as in the main text.

A = (vP fip/Cp LP) a2, dimensionless wave number

AC = dimensionless wave number given by Equation (4.51)

An =  constant of integration

B = (j'p/Cp Lp) A dimensionless growth constant

BC = dimensionless growth constant given by Equation (4.53)

Bn = constant of integration

C = concentration, Kmole nr3

D = diffusivity, m2 s*1

d = \ Dp/vp, dimensionless 

DEN = denominator 

DHA = H'a

DHP = H ' p  

DIA = I'a

DIP = I'p

e = \ Vp/va , dimensionless

f =  function defined in Equation (4.60), dimensionless 

f( ) = function of the variable in brackets 

G = concentration perturbation, Kg m*3 

H = X part of the concentration perturbation, Kg m-3

i c  =  i =
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♦

ki = forward rate of reaction constant, Kmole-1 m3 s' 1

k'i =  pseudo-forward rate of reaction constant, s*1

k2 =  reverse rate of reaction constant, s' 1

LL = L = undisturbed concentration gradient, Kg m' 4

L = 1 =  (i/a  D) L, Kg m' 5 s

m =  (ki/k2) Cg, dimensionless

NUM = numerator

p = \ 1 +  (P/q2u) , dimensionless 

P = pressure, Kg nr1 s' 2

q = \ 1 + (/3/a2D) , dimensionless

r = -I Dp/D a , dimensionless 

t = time coordinate, s

U,V,W = X,Y and Z components of velocity, ms' 1 

X,Y,Z = spatial coordinates, m 

Z = ■ dimensionless

Greek letters

a = ALFA = wave number, m*1 

/? = BETA = growth constant, s*1 

0r = amplification factor for the disturbance 

Pi =  circular frequency

£ = S = concentration coefficient of interfacial tension, m3s-2 

k =  dilational surface viscosity, ms-1 

A = 27r/a = wavelength, m 

H =  NI = ordinary viscosity, Kg m 'V 1
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Us = NIS = Y + k, composite surface viscosity, Kg s' 1

v =  NIU = kinematic viscosity, m2s_1

c =  EP =  P/a1 DP ,dimensionless

p =  density, Kg m-3

ro =  equilibrium interfacial tension, Kg s

rXy = y component of the fluid shear stress, Kg m^s-2

7yy = y component of the longitudinal surface stress, Kg s’ 2

(p =  x part of the stream function, m2s-1

ip =  stream function, m2s_1

Y = surface shear viscosity, m s_1

Subscripts

a = phase A (x < 0)

D = dominant unstable disturbance 

i = imaginary part of a complex variable 

N = neutrally stable disturbance 

p = phase P (x > 0) 

r =  real part of a complex variable 

S = stationary disturbance

Superscripts

0 =  value in the undisturbed state 

primes = differentiation sign
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