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Abstract—A distributed binary hypothesis testing problem,
in which multiple observers transmit their observations to a
detector over noisy channels, is studied. Together with its own
observations, the goal of the detector is to decide between
two hypotheses for the joint distribution of the data. Single-
letter upper and lower bounds on the optimal type 2 error
exponent (T2-EE), when the type 1 error probability vanishes
with the block-length are obtained. These bounds coincide and
characterize the optimal T2-EE when only a single helper is
involved. Our result shows that the optimal T2-EE depends on
the marginal distributions of the data and the channels rather
than their joint distribution. However, an operational separation
between HT and channel coding does not hold, and the optimal
T2-EE is achieved by generating channel inputs correlated with
observed data.

I. INTRODUCTION

Statistical inference and learning have assumed prime im-
portance in the fields of machine learning, data analytics and
communications networks. An important problem arising in
these scenarios is that of discerning the statistics of available
data. This can be formulated as a hypothesis testing (HT)
problem, in which the objective is to identify the underlying
probability distribution of the data samples from among a
set of candidate distributions. With the increasing adoption
of distributed sensing technologies and the Internet of things
(IoT) paradigm, the data is often collected from multiple
remote locations and communicated to the detector over noisy
communication links. This naturally leads to the problem
of distributed statistical inference over noisy communication
channels.

We study the problem of distributed binary HT over noisy
channels depicted in Fig. 1. The detector is interested in
determining whether the data (U1, . . . , UL, V, Z) is distributed
according to the joint distribution PU1...ULV Z or QU1...ULV Z

corresponding to hypotheses H0 and H1, respectively. Each
encoder l, l = 1, . . . , L, observes k samples independent
and identically distributed (i.i.d) according to PUl , and com-
municates its observation to the detector by n uses of the
discrete memoryless channel (DMC), characterized by the
conditional distribution PYl|Xl . The detector decides between
the two hypotheses H0 and H1 based on the channel outputs
Y n1 , . . . , Y

n
L as well as its own observations V k and Zk. Our

goal is to characterize the optimal type 2 error exponent (T2-
EE) as a function of the bandwidth ratio, τ = n

k , under
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Fig. 1: Illustration of the system model.

the constraint that the type 1 error probability is below a
specified value. We will focus mostly on the special case
in which PU1...ULV Z = PU1...ULV |ZPZ and QU1...ULV Z =
PU1...UL|ZPV |ZPZ , known as the testing against conditional
independence (TACI) problem.

Distributed statistical inference under communication con-
straints was originally formulated by Berger in [1]. A simpli-
fied version is considered in [2], which studies binary HT for
the model in Fig. 1 when L = 1, Z is absent, and the channel
between the encoder and the detector is a noise-free channel
of rate R. Ahlswede and Csiszár establish a single-letter
characterization of the optimal T2-EE for the testing against
independence (TAI) problem (including a strong converse),
along with single-letter lower bounds for the general HT
problem in [2]. For the same model, [3] provides a tighter
lower bound on the T2-EE, which coincides with that of [2]
for the TAI problem. An improved lower bound for the same
problem is obtained in [4] by introducing “binning” at the
encoder. HT for the model in Fig. 1 with noise free rate-
limited channels is studied in [5], and the authors establish
the optimality of binning for the TACI problem. A single-letter
characterization of the optimal T2-EE for the multi-terminal
TAI problem is obtained in [6] under a certain Markovian
condition. In a slightly different setting with two decision
centers, the optimal T2-EE for a three terminal dependence
testing problem is characterized in [7]. The optimal T2-EE,
when multiple interactions between the encoder and detector
are allowed, is studied in [8],[9]. We remark here that all the
above works consider rate-limited bit-pipes from the observers
to the detector, and to the best of our knowledge, HT over
noisy channels has not been studied previously.

Notations: The support of a random variable (r.v.) is de-
noted by calligraphic letters, e.g., X for r.v. X . The cardinality



of X is denoted by |X |. The joint distribution of r.v.’s X
and Y is denoted by PXY and its marginals by PX and PY .
X − Y −Z denotes that X, Y, Z form a Markov chain. For
m ∈ Z+, Xm denotes the sequence X1, . . . , Xm, while Xm

l

denotes Xl,1, . . . , Xl,m associated with observer l. The group
of m r.v’s Xl,(j−1)m+1, . . . , Xl,jm is denoted by Xm

l (j),
and the infinite sequence Xm

l (1), Xm
l (2), . . . is denoted by

{Xm
l (j)}j∈Z+ . Similarly, for a subset S = {l1, . . . , ls}

of observers,
{
Xm
l1
, . . . , Xm

ls

}
,
{
Xm
l1

(j), . . . , Xm
ls

(j)
}

and{{
Xm
l1

(j)
}
j∈Z+ , . . . ,

{
Xm
ls

(j)
}
j∈Z+

}
are denoted by Xm

S ,
Xm
S (j) and {Xm

S (j)}j∈Z+ , respectively. Following the nota-
tion in [10], TP and Tm[X]δ

(or Tmδ when there is no ambiguity)
denote the set of sequences of type P and the set of PX−
typical sequences of length m, respectively. D(P ||Q) denotes
the Kullback-Leibler (KL) divergence between distributions P
and Q [10]. All logarithms are to the base 2. 1 denotes the
indicator function.

II. SYSTEM MODEL

All the r.v.’s considered henceforth are discrete with finite
support. Let k, n ∈ Z+ be arbitrary. Let L = {1, . . . , L}
denote the set of observers which communicate to the detector
over orthogonal noisy channels, as shown in Fig. 1. For l ∈ L,
encoder l observes Ukl and transmits Xn

l = f
(k,n)
l (Ukl ),

where f
(k,n)
l : Ukl → Xnl is a stochastic mapping. Let

τ , n
k denote the bandwidth ratio. The channel output

Y nL is given by the probability law PY nL |XnL(ynL|xnL) =∏L
l=1

∏n
j=1 PYl|Xl(yl,j |xl,j), i.e., the channels between the

observers and the detector are orthogonal and discrete mem-
oryless. Depending on the received symbols Y nL and its own
observations (V k, Zk), the detector makes a decision between
the two hypotheses H0 : PULV Z or H1 : QULV Z according
to the decision rule g(k,n) : YnL × Vk × Zk → {0, 1}
given by g(k,n)(ynL, v

k, zk) = 1
(
(ynL, v

k, zk) ∈ Ac
)
, where

A denotes the acceptance region for H0. It is assumed that
the r.v’s UL, V and Z have the same marginal distributions
under both H0 and H1, and that QULV Z(uL, v, z) > 0 for all
(uL, v, z) ∈ UL×V×Z . In this paper, we focus mostly on the
special case when H0 : PULV |ZPZ and H1 : PUL|ZPV |ZPZ ,
i.e., TACI between V and UL conditioned on Z.

Let ᾱ
(
k, n, f

(k,n)
1 , . . . , f

(k,n)
L , g(k,n)

)
, PY nL V kZk(Ac)

and β̄
(
k, n, f

(k,n)
1 , . . . , f

(k,n)
L , g(k,n)

)
, QY nL V kZk(A) de-

note the type 1 and type 2 error probabilities for the encoding
function f

(k,n)
1 , . . . , f

(k,n)
L and decision rule g(k,n), respec-

tively. Define

β′
(
k, n, f

(k,n)
1 , . . . , f

(k,n)
L , ε

)
,

inf
g(k,n)

β̄
(
k, n, f

(k,n)
1 , . . . , f

(k,n)
L , g(k,n)

)
(1)

such that

ᾱ
(
k, n, f

(k,n)
1 , . . . , f

(k,n)
L , g(k,n)

)
≤ ε, (2a)

and
(Zk, V k)− Ukl −Xn

l − Y nl , l ∈ L, (2b)

where Xn
l = f

(k,n)
l (Ukl ) and

β(k, τ, ε) , inf
f
(k,n)
1 ,...,f

(k,n)
L

n≤τk

β′
(
k, n, f

(k,n)
1 , . . . , f

(k,n)
L , ε

)
.

(3)
Note that β(k, τ, ε) is a non-increasing function of k and ε.
A T2-EE κ′ is said to be (τ, ε) achievable if there exists a
sequence of integers k, encoding functions f (k,nk)l : Uk →
Xnk , l ∈ L, and decoding functions g(k,nk) such that nk ≤
τk, ∀ k, and for any δ > 0,

lim sup
k→∞

log (β(k, τ, ε))

k
≤ −(κ′ − δ). (4)

Let κ(τ, ε) , sup{κ′ : κ′ is (τ, ε) achievable}.
For k ∈ Z+, we define

θ(k, τ) , sup
f
(k,n)
1 ,...,f

(k,n)
L

n≤τk

D
(
PY nL V kZk ||QY nL V kZk

)
k

, (5)

and

θ(τ) , sup
k
θ(k, τ). (6)

In this paper, we obtain single-letter upper and lower bounds
on κ(τ, ε) for the TACI problem. It is shown that the two
bounds coincide when L = 1. Our approach is similar to that
in [2], where we first obtain bounds for κ(τ, ε) in terms of
θ, and then show that θ has a single-letter characterization
in terms of information theoretic quantities. We establish
this characterization by considering the joint source-channel
coding (JSCC) problem with noisy helpers. The next lemma
obtains the bounds for κ(τ, ε) in terms of θ.

Lemma 1. For any bandwidth ratio τ > 0, we have

(i) lim sup
k→∞

log(β(k,τ,ε))
k ≤ −θ(τ), ∀ ε ∈ (0, 1).

(ii) lim
ε→0

lim inf
k→∞

log(β(k,τ,ε))
k ≥ −θ(τ).

Proof: The proof is similar to that of Theorem 1 in
[2]. We prove (i) here, and omit the proof of (ii) due to
space limitations. Let k ∈ Z+ and ε̃ > 0 be arbitrary, and
ñk, f̃ (k,ñk)l , l ∈ L, and Ỹ ñkL be the channel block length,
encoding functions and channel outputs respectively, such that
kθ(k, τ)−D

(
P
Y
ñk
L V kZk

||Q
Y
ñk
L V kZk

)
< kε̃ . For each l ∈ L,{

Ỹ ñkl (j)
}
j∈Z+

form an infinite sequence of i.i.d. r.v.’s indexed

by j. Hence, by the application of Stein’s Lemma [2] to the
sequences

{
Ỹ ñkL (j), V k(j), Zk(j)

}
j∈Z+

, we have

lim sup
j→∞

log (β(kj, τ, ε))

kj
≤ −(θ(k, τ)− ε̃). (7)

For m ≥ kj, β(m, τ, ε) ≤ β(kj, τ, ε). Hence,

lim sup
m→∞

log (β(m, τ, ε))

m
≤ lim sup

j→∞

log (β(kj, τ, ε))

kj



≤ −(θ(k, τ)− ε̃).

Note that the left hand side (L.H.S) of the above equation does
not depend on k. Taking supremum with respect to k on both
sides of the equation and noting that ε̃ is arbitrary, proves (i).

Remark 2. Part (ii) of Lemma 1 is known as the weak
converse for the HT problem in the literature, since it holds
only when type 1 error probability tends to zero. Also, (i) and
(ii) together imply that θ(τ) is the optimal T2-EE as ε→ 0,
i.e., limε→0 κ(τ, ε) = θ(τ).

Part (i) of Lemma 1 proves the achievability of the T2-
EE θ(τ) using Stein’s Lemma. In Appendix A, we show an
explicit proof of the achievability by computing the type 1
and type 2 errors for a block-memoryless stochastic encoding
function at the observer and a joint typicality detector.

Note that for the TACI problem, the KL-divergence becomes
mutual information, and we have

θ(τ) = sup
f
(k,n)
1 ,...,f

(k,n)
L

k,n≤τk

I(V k;Y nL |Zk)

k

such that Eqn.(2b) is satisfied.
Although Lemma 1 implies that θ(τ) is an achievable T2-

EE, it is in general not computable as it is characterized in
terms of a multi-letter expression. However, as we will show
below, for the TACI problem, single-letter bounds for θ(τ) can
be obtained. By the memoryless property of the sequences V k

and Zk, we can write

θ(τ) = H(V |Z)− inf
f
(k,n)
1 ,...,f

(k,n)
L

k,n≤τk

H(V k|Y nL , Zk)

k
(8)

such that Eqn. (2b) is satisfied.
In the next section, we introduce the L−helper JSCC

problem and show that the multi-letter characterization of this
problem coincides with obtaining the infimum in (8). The
computable characterization of the lower and upper bounds
for (8) then follows from the single-letter characterization of
the L−helper JSCC problem.

III. L−HELPER JSCC PROBLEM

Consider the model shown in Fig. 2 where there are L+ 2
correlated discrete memoryless sources (UL, V, Z) i.i.d. with
joint distribution PULV Z . For 1 ≤ l ≤ L, encoder l observes
the sequence Ukl and transmits Xn

l = f
(k,n)
l (Ukl ) over the

corresponding noisy channel, where f
(k,n)
l : Ukl → Xnl ,

whereas encoder L+ 1 observes V k, and outputs fkL+1(V k),
fkL+1 : Vk →M = {1, . . . , 2kR}. The decoder has access to
side-information Zk, receives fkL+1(V k) error-free, and also
observes Y nL , the output of the DMCs PYl|Xl , l ∈ L. The
output of the decoder is given by the mapping g(k,n) : YnL ×
M× Zk → V̂k. The decoder is interested in reconstructing
V k losslessly. For a given bandwidth ratio τ , a rate R is said
to be achievable for the L−helper JSCC problem if for every
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Fig. 2: L−helper JSCC problem.

λ ∈ (0, 1], there exist a sequence of numbers δk ≥ 0 with
limk→∞ δk = 0, encoders f

(k,nk)
l (·), l ∈ L, fkL+1(·) and

decoder g(k,nk)(·, ·, ·), such that nk ≤ τk and

Pr
{
g(k,nk)

(
fkL+1(V k), Y nkL , Zk

)
= V k

}
≥ 1− λ,

and
log(|M|)

k
≤ R+ δk.

The infimum of all achievable rates R for the L−helper JSCC
problem with bandwidth ratio τ is denoted by R(τ).

Next, we show that the problem of obtaining the infimum
in (8) coincides with the multi-letter characterization of R(τ)
for the L−helper JSCC problem. We define

Rk , inf
f
(k,n)
1 ,...,f

(k,n)
L

n≤τk

H(V k|Y nL , Zk)

k
, (9)

s.t (Zk, V k)− Ukl −Xn
l − Y nl , l ∈ L.

Theorem 3. For the L−helper JSCC problem,

R(τ) = inf
k
Rk.

Proof: The proof is given in Appendix B.
Having shown the equivalence between the multi-letter

characterizations of θ(τ) for the TACI problem over noisy
channels and R(τ) for the L−helper JSCC problem, our next
step is to obtain computable single-letter lower and upper
bounds on R(τ), which can then be used to obtain bounds on
θ(τ). For this purpose, we use the source-channel separation
theorem [11, Th. 2.4] for orthogonal multiple access channels.
The theorem states that all achievable average distortion-cost
tuples in a multi-terminal JSCC (MT-JSCC) problem over an
orthogonal multiple access channel (MAC) can be obtained
by the intersection of the rate-distortion region and the MAC
region. We need a slight generalization of this result when
there is side information Z at the decoder, which can be proved
similarly to [11]. Note that the L−helper JSCC problem is a
special case of the MT-JSCC problem with L + 1 correlated
sources PULV and side information Z available at the decoder,
where the objective is to reconstruct V losslessly. Although
the above theorem proves that separation holds, a single-
letter expression is not available in general for the multi-
terminal rate distortion problem [12]. However, single-letter



inner and outer bounds have been given in [12], which enable
us to obtain single-letter upper and lower bounds on R(τ) as
follows.

Theorem 4. For S ⊆ L, let CS ,
∑
l∈S Cl, where Cl ,

maxPXl I(Xl;Yl) denotes the capacity of the channel PYl|Xl .
For the L−helper JSCC problem with bandwidth ratio τ ,
define

Ri(τ) , inf
WL

max
S⊆L

FS , (10)

where

FS = H(V |WSc , Z) + I(US ;WS |WSc , V, Z)− τ
∑
l∈S

Cl

for some auxiliary r.v.’s Wl, l ∈ L, such that

(Z, V, Ulc , Wlc)− Ul −Wl, (11)

|Wl| ≤ |Ul|+ 4, and ∀ S ⊆ L,

I(UL;WS |V,WSc , Z) ≤ τCS . (12)

Similarly, let Ro(τ) denote the right hand side (R.H.S) of (10),
when the auxiliary r.v.’s Wl, l ∈ L satisfy |Wl| ≤ |Ul| + 4,
Eqn.(12) and

(V,Ulc , Z)− Ul −Wl. (13)

Then,

Ro(τ) ≤ R(τ) ≤ Ri(τ), and (14)

H(V |Z)−Ri(τ) ≤ θ(τ) ≤ H(V |Z)−Ro(τ). (15)

Proof: From the source-channel separation theorem, an
upper bound on R(τ) can be obtained by the intersection of
the Berger-Tung (BT) inner bound [12, Th. 12.1] with the
capacity region (C1, . . . , CL, CL+1), where CL+1 is the rate
available over the noiseless link from the encoder of source
V to the decoder. Writing the BT inner bound 1 explicitly, we
obtain that for all S ⊆ L (including the null-set),

I(US ;WS |V,WSc , Z) ≤
∑
l∈S

τCl,

I(US ;WS |V,WSc , Z) +H(V |WSc , Z) ≤
∑
l∈S

τCl + CL+1,

where the auxiliary r.v.’s WL satisfy (11) and |Wl| ≤ |Ul|+4.
Taking the infimum of CL+1 over all such WL and denoting it
by Ri(τ), we obtain the second inequality in (14). The other
direction in (14) is obtained similarly by using the BT outer
bound [12, Th. 12.2]. Since R(τ) is equal to the infimum in
(8), substituting (14) in (8) proves (15).

The BT inner bound is tight for the two terminal case,
when one of the distortion requirements is zero (lossless) [12,
Ch.12]. Thus, we have the following result (for convenience,
we drop the index 1 from the associated variables).

1Ri(τ) can be improved by introducing a time sharing r.v. T (independent
of all the other r.v.’s) in the BT inner bound, but it is omitted here for
simplicity.

Lemma 5. For the TACI problem with L = 1 and bandwidth
ratio τ ,

θ(τ) = sup
W

I(V ;W |Z) (16)

such that I(U ;W |Z) ≤ τC, (17)
(Z, V )− U −W, |W| ≤ |U|+ 4. (18)

Proof: Note that the Markov chain conditions in (11) and
(13) are identical for L = 1. Hence,

Ri(τ) = Ro(τ) = R(τ). (19)

Using the BT inner bound in [12, Ch.12], we obtain R(τ) as
the infimum of R′ such that

H(V |Z,W ) ≤ R′, (20)
I(U ;W |V,Z) ≤ τC, (21)

H(V |Z,W ) + I(U ;W |Z) ≤ τC +R′ (22)

for some auxiliary r.v. W satisfying (18). Hence,

R(τ) = inf
W

max
(
H(V |W,Z), H(V |W,Z)

+ I(U ;W |Z)− τC
)
, (23)

such that (18) and (21) hold. We next prove that (23) can be
simplified as

R(τ) = inf
W
H(V |Z,W ) (24)

such that (17) and (18) are satisfied. This is done by showing
that, for every r.v. W for which I(U ;W |Z) > τC, there
exists a r.v. W̄ such that I(U ; W̄ |Z) = τC, H(V |W̄ , Z) ≤
H(V |W,Z)+I(U ;W |Z)−τC and (18) and (21) are satisfied
with W replaced by W̄ . Setting

W̄ =

{
W, with probability 1-p,
constant, with probability p,

suffices, where we choose p such that I(U ; W̄ |Z) = τC. The
details will be presented in a longer version of this paper. Eqn.
(16) now follows from (15), (19) and (24).

Remark 6. We note here that the single-letter T2-EE char-
acterization in Lemma 5 exhibits a separation between the
distributions of the data sources U, V, Z and the channel
distribution PY |X . Together with the fact that the optimal R(τ)
in the L−helper JSCC problem is achieved by separate source
and channel coding, one might be inclined to assume that θ(τ)
for the TACI problem over noisy channels can also be achieved
by a communication scheme that performs independent HT
and channel coding, and the optimal T2-EE can be obtained
by simply replacing the rate constraints in the TACI T2-EE
expressions in [5] with the corresponding channel capacity
values. Although such a separate coding and decision scheme
is attractive, the T2-EE analysis would involve a tradeoff
between two competing error exponents, one being the T2-
EE assuming that the channel code can be decoded without
an error, and the other being the reliability function Er of the
channel PY |X [10], and the corresponding T2-EE does not



necessarily meet the optimal value obtained from Lemma 5.

IV. CONCLUSIONS

We have studied the T2-EE for the distributed HT problem
over orthogonal noisy channels with side information available
at the detector. For the special case of TACI, single-letter
upper and lower bounds are obtained for the T2-EE, which
are shown to be tight when there is a single observer in the
system. It is interesting to note that the reliability function
of the channel does not play a role in the T2-EE, and a
strict operational separation between HT and channel coding
does not apply in general, even though the optimal T2-EE
can be evaluated using the marginal distributions of the data
sources and the channels, rather than their joint distributions.
Obtaining single-letter bounds for the general HT problem,
and analyzing the error exponents in the Chernoff regime are
some of the interesting problems for future research.

APPENDIX A
T2-EE USING JOINT TYPICALITY DETECTOR

Here, we provide the proof for the case L = 1. For given ar-
bitrary positive integers k and n such that n ≤ kτ , fix f (k,n)1 =
PXn1 |Uk1 . For any integer j and sequence ukj1 , the observer
transmits Xnj

1 = f
(kj,nj)
1 (ukj1 ) generated i.i.d. according to∏j

j′=1 PXn1 |Uk1 =uk1 (j
′). The detector declares H0 : PU1V Z if(

Y nj1 , V kj , Zkj
)
∈ T j

[Ỹ n1 Ṽ
kZ̃k]δj

(here δj → 0 as j → ∞)

where (Ỹ n1 , Ũ
k
1 , Ṽ

k, Z̃k) ∼ PY n1 |Uk1 P
⊗
k

U1V Z
and H1 : QU1V Z

otherwise. To simplify the exposition, we denote (Y n1 , V
k, Zk)

and T j
[Ỹ n1 Ṽ

kZ̃k]δj
by Wk,n and T j

[W̃k,n]δj
, respectively. By the

Markov lemma [12], type 1 error probability tends to zero as
j →∞. The type 2 error probability is bounded by

β′
(
kj, nj, f

(kj,nj)
1 , ε

)
≤ QY nj1 V kjZkj

(
T j
[W̃k,n]δj

)
≤

∑
P̃∈T j

[W̃k,n]δj

∑
wjk,n∈TP̃

QW j
k,n

(wjk,n)

(a)
=

∑
P̃∈T j

[W̃k,n]δj

∑
wjk,n∈TP̃

2−j(H(P̃ )+D(P̃ ||QWk,n))

(b)
=

∑
P̃∈T j

[W̃k,n]δj

2−jD(P̃ ||QWk,n) (c)

≤ (j + 1)|Wk,n|2−jBk,n(j)

where

Bk,n(j) , min
P̃∈T j

[W̃k,n]δj

D(P̃ ||QWk,n
),

and (a), (b) and (c) follow from Lemmas 2.3, 2.6 and 2.2 in
[10], respectively. Hence,

log
(
β′
(
kj, nj, f

(kj,nj)
1 , ε

))
kj

≤ −Bk,n(j)

k
+ δ′k,n(j),

where δ′k,n(j) , |Wk,n| log(j+1)
kj and |Wk,n| = |Y|n|V|k|Z|k.

Note that for any k and n, δ′k,n(j) → 0 as j → ∞. Also,

since δj is chosen such that it tends to 0 as j → ∞,
Bk,n(j) converges to D(PWk,n

||QWk,n
) by the continuity of

D(P̃ ||QWk,n
) in P̃ for fixed QWk,n

. Since k, n and f (k,n)1 are
arbitrary, it follows from (4) and (6) that θ(τ) is an achievable
T2-EE for any upper bound ε on the type 1 error probability.
It is easy to see that this scheme can be generalized to L > 1.

APPENDIX B
PROOF OF THEOREM 3

For the achievability part, consider the following scheme.
Encoding: Fix k, n ∈ Z+ and PXnl |Ukl at encoder l,

l ∈ L. For j ∈ Z+, upon observing ukjl , encoder l

transmits Xnj
l = f

(kj,nj)
l (Ukjl ) generated i.i.d. according

to
∏j
j′=1 PXnl |Ukl =ukl (j′). Encoder L + 1 performs uniform

random binning on V k, i.e., fkjL+1 : Vkj → M =
{1, 2, · · · , 2kjR}. By uniform random binning, we mean that
fkjL+1(V kj) = m, where m is selected uniformly at random
from the set M.

Decoding: Let M denote the received bin index, and
δ > 0 be an arbitrary number. If there exists a
unique sequence V̂ kj such that fkjL+1(V̂ kj) = M and
(V̂ kj , Y njL , Zkj) ∈ T j

[V kY nL Z
k]δ

, then the decoder outputs

g(kj,nj)(M,Y njL , Zkj) = V̂ kj . Else, an error is declared.
It can be shown that the probability of decoding error tends

to 0 as j → ∞, if R > H(V k|Y nL , Zk) + δ. Details will be
presented in a longer version, along with the converse proof.
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