
VIRTUAL SIGNED EULER CHARACTERISTICS

YUNFENG JIANG AND RICHARD P THOMAS

Abstract. Roughly speaking, to any space M with perfect obstruc-
tion theory we associate a space N with symmetric perfect obstruction
theory. It is a cone over M given by the dual of the obstruction sheaf
of M , and contains M as its zero section. It is locally the critical locus
of a function.

More precisely, in the language of derived algebraic geometry, to any
quasi-smooth space M we associate its (−1)-shifted cotangent bundle N .

By localising from N to its C∗-fixed locus M this gives five notions
of virtual signed Euler characteristic of M :
(1) The Ciocan-Fontanine-Kapranov/Fantechi-Göttsche signed virtual

Euler characteristic of M defined using its own obstruction theory,
(2) Graber-Pandharipande’s virtual Atiyah-Bott localisation of the

virtual cycle of N to M ,
(3) Behrend’s Kai-weighted Euler characteristic localisation of the vir-

tual cycle of N to M ,
(4) Kiem-Li’s cosection localisation of the virtual cycle of N to M ,
(5) (−1)vd times by the topological Euler characteristic of M .

Our main result is that (1)=(2) and (3)=(4)=(5). The first two are
deformation invariant while the last three are not.
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1. Introduction

Spaces (schemes or Deligne-Mumford stacks) M with perfect obstruction
theory E• → LM [BF] have a virtual dimension

vd = rank(E•)

and a natural vd-dimensional virtual cycle

[M ]vir ∈ Avd(M) −→ H2vd(M)

over which one can integrate cohomology classes to give invariants. Such
spaces usually arise from moduli problems.

Spaces N with symmetric obstruction theory [Be] carry a 0-dimensional
virtual cycle over which one can integrate 1 to give a virtual signed Euler
characteristic of N . When N is smooth and proper, the invariant is

∫

[N ]vir

1 = cdim N (ΩN ) = (−1)dim Ne(N),

where e( ∙ ) denotes the topological Euler characteristic. Even when N is
singular (but still compact) its invariant is a weighted Euler characteristic

∫

[N ]vir

1 = e
(
N,χN

)
,

weighted by the Behrend function χN [Be] – a canonical constructible func-
tion N → Z.

In this paper we pass from the first setting to the second to define various
notions of signed virtual Euler characteristic of M . From M we construct
a space N with symmetric perfect obstruction theory. It is a cone over M ,
containing M as its zero section.

When M is smooth of the correct virtual dimension, N = M . When M
is merely smooth (or a local complete intesection), N is the total space of
the dual of the obstruction bundle ObM = h1((E•)∨) over M ,

N = Ob∗
M −→M.

For general M it is the cone Spec Sym• ObM →M ; see Section 2 for details.
N actually satisfies a stronger property than having a symmetric obstruc-

tion theory: it is locally the critical locus of a function. The model is the
following. Locally we can write M as the zero locus of a section s of a vec-
tor bundle E

π
−→ A over a smooth ambient space A, such that the perfect

obstruction theory of M is the natural one

E• =
{
E∗|M

ds
−→ ΩA|M

}
−→ LM .

Consider s as a function s̃ on the total space Tot(E∗) of the bundle E∗,
linear on the fibres. Then N is the critical locus of s̃,

(1.1) N = Crit(s̃).
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In the language of derived algebraic geometry, N is (−1)-shifted symplectic
[PTVV] because it is the (−1)-shifted cotangent bundle of the quasi-smooth
space underlying (M,E•).

Remark. In fact there is an obstruction to globalising the symmetric ob-
struction theory on N given by the local construction (1.1). This vanishes
if we make the assumption that (M,E•) admits the structure of a quasi-
smooth derived space; we can then set N := T ∗

M [−1]. This is also quasi-
smooth and so gives rise to an underlying space with perfect (symmetric)
obstruction theory.

In an earlier draft of this paper we applied [Sch] to E• to construct such
a quasi-smooth derived structure on M . Since it now seems there are some
problems with [Sch], we instead make the assumption that (M,E•) comes
from a quasi-smooth derived space. In the examples which occur in nature
M is a moduli space with a canonical quasi-smooth derived structure.

Although N is noncompact it carries a natural C∗-action – scaling the
fibers of N →M – with compact fixed locus M . Therefore we can define a
numerical invariant from its 0-dimensional virtual class by localising to M .
There are many ways to do this localisation, but whenever M is smooth of
the correct dimension they all give the same answer

cdim M (ΩM ) = (−1)dim Me(M).

However, in general there is no obvious reason why they should all agree. So
a priori, we get the following four different notions of virtual signed Euler
characteristic of M .1

(1) The Ciocan-Fontanine-Kapranov/Fantechi-Göttsche signed virtual
Euler characteristic

∫
[M ]vir cvd(E•) of M [CK, FG]. This is defined

entirely in terms of M and its obstruction theory, without use of N .
(2) Graber-Pandharipande’s virtual Atiyah-Bott localisation [GP] of the

virtual cycle of N to M .
(3) Kai localisation of the weighted Euler characteristic e

(
N,χN

)
to M .

Here χN denotes the Behrend function [Be] of N . Since N \M carries
a free C∗-action which preserves χN , its contribution vanishes, giving
the localisation e

(
N,χN

)
= e
(
M,χN |M

)
.

(4) Kiem-Li’s cosection localisation [KL] of the virtual cycle of N to
M . The C∗-action defines a canonical Euler vector field on N . By
the symmetry of N ’s obstruction theory, this defines a cosection
ObN → ON . In such situations Kiem and Li give a way to localise
the virtual cycle of N to the zeros of the cosection, i.e. to M .

If N were compact, these definitions would all give the same answer∫
[N ]vir 1. However, even when M is smooth of too high a dimension, it

is easy to calculate that they can give different answers. Suppose ObM ad-
mits a regular section cutting out a smooth vd-dimensional representative

1See Section 3.n for the definition of the nth virtual signed Euler characteristic.
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Mvir ⊂M of the virtual cycle, then (1) and (2) equal

(−1)vd e(Mvir),

whereas (3) and (4) give
(−1)vd e(M).

This turns out to be part of a more general phenomenon.

Theorem 1.2. Suppose that M is a projective scheme with perfect ob-
struction theory E• arising as π0 of a quasi-smooth derived scheme. Then
(1) = (2) and (3) = (4) = (−1)vd e(M). The first two are deformation
invariant while the last two are not.

Plan. In Section 2 we construct N and its obstruction theory. After giving
a local description we are forced (briefly!) to use derived algebraic geometry
to give a definitive global construction in (2.13). We also give an example
showing how the construction arises in nature from moduli of sheaves. The
expert can skip straight to Section 3, where we review the definitions of the
four virtual signed Euler characteristics. We also prove the easiest relations
between them: (1) = (2) and, through examples, (1) 6= (3) in general.
Section 4 is devoted to proving (3) = (4), while Section 5 shows that (3)
gives the ordinary signed Euler characteristic of M .

Acknowledgements. It was Davesh Maulik who explained to us that (3)
should equal (−1)vd e(M), for which we are very grateful.

This paper was motivated by the papers [CL] and [VW, Section 2.2] and
by “cotangent field theories” in the language of Costello [Co]. We would
like to thank Paolo Aluffi, Kai Behrend, Jun Li, Jørgen Rennemo and Ed
Segal for useful conversations, Jon Pridham, Timo Schürg, Bertrand Toën
and Gabriele Vezzosi for discussions about [Sch], and two thorough referees
for many suggested improvements.

The first author was partially supported by NFGRF, University of Kansas,
and a Simons Foundation Collaboration Grant 311837, and the second au-
thor by an EPSRC Programme Grant EP/G06170X/1.

Notation. Throughout we work for simplicity with a complex projective
scheme M with perfect obstruction theory E• → LM . In fact all the argu-
ments extend with obvious minor changes to the case when M is a Deligne-
Mumford stack, on replacing our use of the Kashiwara index theorem [Ka]
with Maulik-Treumann’s orbifold version [MT] in Section 4.

From (2.12) we have to assume that (M,E•) is the truncation of a quasi-
smooth derived scheme Mder. We use the notation E−i := E∗

i for dual vector
bundles, reserving ∨ for the derived dual of coherent sheaves and complexes.

2. The construction of N

Abelian cones. For F a coherent sheaf over M , there is an associated cone

C(F ) := Spec Sym• F
πF−→M



VIRTUAL SIGNED EULER CHARACTERISTICS 5

over M . Cones of this form are called abelian in [BF, Section 1]. The grading
on Sym• F endows C(F ) with a C∗-action

C∗ × C(F ) −→ C(F )

induced by the map

Sym• F [x, x−1]←− Sym• F

that takes s ∈ Symi F to sxi. Its fixed locus is the zero section M ⊂ C(F )
defined by the ideal Sym≥1 F .

When F is locally free C(F ) = Tot(F ∗) is the total space of the dual
vector bundle. More generally, for any F , the fibre of C(F ) over a closed
point p ∈M is the vector space (F |p)∗. In fact C(F ) represents the functor
from M -schemes to sets that takes f : S →M to HomS(f∗F,OS).

Lemma 2.1. Given a locally free resolution E0
φ
−→ E1 → F → 0, the cone

C(F )→M inherits a perfect relative obstruction theory over M given by

{
π∗

F E0
π∗

F φ
// π∗

F E1

}
−→ LC(F )/M .

Here π∗
F E1 is in degree 0. In particular, taking h0 gives ΩC(F )/M

∼= π∗
F F .

Proof. The resolution gives an exact sequence

φ(E0)⊗ Sym•−1 E1 −→ Sym• E1 −→ Sym• F −→ 0.

That is,
Spec Sym• F ⊂ Spec Sym• E1

with ideal generated by φ(E0). Letting τ denote the tautological section of
π∗

E1
E−1, this says that

(2.2)
C(F ) is cut out of C(E1) = Tot(E−1) by the section π∗

E1
φ∗(τ) of π∗

E1
E0.

Therefore by a standard construction which we review below, C(F ) inherits
a natural perfect relative obstruction theory over M , given by

{
π∗

F E0
π∗

F φ
// π∗

F E1

}
−→ LC(F )/M .

More generally, suppose we have a smooth map2 A → B and a section s of
a vector bundle E → A. Then the zero scheme X of s inherits a natural
perfect relative obstruction theory

(2.3)
{
E∗|X

ds
−→ ΩA/B |X

}
−→ LX/B .

To describe the maps, we use the embedding of A as the zero section of
Tot(E), and then identify E∗ with the first factor of

ΩTot(E)/B

∣
∣
A
∼= E∗ ⊕ ΩA/B .

2We do not require A or B to be smooth; just the map A → B which in our application
is C(E1) = Tot(E−1) → M . Over this (E, s) := (π∗

E1
E0, π∗

E1
φ∗(τ)) cuts out X = C(F ).



6 YUNFENG JIANG AND RICHARD P THOMAS

This maps to the relative cotangent sheaf of the graph Γs ⊂ Tot(E) re-
stricted to A ∩ Γs = X, giving a map

(2.4) E∗
∣
∣
X
−→ ΩΓs/B

∣
∣
X

.

Via the isomorphism Γs
∼= A (by projection) this gives the first arrow of

(2.3). To describe the second we rewrite ΩΓs/B |X as LΓs/B |X , which then
maps to LX/B . Its composition with the arrow (2.4) is zero, and the result
is indeed a perfect obstruction theory [BF, Section 6]. �

Constructing N . We fix a perfect obstruction theory

E• −→ LM

of virtual dimension
vd := rank(E•)

on the complex projective scheme M .
Applying the results of the last section to the obstruction sheaf

ObM := h1
(
(E•)∨

)
,

we define π = πN : N →M to be the associated abelian cone,3

(2.5) N := C(ObM ) = Spec Sym•(ObM )
π
−→M.

Writing E• as E−1 → E0, we get the exact sequence

E0 −→ E1 −→ ObM −→ 0.

Therefore by Lemma 2.1, N inherits a natural perfect relative obstruction
theory over M ,

(2.6) π∗(E•)∨[1] −→ LN/M .

Local model. Locally we may choose a presentation of (M,E•) as the zero
locus of a section s of a vector bundle E → A over a smooth ambient space
A, such that the resulting complex

{
TA|M

ds
−→ E|M

}
is

{
E0 −→ E1

}
= (E•)∨.

Therefore, by (2.2), N = C(ObM ) is cut out of Tot(E∗)|M by the section
π∗

E(ds)∗(τ) of π∗
EΩA|M . In turn Tot(E∗)|M is cut out of Tot(E∗) by π∗

Es.
Therefore the ideal of N in the smooth ambient space Tot(E∗) is

(2.7)
(
π∗

Es, π∗
E(Ds)∗(τ)

)
,

where we have chosen any holomorphic connection D on E → A by shrinking
A if necessary.

Thinking of the section s of E → A as a linear function s̃ on the fibres of
Tot(E∗), we find that its critical locus is N .

Proposition 2.8. N ⊂ Tot(E∗) is the critical locus of the function

s̃ : Tot(E∗)→ C .

3Another way to describe N is as the coarse moduli space of the vector bundle stack
h1/h0

(
(E•)∨

)
of [BF, Section 2].
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Proof. The only difficulty here is notational. One approach is to write

s̃ =
〈
π∗

Es, τ
〉

= π∗
Es∗(τ)

in terms of the tautological section τ of π∗
EE∗. Using the connection D on

E, we differentiate
ds̃ = (Dτ )(π∗

Es) + τ(π∗
EDs).

This vanishes precisely where both summands vanish, since the first is a
vertical one-form and the second is horizontal. Thus Crit( s̃) has ideal (2.7),
as required.

Alternatively, one can work in local coordinates xi for A. Trivialising E
with a basis of sections ej , we get a dual basis fj for E∗ and coordinates yj

on the fibres of Tot(E∗).
Then we can write s =

∑
j sjej , τ =

∑
j yjfj and

s̃ =
∑

j

sjyj .

Therefore

ds̃ =
∑

j

yjdsj +
∑

j

sjdyj =
〈
τ, π∗

EDs
〉

+
∑

j

sjdyj

with zero scheme defined by the ideal
(
π∗

E∗(Ds)∗(τ), π∗
Es1, π∗

Es2, . . .
)
.

This is the same as (2.7). �

Global model. In particular, N has a natural local symmetric perfect ob-
struction theory [Be]. Globally, we would like to fit the relative obstruction
theory π∗(E•)∨[1] → LN/M (2.6) of π : N → M together with the obstruc-
tion theory π∗E• → π∗LM for N to give an absolute symmetric perfect
obstruction theory for N . That is we would like to find F • to fill in the
diagram

(2.9) π∗E•

��

// F •

��

// π∗(E•)∨[1]

��
π∗LM

// LN
// LN/M .

So we need to specify a (symmetric) map π∗(E•)∨ → π∗E•; taking the cone
would give F • and induce the other arrows. Letting K denote the cone of
the left hand vertical arrow gives the diagram

(2.10) π∗(E•)∨

��

// π∗E•

��
LN/M [−1] // π∗LM

��
K,
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so the obstruction to filling in the dotted arrow is the vanishing of the down-
right-down composition

(2.11) π∗(E•)∨ −→ K.

Denote the down-right composition π∗(E•)∨ → LN/M [−1]→ π∗LM by

A ∈ HomN

(
π∗(E•)∨, π∗LM

)
= HomM

(
(E•)∨,LM ⊗ π∗ON

)
.

Under the C∗-action on π∗ON = Sym• Ob, its degree 1 part is

A1 ∈ HomM

(
(E•)∨,LM ⊗Ob

)
.

By [Ill, Section IV.2.3], it is the image of the Atiyah class of (E•)∨ under
the map (E•)∨[1]→ Ob:

At(E•)∨ ∈ Ext1M
(
(E•)∨, (E•)∨ ⊗ LM

)
−→ HomM

(
(E•)∨, Ob⊗LM

)
.

We let η denote the remaining map π∗LM → K in (2.10); it is the Kodaira-
Spencer class of the inclusion of M into the derived thickening Mη con-
structed in [Sch, Section 2.1].4

Therefore the degree 1 part of the obstruction (2.11) is a projection of the
product η ◦ At(E•)∨ of Atiyah and Kodaira-Spencer classes. This product
is the obstruction to lifting the complex (E•)∨ from M to the thickening
Mη, which is identified in [Sch] as the first in a sequence of obstructions to
finding a quasi-smooth derived scheme whose truncation is (M,E•).

Unfortunately there seems to be no general reason to expect it to vanish
unless (M,E•) indeed arises from a quasi-smooth derived structure. So from
now on we make this assumption.

Remark. In fact all of our virtual signed Euler characteristics are defined
by localisation from N to M , and so for their existence we only require the
existence of the perfect obstruction theory F • → LN on the zero section M ⊂
N . Since the zero section splits the projection π, the horizontal triangles of
(2.9) split there, and

F •|M ∼= E• ⊕ (E•)∨[1]

exists just fine. Only our proof that (3)=(4) in Section 4 currently uses the
global obstruction theory of N (and we conjecture the result holds without
it). Therefore the reader uncomfortable with derived algebraic geometry
can ignore the next section and proceed straight to the definitions of the
various Euler characteristics.

Construction using derived geometry. So we use the language of de-
rived algebraic geometry [TVe] for a paragraph.

Hereon in we assume that the projective scheme with perfect obstruction
theory (M,E•) arises from a quasi-smooth derived scheme Mder. That is,

• The truncation π0(Mder) is M ,

4Mη is Schürg’s first approximation to a quasi-smooth derived scheme giving rise to
M and its obstruction theory.
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• The cotangent complex LMder is perfect of amplitude contained in
[−1, 0], and
• Its restriction LMder

∣
∣
M

to M is E• (with its canonical map to LM ).

Then we define

(2.12) Nder := T ∗
Mder [−1]

to be the (−1)-shifted cotangent bundle of Mder. This is also quasi-smooth
and (-1)-shifted symplectic [PTVV], so its truncation

(2.13) (N,F •) :=
(
π0(N

der),LNder

∣
∣
N

)

is a scheme with symmetric perfect obstruction theory. It coincides with
(2.5) as a scheme. Letting πder : Nder → Mder denote the projection, the
distinguished triangle [TVe]

(πder)∗LMder −→ LNder −→ LNder/Mder

restricts to N ⊂ Nder to give the diagram (2.9) with the dotted arrows filled
in. On the zero section, F •|M ∼= E• ⊕ (E•)∨[1].

So we now forget all about derived algebraic geometry again, and use only
(N,F •).

Example: moduli of coherent sheaves on local surfaces. This con-
struction of N from M arises in nature when M is a moduli space of stable
sheaves on a projective surface S.

By pushing sheaves forward by the inclusion

S ↪−→ X := Tot(KS)

into the canonical bundle of S we get an inclusion of M into the moduli
space of stable sheaves on the Calabi-Yau 3-fold X. By the usual spectral
cover construction, stable sheaves on X (finite over S) are the same as stable
Higgs pairs

(E, φ) on S, where φ ∈ Hom(E,E ⊗KS).

The cone N is then the open set of Higgs pairs such that the underlying
sheaf E is stable on S.

Moduli spaces of stable sheaves carry canonical obstruction theories (and
in fact derived structures [TVa]). Fixing determinants (for simplicity) and
removing the trace part of the obstruction complex gives a perfect obstruc-
tion theory on the coarse moduli space. Applying this on S and X gives
obstruction theories on M and N compatible with the construction of this
section.

Therefore we expect our paper to have applications to the S-duality con-
jecture of [VW] for a 4-manifold which is a complex surface S. However it
is still not clear to us which of the two distinct virtual Euler characteristics
in this paper one should use on the moduli space of stable sheaves on S.
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3. The four virtual signed Euler characteristics

We now describe our four signed Euler characteristics ei(M), i = 1, . . . , 4.
The first uses only M in its construction; the rest all utilise N by localising
its virtual cycle to its zero section M in different ways.

3.1. The signed virtual Euler characteristic of Ciocan-Fontanine-
Kapranov and Fantechi-Göttsche. Thinking of (E•)∨ as the virtual (or
derived) tangent bundle of M , one can form a virtual Euler characteristic
by integrating against the virtual cycle [CK, FG]:

evir(M) :=
∫

[M ]vir

cvd

(
(E•)∨

)
.

Of more interest to us is the virtual version of the signed Euler characteristic
which would be given classically by the top Chern class of the cotangent
bundle. So we consider E• to be the virtual cotangent bundle of M and
define

(3.1) e1(M) :=
∫

[M ]vir

cvd

(
E•).

This is deformation invariant, and depends only on M and its obstruction
theory E•.

3.2. Graber-Pandharipande localisation. We use the virtual Atiyah-
Bott localisation of Graber-Pandharipande on the virtual cycle of N . Its
natural C∗-action has fixed locus M , along which the horizontal triangles
(2.9) split,

F •
∣
∣
M
∼= E• ⊕ (E•)∨⊗ t−1[1].

Here we have made the C∗-action explicit in the notation; t denotes the
standard weight 1 representation of C∗.

The first summand is C∗-fixed, and gives the obstruction theory for the
fixed locus M . The second has C∗-weight −1; its dual is called the virtual
normal bundle,

Nvir ∼= E• ⊗ t [−1].

The recipe of [GP] for the localisation of the vd = 0 virtual cycle of N is

(3.2) e2(M) :=
∫

[M ]vir

1
e(Nvir)

.

Here e denotes the C∗-equivariant Euler class of Nvir. Writing

Nvir =
{
E−1 ⊗ t→ E0 ⊗ t

}

with E−1 ⊗ t in degree 0, it is defined to be

e(Nvir) =
cT
top(E−1 ⊗ t)

cT
top(E0 ⊗ t)

in the localised cohomology group

H∗
T (M,Q)⊗Q[t] Q[t, t−1] ∼= H∗(M,Q)⊗Q Q[t, t−1].
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Here we let t := c1(t) ∈ H∗(BC∗,Q) ∼= Q[t] denote the first Chern class of
t, the generator of the equivariant cohomology of BC∗.

Proposition 3.3. The Graber-Pandharipande localised signed Euler char-
acteristic (3.2) equals the signed virtual Euler characteristic (3.1) of Ciocan-
Fontanine-Kapranov/Fantechi-Göttsche,

e1(M) = e2(M).

Proof. Let r and s = r + vd denote the ranks of E−1 and E0 respectively.
Then (3.2) equals

e2(M) =
∫

[M ]vir

cs(E0) + tcs−1(E0) + . . .

cr(E−1) + tcr−1(E−1) + . . .
.

The integrand is homogeneous of degree s−r = vd, so only the t0 coefficient
has the correct degree vd over M to have nonzero integral against [M ]vir.
Therefore we may set t = 1 in the above to give

e2(M) =
∫

[M ]vir

[
c(E0)
c(E−1)

]

vd

,

where c( ∙ ) denotes the total Chern class. But this is (3.1). �

3.3. Kai localisation. Behrend [Be] defines a constructible function

χN : N −→ Z

on any scheme N . When N is compact with symmetric obstruction theory,
he proves the degree of the virtual cycle is the χN -weighted Euler charac-
teristic of N :

(3.4)
∫

[N ]vir

1 = e
(
N,χN

)
:=
∑

i∈Z

i e
(
(χN )−1{i}

)
.

Since our N is noncompact, the left hand side of (3.4) is not defined, but we
can use the right hand side instead. Over N \M we get zero since there is a
free C∗-action preserving χN . Therefore (3.4) localises to M and we define

e3(M) := e
(
M,χN |M

)
= e
(
N,χN

)
.

Example 3.1. It is easy to see that e3(M) is not deformation invariant –
and not always equal to e1(M) – by noting that it can be nonzero even if M
has negative virtual dimension. For instance if M is a reduced point carrying
a rank − vd > 0 obstruction space, then N = C| vd | and e3(M) = (−1)vd.
Of course e1(M) = 0 = e2(M) in this situation.

Example 3.2. The simplest example in nonnegative virtual dimension is as
follows. Let M and its perfect obstruction theory be defined by the section
x2 − a2 of the trivial line bundle over C = Spec C[x].

For a 6= 0, M = N is two reduced points and both e1(M) and e3(M)
equal 2. By deformation invariance the same is true of e1(M) when a = 0.
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But now N = Spec C[x, y]/(x2, xy) = Crit(x2y) in C2 and a computation5

shows that χN equals −1 away from the origin and +1 at the origin. In
particular e3(M) = 1 is not deformation invariant.

This example also demonstrates that e
(
M,χN |M

)
6= e(M,χM ) in general;

the latter gives 2 here.
It is a good exercise in the definitions of the Kiem-Li localised invariant

e4(M) of the next section to calculate in these examples and verify it equals
e3(M).

3.4. Kiem-Li’s cosection localisation. Fix a 2-term locally free resolu-
tion F−1 → F 0 of the obstruction theory of N . Behrend and Fantechi [BF,
Section 5] define a normal cone

CN ⊂ F1 = (F−1)∗

by pulling back the intrinsic normal cone from h1/h0
(
(F •)∨

)
. The intersec-

tion of CN with the zero section 0F1 gives [N ]vir.
The C∗-action on N induces an Euler vector field v on N . By the sym-

metry of the obstruction theory on N , we get what Kiem-Li call a cosection,
i.e. a map

(3.5) σ : ObN
∼= ΩN −→ ON .

It is surjective on N\M , so we expect the virtual cycle to vanish away from
the zero locus M of v. And indeed Kiem and Li define a localised virtual
cycle in A0(M) as follows.

From the cosection map (3.5) we get the composition

(3.6) F1 −→ ObN
v
−→ ON

whose image is the ideal sheaf of M ⊂ N . Therefore its pull back to the
blow up of N along M ,

p : BlM (N) −→ N,

has image OBlM (N)(−E) ⊂ OBlM (N) (where E is the exceptional divisor).
Letting K denote its kernel, we get the exact sequence of vector bundles

(3.7) 0 −→ K −→ p∗F1 −→ OBlM (N)(−E) −→ 0.

We can write
CN = C1 + C2 = C1 + p∗(C2),

where C1 is supported on M , by setting C2 to be the proper transform of
CN . Then Kiem and Li show that C2 lies (set- or cycle-theoretically) in K,
so they define

(3.8) [N ]vir
loc := 0!

F1
(C1)− p∗

(
[E].(0!

KC2)
)
∈ A0(M).

5For instance, one can show that the normal cone of N is a copy of C over the y-axis
plus a C2 with multiplicity 2 over the origin. Therefore its signed support [Be, Section 1.1]
is twice the origin minus the y-axis. These are both smooth so their Euler obstructions
are their characteristic functions; adding gives χN .
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The first term is already supported on M . The second is too because we
intersect with E. This gives our fourth virtual signed Euler characteristic,

(3.9) e4(M) :=
∫

[N ]vir
loc

1 ,

the length of the zero cycle (3.8) in A0(M).

Remark. Example 3.2, together with the equality e3(M) = e4(M) to be
proved in the next Section, show that e4(M) need not be deformation in-
variant as we deform (M,E•). This may seem surprising since Kiem and
Li prove a deformation invariance result [KL, Theorem 5.2], but under an
assumption which does not hold here.

Given a family (Mt, E
•
t ) over a smooth base B 3 t, we get an associated

family (Nt, F
•
t ). There is an obstruction map from the (pullback to N of)

TtB to the obstruction sheaf ObNt . The condition imposed in [KL] amounts
to asking that the cosection be zero on such obstructions, and this is what
fails in Example 3.2.

As the referee pointed out, another way to look at this is that the cosection
3.5 is not C∗-invariant (it has weight 1). If it were invariant then e4(M)
would be deformation invariant by the recent paper [CKL].

4. Equality of Kai and Kiem-Li localisations

Since M is projective we may fix an embedding ι : M ↪→ A in a smooth
projective ambient space A. Then writing ι∗ObM as the quotient of a locally
free sheaf E over A, we get an embedding of N

N = Spec Sym• ObM ⊂ Spec Sym• E = Tot(E∗)

in a vector bundle E∗ over A.
Let Ã :=Tot(E∗) → A denote the resulting smooth total space. Its C∗-

action induces an Euler vector field v which restricts on N ⊂ Ã to the Euler
vector field defining the cosection (3.5). Intepreting the restriction map

(4.1) Ω
Ã

∣
∣
N
−→ ΩN −→ 0

as a surjection from the vector bundle Ω
Ã
|N to the obstruction sheaf ObN =

h1
(
(F •)∨

)
, standard Behrend-Fantechi obstruction theory (e.g. [BF, Section

5], [Be, Section 2]) gives a normal cone

CN ⊂ Tot(Ω
Ã
)
∣
∣
N

by pulling back the intrinsic normal cone from h1/h0
(
(F •)∨

)
. It is conic La-

grangian inside the total space of Ω
Ã

[Be, Theorem 4.9], and its intersection

with the zero section Ã defines [N ]vir, but the noncompactness of N makes
this uninteresting.

So we perturb the 0-section of Ω
Ã

to make the intersection compact, and
to localise it near M . Pick a hermitian metric | ∙ | on E∗ → A, and consider
it as a function

r : Ã −→ R, r(e) = |e|,
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measuring the size of e ∈ E∗ up the fibres of E∗ → A.
For ε > 0 let ψ : [0,∞)→ [0,∞) be any smooth function satisfying

(4.2) ψ(x) =

{
0 x ≤ 1,
εx x ≥ 2,

and perturb the 0-section of Ω
Ã

to the (non-holomorphic!) graph of dψ(r):

(4.3) Γdψ(r) ⊂ Ω
Ã
.

Lemma 4.4. If M is compact then the intersection of Γdψ(r) with the cone
CN is compact. In particular, their topological intersection is defined.

Proof. Compose the cosection map (3.5) with the surjection (4.1),

Ω
Ã

∣
∣
N
−→ ΩN −→ ON .

By construction the composition is (the restriction to N of) contraction with
the Euler vector field v on Ã =Tot(E∗)→ A.

Restricted to the graph (4.3) the composition defines a function (smooth
rather than holomorphic, since the graph is not holomorphic). By calcula-
tion the function is

Dv(ψ(r)) = εr

outside the neighbourhood {r ≤ 2} of A ⊂Tot(E∗). Since this is nonzero,
the graph Γdψ(r) does not intersect the kernel K of (3.7). But CN does
lie in K, so their intersection is empty outside the compact neighbourhood
{r ≤ 2} of A ⊂ Ã. �

By [Be, Corollary 4.15] the cone CN is the characteristic cycle CC(χN ) of
the constructible Behrend function χN : N → Z (extended by zero to Ã). Its
intersection with Γdψ(r) is compact, and the sets {e ∈ Ã : ψ(r(e)) ≤ t} are
also compact for all t by the properness of ψ(r). Therefore we can apply the
Kashiwara index theorem to any constructible sheaf F on N whose pointwise
Euler characteristic is χN . The characteristic cycle of F , denoted by S̃S(F)
in [Ka], then equals CC(χN ) = CN so by [Ka, Theorem 4.2],6

CN ∙ Γdψ(r) = S̃S(F) ∙ Γdψ(r) = χ(F) = e
(
N,χN

)
.

And, for ε � 1, the graph Γdψ(r) is a small perturbation of the 0-section
in the sense of [KL, Appendix A]. Therefore [KL, Proposition A.1] equates
CN ∙ Γdψ(r) with [N ]vir

loc (after pushforward to the neighbourhood {|e| ≤ 2}).
We conclude that

e4(M) =
∫

[N ]vir
loc

1 = CN ∙ Γdψ(r) = e
(
N,χN

)
= e

(
M,χN |M

)
= e3(M).

6Kashiwara uses the orientation induced by the real symplectic form ω = dθ =∑
i dpidqi on Tot(ΩÃ), where θ =

∑
i pidqi is the canonical real one-form. Here (qi)

n
i=1

are local real coordinates on Ã, and n = 2 dimC Ã is the real dimension of Ã. Since
(−1)n(n+1)/2∧

i(dpi ∧ dqi) =
∧

i dqi ∧
∧

dpi gives the standard complex orientation, our

intersection S̃S(F) ∙ Γdψ(r) differs from his by the sign (−1)n(n+1)/2.
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5. Ordinary signed Euler characteristic

The equality of e3(M) and (−1)vd e(M) was explained to us by Davesh
Maulik. We work locally in the model of Proposition 2.8. That is, we have
a smooth ambient space A, a bundle E

π
−→ A and the section s ∈ Γ(E)

cutting out M ⊂ A. Then s defines a function s̃ on Tot(E∗), linear on the
fibres,

(5.1) s̃(a, e) = 〈e, s(a)〉,

whose critical locus is N = Crit(s̃) ⊂ Tot(E∗).
Recall Behrend’s formula [Be, Section 1.2]

(5.2) χN (p) = (−1)dim Tot(E∗)
(
1− e(Fp)

)

for the Kai function of N . Here

(−1)dim Tot(E∗) = (−1)dim A−rank E∗
= (−1)vd

and

(5.3) Fp = s̃ −1(δ) ∩Bε(p), 0 < |δ| � ε� 1,

is the Milnor fibre of s̃ at p. The formula (5.2) extends from p ∈ N to any
p ∈Tot(E∗), giving 0 outside N = Crit(s̃).

We sketch Maulik’s idea of working relative to A. The key fact is that by
(5.1) the fibre of s̃ −1(δ) over a ∈ A is an affine space if s(a) 6= 0 and empty
if s(a) = 0. Therefore pushing (5.2) down N → M ⊂ A (in the sense of
Euler characteristic) gives

(5.4) (−1)vd over s−1(0) = M ⊂ A

and 0 elsewhere. Since N\M has a free S1-action (under which s̃ is invariant)
it contributes nothing to the pushdown, so we should find that

χN
∣
∣
M

= (−1)vd,

and hence e3(M) = (−1)vde(M).
This sketch can be made to work because the C∗-action on E∗ acts with

weight 1 on s̃, allowing one to take 0 < |δ| � 1 in (5.3) uniformly over the
noncompact fibres of E∗ → A. For full details we refer to [Da, Theorem A.1].
In fact Davison proves the much more sophisticated result that the pushdown
of the perverse sheaf of vanishing cycles on N is a shift of the constant sheaf
on M ; taking Euler characteristics gives (5.4). For completeness we give an
elementary proof from first principles at the level of Euler characteristics.

Proposition 5.5. The Kai function of N is the constant (−1)vd on M ,

χN
∣
∣
M
≡ (−1)vd.

Proof. We work at a point p = (a0, 0) ∈M ⊂ N ⊂ Tot(E∗ → A). Shrinking
A in the analytic topology, we take it to be an open set of a vector space on
which we fix a hermitian metric, with a0 the origin. We may also assume



16 YUNFENG JIANG AND RICHARD P THOMAS

that E is trivial on this open set, and give it the trivial hermitian metric.
Then

Fp =
{

(a, e) ∈ Tot(E∗) : |a|2 + |e|2 ≤ ε2, 〈e, s(a)〉 = δ
}

.

Over a fixed a ∈ A the fibre of Fp is

(5.6)
{
e : 〈e, s(a)〉 = δ and |e|2 ≤ ε2 − |a|2

}
.

The smallest e solving 〈e, s(a)〉 = δ has |e| = |δ|
/
|s(a)|, so (5.6) is nonempty

if and only if |δ|2
/
|s(a)|2 ≤ ε2 − |a|2, if and only if

(5.7) f(a) := |s(a)|2
(
ε2 − |a|2

)
≥ |δ|2.

Since (5.6) is the intersection of a ball with an affine space, it is either
contractible or empty. Therefore Fp is homotopy equivalent to the locus of
a ∈ A satisfying (5.7):

Fp '
{
a ∈ A : f(a) ≥ |δ|2

}
.

Shrinking δ if necessary, we may assume that f has no critical values in the
interval

(
0, |δ|2

]
. Thus

Fp ' f−1
[
|δ|2,∞

)
' f−1(0,∞) =

◦
Bε (a0)\s

−1(0).

Since s−1(0) is a complex subvariety, the usual argument that Euler charac-
teristic is motivic7 now gives

e(Fp) = 1− e
(
s−1(0) ∩Bε(a0)

)
.

But s−1(0) ∩ Bε(a0) is homeomorphic to the cone on its intersection with
∂Bε(a0) for ε� 1, so has Euler characteristic 1. Therefore e(Fp) = 0.

Substituting into (5.2) gives

χN (a0, 0) = (−1)vd. �
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