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Abstract

The body and organs of all animals are covered by epithelial tissues, such as the epidermis and
the airway epithelium. Epithelial tissues play a key role in protecting the body from environ-
mental aggressors. Failure to maintain a competent epithelium can lead to the onset of many
diseases, including Atopic dermatitis (AD) and infection by Streptococcus pneumoniae. Treat-
ment of AD is currently restricted to the relief of symptoms, mainly because the underlying
mechanisms remain elusive. Antibiotic resistance threatens the effectiveness of the prevalent
treatments for infection. Devising new and effective therapeutic strategies that halt the pro-
gression of these diseases requires an understanding of the different disease mechanisms that
can cause loss of epithelial homeostasis in different patients. Intricate regulatory networks
of several biochemical and cellular interactions maintain epithelium homeostasis in healthy
individuals, but can also propagate different disturbances, resulting in a wide spectrum of pos-
sible disease phenotypes. In this thesis, we propose mathematical models of these regulatory
networks to analyse the mechanisms that lead to the onset and progression of AD and pneumo-
coccal infection from a systems-level perspective. Our mathematical model of AD reproduced,
for the first time, the different stages of the disease that have been observed in the clinic. More-
over, we proposed different pathogenic mechanisms, triggered by different genetic and envi-
ronmental risk factors that are known to predispose to AD. By assessing the effects of common
treatments for AD, we suggested effective treatment strategies that can prevent the aggravation
of the disease, in a patient-specific way. Our data-driven mathematical model of pneumococ-
cal infection identified four qualitatively different mechanisms by which co-infection can drive
the pathogenic process. They can be counteracted by distinctive treatment strategies that only
partially involve antibiotics. Our work provides a theoretical framework for the integration and
analysis of clinical and experimental data describing epithelial homeostasis.



Contents

Abstract 1

Statement of Originality 9

Copyright Declaration 10

Acknowledgements 13

Acronyms and terminology 15

1 Introduction 18
1.1 Atopic dermatitis is a complex and socially relevant disease for which effective

treatment strategies are required . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2 Reducing the prevalence of infection by Streptoccoccus pneumoniae requires

new treatment strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3 Previous mathematical models of epithelium homeostasis . . . . . . . . . . . . 24
1.4 Motivation of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.5 Aims and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.6 Main findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.7 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.8 Structure and overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . 31

2 Reaction network controlling epidermal homeostasis: the biology of Atopic der-
matitis 32
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2 Structure and function of the epidermis . . . . . . . . . . . . . . . . . . . . . . 33
2.3 Symptoms and predisposing risk factors for Atopic dermatitis . . . . . . . . . . 34

2.3.1 AD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.2 Genetic and environmental risk factors for AD . . . . . . . . . . . . . 37

2.4 Reaction network of biochemical interactions controlling epidermal homeostasis 38

1



2.4.1 Protease networks: Regulation of kallikrein (KLK) activity . . . . . . . 40
2.4.2 Skin barrier function . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4.3 Regulation of infiltrated pathogen load . . . . . . . . . . . . . . . . . . 42
2.4.4 IL1 and TLR mediated immune responses . . . . . . . . . . . . . . . . 42
2.4.5 Adaptive immune responses drive Th2 polarization . . . . . . . . . . . 43

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Regulatory modules: Decomposition of the reaction network into network motifs 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Switch-like dose response behaviour characterizes the release of cytokines . . . 50

3.2.1 Bistability is a switch-like dose-response behaviour with memory . . . 50
3.2.2 Bistability characterizes immune responses . . . . . . . . . . . . . . . 50
3.2.3 Protease dependent innate immune reactions: KLK model . . . . . . . 52
3.2.4 Gata-3 mediated Th2 cell polarization . . . . . . . . . . . . . . . . . . 54
3.2.5 Network motifs that result in bistability: positive feedback and cooper-

ativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.6 Phenomenological representation of bistable dose response behaviour

by a perfect switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 Self-recovery characterizes the barrier function components and is achieved by

negative feedback control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.1 Lipid content in the skin barrier is controlled by a double negative feed-

back and modulated by KLK activity . . . . . . . . . . . . . . . . . . 60
3.3.2 Filaggrin content is regulated by the interplay between a fast negative

feedback and a delayed positive feedback . . . . . . . . . . . . . . . . 61
3.3.3 Network motifs that result in self-recovering dynamical behaviour: The

key role of negative feedback . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.4 Phenomenological description of the self-recovering dynamical behaviour

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4 Persistence of inflammation: Storing the memory of cytokine dynamics . . . . 65
3.5 Multi-scale structure of the reaction network controlling epidermal homeostasis 67
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Modelling the early phases of AD: Interplay between protease-dependent innate
immune responses, barrier function and infiltrating pathogens 70
4.1 Introduction to the published paper in the context of the thesis . . . . . . . . . 70
4.2 Risk-factor dependent dynamics of atopic dermatitis:

Modelling multi-scale regulation of epithelium homeostasis . . . . . . . . . . 74
4.2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2



4.2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.3 Multi-scale model for atopic dermatitis . . . . . . . . . . . . . . . . . 77
4.2.4 Bistable switch with hysteresis at the cellular level . . . . . . . . . . . 79
4.2.5 Dynamical behaviours in the multi-scale model . . . . . . . . . . . . . 81
4.2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Modelling the effects of treatment of AD: Towards optimal patient-specific treat-
ment for the early phases of AD 93
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2 Mathematical model of the treatments . . . . . . . . . . . . . . . . . . . . . . 94
5.3 Qualitative analysis of patient -specific treatment strategies for the early phases

of AD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Modelling advanced stages of AD: The onset of adaptive immune responses 101
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 Mathematical model of the advanced stages of AD . . . . . . . . . . . . . . . 106
6.3 Onset of adaptive immune responses can be triggered by both genetic and en-

vironmental risk factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 Mathematical model of AD: Conclusions and future work 114

8 Modelling host pathogen interactions between Streptococcus pneumoniae and the
upper airway epithelium to understand co-infection 120
8.1 Applying our modelling framework to understand the mechanisms that underlie

infection by commensal bacteria . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.2.1 Previous mathematical models of host-pathogen interactions that occur
at epithelial tissues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.2.2 Novelty and timeliness of our approach . . . . . . . . . . . . . . . . . 126
8.2.3 Aims and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.3 The host-pathogen interactions that occur between Streptococcus pneumoniae

and the upper airway epithelium . . . . . . . . . . . . . . . . . . . . . . . . . 128
8.4 Mathematical model of host-pathogen interactions to understand the dual role

of the epithelial barrier in determining the outcome of infectious processes . . . 130
8.4.1 Model assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

3



8.4.2 Network motif representation . . . . . . . . . . . . . . . . . . . . . . 133
8.4.3 Model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.5 Qualitative dynamical behaviours . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.5.1 Epithelial homeostasis requires healthy clearance of a bacterial challenge140
8.5.2 Recurrent flares of immune responses, barrier damage and infection . . 142
8.5.3 Aseptic loss of homeostasis is characterized by sustained high immune

responses and barrier damage . . . . . . . . . . . . . . . . . . . . . . 143
8.5.4 Sustained infection that fails to induce efficient immune responses . . . 144
8.5.5 Total loss of homeostasis is characterized by high infiltration of im-

mune cells, loss of barrier function, and sustained infection . . . . . . . 145
8.6 Uncovering the mechanisms that drive the lethal synergism that results from

co-infection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.6.1 Increase in the carrying capacity leads high invasion of bacteria, but no

associated barrier damage . . . . . . . . . . . . . . . . . . . . . . . . 147
8.6.2 Decreased permeability barrier function leads to aseptic loss of home-

ostasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
8.6.3 Increased levels of resident neutrophils leads to aseptic loss of epithe-

lial homeostasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.6.4 Desensitization of the TLR receptor leads to sepsis . . . . . . . . . . . 151

8.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
8.8 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9 Concluding remarks 155

A Mathematical representation of reaction networks 158

B Parameter estimation of the mathematical model describing the host-pathogen in-
teractions between airway epithelium and Streptococcus pneumoniae 161

References 178

4



List of Figures

2.1 Structure and protective functions of the epidermis . . . . . . . . . . . . . . . 34
2.2 Causal interplay between the symptoms of Atopic dermatitis . . . . . . . . . . 36
2.3 Control structure of the reaction networks regulating epidermal homeostasis . . 45

3.1 Decomposition of the reaction network controlling epidermal homeostasis into
regulatory modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Bistabile switching characterizes the dose-response behaviour of cytokine re-
lease by active immune response pathways . . . . . . . . . . . . . . . . . . . . 51

3.3 Schematic representation of the qualitative dynamic behaviours of the hybrid
system described in the coupled equations 3.3 and 3.4. . . . . . . . . . . . . . 57

3.4 Self-recovery characterizes the barrier function components and is achieved by
negative feedback control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Persistence of inflammation results from time-scale separation between fast
cytokine dynamics and slow, cellular processes that involve mobilization of
immune cells, triggered by cytokines . . . . . . . . . . . . . . . . . . . . . . . 66

3.6 A persistent network motif can act as a capacitor, by storing the history of
cytokine dynamics with a given frequency and amplitude of cytokine exposure 67

4.1 Reaction network mediating the early phases of AD: Interplay between protease-
dependent innate immune responses, barrier function and infiltrating pathogens 72

4.2 Multi-scale model of the early phases of Atopic dermatitis . . . . . . . . . . . 80
4.3 Cellular-level switch-like behaviour . . . . . . . . . . . . . . . . . . . . . . . 81
4.4 Schematic representation of the three qualitative dynamic behaviours of skin

barrier integrity after environmental challenges . . . . . . . . . . . . . . . . . 83
4.5 Effects of risk factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.6 Increase in skin vulnerability caused by the presence of multiple risk factors . . 86

5.1 A mechanistic representation of corticosteroid treatment results in a simple
scaling of the dose response diagram describing protease mediated inflammation 96

5



5.2 Complete remission of AD can be achieved by treatment that drives the transi-
tion from a unhealthy to a healthy steady state . . . . . . . . . . . . . . . . . . 98

5.3 Emollients decrease the frequency and amplitude of recurrent inflammation in
a dose-dependent way . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1 Reversibility of mild and early forms of AD . . . . . . . . . . . . . . . . . . . 102
6.2 Cartoon representation of the mechanisms leading to the onset of allergic sen-

sitization and the establishment of a pro-inflammatory micro-environment that
characterize the epidermis of AD patients with severe forms of AD . . . . . . . 104

6.3 Modular representation of the reaction network that underlies the onset of aber-
rant adaptive immune responses. . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4 Increased risk factor severity, given by low FLG, high barrier damage, or syn-
ergism between both, increases the frequency of the oscillations of the PAR2-
mediated TSLP release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.5 The onset of aberrant adaptive immune responses can be triggered by severe
forms of individual genetic (FLG) or environmental (barrier damage) risk fac-
tors. In combination, also mild forms of risk factors lead to allergic sensitization 111

8.1 Duality of the host-pathogen interactions between Streptococcus pneumoniae

and the airway epithelium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.2 Reaction network underlying the host-pathogen interactions between Strepto-

coccus pneumoniae and the upper airway epithelium . . . . . . . . . . . . . . 129
8.3 Network motif representation of the mathematical model of the host-pathogen

interactions occurring between Streptococcus pneumoniae and the airway ep-
ithelium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.4 Comparison of model simulations with in vivo data . . . . . . . . . . . . . . . 138
8.5 Epithelial function is controlled by a two dimensional switch . . . . . . . . . . 141
8.6 Epithelial homeostasis requires healthy clearance of a bacterial challenge . . . 142
8.7 Recurrent flares of immune responses, barrier damage and infection . . . . . . 144
8.8 Aseptic loss of homeostasis is characterized by sustained high immune re-

sponses and barrier damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.9 Sustained infection that fails to induce efficient immune responses . . . . . . . 146
8.10 Total loss of homeostasis is characterized by high infiltration of immune cells,

loss of barrier function, and sustained infection . . . . . . . . . . . . . . . . . 146
8.11 Increase in the carrying capacity leads high invasion of bacteria, but no associ-

ated barrier damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
8.12 Decreased permeability barrier function lead to an aseptic loss of homeostasis . 149
8.13 Increased load of resident neutrophils results in loss of epidermal homeostasis . 150

6



8.14 Desensitization of the TLR receptor leads to sepsis . . . . . . . . . . . . . . . 151

A.1 Example reaction network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

B.1 Experimental techniques leading to quantitative dynamic experimental data
used for the parameter estimation and validation of the mathematical model
of the host-pathogen interactions between the airway epithelium and Strepto-

coccus pneumoniae. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
B.2 Data-points and model fit for the calculation of the barrier production rate κbp. . 173
B.3 Data-points and model fit for the calculation of the bacterial growth rate κs and

carrying capacity µs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
B.4 Data-point and model fit for the calculation of the neutrophil death rate κnd . . 173
B.5 Determination of the minimal bacterial concentration required for a significant

induction of TLR activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
B.6 Data-points and fitted dose-response curve of bacteria-mediated TLR activation

(parameters km and nH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
B.7 Data-points and model fit for the calculation of the neutrophil- induced death

of bacteria (φNS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
B.8 Data-points, model fit and validation for the calculation of the parameters quan-

tifying barrier damage by bacteria (θSabd and λSabp) . . . . . . . . . . . . . . . 175
B.9 Estimation of parameters that quantify the rate of invasion of bacteria through

barrier (κSi and εS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
B.10 Estimation and validation of parameters quantifying the switch-like damage of

barrier by neutrophils. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
B.11 Switch-like dose response behaviour of barrier damage by basal neutrophils,

given by the parametrized scaled Hill function φnbBdF(Nb) . . . . . . . . . . . 177
B.12 Model fit, model prediction and data-points showing the transmigration of neu-

trophils across a epithelial monolayer, parametrized by θnt and εn . . . . . . . . 177

7



List of Tables

2.1 Major genetic and environmental risk factors predisposing to the development
of AD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 Parameters of the regulatory module controlling lipid dynamics (dimensionless
and arbitrarily chosen parameters for simulating equations 3.5) . . . . . . . . . 62

4.1 Parameters of the mathematical model of the early stages of AD . . . . . . . . 92

5.1 Parameters of the model of the treatment of the early phases of AD (dimen-
sionless and arbitrarily chosen parameters for simulating equations 5.1) . . . . 97

8.1 Parameters of the mucosal barrier model . . . . . . . . . . . . . . . . . . . . . 137

8



Statement of Originality

This thesis and the research that is here presented, are product of my own work. Any ideas
from the work of other people are fully acknowledged and appropriately referenced.

Elisa Domínguez Hüttinger
Department of Bioengineering

Imperial College London

9



Copyright Declaration

The copyright of this thesis rests with the author and is made available under a Creative
Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy,
distribute or transmit the thesis on the condition that they attribute it, that they do not use it for
commercial purposes and that they do not alter, transform or build upon it. For any reuse or
redistribution, researchers must make clear to others the licence terms of this work.

10





This thesis is dedicated to my parents,

Christine Hüttinger and Raúl Domínguez Martínez.

We are a family of story-tellers.

The language of this narrative is mathematics,

its subject, biology,

and the plot, a process.

12



Acknowledgements

I would like to express my most sincere gratitude and admiration to my supervisor, Dr
Reiko J Tanaka, for her constant support, motivation, guidance, encouragement and commit-
ment during this research project. It has been a privilege and pleasure to have been part of this
process.

To my co-supervisor, Prof Mauricio Barahona (Department of Mathematics, Imperial Col-
lege London) for his support, fruitful discussions and fundamental inputs to this research.

To my collaborators: Dr Masahiro Ono (University College London), Dr Georgios Stamatas
(Johnson and Johnson), Dr Thomas B Clarke (Department of Medicine, Imperial College Lon-
don), Dr Mariko Okada (RIKEN), Prof Alan Irvine (Trinity College Dublin), Dr Diego Oyarzún
(Department of Mathematics, Imperial College), Dr Alejandro Colman-Lerner (Universidad de
Buenos Aires), Dr Marina Macías-Silva (Universidad Nacional Autónoma de México) and Dr
Yuzuru Sato (visiting researcher at Imperial College London), for enriching this research with
their knowledge and expertise.
To William Nightingale and George Buckle, for their interest, motivation and valuable inputs
to this research project.
To all my colleagues from the Biological Control Systems Lab., particularly to the members
of the ”epithelium-team”, Panayiotis Christodoulides, Mark van Logtestijn, Dr Neville J Boon
and Matthias Malagó. It has been a real pleasure to work with you guys! Also to Alejandro
Adrián Granados Castro and to Sang Y Lee for very insightful discussions. Thanks also to past
members of the group, particularly to Dr Andrea Y Weiße and to Dr Paula Freire-Pritchett.
I am thankful for advice and discussions with Dr Heather Harrington, Dr Mariano Beguerisse
Diaz, Dr Michael Schaub, Dr Borislav Vangelov, Dr Claire Higgings, Dr Martina Wicklein, Dr
Kit Longden (Janela Research Campus), Dr Osbaldo Resendis Antonio (INMEGEN), Dr Juan
Carlos Martínez García (Cinvestav) and Dr María Elena Álvarez-Buylla (UNAM).
I am grateful for the support provided by my mentor, Dr Emmanuel Drakakis.

This thesis benefited strongly from the insightful comments and discussions with my examin-
ers, Dr Stan Marée (John Innes Centre) and Dr Krishnan (Department of Chemical Engineering,
Imperial College London).

The constant support and love from my family have been vital for accomplishing this task.
Thanks to all the members of my ”family - sets”: Hüttinger (Christine, Helmut, Alexander,
Ariane, Carolina, Julia, Gabriel, Paul, Angie and Pao), Domínguez (Raúl, Malú, Pepe, Mariana,
Gabriela, Alejandro and Lulú) and Kronberger (Michi, Anna, Matilda and Maciej).

13



I want to thank my family in London: Alonso Castillo Ramírez (a.k.a. the ”real” Uri Alon),
Daniela Franco Bodek (my official guru), Maria Fernanda Jiménez Sólomon (Sra M.F. - my
big sister!) -for being my family in London.

Thanks to my ”fellow-expats” Lorena Segura Morán and Olga Beatriz Zurita Rendón, for all
the ”cronopian” adventures that gave me a burst in life, energy and motivation throughout this
process.
I want to express my appreciation to my friend Victor Hugo Jiménez Sánchez for being on my
side all these years. To Elena Phoka, Dan Cook and Aleksandra Berditchevskaia for all the
sunny moments that illuminated this research project. To Pável Hernández Ramírez, for all
the motivation and encouragement. To Edgar Salomón García Treviño, for promoting a lyrical
view of engineering research.

I am very grateful to Filotheos Bezerianos, who supported me enormously during a substan-
tial part of these years.

I want to give a special thanks to Léna Tanaka-Jammes, who motivated the beginning of this
research project.

This work was founded by CONACyT (scholarship 212800) and supported by a EPSRC
grant (through a Career Acceleration Fellowship to Reiko J Tanaka) and by the Santander
Mobility Award 2013.

14



15



Acronyms and terminology

AD Atopic dermatitis.

AJ Adherens Junctions.

AMP Anti-Microbial Peptide.

BALF Broncheo-alveolar lavage fluid.

BD-2 β-defensin (type of AMP).

CDS Corneodesmosome (intercellular junction between corneocytes).

CFU Colony Forming Units.

DC Dendritic cell.

DDE Delay Differential Equations.

HAE Human Airway Epithelial cell culture.

HBE Human Broncheal Epithelial cell culture.

IBD Inflammatory Bowel Disease.

IL-1 Interleukin 1.

KLK Kallikrein (a protease).

NHEK Normal Human Epidermal Keratinocytes.

OD Optical Density.

PAMP Pathogen-Associated Molecular Pattern.

PAR2 Protease-activated Receptor.

16



PPI Protein-Protein Interactions.

PWA Piecewise Affine Function.

QSSA Quasi-steady state approach.

RHE Reconstructed Human Epidermis.

SC Stratum corneum.

SG Stratum Granulosum.

SNP Single Nucleotide Polymorphism.

T84 Human Colonic adenocarcinoma cell line.

TEER Trans-Epithelial Electrical Resistance (directly related to permeability barrier function
of epithelial monolayers).

TEWL Trans-Epidermal Water Loss (inversely related to epidermal permeability barrier func-
tion).

TF Transcription Factor.

TJ Tight Junctions.

TLR Toll-Like Receptor (Innate immune response receptor).

TSLP Thymic Stromal Lympho-Poietin.

17



Chapter 1

Introduction

The body and the organs of all animals are covered by a tissue type termed epithelium [1]. For
example, the outermost layer of the skin is enacted by the epithelial tissue called epidermis,
and the respiratory tract is covered by airway epithelium [1]. Being directly in contact with
the environment, one of the main functions of the epithelium is to regulate the exchange of
substances between the self and the environment [2]. It plays a pivotal role in protecting the
body from environmental aggressors, such as pathogens or chemicals, and also mediates the
exchange of water and nutrients [1].
Accordingly, loss of epidermal function is associated to a wide variety of diseases, including
infection [3, 4, 5, 6], allergies [7, 8, 1, 9, 10, 11, 12, 13], and cancer [14, 15]. Despite the high
prevalence of these diseases [16, 17, 18, 19, 20, 18, 21, 22], the different mechanisms that can
cause many of them have not yet been clarified, hindering the effectiveness of treatment and
preventive strategies [23, 24, 25, 12].
The epithelium protects against environmental aggressors by two means: First, it enacts a phys-
ical permeability barrier that hinders the penetration of external substances. Second, epithelial
cells are able to mount immune responses that eradicate environmental aggressors that have
infiltrated through the epithelial barrier [14].
Interestingly, while a competent epithelial barrier function prevents the onset of unnecessary
immune responses [10, 26, 13, 27], immune responses can lead to tissue-damaging inflamma-
tion that impair barrier function [28, 29, 30, 31, 32]. Given this complex interplay between
barrier function and immune responses, a coordinated and balanced action of these two pro-
tective properties is necessary to maintain a competent epithelium that prevents the onset of
diseases [14, 1, 8].
Coordination between barrier function and immune responses is achieved through strongly in-
terconnected regulatory networks between the different biochemical and cellular components
of the epithelium that enact barrier function and immune responses, respectively [33]. For ex-
ample, both barrier components and anti-microbial substances are simultaneously produced in
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response to physical damage to the epidermis [34] or to the colon [35]. Also, pro-inflammatory
cytokines reduce the expression of epithelial barrier components in the airway epithelium [28]
and in the epidermis [36]. The integrity of intercellular junctions that determine the perme-
ability of epithelial tissues is affected by immune cells [30, 31] and signalling pathways that
mediate the immune responses [37, 38, 26]. In contrast, disruption of intercellular junctions
activates signalling pathways that trigger immune responses [10] and triggers the recruitment
of pro-inflammatory cytokines to the epithelium [13, 27, 39].
A myriad of genetic and environmental predisposing risk factors can impair the functioning of
individual components of these regulatory networks, eventually triggering a pathogenic process
[40, 41, 42, 11]. Genetic risk factors include mutations or polymorphisms that impair the levels
of expression of components of the epithelial barrier [43], of protease inhibitors controlling
barrier function and inflammation [44], of cellular receptors that sense the competence of the
epidermal barrier function [45], and of cellular receptors that sense the pathogen load [46]. En-
vironmental risk factors include an abnormal exposure to pathogens [14, 47, 48] or chemicals
[49] and the immoderate use of soaps and detergents [50, 8].
Thus far, the links between these predisposing risk factors and the development of diseases
have been studied mainly by experimental and clinical methods that assess how individual risk
factors affect individual components of the regulatory networks. However, loss of epithelial
homeostasis often emerges from impaired interactions between the strongly entangled network
components, and can seldom be attributed solely to the malfunction of an individual network
component [51, 52, 53]. Hence, understanding how risk factors result in the development of
disease requires a systems-level view, that considers the interplay between the different compo-
nents of the regulatory networks of biochemical and cellular interactions that control epithelial
function.

In this thesis, we analyse the mechanisms responsible for the maintenance of epidermal
homeostasis from a systems- biology perspective. Particularly, we propose mathematical mod-
els of the regulatory networks of entangled biochemical and cellular interactions that control
epithelial function, and analyse the impact of predisposing risk factors on the functioning of
these networks.
We use the mathematical model to describe and understand the transition form a healthy ep-
ithelium to a pathological state. This requires a dynamic description that considers the mul-
tiple time-scales in which the different biochemical and cellular processes that underlie the
pathogenic process operate.
To achieve this, we represent the regulatory interactions controlling epithelial homeostasis in
the form of coupled systems of Ordinary Differential Equations (ODE) that operate at differ-
ent time-scales. This mathematical framework assumes spatial homogeneity of the reactions
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modelled. We [54] and others [55, 56, 57, 58, 59, 60, 61] have analysed different aspects of the
spatial regulation of epithelial function, but the interplay between barrier function and immune
responses has not been addressed within a spatial framework. Among other clinically relevant
questions, spatial assessment of the epithelial function in the context of AD or pneumococcal
infection could help to address the conditions required for the spread of infection and inflam-
mation when epithelial homeostasis is lost. This analysis could be done using compartment
models, as in [54], Partial Differential Equations (PDEs) as in [59, 61], or agent-based models
as in [56, 57, 58]. However, for simplicity, in this thesis, such a spatial analysis is neglected,
and left for future work.
Here, we first build and characterize mechanistic models of the sub-networks that determine
the activity of the main biochemical and cellular effectors that enact the immune responses and
the epithelial barrier function, respectively. They correspond to regulatory modules that con-
trol the levels of pro-inflammatory cytokines, of immune cells and of structural components of
the epithelium. We find that these regulatory modules can be grouped into different network

motifs that display distinctive qualitative behaviours that can be described in a simpler, phe-
nomenological manner. We then re-assemble and analyse the regulatory networks controlling
epithelial homeostasis by connecting the individual, phenomenologically represented regula-
tory modules. This mesoscopic and qualitative description of the reaction network allows us to
analyse and extract the main control mechanisms that are responsible for the maintainance of
epithelial homeostasis.
With our multi-scale and modular approach, we are able to obtain a mechanistic and quantita-
tive description of pathological processes related to the loss of epithelial homeostasis.
Our mathematical models serve as frameworks for the integration and analysis of scattered ex-
perimental and clinical data, and reveal several potential mechanisms that are responsible for
the maintenance of epithelial homeostasis.

We focus on two diseases: Atopic dermatitis (AD), an allergic skin disease, and infection of
the airway epithelium by Streptococcus pneumoniae. Both of these diseases represent a impor-
tant social burden, given by their high incidence [19, 18, 20, 21] and ineffectiveness of current
treatment strategies that can be attributed to the lack of understanding of the causes of AD
[17, 11, 62, 24, 25, 63, 64, 65, 66] and the incipient threat of antibiotic resistance of evolving
strains of Streptococcus pneumoniae [23].
It is thus urgent to devise new therapeutic strategies that effectively prevent and cure AD and
pneumococcal infection. This requires a understanding of the different pathogenic mechanisms
that underlie the development of these diseases.
AD and infection by Streptococcus pneumoniae result from a loss of homeostasis of the epi-
dermis [7, 8, 67] and the airway epithelium [68, 69, 38], respectively.

20



In both cases, loss of epithelial function results from an imbalance between the two protec-
tive properties of the epithelium. i.e. permeability barrier function and immune responses to
invading pathogens [7, 70, 71, 72, 30]. In the epidermis and in the airway epithelium, these
two protective properties are co-regulated by an intricate network of biochemical and cellular
interactions [34, 36, 37, 28, 30, 38, 26]. Understanding the interplay between these two pro-
tective properties, given by the entangled regulatory networks that control barrier function and
immune responses, is pivotal to elucidate the disease mechanisms of AD and pneumococcal
infection.
Further, both in the epidermis [43, 73, 74, 75, 76, 47, 77, 40, 11, 47, 48, 49, 50] and in the
airway epithelium [69, 78, 21], loss of epithelial homoeostasis can be triggered by different
mechanisms. Elucidating mechanism-dependent pathogenic process is essential to propose ef-
fective, patient-specific treatment strategies.
Given these common structural features, we believe that the mechanisms that underlie the onset
and progression of these apparently disparate diseases can be uncovered by our mathematical
modelling framework, based on the analysis of the dual interplay between immune responses
and permeability barrier function.

1.1 Atopic dermatitis is a complex and socially relevant dis-
ease for which effective treatment strategies are required

AD is a skin disease characterized a defective epidermal permeability barrier function that ap-
pears as dry and scaly skin, and by aberrant immune responses to environmental insults, man-
ifested as excessive inflammation and allergy [17]. AD affects approximately 15% of infants
worldwide (20% in the United Kingdom [19], 15% in Germany [18] and 10% in Nigeria [20]),
and its incidence has been rapidly increasing [18, 19, 18]. Moreover, patients with a clinical
history of AD have a strong predisposition for developing other atopic diseases, such as asthma
and allergic rhinitis [17, 11, 62].
In terms of its economic impact, the average costs of treating AD per patient per year has been
estimated to represent up to 4,480 USD in the United States of America [79] and 1425 EUR pro
patient per year in Germany [18]. These costs are increasing with the augmenting prevalence
of AD [80].
Despite its clear socio-economic relevance, the mechanisms leading to AD have not been fully
elucidated, limiting the treatment options to the relieve of symptoms [17, 24, 25]. For instance,
emollients enhance the permeability barrier function [40], steroids decrease the inflammation
[66], and antibiotics reduce the infection that results from a defective epithelial function [81].
However, long term treatment does not guarantee remission of the disease [63], and can even
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lead to aggravation of the AD condition by further affecting the epidermal structure [64, 65, 66].
The complexity of understanding and treating AD is further increased by the facts that several

different predisposing genetic [43, 73, 74, 75, 76, 47, 77] and environmental [40, 11, 47, 48,
49, 50] risk factors have been linked to the development of AD, and that the pathogenesis of
AD comprises several different phases, characterized by distinctive epidermal phenotypes of
increasing severities [25, 81]. Together, these two observations suggest that effective treat-
ment strategies must account for the risk-factor and disease-stage dependent, patient-specific
pathogenic process of AD. Hence, devising effective treatment for AD is a challenging task
that requires a mechanistic and clear understanding of the full pathogenic process of AD.
AD results from dysfunction of the regulatory networks of biochemical and cellular interac-
tions that control epidermal homeostasis [43, 73, 74, 75, 76, 47, 77, 40, 11, 47, 48, 49, 50],
leading to the impaired immune responses and barrier function that characterize the damaged
epidermis of AD patients. In fact, the pathogenic effects of the predisposing risk factors for
AD have been attributed to the impact of these genetic or environmental conditions on the reg-
ulatory networks controlling epithelial homeostasis [43, 74, 47, 40, 50]. However, due to the
strong connectivity of these regulatory networks, the disturbances elicited on them by indi-
vidual risk factors can propagate [8, 36, 13], gradually affecting the whole regulatory network
controlling epithelial homeostasis and resulting in disease phenotypes of increasing severities
[25, 82]. Thus, understanding the relative contributions of the individual risk factors on the
pathogenesis of AD requires a systems-level framework, that considers the interplay between
the co-regulated network components that control epithelial function.
Here, we propose such a systems-level framework, in the form of a mathematical model of
the regulatory mechanisms that control epithelial function and that are affected by the different
risk factors that predispose to AD. Through mathematical modelling, we aim to uncover the
mechanisms that underlie pathological dynamics, as proposed in [83].
In this thesis (chapters 2, 3, 4, 5 and 6), we build on the previous research from our group
[84] to propose the first mathematical model of AD. The focus of our model is the analysis
of the complex interplay that exists between the permeability barrier function and the immune
responses to invading pathogens. For this, we consider different time-scales to simultaneously
describe the slow, cellular level processes and the fast, biochemical reactions that, together,
maintain epidermal homeostasis.
The resulting mathematical model provides a coherent explanatory framework for different
pathogenic mechanisms that can result in an AD condition.
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1.2 Reducing the prevalence of infection by Streptoccoccus
pneumoniae requires new treatment strategies

Yearly, 14.5 million severe cases of infection and 820 000 deaths are caused by Streptoccoccus

pneumoniae [21]. Further, the effectiveness of treating infection by Streptoccoccus pneumo-

niae and other bacterial pathogens is threatened by the incipience of antibiotic resistance [23].
Thus, new therapeutic strategies for preventing and treating infection by Streptoccoccus pneu-

moniae are required. For this, a mechanistic and quantitative understanding of the infectious
process is necessary.
Steptococcus pneumoniae is a bacteria that normally resides in the upper airway epithelium as
a commensal organism that does not cause infection. However, circumstances such as colo-
nization of the airway epithelium by other pathogens including Haemophilus influenzae, can
trigger an infectious process by Steptococcus pneumoniae, eventually developing into a severe
infection [21, 69].
Systemic infection by Steptococcus pneumoniae starts by impaired host-pathogen interactions
between the upper airway epithelium and Steptococcus pneumoniae. This disruption is often
triggered by the presence of a second pathogen [78, 69], but the exact pathogenic mechanisms
are not clear.
An appropriate host response that prevents infection requires a competent epithelial barrier
function and immune responses. However, these two protective properties of the epithelium
inhibit each other. On the one hand, a competent barrier not only restricts bacterial invasion
[85, 68, 38], but also limits the access of components of the immune systems to the site of in-
fection [30, 86, 71, 87]. On the other hand, while reducing the pathogen load [88, 89], immune
responses also damage the epithelial barrier [30, 86, 71, 87].
Thus, infection results from an unbalanced host-response to the invading pathogen [90]. Under-
standing the mechanisms by which co-pathogenesis triggers infection hence requires a quanti-
tative systems-level framework that considers the complex interplay between barrier function,
immune responses and pathogen load.
In this thesis (chapter 8), we propose a mathematical model of the host pathogen interactions
between Streptococcus pneumoniae and the upper airway epithelium.
Our model builds on previous models of pneumococcal infection [91, 92, 93, 94], and consid-
ers, for the first time, the role of the epithelial barrier in mediating the infectious process, as
well as the complex interplay between barrier function and immune responses.
Our data-driven mathematical model was calibrated with experimental data, and uncovered
different potential mechanisms that can result in infection.
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1.3 Previous mathematical models of epithelium homeosta-
sis

The mathematical models proposed in this thesis correspond to dynamical descriptions of the
regulatory networks controlling epithelial homeostasis.
We focus on the interplay between the two protective properties of the epithelium, namely the
immune responses and permeability barrier function. In our models, we represent the intercon-
nected processes that control the biochemical and cellular mediators of the immune response
and barrier function by coupled systems of ODEs that operate at different time-scales.

Many of the previous mathematical models of epithelium function consider either perme-
ability barrier function, or the immune responses to infiltrating pathogens. Only a handful
of models explore how epithelium homeostasis is maintained through a controlled interplay
between immune responses and the permeability barrier function.

Two types of models explore permeability function of epithelial tissues.
The first type encompasses the pharmacokinetic models, which assess the relation between
structure and composition of epithelial barriers (particularly, the skin barrier) with the perme-
ability barrier function. These models are commonly used to gain a quantitative understanding
of the penetration of substances (such as topical drugs) through the epidermis [95].
The second type of models focuses on exploring how the structure of epithelial tissues (partic-
ularly, epidermis [56, 57, 58, 59] and the intestine [60, 61]), is regulated. The dynamics of the
epithelial cells are represented by multi-scale models, that consider the interplay between birth,
death, migration and differentiation of sub-populations of cells in the tissue, and the biochem-
ical processes that operate within the individual cells. The mathematical formalisms used for
the construction of these models comprise deterministic rule-based representations of the cel-
lular kinetics [56, 57, 58], stochastic agent-based models [96] and PDEs [61, 59],allowing the
analysis of the spatial regulation of epithelial tissues. These modes were used, for example, to
understand the mechanisms responsible for the self-renewal of healthy epidermis [56, 57, 58],
as well as diseases such as psoriasis [96, 97], tissue damage by Human Papilloma Virus (HPV)
[59], and colorectal cancer [60, 61].

Some other mathematical models have focused on the immune responses that occur on ep-
ithelial tissues. For example, the ODE-based model of [98] considers the immune responses
elicited by macrophages in response to cholesterol that leaks through a disrupted endothelium.
This model could capture the early stages of atherosclerosis, although it neglects the effects of
chronic, tissue-damaging inflammation on the endothelial barrier function, although a impaired
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permeability barrier function is also a characteristic feature of this disease [98].
The ODE-based mathematical model of [99] describes how dose-response curves of cytokines
are affected by different micro-environments. The different dose-response behaviours are ob-
tained by simulating the interplay between different populations of cytokine-producing cells
that occur in healthy or in psoriatic epidermis.
Most of the mathematical models of host-pathogen interactions that occur at epithelial surfaces
focus on the relation between different pathogens and the immune responses. For example,
the ODE model proposed in [100] explores the host response to E coli to understand mastitis.
Also, the model in [101] considers the mechanisms leading to infection in the stomach by Heli-

cobacter pylori. Mechanisms leading to pneumonia, a infection that results from impaired host
response between Steptococcus pneumoniae and the airway epithelium, have been analysed in
the models proposed in [91, 94] and [92] that do not consider the permeability barrier function.
More abstract models [102, 103] have focused on the dual effect of immune responses on
pathogen load. On one hand, immune responses can lead to effective elimination of the pathogen,
and on the other, persistent immune responses result in tissue damage that promotes further
pathogen growth.
Several mathematical models of viral infection consider the role of the epithelium mediating
viral replication, but neglect its permeability barrier function that hinders the infection of the
blood stream or other organs [5]. Examples include the models of infection by Influenza A
virus [104, 105], by Epstein Barr virus [106], and of the dynamics of foot-and-mouth disease
[107].

Previously, two mathematical models that consider the role of the dual interplay between
the the permeability barrier function and the immune responses have been used to uncover
the mechanisms that are responsible for the development of diseases associated to the loss of
epithelium homeostasis, namely Inflammatory Bowel Disease (IBD) [108] and colon cancer
[109].
The mathematical model of IBD proposed in [108], considers the interplay between pathogens,
epithelial barrier function and the immune responses. IBD is characterized by a recurring in-
flammatory response to commensal bacteria of the gut, caused by a decreased amount of anti-
inflammatory immune response mediators that lead to a increased propensity of inflammation in
IBD patients. In their ODE model, IBD is represented by setting a non-zero rate of production
of immune cells that both amplify the inflammation and also damage the epithelium. Simula-
tions of a nominal interaction network reproduces the characteristic, transient immune response
and barrier damage that results from a bacterial challenge observed in healthy patients. In con-
trast, simulations of the IBD condition results in a chronic decrease in the epithelial barrier
function and unresolved inflammation, typical of IBD patients. Thus, their model successfully
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reproduces the IBD phenotype.
The mathematical model of [109] explores the chronic inflammation associated to colon cancer
by representing and analysing the interplay between inflammation, tumour growth, and barrier
function. In their ODE model, inflammation induces tumour growth, and is counteracted by
a competent barrier function. The tumour suppressor p53 increases the production of barrier
components (mucin), and the oncogene APC increases the growth rate of the tumour. Simula-
tion of oncogenic mutations (loss of function of p53 or gain of function of APC) appear as a
increased tumour size.

These two mathematical models are useful to understand the mechanisms that lead to the loss
of homeostasis of intestinal epithelium. However, to explore if AD and upper airway infections
result of a imbalanced dual relation between barrier function and immune responses, mathe-
matical models of the epithelium that are tailored specifically to the epidermis and the upper
airway epithelium, respectively, are necessary.

The first mathematical model of AD was proposed in [84]. It consists of a mechanistic char-
acterization of the protease networks that control both barrier function and epidermal inflam-
mation. Simulations of the ODE model, assuming genetic (low expression of a protease in-
hibitor) or environmental (increased pH) risk factors known to predispose to the disease, effec-
tively reproduces the increased propensity of inflammation that is typical of AD patients. This
mathematical model, however, does not consider the tissue-level effects of active proteases,
given by a decreased epidermal permeability and increased immune responses that result from
protease-dependent skin desquamation [110] and cytokine expression [111, 112]. The pivotal
role of these proteases in the development of AD is attributed to these two tissue-level effects
[113, 114, 111, 115], that must be considered in a multi-scale framework that relates the inter-
play between protease activity, barrier function and immune responses. In this thesis, we build
on the mathematical model of [84] (described in more detail in section 3.2.3), and explicitly
consider, for the first time, how increased protease activity can lead to tissue damage in the
form of loss of epithelial homeostasis.
Very few mathematical models of host-pathogen interactions occurring at epithelial surfaces
explicitly consider the role epithelial permeability barrier function in mediating the outcome of
the infection. The model proposed in [93] considers, for the first time, the role of the epithelial
barrier in mediating infection by Steptococcus pneumoniae, although it does not consider the
interplay between barrier function and immune responses.

This interplay is given by the tissue-damaging effects of immune responses, and by the in-
hibition of the neutrophil transmigration by a competent epithelial barrier [30, 86, 71, 87]. The
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tissue-damaging effects of neutrophil transmigration are major determinants of the pathology
of infection [31, 30]. Therefore, we believe that it is important to explicitly consider the dual
relation between immune responses and barrier function.
The mathematical model of the host-pathogen interactions between Streptococcus pneumoniae

and the upper airway epithelium proposed in this thesis (chapter 8) builds on the models pro-
posed in [93, 91, 94, 92] and explicitly considers, for the first time, the dynamic interplay
between the epithelium barrier function and the immune responses.
Taking together, in this thesis, we propose the first mathematical models of AD (chapters 2-7)
and upper airway infection (chapter 8) that consider the dual interplay between barrier func-
tion and inflammation. Our models are conceptually similar to the models of Wendelsdorf et
al (2010) [108] and Lo et al (2013) [109], but are specifically tailored to different types of
epithelium (epidermis and upper airway epithelium). Further, as will be discussed in coming
chapters, our modelling approach is based on modularity and time-scale separation of different
model components, rather than being a explicit representation of the entangled biochemical re-
actions controlling epithelial function, as in the models of Wendelsdorf et al (2010) [108] and
Lo et al (2013) [109].

1.4 Motivation of the thesis

The research presented in this thesis is motivated by the clinical and social importance of un-
covering the mechanisms that underlie the onset and progression of diseases associated to the
loss of epithelial homeostasis.
These diseases include infections [3, 4, 5, 6], allergies [7, 8, 1, 9, 10, 11, 12, 13], and cancer
[14, 15], affecting a wide proportion of the population worldwide [16, 17, 18, 19, 20, 18, 21,
22]. The high prevalence of these diseases can partly be attributed to the lack of understanding
of the underlying pathogenic mechanisms, that limits the effectiveness of the current treatments
and of preventive strategies [23, 24, 25, 12]. It is therefore urgent to uncover the pathogenic
mechanisms that result in loss of epithelial homeostasis, to find new ways to effectively pre-
vent and cure these clinically, socially and economically important diseases. In this thesis, we
focus on the analysis of one allergic (AD) and one infectious (pneumonia) disease. However,
we believe that the theoretical framework proposed in this thesis can be used to explore the
mechanisms that lead to the development of many other diseases that involve loss of epithelial
function, such as asthma [39], viral infections [5] and several forms of cancer [116, 14].

These diseases result from impaired networks of cellular and biochemical interactions that
control epithelial homeostasis. Particularly, alterations in the interplay between the two protec-
tive properties of the epithelium, namely the immune responses to environmental aggressors
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and the permeability barrier function, play a major role in driving these diseases. Thus, a
systems-level framework that allows the simultaneous consideration of the immune responses
and permeability barrier function, and serves as a tool to integrate and analyse experimental
and clinical data describing different regulatory components is required.
Currently, there exists no such a theoretical framework to represent the regulatory networks
that underlie epithelial homeostasis. It is therefore timely to develop such a theoretical and
integrative framework that allows the analysis of the mechanisms that are responsible for the
loss of epidermal homoeostasis, associated to the onset of many socially relevant diseases.

1.5 Aims and objectives

The general objective of the thesis is to gain a mechanistic understanding of the regulatory
networks that control epithelial homeostasis, and its role in the development of diseases that
involve loss of epithelial function, using a systems biology approach.
Particularly, the work presented in this thesis has following aims:

• To integrate scattered experimental and clinical data on the regulatory networks control-
ling epithelial homeostasis that underlie the pathogenic mechanisms of Atopic dermatitis
and infection of the upper airway by Streptococcus pneumoniae. Addressed in chapter 2

and section 8.3.

• To develop a mathematical modelling framework to represent the regulatory networks
controlling epithelial homeostasis. Addressed in chapter 3 and section 8.4.2.

• To uncover plausible patient-specific mechanisms that underlie the pathogenic process of
AD. Addressed in chapters 4 and 6.

• To use the insights gained from the mathematical model of AD to assess different patient-
specific treatment strategies for this complex disease. Addressed in chapter 5.

• To reach a qualitative agreement between the AD model simulations and experimental
data on the pathogenesis of the disease. Addressed in section 6.2.

• To apply the modelling framework, based on the analysis of the reaction networks under-
lying epidermal homeostasis, to another disease that involves loss of epithelial function.
Addressed in chapter 8

• To clarify different potential mechanisms that can lead to infection of the upper airway
epithelium by the commensal bacteria Streptococcus pneumoniae. Addressed in chapter

8.
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• To calibrate a model of the regulatory mechanisms that underlie epithelial homeostasis
with quantitative experimental data. Addressed in appendix B.

1.6 Main findings

The main findings of this thesis are as follows:

• The reaction network controlling epidermal homeostasis, reconstructed from existing ex-
perimental and clinical data (figure 2.3), contains the biochemical and cellular processes
from which the pathogenesis of AD can be reconstructed by in vitro simulations. These
modelling results suggest that the disease (AD) can emerge from the complex interactions
between the components of the reaction network that have been previously described in
the literature (chapters 4 and 6).

• The host-pathogen interactions between Streptococcus pneumoniae and the upper airway
epithelium that underlie the infection by this bacterium can be described by the reaction
network presented in figure 8.2. The validity of this model is supported by the quali-
tative agreement between the in silico simulations and experimental in vivo data (figure
8.4), and by the qualitative description of different infectious processes that have been
observed in the clinic (section 8.6).

• The epithelial barrier function components describe a self-recovering dynamical be-
haviour that arises from the underlying feedback control structure (section 3.3).

• The immune cells affecting epithelial inflammation can act as a frequency filter that dis-
criminates between different sporadic and recurrent events of cytokine release (section
3.4).

• The reaction networks controlling epithelial homeostasis can be decomposed into three
elementary building blocks, representing the self-recovering determinants of the perme-
ability barrier function, the switch-like release of pro-inflammatory cytokines, and the
persistence of immune cells (chapter 3). The control structure that underlies homeostasis
of the epidermis (figure 3.1) and the airway epithelium (figure 8.3) can be represented by
interplay between these regulatory modules.

• The mathematical modelling framework proposed in this thesis, based on modularity and
time-scale separation, can be used to qualitatively (epidermis) and quantitatively (upper
airway epithelium) describe the regulatory networks controlling epithelial homeostasis.
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• The interplay between the two protective properties of the epithelium (barrier function
and immune responses) must be tightly controlled by the underlying regulatory networks
of biochemical and cellular interactions to prevent the onset of diseases associated to
the loss of epithelial homeostasis. Indeed, our model analysis suggests that inherited or
environmentally determined weak barrier function or immune response can result in the
development of AD (figures 4.5 and 6.5 A) or infection (figures 8.12 and 8.13).

• Our mathematical model of AD is consistent with the clinical observation that this com-
plex disease can result from both genetic as well as environmental predisposing risk
factors (figure 6.5).

• Our mathematical model of AD provides a plausible mechanistic explanation of the pre-
ventive effect of emollient treatment (figures 5.3 and 6.5).

• Our mathematical model of AD explains why different cohorts of AD patients could
benefit from different pharmacological treatment (chapter 5).

• Simulations of our mathematical model of AD agree with different pathogenic mecha-
nisms that have been reported in the literature (section 6.2).

• Analysis of our mathematical model of the host pathogen interactions between the up-
per airway epithelium by the commensal bacteria Streptococcus pneumoniae identified
different mechanisms leading to loss of homeostasis (section 8.5)

1.7 Publications

• Elisa Domínguez-Hüttinger, Masahiro Ono, Mauricio Barahona, and Reiko J Tanaka.
Risk factor-dependent dynamics of atopic dermatitis: modelling multi-scale regulation
of epithelium homeostasis. Interface Focus, 3:20120090, February 2013.
Reproduced in chapter 4.

• A mathematical model that uncovers disease mechanisms of Atopic dermatitis: in silico

reproduction of the disease dynamics from early to advanced stages of the pathogenic
process. In preparation; results from chapters 5 and 6.

• Mathematical modelling of host pathogen interactions reveals patient-specific mecha-
nisms leading to infection. In preparation; results from chapter 8.
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1.8 Structure and overview of the thesis

This thesis is organized as follows: The mathematical model of the pathogenic mechanisms
that drive AD is presented in chapters 2-7.
Particularly, in chapter 2 we describe the regulatory network controlling epidermal homeosta-
sis. For this, we integrate clinical and experimental data from the literature that describe dif-
ferent individual components of the reaction network. We also describe different risk factors
that predispose for AD, as well as the clinical features of this disease, in the context of the
regulatory networks controlling epidermal homeostasis.
In chapter 3, we decompose the reaction network controlling epidermal homeostasis described
in chapter 2 into different regulatory modules. Using a combination of mathematical models
previously proposed in the literature, and new models that are proposed for the first time in this
thesis, we characterize each of these individual regulatory modules. We find that all of the reg-
ulatory modules considered in this thesis can be categorized into three types of network motifs
that can be distinguished based on their qualitative behaviours. The mathematical modelling
approach used in this thesis is briefly described in appendix A.
In chapters 4 and 6, using the network motif description developed in chapter 3, we re-assemble
the reaction network controlling epidermal homeostasis into mathematical models that describe
the cellular and biochemical interactions that underlie early (chapter 4) and late (chapter 6)
stages of AD. We analyse each of these two mathematical models, by asking how the risk fac-
tors that predispose to AD affect the functioning of the regulatory network controlling epithelial
homeostasis, eventually leading to the onset (chapter 4) and progression (chapter 6) of AD.
In chapter 5, we use the mathematical model that reproduces the early stages of AD to assess
the impact of different treatments, commonly used by AD patients, on the regulatory networks
controlling epidermal homeostasis that have been disrupted by a particular risk factor.
The general conclusions and future work of the results derived from the mathematical model
of AD (chapters 3-6) are presented in chapter 7.

The mathematical model of the host-pathogen interactions between Streptococcus pneumo-

niae and the upper airway epithelium that underlie pneumococcal infection is introduced, pre-
sented, analysed and discussed in the self-contained chapter 8. Details on the parameter esti-
mation for the pneumococcal infection model are given in appendix B.

The concluding remarks of this thesis are given in chapter 9.

Enjoy!
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Chapter 2

Reaction network controlling epidermal
homeostasis: the biology of Atopic
dermatitis

2.1 Introduction

This section is devoted to the description of the reaction network controlling epidermal home-
ostasis. We integrated scattered clinical and experimental data on the individual reactions
controlling epidermal function into a systems-level representation, which we call the reaction
network controlling epidermal homeostasis. Proper functioning of this reaction network is
required for healthy epidermal functioning, and loss of epidermal homeostasis, resulting from
deregulation of this reaction network, underlies Atopic dermatitis (AD). In subsequent chapters,
we will propose mathematical models of AD by representing (parts of) this reaction network.
This chapter is organized as follows:
First, in section 2.3, we will give a clinical description of AD, by giving an overview of the
hallmarks of AD skin, the predisposing risk factors, and the main treatments for this disease.
Next, in section 2.4 we provide a more detailed description of the reaction networks control-
ling epidermal homeostasis (i.e. the underlying biology). We will focus on the keratinocyte,
because: (1) it is the most abundant cell type of the epidermis, and the epidermis enacts the
epithelial constituent of the skin, (2) it enacts both barrier and immune regulatory functions,
corresponding to the two regulatory properties of the epithelium we are interested in, and (3) it
is in direct contact with the environment, and must therefore constantly integrate and respond
to changing environmental conditions, via its reaction networks.
While describing the reaction network controlling epidermal homeostasis, we will pinpoint the
components of the network that are affected by the risk factors predisposing for AD. Identi-
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fying the risk factors in the context of the complex, strongly interconnected reaction networks
that they affect, will evidence the need of a mathematical model of AD to uncover the disease
mechanisms triggered by the different risk factors.

2.2 Structure and function of the epidermis

AD is a disease that affects mainly the epidermis, which is a type of stratified epithelium that
enacts the upper layer of the skin (figure 2.1). The epidermal tissue is mainly composed by ker-
atinocytes at different levels of differentiation [17]. The basal layer is composed by undiffer-
entiated and proliferative keratinocytes (basal cells). Upward movement towards the granular
layer is accompanied by expression of differentiation markers, such as components of the skin
barrier, intercellular junctions (the desmosomes), proteases, immune receptors and lipid mod-
ifying enzymes. The granular layer forms the last and most differentiated viable layer of ker-
atinocytes. For simplicity, in figure 2.1, only the basal and the granular layers are represented.
The uppermost layer of the epidermis is the skin barrier. It is formed by dead keratinocytes
[117] that are held together by inter-cellular junctions, called desmosomes, and are embedded
in a lipid matrix. This ”brick and mortar” like structure [33] hinders the penetration of environ-
mental aggressors, including pathogens, into the viable layers of the epidermis. A competent
barrier is also essential to prevent excessive loss of water that can lead to dehydration [118].
Accordingly, a leaky barrier, resulting, for example, from excessive protease activity that leads
to increased desquamation of inter-cellular junctions and inhibits the formation of the lipid ma-
trix [119], leads to invasion of the viable epidermis by environmental factors [33]. Infiltrated
pathogens are recognized at the granular layer by immune receptors, triggering immune re-
sponses that decrease the pathogen load but also can lead to the activation of adaptive immune
responses via Dendritic cells (DC) [67, 7, 49]. Together, barrier function and immune responses
to infiltrating pathogens provide the protective function that characterizes the epidermis [33].

In this research, we pay special attention to the keratinocytes that form the granular layer,
because these are the uppermost cells in the viable epidermis and are hence closest to the
environment. As such, these keratinocytes play a central role in mediating, responding and
adapting to changing environmental conditions. This complex signal processing is achieved by
the biochemical networks of regulatory interactions that are explained in detail later in this
chapter.
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Figure 2.1: Structure and protective functions of the epidermis. The epidermis is a stratified
epithelium composed by keratinocytes at different levels of differentiation: Cells in the basal
layer gradually differentiate until forming the granular layer. Eventually, cells in the granular
layer release their lipids and die to form the skin barrier. One of the main functions of the skin
barrier is to hinder the penetration of environmental aggressors, including pathogens, into the
viable layers of the epidermis. Accordingly, a leaky barrier, resulting from excessive desqua-
mation and reduced skin barrier formation, caused in part by over-active proteases, leads to
invasion of the viable epidermis by pathogens. Infiltrated pathogens are recognized at the gran-
ular layer by immune receptors, triggering immune responses that decrease the pathogen load
but eventually also lead to tissue-damaging inflammation.

2.3 Symptoms and predisposing risk factors for Atopic der-
matitis

AD is a complex disease. First, because it has a complex phenotype, given by several symp-
toms such as a dysfunctional skin barrier [7], infection [6], increased inflammation [81, 120]
and allergy [121]. Second, because several genetic [77, 6, 47, 122, 75, 74, 76, 123] and envi-
ronmental [47, 124] predisposing risk factors for AD have been identified as potential triggers
of the disease. These include mutations or polymorphisms affecting skin barrier components
[43, 73, 125, 126, 127] and immune responses [77, 6, 47, 122], prolonged use of hard water
[124], increased [49] or decreased [47] exposure to environmental aggressors, and excessive
use of soaps and detergents [124, 128], among others.
The pathological process of AD is further complicated by the fact that the impaired AD epider-
mis can lead to the emergence of further risk factors. For example, chronic inflammation can
impair the genetic expression levels of barrier components, and and a weak barrier function can
alter the micro-environmental conditions of the epidermis (increase in pH). This dual interplay
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between AD risk factors and symptoms is responsible for a gradual worsening of the disease
and the intricate disease mechanisms that characterize AD.

2.3.1 AD characteristics

The epidermis of AD patients is characterized by following symptoms [17] (figure 2.2A):

• Dysfunctional skin barrier, leading to a increased permeability to environmental aggres-
sors, such as pathogens and allergens. Loss of barrier function also results in skin dehy-
dration, leading to a dry and scaly skin [7].

• Propensity for infection by bacteria such as Staphylococcus aureus [6, 129].

• Frequent [81] and long-lasting [120] inflammation that is sometimes accompanied by
allergic reactions to ubiquitous environmental insults [121].

The pathological process of AD is further complicated by the fact that the impaired AD
epidermis can lead to the emergence of further AD characteristics. For example, a chronic
inflammation can impair the genetic expression levels of barrier components, and and a weak
barrier function can alter the micro-environmental conditions of the epidermis (increase in pH).
This dual interplay between AD risk factors and symptoms is responsible for a gradual wors-
ening of the disease and the intricate disease mechanisms that characterize AD. The causal
relations between these AD sympoms is given by (figure 2.2):

(1) Dysfunctional skin barrier leads to an increased permeability to environmental factors,
such as pathogens, thus, increasing the susceptibility for infection [7, 13].

(2) Increased pathogen load in the viable epidermis weakens the skin barrier by the interfer-
ence of the pathogens with the barrier repair mechanisms of the host [130, 119].

(3) Augmented pathogen load further promotes inflammation [13].

(4) Excessive inflammation weakens the pathogen-eradicating innate immune responses, fur-
ther increasing the propensity for infection [6].

(5) Sustained inflammation further impair barrier function by interfering with gene expres-
sion programs that control the barrier remodelling process [36].

This interplay, depicted in figure 2.2B, has two important consequences.
First, it can lead to a gradual worsening of the disease. While early stages of AD are char-
acterized by occasional flares of barrier damage and innate immune responses to infiltrating
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pathogens [49], during late stages of the disease, AD skin suffers from unresolved inflamma-
tion [81], sustained barrier defects [131, 132], secondary infection [133] and tissue remodelling
[134, 135]. It is hence clear that gaining a mechanistic understanding of the early phases of the
disease process is clinically relevant, since this will help to devise early therapeutic interven-
tions that can prevent the onset of late, severe forms of the disease.
Second, this strong connectivity between the above mentioned symptoms suggests that there
are several different potential triggers of the disease process. Indeed, as we will see in the next
section, there are different genetic and environmental risk factors that predispose for AD that
directly affect either pathogen load, immune responses or barrier function. Once initiated the
pathogenic process, any of these risk factors can lead to the development of a full AD phe-
notype, i.e. to the (progressive) impairment of pathogen load, immune responses and barrier
function.

Pathogen

Skin5barrier

Viable5
epidermis

Dendritic5cell

Allergy

Dysfunctional

Inflammation

Infection

1

2

3

45

Dysfunctional5
barrier5

Inflammation

Infection

4

5

1
2

(A) (B)

Figure 2.2: Causal interplay between the symptoms of Atopic dermatitis Cartoon (A) and
network (B) representation of the interplay between the different symptoms of AD. (1) A dys-
functional skin barrier leads to an excessive penetration of environmental aggressors. (2) Infil-
trated pathogens trigger further barrier damage by interfering with skin barrier repairing pro-
grams. (3) Increased load of infiltrated pathogens induce immune responses, eventually lead-
ing to inflammation and allergy. (4) Inflammation weakens the pathogen-eradicating innate
immune responses. (5) Tissue-damaging inflammation interferes with the barrier formation
process.
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2.3.2 Genetic and environmental risk factors for AD

AD is a complex disease, because there are several different genetic and environmental risk
factors that predispose to this disease [124]. These risk factors can be divided into three main
categories, depending on which aspects of the epidermis they affect (summarized in table 2.1):

• Risk factors affecting skin barrier function. These risk factors affect the levels of
expression of structural components of the skin barrier, most notably the protein filaggrin
[43, 73, 125]. Filaggrin is responsible for cross-linking between the extracellular lipid
envelope and the intercellular cytoskeleton of the keratinocytes that form the skin barrier
[136], and has been identified as a key determinant of the permeability barrier function of
the epidermis [73]. Changes in gene expression of filaggrin and other components of the
skin barrier can be driven by genetic risk factors, such as polymorphisms [126, 127] or
mutations [73], but also by a long-term exposure to pro-inflammatory cytokines [137, 29,
138] and by changes in barrier function [139, 140]. It has been suggested that expression
of barrier components can also be affected by prolonged use of hard water [124], likely
due to the interference of the high calcium concentrations contained in hard water with
the regulation of terminal differentiation of the keratinocytes [141, 45, 142, 140].

• Risk factors affecting immune responses. These risk factors affect the functioning of
the signalling cascades that determine the innate immune reactions that occur in response
to infiltrated pathogens [143]. Alterations in these signalling cascades can result from
genetically (polymorphisms) [77, 6] or environmentally [47] determined changes in the
levels of expression of innate immune receptors (TLR4 [47]), cytokines (Interleukin 1
(IL1) [122]), anti-inflammatory cytokines (IL1 receptor antagonist [77]), and endogenous
antibiotics termed Anti-microbial peptides (AMPs) [6]. Also environmental factors can
affect the functioning of the signalling cascades. Particular attention has received the so
called hygiene hypothesis, which states that that a defective development of the innate
immune system, responsible for reduced levels of immune system components, can also
result from the lack of contact with pathogens in very early stages of life [47].

• Risk factors affecting protease activity. The protease kallikrein (KLK) affects both
the immune responses [111, 112, 144] and the skin barrier function [113, 144, 145]. In-
creased KLK activity can result from frequent use of soaps and detergents [124] that rise
the pH, increasing the catalytic activity of these enzymes [128], from genetically deter-
mined decrease in the expression of the protease inhibitor LEKTI [75, 74], or from the
increased expression and activity of the protease [76, 123]. The role of the levels of ex-
pression of the protease inhibitor LEKTI on the development of AD is further supported
by the strong resemblance between the phenotype of Netherton Syndrome, a mendelian
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disease caused by a loss of function mutation of SPINK5 gene (that encodes LEKTI),
and severe forms of AD [74]. Also, the key role of the activity of the protease KLK on
the development of AD is evidenced by transgenic mice in which the overexpression of
KLK leads to the development of an AD- like phenotype [123].

Not only the pathogenic process of AD can be triggered by several genetic and environ-
mental risk factors, but there is also a synergy between them, because the presence of two or
more risk factors dramatically increases the susceptibility to develop AD [146, 132].
Once the pathogenic process has been triggered by any of these risk factors, the AD condi-
tion can be further aggravated. This is because dysfunctional epidermis displays an altered
micro-environment that can trigger the emergence of further risk factors. For example, per-
sistent inflammation and altered barrier function that characterizes AD skin (see section 2.3.1)
can lead to the decrease in the expression of filaggrin [138] and AMPs [47]. This causal rela-
tion between risk factors is responsible for the gradual disease aggravation discussed in section
2.3.1.
To assess the impact of the different risk factors on the epidermal function, how they contribute
to the onset of the pathogenic process, what causes the synergy between them, and what are
the mechanisms that underlie the gradual aggravation of the AD condition, it is necessary to
pinpoint the exact biochemical targets of these risk factors within their regulatory context, to
showcase how these impaired biochemical components are related among them. For this, in
the next section, we give a detailed description of the reaction network controlling epidermal
function.

2.4 Reaction network of biochemical interactions controlling
epidermal homeostasis

A healthy epidermis is given by a low pathogen load, a competent skin barrier, and infrequent
immune responses that resolve easily. To maintain this homeostatic condition, intricate reg-
ulatory networks of biochemical interactions control barrier function, immune responses, and
pathogen load (figure 2.3 A).
Proteases (figure 2.3 B) play a key role in the maintenance of epidermal function [147], par-
ticularly kallikreins (KLK) [144], because they affect both immune responses [130, 112] and
barrier function [110, 113]. They are activated by infiltrating pathogens [130, 148] and by
changes in barrier function [149], acting both as sensors and modulators of epidermal function.
Changes in the pH of the skin, driven by soaps or detergents, can increase the catalytic activity
of KLKs [128]. Changes in the gene expression of the gene encoding for KLK [76] or its in-
hibitor LEKTI [75] can also increase the activity of KLK.
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Table 2.1: Major genetic and environmental risk factors predisposing to the development of
AD

Genetic (Mutations, polymorphisms) Environmental (including an altered
micro-environment)

Risk factors affecting skin permeability barrier function
Mutations or polymorphisms of the Filag-
grin gene [43, 73]

Prolonged use of hard water (impaired epi-
dermal calcium gradient) [124]
Pro-inflammatory micro-environment [137,
29, 138]
Impaired barrier function [139, 140]

Risk factors affecting immune responses
Polymorphisms in the gene encoding for the
IL1 receptor antagonist [77]

Lack of contact with pathogens in early stage
of life, associated to the impaired develop-
ment of innate immune system (Hygiene hy-
pothesis) [47]

Decreased expression of TLR2 [37]
Risk factors affecting protease activity

Polymorphisms in the SPINK5 gene [75, 74] Prolonged use of soaps and detergents,
which increase skin pH [124]

Polymorphisms affecting protease expres-
sion [76, 123]

A competent barrier (figure 2.3 C), achieved by the combination of extracellular lipids, in-
tracellular junctions (corneodesmosomes, CDS), and intercellular structural proteins such as
filaggrin, hinders the penetration of external pathogens. Its function can be affected by ex-
ternal aggressors, such as tape strip or acetone treatment, as well as by the expression of its
constituents, most notably, filaggrin [127]. Barrier function is modulated by KLKs [110, 113],
pro-inflammatory cytokines [137, 29, 138] and by changes in the epidermal calcium gradient
that results from skin barrier disruption [139, 150, 151]. Barrier function is commonly mea-
sured by Transepidermal Water Loss (TEWL), that quantifies the permeability of the epidermis
and is hence negatively related to barrier function [152].
Infiltrated pathogens (figure 2.3 D) trigger immune responses by activating signalling path-
ways induced by TLR [153] (figure 2.3 E), Interleukin IL1 [154] (figure 2.3 F), and proteases
[155, 130] (figure 2.3 B). Once activated, these signalling pathways trigger immune responses
in the form of release of AMPs [114, 34], recruitment of neutrophils [156, 144] and phagocy-
tosis [157] that, together, reduce the pathogen load.
Excessive activation of innate immune responses can lead to the activation of Th2 mediated
adaptive immune responses (figure 2.3 G). Pro-inflammatory cytokines, such as TLSP, are in-
duced by innate immune response signalling cascades [111], and trigger the migration of den-
dititic cells (DC) to the lymph nodes (figure 2.3 A,II). There, DC induce the differentiation of
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naïve T cells into Th2 cells [158] via the IL4 dependent activation of the Gata3 pathway [159].
This process, known as allergic sensitization [160, 161, 9], is responsible for the allergic com-
ponent of AD, as well as for the establishment of the pro-inflammatory micro-environment in
the skin that further interferes with barrier function [137].
This regulatory interplay between pathogen load, immune responses, barrier function and pro-
tease activity is depicted in figure 2.3 A; a overview of the connectivity is represented in the
inset of figure 2.3 A. Detailed description of the individual modules (figures 2.3 B-F) is given
below.

2.4.1 Protease networks: Regulation of kallikrein (KLK) activity

The activity of the protease KLK must be tightly controlled to maintain a proper epidermal
function, because active KLK (KLK∗ in figure 2.3 B) and its target receptor, the protease ac-
tivated receptor PAR2, play major regulatory roles in the determination of barrier function
[110, 113] and immune responses [130, 112]. Particularly, active KLK controls the desqua-
mation of the skin barrier via the pH-dependent degradation of CDS [113, 128, 145]. Acti-
vated PAR2 (denoted by PAR2∗ in figure 2.3 B) inhibits the deposition of lipids into the skin
barrier [113], and increases the expression of pro-inflammatory cytokines, such as IL1a, IL6,
IL8, TNF-α [130], ICAM2 [112] and TSLP [111, 162]. Active PAR2 also mediates the im-
mune responses to infiltrating pathogens, by increasing the expression of AMPs such as hBD-
2 [130, 114], inducing keratinocyte phagocytosis [157] and triggering neutrophil recruitment
[156].
The regulation of KLK activity involves several processing steps and different mediators. First,
inactive KLK must be expressed and packed into LB (figure 2.3 B,1) and released into the ex-
tracellular space (figure 2.3 B,2). These processes are mediated by barrier function (via changes
in TEWL [163, 149] and in the epidermal calcium gradient [164]), and by infiltrated pathogens
(via TLR signalling [148]).
Once released into the extracellular space between skin barrier and granular layer, the inactive
KLK cleaves itself, in a auto-catalytic, pH dependent manner [128] (figure 2.3 B,3). Active
KLK can be inhibited by LEKTI, via the formation of an inactive heterodimer [165] (figure
2.3 B,4). Also this process is pH dependent [166]. The epidermal pH can be affected by im-
moderate use of soaps and detergents [124]. All the pH dependent reactions are represented
by red arrows in figure 2.3 B. Active KLK [111] and also exogenous proteases from infiltrated
pathogens such as S. aureus [130, 162] cleave and activate PAR2 (figure 2.3 B,5, active PAR2
denoted by PAR2∗).
Noteworthy, the activity of KLK is increased in the disrupted skin of many AD patients, sug-
gesting that KLK activity plays also a clinically important role in the maintenance of epidermal
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homeostasis. Partly, this high KLK can be attributed to alterations in the levels of expression of
the key components of the KLK regulatory network (KLK [76], PAR2 [112] and LEKTI [75]).
In some (but not all) patients, these alterations are caused by genetic variants termed Single
Nucleotide Polymorphisms (SNPs) [75, 76] (represented by green arrow in figure 2.3 B). The
catalytic KLK activity can also be increased by the excessive use of soaps and detergents that
increase the epidermal pH [124] (represented by red arrows in figure 2.3 B).

2.4.2 Skin barrier function

The permeability barrier function of the epidermis is enacted by the skin barrier, also known
as stratum corneum, which is the uppermost layer of the epidermis. It is formed by death
keratinocytes (the corneocytes), embedded in a lipid matrix termed ”corneal envelope”, and
hold together by strong intercellular junctions (the corneodesmosomes, CDS) [33]. Strong
cohesion between the corneocytes is further provided by filaggrin, a protein that is responsible
for cross-linking between the extracellular corneal envelope and the intercellular cytoskeleton
[136]. Together, corneosomes [167, 113], lipids [168, 169], and filaggrin [73] are the key
biochemical determinants of the permeability barrier function.
Regulated production and formation processes of these three skin barrier components are hence
pivotal for maintaining a competent barrier. The expression of CDS (figure 2.3 C,1) and of
the unprocessed and inactive filaggrin precursor pro-filaggrin (figure 2.3 C,2) are decreased
by pro-inflammatory cytokines, including IL4 [170, 138], IL13 [137], and IL22 [29] The de

novo production of lipids and packing into LB (figure 2.3 C,3) requires the expression of lipid-
modifying enzymes [169, 171]. The levels of expression of pro-filaggrin [140, 138, 163, 172,
142], CDS [173] and lipid-modifying enzymes [173] are further affected by changes in the
permeability barrier function (via changes in TEWL and the epidermal calcium gradient). To
become part of the lipid matrix, lipids must be released from their containing LB into the
extracellular space [174] (figure 2.3 C,4). This process is induced by skin barrier disruption
[174, 150, 140, 175] and inhibited by active PAR2 [113]. To become a functional part of the
skin barrier, filaggrin must be post-translationally modified (figure 2.3 C,5), a process that is
mediated by several proteases, including Caspase 14 (Casp-14) [176], SASPase [177], and
ELA2 [178]. Casp-14-mediated activation of pro-filaggrin is induced by barrier damage, via
changes in TEWL [139], enacting a negative feedback control mechanism.
The key determinant in the desquamation of the skin barrier is active KLK, by cleaving the
CDS (figure 2.3 C,6) in a pH dependent manner [113, 128, 145].
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2.4.3 Regulation of infiltrated pathogen load

The pathogen load in the viable epidermis is controlled by the two protective properties of
the epithelium: the permeability barrier function and the immune responses. The infiltration
of pathogens from the environment to the viable epidermis is determined by the permeability
barrier function [7, 132] (figure 2.3 D,1). The rate of infiltration of external aggressors is also
dependent on the amount of stimuli in the environment [49].
Elimination of the pathogen is triggered by immune responses (figure 2.3 D,2) in the form
of AMPs [6, 144, 179, 114, 133] neutrophil recruitment [144, 180] and phagocytosis of by
epidermal cells [157]. Neutrophil recruitment to the site of infection in response to activation
of immune response pathways is a cellular level process, represented in figure 2.3 A,I. The rate
of elimination of invading pathogens can also be increased by antibiotics [129, 81, 24].

2.4.4 IL1 and TLR mediated immune responses

The focus of this thesis is on KLK-mediated immune responses, due to the pivotal role KLK
activity in mediating both immune responses and barrier function, the two protective properties
of the epithelium that must be tightly co-regulated to maintain homeostasis.
However, also the signalling pathways triggered by Interleukin-1 (IL1) and Toll-Like receptor
(TLR) activation, respectively, seem to play important roles in mediating the innate immune
responses in AD skin, since their activity is often impaired in AD patients [181, 77, 182, 183].
TLR signalling is triggered by a broad range of infiltrated pathogens, via the association of
Pathogen-Associated Molecular Patterns (PAMP) to the TLR [184] (figure 2.3 E,1). Upon ac-
tivation, TLR pathway induces the activation of the Transcription Factor (TF) NFκB (figure
2.3 E,2), which results in the increased expression of AMPs [153] and pro-inflammatory cy-
tokines such as IFN-γ [122] (figure 2.3 E,3).
Infiltrated pathogens lead to the expression of inactive, pro-IL1 (figure 2.3 F,1) via the induc-
tion of TLR signalling by PAMPs [122]. PAMPs also trigger the activation of pro-IL1 into
IL1∗ by inducing its inflammasome- mediated cleavage (figure 2.3 F,2). Active IL1 forms a
binds to IL1 receptor (IL1R) to form the heterodimer IL1∗1R (figure 2.3 F,3), which results in
the activation of a NFκB-dependent signalling pathway (figure 2.3 F,4), resulting in the release
of pro-inflammatory cytokines and a further increase in pro-IL1 expression (positive feedback
loop). The receptor antagonist IL1Ra inhibits IL1 signalling by associating with IL1 receptor,
forming an inactive complex (figure 2.3 F,5) [154].
In many AD patients, SNPs affect the expression of IL1 [182] and of IL1Ra [77] (represented
by green arrows in figure 2.3 F).
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2.4.5 Adaptive immune responses drive Th2 polarization

The differentiation of naïve T cell into Th2 cells, a process known as Th2 polarization [39],
plays a major role in the pathogenesis of AD, particularly during the advanced stages of
the disease. Polarization of Th2 cells (1) triggers the onset of allergic reactions through a
process termed allergic sensitization [160, 161, 27], (2) leads to the establishment of a pro-
inflammatory environment in the epidermis, and (3) contributes to the chronic inflammation
that is typical of AD lesions from patients at severe stages of AD [185, 186]. Moreover, the
pro-inflammatory micro-environment interferers with the epidermal differentiation programs,
further inflicting on the epidermal function [137, 138, 29, 125].
Polarization of Th2 cells involves two steps: First, cytokines released by keratinocytes in the
viable epidermis [143] activate DC [187]. Particularly, active-PAR2- induced TSLP [39, 111],
but also TNF-α [130] and IFN-γ, induced by TLR2 [122], stimulate the migration of DC to the
lymph nodes [187], where they expose previously internalized antigen and increase the levels
of the cytokine IL4 [188]. This cellular level process of activation and migration of DC to the
lymph nodes in response to rise in cytokine levels is represented in figure 2.3 A,II.
The second step occurs in the lymph nodes, where active DCs increase the production of the
cytokine IL4 [9, 39, 12]. This triggers the differentiation from naïve T cells into polarized Th2
cells via the activation of the Jak-Stat6-signalling pathway (figure 2.3 G,1) which controls the
production of the TF Gata3 [159, 189] (figure 2.3 G,2). The TF Gata3 acts as a master regulator
that orchestrates the T cell differentiation process from from naïve T cells to Th2 cells [190]
(figure 2.3 G,3). This TF also increases its own expression [191] (figure 2.3 G,4), as well as
the production of more IL4 [122], enacting two positive feedback loops.
Once polarized, Th2 cells migrate back to the epidermis (figure 2.3 A,III). There, Th2 cells
contribute to the establishment of a pro-inflammatory micro-environment by increasing the
production of cytokines such as IL13 [9, 29], IL22 [137] and IL4 [122]. Th2 cells also elicit al-
lergic reactions by releasing IgE and TARC that activate Mast cells that then release histamine
in response to environmental insults [158, 9].

2.5 Conclusions

In this chapter, we integrated and organized scattered experimental and clinical data into a reac-
tion network controlling epidermal homeostasis (figure 2.3). In the following chapters, we will
represent this reaction network by mathematical models, and analyse the impact of different
risk factors on its functioning. Such a formal description of the entangled biological processes
controlling epidermal homeostasis is necessary to uncover the pathogenic mechanisms leading
to the onset of AD.
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Due to the modular, input-output representation of the reaction network controlling epider-
mal homeostasis, further biological processes could easily be incorporated. A extension of the
model would require the identification of the components of the current version of the reaction
network that affect and are affected by newly added molecules or cell types.
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Figure 2.3: (Previous page.) Control structure of the reaction networks regulating epi-
dermal homeostasis. [A] Systems-level representation of the control structure regulating epi-
dermal homeostasis, given by the interplay between modules mediating skin barrier function
(magenta), pathogen load (grey), protease activity (red) and immune responses (cyan). Each
of these modules is affected by inputs, environmental and genetic disturbances (SNPs) and a
regulatory sub-network that is detailed in sub-figures [B-F]. The inset is a simplified represen-
tation of the detailed control structure depicted in the main figure. With the exception of the
cellular processes described in the three green boxes (labelled I, II and III in figure [A]), all
the reactions correspond to biochemical interactions. Sub-figures [B-F] represent the biochem-
ical reactions controlling [B] protease networks, [C] Skin barrier function, [D] Pathogen load,
[E] TLR-mediated immune responses, [F] IL1 mediated immune responses, and [G] Gata3-
mediated adaptive immune responses. The key reference for each of the individual reactions is
denoted by a blue box. Green arrows denote SNPs. Incoming and outgoing arrows correspond
to inputs and outputs, respectively (equivalent to those in figure [A]). Grey circles denote bio-
chemical species. An arrow entering and exiting a grey box represents a production, conversion
or degradation processes. Positive or negative modulations of these biochemical reactions are
denoted by spiky or blunt end arrows, respectively. For description of the individual reactions,
please refer to the main text.
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Chapter 3

Regulatory modules: Decomposition of the
reaction network into network motifs

3.1 Introduction

In the previous chapter, we gave a detailed description of the reaction networks controlling
epidermal homeostasis that are considered in this thesis. In this chapter, we present our math-
ematical modelling approach, which consists in decomposing the reaction network (depicted
in figure 2.3) into elementary building blocks, termed regulatory modules. These regulatory
modules can be divided into following three categories:

• Regulatory modules controlling skin barrier components. They correspond to the bio-

chemical networks controlling lipid and filaggrin content depicted in figure 2.3 C.

• Regulatory modules controlling the cytokine release. These include the biochemical

networks controlling innate immune responses triggered by the protease KLK (figure
2.3 B), the active TLR pathway (figure 2.3 E), the cytokine IL1 (2.3 F), as well as the
Gata-3 signalling pathway mediated the adaptive immune reaction to IL4 (figure 2.3 G).
For simplicity, we will focus on protease- and IL4 mediated cytokine release.

• Regulatory modules controlling the cellular immune effectors in response to biochemi-
cal mediators. These include protease-dependent neutrophil recruitment to the epidermis
(figure 2.3 A,I), the protease-dependent migration of DC to lymph nodes (figure 2.3 A,II),
and the mobilization of differentiated Th2 cells (figure 2.3 A,III).

Previous characterization of these regulatory modules show that they display following three
characteristic qualitative behaviours:

• Upon perturbation, skin barrier components, particularly lipids [151, 150, 174, 173, 140]
and fillaggrin [176, 139], follow a self-recovering dynamical behaviour.
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• The induction of cytokine release upon stimulation [192, 193, 194] follows a switch-
like dose response behaviour. Particularly, previous research suggests that protease-
dependent innate immune responses [84] (figure 2.3 B), and the IL4 dependent adaptive
immune responses [195] (figure 2.3 G), represented by yellow boxes in figure 3.1, rep-
resent such a switch-like dose response behaviour. Noteworthy, also the innate immune
response pathways that are triggered in response to TLR [194] (figure 2.3 E) and IL1
activation [196] (figure 2.3 F) seem to display a switch-like dose response behaviour.

• The cellular immune effectors, namely neutrophils (2.3 A,I), DC neutrophils (2.3 A,II)
and Th2 cells (2.3 A,III) that are activated and mobilized upon a biochemical (cytokine)
stimulation, persist even after the cytokine levels have ceased [116, 144] (represented by
green boxes both in figure 3.1 and in figure 2.3 A).

Accordingly, we classify the regions of the regulatory network controlling epithelial homeosta-
sis (figure 2.3) controlling barrier components (figure 2.3 C), cytokine release (figure 2.3 B.E,F,G)
and cellular immune effectors (figure 2.3 AI-III) into three different classes of regulatory mod-
ules displaying a switch-like dose response behaviour, self-recovery, and persistent dynamics,
respectively (figure 3.1). In this chapter, we will first introduce a mathematical representa-
tion of the above mentioned regulatory modules. For those regulatory modules for which a
mathematical model exists in the literature, we will describe the regulatory module using the
existing mathematical representation. Particularly, we will use the mathematical description
of the switch-like innate immune responses induced by KLK proposed in [84] (yellow ”KLK”
box in figure 3.1), the IL4-dependent signalling pathways that mediate Th2 cell polarization
described in [195] (yellow ”IL4” box in figure 3.1), and the mathematical model of the self-
recovering filaggrin dynamics proposed in [197] (blue ”filaggrin” box in figure 3.1). For the
remaining regulatory modules considered in this thesis (persistent cellular immune mediators,
represented as green boxes in figure 3.1 and self-recovering lipid content, represented by the
blue ”lipid” box in figure 3.1), we will propose, for the first time, simple mechanistic models
that are able to reproduce the desired qualitative behaviour described in the experimental lit-
erature. For all of the mathematical models considered (both from the literature and proposed
in this thesis), we will show example simulations displaying the characteristic qualitative be-
haviours.
To model each of the regulatory modules considered in this thesis, we will chose the simplest
mechanistic representation, in which the desired qualitative behaviour emerges from the un-
derlying biochemical and cellular control structure. This will allow us to pinpoint the most
relevant network properties that are responsible for the three different qualitative behaviours
displayed by the individual regulatory modules. These control- and feedback structures are the
three network motifs that are responsible for the three qualitative behaviours displayed by the
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epithelial regulatory modules. Particularly, we will see that a combination of positive feedback

and cooperativity can lead to a switch-like dose response behaviour, self-recovery dynamics are
achieved by a negative feedback, and persistence results from time-scale differences between
the fast, biochemical processes that mediate cytokine production, and the slow dynamics of the
cellular level effectors.
Finally, having identified the underlying mechanisms, we will introduce simpler, phenomeno-

logical mathematical representations of these three different qualitative behaviours.
In our qualitative modelling approach, experimentally observed behaviours of the individual
regulatory network elements robustly emerge from the underlying control structure, without
the need of fine-tuning of parameters. This allows us to integrate scattered experimental and
clinical data, for which no detailed quantitative information is available, into a quantitative
and systems-level framework. With this, we can systematically analyse the role of individual
regulatory modules in the maintenance of epithelial homoeostasis, without neglecting their reg-
ulatory context.

In subsequent chapters, we will use the resulting modular representation of the regulatory mod-
ules to re-construct and analyse the reaction network presented in figure 2.3, as shown in figure
3.1.

Switch

Persistence

Recovery

Qualitative 
behaviours

KLK

Filaggrin

Lipids

IL-4 DC

Neutrophil

Barrier  
function

Protease

Adaptive      &         innate
Immune responses 

Pathogen

Input

Th2

Figure 3.1: Decomposition of the reaction network controlling epidermal homeostasis into
regulatory modules. Barrier function components filaggrin and lipids are characterized by a
self-recovering dynamics. Release of cytokines triggered by proteases or by the IL4 display a
switch-like dose response behaviour. The dynamics of cellular immune effectors persists even
after the cease of their biochemical triggers.

49



3.2 Switch-like dose response behaviour characterizes the re-
lease of cytokines

3.2.1 Bistability is a switch-like dose-response behaviour with memory

A switch-like dose response behaviour refers to the relation between a input (commonly, a
ligand) and the steady state concentrations of an output, where small changes in the input can
drive large changes in the output [198]. A particular class of switch like behaviour is bistability,
in which this abrupt change in output concentration is also history-dependent. In such a bistable
dose-response behaviour, the critical concentration of the input at which the abrupt switching
from low to high values occurs (denoted by S+ in figure 3.2 A) is different from the critical
input concentration that triggers the switching from high to low values (S− in figure 3.2 A).
Hence, the onset of production of the output occurs at the threshold concentration S+, while
the cease of output production occurs at the threshold concentrations S+. The region between
the two threshold values S+ and S− is termed bistable region, because the output can have two
possible values, high or low, depending on the previous values of the output; if previous values
are low, then the system remains at the low branch, and vice versa. This property confers the
system with memory, also termed as hysteresis, since the current state depends on past values
(figure 3.2 A).

3.2.2 Bistability characterizes immune responses

Bistable dose-response behaviour has been repeatedly observed across different immune re-
sponse pathways. For example, it has been observed for the response of DC to stimulation
with the PAMP LPS [193], in the release of pro-inflammatory cytokines in psioratic lesions
[99], activation of T-cell receptor [199], the terminal differentiation of lymphocytes [200], and
NFκB dependent response to mechanical stress [201].
Particularly, immune responses that control epidermal homeostasis have also been found to
display a bistable switching behaviour. These include the dose-response behaviour describing
the pathogen-mediated release of cytokines induced by proteases [84], IL1 [196], and TLR2/4
[194] (corresponding to the innate immune response pathways, figure 3.2 B) as well as the the
release of pro-inflammatory cytokines induced by Gata3 in response to rises in IL4 [195] (cor-
responding to a adaptive immune response pathway, depicted in figure 3.2 B).
Here, we will consider two of these immune response pathways: innate immune responses
triggered by KLK in response to infiltrated pathogens (figure 3.2 C), and adaptive immune re-
sponses triggered by the pro-inflammatory cytokine IL4 (figure 3.2 D). We acknowledge that
the activation of other innate immune response pathways, particularly those involving IL1 and
TLR2, also play a important role in the pathological process of AD, since long-term changes
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Figure 3.2: Bistable switching characterizes the dose-response behaviour of cytokine re-
lease by active immune response pathways. [A] Schematic representation of a bistable dose-
response (bifurcation) behaviour describing the relation between the concentration of the input
(stimulus) and the steady state concentration of the output (effector). Effector concentrations
remain at low values until a critical threshold S+ in the stimulus concentration is reached,
triggering the abrupt activation of the effector. High effector values can be decreased only if
the ceasing threshold S− < S+ is reached. The history-dependent region comprised between
S− and S+ is termed bistable region. Figure adapted from [84]. [B] Innate and adaptive im-
mune responses are triggered by pathogens or cytokines, respectively, and result the release of
cytokines in a bistable dose-response manner. [C] Left: Protease-dependent innate immune re-
actions display a bistable dose response behaviour that is affected by environmental (high pH)
and genetic (low LEKTI) risk factors. Right: Reaction network of biochemical interactions
controlling protease activity. Figure adapted from [84]. [D] Left: Gata-3 dependent adaptive
immune responses to stimulation with the pro-inflammatory cytokine IL4 displays a bistable
switching behaviour that is responsible for the irreversible polarization of individual T cells.
It results from a underlying reaction network controlling Gata-3 activity that displays positive
feedback and cooperativity. Figure adapted form [195].

in the activation levels of components of the IL1 [32, 154, 182] and TLR [81, 47, 6, 183] sig-
nalling pathways have been associated to the loss of epidermal homeostasis. However, given
that they display the same qualitative dose-response behaviour as KLK-mediated immune re-
sponses, namely bistability [84, 196, 194], in our qualitative modelling framework, the role a
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switch like dose-response behaviour in mediating epithelial innate immune responses can be
enacted by any of these innate immune response pathways. We chose to focus particularly on
KLK signalling, because KLK activation not only affects innate immune responses, but also
has a major impact barrier function and the onset of adaptive immune responses, representing
a major hub in the regulatory network controlling epidermal homeostasis.
In the following sections, we will introduce the mathematical descriptions of the regulatory
modules controlling KLK- and Gata3- mediated cytokine release. They correspond to the ODE
models proposed in [84] and [195], respectively, and were chosen because they are simple yet
mechanistic descriptions of the switch-like dose response behaviour that characterizes these
immune responses.

3.2.3 Protease dependent innate immune reactions: KLK model

In this section, we describe the mathematical model of the control of KLK activation, proposed

by Tanaka et al [84].
In [84], Tanaka et al proposed the first mathematical model of the regulatory module con-
trolling the activity of the protease KLK. It describes the biochemical interactions regulating
KLK activity, detailed in section 2.4.1 and represented in figure 2.3 B. Particularly, it considers
the interplay between the key mediators of KLK activation, namely inactive (KLK) and ac-
tive (KLK∗) protease, inactive (PAR2) and active (PAR2∗) protease receptor, unbound protease
inhibitor (LEKTI), and the inhibitory complex (KLK∗LEKTI). The reactions considered are
auto-catalysis of KLK (first positive feedback), reversible formation of the inhibitory complex,
activation of PAR2 by active KLK5, and active PAR2- mediated production of KLK5 (second
positive feedback) and LEKTI. The input to the network is represented by infiltrated pathogens
(S) that induce the production of inactive KLK5. The connectivity between the network com-
ponents is reproduced in figure 3.2 C (right). The corresponding mathematical model is given
by the system of equations 3.1:
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d[KLK∗LEKTI]
dt

= ka[KLK∗][LEKTI]− kd[KLK∗LEKTI]−δLK[KLK∗LEKTI], (3.1a)

d[LEKTI]
dt

=−ka[KLK∗][LEKTI]+ kd[KLK∗LEKTI]+ tL(mL + fL[PAR2∗])−δL[LEKTI],

(3.1b)

d[KLK∗]
dt

=−ka[KLK∗][LEKTI]+ kd[KLK∗LEKTI]+ k
[KLK∗][KLK]

[KLK∗]+CK
−δK∗[KLK∗],

(3.1c)

d[KLK]

dt
=−k

[KLK∗][KLK]

[KLK∗]+CK
−δK[KLK]+ fKSS+ fK[PAR2∗], (3.1d)

d[PAR2]
dt

=−kP
[KLK∗][PAR2]
[KLK∗]+CP

−δP[PAR2]+mP, (3.1e)

d[PAR2∗]
dt

= fPSS[PAR2]+ kP
[KLK∗][PAR2]
[KLK∗]+CP

−δP∗[PAR2∗]. (3.1f)

The model was analysed in terms of its steady state solutions, neglecting its fast transient
dynamic behaviour. It displays a robust bistable dose response behaviour that can be attributed
to the presence of the two positive feedbacks (auto-catalysis of KLK activation and active
PAR2- dependent production of KLK) in the network. Example simulations of this bistable
dose-response behaviour using the nominal parameter values in [84] are reproduced in figure
3.2 C (left).
Two of the risk factors that affect the reaction network controlling epidermal homeostasis have
a direct impact on KLK activity: Increased epidermal pH dramatically increases the catalytic
activity of active KLK [128], as well as its affinity for LEKTI [166]. This environmental risk
factor was represented in the model by increasing the catalytic rates of KLK∗ (parameters k

and kP in equation 3.1) and the affinity between active KLK and LEKTI (parameters ka and
kd in equation 3.1). Similarly, the lower expression of the KLK inhibitor LEKTI is a genetic
risk factor that is represented in the model of [84] by decreasing the LEKTI production rate
(parameter tL in equation 3.1).
Simulating these risk factors dramatically alters the dose response behaviours, decreasing the
thresholds of onset and cease of the protease-mediated immune responses (S+ and S−) which
leads to a increased sensitivity to pathogen load (lower S+) and a more persistent immune
response (lower S−), as shown in figure 3.2 C.
We follow the notation of [84] and refer to these two conditions as ”low LEKTI” and ”high
pH”, respectively, as opposed to the healthy ”control” (figure 3.2 C).
We refer to this model as the KLK model, and use it in the next chapters with the nominal
parameters proposed in [84].
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3.2.4 Gata-3 mediated Th2 cell polarization

In this section, we describe the mathematical model of the activation of Gata-3 production,

proposed by Höfer et al [195].
In [195], Höfer et al proposed the first mathematical model of irreversible Th2 polarization in
response to the activation of the Transcription Factor (TF) Gata-3 by IL4. This simple mathe-
matical model describes the dynamics of the Gata-3 activity in the undifferentiated T cells that
reside in the lymph nodes, in response to stimulation with IL4. It comprises a positive feed-
back term that describes the Gata-3 mediated Gata-3 expression, as well as a non linear term
that represents the post-translational modifications that the TF Gata-3 has to overcome before
enacting the positive feedback (figure 3.2 D, right). The resulting one-dimensional ODE (equa-
tion 3.2) displays a irreversible, bistable dose-response behaviour (given by a threshold value
S− < 0) that characterizes the irreversible polarization of individual Th2 cells, as shown in the
simulations of equation 3.2, using the nominal parameter values proposed in [195] (reproduced
in figure 3.2 D, left).
In the following chapters (particularly, chapter 6), we use this mathematical model with the
nominal parameter values proposed in [195] to describe the IL4 dependent activation of Gata-
3.

d[Gata3(t)]
dt

= α[IL4]+
κG[Gata3(t)]2

1+[Gata3(t)]2
−κ[Gata3(t)]. (3.2)

3.2.5 Network motifs that result in bistability: positive feedback and co-
operativity

As we have seen in the two examples above, bistability can result from biochemical networks
displaying positive feedback with cooperativity. In fact, it has been suggested [202, 203], that
in many different reaction networks, the presence of these two network properties are required
for a bistable dose-response behaviour. Thus, the combination of positive feedback and co-
operativity represents a class of network motifs that can be enacted by different mechanisms
[204, 205, 206], including the auto-catalysis controlling KLK activity (equations 3.1) and the
self-regulated transcription that enhances Gata-3 expression (equation 3.2).

3.2.6 Phenomenological representation of bistable dose response behaviour
by a perfect switch

In addition to mechanistic mathematical models (such as equations 3.1 and 3.2) in which bista-
bility emerges from the underlying reactions (as shown in figures 3.2C and D, respectively),
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the bistable-dose response behaviour (figure 3.2 A) can be mathematically described and sim-
plified with Piecewise-affine (PWA) functions [207].
In brief, the PWA approximation gives a phenomenological (as opposed to mechanistic) rule
that relates the input (stimulus) to the output (effector) (figure 3.2 A).
Assuming a perfect switch, the effector can be approximated by two constant values, Elow and
Ehigh, representing the ”low” or ”high” branches of the bifurcation diagram, respectively.
Assuming that the input changes dynamically in the time-scale τ, then the relation between the
time-dependent input S(τ), the current output E(τ) and the previous output values E(x < τ) can
be approximated as follows:

• If S(τ)< S−, then E(τ) = Elow (effector is low if the stimulus concentration is low).

• If S(τ)> S−, then E(τ) = Ehigh (effector is high if the stimulus concentration is high).

• If S(τ) ∈ [S−,S+], then:

– if E(x < τ) = Elow, then E(τ) = Elow, or

– if E(x < τ) = Ehigh, then E(τ) = Ehigh,

corresponding to the history-dependent determination of the effector value when the
stimulus is in the bistable region.

More formally, these conditions can be represented by the PWA given in equation 3.3
(adapted from [208]):

E(τ) =

Elow if (S(τ)< S−) or {S(τ) ∈ [S−,S+] and E(x < τ) = Elow}

Ehigh if (S(τ)> S+) or
{

S(τ) ∈ [S−,S+] and E(x < τ) = Ehigh
}
.

(3.3)

Note that equation 3.3 implicitly assumes two time-scales:

• A fast time-scale t that governs the stabilized biochemical interactions that underlie the
bistable dose-response behaviour (typically involving a positive feedback and coopera-
tivity, as discussed in section 3.2.5). These biochemical reactions can be represented by
a system of ODEs Ė(t,S,E) (corresponding, for example, to the mathematical model de-
scribing KLK activation represented in equations 3.1) that operates at time-scale t and
has a input S that does not change significantly (S(t) ≈ constant) while E(t) reaches its
equilibrium value (given by Elow or Ehigh, respectively).

• A slow time-scale τ that determines the dynamics of the input S(τ) by the governing
equation Ṡ(τ) = F(τ,S).
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A special case of the system 3.3 occurs when the slowly changing input S(τ) is itself deter-
mined by its quickly stabilizing output E(t) (and vice-versa). In such a case, also the dynamics
of S(τ) (that depend on E(τ)) can be descried by the PWA given in equation 3.4 (adapted from
[208]):

Ṡ(τ) =

Flow(S) if E(τ) = Elow

Fhigh(S) if E(τ) = Ehigh,
(3.4)

where Flow and Fhigh are the two governing equations that determine the dynamics of S

when E(τ) = Elow or E(τ) = Ehigh, respectively.
Accordingly, the long term behaviour of S is given by the focal points Slow

ss and Shigh
ss , corre-

sponding to the steady state values given by the solution to Flow = 0 and Fhigh = 0, respectively
[208].
The coupling between equations 3.3 and 3.4 represents a hybrid system that has been exten-
sively discussed and analysed in [207, 208]. The authors conclude that the long term behaviour
of the coupled variable S(τ) and E(t) is determined by the relative position of the focal points
Slow

ss and Shigh
ss respect to the threshold values S− and S+, as follows (figure 3.3):

• A resting, homeostatic (”low”) steady state occurs when Slow
ss ≤ S+ and Shigh

ss < S−.

• A chronically inflamed steady state occurs when Slow
ss > S+ and Shigh

ss ≥ S−.

• Bistability in the two-time-scale dynamical system occurs when Slow
ss ≤ S+ but Shigh

ss ≥ S−.

• Oscillations occur when Slow
ss > S+ and Shigh

ss < S−.

In conclusion, this methodology allows the derivation of analytical conditions required for
different qualitative behaviours of a complex dynamical system that operates in two time-scales,
reducing the need for numerical methods. Note however that the agreement between the dy-
namical behaviour that is analytically derived from the hybrid system representation and the
numerical simulations of the model must be verified for the particular mathematical model that
is analysed using this approach, to ensure that neither the discontinuities of the hybrid represen-
tation of the system, nor the transient behaviour that is not captured by the focal point analysis
detailed above, affect the dynamics of the unsimplified mathematical model.
As we will see in sections 4.2.5, 5.3 and 8.5, the PWA approximation and the briefly described
dynamical analysis proposed in [208], are useful for the analysis of the reaction network con-
trolling epithelial homeostasis, characterized by the interplay between slow, cellular level pro-
cesses and fast, biochemical reactions.
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Figure 3.3: Schematic representation of the qualitative dynamic behaviours of the hybrid
system described in the coupled equations 3.3 and 3.4. The long term dynamical behaviour
of the hybrid system 3.3 and 3.4 is determined by the position of the focal points Slow

ss and Shigh
ss

respect to the threshold values S− and S+. (i) Slow
ss ≤ S+ and Shigh

ss < S− lead to homeostasis,
(ii) chronic inflammation occurs when Slow

ss > S+ and Shigh
ss ≥ S−, (iii) Bistability arises from

Slow
ss ≤ S+ but Shigh

ss ≥ S−, and (iv) Oscillations result from Slow
ss > S+ and Shigh

ss < S−.

3.3 Self-recovery characterizes the barrier function compo-
nents and is achieved by negative feedback control

A system displays a self-recovering dynamic behaviour if it can recover and maintain a nominal
value, even in the presence of perturbations that alter its functioning, both in terms of initial
conditions of the system’s variables, and of its parameters [209, 210] (figure 3.4 A).
In the epidermis, the skin barrier components lipids and filaggrin display such self-recovering
behaviour [211] (figure 3.4 B,C). Disturbances occur in the form of changes in initial conditions
-inflicted by environmental triggers such as tape stripping, acetone treatments, or desquamation-
, or by constant changes in kinetic parameters, particularly production rates that are affected by
pro-inflammatory cytokines [137, 29, 138].
This robustness of skin barrier components to (micro) environmental perturbations is funda-
mental for the maintenance of a healthy skin. Skin barrier forms the first contact with the envi-
ronment, and is hence prone to many different perturbations, such as pathogen load, chemicals
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including soaps and detergents, physical disruption by scratching, and changes in humidity.
Despite these environmental disturbances, skin barrier must maintain a nominal value to main-
tain its pivotal role in providing protection against these environmental conditions, by acting
as a semi-permeable (selective) membrane that controls the flux of substances [33] (see figure
3.4 A, top).
The self-recovering dynamical behaviour of a biochemical determinant of the barrier function
(X) is represented in figure 3.4 A, bottom. Upon a perturbation that alters its initial condition
and its production rate , the barrier function transiently drops, but then recovers again to its
nominal value X̃ . We call the time required for the barrier function component X(t) to restore
its nominal value ”recovery time”.
Such a self-recovering dynamic behaviour that confers robustness to environmental perturba-
tions in the form of parameter changes in the system results from negative feedback control
mechanisms that regulate the production of skin barrier components [150, 33].
In the skin barrier, negative feedback control seems to be mediated by an epidermal calcium
gradient that is altered upon perturbation of the skin barrier and subsequently triggers several
barrier-reparation processes [141, 142, 212].
Indeed, the role of negative feedback in mediating recovery dynamics upon perturbations (ro-

bustness) has been observed for many different biochemical networks [210], including the syn-
thetic Tet-repressor system in E. coli [213, 214], the pheromone response pathway controlled
by Fus3 in S. cerevisiae [215, 216], the BMP4 signalling pathway modulated by the pseudo-
receptor BAMBI in X laevis [217], the hyperosmotic stress response in yeast [218, 219], and
signalling networks underlying bacterial chemeotaxis [220, 221].
Mathematical models have identified the key role of negative feedback in determining the self-
recovering dynamic behaviour of epithelial cell volume [222] and filaggrin content in the epi-
dermis [197].
Negative feedback can thus be regarded as the key network motif that is responsible for the
self-recovering dynamic behaviour. In fact, this has been theoretically proven, both by analyti-
cal [223] and computational [224] methods.
In the following, we will introduce mathematical models that represent the regulatory modules
that are responsible for the self-recovering dynamical behaviour of the skin barrier compo-
nents, lipids and filaggrin. These regulatory modules correspond to network motifs comprising
a negative feedback control structure (figures 3.4 B,C, left). We will show simulations that
exemplify the self recovering dynamical behaviour upon changes in production rates that result
from these network structures (figures 3.4 B,C, right). Finally, we will introduce a phenomeno-
logical representation of the self-recovering dynamics (figure 3.4 D).
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Figure 3.4: Self-recovery characterizes the barrier function components and is achieved
by negative feedback control (A), Top: Skin barrier regulates the exchange of substances with
the environment even in the presence of perturbations. Center: Self-recovery of the skin barrier
is achieved through negative feedback. Bottom: Barrier function (X) shows a self-recovering
dynamic behaviour, characterized by a return to its nominal steady state X̃ upon a perturba-
tion. This self-recovery has been characterized experimentally [225] and can be simulated by
equation 3.7. (B) Self recovery of lipid content in the skin is mediated by KLK activity
Left The lipid content in the skin barrier is controlled by two TEWL- driven negative feedback
loops and a KLK-mediated positive feedback loop. Center Lipid concentration recovers to
a nominal value even after step changes in the basal production rate. The speed of recovery
is increased by the KLK-mediated positive feedback. Right In the presence of perturbations,
lipid precursors are over-produced to maintain a nominal lipid concentration. (C) Filaggrin
recovery is achieved through the interplay between positive and negative feedbacks Left

Filaggrin content in the skin is controlled by a double negative feedback, mediated by TEWL
and KLK activity, and a double positive feedback, mediated by TEWL and pro-inflammatory
cytokines. Center An interplay between a strong positive and a strong negative feedback medi-
ate the recovery of filaggrin upon perturbations in initial conditions and basal expression rate.
Right Upon perturbation, maintenance of a nominal filaggrin steady state is achieved by the
feedback-mediated increase in pro-filaggrin expression.
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3.3.1 Lipid content in the skin barrier is controlled by a double negative
feedback and modulated by KLK activity

In this section, we propose a novel mathematical model of the regulatory networks controlling

the self-recovery of the skin barrier lipids.

Already early studies characterizing barrier function have shown that the rate of synthesis of
lipids is directly proportional to loss of permeability barrier function, measured by TEWL
[151]. Further, this increased rate of lipid release upon barrier disruption does not take place if
the skin is occluded [150, 174]. More recent studies using high throughput analysis of gene ex-
pression dynamics upon barrier disruption also show that genes associated to lipid metabolism
tend to be up-regulated upon disruption [173].
Recovery upon disruption is achieved by the barrier-damage-induced release of previously syn-
thesized lipids that are contained in the LB of differentiated keratinocytes [140] (denoted by
”Lipids@LB” in figure 2.3 C), a restoration process that is inhibited by active proteases (KLK)
[113]. Given that KLKs are also activated by barrier damage [149], this KLK-mediated inhi-
bition of lipid production corresponds to a positive feedback from barrier function to barrier
restoration that constrains the negative feedback control mediating lipid homeostasis (see fig-
ure 3.4 B, left).
In equation 3.5, we propose a simple model of this regulatory module mediating lipid con-
centrations. It represents the coupled dynamics between the lipid component of the barrier
(L, corresponding to ”Lipids” in figure 2.3 C), and the lipid precursors contained in the LB
(pL, corresponding to ”Lipids@LB” in figure 2.3 C) depicted figure 3.4 B, left. We assume
that barrier function is directly proportional to L and negatively regulates the synthesis of pL

(first negative feedback, denoted by ”TEWL-mediated -fb” in equation 3.5b) and the release
of pL into L (second negative feedback, denoted by ”TEWL-mediated -fb” in equation 3.5a).
The inhibitory effect of active proteases (K∗) on the release of LB lipids is modelled in the
simplest possible way, by assuming that the rate of pL release is proportional to L, with rate
fKLK. This positive feedback enacted by KLK results from the fact that activation is induced by
barrier damage, but inhibits LB release, comprising two negative feedbacks that together give
a positive feedback (denoted by ”KLK-mediated +fb” in equation 3.5a). No degradation for
pL is assumed, representing the fact that the precursors are consumed mainly during the barrier
production process. Simulations of equations 3.5, using the parameters in table 3.1, are shown
in figure 3.4 B, right.
In these simulations, we consider two perturbations: A step-like (ten-fold) decrease in the
barrier production rate kprod , and a decrease in the initial condition (50% reduction from the
nominal steady state value Lss). The effect of KLK-mediated positive feedback was assessed
by considering a nominal and a low (100-fold decreased) positive feedback strength fKLK. To
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asses the effect of a stronger negative feedback, we considered a 10-fold increase in frelease.
The resulting recovery behaviours are shown in figure 3.4 B, center (dynamic trajectories) and
right (nullclines). Upon perturbation in the initial condition, all of the simulated conditions
display a self-recovering dynamical behaviour, where L(t) returns to its nominal steady state
L̃, even in the presence of an additional perturbation in the production rate. As shown by
the displacement of the nullclines in the presence of perturbations (figure 3.4 B, right), the
maintenance of a nominal lipid concentration is achieved by the compensating increase in the
concentration of lipid precursors. A strong KLK-mediated positive feedback accelerates the
speed of recovery to a nominal, healthy value while producing an overshoot in the L(t) dy-
namics. In contrast, weakening the positive feedback strength (red and magenta trajectories
in figure 3.4 B) or increasing the negative feedback strength (not shown) compensates these
effects, resulting in over-damped convergence to the nominal steady state value.
Taking together, this preliminary analysis of this toy model representing the regulatory mech-
anisms controlling lipid concentration suggests that the underlying network motif structure,
based on the interplay between two negative feedback loops and one positive feedback enacted
by KLK, is capable of displaying a recovering dynamic behaviour upon perturbations both in
initial conditions and in production rates.

dL(t)
dt

=

lipid production from precursors︷ ︸︸ ︷
kprod (1+ fKLKL(t))︸ ︷︷ ︸

KLK-mediated +fb

1
1+ freleaseL(t)︸ ︷︷ ︸
TEWL-mediated -fb

pL(t)−
lipid degradation︷ ︸︸ ︷

kdegL(t) , (3.5a)

dpL(t)
dt

=
1

1+ fproductionL(t)︸ ︷︷ ︸
TEWL-mediated -fb

−kprod
1+ fKLKL(t)

1+ freleaseL(t)
pL(t). (3.5b)

3.3.2 Filaggrin content is regulated by the interplay between a fast nega-
tive feedback and a delayed positive feedback

In this section, we describe the mathematical model of the regulatory networks controlling the

filaggrin content in the skin barrier, originally proposed in [197] but further analysed in this

thesis to explore the relation between the feedback structure and the resulting self-recovery

dynamical behaviour.

The filaggrin content in the skin barrier is controlled by a intricate control structure that involves
the interplay between two negative and two positive feedback loops (shown on figure 3.4 C left):

• A damaged barrier leads to a reduction of filaggrin expression [140, 138, 163, 172, 142].
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Table 3.1: Parameters of the regulatory module controlling lipid dynamics (dimensionless and
arbitrarily chosen parameters for simulating equations 3.5)

Symbol Name Nominal value
kprod Barrier production rate 7.5 (nominal)

0.75 (perturbation)
fKLK Positive feedback strength, enacted by

KLK∗
25 (nominal feedback)

0.25 (weak KLK∗-mediated
feedback)

frelease Negative feedback strength from barrier
function to release of LB lipids

1

fproduction Negative feedback strength from barrier
function to de novo production of pL (LB
lipids)

5 (nominal feedback)

50 (strong negative feedback)
kdeg Lipid degradation rate 10

This positive feedback is further accentuated by the presence of pro-inflammatory cy-
tokines. High cytokine levels are characteristic for a chronically damaged skin barrier,
and further interfere with filaggrin expression [226, 137, 227, 137].

• Barrier damage induces the post-translational processing of filaggrin into a active form
[176, 139], a process that is further accentuated by active KLK [139]. Recall that also
KLK activity directly depends on permeability barrier function, hence, this modulation
corresponds to a further negative feedback loop.

Based on this reaction network structure, Panayiotis Christodoulides proposed in [197] a
mathematical model of filaggrin control, represented by a coupled system of Delay Differential
Equations (DDE) describing the dynamics of the filaggrin precursor pro-filaggrin (pF , corre-
sponding to ”pro-filaggrin” in figure 2.3 C) and filaggrin (F , corresponding to ”Filaggrin” in
figure 2.3 C). To explore if this system displays a self-recovering dynamical behaviour, we
performed further simulations of a simplified version of the original model [197], neglecting
the delay describing the de novo production of filaggrin precursors. Note that, in general, the
delay can affect the transient, but not the steady state value of the system. Further, as shown
in [197], delay does not affect the stability of equations 3.6. Hence, to roughly explore if the
control structure depicted in figure 3.4 C, left can eventually lead to the recovery of a nominal
filaggrin content (F̃) upon a perturbation, it is enough to consider the ODE version of the equa-
tions proposed in [197]. The model (equations 3.6) considers a de novo production term for
pro-filaggrin that comprises a nominal production rate (ke) that is further enhanced by a com-
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petent barrier. The positive feedback is enacted by TEWL and, indirectly, by pro-inflammatory
cytokines (”+ f b” in equations 3.6). It also represents the post-translational modifications that
convert pro-filaggrin into filaggrin. This process is inhibited by a competent barrier (directly by
TEWL and indirectly by active KLK), representing a negative feedback (”− f b” in equations
3.6).

dF(t)
dt

= pF(t)kP

-fb︷ ︸︸ ︷
1

1+ fLF(t)︸ ︷︷ ︸
post-translational modification

−δLF(t), (3.6a)

dpF(t)
dt

= ke +

+fb︷ ︸︸ ︷
fpF(t)︸ ︷︷ ︸

de novo production

−pF(t)kP
1

1+ fLF(t)
−δpLpF(t). (3.6b)

Simulations of this model, using the nominal parameters reported in [197], are shown in
figure 3.4 C center (dynamic trajectories) and right (nullclines). They show the dynamical
behaviour of filaggrin content in response to perturbations in the initial conditions (half the
nominal, steady state value F̃). Under nominal conditions (black), filaggrin recovers to its
nominal level. Upon a step like decrease in the basal expression rate (to half the nominal value
of ke), fillagrin levels do not recover completely when the two positive and negative feedback
strengths are weak (blue, using the nominal parameter values fP and fL). We mimicked the
onset of the two further feedback arms, driven by KLK and cytokines, by increasing the strength
of the negative (2.5 fold in the nominal fP value) and the positive (two-fold increase in the
nominal fL) feedback strengths. The resulting dynamics, shown in red, are able to display a
self recovering behaviour to perturbations in both the initial condition and the step-like decrease
in the production rate.
These results suggest that the regulatory module controlling filaggrin concentration, consisting
on the interplay between two positive and two negative feedback arms, is responsible for the
self-recovering behaviour that characterizes filaggrin content in the skin barrier.

3.3.3 Network motifs that result in self-recovering dynamical behaviour:
The key role of negative feedback

As shown in the previous section, the skin barrier components lipids and filaggrin display a
self-recovering dynamic behaviour in terms of robustness of its steady state values to perturba-
tions both in the initial condition and in step (constant) changes in nominal production rate of
barrier precursors.
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Both for filaggrin and lipid content, the mechanism by which this self-recovering behaviour
is achieved is though the presence of a negative feedback that controls the barrier formation
process. This negative feedback is further modulated by positive feedback loops enacted by
KLK (in the case of lipids, figure 3.4 B) and by the TEWL- and cytokine-mediated de novo

expression of pro-filaggrin (figure 3.4 A).
These results are in congruence with numerous previous findings in the literature [210, 213,
214, 215, 216, 217, 218, 223, 219, 220, 221, 222] (discussed in section 3.3), that have iden-
tified negative feedback as the key mechanism responsible for the self-recovering dynamical
behaviour.
Intriguingly, the self-recovering dynamical behaviour of the skin barrier components (figures
3.4 B,C) seems to depend not only on a negative, but also on a positive feedback structure.
Few publications (for example, [228] and [197]) have discussed the role of positive feedback
in stabilizing biological circuits controlled by a negative feedback. However, further research
is needed to clarify the role of positive feedback in the determination of the self-recovering
dynamical behaviour of the skin barrier components.

3.3.4 Phenomenological description of the self-recovering dynamical be-
haviour

The self-recovering dynamical behaviour upon perturbations in the initial conditions (impulse
perturbation, figure 3.4 A, bottom) and on the production rate can be described in a phenomeno-
logical way with the equation 3.7:

Ẋ(t) = α(1− X(t)
X̃

). (3.7)

Defining X̃ as the homeostatic steady state value of X , it can be seen directly from inspec-
tion of equation 3.7 that the steady state Xss = X̃ , regardless of the value of the parameter α.
Indeed, variations in the parameter α affect the recovery time, but do not lead to deviations from
the nominal steady state X̃ . Furthermore, given that equation 3.7 has a unique steady state X̃ , X

is also perfectly robust to changes in initial conditions, it will always return to its steady state
value after any impulse perturbation. This self-recovering dynamical behaviour of equations
3.7 (with α = 0.5), and its agreement with the experimentally observed self-recovering dynam-
ical behaviour of the barrier function of healthy human volunteers upon perturbation with soap
[225] is shown in figure 3.4A (bottom).
For simplicity (reduction in number of parameters and state variables), in the remainder of the
thesis, the mathematical models representing the network motifs responsible for the homeo-
static behaviour of the skin barrier components (lipids and filaggin) are approximated by the
equation 3.7.
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3.4 Persistence of inflammation: Storing the memory of cy-
tokine dynamics

Inflammation is a cellular-level process that involves the activation and migration of cells of
the immune system, such as DC, polarized Th2 cells, or neutrophils, in response to biochemical

mediators such as cytokines or antigens [116, 229].
Thus, inflammation is a process that involves two time-scales: fast dynamics of the biochemical
species regulate cytokine production, and slow cellular level dynamics describe the migration,
activation and death of immune cells.
Mathematically, this corresponds to an (uncoupled) Quasi-Steady State(QSS) state system, in
which some of the variables are assumed to stabilize much (infinitely) faster than the other
slower dynamic components of the system. Here, the variable triggering the slow immune
cell migration process is the cytokine concentration (C), assumed to be in QSS because it is
controlled by fast biochemical processes that mediate cytokine release (Css). In contrast, the
level of migrated immune cells (IP), changes dynamically in a slow time-scale τ. As depicted
in figure 3.5 left, the dynamics of the cellular immune response mediators IP can be described
by a cytokine-dependent migration, and a natural death rate.
This simple network motif, depicted in figure 3.5 left, can be described by the ODE:

İP(τ) = kmigrationCss(τ)− IP(τ)kdeath. (3.8)

As we have seen in section 3.2, the cytokine levels (output of immune responses) can be ap-
proximated by two discrete values, Chigh and Clow, corresponding, respectively, to the upper and
lower branches of the bifurcation diagrams (see also figure 3.2 left). Thus, an abrupt rise in the
cytokine levels from Clow to Chigh, will be followed by a steady, but slower, rise in the immune
responses. Similarly, sudden decrease in the cytokine levels will lead to a eventual, but slower,
decline in the inflammation. This qualitative dynamical behaviour is exemplified in figure 3.5.
It shows the experimentally measured number of macrophages that migrate to the nasal epithe-
lium of mice in response to a bacterial challenge that triggers cytokine release within hours
of epithelial infection [230], as well as simulations of equation 3.8, setting kmigration = 0.4,
Chigh = 100%, Clow = 0%, and the time of high cytokine exposure, to 8 days.
This dynamical behaviour implies that (1) the cytokine levels that trigger the inflammation
must remain high for a extended period of time for a full (maximal) induction of the inflamma-
tion to be triggered, and (2) inflammation persists for some time after the cytokine levels have
been cleared (figure 3.5 left). Thus, although simple, this network motif confers memory to the
system, because the inflammation levels depend on previous exposures to cytokines.

A transient rise in cytokine levels is mirrored by a transient but slow increase and decrease
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Figure 3.5: Persistence of inflammation results from time-scale separation between fast
cytokine dynamics and slow, cellular processes that involve mobilization of immune cells,
triggered by cytokines An abrupt rise in the cytokine levels from low to high is followed
by a steady, but slower, rise in the immune response, as exemplified by the slow macrophage
recruitment to the airway epithelium in response to a bacterial invasion [231] that triggers
cytokine release within hours of epithelial infection [230]. Similarly, sudden decrease in the
cytokine levels lead to a eventual, but slower, decline of the inflammation, which persists for
some time even after cytokine levels have dropped.

in inflammation (figure 3.6 A). Similarly, low-frequency, recurrent exposure to cytokines is fol-
lowed by oscillating inflammation that is able to resolve between two episodes of high cytokine
exposure (figure 3.6 B). However, in a high frequency scenario, in which the time between two
episodes of high cytokine exposure is too short for the inflammation to resolve, the persisting
inflammation gradually adds up on each new event of cytokine exposure, constantly increasing
until eventually stabilizing at oscillations with a higher amplitude than in the low-frequency
scenario shown in figure 3.6 B. Under these conditions, the inflammation gradually stores the
history of cytokine exposure, acting, effectively, as a capacitor (figure 3.6 C). Chronic expo-
sure to cytokines leads to persistent inflammation that increases monotonically until eventually
reaching its maximum amplitude, corresponding to the steady state value of equation 3.8 with
Css =Chigh (figure 3.6 D).
Taking together, figure 3.6 shows that inflammation described by equation 3.8 is able to store
the history of cytokine dynamics, characterized by a given frequency and amplitude.
This persistent network motif has has been observed in other biological systems. For example,
it seems to play a important in mediating the context-dependent induction of gene expression
by TF NFκB [232, 233], a master regulator that controls the gene expression of many target
genes in a context-dependent way [234].
In the context of the reaction network controlling epidermal function, this network motif plays
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a key role in the induction of cellular level immune responses by cytokines. Particularly, it is
enacted by the migration of DC to the lymph nodes in response to TSLP stimulation [111],
the PAR2-mediated recruitment of neutrophils from the blood to the epidermis [156], and
the IL4-induced migration of differentiated Th2 cells from the lymph nodes to the epidermis
[159, 189, 158].
Equation 3.8 can also be represented by its analytical solution, shown in equation 3.9:

IP(τ) = kmigration

∫
τ

0
Css(t)ekdeath(τ−t) dt. (3.9)

For simplification, in the next chapter, we will use this approximation to describe the per-
sisting cellular level immune responses to cytokines.
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Figure 3.6: A persistent network motif can act as a capacitor, by storing the history of cy-
tokine dynamics with a given frequency and amplitude of cytokine exposure. (A) transient
rise in cytokine levels is mirrored by a transient increase and decrease in inflammation. (B)

Similarly, low-frequency, recurrent exposure to cytokines is followed by a oscillating inflam-
mation that is able to resolve between two episodes of high cytokine exposure. (C) In contrast,
in a high frequency scenario in which the time between two episodes of high cytokine exposure
is too short for the inflammation to resolve, the persisting inflammation gradually adds up on
each new event of cytokine exposure, stabilizing at oscillations with a higher amplitude. (D)

Chronic exposure to cytokines leads to persistent inflammation that increases monotonically
until eventually reaching its maximum, steady state value.

3.5 Multi-scale structure of the reaction network controlling
epidermal homeostasis

In this chapter, we decomposed the reaction network controlling epidermal homeostasis pre-
sented in the previous section into individual regulatory modules. These elementary building
blocks can be grouped into three different network motifs, operating at two different time-
scales:
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• A switch-like dose-response behaviour that characterizes fast biochemical interactions
that mediate the release of cytokines in response to infiltrated pathogens (innate immune
responses) or other pro-inflammatory cytokines (adaptive immune responses). They cor-
respond to the regulatory modules represented in figures 2.3 B and G and in the yellow
boxes in figure 3.1.

• Self-recovering dynamics characterizing epidermal barrier components (figure 3.4). These
dynamics are driven by barrier restoration processes that involve both de novo production
of skin barrier precursors (pL and pF) as well as and post-translational modifications re-
sulting in the active barrier components (L and F). They correspond to the regulatory
modules represented in figures 2.3 C), corresponding to the blue boxes in figure 3.1.

• Persistent levels of cellular immune mediators that are activated and migrate in response
to rises in cytokine levels. They correspond to the regulatory modules represented in
figures 2.3 A,I-III, corresponding to the red boxes in figure 3.1.

The switch-like dose-response behaviour is driven by biochemical interactions that mainly
involve Protein-Protein Interactions (PPI), which occur at a comparatively much faster time-
scale than the slower processes of barrier restoration (involving de novo synthesis of barrier
components) and and mobilization of immune cells (involving migration and extravasation be-
tween body sites).
Hence, the network motifs that are considered here can be distinguished depending on in which
time-scale they operate: network motifs leading to a switch-like dose-response behaviours op-
erate quickly, stabilizing almost immediately as compared with the slower network motifs that
result in homeostasis or persistent dynamics.
Together, the reaction network controlling epidermal homeostasis (figure 2.3) corresponds to
a regulatory structure that comprises different modules (figure 3.1) and time-scales (fast PPIs
controlling the switch-like cytokine production, intermediate de novo formation of barrier com-
ponents, and slow migration and death dynamics immune cells).

3.6 Conclusions

Here, we decomposed the reaction network controlling epidermal homeostasis (figure 2.3) into
individual regulatory modules, corresponding to three elementary building blocks character-
ized by a distinctive qualitative behaviour.
Each of the regulatory modules is associated to a particular qualitative behaviour, that can be
mathematically represented either by simple mechanistic models from which the behaviour
emerges, or by phenomenological descriptions described in this chapter.
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For the mathematical representation of the switch-like release of cytokines characterizing in-
nate and adaptive immune responses controlling epidermal function, we used mathematical
descriptions that were previously proposed in [235] and [195], respectively.
To describe the dynamical behaviours of lipids and filaggrin (figures 3.4 B and C, respectively),
we identified for the first time the reaction network structures that mediate the self-recovery
dynamics of these skin barrier components, and proposed the first mathematical model that
reproduces the self-recovery dynamics of skin lipids (equation 3.5). Another contribution of
this chapter is that the recovery dynamics that characterize skin barrier components can be de-
scribed in a phenomenological way by equation 3.7.
Regarding the persistence motif, in this thesis we identified the regulatory modules and the
underlying network motif structure, and proposed a simple mathematical model that displays
this persistent behaviour of the immune cells (figure 3.5). We show how this simple motif can
act as a frequency filter that distinguishes between different types of cytokine dynamics (figure
3.6).
Each of these network motifs represents hence a distinctive module of the reaction network
controlling epidermal homeostasis, characterized by particular inputs, outputs, genetic and en-
vironmental disturbances, feedback control and, importantly, a plant that operates at given
time-scale (figure 2.3 A).
The modular and multi-scale representation of this detailed network is given in figure 3.1. In
the coming chapters, we will analyse multi-scale, modular mathematical models that represent
(parts of) this re-assembled reaction network.
First, in chapter 4 we will consider only the interplay between innate immune responses and
barrier function. This is a valid and clinically meaningful simplification of the reaction net-
work, since the adaptive immune responses are activated only during late stages of the disease.
The model that we examine in chapters 4 and 5 corresponds thus to the early stages of the
disease progression.
Then, in chapter 6, we will explore the conditions leading to activation of adaptive immune
responses that are responsible for late and severe stages of the disease.
This gradual step - by step re assembly of the reaction network will allow us to reproduce the
full pathological dynamics of AD, characterized by a onset phase described in chapter 4 and a
disease aggraviation phase described in chapter 6.
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Chapter 4

Modelling the early phases of AD:
Interplay between protease-dependent
innate immune responses, barrier function
and infiltrating pathogens

The contents of this chapter are reproduced from our paper [236], that was published under a
Creative Commons licence in February 2013. The original article can be found under http:
//rsfs.royalsocietypublishing.org/content/3/2/20120090.full.
The chapter consists of the Author Generated Postprint of the paper [236], preceded by a intro-
duction that locates the paper in the context and terminology of this thesis.

4.1 Introduction to the published paper in the context of the
thesis

In the previous chapter, we decomposed the reaction network controlling epidermal homeosta-
sis (figure 2.3) into elementary building blocks (the regulatory modules) that can be grouped
into three different network motifs (figure 3.1).
This chapter comprises the first step in the re-assembly of the decomposed reaction network.
We consider the interplay between protease-dependent innate immune responses, barrier func-
tion and infiltrating pathogens that is disrupted during early phases of AD (figure 4.1). We
neglect in this chapter the adaptive immune responses, which are activated only during the later
stages of the pathogenic process.
The aim of this chapter is to understand how risk factors that are known to affect the function-
ing of these network motifs impair the reaction network, triggering the onset of the pathogenic
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process. For this, we considered the genetic risk factors that lead to the reduction in the ex-
pression levels of the barrier component filaggrin (”low FLG”), the protease-inhibitor LEKTI
(”low LEKTI”) and the immune response mediators AMP (”low AMP”). We also consider the
environmental risk factor ”high pH”, responsible for the pH-dependent increase in the catalytic
capacity of the proteases.
The reaction network and the risk factors is given in figure 4.1, and was represented by the
mathematical model that results from coupling following mathematical representations of the
regulatory modules described in chapter 3:

• The concentrations of protease (KLK) and protease-activated receptor (PAR2) are de-
scribed by the QSS variables [KLK∗]s and [PAR2∗]s in equations 4.1 b and 4.2. These
QSS values are the steady state solutions to the system of equations 3.1 [84] for different
values of S (equation 4.1 A).

• The dynamics of the barrier function is described in equation 4.1 B by a production term
that corresponds to the phenomenological representation of the self-recovering dynami-
cal behaviour of the barrier described in equation 3.7. We further assumed that the rate
α in equation 3.7 (corresponding to the term bpre

1+kL[PAR2∗]s
in equation 4.1) is negatively

affected by [PAR2∗]s. We also added a [KLK∗]s-dependent degradation term.

• The immune reactions in equation 4.2 correspond to the solution to equation 3.8, given
in equation 3.9, with kmigration = kdeath = 1 and Css(τ) = [PAR2∗]s.

Additionally, we added a dynamical description for the pathogen S (equation 4.1 A), assumed
to increase by the infiltration through the skin barrier, and decrease by the immune responses.

Simulations of the resulting mathematical model of this sub-network (figure 4.1, repre-
sented in more detail in figure 4.2) with different risk factors, resulted in following three quali-
tatively distinct dynamic behaviours that correspond to the dynamical behaviours of the hybrid
system described in section 3.2.6 (figure 3.3 ):

• Homeostasis: Return to a nominal, healthy steady state level after a transient decrease in
barrier function and a single flare of innate immune responses.

• Recurrence: Cycles of barrier destruction and recovery and recurrent flares of innate
immune responses.

• Chronic damage: Persistent barrier damage and unresolved immune responses.

As we can see in figures 4.5 and 4.6, the risk factors ”low AMP” and ”high pH” tend to trigger
a chronic loss of homeostasis, while ”low LEKTI” and ”low FLG” are associated to recurrent
flares of barrier damage and immune responses, of different amplitudes (figure 4.6, low) and
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Figure 4.1: Reaction network mediating the early phases of AD: Interplay be-
tween protease-dependent innate immune responses, barrier function and infiltrating
pathogens. Early phases of the pathogenesis of AD are characterized by the aberrant interplay
between the regulatory modules controlling protease activity, filaggrin and lipid barrier compo-
nents, and innate immune responses mediated by infiltrating neutrophils and release of AMPs.
These regulatory modules can be grouped into three types of network motifs: switch-like dose-
response behaviour characterizing protease activation, self recovery of barrier components, and
persistence of the cellular mediators of the immune responses. Input of the multi-scale system
is given by the amount of infiltrated pathogens, that is negatively affected by barrier function
and by innate immune responses. The G (genetic) and E (environmental) risk factors consid-
ered here are represented by red arrows.

frequencies (figure 6.4).
We also used the model to explore the synergism between risk factors. Consistent with clinical
observations, it was found that the combined action of risk factors leads to a significant increase
in disease severity.
From these simulation results, following specific predictions can be derived:

1. The severity of the symptoms of the AD epidermis [171] can be classified into three
qualitatively different dynamical behaviours of the skin barrier function that changes in
response to a pathogenic challenge (figure 4.4):

• In a healthy skin, the skin barrier quickly recovers to its homeostatic level (figure
4.4 A).

• Mild forms of AD appear as recurrent flares of barrier damage (figure 4.4 B). In the
clinic, this oscillatory behaviour is manifested as the sub-clinical barrier damage
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that is characteristic of non-lesional AD skin.

• Severe forms of AD are manifested as a chronic loss of barrier function (figure
4.4 C) that is characteristic of lesional AD skin.

2. Alone, intermediate levels of the protease inhibitor LEKTI (modelled as the risk factor
”low LEKTI”) or of the barrier component Filaggrin (modelled as the risk factor ”low

FLG” lead to recurrent loss of epidermal homeostasis.

3. A ”low pH” or weak immune responses (”low AMP”) increase the frequency of these
oscillations, eventually leading to a chronic damage.

In conclusion, in this chapter, we proposed mechanisms by which risk factors can lead to
the loss of epidermal homeostasis, mediated by impaired balance in the interplay between bar-
rier function and innate immune responses. With this, we could reproduce the early phases of
the pathogenic process of AD.
In section 5, we use the insights obtained from the analysis of the early phases of AD obtained
in this chapter, particularly the risk-factor dependency of the loss of epidermal homeostasis, to
envision possible patient-specific treatment for the early phases of AD.
In chapter 6, we evaluate the impact of an impaired epidermis described in this chapter on the
onset of aberrant adaptive immune responses. With this, we aim to uncover the mechanisms
that underlie the severe phases of AD, characterized by an aberrant immune response that in-
terferes with epithelial remodelling.
Combining the insights obtained in sections 5 and 6 can inform new and more efficient patient-
specific early treatment strategies for AD that can prevent the onset of advanced and severe
forms of the disease while minimizing the unwanted side effects of pharmacological treat-
ments.
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4.2.1 Abstract

Epithelial tissue provides the body with its first layer of protection against harmful environmen-
tal stimuli by enacting the regulatory interplay between a physical barrier preventing the influx
of external stimuli and an inflammatory response to the infiltrating stimuli. Importantly, this
interdependent regulation occurs on different time scales: the tissue-level barrier permeability
is regulated over the course of days, whereas the cellular-level enzymatic reactions leading to
inflammation take place within minutes. This multi-scale regulation is key to the epithelium’s
function, and its dysfunction leads to various diseases. This paper presents a mathematical
model of regulatory mechanisms in the epidermal epithelium that includes processes on two
different time scales at the cellular and tissue levels. We use this model to investigate the es-
sential regulatory interactions between epidermal barrier integrity and skin inflammation and
how their dysfunction leads to atopic dermatitis (AD). Our model exhibits a structure of dual
(positive and negative) control at both cellular and tissue levels. We also determined how the
variation induced by well-known risk factors for AD can break the balance of the dual control.
Our model analysis based on time-scale separation suggests that each risk factor leads to qual-
itatively different dynamic behaviours of different severity for AD, and that the coincidence of
multiple risk factors dramatically increases the fragility of the epithelium’s function. The pro-
posed mathematical framework should also be applicable to other inflammatory diseases that
have similar time-scale separation and control architectures.
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4.2.2 Introduction

Most physiological processes are tightly controlled by regulatory interactions across different
temporal and spatial scales. An important example of such multi-scale regulatory interactions
is found in the epithelium, the tissue covering the organs and cavities of animal bodies. The
epithelium provides the first layer of protection against harmful environmental stimuli such
as bacteria, chemicals or pollen through a tightly controlled interplay between the regulation
of the physical barrier permeability to the environmental stimuli and the immune reaction to
the infiltrating stimuli [34, 237, 39, 238]. Importantly, while the regulation of the physi-
cal barrier permeability results from the orchestration between growth, differentiation, and
apoptosis of different cell types on the order of hours or days [139, 173], the phenotype of
each cell within the epithelium is determined locally based on the concentration of local ef-
fectors (such as enzymes and gene transcripts) regulated through protein-protein interaction
(PPI) networks on the order of minutes [239, 128]. In turn, the strength of the inter-epithelial
stimulus depends on epithelial permeability, a tissue-level property determined by the epithe-
lium’s homeostasis. Therefore, regulation of epithelium function involves an interplay of fast
inflammation-inducing PPIs with slow barrier-reconfiguring processes in an archetypical ex-
ample of multiple-scale regulatory feedback.

Defects in this multi-scale feedback regulation may lead to the loss of epithelial homeosta-
sis, inflammation and the development of diseases, including atopic diseases such as asthma [39],
allergic rhinitis (hay fever) [12], and atopic dermatitis (AD) [7]. These diseases are typically
characterised by two strongly interconnected symptoms (loss of barrier function and exacer-
bated inflammatory reactions to environmental stimuli) that occur at different spatio-temporal
scales.

Epidemiological and biochemical studies have established the relevance of a variety of risk
factors that predispose persons to atopic diseases, although the exact causes of these diseases
are not fully understood. Risk factors include genetic polymorphisms, as well as environmental
factors (such as exposure to allergens or pollutants) [127, 75, 182, 27]. However, the role of
individual risk factors in epithelial function is difficult to pinpoint experimentally due to the
complexity of the highly interconnected, multi-scale epithelium regulatory network. Indeed,
loss of regulation triggered by a risk factor may be the result of imbalances between different
processes across cellular and tissue levels. Furthermore, clinically relevant studies are ham-
pered by the interference between multiple risk factors, often observed in patients with atopic
diseases [181]. This paper presents a mathematical framework to analyse systems-level mecha-
nisms for atopic diseases. Our framework allows us to systematically assess the effects of single
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or multiple risk factors on epithelium function; study how the coincidence of multiple risk fac-
tors severely increases the propensity to develop atopic diseases; and deepen our understanding
of the underlying mechanisms that lead to pathological conditions.

Several mathematical models have been proposed for studying the spatial dynamics of ep-
ithelial cells, including migration, proliferation, differentiation and death of gut cells in relation
to colorectal cancer [60, 61], or reorganisation of the epidermis during wound healing [240, 56].
However, these models do not explicitly consider the regulatory interplay between the two de-
fensive mechanisms of the epithelium, although the skin barrier integrity and the inflammatory
response mediated by PPIs have been modelled in isolation [152, 99]. Our framework builds
upon a mathematical model of the cellular-level regulatory mechanisms leading to AD that
focuses on the activity of proteolytic enzyme kallikreins (KLKs) responsible for both skin
desquamation and inflammation [84]. Although this cellular model successfully captures key
clinical features of AD and their dependence on some risk factors, it does not consider the
intertwined, multi-scale feedback regulation across cellular and tissue levels.

This paper proposes an ordinary differential equation (ODE) model of epithelium function
that includes the essential regulatory interplay between the two protective properties that oper-
ate on different time scales: physical barrier integrity (on slow scales) and immune reactions
to eradicate the stimulus (on fast scales). We focus on the disruption of homeostasis in the
epidermis leading to AD, an archetypical example of atopic diseases that affects nearly 30% of
the paediatric population worldwide [27]. AD is characterised by an abnormal hypersensitivity
to environmental stimuli and a loss of skin barrier function and is commonly manifested as dry,
scaly skin and a rash. Note, too, that the essential features of complex regulatory mechanisms
clarified by our multi-scale model can be used to broaden our understanding of other patho-
physiological processes related to the loss of epithelial homeostasis, particularly in asthma and
hay fever, given the confirmed association between AD and other atopic diseases [27].

Crucially, it is the slow, tissue-level behaviour that is observable and used for treatment
in clinical settings, yet such long-term dynamics are intricately interlinked with the fast, cel-
lular PPIs. To study the slow dynamics, we assume a separation of time scales and consider
quasi-stationarity at the cellular-level, leading to a system of differential-algebraic equations.
Our model (Fig. 4.2) is constructed based on the view that overall homeostasis is achieved by
mainly two types of regulated balance: one between activation and inhibition of KLKs at the
cellular level and another between positive and negative feedbacks from inflammation-inducing
signalling pathways to the strength of stimulus at the tissue level. The interplay between the
fast cellular-level reactions [84] and the much slower tissue-level dynamics controlling the con-
centration of the inter-epidermal stimulus is needed in order to understand AD as being a result
of the disruption of epithelium homeostasis: excessive skin desquamation weakens the skin
barrier, allowing more stimulus to penetrate and trigger PPIs that result in immune reactions

76



capable of eradicating the stimulus and also lead to inflammation (Fig. 4.2A). Furthermore, our
model allows us to identify particular terms and parameters that disrupt these balances at the
cellular and tissue levels, which naturally correspond to well-known AD risk factors.

Our model reproduces several key clinical features of AD. In particular, it clarifies the
relationship between risk factors and specific dynamical responses to external stimuli. The
model also predicts, in a quantitative manner, the increase in the susceptibility of the epidermis
to developing atopic conditions given multiple risk factors. These results contribute to the
identification of the key underlying regulatory interplay between skin barrier homeostasis and
inflammation in AD, and may lead to a more accurate characterisation of the disease symptoms
required for personalised treatment. Moreover, our modelling approach, based on the time-
scale separation and the view that the disease occurs as a result of loss of balance between
dual (positive and negative) feedbacks, provides a theoretical framework for the study of multi-
scale regulatory interactions in many other physiological systems. We discuss the generality
of our modelling approach for studying the regulatory interactions between the cellular-level
inflammatory response and tissue-level regulation of epithelial homeostasis.

4.2.3 Multi-scale model for atopic dermatitis

Our multi-scale model of epidermal homeostasis builds upon a recent cellular-level model for
regulation of KLK activities [84], which we couple to a model of tissue-level regulation. The
input and output of the cellular-level model are the stimulus and the resultant inflammation,
respectively, which, in turn, become the output and input of the tissue-level model (Fig. 4.2C).
The biological processes considered in the multi-scale model are explained below, while a
complete model description, together with the nominal parameters used in the simulation, is
found in the Appendix. The corresponding processes in the model (Fig. 4.2A) are indicated by
the same labels (a)-(f) in Fig. 4.2C.

Modelling the tissue-level processes

Healthy skin with high barrier integrity prevents exacerbated penetration of environmental stim-
uli into the inner epidermal layers (Fig. 4.2A(g)) [132]. Our model considers the skin barrier
integrity determined by a combination of the amount of corneocytes [113], their cohesion [43]
and the lipid content [34] in the skin barrier. Accordingly, high barrier integrity is preserved by
an appropriate balance between the production and desquamation rates of terminally differenti-
ated keratinocytes and by maintenance of high lipid content. Skin barrier integrity is weakened
as a result of cellular-level responses. Excessive activation of KLKs leads to increased skin bar-
rier desquamation by degrading the inter-cellular junctions (Fig. 4.2A(a)) [113], while activa-
tion of Protease Activated Receptor 2 (PAR2) by active KLKs (Fig. 4.2A(c)) leads to enhanced
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inhibition of the lamellar body lipid release into the skin barrier (Fig. 4.2A(b)) [139]. Upon
disruption, the skin barrier triggers self-restoring mechanisms, in the forms of gene expression,
lipid release and proliferation [34, 173].

A defective skin barrier with low barrier integrity allows more exogenous stimuli to invade
the inner epidermal layers (Fig. 4.2A(d)), forming a positive feedback loop from active KLK
and PAR2 (denoted by KLK∗ and PAR2∗ hereafter) to the stimulus concentration. For the
inflammatory states, a large amount of PAR2∗ is induced and internalized, which then trans-
duces stronger canonical signalling cascades and increases the expression of pro-inflammatory
genes (Fig. 4.2A(e)) [112]. The inflammatory level in our model is accordingly represented by
the level of PAR2∗. These signalling cascades also trigger PAR2∗-mediated immune reactions
which persist even after the inactivation of PAR2∗ [116]. PAR2∗-induced immune reactions
eradicate the accumulated stimulus in the inner epidermal layers (Fig. 4.2A(f)) by mediating
the release of antimicrobial peptides or the induction of keratinocyte phagocytosis [34, 157],
forming a negative feedback loop from PAR2∗ to the stimulus concentration. The concentra-
tion of stimulus that penetrates the inner epidermal layers is thus determined by the balance
between the positive and negative feedback regulations, whose strengths respectively depend
on the skin permeability and the capacity of stimulus eradication (Fig. 4.2D).

The activities of the KLKs are regulated by the cellular-level PPI network (Fig. 4.2B),
which is induced by the internalised stimulus, as modelled in [84]. Our model considers infil-
trated stimuli, such as Staphylococcus aureus, which promote the production of KLK via the
activation of pattern-recognition receptors [148, 37]. Stimulus-triggered release of KLKs and
its inhibitor LEKTI into the extra cellular space (Fig. 4.2B(a)) is followed by auto-activation
of KLKs (Fig. 4.2B(b)), inhibition of KLK∗ by LEKTI (Fig. 4.2B(c)), and activation of PAR2
through KLK∗ by proteolysis (Fig. 4.2B(d)). All of these protein interactions occur in a pH-
dependent manner. The model also includes positive feedback from PAR2∗ to the expression
of KLKs and LEKTI (Fig. 4.2B(e)). The activities of the KLKs are thus determined by the
balance between their activation and inhibition rates (Fig. 4.2D).

We represent this multi-scale system of regulatory interactions as a system of integral-
differential equations with the time-scale separation by assuming that the steady states of the
cellular-level enzymatic reactions (attained in minutes to hours [128]) affects the tissue-level
changes in the skin barrier (in days after perturbation by the external stimulus [139]).

Modelling the effects of risk factors for atopic dermatitis

We consider four risk factors that break the balanced regulation at each level, that is, the balance
between the activation and inhibition of KLK∗ at the cellular level and the balance between the
positive and negative feedback controls at the tissue level. They correspond to the following
four main genetic and environmental elements known to predispose persons to AD.
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High pH: Increased pH in the epidermis (pH around 6.5 in AD patients compared to 4.5 in
healthy skin) leads to increased catalytic activity of KLKs [128, 113].

Low LEKTI: A decrease in the basal expression rate of LEKTI, a KLK inhibitor, leads to
compromised inhibition of KLK activity [75].

High permeability: Increased skin barrier permeability, for example by a genetically deter-
mined decrease in the expression of filaggrin (an essential protein for maintaining strong
cohesion between epithelial cells) [43], allows increased penetration of stimulus, lead-
ing to strong positive feedback from PAR2∗ and KLK∗ to the stimulus concentration.
It is modelled with increased nominal skin permeability, P̃, which corresponds to the
permeability of the unaffected skin.

Weak stimulus eradication: Decreased capacity of the immune reactions to eliminate the in-
filtrating stimuli [6, 241] leads to compromised negative feedback from PAR2∗ to the
stimulus concentration.

We investigate the effects of the risk factors (in isolation and combination) on the devel-
opment of AD by altering the corresponding parameters in the model. The parameters corre-
sponding to the cellular-level risk factors, "high pH" and "low LEKTI", are taken from [84].
New parameters corresponding to the tissue-level risk factors, "high permeability" and "weak
stimulus eradication", are varied to see the effects of the balance between the positive and
negative feedbacks on the development of AD.

4.2.4 Bistable switch with hysteresis at the cellular level

We are interested in the steady states of PAR2∗ and KLK∗ (denoted hereafter as [PAR2∗]s and
[KLK∗]s, with the subindex s indicating steady states), since we assume that [PAR2∗]s and
[KLK∗]s are reached quickly compared with the overall tissue dynamics which they affect.

Figure 4.3A shows the bifurcation diagram for PAR2∗ (inflammation) described in [84] with
the inter-epidermal stimulus concentration as a bifurcation parameter. This dose-response curve
exhibits bistability, with low and high branches corresponding to the non-inflamed and inflamed
states, respectively. Therefore, the state switches to the high branch when the stimulus increases
above the inflammation threshold S+ and remains there until the stimulus decreases below the
recovery threshold S−< S+, at which point it goes back to the low branch and the inflammation
stops. This classic hysteretic behaviour induced by the bistability of the model captures the
characteristic features of AD, namely the outbreak and persistence of inflammation [84]. We
note that similar bistability and hysteresis is observed for [KLK∗]s with the same S+ and S−

values as for [PAR2∗]s.

79



gC) gD)

gA) gB)

Inflammation

C
or

ni
fie

d 
la

ye
r

(s
ki

n 
ba

rr
ie

r)
G

ra
nu

la
r 

la
ye

r

g

a

b

c

d

e f

Inflammation

Inactiveb
KLK

Active
KLK

LEKTI

Inactive
PAR2

LBblipid

Active
PAR2

Stimulus

a

b
c

d

e

Stimulus

+ -

KLK*

Permeability

LEKTI pH

Switch +-

Stimulus
eradication

Inflammation

Stimulus

PAR2*

PAR2

KLK*LEKTI KLK

LEKTI
-KLK* pH

Permeabilityb

Stimulus
eradication

a

b

c

d

e

f

Inflammation

Barrier
integrity

Figure 4.2: Multi-scale model of Atopic dermatitis. (A) Tissue-level reactions considered.
(a) Skin desquamation by KLK∗ (active KLK), (b) inhibition of LB lipid release by PAR2∗

(active PAR2), (c) PAR2 activation by KLK∗ (at the cellular-level), (d) penetration of the envi-
ronmental stimuli into the inner layers of the epidermis, (e) inflammation triggered by PAR2∗

(at the cellular-level), (f) eradication of stimuli by immune reactions, and (g) protection against
environmental stimuli by healthy skin barrier. (B) Cellular-level reactions considered. (a)
Release of inactive KLK and its inhibitor LEKTI enhanced by inter-epidermal stimulus, (b)
auto-activation of KLK by proteolysis, (c) inhibition of KLK∗ by LEKTI, (d) activation of
PAR2 by KLK∗, leading to inflammation, and (e) increased release of KLK and LEKTI upon
PAR2 activation. (C) Schematic representation of the multi-scale model for epidermal func-
tion, consisting of the tissue-level regulation for skin barrier integrity (beige circle) and the
cellular-level PPI leading to inflammation (violet circle). (D) Core structure of our model and
the risk factors. Switch behaviour of inflammation occurs through stimulus-induced PPI at
the cellular level (violet circle) mediated by a combination of positive (KLK∗ activation) and
negative (KLK∗ inhibition by LEKTI) controls. The concentration of the inter-epidemal stim-
ulus is controlled at the tissue level (beige circle) by a combination of positive (via skin barrier
permeability) and negative (via stimulus eradication) feedbacks from KLK*-activated PAR2*
leading to inflammation. We consider four risk factors for AD, "high pH", "low LEKTI", "high
permeability", and "weak stimulus eradication", each of which breaks the balanced control at
the cellular and tissue levels.
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Figure 4.3: Cellular-level switch-like behaviour. Reproduced from [84]. (A) Schematic rep-
resentation of the dose-response behaviour of PAR2∗ (inflammation) represented by bistability
in the bifurcation diagram with varying concentrations of stimulus. The inflammation is on
the low branch (no inflammation) until the stimulus increases to the inflammatory threshold
S+, at which point the inflammation switches to the high branch and persists until the stimu-
lus falls below the recovery threshold S−. (B) Cellular-level risk factors increase the severity
of inflammation compared to healthy condition (black). "Low LEKTI" (blue) decreases S+,
increasing the sensitivity to the stimulus. "High pH" (red) decreases S−, resulting in more
sustained inflammation.

The effects of two risk factors, low LEKTI and high pH, on the development of AD have
been investigated in [84], and they are in good agreement with clinical data from AD patients.
Both risk factors increase the severity of the inflammation (Fig. 4.3B) but in different ways: A
low LEKTI condition (blue) results in a lower S+, corresponding to more susceptibility to the
stimulus, as it requires less stimuli for inflammation to occur. A high pH condition (red) leads
to a more persistent inflammation with lower S−, as it requires a further decrease in the stimuli
for the inflammation to stop.

4.2.5 Dynamical behaviours in the multi-scale model

This section presents a numerical characterisation of the slow, tissue-level dynamical behaviour
of the full system in response to external stimuli, especially the dynamical behaviour of the skin
barrier integrity, B, and the inter-epidermal stimulus concentration, S, which was a bifurcation
parameter in the previous section. They both depend on [PAR2∗]s and [KLK∗]s (Fig. 4.2C,
Eq. (4.1)). The skin barrier integrity is a clinically relevant variable as an indicator of epider-
mis health and can be measured by non-invasive methods. We can also follow the dynamic
behaviour of PAR2∗-mediated inflammation, which is induced when the barrier is damaged
and ceases when the barrier starts to recover in the absence of PAR2∗.

All the simulations presented below correspond to the response of the system to an external
stimulus in sufficiently large concentration such that S rises above the inflammation threshold
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S+, moving the system onto the high branch in the bifurcation diagram for both cellular-level
risk factors with a nominal barrier permeability (Fig. 4.3B).

Classification of dynamical behaviours in the slow time

For different sets of parameters, our model exhibits three qualitatively different dynamic be-
haviours for the skin barrier integrity when responding to environmental challenges of the stim-
ulus (Fig. 4.4), in order of increasing severity of the AD manifestation:

Homeostasis: Complete recovery to the homeostatic level, typical for a healthy epidermis,

Oscillation: Periodic loss of homeostasis, often found in moderate AD skin, and

Persistent damage: Incapability of recovery to the homeostatic level, often observed in se-
vere AD skin.

These three behaviours can be understood in terms of the interplay between the slow and
fast dynamics leading to a quasi-static sweep of the bifurcation curve of the fast system.

In the case of homeostasis, the stimulus S is eradicated via immune reactions and falls
below the recovery threshold S−, at which point the inflammation stops as it jumps to the low
branch (Fig. 4.4A, right). The barrier integrity then recovers to its homeostatic value with no
inflammation (Fig. 4.4A, left). This behaviour is observed when the stimulus eradication is
strong enough to decrease S below S− through negative feedback, although the skin barrier
suffers from transient damage while the inflammation is on the high branch, leading to the
increase in S through positive feedback.

In some cases, however, S can increase again to S+ after it transiently falls below S−, thus
re-triggering inflammation that again decreases S below S− through the same mechanism. This
cycle leads to an oscillation of the skin barrier integrity (Fig. 4.4B). Whether S re-increases to
S+ or not is determined by its steady state concentration, Ss, when the inflammation is on the
low branch (no inflammation). If Ss is higher than S+, then S eventually exceeds S+. A high
Ss reflects a weak barrier which cannot keep S low enough without the inflammation causing
negative feedback on S.

Under other conditions, S cannot be decreased below S−, for example, when the stimulus
eradication is not strong enough (weak negative feedback) or when the barrier permeability is
too high (strong positive feedback) (Fig. 4.4C). Such conditions lead to persistent damage of
the skin barrier integrity with the complete loss of barrier integrity, as the inflammation cannot
be resolved.

In addition to the qualitative nature of the dynamical behaviour, the severity of the transient
barrier damage can be quantitatively evaluated in terms of two clinically relevant measures:
the recovery time required for the barrier integrity to recover to its homeostatic level and the
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Figure 4.4: Schematic representation of the three qualitative dynamic behaviours of skin
barrier integrity after environmental challenges. (A) Homeostasis: observed when the stim-
ulus is decreased to S− and the inflammation stops. (B) Oscillation: observed when the stimulus
is repeatedly decreased to S− (inflammation stops) and then re-increased to S+ (inflammation
reoccurs). (C) Persistent damage: observed when the stimulus fails to decrease to S−.

maximum amplitude of the damage to the skin barrier. These two measures are usually not
independent: the maximum amplitude of the barrier damage depends on the recovery time,
since the longer the recovery takes, the heavier the damage is to the barrier.

Risk-factor dependent of dynamical behaviours in the slow time

Our model predicts the risk-factor dependence of the observed behaviour for the skin barrier
integrity classified above, based on the different effects of each risk factor on the tissue-level
dynamics of S, the value of Ss, which is a solution of the multi-scale model, and the threshold
values S+ and S− determined by the cellular-level PPI (Fig. 4.5A).

Since the low LEKTI condition leads to a decrease in the inflammatory threshold S+ (Fig. 4.3B,
blue), S is more likely to increase to S+ after it transiently decreases below S−, thereby leading
to an oscillation of the epidermal integrity (Fig. 4.5B, blue). The high pH condition with a lower

83



S- S+
Stimulus

High
pH

Low
LEKTI

Permeability

Stimulus
eradication

In
fla

m
m

at
io

n

(B)(A)

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

Timed(days)

0

B
ar

ri
er

din
te

gr
ity

(n
or

m
al

iz
e

dd
to

dB
)~

Figure 4.5: Effects of risk factors. (A) Schematic representation of the effects of single risk
factors on the cellular-level bifurcation diagram. "High pH" decreases S− and "weak stimulus
eradication" prevents the decrease of S, resulting in difficulty in lowering S below S−. "Low
LEKTI" decreases S+ and "high permeability" increases S, facilitating S to go above S+. An
increase of S by "high permeability" makes it more difficult to reach S−. (B) Risk-factor depen-
dent behaviour of barrier integrity. While healthy (black) shows homeostasis, "high pH" (red)
leads to persistent damage, whereas "low LEKTI" (blue) results in oscillation. The effects of
the tissue-level risk factors are shown in Fig. 4.6.

recovery threshold S− (Fig. 4.3B, red) leads to persistent damage (Fig. 4.5B, red), because it is
more difficult to decrease S below S−.

The high permeability increases S by allowing more of the external stimulus to penetrate
(Fig. 4.5A). The larger S is, the more easily S+ is reached, leading to the oscillation, and the
more difficult S is decreased to S−, leading to the persistent damage. Increasing the degree
of the high permeability risk factor (Fig. 4.6A, blue arrow) leads to a qualitative transition
from homeostasis (green) to oscillation (yellow), and further to persistent damage (red). This
transition is accompanied by a continuous increase in the maximum amplitude of the barrier
damage. Note that the external stimulus does not penetrate enough to induce the inflammatory
response ("non-responsive") if the permeability is very low (Fig. 4.6A, grey).

When the capacity of stimulus eradication is weak, S cannot be decreased even with high
inflammation (Fig. 4.5A). Decreasing the capacity of stimulus eradication (Fig. 4.6A, pink
arrow) results in a qualitative transition from homeostasis (green) to persistent damage (red)
directly, with a continuous increase in the maximum amplitude of barrier damage. Weakening
the stimulus eradication capacity by itself does not lead to the onset of oscillation, since it
does not affect either of the two oscillation determining factors, i.e., Ss (determined by the
non-inflamed state) or S+ (determined by the cellular-level PPI).

Our quantitative analysis of the proposed model suggests that the severity of the (transient)
damage to the skin barrier is significantly increased by the concurrence of multiple risk factors,
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as is often the case for AD [127, 43, 42]. Concurrence of the two tissue-level risk factors ("high
permeability" and "weak eradication") makes the transition from homeostasis to oscillation and
persistent damage occur by a smaller increase in the degree of each risk factor, resulting in more
frequent occurrences of oscillation and persistent damage with a larger maximum amplitude of
barrier damage (Fig. 4.6A, grey arrow). Additional presence of cellular-level risk factors ("low
LEKTI" (Fig. 4.6B) or "high pH" (Fig. 4.6C)) further increases the skin vulnerability, with a
lower occurrence of "non-responsive" (grey) and "homeostasis" (green) and a higher proclivity
towards "oscillation" (yellow) and "persistent damage" (red) with a larger maximum amplitude
of barrier damage.

4.2.6 Discussion

The regulatory structure of the model leads to distinct dynamic signatures for different
risk factors

We have proposed a multi-scale model of the epidermis as a means to investigate the regulatory
interplay between the tissue-level skin barrier integrity and cellular-level inflammation with an
intrinsic separation of time scales. As a result of a combination of the cellular-level switch-
ing and the tissue-level feedback control (Fig. 4.2D), our model displays three qualitatively
different dynamic responses for skin barrier integrity: homeostasis, oscillations and persistent
damage (Fig. 4.4). These behaviours emerge from a combination of balanced feedback regula-
tion at the cellular level and tissue level.

Our multi-scale model allowed us to assess the impact of several risk factors on the epider-
mal function and suggests that each risk factor has its own specific dynamic signature (Fig. 4.6).
These features could be used to characterise patient-specific causes of AD from the observed
dynamic behaviours of the epidermis and to improve the personalised treatment of AD. Impor-
tantly, the risk-factor dependent qualitative behaviours do not depend on the particular choice
of system parameters, but rather on the general structure of the multi-scale regulatory network
model and how the different terms are affected by the risk factors. The PAR2∗-induced in-
flammation is regulated by a dual (positive and negative) control at the cellular level: negative
control with inhibition of KLK∗ by LEKTI and positive control with pH-dependent activation
of KLK∗ and PAR2∗. The concentration of stimulus at the tissue level is also controlled in a
dual way: negative control to decrease it through its eradication and positive control to increase
it by degrading the skin barrier. A balance between the two dual controls acting at the cellular
and tissue levels is essential to maintaining the healthy homeostasis. The risk factors in this
paper correspond to disturbed feedback strengths that cause an imbalance of the dual control
(Fig. 4.2D), leading to either oscillatory or persistent loss of homeostasis. The concurrence of
multiple risk factors, each of which affects the dual control, dramatically increases the fragility
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Figure 4.6: Increase in skin vulnerability caused by the presence of multiple risk fac-
tors. The figure presents a summary of the bifurcations and dynamical behaviours observed
for different combinations of tissue-level risk factors ("high permeability" and "weak stimula-
tion eradication") for (A) healthy (high LEKTI and low pH), (B) low LEKTI, and (C) high pH
conditions. The black, blue and red circles in (A), (B), and (C) respectively correspond to the
nominal values used for the simulation in Fig. 4.5B. Increase in AD severity is represented (top
panel) by transition of the dynamical behaviours of the epidermal integrity from homeostasis
(green) to oscillations (yellow) and further to persistent damage (red) accompanied (bottom
panel) by increases in the maximum amplitude of the skin damage. The grey area indicates
"non-responsive" due to the strong skin barrier integrity. (A) Increasing permeability (blue ar-
row) leads to a qualitative transition from homeostasis to oscillation, and further to persistent
damage, accompanied by a continuous increase in the maximum amplitude. Decreasing the
capacity of stimulus eradication (pink arrow) results in a direct transition from homeostasis to
persistent damage. Concurrence of the two tissue-level risk factors accelerate this transition
(grey arrow). Additional presence of cellular-level risk factors ("low LEKTI" (B) or "high pH"
(C)) increases the skin vulnerability with a smaller region of "non-responsive" and "homeosta-
sis" but with a larger region of "oscillation" and "persistent damage", compared to healthy (A).
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of the regulatory system of epithelial function, even if the system is robust enough to buffer out
disturbances caused by single risk factors.

Applicability to other inflammatory diseases

One of the main features of our model is the presence of a switch at the cellular level realised
by the bistability in the bifurcation diagram of the inflammation (Fig. 4.3A), coupled with a
slower regulatory system. This structure makes our model resemble an ‘on-off’ hybrid sys-
tem [242], in which switching between two dynamic control regimes (depending on whether
the inflammation is ‘on’ or ‘off’) determines the global behaviour of the system.

Pathogen-induced signalling cascades play a key role in protecting the body from infec-
tion by triggering immune reactions that contribute to the eradication of the stimulus. How-
ever, these signalling cascades also trigger tissue-damaging inflammation, since the induction
of stimulus-eradicating mechanisms often concurs with the release of pro-inflammatory me-
diators [114, 130, 154]. The switch mechanism prevents unnecessary and inefficient immune
reactions to be triggered, since the activation of the signalling cascades occurs only when the
stimulus concentration is high enough (above the inflammation threshold) to endanger the tis-
sue, and the immune reactions persist until the stimulus falls significantly below the inflamma-
tion threshold. This ensures that inflammation does not re-occur through random fluctuations
of the stimulus concentration.

Unnecessary and ineffective immune reactions are accompanied by inflammation that can
cause the destruction of tissues and has a significant impact on the epithelial function by affect-
ing morphology [238, 157], composition [138], abundance [243] and micro-environment [34]
of epithelial cells, without contributing to eradicating pathogens [244, 245]. Indeed, this consti-
tutes a major part of pathology in many inflammatory and infectious conditions including atopic
dermatitis [244, 245, 246]. Therefore, fast resolution of the inflammation is essential for the
restoration of homeostasis, and relies on a balance between negative (via stimulus eradication)
and positive (via tissue damage) feedback from the inflammation to the stimulus concentration.

The bistability of the cellular-level inflammatory responses together with the dual feedback
on a longer time scale constitute a biologically reasonable architecture in terms of efficiency
and robustness, and it has been found in many inflammation-inducing PPI networks [201, 247].
For example, bistability has been found in the multi-scale regulatory networks of the inflam-
matory response induced by cytokine interleukin 1 (IL1), another system of interest as regards
AD [182, 248]. This system is similar in structure to the KLK system discussed in this paper,
since PPI leading to IL1 activation is also triggered by stimuli that infiltrate through the skin
barrier [122], including several biotic and abiotic allergens [49, 154], and active IL1 affects the
stimulus concentration by initiating immune reactions that eliminate the stimulus [154] and by
altering skin barrier formation [226]. Our model can also be applied to the other two atopic
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diseases, asthma and hay fever, since the regulation of bronchial and nasal epithelium function
occurs though a similar interplay between the tissue-level barrier and cellular-level inflamma-
tory response in the epidermis, bronchial epithelium, and nasal epithelium [12, 27].

Clinical significance

Despite its clinical importance, the epidermal function has seldom been studied from a systems-
level perspective. Conventional experimental approaches have not fully revealed the relation-
ships between the barrier dysfunction and inflammatory response in the development of AD
[241, 8]. Our model provides a platform to analyse the bi-directional interplay between skin
barrier dysfunction and aberrant inflammatory response (Fig. 4.2D).

Our model suggests that the measurement of the barrier integrity over time can predict
the type of clinical course a particular patient is expected to follow (Fig. 4.4). This is also
compatible with clinical findings: the long-term prognosis of atopic patients may be related
to the type of behaviour observed; whereas persistent inflammation is associated with a poor
prognosis, patients with periodic inflammation have better chances for resolution of the disease,
indicating there may be a correspondence between these behaviours to increasing severities of
atopic diseases [249].

An empirical validation of our model predictions, particularly the association between the
four risk factors and dynamic model behaviours (Fig. 4.6), and implementing the prediction
in dermatological practice will require an empirical system-level investigation of the epithe-
lium to measure the barrier integrity and inflammation over time for different phenotypes and
environmental conditions. For this purpose, it is essential to develop a new way to continu-
ously measure the barrier integrity over several hours to a day, for example by non-invasive
measurement of transepidermal water loss and skin hydration measurements for the skin from
AD patients [250] or by use of organotypic cultures, which allow temporal and spatial quan-
titative characterisation of the skin [251]. Validation of our results through such studies will
contribute to a more efficient, patient-specific treatment of AD and other atopic diseases, since
the risk factor triggering the disease condition in a particular patient can be deduced from the
time course of the barrier integrity.

Possible extensions of the model and future work

Our model considers the essential processes and reactions that contribute to the regulatory inter-
play between tissue- and cellular-level dynamics at different time scales from the viewpoint of
dual controls. This framework could be extended to include another level with an even slower
time scale corresponding to the proliferation and differentiation of epithelial cells. The regener-
ation of the skin barrier requires skin barrier precursors, i.e., correctly differentiated cells at the
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lower layers of the epithelium [171]. Our model assumes a constant concentration bpre of skin
barrier precursors. However, formation of these barrier precursors is in fact a dynamic process
that is orchestrated among differentiation, proliferation and apoptosis of epithelial cells, and is
further affected by inflammatory signals [226, 252]. Describing such dynamics of the epithe-
lial cells at an even slower time scale and coupling it to the multi-scale model proposed here
would allow us to explore the interplay between inflammation and epithelial tissue renewal,
and to address interesting, open questions regarding deregulation of epithelium renewal in the
context of inflammation, which plays an important role not only for AD [171], but also for the
development of tumors [253].

The skin immune system can interact with the systemic immune system in AD, which may
be incorporated into the model in the future. It has been widely observed that AD patients
are more prone to develop asthma and hay fever, leading to the so-called atopic march [27,
62]. It is thought that allergic reactions occur in different organs due to allergic sensitisation,
which is the induction of allergic reaction and the establishment of immunological memory
by repeated exposure of inter-epithelial cells to antigen [27]. This sensitisation usually occurs
at the systemic level, and the exposure to the allergen in other organs, after the establishment
of sensitisation in the skin, can initiate allergic reactions and subsequent immunopathology
there, although local factors such as the integrity of epithelium may be also important for the
development of allergic diseases [254]. Incorporation of the allergic reaction in the model
would allow us to explore not only the mechanisms of the atopic march but also the allergic
diseases of strong clinical relevance [121, 255], while our model considers early events in
the pathogenesis of AD that occur before adaptive immune responses to the stimuli, such as
histamine release by primed mast cells, are initiated.

Concluding remarks

We proposed a multi-scale model for epithelial function which predicts that the underlying
risk factors for AD can be inferred from the clinically observable dynamic response of the skin
barrier to environmental challenges. Our model analysis using time-scale separation reveals the
effects of AD risk factors on the epidermal function regulated by the dynamic interplay between
inflammation and skin barrier permeability. Our results may lead to a better understanding of
the design principles of the regulatory systems for epithelial homeostasis and inflammation and
may be able to be extrapolated to other atopic diseases. Our modelling approach provides a
theoretical framework for studying multi-scale regulatory interactions, characteristic of nearly
all physiological systems.

Atopic diseases represent an important and unresolved health problem, mainly because their
causes have not yet been elucidated due to the complex nature of the underlying regulatory net-
works across different scales. Clinical research will benefit from our systems-level mathemat-
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ical framework for studying epithelium function, as it will allow systematic evaluations of the
effects of risk factors and different treatments, such as corticosteroids or emollients, on clini-
cally observable epithelium markers such as the barrier function. We expect our research will
contribute to a deeper understanding, more accurate description, and patient-specific treatment
of atopic diseases.
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4.2.7 Appendix

Multi-scale KLK model description

Our multi-scale model is a combination of the cellular-level model proposed in [84] (Model 1
with positive feedback from [PAR2∗] to LEKTI production) and a tissue-level model described
as:

dS
dτ

= Sout
P̃

B+ ε
−S ( fIP IP + I0) , (4.1a)

dB
dτ

=
bpre

1+ kL[PAR2∗]s

(
1− B

B̃

)
−dK[KLK∗]sB, (4.1b)

where τ corresponds to the slow time scale, S is the concentration of the inter-epidermal stim-
ulus and B is the barrier integrity.

The inter-epidermal stimulus, S, increases by the penetration of external stimulus, Sout,
through the barrier, hence its rate is proportional to Sout and inversely proportional to the skin
barrier integrity, B (Fig. 4.2C(d)). The minimum barrier integrity, ε, reflects the fact that even
very severe cases of AD [44] do not lead to a complete destruction of the skin barrier and
ensures that the model is always well-defined. Eradication of S occurs by the combination of
PAR2∗-independent (I0) and -dependent (IP) immune reactions (Fig. 4.2C(f)) represented by

IP =
∫

τ

0
[PAR2∗]se

−τ+x dx, (4.2)

where the convolution with a decaying exponential captures the persistence of the immune
reactions even after inactivation of PAR2∗ [116].
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The barrier integrity, B, is determined by the balance between the production and degrada-
tion of the barrier. The barrier is produced from precursors, which are assumed to be constantly
available with a fixed concentration, bpre, and lipids, whose release is inhibited by PAR2∗

(Fig. 4.2C(b)). The capacity of the barrier to self-restore the nominal barrier integrity, B̃, fol-
lowing its disruption [34, 173] is represented by a logistic term. The degradation of the barrier
occurs as a result of desquamation mediated by KLK∗ (Fig. 4.2C(a)).

Note that [PAR2∗]s and [KLK∗]s are the stable steady state concentrations of PAR2∗ and
KLK∗ obtained from the ODE model [84] for the cellular-level PPI reaction network which
describes the dynamic behavior of the concentration of six species, including PAR2∗ and KLK∗,
as a six-dimensional system of ODEs with 21 parameters.

Parameter values and robustness of the model outcomes

The nominal values of the parameters for the cellular-level model are taken from [84]. For
the tissue-level model, we chose nominal values (Table 4.1) that are consistent with available
experimental data. Since the experimental data to date is qualitative rather than quantitative,
our model predictions are concerned with the qualitative effects of the risk factors, in terms of
a loss of balance of the dual control, on the system’s behaviour.

Such results are largely robust to the parameter choices, as confirmed by a detailed analy-
sis of the sensitivity of the parameters on the model behaviours. Our numerics show that the
qualitative behaviour is preserved when the parameters are changed 10-100 fold. More specif-
ically, the PAR2∗-independent immune reactions (I0) and the nominal skin barrier integrity (B̃)
are scaling factors for Ss. The concentration of skin barrier precursors (bpre) affects the skin
barrier recovery time, but does not alter the qualitative behaviours. The strength of lipid release
inhibition by PAR2∗ (kL) and the rate of desquamation by KLK∗ (dK) scale the concentrations
of [KLK∗]s and [PAR2∗]s, thus affecting the propensity for persistent loss of homeostasis but
not the qualitative behaviours.

The other two parameters of the model encapsulate the effects of particular risk factors.
The skin permeability (P̃) was varied from P̃ ≈ 0 (no influx of the stimulus) to P̃ = 1 (100
% permeable barrier) to assess the effects of the "high permeability" risk factor on the model
behaviours (Fig. 4.6). The effects of the "weak stimulus eradication" risk factor were assessed
through varying the corresponding parameter ( fIP) from 0.01 (weak stimulus eradication) to 1
(healthy stimulus eradication) (Fig. 4.6). Varying fIP for orders of magnitude higher and lower
did not show qualitatively different results.
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Table 4.1: Parameters of the mathematical model of the early stages of AD

Parameter Description Nominal value Units
Sout Concentration of external stimulus 95 mg/ml
P̃ Nominal skin permeability 0.4 1/day
fIP Strength of stimulus eradication by PAR2∗-

mediated immune reactions
0.8 1/day

I0 PAR2∗-independent immune reactions 1 1/day
bpre Concentration of skin barrier precursors 0.5 1/day
kL Strength of lipid release inhibition by PAR2∗ 10 none
B̃ Nominal skin barrier integrity 1 none
dK Rate of desquamation by KLK∗ 0.1 1/day
ε Minimum barrier integrity 0.01 none

Model analysis

[PAR2∗]s and [KLK∗]s were calculated by solving the fixed point for algebraic equations of the
cellular-level model [84] using Maple 13 (Maplesoft, Waterloo, Ontario, Canada). These were
used for the dynamic simulations of the multi-scale model using the ODE solver |ode23t|
in Matlab Version R2010a (The MathWorks, Inc., Natick, MA, USA). The solver |ode23t|
was chosen to increase the accuracy of the numerical simulations of our stiff multi-scale model,
in which abrupt changes in the QSS variables [KLK∗]s and [PAR2∗]s dramatically change the
dynamical behaviour. At each iteration of the solver, the values of [PAR2∗]s and [KLK∗]s
were updated according to the history of S, by using the |odeset| command in the function
declaration.
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Chapter 5

Modelling the effects of treatment of AD:
Towards optimal patient-specific
treatment for the early phases of AD

5.1 Introduction

In this section, we use the insights obtained in chapter 4 on the disease mechanisms underlying
early phases of AD to explore the effects of possible treatments on the pathogenic process.
With this, we aim to contribute to the design of patient-specific therapeutic interventions that
can prevent the aggravation of the disease (discussed in chapter 6).
We focus on three treatments commonly prescribed to AD patients: antibiotics, emollients and
corticosteroids. They directly affect the infiltrated pathogens, the barrier function and the im-
mune responses, respectively [24, 25, 256].
Intriguingly, different treatments benefit only a fraction of AD patients [24]. Likely, this
patient-specific effectiveness of the individual treatments can be attributed either to the patient-
specific cause (risk factor) or to the patient-specific stage (early vs. late) of the disease [25].
Effective, personalized treatment thus requires an understanding of the underlying mechanisms
of these different treatments, and how their impact on the restoration of epidermal homeostasis
depends on particular causes and stages of the disease process.
Further, prolonged treatment in the form of antibiotics, emollients and corticosteroids can have
adverse long term effects on epidermal homeostasis. For example, frequent use of high doses of
antibiotics can lead to antibiotic resistance [23], long term use of emollients can impair barrier
restoration mechanisms due to its occlusive effects [150, 174], and extended use of corticos-
teroids impairs barrier function [64], due to its interference with keratinocyte proliferation and
differentiation programs [65]. It is hence clinically relevant to minimize the strength and dura-
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tion of the treatment [63]. Our quantitative analysis proposed here corresponds to a first step
towards this optimization of the treatment strategy.
To achieve this goal, we explore possible mechanisms responsible for differential effects of
these treatments in the context of the model proposed here. This quantitative framework allows
the investigation of potential patient-specific causes of AD [236], contributing towards the de-
velopment of personalized treatment strategies.
The results presented here are preliminary, and are being further investigated in collaboration
with Dr Yuzuru Sato (visiting researcher at Imperial College London) and William Nightingale
(undergraduate student at the Department of Bioengineering, Imperial College London).

5.2 Mathematical model of the treatments

To model the risk-factor dependent effects of the three different treatments on loss of epidermal
function that occurs in early phases of AD, we add following terms to equation 4.1, correspond-
ing to the effects of antibiotics, corticosteroids and emollients, respectively:

• Antibiotics increase the rate of elimination of infiltrated stimulus. They are modelled by
adding a second degradation term in equation 5.1.

• Emollients increase the barrier function. They are modelled by adding a constant term
to the barrier production rate (green term in equation 5.1).

• Corticosteroids have opposing effects on the functioning of the epithelium. First, they
decrease the strength of the immune responses [66]. This mitigates the barrier damaging
effects of inflammation (desired therapeutic effect), but can also lead to a increased in-
fection due to reduction of pathogen-eradicating immune responses (adverse effect) [65].
Moreover, sustained use of corticosteroids lead to a decrease in barrier function by inter-
fering with the barrier formation process, an adverse effect known as skin atrophy [65].
We model these effects by the blue terms in equation 5.1, namely:

– Decreasing the rate of immune-response-dependent barrier degradation, with rate
κdegradation ∈ [0,1). This represents the corticosteroid-induced mitigation of inflammation-
induced barrier damage.

– Decreasing the rate of immune-response-dependent pathogen elimination, with rate
κpathogen ∈ [0,1). This represents one adverse effect of corticosteroids.

– Scaling the interference of PAR2-mediated inflammation with the barrier produc-
tion rate, by the term C(t)κproduction. Values for κproduction < 1 reduce the bar-
rier damaging effects of PAR2-dependent inflammation (desired therapeutic effect),
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while values of κproduction > 1 represent a increase in the interference with barrier
formation processes (adverse effects).

For simplicity, we chose to model the effects of corticosteroids on epidermal homeostasis
by this phenomenological approximation. In an alternative, mechanistic representation
of the effects of corticosteroids on the inhibition of immune responses, we modelled the
effects of the corticosteroids by assuming that C(t) decreased the rate of activation of
the PAR2-mediated immune response pathway. Particularly, we assumed that the cor-
ticosteroids decrease the rate of PAR2 activation of the model proposed in [235] (kP

in equation 3.1). The resulting simulations are shown in figure 5.1. Clearly, the corti-
costeroids affect the stimulus-dependent onset of PAR2-mediated immune responses by
simply decreasing (linear scaling) the strength of the PAR2-mediated immune responses,
but do not significantly affect the threshold parameters S− and S+. These results suggest
that a mechanistic representation of the effects of corticosteroids on the PAR2−mediated
immune responses (by scaling the PAR2 activation rate, as in figure 5.1) can be reason-
ably approximated by the phenomenological representation in equations 5.1 (scaling of
immune responses IP, barrier damage mediated by active KLK∗s , and inhibition of barrier
production meditated by active PAR2∗s effects).

The mathematical model used for the quantitative analysis of the risk-factor dependent
effects of treatments is given in equation 5.1:

IP =
∫

τ

0
[PAR2∗]se

−τ+x dx, (5.1a)

dS
dτ

= Sout
P̃

B+ ε
−S(t)C(t)κpathogen ( fIP IP + I0)−S(t)Antibiotics(t), (5.1b)

dB
dτ

= Emollient(t)+
bpre

1+ kLC(t)κproduction[PAR2∗]s

(
1− B

B̃

)
−dKC(t)κdegradation[KLK∗]sB.

(5.1c)

A healthy epidermis is modelled by assuming the nominal parameters of the model 3.1
(HC in [84]), with Sout = 95, P̃ = 0.4, fIP = 0.8 and bpre = 0.5 in equation 5.1. High protease
activity induced by high pH is modelled by increasing the catalytic rates of KLK in model 3.1
(High pH in [84]). The other parameters used for the model simulations (figures 5.2 and 5.1)
are given in table 5.1.
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Figure 5.1: A mechanistic representation of corticosteroid treatment results in a simple
scaling of the dose response diagram describing protease mediated inflammation A mech-
anistic model of corcorticosteroid treatment (decrease in the PAR2- activation rate kP in equa-
tion 3.1) results in a almost-linear decrease in the steady state levels of PAR2 activity (”In-
flammation”), without significantly changing the threshold parameters S+ and S−. Hence, this
effect can be approximated by simply scaling the steady state levels of PAR2∗ and KLK∗ on
epidermal function, as in equations 5.1.

5.3 Qualitative analysis of patient -specific treatment strate-
gies for the early phases of AD

In sections 4.2.5 (particularly, figure 4.5) and 3.2.6, we determined the two different mecha-
nisms by which risk factors can lead to the loss of epidermal homeostasis. It occurs by differ-
entially affecting the relative position of the steady state values of the infiltrated stimulus when
immune responses are low (Slow

ss ) or high (Shigh
ss ) respect to the threshold values S− and S+.

Recall that a homeostatic epidermis requires Slow
ss ≤ S+ and Shigh

ss < S− (figure 3.3).
Risk factors such as ”low LEKTI” or ”low FLG” preferentially impair the first of these con-
ditions. By decreasing S+ (”low LEKTI”) or increasing Slow

ss , these risks factors propitiate
Slow

ss ≤ S+, resulting in a recurrent events of barrier damage and inflammation (figure 5.3 A,B)
Risk factors such as high pH or low AMP preferentially impair the second of these conditions
for homeostasis. The risk factor high pH decreases S−, and low AMP increases Shigh

ss , resulting
in a persistent loss of epidermal homeostasis (figure 5.2 A,B). Accordingly, treatment can pro-
pitiate the recovery of epidermal homeostasis by restoring Slow

ss ≤ S+ or Shigh
ss < S−.

Antibiotics and emollient treatments decrease both Slow
ss and Shigh

ss . Therefore, they can poten-
tially counteract epidermal loss of homeostasis regardless of the mechanism that triggers the
disease.
In contrast, corticosteroid treatment interferes with the effects of immune responses on epider-
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Table 5.1: Parameters of the model of the treatment of the early phases of AD (dimensionless
and arbitrarily chosen parameters for simulating equations 5.1)

Symbol Name Nominal values
Treatment parameters

no treat-
ment

treatment

Emollient Emollient treatment 0 1 (low), 5 (high)
C(t) Corticosteroid treatment 1 0.1
κdegradation Inflammation-dependent barrier degradation 1 0.1
κproduction Inflammation-dependent inhibition of barrier

production
1 0.1

κpathogen Inflammation-dependent pathogen elimination 1 0.05
antibiotic Strength of emollient treatment 0 1

Phenotype parameters
healthy disease

fIP Strength of immune response 0.8 (HC) 0.1 (low AMP)
P̃ Skin barrier permeability 0.4 (HC) 0.7 (low FLG)

mal function, and can therefore only affect Shigh
ss . Hence, corticosteroid treatment might lead to

remission only when the loss of epidermal homeostasis is driven by Slow
ss > S+.

Figure 5.2 C exemplifies a scenario in which loss of epidermal homeostasis is caused by low

AMP, resulting in Shigh
ss > S− (figure 5.2 B), even though Slow

ss ≤ S+ (bistability discussed in
section 3.2.6). In this case, a single dose of antibiotics, which reduces S(τ) below S− (figure
5.2 C), results in total remission (figure 5.2 D). Analogous results are obtained for a scenario
in which loss of epidermal homeostasis is caused by high pH (figure 5.2 E).
In these examples, a single dose of treatment are sufficient to trigger total remission. The treat-
ment has to be sufficiently strong to drive S(τ) below S−. Once reached S−, the infiltrated
pathogen will stabilize to a homeostatic value of Slow

ss ≤ S+ (as shown in figure 5.2 C). In the
case of antibiotics treatment, the stronger the dose, the more likely S(τ) can be driven below
S−. For corticosteroids, however, a optimal dose that leads to remission corresponds to a in-
termediate concentration of corticosteroids, because of the dual effects of corticosteroids on
barrier function and pathogen load.

Figure 5.3 shows a scenario in which use of emollients alleviate the recurrent flares of
barrier damage and inflammation (figure 5.3 A) caused by the combination of Slow

ss > S+ and
Shigh

ss > S− (figure 5.3 B). Specifically, we consider the cases in which emollients compensate
the damaging effects of ”low LEKTI” (figure 5.3 C) and ”low FLG” (figure 5.3 D) by increas-
ing Slow

ss .
In the absence of emollients, ”low LEKTI” or ”low FLG” induce recurrent flares of inflam-
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Figure 5.2: Complete remission of AD can be achieved by treatment that drives the tran-
sition from a unhealthy to a healthy steady state The qualitative dynamic behaviour ”persis-
tence” (A), resulting from a inability to reach the recovery threshold value S− in the bifurcation
diagram (B), can be compensated by a single dose of treatment that enables the decrease of S(τ)

in equation 5.1 until surpassing S−. Once reached S−, the treatment can be suspended, and S(τ)

(now on the low branch) stabilizes to Slow
ss < S+ (C). Two examples of these treatments include

antibiotics (D) and and corticosteroids (E), that can lead to restore epidermal homeostasis that
is lost by low AMP and or high pH, respectively.

mation with a high amplitude and frequency (figures 5.3 C and D, red lines). Low doses of
emollient decrease both amplitude and frequency of these oscillations (figures 5.3 C and D,
blue lines), by accelerating the decrease of S(τ) to S− (Ṡ in equation 5.1 b is larger in the pres-
ence of emollients), even if the dose is not strong enough to decrease treated Slow

ss below S+.
Emollients can lead to a complete remission if the dose is sufficiently high to decrease Slow

ss

below S+ (black lines in figures 5.3 C and D).
Note that when loss of homeostasis is caused by Slow

ss > S+, a constant use of emollients is
necessary to alleviate the loss of epidermal homeostasis. As soon as the treatment is stopped,
Slow

ss will return back to its original, high steady state, re-setting the pathogenic phenotype given
by the recurrent flares of inflammation.
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Figure 5.3: Emollients decrease the frequency and amplitude of recurrent inflammation
in a dose-dependent way. The qualitative dynamic behaviour ”recurrence” (A), results from
a increase in Slow

ss to a value above S+ that is caused by risk factors such as ”low LEKTI” (C)
or ”low FLG” (D). This loss of homeostasis can be alleviated by emollients, which reduce Slow

ss

in a dose-dependent manner. Low doses of emollients reduce the amplitude and magnitude
of the recurrent inflammation, while high doses of emollients lead to a recovery of epidermal
homeostasis.

5.4 Conclusions and future work

In this section, we presented a qualitative analysis of the effects of three common treatments,
namely antibiotics, emollients and corticosteroids, on the early development of AD.
We explored how different treatments can differentially affect epidermal function that has been
lost in a risk-factor dependent way. These results contribute to understanding the patient-
specific effects that characterize the treatment of AD [24].
So far, our results rely on a qualitative analysis that is based on the hybrid systems approach,
proposed in [207, 208] and discussed in section 3.2.6. It helped us to pinpoint different mech-
anisms by which treatment can lead to the recovery of homeostasis. We exemplified these
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mechanisms by considering the effects of antibiotics on a virtual patient in which AD is im-
paired due to a low expression of AMPs (figure 5.2 D), simulated treatment of patients where
the skin is disrupted by high pH corticosteroids (figure 5.2 E), and different doses of emollients
on virtual patients where the skin is disrupted by low levels of expression of LEKTI (figure
5.3 C) and filaggrin (figure 5.3 D).
However, a systematic analysis of the effect of treatments on different virtual patients, each of
them characterized by a particular risk factor and parameter combination, is required to derive
quantitative and clinically relevant model predictions.
We will also use the mathematical model to explore different treatment regimes which combine
emollients, antibiotics and corticoseroids that are administrated with particular frequencies and
magnitudes.
This will help us to devise a optimal treatment that effective induces epithelial remission but
requires only a minimal dose and frequency of drugs, reducing the adverse effects of AD treat-
ments.
Finding optimal treatment to restore epidermal homeostasis that characterizes early phases of
AD is particularly important in the context of preventive, patient specific medicine, because
treating early phases of AD has the potential to prevent the onset of advanced, severe and
irreversible phases of the disease that will be discussed in the next chapter.
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Chapter 6

Modelling advanced stages of AD: The
onset of adaptive immune responses

6.1 Introduction

In chapter 4, we investigated the role of different risk factors on the early development of AD,
characterized by a aberrant interplay between innate immune responses and barrier function.
During this phase of the disease, mild forms of epithelial dysfunction, appearing as recurrent
cycles of barrier damage and inflammation, can be reversed as soon as the risk factor is coun-
teracted [25].
This situation is exemplified in figure 6.1. It corresponds to simulations of equations 4.1 (ex-
plained in chapter 4) for three different phases: During the first phase of the simulations (I
in figure 6.1), the permeability barrier function is set to its nominal value, corresponding to
a healthy system with a nominal filaggrin content (P̃ = 0.4). Then, in phase II (red area in
figure 6.1), we simulated a decrease in filaggrin content (by setting P̃ = 0.7, corresponding to
the genetic condition ”low FLG” discussed in section 4.2.3). As discussed previously (section
4.2.5), a decreased filaggrin content is associated to loss of epidermal homeostasis that appears
as recurrent events of loss of barrier function, characteristic of early phases of AD. In the third
phase (III), we increased again the fiaggrin content (by re-setting P̃ = 0.4). As seen in figure
6.1, restoration of the nominal conditions leads to a recovery of homeostasis. This suggests
that mild forms of loss of epidermal homeostasis, appearing as recurrent flares of barrier dam-
age, can be reversed to a healthy phenotype as soon as the risk factor that causes the loss of
homeostasis (low FLG expression in figure 6.1) is counteracted.

This reversibility is further discussed in chapter 5. As shown in figures 5.3 and 5.2, during
the early phases of the disease, it is possible to attain transient or even complete remission (i.e.
restoration of epidermal homeostasis) upon administration of treatments such as emollients,
corticosteroids and antibiotics that counteract the triggers of the disease.
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Figure 6.1: Reversibility of mild and early forms of AD The plot shows simulations of the
model of the early phases of AD, described by equations 4.1. The simulations start with nomi-
nal parameters characterizing a healthy epidermis (I), followed by window of time (II) in which
filaggrin expression is decreased (by setting P̃ from 0.4 to 0.7) and ending with a restoration of
the nominal, healthy conditions (by re-setting P̃ from 0.7 to 0.4) in phase III. Low expression
of filaggrin induces a mild form of early AD (appearing as recurrent cycles of barrier damage)
that can be reversed as soon as healthy filaggrin expression is restored.

This reversibility of the pathological phenotype is possible because the innate immune re-
sponses triggered by the infiltrated pathogen display a reversible, switch like dose response
behaviour (figure 3.2). As soon as the infiltrated stimulus is decreased below a threshold S−,
the immune responses cease and the barrier is restored. No immunological memory is kept
from the past events of stimulus infiltration.
Advanced stages of the disease process, however, are characterized by allergic sensitization
[160, 161, 27], that refers to the irreversible activation of impaired adaptive immune responses
(mainly via Th2 cells) that are responsible for allergic reactions to infiltrating pathogens and
chronic inflammation [39, 254, 160]. This is process is triggered by a cumulative history of
innate immune responses and infiltrated pathogens [187].
It is clinically relevant to understand allergic sensitization in the context of AD, since this pro-
cess is responsible for the allergic component that characterizes this disease [160, 161].
As shown in figures 2.3 A (control structure) and in 6.2 (cartoon representation), the onset of
allergic sensitization and a pro-inflammatory micro-environment starts by the release of cy-
tokines in response to activation of innate immune response pathways [111, 158]. Particularly
important is TSLP, a cytokine that is produced by PAR2-mediated signalling pathways [39, 111]
and has been show to play a key role in the onset of allergic inflammation that characterizes AD
[257] (figure 6.2). TSLP induces the activation and migration of DC from the epidermis to the
lymph nodes [158, 39] (figure 6.2, 2 and 2.3 A,II). Once in the lymph node, DC increase the
levels of IL4 [9, 254, 158] (figure 6.2, 3). This triggers the differentiation of T cells from naïve
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T cells into polarized Th2 cells, a process that involves Gata-3 mediated signalling [159, 189]
(figure 6.2, 4), and is called T-cell polarization. Polarized Th2 cells migrate from the lymph
node to the epidermis [159, 189] (figure 6.2, 5), where they contribute to the establishment
to the allergic [158], pro-inflammatory micro-environment that characterizes the epidermis of
patients with advanced [254] and severe [185, 186] forms of AD.
The establishment of this pro-inflammatory micro-environment in the epidermis of AD patients
as a consequence of allergic sensitization further interferes with epidermal homeostasis, since
pro-inflammatory cytokines released by polarized Th2 cells affect epidermal tissue remodelling
by interfering with gene expression programs [137, 138, 29, 125]. The establishment of a pro-
inflammatory and allergic micro-environment as a consequence of Th2 polarization is hence
responsible for further worsening of the disease condition.

Furthermore, atopic sensitization is also the first step of the atopic march, defined as a
progression from AD to other atopic diseases, namely asthma and allergic rhinitis [62, 25].
This sequential impairment of epithelial tissues (epidermis and airway epithelium) seems to be
triggered by the increased levels of serum IgE and pro-inflammatory cytokines that result from
Th2 cell polarization [258]. By circulating in the blood, these molecules are able to interfere
not only with epidermal remodelling, but also with other epithelial tissues, including the air-
way epithelium [146]. This significantly increases the risk of developing asthma and allergic
rhinitis [62, 258, 121]. Upon progression of the atopic march, loss of epithelial homeostasis
is no longer confined to the epidermis, but spreads out to other epithelial systems to become
systemic, since the rise in the levels of IgE and cytokines affects not only the epidermis, but
also the serum that comes in contact with many other epithelial tissues [258, 62].
Early treatment (assessed in section 5) has the potential to prevent the advanced stages of AD,
and avoid (1) the chronicity (associated to the irreversibility), (2) the worsening (associated to
the impaired gene expression programs by pro-inflammatory cytokines) and (3) the decentral-

ization of the loss of homeostasis from epidermis to other epithelial tissues the via the atopic
march.
Shedding light on the mechanisms that underlie the onset of a pro-inflammatory micro-environment
in the epidermis is the first step towards understanding the emergence of the aberrant gene ex-
pression patterns that characterize the epidermis of patients with severe forms of AD [134].
As observed for filaggrin, these impaired gene expression patterns can result from chronic ex-
posure to cytokines without the need of ”hard coded” genetic defects, such as mutations or
polymorphisms [36].
In this chapter, we build on the previous mathematical model that captured the early phases
of AD (described in chapter 4), to encompass the processes that lead to allergic sensitization
that characterizes advanced forms of AD. Our previous model considered following processes
(depicted in figure 4.1):
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Figure 6.2: Cartoon representation of the mechanisms leading to the onset of allergic sen-
sitization and the establishment of a pro-inflammatory micro-environment that charac-
terize the epidermis of AD patients with severe forms of AD Onset of allergic sensitization
and a pro-inflammatory micro-environment occurs through the polarization of T cells, a process
that involves following steps: (1) Pathogen infiltration through a damaged skin barrier and the
resulting activation of protease -mediated innate immune responses trigger the release of TSLP.
(2) TSLP induces the activation and migration of DC from the infected epidermis to the lymph
node. (3) There, DC increase the levels of IL4, a cytokine that (4) mediates the irreversible
polarization of naïve T cells into Th-2 cells, in a Gata-3 dependent way. (5) Once polarized,
Th-2 cells migrate back to the epidermis, where they play a protagonic role in the establishment
of a allergic, pro-inflammatory micro-environment by rising the levels of cytokines.

• Infiltration of pathogens through the skin barrier.

• Switch-like activation of KLK networks in response to the infiltrated pathogen.

• KLK-mediated reduction of barrier function (through degradation of intercellular junc-
tions and by reduction of the replenishment of skin barrier components).

• Self-recovery of the skin barrier function.

• KLK-mediated onset of innate immune responses, in the form of increase in AMPs and
neutrophil recruitment.
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• Persistence of neutrophils, even after the KLK activity has ceased.

• Elimination of pathogens by the immune responses.

To include the onset of allergic sensitization, in the model proposed in this chapter, we add
following modules:

• Production of IL4 by DC that have migrated to the lymph nodes in response to TLSP
stimulation. This module is simulated by the ”persistence” network motif described in
section 3.4.

• Irreversible polarization of T cells in response to IL4 levels in the lymph node. This
module corresponds to the regulatory module presented in figure 2.3 G, and is simulated
by the equation 3.2 proposed in [195]. The dose-response behaviour of this equation
corresponds to a irreversible switch, as described in section 3.2.4 and shown in figure
3.2.

The migration of polarized Th2 cells from the lymph nodes to the epidermis is not consid-
ered in this model.

A schematic representation of the model of the onset of allergic sensitization, including the
two added modules, is given in figure 6.3.

We use the resulting mathematical model (equations 6.1 and described in section 6.2) to
assess whether environmental or genetic risk factors can potentially trigger the onset of allergic
sensitization. We find that genetic (filaggrin mutation) and environmental (barrier perturbation)
risk factors can trigger Th2 cell polarization, both alone and in combination (figure 6.5). These
findings are congruent with different sets of experimental data, derived from different mouse
models of AD in which the pathogenic process is triggered by only genetic [73], only environ-
mental [258, 186, 255], or a combination of both [132] risk factors. For example, it has been
observed that barrier perturbation, triggered by tape stripping and epicutaneous sensitization
[258, 186], as well as repeated hapten exposure [255], leads to the development of an AD-like
phenotype. A severe AD-like phenotype can also be triggered by a complete ablation of the fi-
laggrin gene [73], and by a combination of filaggrin deficiency and repeated hapten challenges
[132].
Our model conciliates these apparently disparate experimental observations by providing a co-
herent theoretical framework in which different mechanisms can trigger the onset of severe
forms of AD.
It contributes to understanding risk-factor-dependent disease mechanisms, which is necessary
to envision personalized treatment that considers the patient-specific pathogenic processes.
Early therapeutic interventions can potentially prevent the onset of allergic sensitization, and

105



Switch

Persistence

Recovery

Qualitative 
behaviours

KLK

Filaggrin

Lipids

IL-4 DC

Neutrophil

Barrier  
function

Protease

Innate 
immune 

responses

Pathogen

Input

Th2

Adaptive 
immune responses

Figure 6.3: Modular representation of the reaction network that underlies the onset of
aberrant adaptive immune responses. Infiltrating pathogens activate KLK networks in a
switch-like manner. Active KLK reduce barrier function by degrading the barrier components
and by reducing the lipid replenishment. Active KLK also triggers innate immune responses by
inducing the recruitment of neutrophils that persist even after the KLK activity has ceased. Ac-
tive KLK (via PAR2-induced TSLP) also triggers the activation and migration of DC from epi-
dermis to the lymph nodes, where they increase the concentration of IL4. IL4 then mediates the
polarization of Th2 cells via the switch like activation of the Gata3 pathway. Polarized Th2 cells
are responsible for the establishment of an allergic and pro-inflammatory micro-environment
that decreases the expression of filaggrin (represented by grey arrow, not considered in this
model).

must be assessed in a systems-level dynamic framework that considers different stages of the
disease.

6.2 Mathematical model of the advanced stages of AD

The mathematical model of the advanced stages of AD builds on the the mathematical model
of the early stages of AD, described in section 4.
It considers the interplay between the barrier function and innate immune responses, mediated
by the activation of protease (KLK) by the infiltrated pathogen (figure 4.1). The correspond-
ing reaction network is modelled by the multi-scale system of ODEs (equations 4.1 and 4.2,
reproduced for clarity in equations 6.1a-c), where [PAR∗]s(τ) and [KLK∗]s(τ) are the history-
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dependent steady-state solutions of equations 3.1 (reproduced for clarity in equations 6.2),
determined by the infiltrated pathogen load S(τ).

In this model, we add two additional components to represent the mechanisms leading to the
onset of allergic sensitization via the induction of Th2 cell polarization: (1) Release of IL4 by
DC that have been activated by proteases (via the PAR2-dependent induction of TSLP), and (2)
Th2 cell polarization by the IL4 dependent induction of Gata3.
The PAR2-mediated increase in IL4 involves the activation and mobilization of a cellular com-
ponent of the imune system (DC) in response to changes in cytokine levels (TSLP). It therefore
corresponds to a persistent network motif described in section 3.4. To mathematically describe
this process, we use the mechanistic description of the cytokine-mediated induction of cellular-
level immune cells (equation 3.8, reproduced for clarity in equation 6.1 e, where [IL4] is the
concentration of IL4 in the lymph nodes, kIL4 is the rate of induction of IL4 by active PAR2,
and dIL4 quantifies the rate of degradation of IL4.
T cell polarization occurs by the IL4- induced expression of Gata3 via the activation of the Stat6
signalling pathway [159]. The activation of the Stat6 signalling pathway involves biochemi-
cal interactions that stabilize quickly as compared to the slower, cellular processes leading to
IL4. Further, Gata-3 mediated T cell polarization is irreversible, all-or-nothing process, since
it involves major changes in gene expression programs [191]. Thus, the levels of Gata-3 as
a function of IL4 correspond to a network motif that displays a switch-like dose response be-
haviour, as described in section 3.2. We use the mathematical description of the IL4-mediated
Gata3 activation proposed in [195] equation 3.2 (reproduced for clarity in equation 6.1 e). The
resulting dose response behaviour is a irreversible switchthat represents the irreversible differ-
entiation of T cells: Once the levels of IL4 surpass the critical threshold value at which Gata3
switches from a low to a high value due to a saddle node bifurcation, Gata3 expression levels
remain high, even if the IL4 levels completely cease afterwards (figure 3.2 D). We denote this
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critical concentration of IL4 as the threshold for T cell polarization (figure 6.5).

dS
dτ

= Sout
P̃

B+ ε
−S ( fIP IP + I0) , (6.1a)

dB
dτ

=
bpre

1+ kL[PAR2∗]s

(
1− B

B̃

)
−dK[KLK∗]sB, (6.1b)

IP =
∫

τ

0
[PAR2∗]se

−τ+x dx, (6.1c)

d[IL4](τ)
dτ

= [PAR∗]s(τ)kIL4− [IL4](τ)dIL4, (6.1d)

d[Gata3(t)]
dt

= α[[IL4]]+
κG[Gata3(t)]2

1+[Gata3(t)]2
−κ[Gata3(t)]. (6.1e)

d[KLK∗LEKTI]
dt

= ka[KLK∗][LEKTI]− kd[KLK∗LEKTI]−δLK[KLK∗LEKTI], (6.2a)

d[LEKTI]
dt

=−ka[KLK∗][LEKTI]+ kd[KLK∗LEKTI]+ tL(mL + fL[PAR2∗])−δL[LEKTI],

(6.2b)

d[KLK∗]
dt

=−ka[KLK∗][LEKTI]+ kd[KLK∗LEKTI]+ k
[KLK∗][KLK]

[KLK∗]+CK
−δK∗[KLK∗],

(6.2c)

d[KLK]

dt
=−k

[KLK∗][KLK]

[KLK∗]+CK
−δK[KLK]+ fKSS+ fK[PAR2∗], (6.2d)

d[PAR2]
dt

=−kP
[KLK∗][PAR2]
[KLK∗]+CP

−δP[PAR2]+mP, (6.2e)

d[PAR2∗]
dt

= fPSS[PAR2]+ kP
[KLK∗][PAR2]
[KLK∗]+CP

−δP∗[PAR2∗]. (6.2f)

Unless otherwise stated, we used the nominal parameter values given in table 4.1 (for equa-
tions 6.1a-c), in [195] (for equation 6.1e, and in [84] (for equations 6.2). The parameters that
quantify equation 6.1e are kIL4 = 0.04, dIL4 = 0.05, and the initial condition IL4(0) = 0 (di-
mensionless and arbitrarily chosen).

A schematic representation of this model is given in figure 6.3.
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6.3 Onset of adaptive immune responses can be triggered by
both genetic and environmental risk factors

To determine if genetic, environmental or a combination of both risk factors can trigger the
onset of allergic inflammation, we simulated the mathematical model of the advanced stages of
AD (equations 6.1) for different concentrations of filaggrin (corresponding to different levels
of genetically determined filaggrin deficiency) and severities of environmentally determined
barrier damage.
Filaggrin deficiency was simulated as previously explained (section 4.2.3), by increasing the
nominal skin permeability, P̃, to represent the fact that a low filaggrin content increases the
permeability of the skin barrier to external pathogens [73]. We considered three values of
P̃, P̃ = 0.4, P̃ = 0.6, and P̃ = 1, representing the healthy control (FLG+/+), mild deficiency
(FLG+/−), and severe (FLG−/−) filaggrin deficiency, respectively. These correspond to genet-
ically encoded variations in filaggrin copy number [126].
Environmentally determined barrier damage, induced, for example, by acetone treatment, tape
stripping or exposition to sodium-lauryl-sulphate, was modelled by changing the concentra-
tions of barrier precursors bpre, to mimic the fact that the expression of pro-filaggrin [140, 138,
163, 172, 142] and many other precursors of barrier components [173] are decreased upon bar-
rier perturbation. We considered three values for bpre, corresponding to a control (bpre = 0.05),
mild (bpre = 0.02) and severe (bpre = 0.01) barrier damage, representing different regimes of
skin barrier perturbations (eg. tape stripping or acetone treatment with a particular frequency
and intensity).

As we saw in section 4.2.5, particularly figure 4.6, our model suggests that increased skin
barrier permeability caused by low FLG concentrations lead to oscillations in epidermal func-
tion (yellow area in figure 4.6, top) with an amplitude (figure 4.6, bottom) that increases with
decreasing concentrations of FLG. As shown in figure 6.4, this dose-dependent severity of of
the loss of epidermal homeostasis, caused in our model by low FLG expression, is also reflected
in the frequency of PAR2-mediated release of TSLP. Very low levels of FLG (FLG−/−) result
to a higher frequency in the PAR2-mediated release of TSLP, as compared to mild forms of
FLG deficiency (FLG+/−). Only high frequency TSLP oscillations lead to a rapid increase in
IL4 expression in the lymph nodes, because very short periods of relaxation (characterized by
no TSLP expression) do not allow IL4 levels to decay before the subsequent period of induction
of IL4 by TSLP. This results in a gradual accumulation of IL4 in the lymph nodes that even-
tually surpasses the threshold of Th2 cell polarization (figure 6.5 A, red line). Low frequency
oscillations lead to a much slower increase in IL4 expression, stabilizing once the values of IL4
are equal between two periods of high TSLP expression (figure 6.5 B, blue line).
This dose-dependent effect of filaggrin expression on the risk of developing severe forms of
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Figure 6.4: Increased risk factor severity, given by low FLG, high barrier damage, or syn-
ergism between both, increases the frequency of the oscillations of the PAR2-mediated
TSLP release (A) Dynamic profiles for the levels of active PAR2-mediated release of TSLP
for mild (FLG+/−, simulated by setting P̃ = 0.6) and severe (FLG−/−, simulated by setting
P̃ = 1) filaggrin deficiency. Decreasing the levels of FLG increases the frequency of TSLP
release. (B) Dynamic profiles for the levels active PAR2-mediated release of TSLP for mild
(bpre = 0.02) or severe (bpre = 0.01) barrier damage. Severe barrier damage increases the fre-
quency of TSLP release. (C) The combination of mild filaggrin deficiency (FLG+/−, simulated
by setting P̃ = 0.7) and mild barrier damage (simulated by setting bpre = 0.02) drastically in-
creases the frequency of TSLP release that is triggered by a individual genetic (FLG+/−, with
P̃ = 0.4 and bpre = 0.05) or environmental (bpre = 0.02 and P̃ = 0.4), risk factor.
Unless otherwise stated, the parameters for these simulations correspond to the nominal values
given in table 4.1. Parameters related to the KLK module correspond to the HC of [84]. Pa-
rameters related to the Gata3 module correspond to the nominal parameters given in [195]. The
parameters quantifying the IL4 module are kIL4 = 0.04, dIL4 = 0.05, and the initial condition
IL4(0) = 0.

AD is consistent with experimental and clinical findings, which have established a direct re-
lation between filaggrin content (determined copy number variations, different forms of SNPs
and null-mutations) and the severity of the disease [126, 125].
Our mathematical model also provides a plausible explanatory framework for murine models
of AD, in which a AD-like phenotype is induced by manipulations in the genetic or environ-
mental conditions of the mouse.
As reported in [73], genetic ablation of filaggrin results in the development of an AD-like
phenotype in mice in a dose-dependent manner. Congruent with our results, only complete
abrogation of filaggrin (FLG−/−, but not FLG−/+) results in allergic sensitization. Further
increasing the penetration of environmental insults by subjecting the FLG−/− mice to a high
concentration haptens augments the severity of the phenotype [73, 132]. Indeed, very frequent
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Figure 6.5: The onset of aberrant adaptive immune responses can be triggered by severe
forms of individual genetic (FLG) or environmental (barrier damage) risk factors. In com-
bination, also mild forms of risk factors lead to allergic sensitization. (A) Dynamic profiles
for the levels of IL4 in the lymph node for different severities of genetically determined filag-
grin deficiency. These are simulated by setting P̃ = 0.4 (FLG+/+, control), P̃ = 0.6 (FLG+/−,
mild), and P̃ = 1 (FLG−/−, severe), corresponding to variations in FLG copy number. Only
the most severe form of filaggrin deficiency results in a increase of IL4 above threshold for
Th2 polarization, triggering in the onset of allergic sensitization. (B) Dynamic profiles for the
levels of IL4 in the lymph node for different severities of environmentally determined barrier
disturbances. These are simulated by setting bpre = 0.05 (control), bpre = 0.02 (mild barrier
damage), bpre = 0.01 (severe barrier damage), corresponding to the decreased amount of bar-
rier precursors that result from sustained and frequent barrier damage. Only severe barrier
damage triggers the onset of allergic sensitization, by leading a gradual rise in IL4 levels that
eventually eventually surpass the threshold for Th2 polarization. (C) Alone, a mild form of ge-
netic (FLG+/−, simulated by setting P̃ = 0.7 with bpre = 0.05) or environmental (mild barrier
damage, simulated by setting bpre = 0.02 with P̃ = 0.4) risk factor does not lead to the onset of
allergic inflammation. However, in combination (simulated by setting bpre = 0.02 and P̃= 0.7),
even mild forms can result in the polarization of Th2 cells. Unless otherwise stated, the param-
eters for these simulations correspond to the nominal values given in table 4.1. Parameters
related to the KLK module correspond to the HC of [84].

and severe hapten exposure can result in an AD-like phenotype, even in the absence of FLG

mutations [255].
As shown in section 5, the use of emollients reduces the amplitude of the recurrent flares of
PAR2 activation and immune responses caused by low FLG expression (figure 5.3 D). As we
show in figure 6.5 A, reduced FLG expression seems to trigger the onset of adaptive immune
responses by affecting the frequency of TSLP release, in a dose-dependent manner. These find-
ings suggest that early use of emollient in high risk populations (eg. with FLG mutations) could
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prevent the onset of advanced, severe and irreversible stages of AD. This model prediction is
consistent with clinical findings, that suggest that a emollient therapy in neonates significantly
reduces the risk for AD development [256].
The skin of neonates displays lower permeability barrier function that improves during the first
year of life [211]. Partly, this weak barrier function can be attributed to the small corneocyte
size [259] and low filaggrin content [211] that characterize the skin of neonates, increasing
their propensity to develop AD. Hence, emollient treatment during the first year of life could
be sufficient to prevent the onset of advanced stages of AD, by supporting the post-natal skin
maturation process [259, 260].

Analogous to the results for filaggrin deficiency, our simulations suggest that severe forms
of environmentally determined barrier damage can also result in T cell polarization.
As seen in figure 6.4 B, increasing severities in barrier damage result in increased frequency in
active PAR2-mediated TSLP release, resulting in a rapid increase in the concentration of IL4
in the lymph nodes that eventually surpasses the threshold of T cell polarization (figure 6.5 B).

Our model suggests that the combined effect of filaggrin deficiency and environmentally de-
termined barrier perturbation dramatically increases the risk of developing a severe AD pheno-
type. As seen in figure 6.5 C, the coincidence of filaggrin deficiency and barrier damage results
in T cell polarization, even if the severity of the individual risk factors is not enough to trigger
a increase of IL4 above the threshold of T cell polarization.
Our model predicts that this synergism between the environmental and genetic risk factor can
be attributed to the dramatic increase in the frequency of TSLP oscillations caused by the si-
multaneous occurrence of barrier damage and filaggrin deficiency (figure 6.4 C).
This theoretical result is congruent with experimental observations. A severe AD phenotype
can be reproduced in mice that have been subjected to prolonged exposure to high doses of
haptens (increasing their penetration though the skin barrier) and tape stripping [258, 186].
Further, the development of an AD like phenotype requires that the frequency of the pertur-
bations (hapten exposure and tape strip) are high [255], confirming our model predictions that
suggest that high-frequency disturbances in epithelial function can result in severe forms of AD
(figures 6.4 and 6.5).
This mechanism highlights the critical role of the persistence motif described in section 3.4,
that acts as a capacitor that gradually stores the cyclic events of loss of barrier homeostasis in
a frequency-dependent manner (figure 3.6).
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6.4 Conclusions

In this chapter, we presented a model of the regulatory networks controlling epidermal function
that can reproduce the onset of advanced stages of AD, triggered by genetic (FLG deficiency),
environmental (barrier perturbation), or the synergism between both risk factors.
Our results agree with clinical [126, 125] and experimental data that describe the onset of an
AD like phenotype that is caused by a severe increase in the permeability to environmental
insults [258, 186, 255, 73, 132].
Our results also support the ”outside-in hypothesis”, stating that allergic inflammation can re-
sult from barrier defects [7].
Together with the results presented in section 5, our model predictions provide a plausible the-
oretical explanation of the mechanisms that underlie the preventive effect of early emollient
treatment on AD development [256].
Taken together, this mathematical model effectively captures the dynamic process leading to the
development of late stages of AD that has been observed in the clinic and in experiments. We
will continue using this model to further explore the mechanisms that underlie the pathogene-
sis of AD. We hope that it will contribute to the design of better methods for early diagnosis,
treatment and prevention of this socially relevant disease.
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Chapter 7

Mathematical model of AD: Conclusions
and future work

The mathematical model of AD proposed in this thesis is able to reproduce the two stages of
the pathogenic dynamics that is triggered by different combinations and severities of genetic
and environmental risk factors.
Based on the compilation of abundant but scattered experimental and clinical data, in chapter 2
we presented a manually curated reaction network responsible for controlling epidermal home-
ostasis. The network contains the most relevant biochemical and cellular effectors known to
play a important role in the pathogenesis of AD. Specifically, it represents the regulatory inter-
play that exists between skin barrier function and inflammation, which are the two epithelial
properties that are impaired in AD. It was previously known that the genetic and environmental
risk factors predisposing to AD alter epidermal function by targeting individual components
of this entangled network of biochemical and cellular interactions. However, the complexity
of AD comes mainly from the fact that disturbances elicited on the strongly connected regula-
tory network components can eventually propagate, affecting different regions of the reaction
network. This process is largely responsible for (1) the existence of many different potential
triggers of the pathogenic process, (2) the synergy between risk factors, that appear in the clinic
as a dramatic increase in the propensity to develop AD as a consequence of the co-occurrence
of more than two risk factors, and (3) the gradual aggravation of the disease phenotype. This
results in a wide spectrum of possible disease phenotypes, each of which might require a spe-
cific treatment. Decreasing the social burden of AD thus requires a systems-level approach,
in which the effects of individual risk factors on the regulatory network are systematically as-
sessed, alone and in combination, to entangle the complex pathogenesis of AD. Here, we pro-
vide such as systems-level framework, in the form of the first multi-scale mathematical model
of AD. The model is a mechanistic representation of the previously described reaction network,
that was assembled and carefully curated in chapter 2.
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By simulating different risk factors, our model reproduces the main features of AD, providing
an in silico representation of the different pathogenic processes that occur in different patient
cohorts. Our model thus provides a plausible, mechanistic and integrative framework that can
be used to study AD from a systems-level perspective.
Most of the experimental and clinical data describing the individual regulatory network com-
ponents is qualitative. It clearly shows regulatory interactions and the different qualitative
behaviours described in chapter 3, but fails to provide quantitative kinetic information. To
account for this uncertainty, we use a qualitative modelling framework, in which the main
experimentally described qualitative behaviours robustly arise from the underlying network
topology without requiring accurate parameter choices. The resulting network motifs are then
re-assembled into a multi-scale reaction network, which comprises the first multi-scale mathe-
matical model of AD, proposed in this thesis.
We simulated virtual patient cohorts by altering the model components that are affected by the
different risk factors. As a result, our mathematical model is able to display the different forms
of loss of epidermal homeostasis that characterize early (chapter 4) and late (chapter 6) stages
of AD.
This in silico reproduction of the pathogenic dynamics of AD, in which late and severe forms
of AD emerge from specific early forms of the disease, pinpoints plausible mechanisms that
underlie the gradual disease progression that affects some AD patients. Further, our framework
allows us to map different forms of a worsening pathogenic dynamic trajectory to specific com-
binations and strengths of risk factors, that correspond to patient-specific pathogenic triggers
of the disease.
This theoretical analysis can be used to inform new and more effective early treatment strate-
gies that halt the progression of the pathogenic process. Indeed, as we showcased in chapter
5.3, using our mathematical model, we can explore the effects of different pharmacological
treatments that are commonly used to control AD on the development of the disease in dif-
ferent cohorts of virtual patients. As we discuss in chapter 6, this analysis allows us propose
preventive strategies that hinder the onset of severe forms of AD.
Our mathematical modelling results agree with different in vivo clinical and experimental
datasets. Specifically, the sudden onset of allergic sensitization as a consequence of severe
filaggrin deficiency, severe skin barrier damage, or a combination of mild filaggrin deficiency
and mild barrier damage predicted in chapter 6 is congruent with different animal models of
AD, in which abrupt skin barrier defects can be triggered by different combinations of filag-
grin mutations, repeated hapten challenges and tape stripping. Also, the dynamical profiles
discussed in chapter 4 resemble different disease phenotypes that have been observed in the
clinic.
Our mathematical analysis predicts that the disease progresses from a mild to severe form of
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AD, manifested as recurrent events of skin barrier damage and inflammation (discussed in
chapter 4) that are suddenly transformed into a severe loss of barrier function resulting from
the onset of allergic sensitization (chapter 6), only when the frequency of the early oscillations
in barrier damage and inflammation are high enough. Further, we predicted that different types,
severities and combinations of risk factors can be mapped onto specific pathological dynamical
behaviours that appear as oscillating barrier function and inflammation with distinctive fre-
quencies and amplitudes. Together, this suggests that there exists a risk-factor dependent onset
of allergic sensitization. Validation of this theoretical result would mean that the pathogenic
course in an individual patient, affected by a particular combination of risk factors, could po-
tentially be predicted. This would enable early diagnosis and a pharmacological intervention
that halts the incipient progression of AD in patients in which AD would eventually develop
allergic sensitization.

The next steps are to validate the model predictions and to reach also a quantitative agree-
ment between the model simulations and experimental and clinical data. For this, the proposed
mathematical model of AD must be compared to in vivo datasets that dynamically describe
different interacting components of the reaction network controlling epidermal homeostasis,
and account for the different time-scales at which these different components operate.
Such datasets can be obtained from clinical analysis of AD patients, as well as from experi-
mental analysis of animal models of AD.
Given that the epidermis is the most exposed (and hence, experimentally accessible) of all ep-
ithelial systems, several measurements can be taken, in a non invasive way, from AD patients.
For example, optical methods such as Raman spectorscopy can be used to measure the content
of several components of the skin barrier [261, 262, 263], and also the rate of epidermal prolif-
eration [259].
In addition to this clinical data, detailed empirical description of the pathogenic process of
AD can be obtained from murine models of AD. Together with our experimental collaborators
(headed by Dr Mariko Okada, at RIKEN), we will use signalling activity profiles, quantifi-
cations of immune cell populations, dynamic gene expression profiles and quantification of
histological sections to calibrate our mathematical model of AD.
We are confident that this will result in a experimentally validated and calibrated model of AD
that can be used to make clinically relevant predictions and to devise optimal, patient specific
treatment of AD.
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To showcase the methodology to be followed to for the calibration of the mathematical model
of AD, we present in the next chapter a experimentally calibrated mathematical model of ep-
ithelium homoeostasis.
The data-driven mathematical model presented in chapter 8 describes the host pathogen inter-
actions between Streptococcus pneumoniae and the upper airway epithelium.
Similarly to the reaction network that controls epidermal homeostasis, airway epithelium home-

ostasis is also achieved by a balanced interplay between the two protective properties of the
epithelium: immune responses and permeability barrier function.
Given this similarity, we can adapt the mathematical modelling framework that we developed
for AD, based on a modular representation of the processes that control immune responses and
barrier function, to explore the mechanisms that lead the commensal bacteria Streptococcus

pneumoniae to become pathogenic as a consequence of a co-infection.
As we will see, our mathematical model of the host pathogen interactions between Streptococ-

cus pneumoniae and the upper airway epithelium successfully captures the loss of epithelial
homeostasis that results from co-infection, and agrees with experimental in vivo data.
This shows that our modelling framework to analyse the mechanisms responsible for the main-
tenance of epithelial homeostasis, inspired by the analysis of epidermal tissue, can be applied
to uncover the mechanisms that control the functioning of other epithelial systems.

Thus far, we have used the mathematical model of the advanced stages of AD to explore
how ”low FLG” expression or a physical damage to the barrier results in the onset of allergic
sensitization (figures 6.5). As a next step, we will explore the effect of other risk factors, such
as ”low AMP”, low LEKTI and ”high pH” (assessed in terms of their role in the onset of early
phases of AD in chapter 4) on the gradual aggravation of the disease phenotype.
For example, we saw in figure 4.5 that ”low AMP” expression is associated to a persistent loss
of barrier damage, accompanied with a chronic activation of innate immune responses. In this
scenario, the levels of active PAR2 and TSLP remain elevated (figure 3.6 D), implying (equa-
tion 6.1d) that the levels of IL4 will increase constantly until the maximal, steady state value
([IL4]high

ss = [PAR∗]high
s kIL4

dIL4
) is reached (figure 3.4 D). Hence, as long as this steady state value

[IL4]high
ss is above the threshold of Th2 cell polarization, we expect that persistent activation of

innate immune responses, given by low AMP expression, will inevitably result in the onset of
aberrant adaptive immune responses.
This direct relation between persistent loss of homeostasis and the onset of adaptive immune
responses also highlights the important role that early treatment can play in preventing allergic
sensitization. As discussed in section 5.3, this can be achieved, under some circumstances,
by a single dose of antibiotics or corticosteroids that reverse the persistent loss of homeostasis
caused by risk factors such as ”low AMP”.
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By exploring the effect of these different risk factors on the development of allergic sensiti-
zation, we aim to provide a coherent framework that can explain the incidence of a severe
AD-like phenotype that arises either by over-active proteases (equivalent to our ”high pH” risk
factor) [123] or low LEKTI [264, 265], ”low AMP” (unpublished data from our collaborators),
or combinations of ”low FLG” and barrier damage (chapter 6).
To achieve this, we plan to carry out further analysis of the model proposed in chapter 6 (equa-
tions 6.1). This will be achieved by a combination of numerical simulations and a analytic
exploration of the model behaviours. Particularly, we would like to quantitatively evaluate the
relation between risk factor severity, the frequency of the TSLP oscillations, and the propensity
to develop a severe form of AD.

Once we have quantitatively characterized the impact of different risk factors on the onset
of allergic sensitization, we want to further expand our model to analyse the impact of the pro-
inflammatory micro-environment that results from T cell polarization on epidermal function.
It is known that a pro-inflammatory micro-environment further impairs epidermal function by
the interference of pro-inflammatory cytokines with the expression of skin barrier components
[137, 138, 29, 125]. Modelling this requires ”closing the loop” in the model proposed in chap-
ter 6 (equations 6.1), by considering the inhibitory effect of Th2 induced cytokines on the
expression of filaggrin and other barrier components (grey blunt arrow in figure 6.3). We ex-
pect that this further addition to the model will contribute to understand why low levels of
filaggrin expression can emerge from a impaired control structure regulating epidermal func-
tion (represented in figure 2.3), even in the absence of ”hard coded” genetic defects in the
form of mutations or polymorphisms [138]. It will also help to understand the mechanisms
that underlie the further aggravation of the AD condition that occurs upon allergic sensitization
[185, 161, 160].

The mathematical model proposed here is able to reproduce the pathogenesis of AD, that is
a disease that affects a particular type of epithelium, namely, the epidermis. However, the onset
of several other diseases related to loss of epithelial function are caused by similar mechanisms
as those that trigger AD, including asthma [266, 39, 266], allergic rhinitis [12], Crohn’s disease
[237, 1] and colon cancer [267].
This suggests that our modelling framework, derived from the analysis of the pathogenesis
of AD, can be extrapolated to other epithelial systems, to explain the pathogenesis of other
diseases related to loss of epithelial function.
In fact, as we will see in the next chapter (8), we can use modelling framework, based on
a modular representation of the interplay between barrier function and immune responses, to
successfully reproduce the loss of airway epithelium function that results from co-infection
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with the commensal bacteria Streptococcus pneumoniae and the virus Influenza.
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Chapter 8

Modelling host pathogen interactions
between Streptococcus pneumoniae and
the upper airway epithelium to
understand co-infection

This work has been done in collaboration with our experimental collaborator Dr Thomas B
Clarke (Faculty of Medicine, Imperial College London), who introduced us to this biolog-
ical system and has contributed extensively to the understanding of the underlying biology.
Currently, we are continuing this work with George Buckle (MRes is Molecular and Cellular
Biosciences, Imperial College London).

8.1 Applying our modelling framework to understand the
mechanisms that underlie infection by commensal bac-
teria

In the previous chapters, we presented our mathematical modelling framework, based on mod-
ularity and time-scale separation, and applied this framework to model the reaction networks
controlling epidermal homeostasis, to uncover the mechanisms leading to the onset of Atopic
Dermatitis (AD).
In this chapter, we extend this theoretical framework to analyse the functioning of another ep-
ithelial system: the host-pathogen interactions that occur in the airway epithelium in response
to the bacterium Streptococcus pneumoniae (the pneumococcus), to understand the mecha-
nisms that lead to infection by this pathogen that normally resides as a harmless commensal
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organism.
In this epithelial system, homeostasis is achieved by a interplay between immune reactions
(enacted by by neutrophils) and barrier function (given by intercellular junctions) that must be
balanced to prevent the onset of infection (figure 8.1).
As discussed in previous chapters, this interplay is a key structural feature of the reaction net-
works controlling epidermal homeostasis, since loss of balance in this interaction results in the
onset of AD.
Thus, the mathematical framework presented in the previous chapters, developed originally for
understanding AD, can be naturally adapted to encompass the host-pathogen interactions that
occur in the airway epithelium in response to Streptococcus pneumoniae.
Mechanistic and quantitative understanding the host-pathogen interactions between the airway
epithelium and Streptococcus pneumoniae is fundamental to help preventing the yearly 14.5
million cases of severe infection and 820 000 deaths by Streptococcus pneumoniae [21], and
find new and improved treatments that can circumvent antibiotic resistance [23].
Besides this clinical relevance, extrapolating our modelling framework to the host-pathogen in-
teractions between the airway epithelium and Streptococcus pneumoniae also has two scientific
objectives:
First, we want to show that our modelling framework for understanding epithelium function
in health and disease is not specific for understanding epidermis, but can be naturally adapted
to other disease that are triggered by a imbalance between the two protective properties of the
epithelium: immune responses and permeability barrier function.
Second, we want to show how we can achieve a quantitative, not only a qualitative under-
standing of epithelial function, using our proposed modelling framework. The interactions
between single-layered epithelial tissues (such as the airway epithelium), pathogens and neu-
trophils have been extensively characterized in experimental settings. This enables us to fit our
mathematical model to empirical, quantitative data, and to make quantitative predictions.

8.2 Introduction

Steptococcus pneumoniae is a bacterium that normally resides in the upper airway epithelium
as a commensal organism without causing infection. However, circumstances such as colo-
nization of the airway epithelium by other pathogens such as the influenza virus, can trigger a
infectious process that eventually can lead to severe disease [21]. In fact, most of the severe
cases of infection by Steptococcus pneumoniae occur as a consequence of a previous infectious
event [69].
Given the incipient problem of antibiotic resistance [23], it is necessary to devise new therapeu-
tic strategies that minimize the use of antibiotics. Preventing a infection that requires extensive
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use of antibiotics could be achieved by intervening the early stages of the infectious processes,
namely the colonization or the upper airway epithelium by Steptococcus pneumoniae. This
requires a mechanistic and quantitative understanding on how co-infection impairs the host-
pathogen interactions between the upper airway epithelium and Steptococcus pneumoniae.

Co-infection can drive the infectious process by Steptococcus pneumoniae by different mech-
anisms, including the reduction in the immune responses [78], impairment of epithelial barrier
function, and the increase in bacterial carrying capacity [69].
It is however still not clear how exactly these effects result in a loss of epithelial function that
can lead to super-infection by the second pathogen (Steptococcus pneumoniae). Further, differ-
ent pathogenic mechanisms might appear as different disease phenotypes that require specific
pharmacological treatment. Clarifying the relation between disease mechanism and phenotype
is important to devise adequate treatments that are specifically tailored to the patient-specific
mechanism of infection. Here, we ask whether the different perturbations inflicted to the ep-
ithelium can be mapped to specific phenotypes.
To answer this question, a quantitative and mechanistic understanding of the host-pathogen in-
teractions that occur between the airway epithelium and Steptococcus pneumoniae is necessary
to systematically assess how different disturbances elicited by previous infectious events con-
tribute to the development of super-infection.
Invasion of the bloodstream by Steptococcus pneumoniae is prevented by the airway epithelium
by the combined effect of its two protective properties: A barrier function that physically hin-
ders bacterial invasion, and immune responses that decrease the pathogen load by phagocyting
and killing the bacterium.
Interestingly, these two protective properties inhibit each other. A competent barrier restricts
not only the invasion of inhaled bacteria into the bloodstream, but also the transmigration of
components of the immune systems (neutrophils) from the bloodstream to the epithelial tissue
where bacteria reside. Further, immune responses elicited by transmigrating neutrophils are
required for control of pathogen load, but also lead to barrier damage (figure 8.1 A).
Clarification of the relation between the pathogenic processes and the resulting disease pheno-
types requires a quantitative systems-level view, that considers the complex interplay between
barrier function, immune responses and pathogen (figure 8.1 B) load that must be balanced to
maintain a healthy, non infected epithelium.
Here, we propose a quantitative systems level view of host-pathogen interactions between
Streptococcus pneumoniae and the airway epithelium in the form of a mathematical model
that considers all the relevant regulatory connections between the bacterium and the host.
The model builds on previous models of pneumococcal infection [91, 92, 93, 94], and consid-
ers, for the first time, the role of the epithelial barrier in mediating the infectious process, as
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well as the complex interplay between barrier function and immune responses (figure 8.1 C).
We obtained the parameter values of the model by fitting the model to quantitative and dynamic
experimental data (appendix B), and used the resulting calibrated model to assess the different
pathogenic mechanisms.
Then, we analysed the different qualitative dynamic behaviours, corresponding to differential
phenotypes, that can be displayed by the mathematical model.
Finally, we simulated the disturbances that the first pathogen (influenza) causes to the reaction
network, and grouped the resulting dynamic behaviours into the different disease phenotypes.
Our preliminary results suggest that co-infection can trigger loss of epithelial homeostasis by
at least four qualitatively different mechanisms that appear as four distinguishable phenotypes:
(1) Increased carrying capacity leads to sepsis, but the epithelial barrier function remains in-
tact (figure 8.11). (2) A strong decrease in barrier function is associated to a high immune
cell infiltration and further barrier damage, but no infection (figure 8.12). The same qualitative
behaviour is observed if immune cell infiltration is increased (figure 8.13, red trajectories). (3)
Weakened strength in immune reactions lead to recurrent, low level flares of infection (figure
8.13, blue trajectories), and (4) Receptor desensitization leads to sepsis, but no associated bar-
rier damage nor increased immune responses (figure 8.14).
This work contributes to understanding of the mechanisms and resulting disease phenotypes
that are driven by Streptococcus pneumoniae, a bacterium that is normally a non-harmful com-
mensal resident of the upper airway epithelium. It constitutes a first step towards devising better
treatments that minimize the use of antibiotics.

8.2.1 Previous mathematical models of host-pathogen interactions that
occur at epithelial tissues

This section reviews the mathematical models of the host-pathogen interactions that occur be-
tween different pathogens (including Steptococcus pneumoniae) and epithelial tissues (includ-
ing airway epithelium).

Mathematical models of the interplay between immune responses and pathogens that do
not consider epithelium function

There are numerous mathematical models on host-pathogen interactions. However, most of
these focus on the immune responses, neglecting the role of the epithelium. For example,
[268] propose a mathematical model of the interplay between HIV and immune cells, and the
model of [100] examines the infection of mammary glands by E coli. The interplay between
the bacterium Helicobacter pylori and immune response is explored in the model proposed
in [101], that considers a dual effect of immune responses on infectious outcome: immune
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responses not only eradicate the pathogen, but also trigger inflammation that rise the bacterial
carrying capacity, by increasing the amount of nutrients that results from tissue damage. This
dual effect was explored in a more abstract framework (i.e. not specific for a system) in [102],
leading the authors to derive conditions that underlie two lethal forms of disease outcome of the
host response to pathogen: septic (infected) or aseptic (uninfected, but chronically inflamed)
death. In the model proposed in [103], the general mechanisms of interaction between innate
immune responses and pathogens are systematically explored, to identify the conditions that
trigger a persistent (pathological) vs a transient infection.

Mathematical models of viral infection of epithelial tissues consider the interplay between
immune responses, viral load and epithelium-mediated viral replication

Host-pathogen interactions between virus and epithelial tissues are characterized by a dual role
of the epithelial tissue. Epithelial cells form the basis for viral replication, but also enact a
barrier that hinders the penetration of the virus into the bloodstream. This protective function
of the epithelium mediates the between-host dynamics of the virus (eg. sexual transmission of
HIV, which depends on the passage of the virus between cervix and bloodstream) [5], but thus
far, has not be taken into account in mathematical models. Further, the clearance of viral in-
fection by immune cells requires the killing of infected epithelial cells, resulting in significant
tissue damage. Hence, a mathematical model that considers this complex interplay between
barrier function, immune responses and pathogen load could be particularly relevant to under-
stand the mechanisms of viral infection.
Thus far, the mathematical models of viral infection only consider the role of the epithelial cells
in mediating viral replication, but not its barrier function. For example, using a system of ODE
representing the interactions between Influenza A virus, epithelial cells and immune cells, the
model in [104] explores the effects of initial viral load on the dynamic outcome of infection.
Although the authors model the damaging effects of immune system on barrier function, the
protective effects of epithelial tissue are not taken into consideration.
The mathematical model proposed in [106] analyses the different outcomes of Epstein Barr
virus infection, considering that the virus can infect both immune cells (B cells) and epithelial
cells. It uncovers the optimal strategies for the virus that maximise viral load and the proba-
bility of transmission to another host. This mathematical model considers both immune and
epithelial cells, but the role of the epithelium is restricted to functioning as a substrate for viral
replication, neglecting the barrier function.
The experimentally calibrated model of [105] quantitatively characterizes the dynamics of in-
fluenza A virus infection. The model considers the interplay between epithelial cells, virus
and immune cells. In the model, the main role of the epithelial cells is as a substrate for viral
replication, but the permeability barrier function is not considered.
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Mathematical models of infection by Steptococcus pneumoniae

The first mathematical model of infection by Steptococcus pneumoniae was proposed in [91].
It focuses on the interplay between the pathogen and the immune response mediators. The ep-
ithelium is considered dynamically, but without having a regulatory effect neither on bacterial
population, nor on the immune response. In their model, the role of the epithelium is restricted
to mediating the immune responses triggered by bacteria (cytokine production is assumed to be
proportional to epithelium that is associated to bacteria). It is further assumed that damage of
epithelial cells, caused by immune responses, contribute to the debris production that positively
contributes to the bacterial load by increasing the bacterial carrying capacity (as in [101]). The
regulatory role of epithelium in mediating both the bacterial invasion and the immune responses
was not assessed in this model.
Originally, the model proposed in [91] was used to assess the role of initial bacterial load on
infectious outcome, but was expanded in [94] and [92] to study co-infection with influenza.
The viral load was modelled dynamically, but, once again, the dual role of the epithelial barrier
were not considered. The authors used the mathematical model to explore two mechanisms by
which co-infection can drive pathogenicity of the commensal bacterium Steptococcus pneumo-

niae: (1) Increase in carrying capacity and (2) decreased phagocytosis of bacteria by immune
cells.
A similar mathematical model, proposed in [94] and also based on [91], explores the effect of
the time and size of inoculation with the first pathogen on the outcome of the host-pathogen
interactions.
The model proposed in [93] considers for the first time the role of the epithelial barrier in me-
diating pneumococcal infection. It distinguishes two sub-populations of bacteria (but not of
immune cells), separated by the airway epithelium. They use the model to assess the effects
of variations between strains on the outcome of infection, represented in the model as differ-
ences in the strength of the immune mechanisms elicited by the host, on the outcome of the
infection (clearance or sepsis). However, their model does not consider the interplay between
barrier function and immune responses, given by the tissue damaging effects of infiltrating
neutrophils and by the effect of the barrier in mediating the immune responses. Given that the
tissue-damaging effects of neutrophil transmigration are responsible for a major component of
the pathology of infection [31, 30], we believe that they are fundamental to consider in a model
that is constructed to understand how loss of epithelial homeostasis results from impaired host-
pathogen interactions.
Here, we build on the mathematical model of the host-pathogen interactions between Stepto-

coccus pneumoniae and the airway epithelium proposed in [91, 94]. Specifically, our model
focuses on the complex interplay between barrier function and immune responses. We follow
[93] in considering apical and basal populations of bacteria, to explicitly consider the regula-
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tory effect of the epithelial barrier in mediating the invasion of bacteria to the bloodstream. We
further add apical and basal sub-populations of neutrophils, to explore the dual interplay be-
tween barrier function and neutrophil transmigration. Particularly, we use the model to clarify
the different mechanism that drive the ”lethal synergism” [69] that results from super-infection
with a virus (typically influenza) and Steptococcus pneumoniae.

8.2.2 Novelty and timeliness of our approach

To our knowledge, this is the first mathematical model of the host-pathogen interactions be-
tween Streptococcus pneumoniae and the upper airway epithelium that focuses on the dynamic
interplay between the epithelium barrier function and the immune responses.
Super-infection by Streptococcus pneumoniae arises from a loss of balance in the relation be-
tween pathogen load, barrier function and immune responses. Hence, a quantitative framework
that explicitly considers the regulatory roles of barrier function and immune responses is nec-
essary to clarify the mechanisms responsible for the loss of epithelial homeostasis that results
from co-infection.

8.2.3 Aims and objectives

With our proposed mathematical model of the host-pathogen interactions between Streptococ-

cus pneumoniae and the airway epithelium, we aim to:

• Increase our understanding on role of individual components on mediating the host re-
sponse.

• Integrate and analyse scattered experimental data into a coherent quantitative framework
to reconcile quantitative but partial in vitro with complete but qualitative in vivo datasets.

• Propose a calibrated, data-driven mathematical model of epithelium function that can be
used to drive quantitative, and not only qualitative predictions.

• Generalize and extrapolate previous modelling results on epidermal homeostasis to a dif-
ferent epithelial system, to understand the emergence of another disease that is associated
to loss of epithelial function.

• Clarify the different mechanisms that underlie lethal synergism between Streptococcus

pneumoniae and another pathogen. This is the first step to devise novel treatment strate-
gies that minimize the use of antibiotics.
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• Minimize costly animal studies that are required for a systems-level analysis of the host-
pathogens by informing the experimental design with predictions derived from in silico

simulations.
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Figure 8.1: Duality of the host-pathogen interactions between Streptococcus pneumoniae
and the airway epithelium Cartoon (A) and regulatory structure representation (B) of the

host-pathogen interactions between Streptococcus pneumoniae and the airway epithelium.

Upon inhalation, the pathogen Streptococcus pneumoniae comes in contact with the apical side
of the upper airway epithelium. (1) A competent barrier hinders the infiltration of the pathogen
to the basal aspect of the epithelium, preventing systemic infection (colonization of the blood
vessel). Recognition of the pathogen by innate immune receptors (such as TLR) located on the
apical side of the epithelial cell triggers (2) weakening of the barrier function and (3) immune
responses in the form of neutrophil recruitment. A weaker barrier leads to the invasion of the
pathogen to the basal side of the epithelium. (4) Neutrophils diminish the pathogen load by
phagocytosis. To attack the apically located pathogens, neutrophils must transmigrate from the
basal to the apical side of the epithelium, a process that requires barrier opening (5) and that
further damages the barrier (6). (C) The contact of the pathogen with epithelial cells trigger
two opposing effects: diminishing barrier function increases, and immune responses reduce
pathogen load, representing a dual host response.
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8.3 The host-pathogen interactions that occur between Strep-
tococcus pneumoniae and the upper airway epithelium

The airway epithelium consists of a single layer of polarized epithelial cells with a apical side
that is exposed to inhaled pathogens, dust and other environmental components, and a basal

side that faces the bloodstream. Passage of inhaled environmental insults from the apical to the
basal side is restricted by inter-cellular junctions between the epithelial cells, that collectively
determine the permeability barrier function of the epithelial tissue. Of particular relevance
are the Tight Junctions (TJ), which are composed by claudin [38] and occludin [26], among
other structural proteins [10]. In vitro barrier function of epithelial monolayers is commonly
measured by Trans-Epithelial Electrical Resistance (TEER).
Under healthy conditions, a competent epithelial function restricts the location of Streptococcus

pneumoniae to the apical side of the mucosa, where it resides as a non-pathogenic, commensal
bacterium. Weak barrier function caused by barrier opening facilitates the invasion of bacteria
from the apical to the basal side of the epithelium [68]. This is the first step in the infectious
process. Contact of bacteria with the apical side of the epithelium can lead to a decrease in
the barrier function, facilitating bacterial invasion [85, 68]. This tissue-level effect of bacterial
contact with epithelial cells is triggered by the activation of TLR signalling by Streptococcus

pneumoniae. Activation of TLR signalling increases expression of SNAIL1, a transcriptional
repressor which inhibits the expression of the TJ component claudin, effectively leading to a
decrease in permeability barrier function of the airway epithelium [38]. Also, the activation of
host signalling cascades by the pathogen triggers the activation of proteases that reduce barrier
function [269, 270, 271, 272].
Activation of TLR signalling by apically located bacteria also triggers immune responses in
the form of neutrophil recruitment [273], via the NFκB-mediated release of IL-17 [231] that
activates neutrophil -attracting interleukins IL-8 [274].
Neutrophils phagocytose the bacteria they encounter, contributing to the control the bacterial
load in the mucosa [88, 89].
Effective immune responses require neutrophils to transmigrate from the basal to the apical side
of the epithelium, a process that is restricted by the barrier function and requires the presence of
apically located bacteria to guide the neutrophil movement (”chemeotaxis”) [86]. Neutrophil
transmigration also causes reduction of permeability barrier function [30, 86, 87] through a
release of barrier -degrading proteases that are released by transmigrating neutrophils [71].
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Figure 8.2: Cartoon (A) and reaction network (B) of the host-pathogen interactions that
occur between Streptococcus pneumoniae and the upper airway epithelium Apically lo-
cated Streptococcus pneumoniae (Sa) activate TLR pathway signalling, leading to (1) neu-
trophil recruitment from the blood vessel (Nv) but also to (2) a down-regulation of Barrier
function (B). Competent barrier hinders (3) the invasion of bacteria to the basal side of the
epithelium, but also (4) the transmigration of Neutrophils from the basal (Nb) to the apical
(Na) compartment. (5) Transmigrating neutrophils reduce barrier function via the release of
barrier-degrading proteases. Upon contact with Streptococcus pneumoniae, neutrophils phago-
cyte bacteria, both in the (6) apical and on the basal (7) side of the epithelium.
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8.4 Mathematical model of host-pathogen interactions to un-
derstand the dual role of the epithelial barrier in deter-
mining the outcome of infectious processes

We represent the reaction network underlying the host-pathogen interactions between Strepto-

coccus pneumoniae and the upper airway epithelium by the system of equations 8.1.

dSa(t)
dt

=

[
κS

(
1− Sa(t)

µS

)
− κsi

εSB(t)+1
−φNSNa(t)

]
Sa(t), (8.1a)

dSb(t)
dt

=
κsi

εSB(t)+1
Sa(t)+

[
κS

(
1− Sb(t)

µS

)
−φNSNb(t)

]
Sb(t), (8.1b)

dNa(t)
dt

=
θnt

εNB(t)+1
Sa(t)Nb(t)−κNdNa(t), (8.1c)

dNb(t)
dt

= θSanrNvF(Sa(t))−
[

θnt

εNB(t)+1
Sa(t)+κNd

]
Nb(t)+β, (8.1d)

dB(t)
dt

=
κbp(1−B(t))

1+λSabpF(Sa(t))
− [θSabdF(Sa(t))+φNbbdF(Nb(t))]B(t), (8.1e)

F(X(t)) =
X(t)nH

X(t)nH +KnH
M

(Switch function), (8.1f)

where Sa(t) and Sb(t) represent the concentrations of apically and basally located bacteria,
respectively, and are given in units of Colony-Forming Units (CFU) ×105/ml, B(t) represents
the dimensionless barrier function, and Na(t) and Nb(t) are the concentrations of apically and
basally located neutrophils, respectively, given in units of [cells ×105/ml].
The translation of the kinetic interactions between these species represented in the reaction
network 8.2 B to the system of ODEs in 8.1 was done by using the Law of Mass Action
(methodology described in section A).
In addition, our model has the assumptions detailed in the next section.

8.4.1 Model assumptions

Distinction between apical and basal sub-populations of bacteria and neutrophils

In our model, we distinguish between apical and basal sub-populations of bacteria and neu-
trophils to explore the role of the epithelial barrier in modulating the invasion of bacteria and
the transmigration of neutrophils.
Accordingly, we follow up on the model proposed in [93], which distinguished between apical
and basal sub-populations of bacteria, and add, for the first time, the distinction between apical
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and basal neutrophils.

Unidirectional barrier crossings

Once bacteria have crossed from the apical to the basal side of the epithelial barrier and to
the blood stream, circulating immune cells, the plasma flow and a low-nutrient environment
rapidly decrease the local concentration of the bacteria in the basal side of the epithelium (Sb),
dramatically reducing the probability of a re-colonization of the apical surface of the upper
airway epithelium.
Analogously, neutrophil crossing through the epithelial barrier follows a chemeotactic gradient
in the direction of the apically located bacteria [86, 72, 275], suggesting that reverse transmi-
gration of neutrophils from the apical to the basal side of the epithelium is unlikely [276].
Accordingly, in our model, we assume that the crossings of both bacteria and of neutrophils
through the barrier are unidirectional.

Logistic growth of bacteria

We follow [91] in modelling both apical and basal bacterial growth with a logistic equation,
that considers that the growth of bacteria is limited by a carrying capacity µS, as observed
experimentally [277], with a growth rate κS that is strongly dependent on growth medium and
bacterial variant [278, 279, 277]. We assume that apical and basal growth rates of bacteria are
undistinguishable.

Switch-like dose-response between apically located bacteria and the activation of the TLR
signalling pathway

Sensing of bacteria by the host occurs by attachment of apically located bacteria to innate im-
mune receptors such as TLR that are expressed on the apical side of the epithelium [280]. We
follow [93] and assume that only apically located bacteria trigger the activation of TLR path-
way.
Several experimental [193, 281, 194] papers have reported that the activation of TLR signalling
by pathogens is switch-like. It involves fast biochemical events, but is triggered and also af-
fects slower changing populations of cells (bacteria, neutrophils and epithelial cells). Given
this difference in time-scales, the activation of TLR signalling by bacteria can be assumed to
be in QSS, while the slower cellular processes are assumed to change dynamically, in a slower
time-scale.
We model this switch-like dose-response behaviour of TLR activation by pathogens in a phe-
nomenological way, with the Hill function F(X(t)) (equation 8.1 f) where X(t) corresponds to
the concentration of Sa, nH is the Hill coefficient that quantifies the steepness of the switch,
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and KM is the concentration of bacteria at half maximal activity of TLR signalling. The func-
tion F(X(t)) describes the QSS concentration of biochemical effectors that are induced by the
active TLR pathway (for example, snail1 [38]).
The importance of a switch-like dose-response behaviour in mediating the immune responses
has been discussed in section 3.2. In the case of the host-pathogen interactions between the
airway epithelium and Streptococcus pneumoniae, a switch-like dose-response behaviour is
particularly relevant, since Streptococcus pneumoniae normally resides on the airway epithe-
lium as a commensal bacteria that does not trigger any immune responses.
In our model, TLR activity mediates both the immune responses (in the form of neutrophil re-
cruitment) as well as the barrier damage (in the form of down-regulation of barrier production
rate). Note that the model of [93] also assumes this dual effect of apically located bacteria, but
without considering the switch-like dose-response behaviour of these rates. This is because the
model of [93] focuses on the bronchial epithelium, that under healthy conditions does not have
any resident S. pneumoniae. In contrast, we want to understand the host responses that occur in
the upper airway epithelium, where S. pneumoniae normally resides as commensal bacterium.

No de novo production of neutrophils

We assume that neutrophils do not divide in the epithelial tissue, since it has been observed that
de novo production of neutrophils does not occur outside the bone marrow [282]. Accordingly,
in our model, apically and basally located neutrophils are subjected to death rate κNd, but not
to a proliferation rate.

Self-recovery of the barrier function upon perturbation

It has been consistently observed that epithelial monolayers [28, 283, 284] follow self-recovering
dynamics upon perturbation.
We model this self-recovery in a phenomenological way (see section 3.3), with a first order
logistic equation that has a nominal barrier production rate κbp.
The inhibition of barrier production by apically located bacteria was modelled in a phenomeno-
logical manner (see appendix A), by dividing κbp by the term 1+λSabpF(Sa(t)), where F(Sa(t))

is the Hill function that describes the switch-like activation of TLR signalling by bacteria, and
λSabp quantifies the inhibitory effect of TLR activation on barrier function.

Phagocytosis of bacteria by neutrophils

Upon contact with neutrophils, bacteria are eliminated with a rate φNS [88, 89]. We assume that
this killing rate are not dependent on the location of the interaction (no distinction between basal
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and apical killing rates). This pathogen elimination rate by neutrophils was also considered in
the model of [91].

Switch-like barrier degradation by neutrophils

Barrier degradation by neutrophils occurs in a switch-like manner [87]. It is mediated by the
release of proteases, corresponding to a fast biochemical process that can be approximated by
the Hill function F(X(t)), where X(t) corresponds to the concentration of Nb, and F(X(t)) is
the resulting steady state concentration of barrier-damaging proteases.

8.4.2 Network motif representation

We identified three key regulatory modules in the reaction network controlling the host-pathogen
interactions described in figure 8.2 and represented accordingly in the systems of equations 8.1:

• Switch-like activation of immune responses and barrier damage.

• Self-recovering dynamics of barrier function.

• Persistence of immune cells in the airway epithelium even after ceasing of the cytokine
levels, resulting from the difference in time-scales between slow recruitment of neu-
trophils by fast activating TLR signalling.

These regulatory modules correspond to the network motifs that also mediate epithelial
function, described in chapter 3, suggesting that our modelling framework, based on modular-
ization (switching, self-recovery and persistence modules) and time-scale separation (interplay
between fast biochemical and slow cellular level processes), can be applied to model other ep-
ithelial systems. The modular representation of the host-pathogen interactions are represented
in figure 8.3.

8.4.3 Model parameters

All the the parameters of the model 8.1, except those involving the recruitment of neutrophils
from the bloodstream, were estimated by extensively fitting the model to quantitative and dy-
namic experimental in vitro data that we gathered from the literature, as described in appendix
B. The resulting set of nominal parameters is given in table 8.1.
Given that to date there is no systems-level experimental characterization of the reaction net-
work modelled in this chapter, the dataset used for the calibration of our mathematical model
was gathered from many different data-sources, in which different types of system components
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Figure 8.3: Network motif representation of the mathematical model of the host-pathogen
interactions occurring between Streptococcus pneumoniae and the airway epithelium.
Apically located pathogens lead to the activation of the TLR signalling pathway in a switch-like
dose-response manner. Active TLR pathway triggers innate immune responses in the form of
neutrophil recruitment from the bloodstream to the site of infection. Neutrophils degrade the
pathogen, but also damage the barrier via the switch-like induction of barrier-degrading pro-
teases, and persist in the epithelium tissue even after the production of cytokines has ceased.
In turn, competent barrier hinders the transmigration of neutrophils from the basal to the apical
side of the epithelium. Active TLR pathway also decreases the epithelial barrier function by
interfering with its production and degradation rates. Neutrophil recruitment is modelled by a
persistence motif, to represent the difference in time-scales between this slower cellular process
that is triggered by a rise in TLR-induced cytokine levels. Barrier function, given by the amount
of TJ, is modelled by a self-recovery motif. Both TJ and neutrophil concentrations reduce the
pathogen load in the bloodstream by enacting the two protective properties of the epithelium:
barrier function that prevents the invasion of bacteria to the bloodstream, and innate immune
responses that eliminate the pathogen.

(eg. different epithelial tissues and bacterial strains) were empirically characterized under dif-
ferent experimental conditions. This results in a very heterogeneous dataset, with a strong
variability between different measurements of the same process (see for example the different
self-recovering dynamical behaviours observed for different epithelial tissues in figure B.2, or
the different growth curves of Streptococcus pnueumoniae in different media, shown in figure
B.3). Thus, although the parameter values presented in table 8.1 are biologically plausible,
their exact values must be considered within a relatively large error margin that arises from the
variability in the experimental system and the experimental conditions.
Hence, in addition to the determination of parameters (by optimization) presented in appendix
B, it is necessary to further explore the effects of parameter variations on the system’s be-
haviour. This is done in this chapter in section 8.6, and could be further complemented by a
sensitivity analysis.
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The parameters that quantify the basal (β) and TLR-dependent (θSanrNv) rates of infiltration of
the neutrophils from the blood can be estimated only from in vivo datasets that represent rather
qualitative, but not quantitative dynamical behaviours of bacteria and neutrophils.
To obtain a rough estimate for these values, we adjusted our model simulations, by manually
tuning the values for β and θSanrNv, to qualitatively reproduce the dynamics of a in vivo dataset.
Particularly, we used the in vivo data from [231]. It shows the the dynamics of the concentra-
tions of apical bacteria Sa(t) and neutrophils and macrophages, obtained from the analysis of
the Broncheoalveolar Lavage Fluid (BALF) of mice that were colonized with Streptococcus

pneumoniae (by direct instillation of the bacteria into the nares of the mice). These experi-
ments were done for wild type (wt) and TLR mutant mice (T LR2−/−).
Both neutrophils and macrophages are represented in our model by the variable Na(t), that
represents all the innate immune responses to the pathogen. We assume that our variable
Na(t) corresponds to the sum of the experimentally measured concentrations of neutrophils
and macrophages.
To integrate the different in vitro in vivo datasets into a coherent and quantitative framework,
we converted the in vitro experimental measurements -usually given in number of cells for neu-
trophils and CFUs for bacteria- to concentrations. This allowed us to directly compare the in

vitro data to in vivo data, since the measurements of apical and basal neutrophils and bacteria
in a mouse are usually accompanied with measurements of the volume of the solutions that
contain neutrophils and bacteria (BALF and serum).
In addition to obtaining a first estimate for β and θSanrNv, we also used this dataset to obtain a
second value for the bacterial carrying capacity µs. As shown in section B, the value for µs can
be estimated from in vitro data. However, we consider that in vitro estimates for the values of
µs greatly over-estimate the in vivo conditions. Therefore, by comparing the model simulations
with the in vitro data from [231], we roughly estimated a second, in vivo value for µs (table
8.1).
We acknowledge that the resulting parameter values for β, θSanrNv and µs are not accurate, and
are used only as a starting point for the model simulations.
As shown in figure 8.4, simulations of our mathematical model (system of equations 8.1), us-
ing the nominal parameter set shown in table 8.1, show a qualitative agreement with the in vivo

data from [231]. Both model simulations and the experimental data show that wt and also TLR2

mutant mice effectively clear the infection, decreasing the pathogen load to a low, non-virulent
value. This clearance occurs already within the first day post-infection for the wt mice, and is
delayed in the TLR2 mutant mice, as shown both by the experimental data and by the model
simulations. Despite this qualitative agreement, the simulation results from our mathematical
model do not agree quantitatively with the experimental data. Likely, this mismatch can be
attributed to the fact that some of the processes that are involved in vivo in the bacterial clear-
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ance are not considered in our simplified in vitro model. For example, the recruitment of other
immune cells, such as macrophages, also play a important role in decreasing the pathogen load
[231], but are not considered in our model.

The experimental results from [231] suggests that neither TLR-mediated immune responses
nor TLR-mediated barrier damage play a major role in the determination of the pathogen load,
since both the wt and the TLR mutant mice show a rapid clearance of the bacterial load.
These qualitative dynamics are also reflected in the model simulations of the wt and the TLR

mutant. The initial high pathogen concentration Sa(0) is rapidly decreased, for both of these
virtual genetic conditions.
In our simulations, the concentration of Sa(t) in the wt decreases quicker that in the TLR mu-

tant, however, no experimental information is available for the fist hours of the host-pathogen
interaction, when presumably these TLR-dependent immune responses occur.
Two possible mechanisms that could explain this TLR-independent control of the pathogen
load are either a low bacterial carrying capacity (µs), or strong resident immune responses (rep-
resented in our model by the parameter β). Both correspond to basal, unstimulated conditions
of the host that effectively controls pathogen load.
In the following section, we explore the consequences of changing these and other parameters
on the model behaviours. To do so, we first present the possible dynamic behaviours that the
model 8.1 can exhibit, and assess then the impact of parameters including µs and β that are
affected by a previous episode of infection of the host.
The main aim of this analysis, that uses our quantitative mathematical model that his parametrized
with in vitro experimental data and qualitatively reproduces in vitro data, is to help clarifying
the mechanisms of co-infection. More generally, it will also serve as a tool for the analysis of
the systems-level, but costly, inaccurate and incomplete in vivo datasets.
The qualitative agreement between our model simulations and in vivo experimental data from
[231] (figure 8.4) is a first indication of the validity of our data-driven model. Further compar-
isons between our mathematical model simulations and other in vivo datasets will be performed
in the future.

8.5 Qualitative dynamical behaviours

Healthy host-pathogen interactions, i.e. epithelial homeostasis, is defined by following condi-
tions:

• A competent, undamaged barrier (”high permeability barrier function”).
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Table 8.1: Parameters of the mucosal barrier model

Symbol Name Nominal value Reference Units
System independent parameters: Natural production and decay rates

κbp Barrier production 0.45 [87] h−1

κs Bacterial proliferation 0.45 [279] h−1

µs Bacterial carrying capacity (in
vitro)

< 0.5×104 Dr Tom Clarke,
personal commu-
nication

CFU×105

ml

” (in vivo) 180 Arbitrary CFU×105

ml
κnd Neutrophil death 0.0831 [282] h−1

Switch parameters: TLR activation
km Threshold of TLR2 activation by Sa 120 [285] CFU×105

ml
nh Hill coefficient of TLR-activation 5.75 [285] dimensionless

Bacteria - neutrophil interactions
φNS Neutrophil-induced death of Bacte-

ria
0.0019 [89] [h105×cells

ml ]−1

Bacteria - barrier interactions: Barrier damage by bacteria
λSaBp Active TLR on barrier production 0.18 [85] dimensionless
θsabd Active TLR-induced proteases on

barrier degradation
0.8 [85] h−1

Bacteria - barrier interactions: Invasion of bacteria through barrier
κsi Bacterial invasion through barrier 0.05 [270] h−1

ε Barrier-dependent inhibition of
bacterial invasion

1 [270] dimensionless

Neutophil barrier interactions (1): Barrier damage by neutrophils
φNbbd Neutrophil-induced barrier degra-

dation
3.2 [86] h−1

KMN Concentration of the basal neu-
trophils at half maximal barrier
degradation rate

9 [86] [cells]×10−5

h

nnH Hill coefficient of barrier degrada-
tion by neutrophils

5 [86] dimensionless

Neutophil barrier interactions (2): Infiltration of neutrophils through barrier
θnt Bacteria-induced neutrophil trans-

migration rate
14 [71] CFU×10−5

h

εS Inhibition of neutrophil transmigra-
tion by barrier

81 [71] dimensionless

In vivo parameters
θSanrNv Bacteria-induced recruitment of

neutrophils from blood vessels
100 Arbitrary CFU×10−5

h

β Basal neutrophil extravasation rate 2 [231] [cells]×10−5

h
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Figure 8.4: Comparison of model simulations with in vivo data Data-points reproduced from
[231] (T LR2−/− data from figure 1, open circles, and and wt data from figure 6, closed circles).
Simulations of model given by the system of equations 8.1, parametrized with the nominal
parameter set shown in table 8.1. The in vivo parameters values are θSanrNv = 1000 β = 2 and
µs = 120. The initial conditions are Sa(0) = Saexp(0) = 50[CFU×105

ml ], Sb(0) = Nb(0) = B(0) =
0, and Na(0) = Naexp(0) = 0. We assumed that the simulated Na(t) is equivalent to the sum of
the experimentally measured neutrophils and macrophages in [231].

• Low immune responses.

• No infection (” low pathogen load”).

To fulfil these conditions, it is necessary that, at steady state:

• The barrier is not damaged, neither by bacteria nor by neutrophils,

• the immune responses are not triggered by bacteria, and

• the bacterial load is maintained below its carrying capacity by the epithelial barrier and
the basal immune responses.

Violation of these conditions results in different forms of loss of epithelial homeostasis,
resulting from excessive pathogen load, activation of immune responses, or barrier damage.
To systematically characterize these different forms of loss of epidermal homeostasis, and how
they result in qualitative dynamical behaviours, we recall that, in our model, barrier damage
is mediated by switch-like activation of TLR signalling by apical pathogens, and by switch-
like release of proteases by basal neutrophils dependent decrease in barrier function (figures
8.5 A,B).
Assuming perfect switching behaviours (which corresponds to setting the Hill coefficient to
be infinitely large, i.e. nH → ∞, resulting in a Hill function F(X(t)) that resembles a perfect
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step [286]), we can approximate the rates of Sa and Nb induced barrier degradation F(X(t))

in equation 8.1f by constant ”low” or ”high” rates of TLR or protease activities, depending
if the concentration of apical bacteria or basal neutrophils is below or above the threshold
concentration Sa+ or Nb+, respectively. The threshold concentration Sa+ or Nb+ correspond to
km and Kmn, when nH → ∞ in F(Sa(t)) and F(Nb(t)), respectively. Formally, this corresponds
to the Piece-Wise-Affine function (PWA):

lim
nH→∞

F(X(t))∼ F(x,x+,ylow,yhigh) =

ylow, if x≥ x+

yhigh, if x < x+,
(8.2)

where x corresponds to Sa or Nb, x+ denotes the threshold values Sa+ or Nb+, respectively,
ylow and yhigh are the ”low” and ”high” values of TLR and protease activity, and nH is the Hill
coefficient of the Hill equation F(X(t)) (see section 3.2.6 for details on this PWA approxima-
tion).
This simplifying assumption allows us to discretize the projection of the phase plane of the
concentrations of apically located pathogens and basally located neutrophils into four regions,
corresponding to ”high” or ”low” concentrations of Sa and Nb, separated by the thresholds Sa+

and Nb+, respectively (figure 8.5 C).
Epithelium homeostasis requires that the steady state values of Sa(t) and Nb(t) are below their
threshold concentrations Sa+ and Nb+, at which bacteria and neutrophil dependent barrier
damage is negligibly low. This corresponds to the white the region of the phase plane projec-
tion Sa×Nb depicted in figure 8.5 C and figure 8.6.
Different forms of loss of epithelial homeostasis correspond to distinct trajectories on the re-
gions of the phase plane projection Sa×Nb. Defining Sass and Nbss as the steady states of the
variables Sa(t) and Nb(t), respectively, we can distinguish following dynamical behaviours,
which depend on the position of Sass and Nbss on the phase plane Sa×Nb [208], as follows:

• Convergence of apical bacteria and basal neutrophils towards the steady state concentra-
tions Sass > Sa+ and Nbss < Nb+, respectively (figure 8.9 A). This appears as bacteria-
induced barrier damage and high pathogen load (figure 8.9 B).

• Convergence of apical bacteria and basal neutrophils towards the steady state concentra-
tions Nbss > Nb+ and Sass < Sa+, respectively (figure 8.8 A), resulting in neutrophil-
induced barrier damage and high infiltration of immune cells (figure 8.8 B).

• Convergence of apical bacteria and basal neutrophils towards their ”high” steady state
concentrations Nbss > Nb+, and Sass > Sa+ (figure 8.10 A). This condition is associ-
ated to barrier damage, high infiltration of immune cells, and high pathogen load (figure
8.10 B).
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• Recurrent flares of barrier damage, pathogen invasion and high immune cell infiltration,
depicted in figure 8.7 B, occur when the system of equations 8.1 has no global attractor
(figure 8.7 A).

In the following sections, we present a systematic analysis of these different qualitative dy-
namic behaviours.
The possible qualitative behaviours of the PWA system, given by the approximation of equa-
tions 8.1 by 8.2, can be analysed by assessing the position of its focal points in relation to the
four regions of the phase plane, depicted in figure 8.5 C.
The focal points are the steady state values of the mathematically simpler sub-system of equa-
tions resulting from setting F(Sa(t)) and F(Nb(t)) to a constant ”high” or ”low” value. Focal
points are attractors of the whole system of equations only if all the trajectories (departing from
any of the four regions of the phase plane) converge to this focal point [208].
In the following, we characterize each of the qualitative dynamic behaviours enlisted above.
We follow [208] and present a mathematical analysis and simulations of the underlying, sim-
plified PWA model, given by the step-like Hill function given by equations 8.2, and compare
these to simulations of the original, continuous model given by the system of equations 8.1. In
most of the cases, the PWA approximation retrieves a similar qualitative dynamical behaviour
than the original, continuous model.

8.5.1 Epithelial homeostasis requires healthy clearance of a bacterial chal-
lenge

To achieve epithelial homeostasis, the focal point of the sub-system of equations given by
F(Sa)=”low” and F(Nb)=”low” must be a global attractor of the system. I.e., all the trajec-
tories must converge into the region of the phase-plane given by Sa < Sa+ and Nb < Nb+.
Particularly relevant is the trajectory followed after a initial bacterial challenge to the system,
when Sa(0)> Sa+ (figure 8.6 A).
A healthy clearance of this initial bacterial load is achieved by a transient TLR mediated induc-
tion of immune responses leading to the increase of Nb (figure 8.6 B, left). The combination of
TLR activation and the resulting increase in neutrophil concentrations leads to a transient de-
crease in barrier function (figure 8.6 B, center), which is restored again to a homeostatic value
once the immune responses have cleared the infection (figure 8.6 B, center) and cease. Note
that the homeostatic barrier slightly deviates from its nominal value, because in the continuous
version of the model, barrier damage occurs even when Sa < Sa+ and Nb < Nb+. This is be-
cause F(Sa) = low and F(Nb) = low are small, but not always equal to zero in the continuous
version of the model.
If TLR-mediated immune responses are sufficient to clear the infection without surpassing the
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Figure 8.5: Epithelial function is controlled by a two dimensional switch. [A] Barrier dam-
age and induction of immune responses by bacteria are mediated by a switch-like activation
of TLR signalling pathway by apically located bacteria (Sa). Only values above the thresh-
old of activation Sa+ lead to a significant barrier damage and immune responses induced by
bacteria. [B] Similarly, neutrophil dependent barrier damage is described by a switch that re-
lates the basally located neutrophils (Nb) and the concentrations of barrier-damaging proteases.
Only concentrations of Nb that are above threshold Nb+ trigger significant barrier damage.
[C] Together, these two switches determine different regions of the phase plane projection
Sa×Nb corresponding to (i) homeostatic epithelium (Sa < Sa+ and Nb < Nb+), (ii) TLR-
dependent barrier damage and immune responses (Sa > Sa+ and Nb < Nb+), (iii) neutrophil
protease-dependent barrier damage (Sa < Sa+ and Nb > Nb+), or (iv) barrier damage and im-
mune responses, induced by both bacteria-dependent TLR and neutrophil-dependent proteases
(Sa > Sa+ and Nb > Nb+). Long term epithelium homeostasis, involving a competent barrier
and resolution of the immune responses, requires thus that the steady state values of Sa and Nb

are confined to the (i) region of the phase plane, in which no barrier damage occurs.

threshold values Nb+, the transient barrier damage is lower (figure 8.6 B, center, blue line), but
the transient infection is higher (figure 8.6 B, right, blue lines), as compared to strong immune
responses that transiently surpass the threshold Nb+ (red trajectories in figure 8.6).
When the initial concentration of bacteria is low (Sa(0)< Sa+), the basal, unstimulated condi-
tions of the host suffice to maintain the bacterial load below Sa+.

This homeostatic dynamical behaviour, characterized by a healthy clearance of the infec-
tion, is consistent with the homeostatic behaviour observed in other mathematical models of
the host-pathogen interactions between Streptococcus pneumoniae and the airway epithelium
[94, 92, 93, 103].
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Figure 8.6: Epithelial homeostasis requires healthy clearance of a bacterial challenge (A)
Epithelial homeostasis requires that the global attractor of the system is such that Sass < Sa+

and Nbss < Nb+. Upon a pathogen challenge (Sa(0)> Sa+), a healthy clearance is character-
ized by a transient induction of TLR-mediated immune responses (B, left), accompanied by a
transient decrease in barrier function (B, center), and a transient infection (B, right). Increase
in immune responses leads to reduction of bacterial load (Sa(t) < Sa+), followed by a resolu-
tion of the immune responses, resulting in homeostasis after a transient loss of barrier function
and induction of immune responses. (B) shows the dynamics of epithelium, given by immune
responses, barrier function and bacterial load. If the induction of immune responses are weak,
i.e. such that Nb < Nb+∀t, then the barrier damage is caused only by the transient bacterial
challenge. Otherwise, infiltrating neutrophils lead to a further stronger, but equally transient
reduction of barrier function.
These results were obtained by simulating the continuous system of equations 8.1 with the
nominal parameters given in table 8.1, except for β = 5 (high basal immune responses) and
kMN = 18 (higher threshold for neutrophil activation, to compensate for higher β). High induc-
tion of immune responses (red trajectories) were simulating by increasing θSanrNv from 100
to 1000. The initial conditions are Sa(0) = Sa+ + 5, Sb(0) = Na(0) = 0, Nb(0) = 60, and
B(0) = 1.

8.5.2 Recurrent flares of immune responses, barrier damage and infec-
tion

Recurrent flares of barrier damage, immune responses and infection arise when none of the
focal points is a global attractor of the system (figure 8.7 A).
In this scenario, a bacterial challenge Sa(0) > Sa+ results in a transient induction of immune
responses and the associated decrease in barrier function described in section 8.5.1. However,
once the bacterial infection has been cleared and the immune responses cease, the pathogen
load increases again until Sa(t)> Sa+, initiating a new cycle of induction of immune responses
(figure 8.7 B, left), decrease in barrier function (figure 8.7 B, center) and burst of infection (fig-
ure 8.7 B, right).
In the continuous version of the model, given by equations 8.1, these oscillations eventually

142



relax to a steady state value corresponding to moderate immune responses (figure 8.7 B, left),
barrier damage (figure 8.7 B, center, blue line), and infection (figure 8.7 B, right).
Only in the discrete version of the model (given by the PWA resulting from the approximation
in 8.2), the oscillations persist with constant frequency and amplitude, because the binary func-
tion F(X(t)) is not defined for the intermediate values towards which the continuous system
relaxes (figure 8.7 B, center, red line) [208].
These results suggest that TLR-mediated immune responses alone cannot account for long term
epithelial homeostasis, because homeostasis requires that, at steady state, TLR signalling is in-
active (i.e. Sass < Sa+, figure 8.5). If clearance of infection is solely dependent on TLR medi-
ated immune responses, the resulting dynamic behaviour corresponds to the non-homeostatic,
recurrent flares of immune responses, barrier damage and infection described in figure 8.7.
However, besides TLR-dependent immune responses, bacterial clearance is mediated also by
basal levels of infiltration of immune cells, represented in the model by the parameter β. Res-
ident immune cells can decrease Sass below Sa+, playing a pivotal role in determining the
long-term behaviour of the host-pathogen interactions.
Understanding and preventing this cyclic behaviour that converges to a low level infection
is clinically relevant, since frequent events of bacterial infiltration into the bloodstream can
eventually result in the leakage of a particularly aggressive, or antibiotic resistant bacterial
variant [279]. This relation between a sustained low level infection and the emergence of a
sub-population of antimicrobial resistant pathogens has been addressed in the stochastic model
of [287] for the host-pathogen interactions between E coli in the large intestine of cattle.

8.5.3 Aseptic loss of homeostasis is characterized by sustained high im-
mune responses and barrier damage

Aseptic loss of homeostasis, characterized by sustained high immune responses and barrier
damage, occurs when the focal point associated to the sub-system of equations given by F(Sa)=”low”
and F(Nb)=”high” is a global attractor of the system, i.e., all the trajectories converge into the
region of the phase-plane given by Sa < Sa+ and Nb > Nb+ (figure 8.8 A).
In this scenario, a pathogenic challenge (given by Sa(0) > Sa+), leads to TLR-mediated in-
duction of immune responses (figure 8.8 B, left) that eventually eradicate the pathogen (figure
8.8 B, right). However, the barrier damage that results from high (Nb(t) > Nb+) immune re-
sponses persists (figure 8.8 B, center), even after the infection has been cleared (Sa(t)< Sa+).
This is because the basal, TLR-independent immune responses are high enough to surpass the
Nb+ threshold, even when Sa(t) < Sa+ (and hence, no TLR mediated immune responses are
induced).
Hence, even in the absence of a pathogenic challenge, i.e. when Sa(0) < Sa+, the basal im-
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Figure 8.7: Recurrent flares of immune responses, barrier damage and infection [A] Cyclic
loss of epithelial homeostasis and infection results from focal points being outside correspond-
ing sub-domains of the Sa×Nb phase plane projection. A bacterial challenge (Sa(0) > Sa+)
leads to onset of TLR-mediated immune responses which effective reduce the bacterial load.
Decreasing Sa(t) below the threshold Sa+ of TLR activation leads to remission of the immune
responses. In the absence of TLR-induced neutrophil recruitment, bacterial load increases
again to Sa(t)> Sa+ and then Nb(t)> Nb+, resulting the cycles of infection and accompany-
ing barrier damage. [B] The corresponding recurrence dynamics for barrier function, immune
responses and infection. In the continuous version of the model, the oscillations are damped
and stabilize to a value corresponding to moderate immune responses, barrier damage and
pathogen invasion.
These results were obtained by simulating model 8.1 with the nominal parameter set given in
table 8.1, except for θSanrNv = 1000, and θnt = 0.7. The initial conditions are Sa(0) = Sa++5,
Sb(0) = Na(0) = 0, Nb(0) = 1, and B(0) = 1. For the discrete (PWA) approximation, we de-
fined Sa+ = 0.5km and Nb+ = 0.5kmn. The resulting discrete trajectories are shown only for
the barrier function dynamics ([B], center, red curve). For the immune responses and pathogen
load, only the continuous dynamics are displayed (red trajectories).

mune responses eventually surpass the threshold Nb+ (figure 8.8 A, pink arrow), resulting in
sustained barrier damage.
This qualitative dynamic behaviour has been observed in previous mathematical models of
infection [103, 102]. However, these models do not consider epithelial barrier function, and
could therefore not capture the long term tissue damage that results from persistent immune
responses [31].

8.5.4 Sustained infection that fails to induce efficient immune responses

Sustained infection that fails to induce sufficiently strong immune responses occur when the
global attractor of the system satisfies that Sass > Sa+ and Nbss < Nb+ (figure 8.9 A).
Under these conditions, the immune responses induced by the high pathogen load (figure 8.9 B,
left) are not strong enough to clear the pathogen (figure 8.9 B, right), resulting in a sustained
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Figure 8.8: Aseptic loss of homeostasis is characterized by sustained high immune re-
sponses and barrier damage Aseptic loss of homeostasis occurs when the global attractor of
the system of equations 8.1 is such that Nbss > Nb+ and Sass > Sa+ ([A]), leading to persistent
high immune responses ([B], left) that lead to chronic loss of barrier function ([B], center) and
clearance of infection ([B], right).
These results were obtained by simulating model 8.1 with the nominal parameter set given in
table 8.1, with a high basal rate of immune cell infiltration (β = 10), and initial conditions
Sa(0) = Sa++5, Sb(0) = Na(0) = 0, Nb(0) = 1, and B(0) = 1.

infection and TLR- mediated barrier damage (figure 8.9 B, center).

8.5.5 Total loss of homeostasis is characterized by high infiltration of im-
mune cells, loss of barrier function, and sustained infection

Inefficient immune responses can drive the global attractor of the system to the region of the
phase plane where Sass > Sa+ and Nbss > Nb+ (figure 8.10 A).
Under these conditions, a initial bacterial challenge (Sa(0)< Sa+) triggers immune responses
(figure 8.10 B, left) that fail to decease the bacterial load below the threshold value Sa+ (figure
8.10 B, right), resulting in a sustained barrier damage elicited by both bacteria (because Sa(t)<

Sa+) and by neutrophils (Nb(t)< Nb+) (figure 8.10 B, center).

8.6 Uncovering the mechanisms that drive the lethal syner-
gism that results from co-infection

Having described the different possible qualitative behaviours that the model can display (sec-
tion 8.5), we explore in this section how co-infection can drive these qualitative changes in the
dynamic behaviour of the host response to a pathogenic challenge.
Infection by another pathogen, such as influenza, can drive a infectious process by the commen-
sal bacterium Streptococcus pneumoniae by affecting following processes of the host-pathogen
interactions between Streptococcus pneumoniae and the upper airway epithelium:
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Figure 8.9: Sustained infection that fails to induce efficient immune responses When the
global attractor of the system satisfies Sass > Sa+ and Nbss < Nb+ [A], then the immune re-
sponses induced by a pathogen challenge [B], left do not suffice to clear the pathogen load
below the threshold concentration Sa+ ([B], right, leading to a sustained infection [B], right

and a constant damage to the barrier induced by TLR-mediated immune responses [B], center.
These results were obtained by simulating model 8.1 with the nominal parameter set given in ta-
ble 8.1, with a high basal rate of immune cell infiltration (β = 10), a weak pathogen eradication
capacity φNS = 0.001, and initial conditions Sa(0) = Sa++5, Sb(0) = Na(0) = 0, Nb(0) = 1,
and B(0) = 1.
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Figure 8.10: Total loss of homeostasis is characterized by high infiltration of immune cells,
loss of barrier function, and sustained infection When the global attractor of the system
is such that Sass > Sa+ and Nbss > Nb+ ([A]), immune responses elicited by a pathogenic
challenge remain high ([B], left), leading to a sustained barrier damage ([B], center) that is
further accentuated by the high pathogen load ([B], left) that cannot be decreased by the high
but inefficient immune responses.
These results were obtained by simulating model 8.1 with the nominal parameter set given
in table 8.1, with a weak pathogen eradication capacity (φNS = 0.005), high TLR-mediated
immune responses (θSanrNv = 100000), a low threshold of neutrophil-induced barrier damage
(kMN = 4.5) and a low basal rate of neutrophil infiltration (β = 1). The initial conditions are
Sa(0) = Sa++5, Sb(0) = Na(0) = 0, Nb(0) = 1, and B(0) = 1.

• Increase in the bacterial carrying capacity µs [69],

• increase in the epithelial permeability to both neutrophils and pathogens (φnt and κsi)
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[69],

• increased load of resident neutrophils β [288, 69, 244], and

• desensitization of T LR receptor [78].

In the following, we will explore the effect of changing each of these model parameters on
the qualitative dynamical behaviour of the system.

8.6.1 Increase in the carrying capacity leads high invasion of bacteria,
but no associated barrier damage

The exposure of the airway epithelium to a first pathogen can result in a significant increase in
the carrying capacity of Streptococcus pneumoniae as a result of the tissue-damaging immune
responses that lead to an accumulation of debris [69].
This increase in the bacterial carrying capacity as a result of tissue-damaging immune responses
has been modelled in [101, 91, 94, 104]. These models, however, do not explicitly consider the
epithelial barrier function. Hence, they cannot be used to assess the potential impact of a
increased carrying capacity on the epithelial permeability barrier function and on the resulting
rate of bacterial invasion.
Numerical simulations of our model (figure 8.11) suggest that a increased carrying capacity µs

results in a significant increase in the concentration of infiltrated bacteria Sb, but, interestingly,
does not trigger a significant increase in the steady state concentrations of Sass nor Nbss. Thus,
µs does not seem to affect the position of the homeostatic global attractor of the system (given
by Sass < Sa+ and Nbss < Nb+, figure 8.11 A). In fact, increase in the carrying capacity µs

seems to affect only the magnitude of the transient increase in immune responses (figure 8.11 B,
left), barrier function (figure 8.11 B, center) and apical pathogen load (figure 8.11 B, right). The
amount of bacteria that infiltrated to the bloodstream, however, suffers a considerable increases
(figure 8.11 B, right, red dotted line).
It is interesting to note that only the basal concentration of bacteria seems to be affected by a
increase in the carrying capacity. This suggests that the immune responses efficiently eradicate
the increased concentration of apically located bacteria resulting from a increased carrying
capacity, but fail to control the invading pathogen. Likely, this behaviour can be attributed to
the fact that, in our model, neutrophil transmigration form the basal to the apical side of the
epithelial monolayer is Sa dependent. Hence, increased bacterial load on the apical side of the
epithelium can be compensated by a increasing transmigration of neutrophils. In contrast, the
concentration of basal neutrophils that can eradicate the infiltrated bacteria (Sb) is not directly
affected by the levels of Sb, resulting in a high concentration of basal bacteria that cannot be
compensated by the neutrophils.
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These results could have important clinical consequences, since they suggest that a high rate
of bacterial invasion that can eventually lead to sepsis can occur even if the epithelium remains
intact, and the apical concentrations of bacteria (commonly measured in experimental settings,
in the BALF) and the concentrations of immune cell infiltrates are low.
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Figure 8.11: Increase in the carrying capacity leads high invasion of bacteria, but no asso-
ciated barrier damage A increased carrying capacity µs, resulting from a first infectious event,
does not affect the relative position of the global attractor of the system in the Sa×Nb phase
plane projection [A]. It increases the amplitude of the transient induction of immune responses
([B], left) and leads to a transient reduction in barrier function ([B], center). Importantly, it
significantly affects the steady state concentrations of infiltrated bacteria ([B], left, red dotted

line).
These results were obtained by simulating the continuous system of equations 8.1 with the
nominal parameters given in table 8.1, except for kMN = 18,µs = 50 (homeostasis, black trajec-
tories) or µs = 250 (sepsis, red trajectories). The initial conditions are given by Sa(0)= Sa++5,
Sb(0) = Na(0) = 0, Nb(0) = 60, and B(0) = 1.

8.6.2 Decreased permeability barrier function leads to aseptic loss of home-
ostasis

A first infectious event can lead to epithelium-damaging inflammation, resulting in a decreased
permeability barrier function of the epithelial monolayer to both immune cells and pathogens
[69].
In our model, increased permeability of the epithelial monolayer can be represented by simul-
taneously increasing the rates of neutrophil transmigration (φnt) and of bacterial invasion (κsi).
As seen in figure 8.12, increased epithelial permeability can drive the system from a homeo-
static state to an aseptic loss of homeostasis, characterized by a high degree of infiltration of
immune cells to the apical side of the epithelial monolayer (figure 8.12 B, left) that results in
persistent barrier damage by these neutrophils (figure 8.12 B, center). The bacterial load, how-
ever, is kept low by the increased immune responses, both in the basal and in the apical side of
the epithelial monolayer (figure 8.12 B, right).
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To our knowledge, this form of loss of epithelial homeostasis, driven by changes in the per-
meability barrier function that result from a host response to a first pathogen, has not been
addressed previously. This is because none of the existing mathematical models of the host-
pathogen interactions between Streptococcus pneumoniae and the upper airway epithelium con-
siders the simultaneous movement of immune cells and pathogens across the epithelial mono-
layer that is responsible for the dynamic behaviour observed in figure 8.12.
Our results suggest that strengthening the epithelial barrier after a first infectious event, for
example, by pharmacological increase in the concentration of calcium [289] or growth factors
[290] on the basal side of the epithelial monolayer, can prevent a complete loss of barrier func-
tion that results from the increased amount transmigrating neutrophils and that leads to a high
invasion of bacteria (Sb).
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Figure 8.12: Decreased permeability barrier function lead to an aseptic loss of homeostasis
Decreased permeability barrier function shifts the global attractor of the system from a home-
ostatic position on the Sa×Nb phase plane projection to a value such that Nb > Nb+ [A],
resulting in a increased concentration of basal neutrophils ([B], left) that drive a persistent bar-
rier damage ([B], center) but clear the invading pathogen ([B], right).
These results were obtained by simulating the continuous system of equations 8.1 with the
nominal parameters given in table 8.1, except for µs = 100 and the tuning parameters θnt = 14
(control, black trajectories) or θnt = 140 (decreased permeability barrier function, red trajec-
tories), and κsi = 0.05 (control, black trajectories) or κsi = 0.5 (decreased permeability bar-
rier function, red trajectories), and initial conditions Sa(0) = Sa+ + 5, Sb(0) = Na(0) = 0,
Nb(0) = 1, and B(0) = 1.

8.6.3 Increased levels of resident neutrophils leads to aseptic loss of ep-
ithelial homeostasis

The host response the epithelium to a first infectious event results in a net increase in the total
amount of neutrophils, resulting from the immune cell infiltration that was triggered by the first
pathogen and persists even after the clearance of the infection [288, 69, 244].
In our model, increasing the amount of resident immune cells by increasing the basal rate of
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neutrophil recruitment β increases the steady state concentration of basal neutophils, such that
Nbss > Nb+ (figure 8.13 A).
This increased neutrophil load (figure 8.13 B, left) leads to an aseptic loss of homeostasis, char-
acterized by persistent barrier damage (figure 8.13 B, center) and clearance of the bacterial load
(figure 8.13 B, right), both triggered by the high neutrophil load.
These results are consistent with experimental observations, in which a high load of resident
immune cells is associated to acute injury to the epithelial tissue [30, 31, 244]. They are consis-
tent with the ”aseptic death” proposed in other models of infection (eg. [102, 103]), although
these models do not consider the epithelial damage that results from the persistent inflamma-
tion.
Besides co-infection, patients with a decreased amount of neutrophils (termed neutropenia)
as a result from HIV infection or chemeotherapy also have a high risk of developing severe
pneumonia [21]. This suggests that the effect of neutrophil numbers on the host response to a
pathogen is non-monotonic: Both low and high concentrations of resident neutrophils, caused
by neutropenia [21] or co-infection (figure 8.13), respectively, are associated to loss of ep-
ithelial homeostasis. This implies that the treatment for patients suffering from alterations in
their neutrophil levels that result from co-infection must be carefully dosed, to avoid unwanted
side-effects resulting from a excessive modulation of neutrophil concentrations.
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Figure 8.13: Increased load of resident neutrophils results in loss of epidermal homeostasis
Increased levels of resident immune cells resulting from co-infection leads to an aseptic loss of
homeostasis, characterized by a high immune cell infiltration that persistently decreases barrier
function ([B], center) and decreases the pathogen load ([B], right).
These results were obtained by simulating the continuous system of equations 8.1 with the
nominal parameters given in table 8.1, except for the the basal rates of neutrophil infiltration,
corresponding to β = 1 (control, black) and β = 10 (high load of resident neutrophils, red) and
the initial conditions Sa(0) = Sa++5, Sb(0) = Na(0) = 0, Nb(0) = 1, and B(0) = 1.
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8.6.4 Desensitization of the TLR receptor leads to sepsis

It has been reported that co-infection with influenza can lead to the de-sensitization of TLR-
mediated immune responses [78].
To explore the effects of virus-mediated TLR desensitization, we considered a extreme case of
TLR desensitization, corresponding to a TLR mutant, by setting F(Sa) = 0 ∀ Sa in our model
(equations 8.1).
As seen in figure 8.14, simulations of the TLR mutant result in sepsis without associated barrier
damage. Complete desensitization of the TLR shifts the threshold of apical bacterial concen-
trations required to induce significant TLR activity Sa+→ ∞ (figure 8.14 A). As a result, no
immune responses can be triggered (figure 8.14 B, left), and the barrier remains intact (figure
8.14 B, center), but the levels of pathogen load are significantly increased (figure 8.14 B, right).
These simulation results agree with the observation that patients with polymorphisms in TLR
receptor tend to develop more severe forms of infections, often resulting in sepsis [46].
Our results are also consistent with the modelling results obtained in [93]. In their mathematical
model, the authors also considered the reduction in the TLR-mediated neutrophil recruitment
rate as a consequence of co-infection, and identified this mechanisms as key determinant of the
lethal synergism between two pathogens.
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Figure 8.14: Desensitization of the TLR receptor leads to sepsis Complete desensitization
of the TLR, corresponding to a TLR mutant (T LR2−/−), shifts the threshold of apical bacterial
concentrations required to induce significant TLR activity Sa+ → ∞ [A]. Under these condi-
tions (T LR2−/−), no immune responses can be triggered upon TLR stimulation ([B], left). The
barrier remains intact, since also Sa− dependent barrier damage is TLR mediated ([B], center),
but the levels of pathogen load remain elevated ([B], right).
These results were obtained by simulating the continuous system of equations 8.1 with the nom-
inal parameters given in table 8.1, except for β = 1. The initial conditions are Sa(0) = Sa++5,
Sb(0) = Na(0) = 0, Nb(0) = 1, and B(0) = 1. The TLR mutant is simulated by setting
F(Sa) = 0 ∀ Sa(t).
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8.7 Conclusions

In this chapter, we proposed a data-driven mathematical model of the host-pathogen interac-
tions between Streptococcus pneumoniae and the upper airway epithelium. All the regulatory
interactions and parameter values were carefully chosen, based on quantitative and dynamic
experimental data (detailed in section 8.3 and appendix B, respectively).
Our model builds on previous mathematical models of the host response to Streptococcus pneu-

moniae [94, 92, 93] and considers, for the first time, the dual role of the epithelial monolayer
in mediating the host response to a pathogenic challenge. On one hand, a intact epithelium
prevents the invasion of bacteria to the bloodstream, but on the other, it hinders the neutrophil
transmigration that is required for bacterial clearance. Further, barrier function is impaired by
neutrophil transmigration. We believe that it is important to explicitly consider the interplay
between epithelial barrier function and immune responses, since a major part of the pathology
of infection is attributed to the damage to the epithelium that is inflicted by excessive immune
responses [31, 30].
By considering this dual effects of both barrier function and immune responses, our model
analysis strongly suggests that balance between the two protective properties of the epithe-
lial tissue, namely the immune responses and the barrier function, is necessary to maintain
epithelial homeostasis. Increased permeability of the epithelial monolayer (figure 8.12) and
increased (figure 8.13) or decreased (figure 8.14) immune responses can result in a loss of ep-
ithelial homeostasis.
We used our model to explore the different mechanisms that are responsible for the onset of in-
fection that results from the synergy between Streptococcus pneumoniae and another pathogen
[69]. This co-infection is responsible for the vast majority of the severe cases of infection by
Streptococcus pneumoniae [21, 69], but the exact mechanisms of the lethal synergism remain
elusive.
With our model, we were able to map different effects of viral infection to qualitatively differ-
ent ways of loss of homeostasis. For example, our findings suggest that decreased permeability
barrier function, resulting from the tissue-damaging immune response to a previous infectious,
leads to an aseptic loss of homeostasis, characterized by a high load of immune cell infiltration,
barrier damage, but clearance of the pathogen (figure 8.12). In contrast, our model suggests
that desensitization of TLR receptors resulting from a previous infectious event leads to sepsis,
but without the associated barrier damage (figure 8.14).
Together, these findings have important clinical consequences in terms of devising optimal
patient-specific treatment strategies that minimize the use of antibiotics [23], since they sug-
gest that only a fraction of patients might benefit from antibiotics treatment, while others might
require a pharmacological enhancement of the airway epithelium function. They correspond to
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the patients in which the first infectious event increased the bacterial carrying capacity (figure
8.11) or desensitized the TLR receptor (figure 8.14), and those in which the first infectious
event lead to a decreased permeability barrier function (figure 8.12) or a increased load of resi-
dent neutrophils (figure 8.13), respectively.
Our proposed modelling framework, that considers the interplay between immune responses
and epithelial barrier function, uncovered the mechanisms that drive infection by other pathogens
that attack epithelial tissues. Considering the dual role of the epithelial barrier in mediating in-
fection could be particularly relevant for understanding the strongly convoluted host-pathogen
interactions between virus and epithelial tissues. Epithelial tissues prevent severe infection by
hindering the passage of virus into the bloodstream [5], but also act as a substrate for viral
replication [106], and immune cells must attack the (infected) epithelial (and immune) cells to
counteract the viral load [244]. The mathematical modelling approach proposed in this chapter
considers the dual role of the barrier and the immune responses in mediating the pathogen load,
and could therefore help to elucidate the mechanisms that result in viral infection.

8.8 Future work

In collaboration with Mr George Buckle (MRes is Molecular and Cellular Biosciences, Imperial
College London) and Dr Thomas B Clarke (Faculty of Medicine, Imperial College London),
we will continue the analysis of the host-pathogen interactions between Streptococcus pneu-

moniae and the upper airway epithelium discussed in this chapter.
First, we will conduct a more rigorous exploration of the qualitative changes of the model
behaviours that are triggered by the different effects of co-infection on the host response to
Streptococcus pneumoniae. We will do this by bifurcation analysis, which will allow us to
identify the critical threshold values of the parameters that are affected by the first infectious
event at which a qualitative change in the dynamic behaviour occurs. By extensive exploration
of the parameter space, we will assess how these bifurcation diagrams are affected by different
choices in the parameter values.
We will also compare our model predictions to other in vivo datasets, both from the literature
(for example, [273]) and done by our experimental collaborators.
We will also assess the effects of assuming that the switch-like barrier damage elicited by
neutrophils and bacteria is described by a bistable dose-response curve (described in section
3.2.1), rather than by the memory-less Hill function F(X(t)) in equations 8.1. A bistable dose-
response relation between LPS (a bacterial PAMP) and active TLR4 pathway has been previ-
ously described [194]. It is relevant to consider this bistability, because thus far, our model
cannot account for the long term clearance of bacteria induced by TLR signalling (see section
8.5.2). However, assuming that TLR activation is bistable could account for a long term clear-
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ance of the infection by the TLR-dependent host responses, similarly to the PAR2 mediated
immune responses explored in chapter 4.
Also, we could expand our current mathematical model to account for the long term conse-
quences of a low level infection, by adding a ”persistence” motif (discussed in section 3.4)
that stores the history of the infectious events and describes the probability of infiltration of a
particularly pathogenic bacterial strain into the bloodstream.
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Chapter 9

Concluding remarks

In this thesis, we developed a mathematical modelling framework to describe and analyse the
reaction networks controlling epithelial function. Using this framework, we proposed math-
ematical models of the reaction networks that underlie the homeostasis of the epidermis and
the airway epithelium, respectively. We used the resulting mathematical models to analyse the
pathogenic mechanisms that are responsible for the development of AD and of infection by
Streptococcus pneumoniae.
By focusing on understanding the mechanisms that trigger the loss of epithelial homeostasis,
our theoretical analysis sheds light on the early events in the pathogenesis of AD and infection,
respectively. Also, our model analysis uncovered several different potential mechanisms that
can lead to the loss of epithelial homeostasis, corresponding to patient-specific triggers of the
disease. Further, we used the mathematical model of AD to explore different treatment strate-
gies that can potentially cure or at least prevent the onset of severe forms of AD.
Together, the findings contribute to the understanding of the mechanisms that cause diseases
associated to the loss of epithelial homeostasis. This knowledge is fundamental to devise new
treatment strategies that can prevent and cure these socially relevant diseases.

The modelling framework proposed in this thesis was originally developed to formally repre-
sent the regulatory networks controlling epithelial homeostasis (described in chapter 2). How-
ever, in chapter 8 we successfully applied this framework to for the representation and analysis
of a different epithelial system -the host-pathogen interactions between Streptococcus pneumo-

niae and the upper airway epithelium that underlie pneumococcal infection, proving that the
applicability of our framework is not restricted to a particular epithelial tissue.
The common feature that characterizes the regulatory networks that underlie the functioning
of both the epidermis and the airway epithelium is the interplay between the permeability bar-
rier function and the immune responses. Aberrant interactions between these two protective
properties of the epithelium underlie many other diseases associated to the loss of epithelial
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function, including lung infection by the fungus Aspergilus fumigatus [4], viral infection of
the cervix [5], Crohn’s disease [1], asthma [10, 11], allergic rhinitis [12], and different types
of cancer [14, 15]. Thus, we are convinced that mathematical modelling framework proposed
in this thesis can be used to analyse many other diseases that result from the loss of epithelial
homeostasis.

Two key features of our proposed approach are the multi-scale and modular representation
of the regulatory networks that control epithelial homeostasis.
With the multi-scale approach, we were able to represent the dynamic interplay between bio-

chemical and cellular level processes that underlie the gradual loss of epithelial homeosta-
sis. The interplay between a cell and its micro-environment is responsible for slow pheno-
type changes that characterize developmental and pathogenic processes. While the micro-
environment is sensed by the biochemical signal processing machinery in the individual cells,
the collective responses of the individual cells to the micro-environment drive tissue-level
changes that, in turn, affect the micro-environment. Thus, our framework, based on the inter-
play between slowly changing micro-environments and quickly responding biochemical net-
works, could be adapted to model many other developmental and pathogenic processes that
underlie phenotype transitions.
In terms of the modular representation, we were able to identify three qualitative input-output

behaviours that control epithelial function: (1) A switch-like induction of cytokine release, (2)
Self-recovery dynamics of epithelial permeability barrier components, and (3) Persistent dy-
namics of immune cells that are induced by a biochemical mediator (cytokine).
Having identified mechanisms that can cause these individual qualitative behaviours (corre-
sponding to particular feedback control structures), we could abstract the description of the
underlying network motif into simpler, phenomenological representations.
This qualitative approach allows us to suggest a core control structure that is responsible for
the regulation of epithelial homeostasis [52]. It consists of the multi-scale regulatory network
structure that is formed by the interplay between cytokine release, epithelial permeability and
immune cells, and corresponds to a mesoscopic ”template model” [291] to which mechanistic
and quantitative detail can be added a posteriori.
The network motifs described in this thesis (switch-like dose response, self recovery and home-
ostasis) are not specific for the regulatory modules controlling epithelial homeostasis. For ex-
ample, switch-like dose response behaviour has been observed in signalling networks involving
caspases [292, 247] and mitogen-activated kinases [293, 205], and is thought to underlie em-
bryonic differentiation programs [294]. Self-recovery dynamical behaviour characterizes the
pheromone response pathway in S. cerevisiae [215, 216], the BMP4 signalling pathway in X

laevis [217], and the hyperosmotic stress response in yeast [218, 219]. A persistent behaviour
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plays a key role in determining the specificity in the gene expression controlled by the master
regulator NFκB [232]. Thus, we believe that many other physiological processes can be repre-
sented by a combination of these regulatory modules, using the proposed multi-scale modelling
framework.

There exist a overwhelming amount of experimental and clinical data describing biological
processes that are believed to play important roles in pathological and developmental processes.
However, most of these data characterize individual components of the reaction networks that
underlie the healthy and pathological physiology. In many cases, however, a healthy or a dis-
ease phenotype results from the interplay between several biochemical, cellular and tissue level
processes.
To uncover how normal developmental and aberrant pathological processes emerge from in-
teractions between individual regulatory components, it is necessary to analyse the underlying
reaction networks from a systems-level perspective.
This requires theoretical frameworks to integrate, organize and analyse the scattered clinical
and experimental data.
The mathematical modelling framework proposed in this thesis provides such a theoretical
framework. With it, we could uncover the mechanisms that underlie epithelial homeostasis.
Due to its generality, it can be used to analyse many other relevant developmental processes
underlying healthy and pathologic physiology.
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Appendix A

Mathematical representation of reaction
networks

This brief appendix gives an overview of the methodology by which we construct a mathemat-

ical model (based on systems of ODE) to represent the reaction networks of biochemical and

cellular interactions analysed in this thesis.

To construct a mathematical model that represents the reaction network, each of the regulatory
interactions must be translated into a mathematical expression -particularly, a rate. Collectively,
these rates form a system of differential equations that describe the inter-dependent dynamics
of the different components of the reaction network.
Here, we use ordinary differential equations (ODEs) to describe the dynamics of the system in
a deterministic and continuous manner. Translating a reaction network into a system of ODE
is a standard methodology in systems biology that has been discussed widely, for example in
[295, 296, 297, 298]. Below, we give a brief description of this methodology. For details,
please refer to the above mentioned publications. Particularly, we use the law of mass action

to describe (most of) the rates of the system. We assume that the rate of change in the concen-
tration of species X is proportional to the concentration of precursors Xpre, the effectors E and
the kinetic rate constants ki, thus for instance, a production reaction of X is represented by the
term dX

dt = XprekprodEprod; degradation, by dX
dt =−XkdegEdeg, reversible dimerization of A and

B, by dAB
dt = [A][B]kdimEdim− [AB]kdisEdis. Effectors are distinguished from precursors in that

their concentrations are not affected by the reaction they catalyse.
Negative regulation is often represented in a phenomenological way, by multiplying the rate
on which the repressor is acting by a function that decreases monotonically with the concen-
tration of the repressor. It would also be possible to derive this sort of functions from basic
biochemistry, by explicitly representing, with law of mass action, the mechanism by which
the repressor exerts its action (depending on how the repressor acts: for instance, trapping the
effector molecule). However, for convenience (less parameters and equations) this level of
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mechanistic detail is omitted.
One of the main advantages of mathematical description of a reaction network is that all the
reactions that affect X can be represented and studied simultaneously (this is why it is called
a systems biology approach). Thus, if for example, X is being produced, degraded and also it
forms a heterodimer with another molecule Y (reaction network depicted in figure A.1), then
its full dynamics are described by simply adding up the individual reactions explained above.
In this particular example, this procedure would retrieve the expression that describes X :

dX
dt

= XprekprodEprod−X(t)kdegEdeg−X(t)Y (t)kdimEdim +XY (t)kdisEdis. (A.1)

The dynamics of X given by equation A.1 depend on constant parameters, such as kdeg, kdim

and kdis, but also on other, time varying variables, such as Y (t) and XY (t). Collectively, the
set of coupled equations that describe all the inter-dependent variables of the system form the
system of differential equations describing the reaction network.
Once the reaction network has been represented by a system of ODEs, the resulting mathe-
matical model can be analysed by numerical or analytical methods. For example, to analyse
the dynamic evolution of the system, the system of ODE is integrated over the range of time
of interest. In this thesis, numerical integration of ODEs is done using Matlab R2012a.
To understand the dose response behaviour, a steady state analysis is performed. For this, we
use Maple 16 (analytical calculation of steady states and stability of non-linear systems of
ODEs), Matlab R2012a (numerical calculation of steady states), Oscill8 (found under
http://oscill8.sourceforge.net/, used for bifurcation analysis).
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Figure A.1: Example reaction network. The reaction network is given by the interactions
between the time-varying biochemical species X , Y and the heterodimer XY (shown in grey
circles). The reactions of production of X from a (constant, in a blue oval) precursor Xpre,
degradation of X and reversible formation of the heterodimer XY are catalysed by Eprod , Edeg,
and Edis and Edim (red squares), respectively.
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Appendix B

Parameter estimation of the mathematical
model describing the host-pathogen
interactions between airway epithelium
and Streptococcus pneumoniae

This appendix describes the procedure used for deriving the parameter values of the mathe-

matical model of the host-pathogen interactions between airway epithelium and Streptococcus

pneumoniae given in equations 8.1 (described in chapter 8), from experimental in vitro data

that we gathered from the literature. The resulting parameter set is summarized in table 8.1.

The parameters of the model 8.1 can be divided into following categories:

• System-independent parameters quantify the rates that are specific to a particular species.
They correspond to natural (intrinsic) birth and death rates of barrier, pathogens and neu-
trophils that are measured by transwell experiments (barrier) and by tracking the popu-
lation sizes of bacteria and neutrophils (figure B.1 I). They can be modelled by a one-
dimensional linear ODE that be solved analytically. Hence, it is possible to derive an
algebraic expression for these parameters as a function of the experimental values.

• System-dependent parameters (in vitro) characterize the interplay between subsets of
the components of the system. They correspond to modulations of productions and degra-
dations of one species by another, for example, bacterial killing by neutrophils. Experi-
mentally, they are assessed by quantifying the barrier function and population sizes in co-
cultures between neutrophils, bacteria and epithelial cells in a monolayer (figure B.1 II).
We estimate these parameters by optimization, which involves the comparison of simu-
lations from the corresponding system of equations 8.1 to experimental data.
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• In vivo parameters quantify the rate of neutrophil recruitment from the blood stream,
and are indirectly measured in in vivo experimental settings by quantification of neu-
trophil concentrations upon a bacterial challenge (figure B.1 III). These parameters are
roughly estimated by comparing simulations of the full system of equations 8.1 to in vivo

data, using the previously estimated in vitro parameters. Congruence between the model
simulations using the estimated parameters from in vitro data and the in vivo data, shown
in figure 8.4 is considered as a validation to our parameter estimation protocol.

Individual parameter calculations are detailed in the following subsections. All the parame-
ter optimizations were done with Matlab R2012a, using the built in function fminsearch,
using as a cost function the squared error between the simulations (given a parameter set) and
the experimental data.

Barrier production rate (κbp)

The barrier production rate κbp is assessed experimentally by following the dynamics of the
TEER (given in units of electrical resistance per tissue area, i.e. in Ω

cm2 ) of an epithelial mono-
layer (represented in figure B.1 Ii) upon a perturbation [28, 283] and for intestinal epithelium
[87].
Neither neutrophils nor bacteria are present in these experimental settings. This corresponds
to assuming that Na(t) = Nb(t) = Sa(t) = Sb(t) = 0, which simplifies model 8.1 to Ḃ(t) =

κbp(1−B(t)) with B(0) = B0, which has the analytic solution:

B(t) = 1+ e−κbp t (B0−1) . (B.1)

Given a experimental measurement at time texp and a initial condition B0, κbp can be ex-
pressed analytically as:

κbp =
− ln

(
−1+Bexp(texp)

B0−1

)
texp

. (B.2)

This expression (B.2) accepts only one data point, and retrieves one estimate for κbp that
is used as a initial guess a optimization of equation B.1 using the experimental data from [87]
(figure 5a), which measures the recovery of an epithelial monolayer (T84, intestinal epithelium)
upon perturbation with cytokines. The data-points correspond to Bexp =[400, 750, 1100, 1400,
1500, 1400, 1200] (in Ω

cm2 ) at measured at times [70/60, 2, 4, 6, 8, 1, 0, 20] (in hours), which
we normalized to its maximum value B̃exp = 1500 to obtain a dimensionless quantity. This
retrieved a value of κbp = 0.451

h .
Using the same method but other experimental data, derived from airway epithelium, resulted
in values for κbp that were one order of magnitude below (κbp = 0.07 [28]) or above (κbp = 1.05
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[283]). The results of the optimization for the three datasets are shown in figure B.2. From these
values, we chose the intermediate value κbp = 0.45, estimated from the data in [87], because
it corresponds roughly to the average of the three values of κbp obtained by using the three
different datasets.

Bacterial proliferation rate (κs) and carrying capacity (µs)

Bacterial proliferation rate is assessed experimentally by following bacterial cell cultures over
time (figure B.1 Iii). In these experiments, no neutrophils nor epithelial cells are present. This
condition can be reflected in the model 8.1 by assuming that Na(t) = Nb(t) = B(t) = κbp = 0,
resulting in the system of equations B.3:

Ṡa(t) = Sa(t)κs

(
1− Sa(t)

µS

)
−Sa(t)κsi, (B.3a)

Ṡb(t) = Sb(t)κs

(
1− Sb(t)

µS

)
+Sa(t)κsi. (B.3b)

(B.3c)

Defining S(t) = Sa(t)+Sb(t), and given that Ṡ(t) = ˙(Sa(t)+Sb(t)) = Ṡa(t)+ Ṡb(t), then:

Ṡ(t) = Sa(t)κs

(
1− Sa(t)

µS

)
+Sb(t)κs

(
1− Sb(t)

µS

)
. (B.4)

Assuming that Sa(0) = Sb(0), since there is no barrier separating Sa and Sb, equation B.4
can be simplified to:

Ṡ(t) = S(t)κs

(
1− S(t)

µS

)
. (B.5)

Equation B.5 can be further simplified for bacterial concentrations such that S(t) << µs.
In this case, equation B.5 can be represented by the exponential growth model Ṡ(t) = S(t)κs

that can be solved analytically (S(t) = S(0)exp(tκs)). From this analytic expression, κs can be
directly calculated:

κs ∼
log(S(texp)

S(0) )

texp
. (B.6)

We used expression B.6 and the experimental data from [279], corresponding to growth
curves of Streptococcus pneumoniae in the low nutrient medium MLM that resembles the in

vivo conditions of the epithelium. The two data points used to calculate κs from equation B.6
were texp = 2.5h, S(0) = 0.1 given in units of Optical Density of the bacterial colony at 450
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nm (OD450nm), and S(texp) = 0.32 OD450nm. Note that for the calculation of κs from equation
B.6 requires the dimensionless ratio between S(texp) and S(0). The resulting value κs = .451

h is
given in table 8.1.
Following the same procedure but different datasets [278, 277] lead to slightly higher κs values
(κs = 0.92 [277] and κs = 1.1 [278]. The resulting fit is shown in figure B.3. We chose the
value derived from the data in [279], because the growth experiments were done in conditions
that resemble the in vivo environment of the epithelium.

A maximal value for the carrying capacity µs was read out directly from the data in [277]
(figures 2A and 4A, representing growth curves of Streptococcus pneumoniae in a glucose and
lactose medium), by assuming that µs corresponds to the maximal concentration of bacteria,
measured as Samax = 0.55 OD600. To convert the units of OD600 to [CFU×105

ml ], we use the
relation from [299]: 2×108CFU

50µl ∼ 0.63OD, which results in a value of µs = 3.5×104[CFU×105

ml ].
Growth curves measured by our experimental collaborator Dr Tom Clarke (Imperial College
London) retrieved a estimate for µs = .5× 104[CFU×105

ml ] (personal communication), which is
one order of magnitude lower than the value for µs obtained from [277]. Given that both
values for µs were estimated from ideal in vitro conditions, they both correspond to an over-
estimation of the in vivo conditions of our model. Therefore, we chose the lower value of µs =

.5×104[CFU×105

ml ] (Dr Tom Clarke, personal communication) given in table 8.1 as a reference
value.

Neutrophil death rate (κnd)

The half life of neutrophils is commonly estimated by labelling neutrophils (for example, with
a radioactive tracer) and following their fluorecence over time [282]. Assuming that neutrophil
half lives are not affected by barrier and bacteria, their dynamics in the epithelium can be
approximated by Ṅ(t) = −κndN(t), where N(t) = Na(t)+Nb(t) corresponds to the total pop-
ulation of neutrophils in the epithelium. The ODE Ṅ(t) has a analytic solution N(t), which
can be solved analytically to express κnd as a function of a experimentally determined initial
neutrophil concentration Nexp(0), and the elapsed time texp and the neutrophil concentration at
texp, as follows:

κnd =− ln
(

Nexp(texp)

Nexp(0)

)
texp
−1. (B.7)

Most of the datasets describing the effect of neutrophils on barrier or bacteria are derived
from in vitro experiments that involve human neutrophils (for example, [72, 88, 89, 86, 275, 71,
300]). Thus, we estimated the neutrophil death rate using the data describing human neutrophil
half lives in [282]. Substituting the average of the human neutrophil half lives (corresponding
to the time texp at which N(texp) = 0.5N(0)) given in table 2 (control) of [282] (texp = 8.3375h)
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in equation B.7, we obtain the nominal neutrophil death rate of κnd = 0.08 given in table 8.1.
The resulting N(t) simulations and the data-point from [282] are shown in figure B.4.

Switch-like activation of TLR pathway by bacteria (km and nH)

The switch-like dose-response relation between the steady-state TLR pathway activity F(Sa(t))

and the concentration of apical bacteria Sa(t) can be experimentally assessed in two ways.
Directly, by measuring the output of TLR pathway activity (for example, in levels of NFκB
activation) in response to a bacteria-derived ligand (like peptidoglycan) [285], or indirectly, by
measuring the dose-dependent effects of TLR pathway activity (eg decreased barrier function
[85]).
In the model, the activation of TLR pathway by bacteria is described by the Hill function
F(Sa(t)) =

Sa(t)nH

Sa(t)nH+k
nH
m

, where km is the concentration of Sa(t) at half maximal TLR activation,
and nH is the Hill-coefficient that quantifies the steepness of the switch. Assuming very high
values for nH (nH → ∞) results in a perfect switch, where only values for Sa(t) that are above
threshold result in significant TLR activity (see section 3.2.6).
In [285] (figure 3A), direct relation between concentrations of bacterial ligand (correspond-
ing to [0, .125, .25, .50] µg

ml of peptidoglican) and TLR activity (given by [1,1.25,1.6,2.3]-fold
expression of NFκB activity, measured in a reporter gene). Only the highest peptidoglycan
concentrations (.50 µg

ml ) trigger a statistically significant increase in TLR activity. Slightly lower
concentrations of peptidoglycan (.25 µg

ml ) trigger a small but not significant increase in TLR ac-
tivity. We assume that, roughly, km corresponds to this value. To convert this concentration to
our units CFU × 105/ml, we follow [301], 1µg of peptidoglycan corresponds to 5× 107CFU

of Streptococcus pneumoniae. This results in the value of km = 120[CFU×105

ml ] given in table
8.1.
This estimation is consistent with the dataset from [85] (figure 1A), that relates concentra-
tions of bacteria to barrier function. In this dataset, only concentrations of bacteria above
150[CFU×105

ml ] result in barrier damage. Similarly, the data from [38] (figure 5A) state that a
concentration of bacteria of 500[CFU×105

ml ] (well above the km threshold) induces barrier dam-
age. These qualitative results are shown in figure B.5.
A estimate of the Hill coefficient nH was obtained by fitting the Hill equation F(Sa(t)) to the
above mentioned data from [285]. The optimization resulted in a value for nH = 5.75 given in
table 8.1.
The resulting parametrized Hill equation and the data points from [285] are shown in figure
B.6.
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Neutrophil bacteria interactions: Neutrophil induced death of bacteria (φNS)

The neutrophil-induced death of bacteria is assessed experimentally by a killing assay, in which
the size of bacteria populations in a co-culture with neutrophils is assessed over time (figure
B.1 IIii) [88, 89].
The measurements correspond to the fraction of bacteria present in the co-culture after texp

units of time, in respect to the amount of bacteria present at texp when no neutrophils are ap-
plied [88, 89].
These experimental conditions, which involve no epithelial cells nor infiltration from neu-
trophils from the blood, can be mimicked by the mathematical model by setting B(t)= θSanrNv=
β= κbp = 0 in equations 8.1. Further, because there is no barrier, there is no distinction between
apical and basal populations of bacteria and neutrophils. We reflect this condition in the model
by defining S(t) = Sa(t)+ Sb(t) and N(t) = Na(t)+Nb(t), and assuming that Sa(0) = Sb(0)
and Na(0) = Nb(0). These assumption leads to the system of equations B.8:

dS(t)
dt

= S(t)κs

(
1− S(t)

µS

)
−φNSN(t)S(t), (B.8a)

dN(t)
dt

=−κNdN(t). (B.8b)

Equation B.8b is a uncoupled, first order linear ODE, hence, the system of equations B.8
can be simplified to equation B.9:

dS(t)
dt

= S(t)κs

(
1− S(t)

µS

)
−φNSN(0)e−κNdtS(t). (B.9)

To compare the model simulations with the experimental conditions in [88] and [89], we
define S0(t) as the control bacterial population (grown in the absence of neutrophils), and SE(t)

as the population of bacteria that is grown in a co-culture with neutrophils (equations B.10).
Then, the measured fraction of bacteria that survived neutrophil exposure corresponds to SM =
SE
S0

, where:

dS0(t)
dt

= S0(t)κs

(
1− S0(t)

µS

)
, (B.10a)

dSE(t)
dt

= SE(t)κs

(
1− SE(t)

µS

)
− N(0)e−κNdt︸ ︷︷ ︸

Analytic solution N(t)

φNSSE(t). (B.10b)

Further, assuming that S(t)<< µS, i.e. the bacteria population is in the linear growth phase,
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leads to the expression for ˙SM given in equation B.11:

dSM(t)
dt

=
d
dt

SE(t)
S0(t)

=
S0(t)ṠE(t)−SE(t)Ṡ0(t)

S0(t)2 (B.11a)

=
1

S0(t)2

S0(t)SE(t)
(
κSd−N(0)e−κNdt

φNS
)︸ ︷︷ ︸

ṠE as in eq.B.10b

−SE(t) κSdS0(t)︸ ︷︷ ︸
Ṡ0 as in eq.B.10a

 (B.11b)

=−SM(t)N(0)e−κNdt
φNS. (B.11c)

Equation B.11c is a first order ODE and hence has the analytic solution B.12:

SM(t) = SM(0)e−
N(0)φNS

κNd e
N(0)φNS e−κNd t

κNd . (B.12)

From equation B.12, neutrophil- induced death of bacteria φNS can be expressed analyti-
cally as a function of the initial fraction of surviving bacteria SE(0), the initial concentration of
applied neutrophils Nexp(0), the time of exposure to neutrophils texp and the fraction of surviv-
ing bacteria after this exposure time (SE(texp)) (equation B.13):

φNS =−
log
(

SM(texp)
SM(0)

)
Nexp(0)

(
1

κNd
− e−κNdtexp

κNd

) . (B.13)

Substituting the data from [89] (figure 1B, killing assay between human neutrophils and
Streptococcus pneumoniae; texp = 0.74h, SE(0)= 1, SE(texp)= .25, and Nexp(0)= 1000[cells]×
10−5T−1) in equation B.13 gives the nominal value φNS = .0019[T 105×cells

ml ]−1 given in table
8.1. Following the same technique but using a different dataset [88] retrieved an almost iden-
tical value (φNS = .00185). The data-points of [89] and [88], as well as the simulations of
equation B.12 with the calculated values of φNS, are shown in B.7.

Rates of barrier damage by bacteria (θSabd and λSabp)

The damaging effects of Streptococcus pneumoniae on the epithelial tissue are experimentally
assessed by dynamically measuring the permeability barrier function of a epithelial monolayer
(corresponding to TEER) to which bacteria are added (see figure B.1IIi) [85, 68]. These ex-
periments are carried out in the absence of neutrophils, and hence, can be described by setting
Na(t) = Nb(t) = β = θSanrNv = 0 our model (system of equations 8.1), resulting in the simpli-
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fied system of equations describing the interactions between bacteria and barrier B.14:

dSa(t)
dt

=

[
κS

(
1− Sa(t)

µS

)
− κsi

εSB(t)+1

]
Sa(t), (B.14a)

dSb(t)
dt

= Sb(t)κS

(
1− Sb(t)

µS

)
+

κsi

εSB(t)+1
Sa(t), (B.14b)

dB(t)
dt

=
κbp(1−B(t))

1+λSabpF(Sa(t))
−θSabdF(Sa(t))B(t), (B.14c)

F(Sa(t)) =
Sa(t)nH

Sa(t)nH +KnH
M

. (B.14d)

Recall that barrier damage by bacteria occurs via the switch-like activation of TLR sig-
nalling cascades. Thus, if the apical bacterial concentration is very high, then TLR signalling
is activated to its maximum level for the whole duration of the experiment. If these conditions
are met, then equations B.14 can be simplified by setting Sa(t) = Sahigh, where Sahigh is a ar-
bitrary, constant and, importantly, above-threshold (km) concentration of apical bacteria. This
simplification results in equation B.15.

dB(t)
dt

=
κbp(1−B(t))

1+λSabpSahigh −θSabdSahighB(t). (B.15)

In [85] (figure 1a), the dynamics of the barrier function of a primary culture of human
nasopharyngeal epithelium and of Streptococcus pneumoniae are tracked over time. We use
the last three time-points for barrier function ([150, 60, 40] TEER (Ωcm2), normalized to the
mean barrier value of the untreated control), measured at times [0, 6, 13] h. The bacterial
concentrations Sa(t) are [100, 199, 316] (last two values well above threshold). We optimized
B.15 to these experimental data to obtain the values for TLR-dependent barrier degradation
θSabd = 0.8T−1 and inhibition of barrier production λSabp = 0.18 (dimensionless) shown in
table 8.1.
The resulting dynamics for B(t), described by B.15 and parametrized by the obtained values for
θSabd and λSabp predict the independent dataset described in [68]. The results of the parameter
optimization (with data from [85]) and validation (with data from [68]) are shown in figure B.8.

Invasion of bacteria through barrier (κSi and εS)

The rate of invasion of bacteria through barrier is estimated experimentally by tracking the
populations of bacteria on the basal and on the apical side of an epithelial monolayer over time
(figure B.1IIi) [270]. These experimental conditions do not involve neutrophils, and can hence
be approximated by equation B.14. Further, if the apical bacterial concentrations are high, then
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the Hill function describing the activation of TLR signalling by bacteria can be approximated
by setting F(Sa(t))∼ Fmax.
We use data from [270] (fig. 5b), which measure the percentage of infiltration of Strepto-

coccus pneumoniae through a monolayer of airway epithelial cells (A549). In their experi-
ments, the initial concentration of apically located bacteria is Sa(0) = 50000[CFU×105

ml ], corre-
sponding to a value well above threshold km = 120[CFU×105

ml (table 8.1). Thus, the assumption
F(Sa(t)) ∼ Fmax is reasonable. The measured [270] percentage of bacterial invasion is [0, 3,
12, 20, 25, 30, 35, 38, 45, 50, 50] at time-points [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] (in h).
We used these data-points and equation B.14 (with F(Sa(t))∼ Fmax) to estimate the rate of in-
vasion of bacteria though the monolayer (κSi), as well as the rate of inhibition of the infiltration
by the barrier (εS) by optimization. The resulting values are κSi = 0.05T−1 and εS = 1, shown
in table 8.1. The fit of the resulting simulations for Sb(t)

Sa(t)+Sb(t) (obtained by integrating equation
B.14) to the data from [270] is shown in figure B.9 .

Neutrophil barrier interactions (1): Switch like damage of barrier by neutrophils (pa-
rameters kmn, nhN and φnbBd)

Experimentally, the damaging effect of neutrophils on barrier function is commonly assessed
by measuring the permeability barrier function of a inverted epithelial monolayer to which
neutrophils are added on the basal side (figure B.1 IIiii). The apical chamber of the transwell
device (below the inverted monolayer) also contains PAMPs that trigger the transmigration of
the neutrophils [86, 87, 30].
In the mathematical model, these PAMPs can be represented by Ŝ(t) with dŜ(t)

dt =
κsi

εSB(t)+1
,

corresponding to the concentration of a biochemical molecule that is affected only by the in-
filtration through the barrier. In these in vitro experiments, no neutrophil infiltration occurs,
corresponding to setting β = θSanrNv = 0 in the system of equations 8.1. Together, setting
Sa(t) = Ŝ(t) and β = θSanrNv = 0 in the system of equations 8.1 results in the simplified system
of equations B.16:

dNb(t)
dt

=−
[

θnt

εNB(t)+1
ˆSa(t)+κNd

]
Nb(t), (B.16a)

dB(t)
dt

= κbp(1−B(t))− φNbbdNb(t)nH

Nb(t)nH +KnH
MN

B(t), (B.16b)

dŜ(t)
dt

=
κsi

εSB(t)+1
. (B.16c)

To obtain estimates for the parameters that quantify the switch-like dose-response relation
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between the applied neutrophils and the resulting barrier damage (the concentration of neu-
trophils at half maximal barrier damage kmn, the hill coefficient nhN quantifying the sharpness
of the switch, and the maximal strength of Nb induced barrier degradation φnbBd), we used
experimental values from [86] (figure 4). These were obtained from transwell experiments,
using a inverted monolayer (intestinal epithelium, T84), a fMLP gradient (corresponding to the
PAMP) and varying concentrations of neutrophils. The experimental dose-response curve was
obtained by measuring the concentrations of basal neutrophils and the barrier function texp = 1h

post- treatment. The resulting data are Nbexp = [0.01, 1, 10, 100] cells×105/ml and Bexp =[1,
0.95, 0.6, 0.1500].
We simulated these dose-response curves by numerically integrating equations B.16 for texp =

1h and collecting the final values for B and Nb. This allowed us to estimate, by optimization,
the parameter values kmn = 9 [cells×105

ml ], nhN = 5 and φnbBd = 3.2 shown in table 8.1, using the
data from [86] and equations B.16.
Dose-response simulations of neutrophil concentrations vs barrier damage, using the result-
ing parametrized model (equations B.16), can reproduce two independent data-sets reported in
[275] (damage of airway epithelium by human neutrophils) and in [71, 87] (damage of intesti-
nal epithelium by human neutrophils). Results from the parameter optimization and validation
are shown in figure B.10.
The resulting, parametrized dose-response relation between basal neutrophils and the rate of
barrier damage, given by the scaled Hill function φnbBdF(Nb), is shown in figure B.11.

Neutrophil barrier interactions (2): Infiltration of neutrophils through barrier (θnt and
εn)

Empirically, the rate of neutrophil transmigration through the barrier is assessed in a similar ex-
perimental setting as described above, by following the dynamics of apical neutrophils Na(t)

that have migrated from the basal side of a inverted epithelial monolayer in response to a gra-
dient of PAMPs [71, 300] .
Mathematically, these experimental conditions can be represented as before (system of equa-
tions B.16), and adding a explicit description of Na(t) dynamics, given by

dNa(t)
dt

=
θnt

εNB(t)+1
Ŝa(t)−κNdNa(t). (B.17)

The data from [71] (figure 2b) shows the percentage of applied neutrophils that have trans-
migrated from the basal to the apical side of the epithelial monolayer (Naexp =[0, 2.5, 30, 50,
70], in %, at times texp =[0, 0.5, 1, 1.5, 2], in hours), given a initial concentration of applied
basal neutrophils Nbexp(0) = 50[cells×105

ml ].
Using these data and our simplified model (equations B.16, with B.17), we obtained the opti-
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mized parameter values θnt = 14 [CFU×10−5

T ] and εn = 81, shown in table 8.1.
The parametrized model accurately predicts the independent experimental data-set of [300].
The results of the parameter optimization and the model predictions are shown in figure B.12.
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Figure B.1: Experimental techniques leading to quantitative dynamic experimental data
used for the parameter estimation and validation of the mathematical model of the host-
pathogen interactions between the airway epithelium and Streptococcus pneumoniae. (I)

System - independent parameters quantify the rates that are specific to a particular species.
(i) Barrier function of a given epithelial monolayer is assessed by transwell experiments that
measure the electrical resistance between apical and basal chamber. (ii) Pathogen and (iii)
neutrophil growth and death rates are quantified by tracking the changes of population sizes
over time. (II) System -dependent parameters that characterize interactions between a sub-set

of model species (i) The interplay between barrier function and pathogen load is assessed by
transwell experiments, which are initialized by placing a population of pathogens in the apical
chamber of the transwell device. Remaining apical and invading basal pathogen load, as well as
barrier function, are then quantified over time. (ii) The interplay between pathogens and neu-
trophils is characterized by following the population size of these two species in a co-culture.
(iii) The interplay between neutrophil and barrier is quantified by transwell experiments which
are initialized by placing neutrophils in the basal side of a inverted monolayer, and tracking the
remaining basal and transmigrated apical neutrophils, as well as the barrier function, over time.
(II) In vivo parameters are calculated by inoculating a population of pathogens (bacterial chal-
lenge) into the nares of a mouse. Apically located pathogens and neutrophils are estimated by
quantification of Broncheoalveolar lavage fluid (BALF). In vivo estimation of barrier function
is not commonly performed.
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Figure B.2: Data-points and model fit for the calculation of the barrier production rate κbp.
Data points were derived from airway [28] [283] and intestinal [87] epithelial monolayers.
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Figure B.3: Data-points and model fit for the calculation of the bacterial growth rate κs and
carrying capacity µs, using equation B.6 and data from [277], [279] and [278].
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Figure B.4: Data-point and model fit for the calculation of the neutrophil death rate κnd, using
equation B.7 and data from [282].
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Figure B.5: Determination of the minimal bacterial concentration required for a signifi-
cant induction of TLR activity According to data from [285], [85] and [38], concentrations of
bacteria above 120CFU×105/ml result in significant TLR2 activity. This roughly corresponds
to the minimal concentration of bacteria Sa+ that triggers TLR activation.
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Figure B.7: Data-points and model fit for the calculation of the neutrophil-induced death
of bacteria (φNS) The parameter φNS was calculated using the equations B.13 and B.11, as
well as the data from [88] and [89]. Note the almost perfect agreement between the obtained
parameter values.
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Figure B.8: Data-points, model fit and validation for the calculation of the parameters
quantifying barrier damage by bacteria (θSabd and λSabp) The TLR-dependent barrier degra-
dation θSabd = 0.8T−1 and inhibition of barrier production λSabp = 0.18 (dimensionless) were
estimated by fitting equation B.15 to data from [85] (fig. 1a). The resulting parametrized
equation agrees well with the independent experimental data from [68].
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Figure B.9: Estimation of parameters that quantify the rate of invasion of bacteria through
barrier (κSi and εS)
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Figure B.10: Estimation and validation of parameters quantifying the switch-like damage
of barrier by neutrophils. To obtain the values quantifying the switch-like damage of barrier
by neutrophils (the concentration of neutrophils at half maximal barrier damage kmn, the Hill
coefficient nhN quantifying the sharpness of the switch, and the maximal strength of Nb induced
barrier degradation φnbBd), we used data from [86] representing dose-response behaviours of
Nb(0) vs B(texp) and in silico simulations of the system of equations B.16 from t = 0 to texp

for different initial conditions Nb(0). The resulting parametrized model agrees with other,
independent datasets [275, 71, 87].
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Figure B.11: Switch-like dose response behaviour of barrier damage by basal neutrophils,
given by the parametrized and scaled Hill function φnbBdF(Nb).
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Figure B.12: Model fit, model prediction and data-points showing the transmigration of
neutrophils across a epithelial monolayer, parametrized by θnt and εn. The parameters
θnt and εn, quantifying the rate of transmigration of neutrophils through a epithelial mono-
layer, were calculated by fitting equations equations B.16, with B.17 to the experimental data
from [71] (figure 2b). The resulting parametrized model accurately reproduces the independent
dataset from [300].
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between Antiviral Immunity and Cell Damage. The Journal of Immunology, 190:1192–
1200, 2013.

[193] Alex K Shalek, Rahul Satija, Xian Adiconis, Rona S Gertner, Jellert T Gaublomme,
Raktima Raychowdhury, Schraga Schwartz, Nir Yosef, Christine Malboeuf, Diana Lu,

198



John J Trombetta, Dave Gennert, Andreas Gnirke, Alon Goren, Nir Hacohen, Joshua Z
Levin, Hongkun Park, and Aviv Regev. Single-cell transcriptomics reveals bimodality
in expression and splicing in immune cells. Nature, 498(7453):236–40, June 2013.

[194] Myong-Hee Sung, Ning Li, Qizong Lao, Rachel a Gottschalk, Gordon L Hager, and Iain
D C Fraser. Switching of the Relative Dominance Between Feedback Mechanisms in
Lipopolysaccharide-Induced NF-κB Signaling. Science signaling, 7(308):ra6, January
2014.

[195] Thomas Höfer, Holger Nathansen, Max Löhning, Andreas Radbruch, and Reinhart Hein-
rich. GATA-3 transcriptional imprinting in Th2 lymphocytes: a mathematical model.
PNAS, 99(14):9364–8, July 2002.

[196] Johannes Müller and Thorsten Tjardes. Modeling the Cytokine Network In Vitro and In
Vivo. Journal of Theoretical Medicine, 5(2):93–110, 2003.

[197] Panayiotis Christodoulides. Roles of combined positive and negative feedback control
with time-delay in multi-scale biological control. Early Stage Assessment Report. Tech-
nical report, Imperial College London, 2014.

[198] a. Goldbeter and D. E. Koshland. Ultrasensitivity in biochemical systems controlled by
covalent modification. Interplay between zero-order and multistep effects. Journal of

Biological Chemistry, 259:14441–14447, 1984.

[199] Tomasz Lipniacki, Beata Hat, James R Faeder, and William S Hlavacek. Stochas-
tic effects and bistability in T cell receptor signaling. Journal of theoretical biology,
254(1):110–22, September 2008.

[200] Qiang Zhang, Sudin Bhattacharya, Douglas E Kline, Robert B Crawford, Rory B
Conolly, Russell S Thomas, Norbert E Kaminski, and Melvin E Andersen. Stochas-
tic modeling of B lymphocyte terminal differentiation and its suppression by dioxin.
BMC systems biology, 4:40, January 2010.

[201] Jin Nam, Baltazar D Aguda, Bjoern Rath, and Sudha Agarwal. Biomechanical thresh-
olds regulate inflammation through the NF-kappaB pathway: experiments and modeling.
PloS one, 4(4):e5262, January 2009.

[202] Najaf a Shah and Casim a Sarkar. Robust network topologies for generating switch-like
cellular responses. PLoS computational biology, 7(6):e1002085, June 2011.

[203] Abhinav Tiwari, J Christian J Ray, Jatin Narula, and Oleg a Igoshin. Bistable responses
in bacterial genetic networks: designs and dynamical consequences. Mathematical bio-

sciences, 231(1):76–89, May 2011.

199



[204] Gheorghe Craciun, Yangzhong Tang, and Martin Feinberg. Understanding bistability in
complex enzyme-driven reaction networks. PNAS, 103(23):8697–8702, 2006.

[205] J. E. Ferrell Jr. The Biochemical Basis of an All-or-None Cell Fate Switch in Xenopus
Oocytes. Science, 280(5365):895–898, May 1998.

[206] James E Ferrell, Joseph R Pomerening, Sun Young Kim, Nikki B Trunnell, Wen Xiong,
Chi-Ying Frederick Huang, and Eric M Machleder. Simple, realistic models of complex
biological processes: positive feedback and bistability in a cell fate switch and a cell
cycle oscillator. FEBS letters, 583(24):3999–4005, December 2009.

[207] Madalena Chaves and Jean-Luc Gouzé. Exact control of genetic networks in a qualitative
framework: The bistable switch example. Automatica, 47(6):1105–1112, June 2011.

[208] Diego a Oyarzún, Madalena Chaves, and Marit Hoff-Hoffmeyer-Zlotnik. Multistabil-
ity and oscillations in genetic control of metabolism. Journal of theoretical biology,
295:139–53, February 2012.

[209] Olaf Wolkenhauer, Mukhtar Ullah, Peter Wellstead, and Kwang-Hyun Cho. The dy-
namic systems approach to control and regulation of intracellular networks. FEBS let-

ters, 579(8):1846–53, March 2005.

[210] Jörg Stelling, Uwe Sauer, Zoltan Szallasi, Francis J. Doyle, and John Doyle. Robustness
of cellular functions. Cell, 118:675–685, 2004.

[211] Janeta Nikolovski, Georgios N Stamatas, Nikiforos Kollias, and Benjamin C Wiegand.
Barrier function and water-holding and transport properties of infant stratum corneum
are different from adult and continue to develop through the first year of life. Journal of

Investigative Dermatology, 128(7):1728–36, July 2008.

[212] Mitsuhiro Denda, Sumiko Denda, Moe Tsutsumi, Makiko Goto, Junichi Kumamoto,
Masashi Nakatani, Kentaro Takei, Hiroyuki Kitahata, Satoshi Nakata, Yusuke Sawabu,
Yasuaki Kobayashi, and Masaharu Nagayama. Frontiers in epidermal barrier homeosta-
sis - an approach to mathematical modelling of epidermal calcium dynamics. Experi-

mental dermatology, 23(18):79–82, December 2013.

[213] a Becskei and L Serrano. Engineering stability in gene networks by autoregulation.
Nature, 405(June):590–593, 2000.

[214] Dmitry Nevozhay, Rhys M Adams, Kevin F Murphy, Kresimir Josic, and Gábor Balázsi.
Negative autoregulation linearizes the dose-response and suppresses the heterogeneity
of gene expression. PNAS, 106(13):5123–5128, 2009.

200



[215] Alejandro Colman-lerner, Andrew Gordon, Eduard Serra, Tina Chin, Orna Resnekov,
Drew Endy, C Gustavo Pesce, and Roger Brent. Regulated cell-to-cell variation in a
cell-fate decision system. Nature, 437(September), 2005.

[216] Richard C Yu, C Gustavo Pesce, Alejandro Colman-lerner, Larry Lok, David Pin-
cus, Eduard Serra, Mark Holl, Kirsten Benjamin, Andrew Gordon, and Roger Brent.
Negative feedback that improves information transmission in yeast signalling. Nature,
456(December):755–761, 2008.

[217] Malte Paulsen, Stefan Legewie, Roland Eils, Emil Karaulanov, and Christof Niehrs.
Negative feedback in the bone morphogenetic protein 4 ( BMP4 ) synexpression group
governs its dynamic signaling range and canalizes development. PNAS, 4, 2011.

[218] Dale Muzzey, Carlos a. Gómez-Uribe, Jerome T. Mettetal, and Alexander van Oudenaar-
den. A Systems-Level Analysis of Perfect Adaptation in Yeast Osmoregulation. Cell,
138:160–171, 2009.

[219] Jörg Schaber, Rodrigo Baltanás, Alan Bush, Edda Klipp, and Alejandro Colman-Lerner.
Modelling reveals novel roles of two parallel signalling pathways and homeostatic feed-
backs in yeast. Molecular systems biology, 8(622):622, 2012.

[220] Diana Clausznitzer, Olga Oleksiuk, Linda Lø vdok, Victor Sourjik, and Robert G. En-
dres. Chemotactic response and adaptation dynamics in Escherichia coli. PLoS Compu-

tational Biology, 6(5):1–11, 2010.

[221] Uri Alon, M G Surette, Naama Barkai, and S Leibler. Robustness in bacterial chemo-
taxis. Nature, 397(6715):168–71, January 1999.

[222] Alan M Weinstein. Modeling epithelial cell homeostasis: assessing recovery and control
mechanisms. Bulletin of mathematical biology, 66(5):1201–40, September 2004.

[223] T M Yi, Y Huang, M I Simon, and John Doyle. Robust perfect adaptation in bacterial
chemotaxis through integral feedback control. PNAS, 97(9):4649–4653, 2000.

[224] Wenzhe Ma, Ala Trusina, Hana El-Samad, Wendell a Lim, and Chao Tang. Defining net-
work topologies that can achieve biochemical adaptation. Cell, 138(4):760–73, August
2009.

[225] D. R. Hoffman, L. M. Kroll, a. Basehoar, B. Reece, C. T. Cunningham, and D. W.
Koenig. Immediate and extended effects of sodium lauryl sulphate exposure on stratum
corneum natural moisturizing factor. International Journal of Cosmetic Science, 36:93–
101, 2014.

201



[226] Danuta Gutowska-Owsiak, Anna L Schaupp, Maryam Salimi, Tharini a Selvakumar,
Tess McPherson, Stephen Taylor, and Graham S Ogg. IL-17 downregulates filaggrin and
affects keratinocyte expression of genes associated with cellular adhesion. Experimental

dermatology, 21(2):104–10, February 2012.

[227] Malene Hvid, Christian Vestergaard, Kaare Kemp, Gitte B Christensen, Bent Deleuran,
and Mette Deleuran. IL-25 in atopic dermatitis: a possible link between inflammation
and skin barrier dysfunction? Journal of Investigative Dermatology, 131(1):150–7,
January 2011.

[228] Dongsan Kim, Yung-Keun Kwon, and Kwang-Hyun Cho. Coupled positive and negative
feedback circuits form an essential building block of cellular signaling pathways. BioEs-

says : news and reviews in molecular, cellular and developmental biology, 29(1):85–90,
January 2007.

[229] Kim Newton and Vishva M Dixit. Signaling in innate immunity and inflammation. Cold

Spring Harbor perspectives in biology, 4(3), March 2012.

[230] N. C J Filewod, Jelena Pistolic, and R. E W Hancock. Low concentrations of LL-
37 alter IL-8 production by keratinocytes and bronchial epithelial cells in response to
proinflammatory stimuli. FEMS Immunology and Medical Microbiology, 56:233–240,
2009.

[231] Zhe Zhang, Thomas B Clarke, and Jeffrey N Weiser. Cellular effectors mediating Th17-
dependent clearance of pneumococcal colonization in mice. The Journal of Clinical

Investigation, 119(7):1899–1909, 2009.

[232] Benedicte Mengel, Alexander Hunziker, Lykke Pedersen, Ala Trusina, Mogens H
Jensen, and Sandeep Krishna. Modeling oscillatory control in NF-κB, p53 and Wnt
signaling. Current opinion in genetics & development, 20(6):656–64, December 2010.
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