Michael Johnston ¹ , Julie Johnston ⁴ , Christian J. Cook ¹ , Lisa Costley ² , Mark Kilgallon ³ , Liam P.			
Kilduff ¹			
1.Applied Sports Technology, Exercise and Medicine (A-STEM) Research Centre, College of			
Engineering, Swansea University, Swansea, United Kingdom			
2. Ulster Sports Academy, University of Ulster, Jordanstown, United Kingdom			
3. Welsh Rugby Union, National Centre of Excellence, Vale of Glamorgan, United Kingdom.			
4. Department of Sport Science, Nottingham Trent University, Nottingham, United Kingdom.			
Keywords: Testosterone; Cortisol; Creatine Kinase; Neuromuscular fatigue; Speed; Strength			
Word count: 2860			
Abstract word count: 250			
Number of tables: 3			
Number of figures: 0			

- 29 The effect of session order on the physiological, neuromuscular, and endocrine responses to
- 30 maximal speed and weight training sessions over a 24-hour period

31

33 Abstract

34 Objectives: Athletes are often required to undertake multiple training sessions on the same day with 35 these sessions needing to be sequenced correctly to allow the athlete to maximize the responses of 36 each session. We examined the acute effect of strength and speed training sequence on neuromuscular, 37 endocrine, and physiological responses over 24 hours. Design: 15 academy rugby union players 38 completed this randomized crossover study. Method: Players performed a weight training session 39 followed 2 hours later by a speed training session (WS) and on a separate day reversed the order (SW). 40 Countermovement jumps (CMJ), perceived muscle soreness (MS), and blood samples were collected 41 immediately prior, immediately post, and 24 hours post sessions one and two respectively. Jumps were 42 analyzed for power, jump height, rate of force development, and velocity. Blood was analyzed for 43 testosterone (T), cortisol (C), lactate and creatine kinase (CK). Results: There were no differences 44 between CMJ variables at any of the post training time points (p > 0.05). Likewise, CK, T, C, and MS 45 were unaffected by session order (p > 0.05). However, 10 meter sprint time was significantly faster 46 (Mean \pm SD; SW 1.80s \pm 0.11 vs. WS 1.76 \pm 0.08s; p > 0.05) when speed was sequenced second. 47 Lactate levels were significantly higher immediately post speed sessions versus weight training 48 sessions at both time points (p < 0.05). Conclusions: The sequencing of strength and speed training 49 does not affect the neuromuscular, endocrine, and physiological recovery over 24 hours. However, 50 speed may be enhanced when performed as the second session.

52 1. Introduction

53 Elite athletes will often undertake a training program involving multiple daily training sessions being repeated over the course of a week¹. In order for the athlete to adapt to such a program, the loads 54 55 must be applied in an order or spacing that allows the athlete to have recovered to a point where they 56 are able to meet or exceed the requirements of the next training session². One potential factor that will 57 influence this is the order in which the sessions are performed. For example, it has been reported that 58 performing endurance training six hours before strength training resulted in greater fatigue the following day than when the order was reversed ³, possibly due to variation in both the type of fatigue 59 60 generated and the time taken to recover from each session. In addition, running performance has been shown to be impaired eight hours after a weight training session ⁴, thereby affecting session quality 61 62 and, potentially, the adaptive process. In contrast, a morning weight training session, but not a speed 63 session, has been shown to have a positive effect on afternoon sprint performance 5 .

Furthermore, the residual fatigue associated with both speed ⁶ and weight ⁷ training has been reported 64 65 to persist beyond the initial hours following the training session, and therefore this timeframe needs to 66 be investigated, as it will have important implications for training design. While several studies have examined the order effect on weight and endurance training sessions ^{3,8,9}, to date, no studies have 67 examined the order effect of speed training and strength training, highlighting a vital gap in our 68 69 understanding of program design given many sports perform both types of sessions on the same 70 training day. Therefore, the aim of this study was to compare the neuromuscular, endocrine, and 71 biochemical responses of a training day during which maximal speed training was followed two hours 72 post by weight training, to a training day with the reverse order. Specifically, the study set out to 73 compare morning performance to afternoon performance where it was preceded by a second session, 74 and to assess whether session order affected recovery at 24 hours post.

75

76 2. Methods

Ethical approval for the study was granted from a university research ethics committee. Fifteen academy level rugby players provided written informed consent to participate in this study (mean \pm standard deviation: age 21 \pm 1 years; 100.5 \pm 10.5 kg; height 185.7 \pm 6.6 cm). The study was undertaken at the end of the regular playing season, and participants were performing physical training four days per week. The study utilized a randomized crossover design, and each experimental protocol was completed over two days, one consisting of maximal speed training followed by a weight training session two hours later (SW), and one consisting of a weight training session followed by a maximal speed training session two hours later (WS) (Figure 1). The two-hour break was chosen as previous research has suggested that this is sufficient to recover from both speed ⁶ and weight training ⁷ and is a common recovery time used in elite sport settings.

- 87
- 88 INSERT FIGURE 1 AROUND HERE
- 89

90 Prior to arriving on day one of each protocol, participants were given two days off training. Each 91 participant was given an arrival and start time that was maintained throughout the study to account for circadian variation in hormones and body temperature ¹⁰. Upon arrival (immediately pre session one), 92 93 participants filled out a questionnaire on perceived muscle soreness (MS), and a blood sample was 94 collected for subsequent analysis for testosterone (T), cortisol (C), creatine kinase (CK), and lactate. 95 Participants then performed a 10-minute standardized warm-up before reporting to the testing area 96 where they performed three countermovement jumps (CMJs), after which they performed either the 97 SW or WS protocol.

98 In the SW protocol, participants proceeded to an indoor track to perform a maximal speed training 99 session. This session consisted of a running specific warm up followed by 6 x 50m maximal sprints 100 with 5 minutes recovery between each trial ⁶. This speed training session reflected a normal training 101 sessions for team sport athletes, and is in line with the volume of maximal speed running per session suggested by elite track coaches ^{6,11}. After completion of the final sprints, the participants again 102 103 provided blood samples, and information on MS before performing three CMJs (immediately post 104 speed session time-point). Two hours later, blood, MS, and CMJs were collected again (immediately 105 pre weights session time point), after which, the participants proceeded to the gym to undertake a 106 weight training session consisting of 5 sets of 4 repetitions of the back squat and the Romanian dead 107 lift (RDL), all at 85%1RM, and with 4 minutes recovery between sets and exercises. After completion 108 of this session, the CMJs were repeated, and blood lactate was taken once again (immediately post 109 weights session time-point). Due to time constraints, it was not possible to collect blood samples at 110 this time point. Lactate, MS, CMJs, and blood were collected again for a final time the following 111 morning (24 post speed session time-point).

In the WS protocol, the exact same training sessions were performed, however, the order was reversed with the weight training session being performed in the morning, and the speed session in the afternoon.

During each protocol, the first day's breakfast, lunch, snacks, and dinner along with the followingday's breakfast were provided (Soulmate food, Lancashire, UK).

All CMJs were performed on a force platform (Type 9287CA, Kistler Instruments Ltd., Farnborough, United Kingdom). After collection, the vertical component of the ground reaction force-time history was exported for analysis, and peak power (PP), average rate of force development (aRFD), jump height (JH), and peak velocity (PV) were calculated as per previously published literature ⁶. The participants were fully familiarised with CMJs, and performed them weekly within the academy.

Blood samples were collected from the antecubital vein after 10 minutes of lying supine. After collection, the samples were centrifuged at 3000 rpm for 10 minutes at room temperature. Plasma was analysed for T, C, and CK activity (Roche Diagnostic Limited, Charles Avenue, Burgess hill) on a Cobas C8000 analyser (Roche Diagnostics, Switzerland). The inter-assay CVs for T, C, and CK were 5.3, 3.7, and 1.4% respectively. The intra-assay CVs for T, C, and CK were 4.5, 3.3, and 1.7% respectively. Lactate was analysed using a lactate analyser (Lactate pro, Arkray). The CV for lactate was 2.8%.

Perceived muscle soreness (MS) was recorded at each data collection point, using a 7-point Likert
scale designed to measure soreness in the lower body. The scale ranged from very, very good (1) to
very, very sore (7) ¹².

The participants recorded weights lifted during each of the squat and Romanian deadlift work sets, and total tonnage was calculated from this information. Each participant also provided a Rate of Perceived Exertion, using the Borg 10 grade scale, for the weight training sessions performed during each protocol upon completion ¹³.

Sample size was determined using the methods of Hopkins¹⁴, and 15 subjects was found to be 136 137 adequate to determine changes with sufficient statistical power. All statistical analysis was performed 138 using the IBM SPSS (Version 20.0, SPSS Inc., Chicago, IL) statistical data package. CK values were 139 log transformed due to large inter-participant variability. Differences between and within protocol 140 were assessed using a two way (time point and protocol) repeated measure analysis of variance. 141 Bonferroni adjustments were run where relevant. Differences between the afternoon and morning 142 sprint and weight training performances were also investigated to see if session order affected 143 performance. These differences were assessed using one-way t-tests. Effect size (ES) was determined 144 using partial eta-squared. The level of significance was set at $p \le 0.05$. Data is presented as the mean \pm 145 standard deviation.

146

147 **3. Results**

There was no significant time-protocol interaction for 50 m sprint times (effect size eta2 = 0.070, p > 0.05) during the sprint training session confirming that performance did not differ across the protocols. The protocols did differ with regard to peak 10 m time, with performance in the afternoon $(1.76 \pm 0.08s)$ being faster than performance in the morning $(1.80 \pm 0.11s)$ (p > 0.05). There was no significant different in the rate of perceived effort or total volume lifted for the weight training sessions between the protocols (p > 0.05) (Table 1).

154

- 155 INSERT TABLE 1 AROUND HERE
- 156

157 There was a significant time effect on T (effect size eta2 = 0.349, p < 0.05), and C (effect size eta2 = 0.349, p < 0.05), and C (effect size eta2 = 0.349, p < 0.05), and C (effect size eta2 = 0.349, p < 0.05), and C (effect size eta2 = 0.349, p < 0.05), and C (effect size eta2 = 0.349, p < 0.05), and C (effect size eta2 = 0.349, p < 0.05), and C (effect size eta2 = 0.349, p < 0.05), and C (effect size eta2 = 0.349, p < 0.05), and C (effect size eta2 = 0.349, p < 0.05), and C (effect size eta2 = 0.349, p < 0.05), and C (effect size eta2 = 0.349, p < 0.05), and C (effect size eta2 = 0.349, p < 0.05), and C (effect size eta2 = 0.349, p < 0.05).

158 0.751, p < 0.05) (Table 2), but no time-protocol interaction for T (effect size eta2 = 0.115, P > 0.05) or 159 C (effect size eta2 = 0.026, P > 0.05).

Both protocols had a significant time effect on lactate (effect size eta2 = 0.923, p < 0.05), MS (effect size eta2 = 0.650, p < 0.05) and CK (effect size eta2 = 0.882, p < 0.05), and there was a significant time-protocol interaction for lactate (effect size eta2 = 0.932, p < 0.05), with lactate levels being significantly different immediately post session one (p < 0.05), and immediately post session two (p <

- 164 0.05), but not at any other time point (Table 2) between protocols. No time-protocol interaction was
 165 found for MS (effect size eta2 = 0.024, P > 0.05) or CK (effect size eta2 = 0.063, P > 0.05).
 166
 167 INSERT TABLE 2 AROUND HERE
 168
 169 Time effects were found for CMJ PP (effect size eta2 = 0.636, p < 0.05), JH (effect size eta2 = 0.629, p < 0.05), aRFD (effect size eta2 = 0.454, p < 0.05), and PV (effect size eta2 = 0.645, p < 0.05) (Table
 171 3). However, there was no significant time-protocol interaction for CMJ PP (effect size eta2 = 0.114, P
- 172 > 0.05), JH (effect size eta2 = 0.061, P > 0.05), aRFD (effect size eta2 = 0.081, P > 0.05), and PV
- 173 (effect size eta2 = 0.143, P < 0.05).
- 174
- 175 INSERT TABLE 3 AROUND HERE
- 176

177 **4. Discussion**

To our knowledge, this is the first study to examine the influence of manipulating the order of maximal speed training and weight training on the same day on acute neuromuscular, physiological, and endocrine responses. The primary finding from this investigation was that, while the two sessions individually resulted in significantly different metabolic responses, training order did not result in different endocrine responses, patterns of muscle soreness, muscle damage, or neuromuscular performance over a 24-hour period.

184 In the current study, both the initial maximal speed training, and weights sessions were found to result 185 in similar depressions in neuromuscular performance immediately post session. The response to the 186 morning maximal speed training session in the SW protocol is in line with previous findings⁶. 187 However, given that the acute fatigue response to exercise has been reported to vary depending on the nature of the activity^{8,7}, the finding that both types of sessions resulted in similar declines in 188 189 performance is somewhat unexpected, especially given the different post session metabolic responses 190 $(9.41 \pm 1.38 \text{ mmol/l post speed vs. } 3.15 \pm 1.07 \text{ mmol/l post weights})$. Therefore, while a link between 191 metabolic fatigue and loss in neuromuscular performance has previously been reported ¹⁵, it does not seem to have differentiated the sessions in the current study. Instead, it is possible that the strength levels (Squat 1RM 170 ± 20 kg, Bench 1RM 135 ± 10 kg) of the participant group in the current study contributed to the findings as it has been demonstrated that strength-trained participants experience significantly more neural fatigue than untrained participants ¹⁶ and, therefore, the participants in this study may have experienced greater depressions in neuromuscular performance immediately after a maximal strength focused weight-training session than would have been expected from a non-elite population.

199 Immediately after both the morning maximal speed training and weight training sessions, C decreased 200 significantly while T increased significantly after the maximal speed training, and non-significantly 201 after the weight training session, with no difference in the testosterone response between the protocols 202 (Table 2). This lack of difference in T occurred even though the sessions differed significantly in 203 terms of the metabolic response they inducted. While several studies report a relationship between training-induced elevations in lactate and post-exercise changes in T^{17,18}, others have found elevations 204 to occur in the absence of lactate ¹⁹. The results of the current study suggest that metabolic 205 206 accumulation does not affect either T or C in an obvious dose response manner.

When performance was reassessed two hours after the morning sessions and immediately prior to the start of the afternoon sessions, all of the countermovement jump variables had recovered in both protocols. While the time frames required for recovery from different types of resistance training have previously been demonstrated ^{7,20}, to our knowledge, this is the first study to compare the time frames for recovery from maximal speed training to a maximal strength-focused weight-training session.

212 Given the relationship between exercise intensity and neuromuscular adaptation²¹, it is important that 213 the second session of the day is not performed in a fatigued state. The results showed no difference in 214 either total tonnage lifted or rate of perceived effort when the weight training sessions were compared 215 (Table 1), suggesting that performing a strength-training protocol two hours post maximal speed 216 training does not result in decreased performance. In contrast, 10m-sprint time was significantly faster 217 when performed two hours after a weights session versus the morning (0.04 second). While this 218 improved performance may have been a result of normal circadian patterns associated with body temperature ²², it is also possible that the weight training itself played a role in improving sprint 219

performance 2 hours post. Cook et al.⁵ reported morning weight training to result in a change in the 220 221 normal circadian pattern of T, resulting in it being significantly elevated prior to the speed testing 222 versus the same time-point on a day where no morning session was performed. In the current study, T 223 was unchanged from its baseline levels two hours post weight training, while in contrast C had 224 declined significantly by this time point (Table 2). While C does appear to degrade at a faster rate during the day than T^{22,23}, the lack of a significant decline in T coupled with the changes in C further 225 226 suggests that the morning training had an effect on normal endocrine circadian rhythm, and that 227 weight training may have affected the normal circadian pattern associated with T. In doing so, it is 228 possible the non-genomic effects, notably increased aggression and muscle function, associated with T ²⁴ accentuated the normal circadian patterns associated with performance, and contributed to sprint 229 230 performance at this time-point.

231 The performance of a morning exercise session did not affect metabolic response to either session in 232 the current study, with similar responses regardless of whether the session was performed in the morning or afternoon. This conflicts with the findings of Coffey et al.²⁵ who reported the metabolic 233 234 response to a second session was affected by the first session of the training day. The most likely 235 explanation for the difference between these results and the current study is the difference in the time between the sessions, with Coffey et al.²⁵ performing their sessions with a 15-minute recovery 236 237 between them. In contrast, a two-hour recovery between sessions was utilized in the current study and, 238 as a result, sufficient time was available for lactate concentrations to return to baseline, in turn, 239 allowing the participants to sufficiently recover from the first session.

240 At the 24 hours post time-point, neuromuscular performance was found to be significantly declined 241 versus initial baseline measurements in both protocols, however, there was no difference between the 242 protocols suggesting that session order does not affect the neuromuscular system at this time point 243 (Table 3). While previous research has reported similar findings when the two sessions were identical in make-up^{26,27}, this is the first study to suggest that, at least on weights and speed training days, 244 245 session order does not seem to be a factor in neuromuscular performance the following day. However, this finding conflicts with Doma and Deakin³ who found a strength session followed six hours later by 246 247 an aerobic run to have a significantly greater negative effect on running performance 24 hours post 248 compared to when the order was reversed. One possible explanation for the difference between the 249 studies is the readiness of the neuromuscular system to undertake the second session of the day. While 250 in the current study neuromuscular performance had returned to baseline prior to the start of second 251 session of the day, Doma and Deakin³ reported that maximal voluntary contraction (MVC) was still 252 depressed six hours after the strength training session, and immediately prior to the start of the run 253 session. This was in contrast to the running-strength training sequence were MVC had fully recovered 254 between sessions. While the fact that the participants in Doma and Deakin³ lacked a resistance 255 training background in resistance training, and this may have contributed to the depressed MVC at 6 256 hours, their findings still highlight the importance of ensuring neuromuscular recovery prior to 257 beginning session two as training in a fatigued state may result in greater depressions 24 hours post.

258

259 5. Conclusion

In conclusion, this study demonstrated that two protocols with different session order resulted in similar neuromuscular, endocrine, and biochemical responses over a 24-hour period in a well-trained population. This was the case even though the metabolic response was different between the sessions. This was potentially due to the two-hour time period allowing the participants to have fully recovered from the first session of the day.

265

266 6. Practical implications

- Two hours is sufficient for the recovery of neuromuscular performance after both maximal
 speed training and weight training sessions.
- Providing sufficient recovery from the first training session, the coach and athlete can
 structure their sessions in either order without negatively affecting recovery 24 hours post.
- There was a significant improvement in 10m-sprint performance in the afternoon when
 preformed 2 hours after the weights session. While several factors could have contributed to
 this, it is possible the morning session enlisted some degree of priming.

275	7. Acknowledgments		
276	We acknowledge with gratitude the contributions of the players who partook in this study, the staf		
277	from the Sports Institute Northern Ireland, and Ulster hospital who provided their time and expertise.		
278			
279			
280			
281	8. Ref	erences	
282	1.	Cormack SJ, Newton RU, McGuigan MR. Neuromuscular and endocrine responses of elite	
283		players to an Australian rules football match. Int J Sports Physiol Perform. 2008; 3(3):359-	
284		374.	
285	2.	Bishop PA, Jones E, Woods AK. Recovery from training: a brief review: brief review. J	
286		Strength Cond Res. 2008; 22(3):1015-1024.	
287	3.	Doma K, Deakin GB. The effects of strength training and endurance training order on running	
288		economy and performance. Appl Physiol Nutr Metab. 2013; 38(6):651-656.	
289	4.	Palmer CD, Sleivert GG. Running economy is impaired following a single bout of resistance	
290		exercise. J Sci Med Sport. 2001; 4(4):447-459.	
291	5.	Cook CJ, Kilduff LP, Crewther BT, et al. Morning based strength training improves afternoon	
292		physical performance in rugby union players. J Sci Med Sport. 2013; 17(3): 317-321.	
293	6.	Johnston M, Cook CJ, Crewther BT, et al. Neuromuscular, physiological and endocrine	
294		responses to a maximal speed training session in elite games players. Eur J Sport Sci. 2015:1-	
295		7.	
296	7.	McCaulley GO, McBride JM, Cormie P, et al. Acute hormonal and neuromuscular responses	
297		to hypertrophy, strength and power type resistance exercise. Eur J Appl Physiol. 2009;	
298		105(5):695-704.	
299	8.	Cadore EL, Izquierdo M, dos Santos MG, et al. Hormonal responses to concurrent strength	
300		and endurance training with different exercise orders. J Strength Cond Res. 2012;	
301		26(12):3281-3288.	

- 302 9. Coffey VG, Pilegaard H, Garnham AP, et al. Consecutive bouts of diverse contractile activity
 303 alter acute responses in human skeletal muscle. *J Appl Physiol.* 2009; 106(4):1187-1197.
- 304 10. Hackney AC, Viru A. Research methodology: endocrinologic measurements in exercise
 305 science and sports medicine. *J Athl Train*. 2008; 43(6):631-639.
- 306 11. Francis C. *The Structure of Training for Speed*, Canada, Charliefrancis.com. 2008.
- Andersson H, Raastad T, Nilsson J, et al. Neuromuscular fatigue and recovery in elite female
 soccer: effects of active recovery. *Med Sci Sports Exerc.* 2008; 40(2):372-380.
- 309 13. Borg GA. Psychophysical bases of perceived exertion. *Med Sci Sports Exerc.* 1982;
 310 14(5):377-381.
- 311 14. Hopkins WG. Estimating sample size for magnitude-based inferences. Sport Science.
 312 <u>http://sportsci.org/resources/stats/xSampleSize.xls</u>. October 2015
- 313 15. Walker S, Davis L, Avela J, et al. Neuromuscular fatigue during dynamic maximal strength
 and hypertrophic resistance loadings. *J Electromyogr Kinesio*. 2012; 22(3):356-362.
- 315 16. Ahtiainen JP, Hakkinen K. Strength athletes are capable to produce greater muscle activation
 316 and neural fatigue during high-intensity resistance exercise than nonathletes. *J Strength Cond*317 *Res.* 2009; 23(4):1129-1134.
- 318 17. Izquierdo M, Ibanez J, Calbet JA, et al. Cytokine and hormone responses to resistance
 319 training. *Eur J Appl Physiol.* 2009; 107(4):397-409.
- Walker S, Taipale RS, Nyman K, et al. Neuromuscular and hormonal responses to constant
 and variable resistance loadings. *Med Sci Sports Exerc.* 2011; 43(1):26-33.
- 322 19. Fry AC, Lohnes CA. Acute testosterone and cortisol responses to high power resistance
 323 exercise. *Fiziol cheloveka*. 2010; 36(4):102-106.
- Raastad T, Hallen J. Recovery of skeletal muscle contractility after high- and moderateintensity strength exercise. *Eur J Appl Physiol.* 2000; 82(3):206-214.
- Tan B. Manipulating resistance training program variables to optimize maximum strength in
 men: A review. *J Strength Cond Res.* 1999; 13(3):289-304.

- 328 22. Teo W, McGuigan MR, Newton MJ. The effects of circadian rhythmicity of salivary cortisol
 and testosterone on maximal isometric force, maximal dynamic force, and power output. J
 330 Strength Cond Res. 2011; 25(6):1538-1545.
- 331 23. Hayes LD, Bickerstaff GF, Baker JS. Interactions of cortisol, testosterone, and resistance
 332 training: influence of circadian rhythms. *Chronobiol Int.* 2010; 27(4):675-705.
- 333 24. Crewther BT, Cook C, Cardinale M, et al. Two Emerging Concepts for Elite Athletes The
- Short-Term Effects of Testosterone and Cortisol on the Neuromuscular System and the DoseResponse Training Role of these Endogenous Hormones. *Sports Med.* 2011; 41(2):103-123.
- Coffey VG, Jemiolo B, Edge J, et al. Effect of consecutive repeated sprint and resistance
 exercise bouts on acute adaptive responses in human skeletal muscle. *Am. J Physiol-Regul Integr Comp Physiol.* 2009; 297(5):R1441-R1451.
- 339 26. Skurvydas A, Kamandulis S, Masiulis N. Effects on muscle performance of two jumping and
 two cycling bouts separated by 60 minutes. *Int Sportmed J.* 2010; 11(2):291-300.
- 341 27. Skurvydas A, Kamandulis S, Masiulis N. Two series of fifty jumps performed within sixty
 342 minutes do not exacerbate muscle fatigue and muscle damage. *J Strength Cond Res.* 2010;
 343 24(4):929-935.

3	5	6
J	J	υ

357 Figure Legend

- **358** Figure 1: Schematic outlining the design of the speed weights and weights speed protocols.
- 359 Assessments performed immediately prior session one, immediately post session one, immediately pre
- 360 session two, immediately post session two, and 24 hours post session one during each protocol.

361

362