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ABSTRACT

Many human activities depend on upper-limb motion, which can be characterized and estimated using the activation levels of the electromyography (EMG)
signal of the upper-limb muscles. Researchers are devoting much effort to investigating these activities during elbow extension and flexion. Also, a few
studies have concluded with the development of a power-assisted arm. However, the systems introduced so far are expensive and there are long waiting
lists of people requesting such systems. The aim of the present work is to develop a power-assist arm based on the EMG signal activities of the upper-limb,
and this paper describes the first part of this study focusing on the monitoring of EMG signals during upper limb activities based on the development of a
low-cost system. The relationship between elbow motion and the activity level of the biceps muscle is characterised and different relevant features are

logged. The new low-cost system is then validated against the Biopack specialised biomedical measurement system.
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1. Introduction

The motion of the human body upper-limb is essential for
many daily human activities, including eating, drinking, combing
the hair and washing the face, etc. Disabled, injured or weak or
elderly people sometimes find it difficult to move their upper-
limbs to perform these activities. Many research studies are now
focusing on how to assist with these problems, by seeking to
understand the behaviour of human muscle signal activities [1, 2]
during different operations [3, 4], and also via the development
of power-assist robotic systems to support the daily operations of
physically weak persons [1,5-7, 15,16]. It has been widely
concluded that power-assist robotic systems can be operated
using the EMG signal of human muscles since it reflects the
activity levels of the muscles [13].

The EMG signal is an electrical signal that can be used to
observe muscle contraction. Measurement can take place either
by surface EMG, where electrodes are placed on the skin, or
invasive EMG, where needle electrodes are inserted into the
muscle fibre. The EMG signal is the sum of all the action
potentials that occur around the electrode position, where muscle
contraction causes an increase in its amplitude (0-10mV ) or
(0-1.5mV,y,). The usable energy of the EMG signal is in the
frequency range of 0-500Hz, while its dominant energy is in the
frequency range of 50-150Hz [9]. Fig. 1 is an example of the
frequency spectrum of the EMG signal of the tibialis anterior
muscle during a constant force isometric contraction.
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Figure 1. Frequency spectrum of the EMG signal [11]
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The standard measurement technique for surface EMG uses
three electrodes, namely: the reference, and two pick-up or
recording electrodes. The reference (ground) electrode is placed
on a neutral part of the body such as the bony part of the wrist to
reduce noise and interference, while the two pick-up electrodes
are placed over the muscle. These two electrodes signal is
differentially amplified to cancel the noise as shown in Fig. 2,
where m is the EMG signal and n is the undesired noise signal
[10, 11].

The exoskeleton robot is a device, which can be worn as an
orthotic device by the human operator [5]. It can be operated in
different modes to achieve several applications, such as a power-
assist device, human-amplifier, rehabilitation device, and haptic
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interface [5]. The skin surface EMG signals of the muscles can
be used as input information for the controllers of the
exoskeleton robot [4]. The EMG signals vary from person to
person and may differ for the same motion even in the same
person according to physical conditions such as tiredness [4].
Therefore, by characterising the EMG signals, a control method
can be developed to operate a power-assisted robotic system
based on the information extracted from the signals. Since the
surface EMG signals can directly reflect the human motion
intention, they can suffice as the only input required for the
controller of the power-assisted robotic system, which could then
assist physically weak persons without the need for any other
equipment.
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Figure 2. EMG differential amplifier configuration [11]

The human upper-limb consists of several degrees of
freedom (DOF) [14], including: 3DOF in the shoulder joint,
2DOF in the elbow joint and 2DOF in the wrist joint. The
upper-limb's basic motions are [8]: shoulder vertical
flexion/extension, shoulder adduction/abduction, shoulder
horizontal flexion/extension, shoulder internal/external
rotation, elbow flexion/extension, forearm supination/
pronation, wrist flexion/extension, and wrist ulnar/radial
deviation. The upper-limb motions used in daily activities are
combinations of these basic motions. The human upper limb is
activated by many muscles, some of which are bi-articular and
others uni-articular, and agonist-antagonist muscles activate
the shoulder, elbow and wrist. This paper considers the flexion
and extension motions of the elbow.

This work aims to develop a power-assist system based on
the EMG signal of human upper-limb activities to help elderly,
injured and physically weak persons. This paper describes the
first part of this ongoing research study, focusing on
characterising the EMG signals using a low-cost measurement
system as a key step in developing a complete controller for
the upper-limb power-assist robotic system. Extensive
experiments are conducted to characterise the EMG from the
biceps muscle at different loads and angles during elbow
flexion and extension and to extract the signal's useful features.
The measured EMG signal was figured out to determine the
relationships between the extracted features, arm angle and
load.

2. Monitoring of EMG signal activities
2.1. Using the Biopack DAC System

The measurement process using the Biopack system illustrated
in Fig. 3 was achieved in four steps. First the surface EMG
signals were detected using Ag\AgCl EMG surface electrodes

adhering to the skin surface above the muscles with a separation
of 1cm, after the electrode and skin had been thoroughly cleaned
using alcoholic liquid [11]. Then a reference electrode was
attached to skin covering electrically unrelated tissue such as
bone.
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Figure 3. Monitoring the EMG signal activities using the
Bioback measurement system

Then a small form factor electromyography signal
conditioning interface was used to provide the signal to the
Biopack DAC. This EMG interface card has an adjustable gain
and improved ruggedness such that the amplified, rectified, and
smoothed EMG signals (envelope EMG) are fed to a general
DAC analog-to-digital converter (ADC) (not an EMG module)
[12]. The output samples from the Biopack were analysed
using the Matlab program to extract the indicating features and
represent them graphically.

2.2. Using a Low Cost System

The next phase was to develop a low-cost system using a low-
cost processor and the envelope EMG. Such processor has less
sampling time, which is sufficient for the low frequency envelope
EMG. The Atmel ATMega microcontroller board is used as a
DAC system, shown in Fig. 4, instead of the expensive Biopack
DAC. Here measurement is also achieved in four steps. The
surface EMG signals are detected using Ag\AgCl EMG
surface electrodes adhering to the skin surface of the muscles
with a separation of 1cm. Then the electromyography signal is
fed to the EMG signal conditioning board to be amplified,
rectified, and smoothed, and subsequently sent to the Atmel
ATMega microcontroller board ADC. The output samples
from the microcontroller were analysed using an online
LabVIEW program to extract the useful features, log them
and graphically represent them.
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Figure 4. Monitoring the EMG signal activities using a low-
cost measurement system

3. System validation

3.1. Validation of the Use of envelope EMG rather than Raw
EMG




International journal of COMADEM

In order to study the characteristics of the EMG signal,
several experiments were performed with a 28 year-old healthy
male under test. During the experiments, elbow flexion and
extension motions were performed at four angles (0°, 30°, 90°,
150°), as shown in Fig. 5 and at different loads (2, 4, 6 kg), and
the experiments were repeated with all loads at each angle as
follows: at angle 0°, each load was carried individually by the
person under test and the EMG of the biceps muscle was
recorded for 20s for each load and without motion. Then at
each aforementioned angle (30°, 90°, 150°), the person under
test moved his elbow from the initial position (angle 0°) to the
desired angle and vice versa for 20 seconds and the EMG
activities were recorded.
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Figure 5. Elbow motion angles from 0 to 150 degree [11]

The EMG signals were recorded in each experiment and
saved using the Biopack DAC with a sampling rate of 10 kHz
(hence it was only used as an ADC), and the saved data was
treated using the Matlab program to calculate the desired
features: the RMS (root-mean-square) level of a vector X can
be calculated as given in Equation 1; while the STD (standard
deviation) of a data vector X can be calculated using Equation
25
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and # is the number of elements in the sample. The two forms

of the STD equations are different only in # — I versus n in

the divisor. Figures 6 and 7 represent the relationship between

the RMS and the STD of the EMG signals at different loads

and angles.

It is worth noting that these experiments were repeated
using the Biopack EMG module with the following
specifications (gain = 500, 5 kHz, LPF, 1 Hz HPF) in order to
validate the previous results, as shown in Fig. 8. It is evident
that the two Biopack setups provided the same RMS and STD
trend at different loads and angles.
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Figure 6. The RMS of EMG using the muscle sensor kit and
the Biopack
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Figure 7. The STD of EMG using the muscle sensor kit the
Biopack

3.2. Validation of the developed low-cost system

The EMG signals from the microcontroller were processed
and the RMS feature along with the other extracted features
were instantaneously calculated, logged and presented using
the online LabView program. Also, it is evident that this low-
cost system provided the same RMS trend at the different
loads and angles if compared with those of the two Biopack
setups, despite the differences in values of the RMS feature at
the same load and the angle between the three setups. This is
mainly related to the effect of the different power sources of
the EMG interface card during the experiments with three
setups. However, in the final system validation this should not
occur since the setup will include the permanent power source.
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Figure 8. The RMS of the EMG signal using the Biopack
EMG module
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Figure 9. The RMS of the EMG signal using the muscle sensor
kit and the low-cost microcontroller

Figure 10. 3D surface diagram representing the relation
between the EMG signal, load and arm angle

The 3D surface diagram representing the relationship between
the three variables; EMG signal, load and angle has been studied
in order to show the effect of both loads and arm angles on the
EMG signal as shown in Fig. 10. It is evident that the load has
much effect than the angle of the arm on the EMG signal
activities, and at higher load values the effect of angle increase
will have much higher EMG signal activities than of which at the
smaller load values.

4. Conclusions

The biceps muscle activities during elbow flexion and
extension have been studied using different three system setups in
order to develop a prediction function which can be employed to
estimate human upper-limb motions based on the EMG signals of
muscles. The relationship between upper limb motion and the
activity levels of the biceps were analysed using different
extracted features, and the RMS feature was an indicative
variable. Also, the 3D surface diagram representing the
relationship between the EMG signal, loads and arm angles
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showed that the load has much effect than the angle on the EMG
signal activities, and at higher loads the effect of angle increase
will have much higher EMG signal activities than of which at the
smaller loads. The analysis proven that the low-cost system
developed is capable of being used in the development of a
power-assist robotic arm system. The developed system is a
successful key step in the development of the upper-limb
exoskeleton robot.
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