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Abstract

Continuous queries in Wireless Sensor Networks
(WSNs) are founded on the premise of Query Routing
Tree structures (denoted as T ), which provide sensors
with a path to the querying node. Predominant data ac-
quisition systems for WSNs construct such structures
in an ad-hoc manner and therefore there is no guar-
antee that a given query workload will be distributed
equally among all sensors. That leads to data colli-
sions which represent a major source of energy waste.
In this paper we present the Energy-driven Tree Con-
struction (ETC) algorithm, which balances the work-
load among nodes and minimizes data collisions, thus
reducing energy consumption, during data acquisition
in WSNs. We show through real micro-benchmarks on
the CC2420 radio chip and trace-driven experimenta-
tion with real datasets from Intel Research and UC-
Berkeley that ETC can provide significant energy re-
ductions under a variety of conditions prolonging the
longevity of a wireless sensor network.

1 Introduction

Large-scale deployments of WSNs have already
emerged in environmental and habitant monitoring [8,
7], structural monitoring [3] and urban monitoring [6].
A decisive variable for prolonging the longevity of a
WSN is to minimize the utilization of the wireless com-
munication medium. It is well established that commu-
nicating over the radio in a WSN is the most energy
demanding factor among all other functions, such as
storage and processing [10, 4, 5, 11, 9]. The energy
consumption for transmitting 1 bit of data using the
MICA mote [1] is approximately equivalent to process-
ing 1000 CPU instructions [5].

In order to process continuous queries in Wireless
Sensor Networks (WSNs), predominant data acquisi-
tion frameworks typically organize sensors in a Query
Routing Tree (denoted as T ) that provides each sensor
with a path over which query results can be transmit-
ted to the querying node. We found that current meth-
ods deployed in predominant data acquisition systems
sub-optimality construct T which leads to an enormous
waste of energy. In particular, since T is constructed in
an ad-hoc manner, there is no guarantee that a given
query workload will be distributed equally among all
sensors. That leads to data collisions which represent
a major source of energy waste.

To facilitate our description, consider the example
depicted on Figure 1 (left), which illustrates the initial
ad-hoc query routing tree T created on top of a 10-node
sensor network with the First-Heard-From (FHF) ap-
proach 1. Assume that the weight on each edge of T

represents the workload (e.g., the number of transmit-
ted tuples) that incurs when a child node communi-
cates its partial results to its designated parent node.
In the example, we observe that node s2 is inflicted
with a high workload (i.e., 5 child nodes) while other
nodes at the same level (i.e., s3 and s4), only have zero
and one child nodes, respectively. Notice that both s8

and s10 are within communication range from s3 (i.e.,
the dotted circle), thus these nodes could have chosen
the latter one as their parent. Unfortunately, the FHF
approach is not able to take these semantics into ac-
count as it conducts the child-to-parent assignment in
a network-agnostic manner.

Unbalanced topologies pose some important energy
challenges which are summarized as follows:

Decreased Lifetime and Coverage: Since the ma-
jority of the energy capacity is spent on transmitting

1In FHF, each sensor si selects as its parent the first node

from which si received the query.
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Figure 1. Left: The ad-hoc query routing tree;
Right: The optimized workload-aware query
routing tree constructed using the in-network

ETC balancing algorithm.

and receiving data, the available energy of sensors with
a high workload will be depleted more rapidly than
the others. For example, in Figure 1 (left), we observe
that sensor s2’s energy will be depleted 93/12=7.75

faster than s3, that is ((
∑children(s2)

i=0 (si, s2) + (s2, s1))

/ (
∑children(s3)

i=0 (si, s3)+(s3, s1)), and 3.72 times faster
than s4 (i.e., 93/25). In addition, if s2’s energy is de-
pleted and no alternate parents are available for sensors
s5−7 then the coverage of the network will be reduced
dramatically.

Increased Data Transmission Collisions: An un-
balanced workload increases data transmission colli-
sions which represent a major source of energy waste
in wireless communication. Our micro-benchmarks
on the CC2420 radio transceiver, presented in Sec-
tion 4.1, unveil that crowded parent hubs like s2 might
yield loss rates of up to 80%, thus inflicting many re-
transmissions to successfully complete the data transfer
task between nodes.

In Section 4.1, we show that the execution of a query
over a node with 10 children will lead to a 48% loss rate
of data packets, while executing the same query over
a node with 100 children will lead to a 77% loss rate.
These figures translate into an approximately three-
fold increase in energy demand due to inevitable re-
transmissions of data packets. Consequently, unbal-
anced trees can severely degrade the network health
and efficiency.

Contributions: We present ETC, a distributed al-
gorithm for transforming an arbitrary query routing
tree into a near-balanced routing tree in which data
collisions are minimized, thus Wireless Devices have
the capability to power down their transceiver much
earlier conserving valuable energy. We also validate
experimentally the efficiency of our propositions with

an experimental study that utilizes real sensor readings
and micro-benchmarks.

2 Preliminaries and Background

In this section, we will provide an overview of bal-
anced trees in order to better frame the problem the
ETC algorithm seeks to improve. Balanced trees can
improve the asymptotic complexity of insert, delete
and lookup operations in trees from O(n) time to
O(logbn) time, where b is the branching factor of the
tree and n the size of the tree. We will next formalize
our discussion by providing some definitions:

Definition 1: Balanced Tree (Tbalanced)
A tree where the heights of the children of each internal
node differ at most by one.

The above definition specifies that no leaf is much
farther away from the root than any other leaf node.
For ease of exposition consider the following directed
tree: T1 = (V,E) = ({A,B,C,D}, {(B,A), (C,A),
(D,B)}), where the pairs in the E set represent the
edges of the binary tree. By visualizing T1, we ob-
serve that the subtrees of A differ by at most one
(i.e., |height(B)−height(C)|=1) and that the subtrees
of B differ again by at most one (i.e., |height(D) −
height(NULL)|=1). Thus, we can characterize T1 as
a balanced tree.

Notice that V has several balanced tree representa-
tions of the same height (e.g., the directed tree T2 =
({A,B,C,D}, {(B,A), (C,A), (D,C)})). Similarly, V

has also many balanced tree representations of differ-
ent heights (e.g., the directed tree T3 =({A,B,C,D},
{(B,A), (C,A), (D,A)}) which has a height of one
rather than two). Finally, in a balanced tree every node
has approximately β children, where β is equal to d

√
n

(the depth of every balanced tree is d = logβ n, thus

βd = n and β = d
√

n). The ETC algorithm presented
in this section focuses on the subset of balanced trees
which have the same height to Tinput as this makes the
construction process more efficient.

In order to derive a balanced tree (Tbalanced) in a
centralized manner we could utilize the respective bal-
ancing algorithms of AVL Trees, B-Trees and Red-
Black Trees. However, that would assume that all
nodes are within communication range from each other
which is not realistic. Thus, the ETC algorithm seeks
to construct a Near-Balanced Tree (Tnear balanced), de-
fined as follows:

Definition 2: Near-Balanced Tree (Tnear balanced)
A tree in which every internal node attempts to ob-
tain a less or equal number of children to the optimal
branching factor β.



The objective of Tnear balanced is to yield a struc-
ture similar to Tbalanced without imposing an impossi-
ble network structure (i.e., nodes will never be enforced
to connect to other nodes that are not within their
communication range). We shall later also define an
error metric for measuring the discrepancy between the
yielded Tnear balanced and the optimal Tbalanced struc-
tures. We will additionally show in Section 4.2.1 that
constructing Tnear balanced with the ETC algorithm
yields an error of 11% on average for the topologies
utilized in this paper.

3 The ETC Algorithm

In this section, we describe the discovery and bal-
ancing phases of the ETC algorithm whose objective is
to transform Tinput into a near-balanced tree TETC in
a distributed manner.

3.1 ETC Phase 1: Discovery

The first phase of the ETC algorithm starts out by
having each node select one node as its parent using
the FHF approach. During this phase, each node also
records its local depth (i.e., depth(si)) from the sink.
Notice that depth(si) can be determined based on a
hops parameter that is included inside the tree con-
struction request message. In particular, the hops pa-
rameter is initialized to zero and is incremented each
time the tree construction request is forwarded to the
children nodes of some node.

A node si also maintains a child node list children

and an alternate parent list APL. The APL list is
constructed locally at each sensor by snooping (i.e.,
monitoring the radio channel while other nodes trans-
mit and recording neighboring nodes) and comes at no
extra cost. Such a list could also be utilized to find
alternate parents in cases of failures.

The sink then queries the network for the total num-
ber of sensors n and the maximum depth of the routing
tree d. Such a query can be completed with a message
complexity of O(n). When variables n and d are re-
ceived, the sink calculates the Optimal Branching Fac-
tor (β).

3.2 ETC Phase 2: Balancing

The second phase of the ETC algorithm involves
the top-down reorganization of the query routing tree
Tinput such that this tree becomes near-balanced. In
particular, the sink disseminates the β value to the n

nodes using the reverse acquisition tree. When a node
si receives the β value from its parent sp it initiates

the execution of Algorithm 1 in which si will order
parent re-assignments for its children. The presented
algorithm is divided into two main steps: i) lines 3-8:
si’s connection to its newly assigned parent newParent;
and ii) lines 9-25: the transmission of parent reassign-
ment messages to children nodes, in which the given
nodes are instructed to change their parent.

In line 2 of Algorithm 1, each node si (∀si ∈ S− s0)
waits in blocking mode until an incoming message in-
terrupts the receive() command. When such a message
has arrived, si obtains the β value and the identifier of
its newParent. The next objective (line 4) is to identify
whether newParent is equal to NULL, in which case si

does not need to change its own parent (i.e., we proceed
to line 9). On the contrary, if newParent has a specific
node identifier then si will attempt to connect to that
given node (lines 4-8). Notice that if newParent can
not accommodate the connect request from si then the
procedure has to be repeated until completion or until
the alternative parents are exhausted.

In line 9 we proceed to the second step of the al-
gorithm in which si’s children might be instructed to
change their parent node. We choose to do such a re-
assignment at si, rather than at the individual child
sj , because si can more efficiently eliminate duplicate
parent assignments (i.e., two arbitrary children of si

will both not choose newParent). In line 10 we skip si

if the number of children is less than β. In the contrary
case (line 14), we have to eliminate |children(si)| − β

children from si. Thus, we iterate through the child
list of si (line 16) and attempt to identify a child sj

that has at least one alternate parent (line 17). If an
alternative parent can not be determined for node sj

then it obviously not meaningful to request a change
of si’s parent (line 22).

Let us now simulate the execution of the ETC algo-
rithm using the illustration of Figure 1. In particular,
Figure 1 (left) displays n = 10 sensors arranged in an
ad-hoc topology Tinput with a depth d = 2. In order
to transform Tinput into a near-balanced topology each
node has to obtain approximately β = 3.16 children
(i.e., 2

√
10). To simplify our discussion, but w.l.o.g., let

us assume that the only sensors with multiple entries
in their alternate parent list (APL) are s8 and s10. In
particular, assume that we have the following values:
APL(s8)={s3} and APL(s10)={s3}.

The ETC algorithm is initiated at the sink node s0.
Since s0 has less than β = 3.16 children it transmits β

and newParent=NULL to its only child s1. Similarly, s1

transmits β and newParent=NULL to its children s2, s3

and s4. Let us now consider s2 which receives the above
parameters in line 2 of Algorithm 4. Since newParent

=NULL, s2 does not need to change its parent (lines 3-8).



Algorithm 1 : ETC balancing algorithm

Input: A node si and its children (i.e., children(si)); The
alternate parent list for each child of si (i.e., APL(sj),
where sj ∈ children(si)); The Optimal Branching Fac-
tor β; The new parent si should select (denoted as
newparent(si)).
Output: A Near-Balanced Query Routing Tree TCETC .
Execute these steps beginning at s0 (top-down):
1: procedure Balance Tree(si; children(si);

∀sj∈children(si)APL(sj); )
2: (β, newParent)=receive(); ⊲ Get info from parent.
3: ⊲ Step 1: Connect to new parent if needed
4: while (newParent != NULL) do
5: if (!connect(newParent)) then
6: newParent = getNewParent(parent(si)) ).
7: end if
8: end while
9: ⊲ Step 2: Adjust the parent of the children nodes.

10: if (|children(si)| <= β) then ⊲ Skip si.
11: for j = 1 to |children(si)| do
12: send(β, NULL, sj); ⊲ Send β to child.
13: end for
14: else⊲ Ask |children(si)| − β nodes to change their

parent.
15: while (|children(si)| > β) do
16: sj = getNext(children(si));
17: if (|APL(sj)| > 1) then
18: newParent=AlternParent(APL(sj), si);
19: send(β, newParent, sj); ⊲ Send to sj .
20: children(si) = children(si) - sj ⊲

21: else
22: send(β, NULL, sj);
23: end if
24: end while
25: end if
26: end procedure

It has to however instruct some of its children to change
their parents as |children(s2)|>β. Thus, it processes
its children nodes in sequential order, starting at s5

and ending at s10, instructing some of them to change
their parent. In particular, s5−8 are instructed to re-
tain their initial parent while s8 and s10 are instructed
to change their parent to s3 (i.e., they receive the
messages send(3.16, s3, s8) and send(3.16, s3, s10) re-
spectively. In our example s3 can accommodate s8’s
and s10’s request as |children (s3)|=0. Under differ-
ent conditions however, satisfying such requests might
not be possible. Thus, each node might request from
its parent another alternative parent (i.e., lines 5-7).
The updated near-balanced tree TETC is presented in
Figure 1 (right).

3.3 Experimental Methodology

Datasets: We utilize a three realistic traces in our
experiments:

i) Intel54: Sensor readings that are collected from
54 sensors deployed at the premises of the Intel Re-
search in Berkeley [2] between February 28th and April
5th, 2004. The sensors utilized in the deployment
were equipped with weather boards and collected time-
stamped topology information along with humidity,
temperature, light and voltage values once every 30
seconds (i.e., the epoch). The dataset includes 2.3 mil-
lion readings collected from these sensors.

ii) GDI140: This is a medium-scale dataset from
the habitat monitoring project deployed in 2002 on
the Great Duck Island which is 15km off the coast of
Maine [8], USA.

iii) Intel540: This is a set of 540 sensors which is
randomly derived from the of Intel54 dataset. In par-
ticular, we randomly replicate nodes from the Intel54
dataset until we get the defined sample.

Sensing Device: We use the energy model of Cross-
bow’s research TelosB [1] sensor device to validate our
ideas. TelosB is an ultra-low power wireless sensor
equipped with a 8 MHz MSP430 core, 1MB of ex-
ternal flash storage, and a 250Kbps RF Transceiver
that consumes 23mA in receive mode (Rx), 19.5mA
in transmit mode (Tx), 7.8mA in active mode (MCU
active) with the radio off and 5.1µA in sleep mode.
Our performance measure is Energy, in Joules, that
is required at each discrete time instance on to re-
solve the query. The energy formula is as following:
Energy(Joules) = V olts × Amperes × Seconds.

4 Experimental Evaluation Results

To assess the efficiency of the algorithms presented
in this paper we have conducted two series of experi-
ments. In the first series we have conducted a micro-
benchmark on the CC2420 radio transceiver in order to
quantify the transmission inefficiencies in a real setting.
In the second series we have studied the balancing error
and the energy consumption of the ETC algorithm.

4.1 Micro-benchmarks

In the first experimental series we have conduct a
micro-benchmark on the CC2420 radio chip (using the
TelosB [1] energy model in TOSSIM) to justify why
data transmission inefficiencies have to be optimized
in current data acquisition systems. In particular, we
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Figure 2. Micro-benchmarks using the
CC2420 communication module.

justify why a sensor network should minimize the num-
ber of hub nodes (i.e., nodes with several children) as
these increase collisions during data transmission and
thus also increase energy consumption.

For this purpose we construct ten star topologies
with 10 to 100 nodes respectively (i.e., {Neti : 1 ≤ i ≤
10, |Neti| = 10∗i}), and evaluate the loss rate when all
nodes attempt to transmit data packets to a given sink
node. In particular, each node attempts to transmit
a 16-byte packet to a given sink node for 60 seconds
(that accounts to approximately 250 messages in our
setting). Since this experiment requires a large number
of sensors we utilized the TOSSIM environment along
with its LossyBuilder module that created “lossy” ra-
dio models for each topology.

For each topology Neti we measure: i) the Total
Packets Sent from all sensors to s0 (denoted as PT

i )
and ii) the Total Packets Received from s0 (denoted
as P 0

i ). We next evaluate each topology’s loss rate by

using the formula: LossRate(Neti) = 1 − (
P 0

i

P T
i

)

Figure 2 illustrates the loss rate for the ten presented
topologies. We can observe an almost linear increase
in the loss rate with a 77% packet loss when 100 nodes
transmit concurrently to a single parent. Consequently,
many data packets did not reach their designated desti-
nation in the first attempt and had to be re-transmitted
(the energy cost will be documented in the subsequent
experiments). While somebody might argue that one
hundred nodes will not transmit concurrently in a given
geographic region, our results indicate that the high
loss rate applies even to smaller numbers. In partic-
ular, even when a node has 10 children then the loss
rate is as high as 48%. The ETC algorithm presented in
this paper distributes the children of overloaded nodes
to neighboring nodes and different wake-up times de-
creasing in that way data transmission collisions.

4.2 Evaluation of the ETC algorithm

In the second experimental series we assess the effi-
ciency of the ETC algorithm. We start out by assessing
the construction quality of the ETC algorithm and then
proceed with an energy evaluation of our algorithm.

4.2.1 Measuring the Balancing Error

Our first objective is to measure the quality of the tree,
with regards to the balancing factor, that is generated
by the ETC algorithm. Thus, we measure the balanc-
ing error of the generated trees. The Balancing Error
of a query routing tree is defined as follows:

Balancing Error(TCETC) :=

n∑

i=0

|β −
n∑

j=0

PMij |

where β = d
√

n and PMij = 1 denotes that node i is a
parent of node j and PMij = 0 the opposite. Notice
that this table is fragmented vertically but can be ob-
tained easily with a message complexity of O(n), where
each message has a size of O(n2) in the worst case.

For this experiment we generated one query routing
tree per dataset using the three described algorithms:
i) The First-Heard-From approach, which constructs
an ad-hoc spanning tree Tinput without any specific
properties; ii) The CETC algorithm, which transforms
Tinput into the best possible near-balanced tree TCETC

in a centralized manner using global knowledge; and
iii) The ETC algorithm, which transforms Tinput into
a near-balanced tree TETC in a distributed manner.

Figure 3 (left), presents the results of our evalua-
tion which demonstrates the following properties: i) All
three approaches feature some balancing error, which
indicates that in all cases it is not feasible to construct
a fully balanced tree Tbalanced. This is attributed to
the inherent structure of the sensor network where cer-
tain nodes are not within communication radius from
other nodes. ii) The second observation is that the
FHF approach has the worst Balancing Error, which is
an indicator that FHF can rarely produce any proper
balanced topology and that increases data transmis-
sion collisions and energy consumption (shown in next
experiment). In particular, the balancing error of the
FHF approach is on average 91% larger than the re-
spective error for the CETC algorithm; iii) The third
and most important observation is that the distributed
ETC algorithm is only 11% less accurate than the cen-
tralized CETC algorithm. Therefore, even though the
ETC algorithm does not utilize any global knowledge,
it is still able to create a near-balanced topology in a
distributed manner.
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4.2.2 Energy Consumption of ETC

In order to translate the effects of the Balancing Error
into an energy cost, we conduct another experiment us-
ing the Intel540 dataset. Specifically, we generate two
query routing trees: a) Tinput, constructed using the
First-Heard-From approach, and b) TETC constructed
using the ETC algorithm. We configure our testbed to
measure the energy required for re-transmissions due to
collisions in order to accurately capture the additional
cost of having an unbalanced topology.

Figure 3 (right) displays the energy consumption of
the two structures. We observe that the energy re-
quired for re-transmissions using Tinput is 3,314±50mJ.
On the other hand, TETC requires only 566±22mJ
which translates to additional energy savings of 83%.
The reason why TETC presents such great additional
savings is due to the re-structuring of the query routing
tree into a near balanced query routing tree which en-
sures that data transmissions collisions are decreased
to a minimum.

5 Conclusions

In this paper we have present ETC, a distributed
algorithm for balancing sensor network query routing
trees to minimize collisions and prolong the longevity
of a sensor network. Our experimentation with real
micro-benchmarks and trace-driven experimentation
shows that ETC offers significant power reductions un-
der a variety of conditions. In the future we plan to
study how these ideas can be incorporated into exist-
ing data acquisition frameworks.
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