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Abstract. We present a multisensor matchup system (MMS)
that allows systematic detection of satellite-based sensor-to-
sensor matchups and the extraction of local subsets of satel-
lite data around matchup locations. The software system im-
plements a generic matchup-detection approach and is cur-
rently being used for validation and sensor harmonization
purposes. An overview of the flexible and highly config-
urable software architecture and the target processing envi-
ronments is given. We discuss improvements implemented
with respect to heritage systems, and present some perfor-
mance comparisons. A detailed description of the intersec-
tion algorithm is given, which allows a fast matchup detec-
tion in geometry and time.

1 Introduction

There is increasing exploitation of Earth observation (i.e.,
satellite remote sensing) data for a range of scientific and
societal applications, in relation to environmental monitor-
ing including climate science (e.g., Hollmann et al., 2013).
Often, long (multi-decadal) data records are required for
such applications, so that observed changes can be put in
the context of a time series of earlier variability, for exam-
ple to determine how common a particular observation is.
Since satellite missions typically last 5 years, such long data
records need to be constructed from a series of data records
from similar but not identical sensors. The differences among
members of such sensor series consist of factors such as de-
tailed spectral responses (i.e., slightly different sensitivities
to Earth radiation at different wavelengths), differences in

calibration procedures and performance in flight, the effects
over time through each mission of degradation of the sensors,
and so on. Such differences can cause significant discontinu-
ity in the derived records of environmental variables among
different sensors, and steps need to be taken to minimize such
artifacts, essentially to maximize the signal for real natural
variability compared to sensor-difference effects. A key tool
for harmonizing satellite-derived data records across multi-
ple sensors is to compare, to as close an approximation as
possible, the radiances observed by sensors when viewing
the same environmental scene simultaneously. Such paired
observations are referred to as matchups and are critical to
exploit for multisensor data records. This paper addresses
progress on the important practical step of creating datasets
of matchups to use for harmonizing or bias-correcting across
sensors to create consistent, multi-decadal data records.

The detection of satellite data matchups is a numerically
intensive process that incorporates geographic searches in
large satellite datasets, which may be on the order of 100 TB
in size. A highly performing search and data extraction sys-
tem has to be operated in a parallel processing environment
to achieve manageable processing times for this task. De-
spite the importance of being able to analyze long time se-
ries of matchup data, surprisingly few general concepts are
published to detect and extract the data. Some publications
use a relatively small number of satellite intersections that
have been detected manually (e.g., Illingworth et al., 2009),
whereas other teams develop custom solutions for restricted
pairs of sensors (e.g., Bali et al., 2015). A generic concept
for matchup generation has been implemented for the project
FELYX (Taberner et al., 2013). Our review of this option
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concluded that the specifications did not match the criteria
for flexible mass production and analysis of whole mission
datasets.

For the European Space Agency Climate Change Initia-
tive project for Sea Surface Temperature (SST CCI), a first
system to identify and generate sensor–sensor matchups has
been developed in an early phase of the project (Boettcher et
al., 2012). This system, initially targeted to operate on a sin-
gle dataset, has been used and extended during the project
lifetime (the past 6 years). Increasing input dataset sizes,
stricter requirements on matchup conditions, and the neces-
sity to operate on small matchup time differences led to the
decision to create a completely new software that implements
all the lessons learned during operations of the earlier soft-
ware. The current system is operated on the Climate and
Environmental Monitoring from Space (CEMS) facility at
the Centre for Environmental Data Analysis (CEDA)1 . The
same architecture is also being further developed within the
framework of the European Union project “Fidelity and un-
certainty in climate data records from Earth Observations”
(FIDUCEO).

The initial system exhibited some performance bottle-
necks, predominantly caused by the way a database was used,
too many read accesses to satellite data products, and a fixed
processing time interval. Especially the use of the database
as a storage location for satellite acquisition metadata and
matchup candidate locations (i.e., read and write access to
the same database) prevented a significant parallelization to
improve the overall performance. Design goals for the new
system architecture have been defined as follows.

– Use the database only for storage of satellite metadata,
distribute numerically expensive geometric calculations
to parallel nodes, and keep the matchup candidate data
locally.

– Implement a system that allows reading of the satel-
lite data products late in the matchup detection process.
The software shall detect matchup candidate pairs reli-
ably before actually accessing the file system – reducing
several hundred possible candidate products to a small
number of consolidated candidates.

– Design the system as an extensible frame with a large
number of plug-in points.

– Facilitate integration of new sensors.

– Implement a scalable system that can run on a notebook
as well as allow a high parallelization on a dedicated
processing environment, avoiding single points of ac-
cess.

1http://www.ceda.ac.uk/services/analysis-environments/ (last
access: 13 June 2018).

Following these design goals we have implemented a high-
performance matchup system that has already generated vari-
ous long-term sensor matchup datasets, ranging from 1979 to
2016, covering combinations of seven visible and microwave
sensors from 23 different satellite platforms in processing
levels L1 and L2, both as full orbit acquisitions and granules.

The MMS consists of three major components:

– a database server for the storage of satellite data meta-
data records,

– an “IngestionTool” to extract the metadata from the
satellite acquisitions and store them in the database, and

– a “MatchupTool” that performs the matchup processing
and writing of the resulting data.

The interaction of these components implements the func-
tionality described in the following sections.

2 Definition

In the context of the SST CCI and FIDUCEO projects, we
define a satellite data matchup as a coinciding measurement
of the same location on Earth at almost the same time us-
ing different spaceborne instruments. The location criterion
is defined as the geodesic distance in kilometers among pixel
center locations; the time constraint is defined as pixel acqui-
sition time difference.

In most use cases there are additional criteria on top of this
raw matchup definition, which include for example cloud-
free conditions, constraints on the viewing angles, water
pixel constraint, and many more; we summarize these con-
ditions as screening criteria (see Sect. 6).

The result of a matchup-processing run is stored as a mul-
tisensor matchup dataset (MMD, Sect. 7), which includes all
data required to analyze the matchups without the need to
access the original satellite input datasets. These MMD files
include satellite data extracts covering a symmetrical win-
dow of n by m pixels around the matchup point, copying all
variables of the input data as a geometrical subset of the tar-
get file.

3 Matchup processing

Based on the intention to assemble a generic matchup gen-
eration system, we have identified several common steps.
During the analysis, we also identified the steps/concepts
that require sensor- or domain-specific handling; all of these
have been encapsulated as abstractions that hide sensor- or
domain-specific implementations. Our design incorporates a
database containing satellite acquisition metadata, which has
to be filled as a first step:

1. ingest satellite metadata into database.

Geosci. Model Dev., 11, 2419–2427, 2018 www.geosci-model-dev.net/11/2419/2018/
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Any matchup generation process starts with a database
query:

2. request sensor metadata for time interval and sensor
combination to process,

3. perform matchup candidates preselection (Sect. 4),

4. perform matchup candidates fine selection (Sect. 5),

5. run condition and screening processes (Sect. 6),

6. assemble subset data and write MMD (Sect. 7).

These steps are implemented using two distinct programs, an
IngestionTool (performing step 1) and a MatchupTool (per-
forming steps 2 to 6).

4 Metadata and candidates preselection

For each satellite data product accessible to the MMS system
a corresponding metadata record is stored in the database.
The metadata record contains information about the data file
location, the sensor, the acquisition time, the bounding geom-
etry of the acquisition, the orbit nadir trajectory, an ascending
or descending node flag, and the data processor version. This
data record has been designed to optimize database storage
volume (and hence access performance) while keeping suffi-
cient information to operate the matchup system.

4.1 Metadata extraction

The satellite metadata stored in the database has been con-
structed in a way that allows the detection of overlapping re-
gions possibly containing matchups without the need to open
the associated satellite data products. The detection is a two-
step process that consists of the detection of a geometric in-
tersection followed by a calculation of the acquisition times
of both sensors for the common area. If the acquisition times
match, taking into account the maximal pixel time difference
allowed, a set of possible matchup pairs has been detected.

The geometry metadata for each satellite product is con-
structed using the approach sketched in Fig. 1. Two entities
are generated by regularly sampling longitude–latitude pairs
from the geo-location data rasters: a bounding polygon and a
time axis line string following the nadir track of the satellite.
The bounding polygon is constructed by stepping around the
borders of the rasters, in a counter-clockwise direction; the
time axis is constructed by sampling in flight direction at the
center of the swath acquisition – ignoring the 1 pixel off-
set occurring in products with an even number of pixels per
line. In case of self overlaps (which happen often for the Ad-
vanced Very-High-Resolution Radiometer (AVHRR) data)
the geometries are split into two segments to ensure valid
geometry objects.

Figure 1. Construction of the satellite product boundary polygon
(black) and time axis line string (green). The rasters are the longi-
tude and latitude data arrays; acquisition time increases from the top
downwards.

4.2 Intersection detection

A geometric intersection between two satellite acquisitions
can simply be calculated by performing an intersection of
the associated satellite data bounding geometries. The calcu-
lation of the timing intersection is not as simple as this; the
acquisition times of the data are stored with the satellite data,
in most cases either per pixel or per scan line. This means
that the timing information is stored in the swath coordinate
system (x/y acquisition raster), whereas to be useful for ge-
ometric intersection calculation, the timing data need to be in
a geographic (longitude–latitude) coordinate system. Mathe-
matical transformations

f (x,y)= (φ,λ) and g (φ,λ)= (xy) (1)

between the coordinate systems can be calculated using poly-
nomial approximations, but these operations require access
to the full longitude and latitude data raster. To avoid these
time-consuming reading and approximation operations, the
MMS implements a different approach based on two assump-
tions with respect to polar orbiting satellite data.

www.geosci-model-dev.net/11/2419/2018/ Geosci. Model Dev., 11, 2419–2427, 2018
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1. The satellite moves locally with constant velocity on a
continuing orbit path.

2. Acquisitions per time instant are located on an axis nor-
mal to the nadir point path, which is true for push-
broom-type instruments and almost true for scanning
instrument types for which the instrument field of view
tracks along the nadir plane.

Consequently, a time axis geometry is constructed using the
approach described above, i.e., we create a line-string geom-
etry at the nadir pixel by sampling the location data at regular
intervals, e.g., every 20 scan lines (see Fig. 1). When associ-
ating the sensing start and stop times of the acquisition with
the start and end points of the line string, we can approximate
the acquisition time of every geo-location on the time axis by
taking into account the line length along the axis:

tpoint =
(
tstop− tstart

)1point-start

1stop-start
, (2)

where 1 denotes the length along the line string, which
can be calculated using well-known algorithms (e.g., Good-
win, 1910). Based on assumption (2) we can also associate
time information with any point within the swath geometry
by applying a normal projection along a great circle of the
point onto the time axis. This approach allows the calcula-
tion of the overflight times of any geometric intersections
between two polar orbiting sensors. For the implementation
of the geodesic calculations, we rely on the Google S2 li-
brary that allows fast geometric calculations on the surface
of a three-dimensional spheroid; please also refer to Pandey
et al. (2016).

4.3 Time estimation errors

The estimation errors introduced by this approach vary be-
tween some milliseconds and up to 17 s for certain AVHRR
data. The wide range of errors varies among sensor types
and is generally becoming larger for instruments generating
wider swath data. However, in the context of natural variabil-
ity in most environmental parameters at the spatial scales of
observation from space, O(10 s) is a relative small error.

The error distribution per scan line varies from al-
most constant (AATSR) to a quasi-cubic distribution func-
tion (AVHRR). The relatively high estimation precision for
AATSR is due to the small swath of 512 km, whereas for the
AVHRR case with a swath width of 2892 km the effects of in-
terpolation errors become visible. The larger error line in the
AATSR case (blue line in Fig. 3) is generated by the ellipsoid
effects; see below.

The estimation errors mainly originate from two effects,
both of which can be identified when plotting the estimation
error versus latitude (see Fig. 4). In this graph, the blue line
displays the minimal estimation error whereas the red line
shows the maximal error. It can be seen that a good sens-
ing time projection leads to a difference in the range of mil-

Figure 2. Intersection between Advanced Along-Track Scanning
Radiometer (AATSR) and Special Sensor Microwave Water Vapor
Profiler (SSM/T-2). AATSR on a descending node; SSM/T-2 on an
ascending node. The projection of the intersection geometry ex-
treme locations onto the time axes of both sensors (on the center
of the swath) allows the detection of the overflight time. If the time
intervals t1-AATSR–t2-AATSR and t1-SSMT2–t2-SSMT2 are within the
configured maximal time delta, possible matchups can be found in-
side the intersection geometry.

liseconds. The effects of projection are predominantly visible
when inspecting the maximum error value plot in red. The
sawtooth-like structure is created by the interpolation error
that occurs due to the spatial sampling of the time axis. The
minima of the sawtooth are located on sampling nodes of the
time axis, where no interpolation is required; the maxima are
located in the middle between two points using a maximal
interpolation length. This error can be minimized by using a
smaller interpolation interval, although it has to be balanced
with the data storage volumes.

On top of the sawtooth is a constant maximal error that
slowly increases from the poles to the Equator. This effect
is caused by the underlying assumption that the Earth is a
sphere. The deviation of the ellipsoid from a perfect sphere
rises to a maximum at the Equator when embedding the
sphere into the true Earth form (almost an ellipsoid) so that
both geometric forms touch at the poles. The sharp dip at the
Equator cannot be explained at the moment and needs further
investigation.

In the context of matchup candidate preselection we can
easily compensate for these timing errors by adding a sensor-
dependent grace interval (i.e., time tolerance) on top of the
configured matchup maximum time difference, set by scien-
tific requirements on the matchups according to the purpose
of the MMD. Thus, we ensure that we do not reject possible
matchup candidate pairs due to interpolation errors.

Geosci. Model Dev., 11, 2419–2427, 2018 www.geosci-model-dev.net/11/2419/2018/
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Figure 3. Time error per scan line for AATSR (a) and AVHRR (b). Plotted is the difference between the real and the estimated acquisition
time per pixel for the beginning (red), middle (blue and green), and end (magenta) of a full orbit acquisition.

Figure 4. Plot of absolute value of acquisition time estimation error
versus latitude for SSM/T-2, minimum value (blue), and maximum
value (red).

4.4 Performance comparison

The following table demonstrates the performance gains ob-
tained by the improved preselection algorithm. The time axis
approach is described in Sect. 4.1; the full access algorithm
implements the standard approach to open each file and read
geo-location and timing information to determine the over-
flight times for the matchup preselection.

As demonstrated by the examples in Table 1, the perfor-
mance gained varies largely between approx. 20 percent up
to approximately 350 percent, depending on the input data.
Generally, we can conclude here that the performance im-
provement is small when processing small input data files,
e.g., AMSU-B or HIRS, in which the data volumes are
in the range of 5 MB and the acquisition raster is small
(e.g., 946× 90 pixels for HIRS). In these cases, the time

for loading the geo-location and time datasets is compara-
bly small. The situation changes significantly when process-
ing satellite data with larger volumes, as for example AATSR
(ca. 40 000× 512 pixels, ca. 800 MB), in which performance
improvements up to a factor of 2 to 3 can be observed.

Another set of parameters that influences the performance
is the duration of the satellite acquisition and the maximal
pixel time difference allowed. When the time difference is
small compared to the acquisition duration of a product, for
example 5 min pixel time difference using AVHRR data with
an orbit acquisition time of approximately 1 : 44 h, there are
many geometric intersections within the acquisition time in-
terval of both orbit files. Most of these intersecting geometric
areas will be discarded because the common overflight times
differ by more than the allowed 5 min time interval. This de-
cision can be made without access to the datasets using the
time axis approach, thus avoiding opening a large number of
product pairs that are discarded later.

5 Matchup detection

The fine matchup detection process is operating on the re-
duced set of preselected matchup candidate pairs. This stage
of the processing aims to detect all pairs of pixels that com-
ply with the raw matchup conditions as defined in Sect. 2,
i.e., time and location condition. The numerically expensive
calculations are executed on the consolidated list of candi-
dates, iterating over all pairs of files that have been identified
in the preselection stage.

A first step opens both satellite data files, reads the geo-
location information, and constructs a geo-coding approxi-
mation that implements the mapping between the (φ, λ) and
(x/y) coordinate systems as described by Eq. (1). In addi-
tion, a TimeCoding object, which maps the sensor specific
internal time information to the MMS system reference time

www.geosci-model-dev.net/11/2419/2018/ Geosci. Model Dev., 11, 2419–2427, 2018
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Table 1. Performance comparison of the preselection algorithms for some project use cases∗. Acronyms in this table are ATSR – Along-
Track Scanning Radiometer; E2 – ERS2 satellite platform; AVHRR – Advanced Very-High-Resolution Radiometer; Nxx – NOAA xx satellite
platform; HIRS – High-resolution Infrared Radiation Sounder; MA – MetOp-A satellite platform; AMSUB – Advanced Microwave Sounding
Unit B; SSM/T-2 – Special Sensor Microwave/Temperature-2; F15 – DMSP – F15 satellite platform; AMSRE – Advanced Microwave
Scanning Radiometer – Earth Observing System; AQ – Aqua satellite platform; AATSR – Advanced Along-Track Scanning Radiometer; EN
– Envisat satellite platform.

ATSR-E2/ AVHRR-N11/ HIRS-MA/ AMSUB-N15/ AMSRE-AQ/
Sensors AVHRR-N14 AVHRR-N10 HIRS-N17 SSM/T-2-F15 AATSR-EN

14 Aug 2000– 1 May 1989– 6 Apr 2009– 16 Oct 2000– 16 Feb 2005–
Time interval 18 Aug 2000 7 May 1989 12 Apr 2009 22 Oct 2000 17 Feb 2005

Time axis method
(Sect. 4.1) 1205 s 822 s 102 s 104 s 35 s

Full access method
(standard approach) 2507 s 1415 s 124 s 119 s 125 s

∗ Tests have been performed on a standard desktop PC: Intel Core i7-5820K, 16 GB RAM, 256 GB SSD for the operating system, 3 TB
SATA HD for satellite data, Linux Kubuntu 14.04 64 bit, MongoDB server v3.2.1, Oracle JDK 1.8_45. All tests have been executed three
times; the times in the table are the averaged execution times. MMD writing times have been excluded from these measurements.

(UTC seconds since 1970), is constructed for each of the data
files.

For the primary or reference sensor, all pixels contained
in the intersection geometry are collected into a list and
the closest matching (in a geodesic sense) pixel location in
the associated sensor data is calculated2. This operation is
schematically sketched in Fig. 5.

Based on these pairs of locations, the acquisition times for
both sensors are calculated for each matchup. This list of
pixel pairs is immediately scanned for acquisition time dif-
ference and spherical distance of pixel centers; all pairs not
conforming to the processing parameters (i.e., maximal time
difference allowed and maximal pixel center distance) are re-
jected at this stage. For the pair of satellite acquisitions being
processed, the remaining list contains the following values:

– matchup geo-location (long–lat) for both sensors,

– pixel raster position (x/y) for both sensors,

– acquisition time in UTC seconds since epoch for both
sensors.

This list serves as the basis for further processing.

6 Matchup conditions and screenings

The result sets generated up to this processing step con-
tain verified matchup locations conforming to the basic

2The MMS detects multiple associated pixels to a reference
pixel, any secondary sensor pixel within the constraints of time and
geodesic distance is kept in the first place. In addition to the se-
lection criterion “closest in a geodesic sense” as stated in the text,
other criteria can be applied during the pixel condition and screen-
ing phases (see Sect. 6). It is also possible to keep all associations,
depending on the scientific context.

Figure 5. Fine matchup detection, all pixels contained in the inter-
section geometry of the reference sensor (red) are associated with
the closest pixel in the associated sensor data contained in the in-
tersection geometry (green). Both intersection geometries cover the
same area in the geographic coordinate system.

search criteria of acquisition time constraint and relative lo-
cal neighborhood based on the sensor geo-coding calcula-
tions. These can easily contain many tens of thousands of re-
sults per intersecting acquisition geometries. In most cases,
this list needs to be narrowed down to a smaller subset that
conforms to a set of constraints given by the research con-
text. These constraints can be, for example, constraints in the
viewing geometries, atmospheric conditions, ground condi-
tions, spatial subsets, instrument conditions, and many more.

The MMS implements a two-step processing stage to per-
form this narrowing-down procedure, using a very fast first
stage, the so-called conditions, and a slower second stage, the
screenings. During the second stage, the numerically more

Geosci. Model Dev., 11, 2419–2427, 2018 www.geosci-model-dev.net/11/2419/2018/
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Figure 6. Screening engine with plug-ins and configuration snippet.

intensive screenings operate only on a significantly reduced
number of possible matchups that already conform to the
conditions, increasing the performance of the overall pro-
cessing.

As we expected these processes to vary a lot between
the projects and the scientific requirements, we have imple-
mented both processing stages using a general engine–plug-
in approach. Each engine operates a chain of plug-ins that are
loaded dynamically based on the configuration file, using the
Java SPI mechanism (Seacord et al., 2002).

Each plug-in implements a narrow interface and is identi-
fied by its unique name. The configuration of the engine is a
structured XML document, containing subsections for each
plug-in; the order of the subsections defines the order of pro-
cessing. Plug-in configuration tags allow the identification of
the plug-ins, all sub-configurations are passed to the plug-ins
to parse so that the engine is completely decoupled from the
plug-in module configurations (see Fig. 6).

6.1 Conditions

Condition plug-ins operate on the core matchup information
solely, i.e., longitude–latitude, product raster x/y positions,
and acquisition times. These entities are kept in memory dur-
ing processing; thus any condition plug-in executes very fast
and is not slowed down by disk access times, for example.
Although an extremely reduced parameter set is available,
a number of useful condition processes have been imple-
mented, e.g.,

– BorderDistance (reject matchups in which the matchup
raster x/y position is too close to a swath border),

– OverlapRemove (reject pixels in which subset windows
overlap).

6.2 Screenings

In contrast, screening plug-ins are also given access to the
satellite products associated with the matchups so that any
variable from both input files can be used for a screening
algorithm. At this stage, it might also be possible to access
auxiliary datasets, although this has not been requested yet. A
number of sensor-specific and generic algorithms are avail-
able; the following list just covers some examples:

– Angular. Performs screening on viewing geometry con-
straints (e.g., maximal viewing zenith angle (VZA),
maximal VZA difference).

– BuehlerCloud. Performs cloud screening for microwave
sensors based on Buehler et al. (2007).

– PixelValue. Performs screening that allows
the evaluation of mathematical expressions on
matchup pixels (e.g., reflec_nadir_0870> 7.5 & re-
flec_fward_0670> 4.3). This plug-in is very generic; it
also allows one to define complex flag combinations to
be evaluated.

7 Matchup files

The results of the matchup detection and screening processes
are finally stored in multisensor matchup datasets (MMDs)
using either NetCDF3 or NetCDF4 format. The design of
these files shall enable scientists to work with the matchup
data without the need to access the original input data files.
To allow for this, we copy all input data variables that are
contained in a symmetrical n bym pixel window around each
matchup to the MMD (the sizes are configurable per sensor).
To reflect the calibration purpose of the software, we always
copy the data in the original input format, without any mod-
ifications or scaling applied. All variable attributes are also
copied to the MMD.

For each sensor input variable, the final MMD contains a
three-dimensional dataset in which the x and y dimensions
are the extensions of the extraction window and the z dimen-
sion is the matchup index, i.e., a linear index that counts from
0 to the number of matchups (minus one) that have been
detected for the time interval processed. Thus, each z layer
in an MMD file contains all data associated with a single
sensor–sensor matchup. For sensors that originally contain
three-dimensional input data (e.g., HIRS radiance variable),
we split the data into separate two-dimensional channel vari-
ables. This approach ensures that every (x/y/z)-tuple for
each variable of each sensor belongs to the same location
and time.

In addition to the input data we also store the raw matchup
information, namely original raster x and y positions, the
unified acquisition time in UTC seconds since epoch and
for each z layer the names of the input data files. This en-
sures that the MMD content is completely traceable and ev-
ery matchup pair refers to its data origin. One MMD file for
each processing interval (e.g., 1 week) is generated on a par-
allel processing environment.

8 Further work

In addition to the sensors currently supported (AMSR-E,
AMSU-B, (A)ATSR, AVHRR, HIRS, MHS, SSM/T2), there

www.geosci-model-dev.net/11/2419/2018/ Geosci. Model Dev., 11, 2419–2427, 2018
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are already extensions scheduled to support AIRS, AMSR-
2, IASI, MVIRI, and SEVIRI. For the geostationary sensors
(MVIRI and SEVIRI) a different preselection approach will
be taken. The acquisition time per scene and slot is relatively
short and the area covered can be considered constant. In this
case, it is expected that the time information alone yields an
appropriate preselection criterion.

At the time of writing this text, a first development version
of the MMS is also capable of performing satellite and in
situ data matchup processing. This first engineering version
can operate on SST data collected for the SST CCI project;
further extensions scheduled will cover AERONET data and
GRUAN radiosonde measurements.

9 Summary and conclusion

We have demonstrated and implemented a general matchup
processing system using a novel and fast intersection detec-
tion algorithm for polar-orbiting satellite-based sensor over-
laps. The time axis approach for acquisition time detection
and the use of a novel library for spherical calculations allow
performance gains of up to a factor of 3.5 compared to a con-
servative implementation. We introduced a two-step screen-
ing system that is highly configurable to adapt the matchup
process to several scientific requirements. The software is de-
signed to be operated on a parallel cluster environment; tests
with up to 200 nodes have been executed successfully.

This paper concentrated on the algorithmic facets of the
software system, disregarding other structural improvements
we have implemented. For further information on architec-
ture and usage, we like to refer to documents on the project
websites3.

The software has been used for operational processing on
the CEMS parallel environment in both projects. A Python-
based processing scheduler implements the glue code to the
load sharing facility interfaces (Ault et al., 2004). At the time
of writing, the operational database is a MongoDB server that
contains approximately 1.7 million metadata records refer-
encing approximately 270 TB of satellite data products. The
overall performance observed when operating on whole mis-
sion datasets matches our initial expectations; as an exam-
ple, processing AVHRR NOAA 18 vs. NOAA 17 (covering
May 2005 to December 2010) is executed in 2:30 h, using 72
parallel nodes on the CEMS cluster.

Code availability. All components of the system described above
are available as GNU General Public License (GPL) open-source
software modules. The software is published using a GitHub code
repository4 including a Maven-based project setup. A binary dis-

3FIDUCEO: http://www.fiduceo.eu/ (last access: 13 June 2018);
SST CCI: http://www.esa-sst-cci.org/ (last access: 13 June 2018).

4https://github.com/FIDUCEO/MMS (last access: 13 June
2018); the version 1.2.0 release referred to in this text is available

tribution will be made available using the FIDUCEO project web
page. The system is coded in Java and Python; it has been tested
on Windows 10 and several Linux 64 bit operating systems using
Java 1.8 and Python 2.7/3.2. We used a test-driven development ap-
proach following Kent Beck (Beck, 2003), resulting in an extremely
stable system with an overall test coverage of > 95 %. Database
servers mentioned in the paper are not part of the MMS software;
these can be obtained from the database vendors.

The Supplement related to this article is available
online at https://doi.org/10.5194/gmd-11-2419-2018-
supplement.
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The MMS software system relies on a number of publicly avail-
able libraries:

– Apache Commons: https://commons.apache.org/(last access:
13 June 2018)

– FasterXML: https://github.com/FasterXML(last access: 13
June 2018)

– Google S2: https://code.google.com/archive/p/
s2-geometry-library/(last access: 13 June 2018)

– SNAP: http://step.esa.int/main/toolboxes/snap/(last access: 13
June 2018)

– Unidata NetCDF: http://www.unidata.ucar.edu/software/
thredds/current/netcdf-java/(last access: 13 June 2018).
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