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Abstract 

The oral bioaccessibility of soil contaminants is increasingly assessed with 

Physiologically Based Extraction Tests (PBETs) to fine tune human health risk 



assessment of contaminated land. In these tests the contaminant fraction that is desorbed 

into simulated digestive fluids is measured and classified as bioaccessible. However, 

this approach can lead to underestimations if the capacity of the fluids is insufficient to 

provide infinite bath conditions. To circumvent this artefact, we incorporated a silicone 

rod as an absorption sink into the PBET to continuously absorb mobilized contaminants 

and maintain the desorption gradient. Polycyclic aromatic hydrocarbons served as 

model contaminants and the colon extended PBET (CEPBET) as the extraction model.  

The inclusion of the silicone rod sink (1) increased the extraction capacity of the test 

by orders of magnitude, (2) ensured (near) infinite bath conditions and (3) allowed for 

simple back-extraction of PAHs for their quantification by GC-MS. The silicone rod 

provided fast enrichment when applied to the stomach and small intestine compartment, 

but was somewhat slower in the carbohydrate colon compartment. Finally, the sorptive-

CEPBET was applied to wood soot and a kindergarten soil. The present article provides 

the basis for how an absorption sink can be integrated into PBET models. 

   

 

 

 

Introduction 

Human exposure to hydrophobic organic contaminants (HOCs) through unintentional 

soil ingestion has received increasing attention during recent years.1-3 Although the 

daily average soil intake for humans is estimated to be only 50-100 mg/day,4 the high 

levels of HOCs in some soils make this exposure pathway important. Intestinal 



secretions and enzymes can only mobilize a fraction of soil bound HOCs5 while 

pinocytosis of soil particles is considered negligible.6, 7 Therefore, risk assessment of 

the oral exposure route for hydrophobic organic soil contaminants has to take into 

account the HOC fraction that can become desorbed from soil under digestive 

conditions. This desorbable fraction is defined as bioaccessible, and is considered to be 

the maximum available fraction for absorption by the intestinal membranes.8 Intestinal 

absorption will continuously removeHOCs from the digestive fluids and in this way 

maintain a gradient for further desorption.  

Several in-vitro digestion models have been developed for measuring bioaccessibility 

of HOCs in contaminated soils.3, 9-14 Such models offer a cheaper and more practical 

alternative compared to animal experiments. The common practice is to incubate the 

soil with a simulated digestive fluid, then separate the fluid from the digested soil and 

deduce bioaccessibility based on the amount of HOCs mobilized into the fluid.1, 3, 15, 16 

Such methods thus focus at the initial HOC partitioning into the solution, they do not 

take into account subsequent intestinal absorption which “consumes” HOCs and 

thereby maintains the desorption gradient for continuous HOC release from the soil.17  

Omitting this process will lead to an underestimation of the bioaccessibility,18-20 unless 

the capacity of the applied fluid is sufficient to ensure infinite bath conditions.  

The quantification on the mobilized HOC fraction requires phase separation, 

extraction, clean up and instrumental analysis, which for HOCs is laborious and 

possibly also associated with significant potential for error and experimental artefacts. 

The phase separation by filtration or centrifugation can be problematic for HOCs due 

to their hydrophobic nature and their tendency to sorb not only to soil but also to 

dissolved organic matter and labware surfaces. 



In the present study, a “sorptive physiologically based extraction” is introduced by 

showing how a silicone rod can be incorporated as a large capacity absorption sink into 

an existing in vitro digestion model. The first purpose of this silicone rod is to 

continuously absorb the mobilized HOCs from the simulated gut fluid. This ensures 

that freely dissolved HOC concentrations remain low and that the chemical activity 

gradient that drives desorption is maintained during the incubation. The second purpose 

of the silicone rod is to serve as an analytical absorption phase that selectively samples 

the mobilized HOCs. At the completion of the incubation, the HOCs absorbed by the 

silicone rod are solvent extracted and measured by conventional instrumental analysis.  

The application of silicone rods for the absorptive extraction and passive sampling of 

HOCs is well established, fully operational.21, 22 Also the application of a sorbent 

material in an in vitro digestion model as a kind of passive sampler has been reported 

earlier and improved the correlation of in vitro with in vivo data.23 The novelty in the 

current paper is the combination and careful alignment of a bioaccessibility extraction 

method with a modern absorptive sample preparation method. The simulated digestive 

fluids act as the mobilization medium that mimics the solubilization properties of the 

human digestive fluids. The silicone rod is dimensioned to serve as a high capacity 

absorption sink and analytical enrichment phase within the bioaccessibility extraction 

method. The silicone rod therefore yields measurements of accessible rather than total 

concentrations. We have recently reported on the integration of the silicone rod in 

cyclodextrin extractions, where it resulted in markedly higher estimates of microbial 

bioaccessibility.24 The present study introduces this new concept for extractions with 

simulated digestive fluids within the area of human bioaccessibility research. For that 

purpose, polycyclic aromatic hydrocarbons (PAHs) were used as model compounds 

and the colon extended physiologically based extraction test (CEPBET)15 as the 



extraction model. The silicone rod was dimensioned based on silicone to fluid partition 

ratios, while the distribution of PAHs between the colloidal and aqueous phase in 

simulated fluids (speciation) was used to interpret absorption kinetics into the rod. 

Finally, the absorption sink was tested and this new configuration (sorptive CEPBET) 

was applied to soot and a kindergarten soil.  

 

 

Experimental section 

Details of chemicals and materials used for passive dosing experiment, composition 

of recovery and internal standards and solvents used for rod and sample extraction are 

given in the Supporting Information (SI). The CEPBET15comprises three 

compartments: the stomach, the small intestine and the colon. Simulated digestive 

fluids of each compartment were prepared according to Tilson et al.15 and their 

composition is given in the Supporting Information.  The composition of these 

compartments has been validated against human subjects. 

 

 

Contaminated solid matrices  

The method was applied to a wood soot and an urban surface soil sample, both 

containing elevated PAHs concentrations. The soot was selected as a relevant 

environmental matrix, since it is continuously produced from residential heating and it 

is one of the main PAH sources for urban soils.25 Soot is also a worst case material for 

soil bioaccessibility extractions, due to its high KD values for PAHs.26, 27 Soot material 

was sampled in 2009 from 8-10 family houses near Roskilde (Sealand, Denmark). This 

soot originated from wood fired stoves with a steel lined chimney and the microbial 



PAH bioaccessibility of this material has been investigated in a previous study.24 Total 

organic carbon content in soot sample was found to be 24.1%, a  description of method 

analysis is given in supporting information. The surface soil originated from a Danish 

kindergarten yard, it was selected because children are more prone to accidentally 

ingest soil and it had PAH levels above Danish regulatory soil criteria. Atmospheric 

deposition of soot was estimated to be its main PAH source. Before use, soot was sieved 

through a 150 μm sieve and kindergarten soil through 250 μm sieve. Each collected 

fraction was well mixed before sub-sampling. 

 

Exhaustive extraction of PAHs 

PAHs were extracted from samples using a mixture of toluene and methanol (1:6), 

which provides higher extraction efficiency for soot-carbon materials compared to pure 

toluene.28 50 mg of soot (n=3) and 5 g of kindergarten soil (n=3), previously spiked 

with recovery standards, were Soxhlet extracted for 24 hours. Then solvent was 

evaporated to dryness and then switched to n-pentane, and then it was eluted through 

activated silica and activated alumina-B with n-pentane/dichloromethane. The obtained 

extract was evaporated under nitrogen, re-dissolved in 1 mL toluene and mixed with 

internal standards before GC-MS analysis.  

 

Absorption sink 

The silicone poly(dimethylsiloxane) (PDMS) was chosen as the absorption phase 

because of its well known partitioning properties,29, 30 low internal diffusive resistance31 

and since its sorptive properties remain unaffected even in highly complex matrixes,32 

which is a crucial advantage due to the low pH and complex nature of simulated gut 

fluids. Several silicone formats were considered and the silicone rod was selected since 



it allows the practical and efficient handling of a large silicone volume during 

bioaccessibility extraction and the subsequent back-extraction with a solvent. A 

silicone rod from Altec (Altec, Cornwall, United Kingdom) with a diameter of 3 mm 

(2.87-3.13 mm) was used as a sink. The rod mass was gravimetrically determined to 

8.0 g/m, whereas the volume was calculated based on geometry to 7.3 cm3/m, a detailed 

technical description of the rod is given in Gouliarmou et al. 2012.24 Proper cleaning of 

the rod before its application is important to avoid analytical problems later. The 

reference cleaning method for silicone passive sampling materials at our laboratory is 

100 hours Soxhlet extraction using ethylacetate. However, based on our previous 

experience we followed a less laborious procedure that was shown to be sufficient for 

the subsequent instrumental analysis by GC-MS.24 Before use, the rod was cleaned by 

soaking once overnight in ethylacetate, followed by soaking three times overnight with 

methanol and then three times overnight with acetone. Finally, any adhering solvent 

was removed by at least four times overnight washes with Milli-Q water. Cleaned rods 

were stored until use in a sealed bottle with Milli-Q water.24 

 

Speciation of PAHs in simulated fluids 

Passive dosing was applied to determine 1) the distribution of PAHs between the 

colloidal and aqueous phase in simulated gut fluids (speciation) and 2) the silicone to 

fluid partition ratios (Ksilicone,fluid). The passive dosing method enables one to study 

speciation of PAHs at a controlled freely dissolved concentration, the method has been 

described in detail by Gouliarmou et al.33 Briefly, 500 ± 5 mg of medical grade silicone 

was cast into the bottom of 10 mL glass vials. The silicone in one group of vials was 

loaded with a mixture of naphthalene (NAPH), phenanthrene (PHEN), anthracene 

(ANTH), fluoranthene (FLU) and pyrene (PYR), while the silicone in a second group 



of vials was loaded with only benzo(a)pyrene (BaP). The loading level for the PAH 

mixture was set to 10% of saturation for each individual PAH, meaning that 

concentrations in silicone and water were at 10% of the respective water solubilities.  

BaP was loaded to 100% saturation, meaning that experiments were conducted at 100 

% water solubility in both silicone and water. 

The loaded vials were then equilibrated sequentially with water (Milli-Q), simulated 

fluid and again water. Equilibration was performed in triplicates by shaking overnight 

at 1000 rpm and 37 ± 1 oC, which based on a 3 days pre-experiment was proven to be 

sufficient to reach equilibrium (SI Figure S1). PAH concentrations in the  fluids (Cfluid) 

and water (Cwater) were measured and free fractions (ff) were quantified according to 

equation: ff = Cwater / Cfluid.
33 At the end of the experiment, PAHs were extracted from 

the silicone with two times 8 mL of methanol (overnight) and then measured by HPLC. 

Silicone to fluid partition ratios were determined as ratios of measured concentrations 

in silicone and the respective equilibrated solutions, which were then used for the 

subsequent sink dimensioning as well as the calculation of enhanced capacities. 

 

Sink dimensioning and enhanced extraction capacity of sorptive-CEPBET 

We define the absorption efficiency of the sink (F) as the fraction of the analyte that 

is absorbed by the sink from the simulated fluid. The predicted absorption efficiency at 

the thermodymamic equilibrium is given by: 
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where mPAH(silicone) is the PAH mass absorbed by the rod and mPAH(total) is the initial 

PAH mass added in the simulated fluid. Vfluid and Vsilicone are the volumes of simulated 

fluid and silicone rod, respectively.  



The silicone rod volume required to obtain a given absorption efficiency (Frequired) can 

then be calculated:  
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In the present study we aimed for sufficient silicone volume to absorb 90% or more 

of mobilized analytes from each simulated fluid.   

The inclusion of the sink increases the equivalent volume of the simulated fluid 

(Vequivalent) and thus the capacity of the system (simulated fluid + silicone) to receive 

PAHs. The enhanced capacity (EC) of the sorptive-PBET system relative to a PBET 

with the same simulated fluids is given by Eq. 3:  
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The silicone rod should preferably also have a capacity for the analytes that exceeds 

the capacity of the sample. This will not always be strictly necessary within a dynamic 

system, as long the silicone rod operates in the kinetic regime and thus efficiently 

removes the analytes from the solution.  The silicone mass was in the present study 

provided higher capacity since it was about 100 times higher than the organic carbon 

content of the sample. For sample types characterized by very high KD values, it can 

make good sense to further increase this ratio by simply decreasing the mass of the 

sample, which however will lead to lower analytical sensitivity of the method.   

 

Elimination kinetics and absorption efficiency of the sink 

The new sink had to be characterized and confirmed in terms of absorption kinetics 

and efficiency before its application into the CEPBET. Thus, an experiment was carried 



out to assess 1) how fast PAHs were transferred from each fluid into the rod and 2) the 

experimental absorption efficiency of the rod at equilibrium. Experiments were 

performed separately for each simulated fluid (stomach, small intestine and colon), in 

parallel batch set ups with two replicates per fluid. To this end, 80 mL of fluid (37oC) 

were spiked with 0.5 mL of a methanol solution containing the 6 PAHs yielding initial 

PAH concentrations between 150-300 μg/L. The fluid together with 2 m of silicone rod 

was placed into a 100 mL Pyrex bottle and closed with Teflon (PTFE)-lined screw caps. 

Bottles were shaken at 150 strokes/min inside the water bath (Grant OLS 200, 

Cambridge, England) at 37 ± 1 oC. Sub-samples of 0.5 mL from each fluid were taken 

at predetermined time points, then extracted and analyzed by HPLC as described later. 

The PAH fraction that remained in the fluid at extraction time t (Ffluid(t)) was plotted 

against time and a one phase elimination model with plateau was fitted to the data: 
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Ffluid(eq) denotes the PAH fraction left in fluid at equilibrium and k1 is the rate constant 

that characterizes the absorption kinetics into the silicone rod. Data were fitted by least 

squares using Graphpad Prizm 5 (San Diego, CA), the time to reach 95% of Ffluid(eq) 

was calculated (t95%= ln(20)/k1 ), while the rod absorption efficiency was calculated 

based on a complete mass balance assumption (Frod = 1 – Ffluid(eq)). 

 

Application to contaminated solid matrices and absorption efficiency 

Application to contaminated solid matrices: After sink dimensioning and 

confirmation, soot (n=3) and kindergarten soil (n=3) were incubated using the CEPBET 

with the silicone rod as an absorption sink. Sequential incubations were performed, 

where 100 mL glass bottles containing 1 g of sample, 2 meters of silicone rod and 80 

mL of simulated stomach fluid ( pH 2.5 ) were placed in a shaking water bath (Grant 



OLS 200, Cambridge, England) at 150 strokes/min  and 37oC. After 1 hour of 

incubation, stomach fluid was converted to small intestine fluid by pH adjustment to 7 

and addition of 0.14 g bile salts and 0.04 g pancreatin, then bottles were resealed and 

incubation continued for further 4 hours. Finally, transition from small intestine to 

colon compartment was achieved by physical transfer: first the test substrate was 

recovered by centrifugation (3000g, 10 min), then substrate was added together with 80 

mL colon fluid back to the bottle containing the rod and incubation continued for further 

16 hours. Before addition to the test, all fluids were preheated in the water bath to 37oC.  

Absorption efficiency: To determine absorption efficiency of the rod for individual 

PAHs, the simulated fluids were spiked with a mixture of non-label PAHs and extracted 

with silicone rod but without the presence of the sample, while sample incubations were 

run in parallel and under identical experimental conditions. 

Thus 80 mL of stomach and colon fluid (n=2, 37oC) were spiked with 50 μL of a 

methanol PAH standard solution, initial PAH concentrations in spiked fluids ranged 

between 6-8 μg/L. Absorption efficiencies were determined separately for the stomach 

+ small intestine compartments and for colon compartment. At the end of the 

incubations, rods were rinsed with Milli-Q-water and wiped with a lint free tissue. 

Then, recovery standards were added to the rods before they were extracted twice with 

100 mL of acetone (>7 hours and then overnight). The two extracts were combined and 

evaporated under nitrogen, re-dissolved in 1 mL toluene and mixed with internal 

standards before GC-MS analysis. Acetone was chosen as the extraction solvent since 

it causes less swelling of silicone compared to other non polar solvents34 and it is easier 

to evaporate relative to other polar solvents. The high extraction efficiency of this 

solvent extraction of the rods was previously verified.24  

 



Instrumental analysis 

HPLC analysis: All samples from the passive dosing and sink confirmation 

experiments were mixed 1:1 (water, stomach fluid and small intestine fluid samples) or 

1:2 (colon fluid) with methanol for preservation and extraction of analytes from matrix. 

Colon fluid samples were vortexed for 1 minute, then left overnight in the freezer and 

the supernatant was transferred to autosampler glass vials. The extraction efficiency of 

the method was tested and ranged between 98% and 120% (Table S2). These samples 

were then kept at -18oC until analysis by HPLC with multiband fluorescence detection 

(Agilent 1100 HPLC equipped with a G1321A FLD operated at Ex: 260 nm and Em. 

350, 420, 440 and 500 nm). Details are given in Gouliarmou et al 2012.33  

GC-MS analysis: PAHs from rod, soot and kindergarten soil extracts were quantified 

using a Thermo Finnigan Trace 2000 GC with a 30 m x 0.25 mm x 0.25 μm 5% - 

Phenyl- methylpolysiloxane capillary column. Details are given in Gouliarmou and 

Mayer 2012. 24 

 

Results and discussion 

 

Speciation of PAHs in simulated fluids 

Free fractions (ff) of PAHs in the three simulated fluids were measured with passive 

dosing and then plotted against octanol – water partition ratios (Figure 1a). Free 

fractions ranged from 0.13 (BaP) to 1.00 (NAPH) in stomach fluid, from 0.08 (BaP) to 

0.92 (NAPH) in the small intestine fluid and from 0.0016 (BaP) to 0.72 (NAPH) in the 

colon fluid. The somewhat lower free fractions in the small intestine and colon fluid 

were expected, since the addition of bile salts pancreatin and carbohydrates increases 

PAH binding.1,15 The colon has the highest levels of these components (see Table X 



Supporting Information). All measured free fractions were characterized by high 

precision with relative standard errors of typically less than 3.5 % (range of 0.9 – 8.7 

%). Additionally, the earlier experienced analytical difficulties when applying non-

equilibrium SPME to measure HOC speciation in simulated gut fluids35 were efficiently 

circumvented, since the passive dosing technique was operated in the equilibrium 

regime and did not involve measurements on micrometer thin polymer coatings.33   

The PAH - specific silicone to fluid distribution ratios (Ksilicone,fluid) for the three fluids 

were measured and then plotted together with the Ksilicone,water against Log Kow (Figure 

1b). Distribution ratios for stomach and small intestine fluid were rather similar and 

both characterized by a continuous increase from the least hydrophobic NAPH (558 

L/L) to the most hydrophobic BaP (22 086 L/L). Silicone to colon distribution ratios 

were generally lower and did not show the same trend with PAH hydrophobicity. They 

were rather constant and ranged from 320 L/L (BaP) to 570 L/L (PHEN), which reflects 

the richer composition of the colon fluid.15 These partition ratios indicate that silicone 

indeed can act as an efficient PAH absorption sink and simultaneously increase the 

capacity of the system (fluid + silicone) to receive PAHs.  

 

Sink dimensioning and enhanced extraction capacity of sorptive-PBET 

The required silicone volume to achieve a given equilibrium absorption efficiency 

was calculated (Eq. 2) using the measured Ksilicone,fluid values as input variables. 

Approximately, 30 cm of rod was estimated to be necessary to absorb at least 90% of 

all PAHs in the three fluids (80 mL) (Figure S3). However a 2 meter silicone rod (14.7 

mL) was selected in the present study with the CEPBET method, which was found 

practical and was expected to provide faster absorption kinetics due to its higher surface 



area (A= 377.4 cm2 vs 57.1 cm2 of 0.3 m rod). The required silicone volume for other 

bioaccessibility extraction methods can easily be adjusted and calculated by Eq. 2. 

Based on the passive dosing results and Eq. 3, the inclusion of the silicone rod 

increased the capacity of the system to receive PAHs by 1-3 orders of magnitude 

(Figure 2). The enhanced capacity of the sorptive-CEPBET (fluid + silicone rod) 

relative to the simulated stomach fluid ranged from 105 (NAPH) to 4567 (BaP), and 

for simulated small intestine fluid from 103 (NAPH) to 4060 (BaP). The enhanced 

capacity was for both solutions analyte specific and increased with hydrophobicity of 

the PAHs (Figure 2).  These results practically mean that the inclusion of the 14.7 mL 

of silicone rod resulted in an increase of extraction capacity for BaP, which is equivalent 

to a fluid volume of 365 L (= 80 mL × 4567) for stomach fluid and 325 L (= 80 mL × 

4060) for small intestine fluid. The enhanced capacities for colon were generally lower 

ranging from 60 (BaP) to 110 (ANTH) (Figure 2), since the fed state of the colon 

compartment already provided a high capacity. It is important to note that the increase 

in capacity not only depends on the dimensions and characteristics of the absorption 

sink, but also on the volume and composition of the fluids as well as the analytes under 

consideration. 

 

Elimination kinetics and absorption efficiency of the sink 

In the present study, the silicone rod served two distinct purposes: (1) maintaining 

the diffusion gradient for the PAH desorption from the matrix and (2) enrichment of 

the analytes for subsequent back-extraction and instrumental analysis. For the first 

purpose, freely dissolved concentrations have to be kept at a very low level while for 

the second purpose it is the total concentrations in the medium that needs to be 

efficiently depleted. Elimination kinetics were determined on the basis of total 



concentrations in the medium, and the translation to freely dissolved concentration can 

easily be done by multiplication with the free fractions from the passive dosing 

experiment. 

The elimination kinetics of the 2 meter silicone rod for PHEN, PYR and BaP and all 

three fluids are shown in Figure 3, and are given for the other PAHs in SI (Figure S4). 

In stomach and small intestine compartment the elimination kinetics for all PAHs 

except BaP were fast and shorter than the incubation time. As Figure 3 shows, within 

20 - 27 minutes the major PAH fraction was transferred from stomach and small 

intestine fluid to the rod, however BaP exhibited slower kinetics with t95% being 4.1 h 

in stomach and 1.8 h in small intestine compartment (Figure S5). From a practical point 

of view the slower elimination of BaP in the stomach compartment (>incubation time) 

does not pose any problem, since stomach compartment is converted to small intestine 

by the addition of bile salts and pancreatin and the total incubation for stomach and 

intestine (1+4 hours) was sufficient. Also, the conversion of stomach fluid to small 

intestine accelerated the elimination kinetics for all PAHs and especially for the most 

hydrophobic BaP (t95% = 1.8 h) (Figure S5). The reason is that the added bile salts lead 

to the formation of micelles, which act as diffusive carriers and facilitate the PAH 

transport through the aqueous unstirred boundary layer adjacent to the silicone rod. This 

is supported by earlier studies, which showed that 1) HOCs can be encapsulated into 

micellar hydrophobic cavities formed by bile salts36, 37 and 2) bile micelles can act as a 

vehicle for PAHs and traverse the aqueous unstirred boundary layer adjacent to the 

intestinal wall of rats.38 For both fluids, the elimination kinetics were found sufficient 

with regards to both maintaining the desorption gradient and transferring PAHs to the 

analytical sorbent. 



Elimination kinetics of the colon compartment were slower compared to the other 

two compartments, which was compensated by the longer incubation time. T95% in 

colon ranged between 0.84 h (NAPH) to 3.95 h (PYR) and BaP was again the slowest 

compound with a t95% of 17.1 h. As Figure 4 shows, the elimination time generally 

increased with an increase in the colloidally bound fraction. This occurs 

becausecolloidal binding decreases the freely dissolved concentration of PAHs in the 

fluid and consequently the chemical activity gradient that drives the diffusive uptake 

into the rod. In the case of the colon compartment it is necessary to discuss both 

functions of the silicone rod: (1) Most importantly, in terms of maintaining the 

concentration gradient for the desorption, the method worked perfectly. The 

combination of rich colon medium and silicone rod effectively kept freely dissolved 

concentrations at an absolute minimum. (2) With regards to the efficient transfer of 

PAHs to the silicone rod, colon constituents and silicone rod apparently competed 

against each other, which slowed down the uptake into the rod. Fortunately, the 

elimination kinetics were generally still sufficient, but a faster elimination is desirable 

since it would enhance the performance and robustness of the method.  

The absorption efficiency at equilibrium was high for all PAHs and all simulated 

fluids. This was confirmed by the level of the plateau reached with time in the 

elimination kinetics experiment (Figure 3, Figure S4). At equilibrium more than 97% 

of each PAH was absorbed from the simulated gastrointestinal fluids (Figure 3, Figure 

S4), which was in good agreement with the predicted absorption efficiencies (Figure 

S3).  

In summary, the initial experiments confirmed that 2 meters of silicone rod provided 

sufficiently fast absorption kinetics and very high absorption efficiencies (>97%). The 

freely dissolved PAH concentrations were kept at a very low level and the gradient for 



the desorption from the soil matrix was maintained. This supports the use of a silicone 

rod as an efficient analytical enrichment phase that rapidly absorbs PAHs from the 

solution. However, the combination of hydrophobic analyte and the very rich colon 

medium lead to somewhat slower absorption kinetics. These kinetics can be further 

optimized by reducing the medium volume or by reducing the binding within the colon 

medium. However, both of these optimization options were outside the scope of the 

present study to integrate the silicone rod into an existing PBET model. 

 

Application to environmental contaminated solid matrices and absorption 

efficiency 

Absorption efficiency. The measured absorption efficiencies quantified the analyte 

recovery between the spiking of the digestive solutions and the solvent extract of the 

silicone rods and thereby incorporated the efficiency of the rod extraction. Absorption 

efficiencies for the stomach and small intestine compartment was 55.5 – 86.3 %, and 

for the colon compartment 69.3 – 88.3 %. These values were generally lower than in 

the initial experiments (>97 %; Figure S4). The somewhat lower efficiencies in the final 

experiment can be explained by a combination of: (1) theyincluded the efficiencies for 

the rod extraction, (2) they were calculated as ratio between spiked and measured level 

rather than the concentration decrease in the solution and (3) they were measured at 

lower PAH concentrations (6-8 μg/L instead of 150 - 300 μg/L). The concentration 

level is relevant in this respect, since binding to proteins can increase with decreasing 

analyte concentration.39 

The inclusion of an analytical enrichment phase brings new possibilities with regards 

to applying stable isotope standards into bioaccessibility extractions. They can be added 

(1) prior to the incubation of the matrix in the digestive fluids, (2) at the beginning of 



the rod solvent extraction, (3) to the final rod extract or (4) to the rod before applying 

it in the test.  Thus the efficiency of each step can be determined within sorptive 

bioaccessibility extractions, these data can be used for optimization, validation and 

dedicated process studies. The addition of standards to the digestive fluids at the 

beginning of the incubations seems presently the most practical approach, since it 

allows recovery determinations and corrections, while avoiding additional treatments 

required for the parallel incubations. 

Application to environmental contaminated solid matrices. In the present study, all 

bioaccessibility measurements obtained with sorptive-PBET (Figure 4) were corrected 

for absorption efficiencies. The correction was chosen in order to account for both 

absorption and extraction efficiencies. This might led to a slight overestimation, which 

would bias the results in the conservative direction and was thus considered acceptable. 

Mean values and standard errors (n=3) of the mobilized PAH fractions under 

digestive conditions were plotted for soot and kindergarten soil in Figure 4, together 

individual PAH fractions mobilized from soot when the sorptive bioaccessibility 

extraction (SBE) method, with cyclodextrin as a mobilization medium, was applied for 

24 hours at room temperature. Results were expressed as the mass of PAHs absorbed 

by the sink relative to the initial PAH mass present in the matrix, while absolute 

accessibilities are given in Table S6. Measured fractions were precise with relative 

standard errors of typically less than 5.1% for soot and 13.3 % for kindergarten soil. 

For both matrices, mobilized fractions decreased with increasing PAH ring number 

(Figure 4) and ranged within 6 – 49.7 % and within 7.6-55% of total PAHs for 

kindergarten and soot respectively.  

Measured mobilized fractions of the lighter PAHs were similar both for the SBE and 

sorptive-PBET method. However for the heavier PAHs, SBE yield 36% (PYR) – 73% 



(D[a,h]A) higher bioaccessibility estimates than sorptive-CEPBET (Figure 4).  These 

results emphasize the crucial role of the mobilization medium into sorptive 

bioaccessibility extraction methods. In SBE cyclodextrin was employed as a 

mobilization medium, which is an effective carrier for hydrophobic compounds and 

was previously shown to equalize desorption rates over a large hydrophobicity range, 

whereas in the sorptive-CEPBET desorption of PAHs depends on the composition of 

the simulated fluids.           

 

 

General features 

Silicone rod can serve as a high capacity absorption sink for HOCs in physiologically 

based extraction tests. The mobilization step of the pollutant from the soil matrix might 

appear to be most crucial, but will often be dependent on the efficient removal of 

desorbed pollutants by the second absorption step. In the present study, we showed that 

partitioning into a simple silicone sink can be used for the continuous absorption from 

simulated fluids to ensure (near) infinite sink conditions. This makes the method suited 

even for pollutant-sample combinations that are characterized by high KD values, such 

as historically contaminated soil, soot and charcoal.  

The sorptive extraction into the silicone isolates target compounds from the solution 

matrix, which has two practically advantages: 1) No additional phase separation steps, 

such as filtration or centrifugation, were required prior to the extraction and 

instrumental analysis of the PAHs. This saves time and circumvents some of the 

uncertainties connected to the question of which PAH aggregate form or size actually 

is contributing to bioaccessibility.16 2) The final extract of the silicone rods will contain 

markedly reduced concentrations of interfering constituents originating from the soil 



and the digestive fluids. In the present study, the obtained extracts could thus be 

analyzed without additional clean up steps.  

Application of the analytical principle to other bioaccessibility extraction schemes 

and other solid matrixes such as sediment, sludge and biochar should be relatively 

simple. The applicability to other organic pollutants is also possible and probably 

mainly restricted by the ability of the rod to absorb them. The silicone rod is expected 

to be suited as high capacity sink for most hydrophobic organic compounds (Log Kow 

> 3-4),34 which includes for instance brominated flame retardants, dioxins, chlorinated 

insecticides and pyrethroids. But, it should always be kept in mind that proper 

dimensioning and confirmation of the sink is important for valid measurements. The 

incorporation of an absorption sink will often be less necessary for more polar 

compounds including a wide range of degradation products, since aqueous fluids can 

offer infinite bath conditions and maintain the desorption gradient for such compounds.  

Hopefully, the inclusion of the silicone sink will enhance bioaccessibility research by 

improving the performance and mechanistic basis of physiologically based extraction 

tests for hydrophobic organic chemicals. The new approach will generally lead to 

higher and more conservative bioaccessibility estimates, which should facilitate 

regulatory acceptance. Comparison and validation of sorptive physiologically based 

extractions with animal feeding studies are now needed.  
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Figure 1.  A) Free fractions of PAHs in simulated gastro-intestinal fluids obtained by 

passive dosing at 37oC, plotted against Log Kow. Data show mean ± SEM, n = 3 and B) 

silicone to simulated fluid distribution ratios as measured in the present study and 

silicone to water distribution ratios obtained from Smedes et al. Data show mean ± 

SEM, n = 3 and were plotted against Log Kow, stomach (○), small intestine (□)colon 

(◊)water (●).   
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Figure 2.  The enhanced capacity (EC) of the sorptive-PBET system (80 mL fluid +  

14.7 mL silicone rod) relative to a PBET with the same simulated fluids (80mL fluid) 

is plotted for individual PAHs. 

 

 

 

 

 

 



 

 

 

Phenanthrene

0 4 8
0.0

0.5

1.0

10 22 281 16

t(h)

C
t/C

0

 

 

Pyrene

0 4 8
0.0

0.5

1.0

10 22 281 16

t(h)

C
t/C

0

 

 

 



10 20 30
0.0

0.5

1.0

1 16

BaP

t(h)

C
t/C

0

 

 

Figure 3. Elimination kinetics of PAHs from spiked simulated fluids into silicone rod. 

stomach (∆)small intestine (□)fluid and circle colon (○). Data show mean PAH fraction 

of initial spike left in simulated fluid after time (t) of shaking at 37oC ± SEM (n= 2). 

Dashed lines indicate the incubation times in stomach (t=1), small intestine (t=4) and 

colon (t= 16) compartment of the extraction protocol.15 
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Figure 4. PAH fractions mobilized under in vitro digestive conditions and measured 

by sorptive-CEPBET were plotted for soot and kindergarten soil, together with PAH 

fractions mobilized from soot measured by SBE method and 24 hours incubation time 

at room temperature. Data show mean ± SEM (n=3). Abbreviations: phenanthrene 

(PHEN), anthracene (ANTH), fluoranthane (FLU), pyrene (PYR), benzo[a]anthracene 

(B[a]A), benzo[b+k]fluoranthene (B[b+k]FLU), benzo[a]pyrene (BaP), 

dibenzo[a,h]anthracene (D[a,h]A) 
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