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ABSTRACT  

We report on experiments with conical refraction of laser beams possessing a high beam propagation parameter M2. 
With beam propagation parameter values M2=3 and M2=5, unusual Lloyd’s distributions with correspondingly three and 
five dark rings were observed. In order to explain this phenomenon, we extend the dual-cone model of the conical 
refraction that describes it as a product of interference of two cones that converge and diverge behind the exit facet of the 
crystal. In the extended model, these converging/diverging cones are represented as the cone-shaped quasi-Gaussian 
beams possessing the M2 parameter of an original beam. In this formalism, a beam-waist of these cone-shaped beams is 
proportional to the M2 value and defines the area of their interference which is a width of the Lloyd’s ring. Therefore, the 
number of dark rings in the Lloyd distribution is defined by the M2 value and can be much greater than unity. The results 
of the numerical simulations within the extended dual-cone model are in excellent agreement with the experiment.  
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1. INTRODUCTION  
Conical refraction (CR) is a phenomenon with almost 200 years of research history1-3. It is observed when a narrow 
beam of light propagates along one of the optical axes of a biaxial crystal. Such a beam evolves as a hollow double-
walled cylinder of light behind the exit facet of a crystal. The typical evolution of the CR profile is shown in Fig.1. At 
the focal plane (also known as the Lloyd’s plane)2, two asymmetrical bright rings are visible. The radius of the 
separating dark ring is given by a simple relation: 0R Lχ= , where L is a crystal length and ‘conicity’ is given by 

2 1 3 2 2(n n )(n n ) nχ = − − , with n1, n2 and n3 being refractive indexes (n1<n2<n3). This separating dark ring (termed as the 
Poggendorf’s ring)3 is the most clearly visible before and after the Lloyd’s plane. Another important feature of conical 
refraction (known as Raman spots)4 concluding the axial evolution of CR pattern was observed more than a century after 
the first CR experiments.  
 

 
Figure 1. The evolution of the CR beam profile. 
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Although the practical applications of CR has been limited by the difficulties associated with cutting of the biaxial 

crystals with the necessary precision, a few recent papers report on ultra-efficient CR lasers5,6, lasers with CR output 
from the plane mirror7, optical trapping with CR beams8, utilization of CR for quantum computing and cryptography9 
and super-resolution microscopy10. All these applications attracted our attention to the research of CR of the beams of 
semiconductor lasers, which are the most compact and efficient sources of radiation but often feature the high value of 
the beam propagation parameter M2. 

2. THEORY 
2.1 Background theory and a dual-cone model 

The exact theoretical model of CR phenomenon was first developed by A.M. Belsky and A.P. Khapalyuk11 and more 
recently by M.V. Berry12. According to this model the unpolarized light passing through a CR crystal can be represented 
as the electric displacement vector D expressed in the form: [ ]( )0 1
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y

d
dB B= +D  with Bl described as:  
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= − −∫  (1) 

where l=0,1 is the integer number, k is the crystal wavenumber, kP is the transverse wavevector (with P<<1 due to 
paraxiality), R0 is the radius of conical refraction beyond the crystal, Z is the normalized distance, Jl is the Bessel 
function of the first kind of order l, and a(P) is the Fourier transform of the incident beam profile. For the Gaussian beam

 ( )2 2
0 ( ) exp 2G R R w=  the Fourier transform is ( )2 2 2 2( ) exp 2a P kw k w P= − . The light intensity is then: I=D·D*, 

which, in the case of unpolarized light because of absence of the interference between B0 and B1
12, can be simplified to 
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Using the normalized variables expressed as: 
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formula (1) takes the following form:  
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Also, G.S.Sokolovskii et al.13 and later on A.Turpin et al.14 have shown that these equations can be transformed in a way 
enabling the electric displacement vector D to be written as: [ ]( )1 2
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dC C= +D  with functions C1,2 given by:  
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In this expression С1 and С2 are the two cones, converging and diverging behind the exit plane of the CR crystal, and 
intersecting in the Lloyd’s plane. For the case ρ >> 1 we can use asymptotic approximations for Bessel functions. Noting 
r ≥ 0, integration of (4) yields:  
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where Dl is the Parabolic cylinder function of order l. Hereafter we shall consider only the converging cone С1 taking 
into account the conical refraction is symmetrical about z axis. 
 
2.2 Lloyd’s plane and transitional region 

Let us expand Dl in series in the vicinity of 1r =  in the Lloyd’s plane z = 0. This enables approximation of the squared 
absolute value of (5) by Gaussian distribution of a width 2

1w m w= , where 
1 22 2 22 (3 4) 3 (3 4) 4 (5 4) 2m π
−

⎡ ⎤= Γ ⋅Γ − ⋅Γ ≈⎣ ⎦ . 
This yields: 
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with 9 4 12 (5 4)A π − −= Γ .  
Now we consider the area of 0r >  and 0z >  where the cone approaches z axis. Assuming z >> 1/ρ, we can simplify the 
argument of the parabolic cylinder function in (5). Again, expanding this in series in the vicinity of maxr  and 

approximating it by the Gaussian function of max 1 2r z= −  we get 
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where 3/ 4 1/ 4 1/22B e π− −= . 
 
2.3 Conical quasi-Gaussian beams 

Noticing similarity between (6) and (7) we define the dimensionless width of the conical beam similar to the classical 
Gaussian beam15: 
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which gives: 
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Due to the aforementioned approximations, the amplitude factor in the transitional region (7) does not differ 
substantially from the amplitude factor of expression (9). In this respect, we make the energy conservation correction of 
this approximate solution, sticking to its simple form, and shall use expression (9) hereafter. Formula (9) demonstrates 
that CR can be described as a superposition of conical quasi-Gaussian beams. In general case, similarly to an oblique 
Gaussian beam, one can describe a conical quasi-Gaussian beam as: 
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where 0( ) cos( ) sin( )R R R Zα α= − ⋅ − ⋅% , 0( ) sin( ) cos( )Z R R Zα α= − ⋅ + ⋅% , α  is a beam inclination angle relatively to z 

axis. Using the paraxial approximation we can write sin( )α α≈ , ( ) 1cos α ≈  and 0( )R R R Z α= − − ⋅% , 

0( )Z R R Zα= − ⋅ +% . Then the expression (10) can be rewritten in the following way: 
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Using (11), (9) and (5), we finally get: 0A A= , 2W w m= ⋅ , 2 2 2
0 2 2Z m k w k W= ⋅ = ⋅ , 1

2kw
α = m , 

4
πβ = ±  for C1 

and C2 respectively, which gives: 
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In this way, the intensity of conically refracted radiation 2
1 2I C C= +  in the Lloyd’s plane z = 0 takes the form: 
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Expression (13) clearly shows that the dual-ring distribution in the Lloyd’s plane can be described as the interference of 
two conical quasi-Gaussian beams. This is illustrated in Fig.2, which compares the results of numerical simulation of CR 
intensity distribution in the Lloyd’s plane 2 2

1 2I B B= +  with integrals (1) and with simplified formula (13). 

 
 

Figure 2. CR intensity distribution in the Lloyd’s plane (a) I = |B1|2+|B1|2 calculated with integrals (1) and (b) calculated with 
simplified formula (13). The profile of the radial distribution of the CR intensity is shown below. The dotted line shows the 
radial distribution (a) for comparison. 

 

The suggested simplified quasi-Gaussian solution also predicts the focusing of conically refracted radiation into the 
Raman spots. However, in the near-axis area the beams undergo self-interference, the consideration of which, as well as 
a more detailed description of CR phenomenon, we leave for later research. 

2.4 Introduction of the M2 parameter 

The full description of the semiconductor laser radiation requires introduction of the beam propagation parameter16,17 
(often termed as the M2 parameter). As we have approximated the CR field amplitudes as the conical quasi-Gaussian 
beams, let us substitute, according to the M2 definition16 2W M W→  and 2

0 0Z M Z→ . So the intensity distribution in 
the Lloyd’s plane (13) transforms to: 

 2

22
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2 2 2
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R R R RA wI R
R M m w w

π⎛ ⎞− −⎛ ⎞
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 (14) 

Comparing (13) and (14) one can notice that the introduction of the beam propagation parameter widens the area of the 
interference the cones C1 and C2 in the Lloyd’s plane, which is proportional to the М2 value. On the other hand, the 
period of the interference fringes does not depend on the M2 parameter. Therefore, with M2>1 one should observe more 
than one dark ring in the Lloyd’s plane. The results of numerical simulations with (14) for М2=3 and М2=5 are shown in 
Fig.3, where one can clearly see 3 and 5 dark rings, correspondingly.  
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Figure 3. Numerical simulation of intensity distribution of CR radiation of semiconductor laser with М2

 

=3 and М2=5 in the 
Lloyd’s plane (a, b) and results of corresponding experimental measurements (c, d). 

3. EXPERIMENT 
The schematic view of the setup used in our experiments is shown in Fig. 4. The radiation of the fiber-coupled high-M2 
semiconductor laser was apertured with an iris diaphragm enabling adjustment of the М2 value.  

 
Figure 4. Schematic view of the optical setup used for CR experiments with high-M2 laser diode (LD). LD radiation passes 
through the iris diaphragm, collimated with a Lens 1 (focal length 50 mm) and then focused by a Lens 2 (focal length 
100 mm) through a conical refraction crystal (CRC). CCD camera detecting an output pattern was mounted on a long-range 
translation stage enabling registration of the spatial evolution of the conically refracted LD radiation.  

The M2-adjusted laser radiation was collimated using a Lens 1 with 50 mm focal length. The collimated laser beam was 
then focused by a Lens 2 with 100 mm focal length through a 18-mm long KGW crystal cut along the optical axis. The 
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value of the beam propagation parameter was measured with a DataRay laser beam analyzer (not shown in the figure) 
installed between the Lens 1 and Lens 2. The output signal of the CR was detected with a CCD camera mounted on a 
high-precision translation stage. This enabled observation of the predicted multi-ring CR intensity distributions in the 
Lloyd’s plane. Fig. 3 shows the Lloyd’s distributions for M2=3 (Fig.3c) and M2=5 (Fig.3d) with three and five dark rings 
correspondingly. 

4. CONCLUSION 
To summarize, the experiments on CR of semiconductor laser radiation with high values of the beam propagation 
parameter M2 were performed. CR of laser beams with M2=3 и M2=5 produced unusual Lloyd’s intensity distributions 
with three and five dark rings correspondingly. For interpretation of these observations, a dual-cone model of CR was 
utilized. The CR cones were represented as the conical quasi-Gaussian beams with the M2 parameter value of the initial 
quasi-Gaussian laser beam. This representation enabled clear demonstration of widening of the cones interference area 
with increase of the M2 value. On the other hand, the period of interference fringes does not depend on the M2 parameter. 
Therefore, the number of dark rings in the Lloyd’s distribution appears to be proportional to the M2 value.  
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