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Applying modern psychometric 
techniques to melodic 
discrimination testing: Item 
response theory, computerised 
adaptive testing, and automatic 
item generation
Peter M. C. Harrison  1,2, Tom Collins 3,4 & Daniel Müllensiefen 2

Modern psychometric theory provides many useful tools for ability testing, such as item response 
theory, computerised adaptive testing, and automatic item generation. However, these techniques 
have yet to be integrated into mainstream psychological practice. This is unfortunate, because modern 
psychometric techniques can bring many benefits, including sophisticated reliability measures, 
improved construct validity, avoidance of exposure effects, and improved efficiency. In the present 
research we therefore use these techniques to develop a new test of a well-studied psychological 
capacity: melodic discrimination, the ability to detect differences between melodies. We calibrate and 
validate this test in a series of studies. Studies 1 and 2 respectively calibrate and validate an initial test 
version, while Studies 3 and 4 calibrate and validate an updated test version incorporating additional 
easy items. The results support the new test’s viability, with evidence for strong reliability and construct 
validity. We discuss how these modern psychometric techniques may also be profitably applied to other 
areas of music psychology and psychological science in general.

Modern psychometric theory provides a remarkable array of tools for ability testing. For example, item response 
theory (IRT) allows scores to be compared between participants who take different tests. Computerised adaptive 
testing (CAT) produces efficient tests that dynamically tailor their difficulty levels to participants of different abil-
ities. Automatic item generation (AIG) produces tests with effectively unlimited item banks. Techniques such as 
these can theoretically produce very powerful and flexible tests of abilities and other latent traits.

Unfortunately, modern psychometric theory has so far only had limited impact on mainstream psychological 
practice. A number of reasons have been suggested for this, including a lack of mathematically precise thinking 
in psychology, insufficient mathematical training in psychology education, and an absence of psychological the-
ories sufficiently strong to form the basis of psychometric models1. As a result, much psychological research still 
relies on outdated modes of test construction and validation. At best, this leads to suboptimal testing efficiency; 
at worst, it leads to incorrect psychological conclusions.

Music psychology is a case in point. There exists a long tradition of musical ability tests, spanning from 
Seashore’s Measures of Musical Talents2 to Kirchberger and Russo’s Adaptive Music Perception Test3. However, the 
vast majority of these tests (e.g. refs 2, 4–9) are built in classical test theory10, which psychometricians abandoned 
long ago in favour of more advanced frameworks such as item response theory.
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We propose that psychology, and music psychology in particular, stands to benefit from incorporating more 
of these psychometric tools. The present paper addresses this possibility. We took a well-established testing para-
digm from the music-psychological literature – melodic discrimination – and we constructed a new test under this 
paradigm, making use of a number of modern psychometric techniques including IRT, CAT, and AIG. Together, 
these psychometric techniques carry substantial potential benefits including flexible test lengths, sophisticated 
reliability measures, improved testing efficiency, improved construct validity, avoidance of exposure effects, and 
improved test-construction efficiency. The resulting melodic discrimination test is, to our knowledge, the first 
musical ability test to incorporate all of these psychometric techniques. It should therefore provide a useful test 
case for examining how psychological research can benefit from these modern psychometric tools.

Background
Melodic discrimination testing. Melodic discrimination is the ability to detect differences between melo-
dies. Many tests have been developed over the years to assess this ability, under names such as tonal memory tests, 
melodic memory tests, and melodic discrimination tests. However, they all share a common paradigm: participants 
are played several versions of the same melody, and have to distinguish differences between these versions. The 
precise task can vary, but most tests use a ‘same-different’ task, where the participant has to decide whether two 
melody versions are the same or different4, 6, 11.

The earliest melodic discrimination tests formed part of musical aptitude test batteries, in the tradition of 
Seashore’s Measures of Musical Talents2 (see ref. 12 for a review). The purpose of a musical aptitude test is to assess 
an individual’s innate capacity for musical success. Musical aptitude tests are still often used as part of entrance 
exams for school music scholarships, in order to distinguish musical potential from learned ability. Research 
suggests that musical aptitude scores are indeed good predictors of musical achievement at school13 and that it 
is difficult to change musical aptitude scores through preparation14, but the degree to which musical aptitude 
dictates long-term musical success is still contested15.

Melodic discrimination tests are also often used in psychological research. Some of this research uses musical 
aptitude test batteries16–18, whereas other research uses test batteries made expressly for research19, 20. Recent 
examples of such test batteries include the Goldsmiths Musical Sophistication Index (Gold-MSI)11, the Montreal 
Battery of Evaluation of Amusia (MBEA)21, the Musical Ear Test (MET)4, the Profile of Music Perception Skills 
(PROMS)6, and the Swedish Musical Discrimination Test5. By definition, melodic discrimination tests assess the 
ability to discriminate between melodies, but this ability is often interpreted as reflecting more general cognitive 
traits, such as perceptual sensitivity to melodies6, memory for melodies11, and general musical competence4.

Melodic discrimination tests therefore have important roles to play both in educational assessment and in 
psychological research. However, these tests have historically possessed two important limitations: poor construct 
validity and poor efficiency.

Construct validity concerns how test scores relate to the underlying construct of interest22. It is of paramount 
importance in psychology, as it allows researchers to generalise their results from artificial measures (such as 
questionnaires or ability tests) to “real” human capacities (such as personality or ability). However, construct 
validity has received surprisingly little attention in melodic discrimination testing, despite the paradigm’s wide 
usage. Different studies propose different underlying abilities for these tests, including ‘audiation’23, melodic 
memory11, and tonal memory24; however, the definitions of these abilities are usually cursory and unsubstanti-
ated. This seriously compromises the construct validity of melodic discrimination testing.

Poor efficiency in melodic discrimination testing has a number of causes. First, in order to achieve sufficient 
reliability over a wide range of ability levels, the test must contain many items distributed over a wide range of 
difficulty levels. In traditional fixed-item tests, this means that any one participant will therefore take many items 
that are either much too easy or too difficult for their ability level, lowering psychometric efficiency25. Second, 
most melodic discrimination tests use multiple-choice questions with only two options, meaning that even min-
imally able participants can score at least 50%, likewise resulting in lowered psychometric efficiency26. Third, 
melodic discrimination items are slow to administer because of their inherently temporal nature26. As a result of 
this low efficiency, melodic discrimination tests tend to be time-consuming and tiring, diminishing their practical 
utility.

Fortunately, modern psychometric techniques can make substantial contributions towards both construct 
validity and test efficiency, the two main limitations of historic melodic discrimination tests. This, coupled 
with the important role that melodic discrimination testing plays in educational assessment and psychological 
research, suggests that it may be worthwhile to construct a new melodic discrimination test using these modern 
psychometric techniques.

Psychometric theory. Item response theory (IRT). Item response theory (IRT) represents the state of the 
art in modern test theory (see ref. 25 for a review). Each item is characterised by a finite set of item parameters, 
and each test-taker is characterised by a finite set of person parameters. Most common IRT models can be formu-
lated as special cases of the four-parameter logistic (4PL) model, defined as
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where Xj denotes the scored response of the test-taker to item j (1 = correct, 0 = incorrect), θ is the ability param-
eter for the test-taker, and aj, bj, cj, and dj are the item parameters for item j, respectively termed discrimination, 
difficulty, guessing, and inattention parameters27.

The four item parameters each capture different ways in which items might vary. Items with higher dis-
crimination parameters are better at discriminating between test-takers of different abilities. Items with higher 
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difficulty parameters are harder to answer correctly. The guessing parameter corresponds to the lower perfor-
mance asymptote (chance success rate), and the inattention parameter corresponds to the upper performance 
asymptote. Person ability is measured on the same scale as item difficulty, with this scale typically being defined 
so that the distribution of abilities in the test-taker population has mean 0 and standard deviation 1.

Scoring test-takers’ responses using IRT requires knowledge of the test’s item parameters. This typically 
requires the IRT model to be calibrated on the basis of response data from a group of test-takers. Once item 
parameter estimates are obtained, the IRT model can be used to estimate test-taker abilities on a test-independent 
metric.

In practice, the full flexibility of the 4PL model is not always desirable. Simpler models are typically more 
efficient to calibrate, requiring less financial investment in the test construction phase. Common simplifications 
include the three-parameter logistic (3PL) model, where the inattention parameter is constrained to 1, and the 
Rasch model, where discrimination and inattention parameters are constrained to 1 and guessing parameters 
are constrained to 0. Whether or not a guessing parameter can plausibly be constrained to 0 depends on the 
testing paradigm; in particular, multiple-choice paradigms with small numbers of options are very likely to have 
non-zero chance success rates. In the present work, we constrain the guessing parameter to the reciprocal of the 
number of response options (n), the inattention parameter to 1, and the discrimination parameter to be equal for 
all items. The resulting model can be expressed as
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where a is the shared discrimination parameter. Such models are sometimes termed constrained or modified 3PL 
models because they preserve the 3PL model’s non-zero guessing parameter while introducing other constraints 
on the model parameters (e.g. ref. 28).

IRT brings a couple of important advantages. Unlike classical test theory, IRT allows for the direct comparison 
of participant scores even when these participants answer different items. This makes it easy for researchers to 
shorten or lengthen tests without compromising score comparability. It is also a crucial prerequisite for adaptive 
testing, where participants are administered different items based on their performance levels.

A second advantage of IRT is its sophisticated treatment of reliability. Reliability refers to the consistency of 
a measurement: a reliable instrument is one that delivers consistent results under similar conditions. In classical 
test theory, reliability is a property of a test with respect to a given test-taker population, and is assessed using 
measures such as test-retest reliability and Cronbach’s alpha. These reliability measures have limited generalisa-
bility: they are sample dependent, meaning that they cannot be generalised from one test-taker population to 
another, and they are test dependent, meaning that they cannot be generalised from one test configuration to 
another. IRT addresses this problem by treating reliability as a function of the items administered and the ability 
level of the test-taker, with the resulting measure being termed information. Information is easy to compute as 
long as estimates are available for the item parameters. IRT therefore makes it easy to estimate test reliability for 
new test-taker populations and new test configurations.

IRT-based ability tests are rare in music psychology, but notable exceptions include two melodic dis-
crimination tests24, 29, a test of Wagner expertise30, a test of notational audiation31, and a test of music student 
competency32.

Computerised adaptive testing (CAT). Computerised adaptive testing (CAT) is an approach to ability testing 
where item selection is algorithmically determined on the basis of the test-taker’s prior responses (see ref. 33 for 
a review). Item selection typically aims to maximise the information that each item delivers about the test-taker’s 
true ability.

Several frameworks exist for CAT. The simplest of these, such as the staircase method34 and Green’s35 adaptive 
maximum-likelihood procedure, require little pre-calibration but only work for simple tasks, such as psychophys-
ical tests. In contrast, the IRT approach to adaptive testing is flexible enough to be applied to a much wider range 
of tasks, including melodic discrimination.

Under the IRT framework, adaptive tests typically comprise the following general stages:

 1. Make an initial estimate of the test-taker’s ability;
 2. Repeat the following steps:

 a. Select and administer an item that should deliver maximal information about the participant’s true 
ability, possibly subject to practical constraints (e.g. not administering the same item twice);

 b. Calculate a new estimate of the test-taker’s ability on the basis of their responses;
 c. Check whether the stopping criterion is satisfied (e.g. required test length reached); if so, terminate 

the test.
The primary advantage of CAT is improved testing efficiency. Traditional non-adaptive tests must contain 

items at a wide range of difficulty levels so as to cater to a wide range of test-taker abilities. This means that any 
given test-taker will receive some items that deliver low information at their ability level, on account of them 
being too easy or too hard. In contrast, adaptive tests aim to deliver maximally informative items at each point 
in the test, resulting in great reliability improvements. As a result, adaptive tests can typically be shortened by 
50–80% and still match the reliability of equivalent non-adaptive tests25, 36. This effect is particularly pronounced 
when the test is targeted at a wide range of ability levels, as is common in music psychology.
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Several recent musical ability tests incorporate CAT. These include the Adaptive Music Perception 
Test (AMP)3, the Harvard Beat Assessment Test (H-BAT)37, and the Battery for the Assessment of Auditory 
Sensorimotor and Timing Abilities (BAASTA)38. However, almost all of these tests use non-IRT procedures 
which do not generalise well to higher-level cognitive abilities. IRT is the ideal tool for such cases, but we are 
only aware of one IRT-based CAT in the music-psychological literature: Vispoel’s adaptive tonal memory test24. 
Unfortunately, this test seems to be no longer available.

Automatic item generation (AIG). Automatic item generation (AIG) is an approach to test construction where 
test items are generated algorithmically together with estimates of their psychometric parameters (see ref. 39 for 
an overview). It contrasts with traditional approaches to IRT, where items are constructed by hand and psycho-
metric parameters are estimated separately for each item on the basis of empirical response data25. To our knowl-
edge, AIG and IRT have yet to be combined in musical ability testing.

One important benefit of AIG is improved efficiency of test construction. Generating items algorithmically 
avoids the time-consuming process of manual item design. Moreover, predicting psychometric parameters a 
priori means that items do not have to be individually calibrated on human test-takers before use. Both of these 
characteristics are particularly important for adaptive tests, whose large item banks can otherwise be very expen-
sive to construct and calibrate.

A second important benefit of AIG is improved construct validity. Effective AIG typically relies on identifying 
the cognitive mechanisms that underlie task performance: this is called construct representation, and is an impor-
tant part of construct validity40. This construct representation is used to generate hypotheses about the relation-
ships between structural item features and psychometric item parameters. These hypotheses are then tested on 
empirical response data. If the hypothesised relationships are supported by the data, this supports the test’s con-
struct representation, and only then can these relationships be used to predict the psychometric characteristics of 
newly generated items. Construct validity therefore goes hand-in-hand with AIG techniques.

A third benefit of AIG concerns item exposure. Traditional tests have a limited number of items, meaning that 
participants may become familiar with those items if they take the test multiple times. This can be a problem in 
psychology research, since the same participant can easily take part in several studies that use the same ability test. 
However, tests that use AIG can benefit from an effectively unlimited pool of items, making it very unlikely that 
participants receive the same item again in subsequent test sessions.

This paper takes a top-down, weak theory approach to AIG. ‘Top-down’ means that item development is driven 
by an a priori theoretical model connecting item features to cognitive processes41. ‘Weak theory’ means that item 
development centres around constructing families of isomorphic items: items with differing surface characteristics 
but similar psychometric characteristics42.

Several item response models exist for weak-theory AIG, including the Identical Siblings Model, the Related 
Siblings Model, and the Random-Explanatory Model43. These models vary in the way that they treat within-family 
variation in item parameters: the Identical Siblings Model assumes no within-family variation, the Related Siblings 
Model treats within-family variation as a random effect in a mixed-effects model, and the Random-Explanatory 
Model treats within-family variation as a combination of fixed and random effects in a mixed-effects model. 
This paper adopts the Identical Siblings Model for three reasons: (a) its performance closely matches that of its 
competitors43, (b) it is conceptually very simple, and (c) it can be estimated with standard IRT software packages. 
When combined with the constrained IRT model described in equation (1), the Identical Siblings Model trivially 
produces the following item response function:

θ
θ

θ
= | = +



 −





−

+ −
P X a b n

n n
a b

a b
( 1 , , , ) 1 1 1 exp[ ( )]

1 exp[ ( )] (2)
ij j

j

j

where Xij denotes the test-taker’s scored response to item i from item family j, θ is the test-taker’s ability param-
eter, n is the number of response options, a is the shared discrimination parameter across all item families, and 
bj is the difficulty parameter for item family j. Note that the assumption of zero within-family variation in item 
parameters means that the expression for the item response function is independent of i.

We approach our AIG task as follows. First, we describe the generic form of the items used in our melodic dis-
crimination test. We then outline the cognitive model of melodic discrimination that forms the basis of our AIG 
system. We use this cognitive model to identify which item features should significantly affect item difficulty (rad-
icals) and which should have minimal effect on difficulty (incidentals). Radicals and incidentals are then manip-
ulated to define 20 (later 32) item families, constructed so as to cover a wide range of difficulty levels, with item 
difficulty being hypothesised to be constant within item families but to differ across families. We then develop a 
protocol for automatically generating melodic discrimination items within these families. Lastly, we calibrate the 
psychometric parameters of these item families in two empirical studies (Studies 1 and 3), and validate the per-
formance of the resulting adaptive melodic discrimination test in two further empirical studies (Studies 2 and 4).

Test design
Generic item form. Most melodic discrimination tests use a ‘same-different’ paradigm, where the partic-
ipant is played two versions of the same melody and is asked whether they are the same or different4, 6, 29. This 
paradigm is appealing for its simplicity, but is problematic for IRT in that task performance depends both on task 
ability and on the participant’s individual decision threshold29. Other tests use a paradigm where participants are 
played two melodies that differ by one note, and their task is to identify which note differed5, 24. This eliminates the 
decision threshold problem, but may introduce an unwanted task dependency with numerical fluency.

In the present research we therefore introduce a three-alternative forced-choice (3-AFC) melodic discrimina-
tion paradigm, which does not require such a decision threshold. In each trial, the participant is presented with 
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three versions of the same melody. Two of these versions possess the same interval structure and are called lures, 
but one version has exactly one note altered, and is called the odd-one-out. These three versions can occur in any 
order, and the participant’s task is to identify which version was the odd-one-out. An example trial is illustrated 
in Fig. 1.

Cognitive model. Many previous studies in experimental psychology have used the melodic discrimination 
paradigm to explore melody perception and cognition29, 44–48. These studies can provide a useful cognitive basis 
for melodic discrimination testing. Here we adopt the cognitive model of melodic discrimination proposed by 
Harrison and colleagues29, which identifies four primary cognitive processes that underlie melodic discrimina-
tion: perceptual encoding, memory retention, similarity comparison, and decision-making.

Perceptual encoding occurs first, with the listener forming a cognitive representation of the melody as it is 
played. This involves extracting a number of different features from the melody, such as pitch content, interval 
content, melodic contour, and harmonic structure. Next, for all melodies aside from the last melody in the trial, 
the participant must retain the melodies’ cognitive representations in working memory. Similarity comparisons 
are then performed between these cognitive representations, making use of the different feature representations 
that were formed in perceptual encoding and stored in memory retention. In the 3-AFC paradigm, we suggest 
that each melody version is compared with every other version, producing three similarity comparisons in total. 
Lastly, the participant performs a decision-making process to determine which melody was the odd-one-out, on 
the basis of these similarity judgements. Two of these melody pairs must be different, and one must be the same; 
the participant’s task is therefore to identify the most similar pair, and then the odd-one-out must be the melody 
not contained within this pair. Other decision strategies are possible, but we suggest that these alternative strate-
gies have similar psychometric implications.

Implications for item difficulty. Item features that impair any of the four primary cognitive processes in 
the melodic discrimination task should be expected to increase item difficulty. Particularly important item fea-
tures are melodic complexity, melodic similarity, conformity to cultural schemata, and pitch transposition29. More 
complex melodies place higher demands on the limited capacity of working memory, and hence result in more 
difficult items47. Increased contour similarity and tonal similarity between melody versions makes the similarity 
comparison task more demanding, hence increasing item difficulty49. Conformity to cultural schemata aids per-
ceptual encoding and memory retention, thereby decreasing item difficulty47, 48. Transposition impairs perceptual 
encoding and similarity comparison, hence increasing item difficulty48.

Melodic complexity, similarity, conformity to cultural schemata, and transposition can therefore all be 
described as radicals: they are features that should contribute to item difficulty. The aim of varying the radicals is 
to produce a suitable range of item difficulties for the adaptive test. In this research we manipulate the first two 
radicals (complexity and similarity) while keeping the second two (conformity to cultural schemata and trans-
position) constant.

Complexity is operationalised as the number of notes in the melody (termed length). Longer melodies are 
more complex, and should therefore result in higher item difficulties. Similarity is operationalised in terms of two 
dichotomous variables: whether the altered melody differs in pitch contour from the original (contour violation) 
and whether the altered note leaves the home key of the original melody (tonality violation). Contour and tonality 
violations should decrease similarity, hence decreasing item difficulty.

Figure 1. Example 3-AFC melodic discrimination item, in traditional music notation (left) and piano-roll 
representation (right). The third melody is the odd-one-out, and the altered note is highlighted.
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Incidentals are features that are expected not to contribute substantially to item difficulty. Manipulating inci-
dentals introduces variation into test items, hence reducing exposure effects and improving generalisability. The 
primary incidental manipulated in the present research is the base melody used for each item. This ensures that the 
participant is always discriminating between unfamiliar melodies. We also treat the position of the odd-one-out 
as an incidental, and randomise it across all trials to prevent it from becoming a response cue.

Prior research usually treats melodic discrimination as a unidimensional ability, occasionally split into (typi-
cally correlated) rhythm and pitch subcomponents4, 23. To maintain a viable scope for the present paper, we focus 
on the detection of pitch differences, and leave rhythmic discrimination to future work. Rhythmic discrimina-
tion aside, the cognitive model described above still describes four primary cognitive processes behind melodic 
discrimination, and individual differences in each of these cognitive processes could lead to a multidimensional 
melodic discrimination ability. For example, an individual might be good at discriminating very similar melodies, 
but bad at retaining complex melodies. Later in this paper we examine this hypothesis empirically.

Item families. Version 1 of the adaptive melodic discrimination test comprises 20 item families. Each item 
family corresponds to a unique combination of the three radicals: two dichotomous radicals (contour violation, 
tonality violation), and five levels of length (6, 7, 9, 12, and 16 notes). Transposition is kept constant, with the 
same starting key being used for all items (D major), and each successive melody in the 3-AFC trial being trans-
posed one semitone higher than its predecessor. Conformity to cultural schemata is also kept constant, with the 
chosen musical idiom being Irish folk melodies.

Version 2 of the adaptive melodic discrimination test expands Version 1 by introducing three more length 
levels (3, 4, and 5 notes). These new length levels are factorially combined with the remaining radicals, producing 
12 new item families and bringing the total number of item families to 32.

Item generation protocol. The purpose of the automatic item generation protocol is to provide an (effec-
tively) unlimited supply of items for each item family. This protocol comprises three main steps: generating the 
base melodies, generating altered melodies, and synthesising the corresponding audio.

Base melodies are generated algorithmically by the computational model Racchman-Jun2015 (Random 
Constrained CHain of MArkovian Nodes)50, 51, which takes as input a corpus of source music in a particular musi-
cal style, calculates a matrix of transition probabilities between musical events, and uses this transition matrix to 
generate new musical extracts in the style of the source corpus. The source corpus used here is the collection of 
Irish folk melodies from the Essen collection52 in simple triple time. Two constraints are placed on base melody 
generation. One constraint is that melodies at a particular length level (e.g. 6 notes) should all occupy the same 
number of musical beats, hence keeping note density constant. Another constraint is that no more than two con-
secutive note events should come from the same melody, reducing the probability that the algorithm will replicate 
a segment of a source melody note for note. A pilot study with 20 participants (mostly university students with 
limited familiarity with Irish folk music) and 80 trials per participant found no significant difference in perceived 
stylistic success between melodies generated by the computational model and melody extracts from the source 
corpus (Welch t-test, t(74.2) = 0.71, p = 0.48). This suggests that the generated melodies should be sufficiently 
realistic for use in the melodic discrimination test.

Four altered melodies are produced for each base melody, one satisfying each combination of contour viola-
tion and tonality violation. Alterations are produced by modifying the relative pitch of exactly one note in the base 
melody, with the following constraints:

 1. For melodies with lengths of 5 notes or fewer, neither the first nor the last note are available for alteration.
 2. For melodies with lengths of 6 notes or longer, neither the first two nor the last two notes are available for 

alteration.
 3. The altered note must not differ from the original note by more than 6 semitones.
 4. The altered note must be between an eighth note and a dotted half note in length, inclusive.

A search algorithm attempts to find alterations that satisfy these constraints while minimising the displace-
ment distance between the altered note and the original note. If four altered melodies cannot be found for the 
base melody, the base melody is discarded and the process starts again with a new base melody.

All stimuli are synthesised from MIDI with identical piano timbre and a tempo of 120 beats per minute. The 
three melodies within each trial are always separated by 1 s of silence, and the first melody within a trial always 
takes the key of D major. Three audio stimuli can be generated from the same combination of altered melody and 
base melody, since the odd-one-out can come either first, second, or third in the 3-AFC trial. Example stimuli can 
be found in the supplementary materials.

Studies
Study 1: First calibration. The primary aim of this first study was to estimate psychometric parameters for 
Version 1 of the adaptive melodic discrimination test. This involved administering automatically generated items 
to a large number of participants and fitting an IRT model to the resulting response data. This IRT model could 
then be used to estimate psychometric parameters for new items.

The automatically generated items spanned a wide range of difficulties, and so effective estimation of item 
parameters required the participants to span a wide range of ability levels. We addressed this by recruiting both 
adults and schoolchildren. The schoolchildren were expected to be less cognitively developed than the adults, and 
therefore to have lower melodic discrimination abilities. We assumed that, otherwise, melodic discrimination 
should be similar in schoolchildren and in adults.
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This study also provided an opportunity to investigate the viability of the proposed adaptive melodic dis-
crimination test. The test’s underlying psychometric assumptions were assessed using various tools from the IRT 
literature, such as unidimensionality tests and model fit statistics. The reliability of item difficulty predictions was 
assessed through the inspection of item discrimination parameters. Construct validity was assessed in terms of 
construct representation and nomothetic span: construct representation was investigated by regressing item diffi-
culties on structural item features, while nomothetic span was investigated by correlating participant abilities with 
other participant attributes40. Lastly, item difficulties were compared to participant abilities to determine the test’s 
suitability for different ability levels.

Method. Participants. Two participant groups were used: one group of adults (N = 158) and one group of 
schoolchildren (N = 266). The adults were recruited via social media and word-of-mouth, and were rewarded by 
a prize draw for a £100 (≈$125) gift voucher as well as the chance to see feedback on their melodic discrimination 
skills. They were approximately evenly split by gender (65 males, 87 females, six anonymous) and ranged in age 
from 18 to 77 years (M = 34.4, SD = 14.6). The schoolchildren, meanwhile, participated as part of a wider study 
investigating a broader range of academic and musical skills53. All schoolchildren were female, and ranged in age 
from 6 to 18 (M = 14.5, SD = 1.79).

Materials. Melodic discrimination test: This study used a non-adaptive instance of Version 1 of the melodic dis-
crimination test. Twenty base melodies were generated for each of the five length levels, which were then crossed 
with contour violation (two levels), tonality violation (two levels), and position of the odd-one-out (three levels) 
to produce 1,200 items in total.

Musical training questionnaire: The musical training questionnaire was sourced from the Goldsmiths Musical 
Sophistication Index (Gold-MSI)11 self-report measure. It comprised seven items addressing the participant’s for-
mal musical background as well as their performance ability. Scores on these seven items were aggregated to 
produce a numeric musical training score for each participant.

Procedure. Data were collected using the Concerto platform54. Adults participated online, agreeing to wear 
headphones and to take the test in a quiet room free from interruptions. Schoolchildren participated in quiet 
classrooms wearing standardised headphones (Behringer, HPM1000).

Adult testing sessions lasted approximately 12 minutes each. Sessions began with the melodic discrimination 
test and concluded with two short questionnaires. The first was the Gold-MSI musical training questionnaire, 
described above; the second comprised some basic demographic questions (age, gender, occupational status). 
Upon completion of the questionnaires adult participants were presented with their total melodic discrimination 
scores.

Schoolchildren testing sessions lasted approximately an hour each, and included the melodic discrimination 
test alongside a number of other listening tests and questionnaires. The questionnaires included the Gold-MSI 
musical training questionnaire and basic demographic questions. Results from other listening tests and question-
naires are not reported here. The schoolchildren received no feedback for their scores.

For all participants, the melodic discrimination test began with a training phase, which included instructions, 
audio examples, and two practice trials. Participants were free to repeat the training phase if they felt unsure about 
the task procedure. After completing the training phase, all participants answered 20 randomly selected items, 
with the constraints that each item family was represented exactly once and that no base melody was heard more 
than once.

Ethics. All experimental protocols in this and subsequent studies were approved by the Ethics Committee of 
Goldsmiths, University of London, and all experiments were performed in accordance with the relevant guide-
lines and regulations. Informed consent was obtained from all participants prior to participation.

Results. Response data were modelled using the item response model described in equation (2) with n = 3. 
The model was fit with approximate marginal maximum likelihood, using the ltm package55 in the statistical 
software environment R56.

Model quality was assessed in several ways. First, model fit for the different item families was assessed using 
Yen’s57 Q1 statistic with 10 ability groups, taking 500 Monte Carlo samples to estimate the distribution of the sta-
tistic under the null hypothesis, and calculating significance levels using Bonferroni correction. No item families 
exhibited statistically significant levels of poor fit, and this result proved robust to variation of the number of 
ability groups. Model fit and conditional independence were then assessed by computing the model fit on the 
two-way and three-way margins, after Bartholomew58. Out of the 760 pairs of items and response patterns exam-
ined for the two-way margins, only one pair (0.13% of the total) was flagged for poor fit by Bartholomew’s58 cri-
terion (test statistic greater than 4.0). For the three-way margins, meanwhile, only 67 out of 9,120 triples (0.73%) 
were flagged for poor fit. Overall, these results suggested that the model fit well and satisfied the assumption of 
conditional independence.

Unidimensionality was then tested using modified parallel analysis59. This involved calculating the second 
eigenvalue of the tetrachoric correlation matrix for the response data, and comparing this eigenvalue to a Monte 
Carlo simulation of its distribution under the null hypothesis. The results showed no evidence for multidimen-
sionality (500 Monte Carlo samples, p = 0.49).

Effective AIG using weak theory requires that items in the same family possess similar item difficulties. In 
the Identical Siblings Model, similar item difficulties lead to higher discrimination parameters43. The observed 
global discrimination parameter for the melodic discrimination test was relatively high (1.31), suggesting similar 
difficulties within item families and hence suitability for AIG.
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A linear regression model was then constructed to investigate the effects of the radicals on item difficulty 
(Fig. 2). The model predictors comprised the three radicals (melody length, contour violation, and tonality vio-
lation), as well as all pairwise interactions between these radicals. Melody length was treated as a continuous 
variable, and linearly scaled to take a mean of 0 and a standard deviation of 1. The resulting regression model was 
statistically significant, F(6, 13) = 21.99, p < 0.001, with an adjusted R2 of 0.869 (Table 1). As hypothesised, longer 
melodies were significantly harder than shorter melodies, while contour and tonality violations significantly 
reduced item difficulty (tonality violations more so than contour violations). However, the interaction effects 
show that the impact of contour and tonality violations depended on melody length. As melody length increased, 
contour violations reduced difficulty less, but tonality violations reduced difficulty more.

Melodic discrimination ability scores (expected a posteriori) were calculated for all participants on the basis 
of the IRT model. A linear regression was then conducted to investigate how sample group and musical training 
contributed to task performance. Nine participants were excluded on account of missing data, and musical train-
ing scores were linearly scaled to a mean of 0 and a standard deviation of 1. The regression was statistically sig-
nificant, F(3, 411) = 118, p < 0.001, and had an adjusted R2 of 0.459 (Table 2). This model indicated that musical 
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Figure 2. Item difficulty as a function of melody length, contour violation, and tonality violation (test Version 
1). Error bars denote one standard error.

Predictor β SE t p

(Intercept) 1.104 0.110 9.997 <0.001***

Melody length 0.494 0.098 5.034 <0.001***

Contour violation −0.377 0.156 −2.411 0.031*

Tonality violation −0.737 0.156 −4.716 <0.001***

Melody length * 
contour violation 0.319 0.113 2.814 0.015*

Melody length * 
tonality violation −0.282 0.113 −2.489 0.027*

Contour violation * 
tonality violation 0.269 0.221 1.216 0.246

Table 1. Linear regression model predicting item difficulty from the radicals (test Version 1). Note. *p < 0.05. 
***p < 0.001. Regression coefficients are standardised.

Predictor β SE t p

(Intercept) −0.293 0.039 −7.515 <0.001***

Adult (vs. child) 0.710 0.066 10.727 <0.001***

Musical training 0.234 0.043 5.425 <0.001***

Adult * musical 
training 0.151 0.064 2.369 0.018*

Table 2. Linear regression model predicting melodic discrimination ability (Study 1). Note. *p < 0.05. 
***p < 0.001. Regression coefficients are standardised.
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training and membership of the adult group were both positively associated with task performance, but that 
musical training was a stronger predictor of performance for the adult group than for the child group.

Ability scores for the two sample groups were then compared with the distribution of item difficulties for test 
Version 1 (Fig. 3). The distribution of item difficulties matched the adult ability distribution relatively well, but 
matched the children less well, who performed significantly worse than the adults (mean child ability = −0.364, 
mean adult ability = 0.614, Welch t-test, t(273.6) = −13.796, p < 0.001).

Discussion. The purpose of this first study was to estimate psychometric parameters for Version 1 of the 
adaptive melodic discrimination test. The results suggest that this process was successful. IRT assumptions of 
model fit, item conditional independence, and unidimensionality were satisfied, and the high item discrimination 
indicated that item difficulty could be predicted well by item-family membership.

Construct representation is the aspect of construct validity concerning the cognitive mechanisms that under-
lie task performance40. We investigated construct representation by regressing item difficulties on structural item 
features. The regression model showed that longer melodies produced harder items, and that contour violations 
and tonality violations produced easier items, as hypothesised. The results support the cognitive model of the 
melodic discrimination task and hence its construct representation.

The regression model also found that the effect of contour violations decreased for longer melodies, whereas 
the effect of tonality violations increased for longer melodies. These results were not predicted in test construc-
tion, but are consistent with prior research. An interaction between contour violation and melody length has 
been described by Edworthy60, who found that listeners are better at detecting contour violations than interval 
violations for short melodies, but better at detecting interval violations than contour violations for long melodies. 
Edworthy60 suggested that this is because contour can be encoded independently of tonal context, unlike interval 
information, whose encoding benefits from the greater tonal context available in longer melodies. Meanwhile, the 
interaction between tonality violation and melody length is consistent with previous work showing that tonality 
violations are easier to detect with greater tonal context61. As melody length increases, tonal context increases, 
and hence tonality violations are more salient, as observed. Both of these effects are consistent with our cognitive 
model.

Nomothetic span is a complementary aspect of construct validity concerning how test-taker scores relate 
to other variables40. We investigated nomothetic span by regressing test scores on other participant attributes. 
Musical training was positively associated with melodic discrimination ability, consistent with prior research4, 6, 11. 
Membership of the adult group positively predicted melodic discrimination ability, perhaps because adults tend 
to possess better developed cognitive abilities, but also perhaps because the adults were better motivated (adults 
opted in for testing, whereas children could only opt out) and less tired (the total length of the testing session was 
shorter for adults than for children). These results are consistent with our conception of melodic discrimination 
ability, and hence support the test’s nomothetic span. However, the limited number of comparison variables limits 
the conclusions that can be drawn; nomothetic span was therefore explored further in Study 2.

It is interesting that musical training was more strongly associated with melodic discrimination performance 
for adults than for children. One explanation is that the test’s difficulty was better suited to the adults than to the 
children, resulting in higher discrimination power, higher reliability, and hence higher correlations between test 
scores and musical training for the adult group.

Our cognitive model describes four primary cognitive processes behind melodic discrimination. Individual 
differences in each of these cognitive processes could lead to a multidimensional melodic discrimination ability. 

Test items
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adults (Study 1)
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Nationally representative
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testers (Study 3)
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Figure 3. Person ability and item difficulty distributions for the four studies and two test versions. As is 
conventional, the widths of the ‘violins’ are proportional to the densities of the smoothed distributions.
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However, the results showed no evidence for multidimensionality. There are several possible interpretations for 
this: (a) multiple abilities exist, but they are highly correlated and hence difficult to distinguish psychometrically; 
(b) multiple abilities exist, but some are more prone to individual differences than others; (c) multiple abilities 
exist, but not all are tested fully by the melodic discrimination task. For practical purposes, however, it seems that 
melodic discrimination can be treated as a unidimensional ability.

Comparing the distributions of ability scores and item parameters indicated that the item bank suited the 
adult sample group well, but did not contain enough easy items for the child group. This limitation was subse-
quently addressed in Study 3. First, however, a study was conducted to validate this first version of the adaptive 
melodic discrimination test.

Study 2: First validation. This purpose of this study was to gather three types of validation information 
about the adaptive melodic description test. First, we aimed to gather population norms for the test, so that future 
test-takers could be evaluated with respect to the general population. The second aim was to investigate the test’s 
nomothetic span, the matter of how test-taker scores relate to other variables. The third aim was to investigate the 
test’s reliability.

Different participant populations are relevant for different scenarios in psychology research and in educational 
testing. One important population is that of the country as a whole. Here we estimated norms for this population 
by testing a nationally representative group sourced by a market research company. However, many music psy-
chology studies do not randomly sample from the entire population, but instead use self-selected sample groups. 
Self-selected participants are more likely to be actively interested in music, and may correspondingly have better 
musical listening abilities. We therefore also collected norms for a sample group of self-selected participants 
recruited by word of mouth and by social media.

Nomothetic span had received preliminary analysis in the previous study, but we explored it further here. 
Three aspects of nomothetic span were assessed: concurrent validity, convergent validity, and divergent validity. 
Concurrent validity is demonstrated when test scores correlate well with test scores from a pre-established test of 
the same ability. Here we investigated concurrent validity with a shortened version of the Musical Ear Test4, which 
has been shown to discriminate reliably between professional musicians, amateur musicians, and non-musicians, 
as well as predicting various aspects of musical expertise. Convergent validity means that test scores correlate 
appropriately with measures of other related abilities. We assessed convergent validity by testing how melodic 
discrimination scores related to musical training; previous research indicated that musical training should be 
positively associated with melodic discrimination scores4, 6, 11. Lastly, divergent validity is shown when test scores 
show an appropriate lack of correlation with measures of theoretically unrelated abilities. Here we assessed diver-
gent validity using a low-level psychoacoustic task where the participant had to determine the order of short 
successive tones.

A reliable test is one that delivers similar results when administered under similar situations. In this study 
we measured test reliability in two ways. First, we used the IRT model to estimate the statistical uncertainty of 
its ability estimates. Second, we administered the test twice to a subset of participants, and investigated how well 
test scores correlated between the two administrations (test-retest reliability). We placed a special focus on inves-
tigating reliability at different possible test lengths, aiming to see whether the test could still perform well when 
shortened.

Method. Participants. The study used two sample groups: a nationally representative group and a 
self-selected group. The nationally representative group was recruited by the market research company ‘Qualtrics’ 
(www.qualtrics.com) and comprised 185 UK residents who participated online in exchange for a small financial 
reward. This group was nationally representative in terms of age, gender, occupation, and geographic location. 
Participant ages ranged from 18 to 73 (M = 43.1, SD = 13.9), with approximately half (92 out of 185) of the partic-
ipants being female. No participants reported hearing problems.

The self-selected group numbered 53 individuals recruited by social media and word of mouth. Most (30 
out of 53) of this group were students, with slightly more females than males (31 vs. 22). None reported hearing 
problems. All self-selected participants were rewarded for participation by entry into a raffle for a £100 (≈$125) 
gift voucher.

Materials. Melodic discrimination test: This study used an adaptive implementation of Version 1 of the melodic 
discrimination test, using the item bank calibrated in Study 1. The CAT algorithm worked as follows. First, each 
participant was administered an item from the item family with the lowest item difficulty. After each item was 
administered, the participant’s ability was estimated using Bayes modal estimation, using a normally distributed 
prior with mean 0 and standard deviation 1. Successive items were then selected from the item family whose 
difficulty level was closest to the present ability estimate. The test terminated after administering 20 items. At this 
point the participant’s ability was re-estimated using weighted maximum-likelihood estimation62, so as to remove 
the bias of the Bayesian prior. The test was implemented using the R package catR27 on the Concerto platform54.

Musical Ear Test: The Musical Ear Test (MET)4 is a musical listening test that uses the ‘same-different’ dis-
crimination task. In its original form, the MET comprises both a 52-item melodic subtest and a 52-item rhythmic 
subtest. For the purposes of time efficiency, we used only the first 20 items of the melodic subtest, so as to shorten 
its length to approximately 4 minutes. The Spearman–Brown prophecy formula63 indicated that the shortened test 
should still have good internal reliability (estimated Cronbach’s α = 0.90).

Adaptive temporal order test: The adaptive temporal order test comprised a computerised adaptive version of 
the psychoacoustic Temporal order for tones test of Kidd and colleagues64. It was constructed for the present study 
using an IRT formulation of the adaptive maximum-likelihood procedure35, and using item parameters estimated 
from the figures provided in the original paper64.

http://www.qualtrics.com
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The test used a 3-AFC procedure. The task was to discriminate the order of two tones of equal duration, one 
of 550 Hz frequency, the other of 710 Hz frequency. Item difficulty was determined by manipulating the length 
of these two tones. The two tones were played without a gap between them, and were preceded and followed by 
100-ms ‘leader’ and ‘trailer’ tones of 625 Hz frequency.

The test administered 20 items from an item bank of 800 items, with the length of the target tones permitted 
to vary between 20 ms and 200 ms. It was implemented using the R package catR27 on the Concerto platform54.

Musical training questionnaire: This study used the same Gold-MSI musical training questionnaire as Study 1.

Procedure. Nationally representative group: Participants from the nationally representative group took the test 
in two waves. All participants from the group participated in Wave 1, and 42 of these participants additionally 
participated in Wave 2. Participants were emailed approximately a week after participation in Wave 1 and given 
the opportunity to participate in Wave 2 in exchange for additional financial remuneration.

Wave 1 comprised an online test battery of approximately 30 minutes in length and administered using the 
Concerto platform54. The test battery started with the adaptive melodic discrimination test. Apart from the item 
selection algorithm, the test’s implementation was identical to the implementation in Study 1, except for the fact 
that participants did not receive any feedback about their final score. Participants then took a prototype version 
of another musical listening test (results not reported here), followed by the Gold-MSI musical training question-
naire and a short demographic questionnaire asking about the participant’s age, gender, and occupational status. 
The test battery concluded with the 20-item version of the MET’s melodic subtest.

Participants took part in Wave 2 approximately one week after participating in Wave 1. Wave 2 comprised an 
online battery of approximately 20 minutes in length, also administered using the Concerto platform. The test 
battery comprised the adaptive melodic discrimination test, the other prototype test, and the adaptive temporal 
order test. All details of the implementation of these tests were identical to Wave 1.

Self-selected group: Participants from the self-selected group took one online test battery approximately 
20 minutes in length, administered using the Concerto platform. The test battery began with the adaptive melodic 
discrimination test, continued with the other prototype musical test (results not reported here), and concluded 
with the same musical training and demographic questionnaires administered to the nationally representative 
group. At the end of the test battery participants were given feedback about the scores that they had achieved in 
the tests.

Results. Person fit. Participant response patterns were screened for poor fit using Snijder’s65 lz* statistic. No 
participants exhibited statistically significant poor fit (one-tailed test, p > 0.05), and so all participants’ data were 
retained for further analysis.

Population norms. Distributions of melodic discrimination abilities are plotted in Fig. 3. Melodic discrimi-
nation abilities in the nationally representative group (M = −1.19, SD = 1.08) were significantly lower than in 
the self-selected group (M = 0.22, SD = 0.96), according to a Wilcoxon rank sum test with continuity correc-
tion (W = 1624, p < 0.001). Likewise, musical training scores in the nationally representative group (M = 16.4, 
SD = 9.3) were significantly lower than in the self-selected group (M = 28.9, SD = 8.9; W = 1481.5, p < 0.001).

Nomothetic span. The nomothetic span of the adaptive melodic discrimination test was assessed in terms of con-
current validity (correlations with MET scores), convergent validity (correlations with musical training scores), 
and divergent validity (correlations with adaptive temporal order test scores). Correlations were computed using 
all participants who took the pairs of relevant tests (Table 3); since different sample groups took different tests, the 
correlations are based on different sample groups and have different degrees of freedom. Two sets of melodic dis-
crimination scores were available for correlating with temporal order test scores, but we solely used the melodic 
discrimination scores collected in the same testing session as the temporal order test (Wave 2). All three validity 
types were supported by the results: ability scores were significantly correlated with the concurrent and conver-
gent validity measures, but were not significantly correlated with the divergent validity measure.

Nomothetic span was then examined as a function of test length (Fig. 4). Correlations with musical training 
scores rose quickly and plateaued early at about 10 items (r = 0.44). Correlations with the MET rose slower but 
for longer, with a moderate correlation (r = 0.40) at a test length of 10 increasing to a more substantial correlation 
(r = 0.53) at a lest length of 20. Lastly, correlations with the temporal order test plateaued at a statistically insignif-
icant correlation of r = 0.24 after about 12 items.

Reliability. Test reliability was first examined using the standard error (SE) of the ability estimates as estimated 
by the IRT model (Fig. 5a). Low SE corresponds to high reliability. For the nationally representative group, mean 

Comparison Type Sample group

Pearson correlation (20 items)

r df p

MET Concurrent Nationally representative 
(Wave 1) 0.530 183 <0.001

Musical training Convergent All participants 0.437 236 <0.001

Temporal order Divergent Nationally representative 
(Wave 2) 0.244 40 0.119

Table 3. Results of nomothetic span comparisons for test Version 1.
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SE plateaued at around 15 items with a value of 1.24. Mean SE was universally lower for the self-selected group, 
and continually decreased as test length increased, reaching a value of 0.68 after 20 items. The difference in SE 
between sample groups was statistically significant at p < 0.05 for all test lengths except for a test length of three, 
which had p = 0.079 (Wilcoxon rank sum tests with continuity correction).

Test-retest reliability was then examined by computing Pearson correlations between ability estimates for 
the nationally representative participants that took the test twice (Fig. 5b). Reliability rose quickly to a value of 
r = 0.67 with 11 items, and plateaued for longer test lengths. Intraclass correlations showed a similar pattern.

Discussion. The aim of this study was to validate Version 1 of the adaptive melodic discrimination test, inves-
tigating ability norms, nomothetic span, and test reliability.

Figure 4. Pearson correlations with validity measures as a function of test length (test Version 1). The three 
horizontal lines indicate two-tailed thresholds of statistical significance at p < 0.05 for the respective validity 
measures.

Figure 5. Reliability as a function of test length and sample group (test Version 1), as assessed by (a) mean SE of 
ability estimates and (b) test-retest reliability (Pearson correlation). The dotted line in (b) indicates the threshold 
of statistical significance at p < 0.05 (two-tailed).
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Ability norms were significantly lower for the nationally representative group than for the self-selected group. 
This seems reasonable, as people who actively volunteer for music psychology studies are likely to possess a 
higher-than-average interest in music, and are likely to be better motivated for the study.

Nomothetic span was supported by measures of concurrent validity, convergent validity, and divergent valid-
ity. High correlations with MET scores indicated good concurrent validity, as the MET has been shown to be a 
reliable measure of musical expertise4. High correlations with musical training scores indicated good conver-
gent validity, since previous studies have found melodic discrimination ability to be associated with musical 
experience and training4, 6, 11. Lastly, low correlations with temporal order discrimination scores indicated good 
divergent validity, as temporal order discrimination is a low-level psychoacoustic task that is ostensibly unrelated 
to melody discrimination. These three validity measures were robust to test shortening, with good validity being 
observed for test lengths of about 10 items.

Two reliability measures were computed: one IRT-based measure (ability SEs derived from the IRT model) 
and one empirical measure (test-retest reliability). The former has the advantage that it does not require partici-
pants to take the test twice, whereas the latter has the advantage that it does not rely on any IRT assumptions. For 
both measures, test reliability plateaued for the nationally representative group at about 10–15 items. According 
to the SE measure, however, test reliability was substantially better (lower SE) for the self-recruited group, and 
did not produce any plateau with test length. This discrepancy was likely due to the differing ability levels of the 
two groups: the item bank did not contain easy enough items for the nationally representative group, resulting in 
decreased test reliability as compared to the self-recruited group.

In conclusion, Version 1 of the melodic discrimination test showed promise in terms of reliability and validity, 
but the validation highlighted the need for the item bank to include additional easy items for administration to 
lower-ability participants. This motivated the construction of the second version of the test.

Study 3: Second calibration. Version 2 of the melodic discrimination test was designed to address the 
lack of easy items in Version 1 of the test. New items were constructed by modifying the AIG process to produce 
additional shorter melodies (see ‘Test Design’ for details). Based on the results of Study 1, it was predicted that 
these shorter melodies should result in lower item difficulties. The purpose of this study was then to estimate psy-
chometric parameters for these new items, so that the items could be used as part of the adaptive test.

Method. Participants. Two participant groups were used: one self-selected group (N = 110) and one group 
recruited from the crowdsourced music testing company ‘Slicethepie’ (N = 118; www.slicethepie.com; the switch 
to this company from Qualtrics was prompted by financial considerations). Self-selected participants were 
recruited similarly to Studies 1 and 2, and were approximately evenly split by gender (52 males, 58 females). 
These participants ranged in age from 18 to 74 years (M = 31.7, SD = 13.9), and most were either at univer-
sity (49 out of 110) or in full-time employment (38 out of 110). Meanwhile, the music-testing group comprised 
more females than males (78 vs. 38), and ranged in age from 15 to 67 years (M = 30.1, SD = 10.8). These partici-
pants represented a greater range of occupational backgrounds (38 in full-time employment, 20 at university, 16 
self-employed, 16 unemployed, etc.). No participants in either group reported hearing problems.

Materials. Melodic discrimination test: This study used a non-adaptive instance of Version 2 of the melodic 
discrimination test. Version 2 contained 12 new item families not found in Version 1; this study used items from 
each of these 12 item families, as well as the 8 item families from Version 1 corresponding to the two lowest 
pre-existing length levels (6 and 7 notes). Items were generated in the same manner as in Study 1, by factorially 
combining base melodies with tonality violation, contour violation, and position of the odd-one-out. 720 new 
items were created for the new item families, whereas items for the old item families were reused from Studies 1 
and 2.

Procedure. Data were collected using the Concerto platform54. Participants took part online, agreeing to 
wear headphones and to take the test in a quiet room free from interruptions. Testing sessions began with the 
non-adaptive melodic discrimination test. As in Study 1, participants first took part in a training phase, and then 
were administered 20 randomly-selected items, with the constraints that each item family was represented exactly 
once and that no base melody was heard more than once. After completing the melodic discrimination test, par-
ticipants then answered a short questionnaire about basic demographic details. At the end of their testing session, 
self-selected participants were given their melodic discrimination score.

Results. Item parameter estimation. Response data were modelled analogously to Study 1, using the item 
response model described in equation (2) with n = 3. Item family fit was assessed using Yen’s57 Q1 statistic with 10 
ability groups, and calculating significance levels using 500 Monte Carlo samples and Bonferroni correction. No 
cases of significantly poor fit were found, a result that proved robust to variation of the number of ability groups. 
Model fit and conditional independence were assessed by inspecting the two- and three-way margins58: none of 
the two-way pairs were flagged, and only 49 out of 9,120 (0.54%) three-way pairs were flagged by Bartholomew’s58 
criterion (test statistic greater than 4.0). Modified parallel analysis59 found no evidence for multidimensionality 
(500 Monte Carlo samples, p = 0.95). In summary, these results indicated that the IRT model satisfied the impor-
tant assumptions of model fit, conditional independence, and unidimensionality.

The newly estimated item parameters were then mapped onto the metric of the previously estimated item 
parameters using mean-mean equating66 as implemented in the equateIRT package67 in R56. This involves com-
puting equating coefficients A and B, which define a mapping from old discrimination (a) and difficulty (bj) 
parameters to new discrimination and difficulty parameters ′ ′( )a b, j  as follows67:

http://www.slicethepie.com
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The optimised values of A and B were A = 1.27 (SE = 0.13) and B = 0.01 (SE = 0.13). The small size of the 
standard errors suggested that the linking process was relatively successful, and therefore could be used to incor-
porate the new item families into the test’s item bank.

Ability distributions. Melodic discrimination ability scores (expected a posteriori) were calculated for all partic-
ipants (Fig. 3). The mean estimated ability in the self-selected group was 0.45 (SD = 0.87), whereas the mean esti-
mated ability in the music testing group was −0.42 (SD = 0.66). The difference in abilities between the two groups 
was statistically significant as assessed by a Wilcoxon rank sum test with continuity correction (W = 10202, 
p < 0.001).

Comparing item parameters to ability parameters. Figure 3 shows that test Version 2 has better coverage at lower 
difficulty ranges than test Version 1, while maintaining coverage at higher difficulty ranges. The resulting item 
difficulty distribution provides good coverage for the two sample groups tested in Study 3 (crowdsourced music 
testers and self-selected adults). However, it still does not contain sufficiently easy items for the lowest-ability 
participants observed in Studies 1 and 2, particularly in the case of the nationally representative adults and the 
schoolchildren.

Discussion. The purpose of this study was to calibrate Version 2 of the melodic discrimination test. Version 
2 was intended to address the lack of easy items in Version 1, and hence improve the test’s discrimination per-
formance for low-ability participants. New easy items were created by running the automatic item generation 
process with a specification for shorter melodies, on the basis of the relationship between melody length and item 
difficulty observed in Study 1. These new items were then calibrated empirically, and their parameters were linked 
with the parameters of previously calibrated items to produce a coherent item bank.

The results indicated good IRT model fit for the new items, supporting their use in the new melodic discrim-
ination test. They also indicated that the new items provide extra coverage at the low end of the difficulty spec-
trum, suggesting that the test should now perform better for low-ability participants.

It was surprising that some participants in Studies 1 and 2 still fell below the ability range covered by the 
newly calibrated test items. We originally hypothesised that reducing melody length to three notes should make 
the memory task trivial, with contour violations being particularly easy to detect. Perhaps some participants 
performed especially poorly on account of clinical impairments (e.g. amusia21). Others may have performed 
poorly due to inattention, task misunderstanding, or defective listening equipment. Alternatively, the 3-AFC task 
might simply place too high demands on auditory working memory for some participants, irrespective of melody 
length. It would be worth exploring these potential explanations in a future laboratory study. Nonetheless, the 
new test can still make ability estimates at these low ability levels, just with lower precision.

Study 4: Second validation. The aim of this final study was to investigate the reliability of Version 2 of the 
adaptive melodic discrimination test. This was addressed using a combination of empirical data collection and 
data simulation.

Method. Participants. The participant group was recruited through the same music testing company used in 
Study 3. There were 162 participants in total, with slightly more than half being female (91 females, 69 males, two 
declining to report gender). Stratified sampling was used to achieve an age distribution approximately represent-
ative of the adult UK population, and participants ranged in age from 17 to 75 years (M = 36.8, SD = 14.0). Most 
participants were either in full-time employment (60 individuals), self-employed (36 individuals), or at university 
(24 individuals). No participants reported hearing problems.

Materials. Melodic discrimination test: This study used Version 2 of the adaptive melodic discrimination test, 
using item parameters estimated in Studies 1 and 3. The same adaptive procedure was used as in Study 2, and the 
item family selected for the starting item remained the same as in Study 2. The online infrastructure remained the 
same as in previous studies.

Procedure. Empirical data were collected using the same procedure as in Study 3, except for the fact that partic-
ipants were given an adaptive test rather than a non-adaptive test, and that no participants were given feedback 
about their performance.

In addition, a simulation experiment was conducted to compare the performance of different test versions. 
The catR package27 was used to simulate item response patterns in various versions of the melodic discrimi-
nation test. Each simulation used 10,000 simulated participants drawn from a normal distribution matched to 
the observed ability distribution in the empirical part of this study. Simulations were run for every test length 
between one and 20 items, and for three different melodic discrimination tests:

 a) Version 1, with randomised (i.e. non-adaptive) item selection;
 b) Version 1, with adaptive item selection;
 c) Version 2, with adaptive item selection.
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Results. Person fit. Participant response patterns were screened for poor fit using Snijder’s65 lz* statistic. No 
participants exhibited statistically significant poor fit (one-tailed test, p > 0.05), and so all participants’ data were 
retained for further analysis.

Ability distribution. The mean observed ability in the empirical data was −0.42 (SD = 1.16). This mean ability 
was approximately halfway between the mean abilities observed for the two sample groups in Study 2 (nationally 
representative group, M = −1.19; self-selected group, M = 0.22; Fig. 3).

Standard error of ability estimates. Mean estimated standard errors (SE) of ability estimates were compared with 
results obtained for the previous test version (Fig. 6a). Version 2 of the test obtained better reliability than Version 
1 for all sample groups tested (pairwise Wilcoxon rank sum tests with continuity correction, p < 0.05 at all time 
points) with a 10-item mean SE of 0.81 and a 20-item mean SE of 0.61.

Simulated reliability. A second measure of reliability was calculated by simulating the Pearson correlation 
between ability estimates and true ability scores (Fig. 6b). Version 2 of the adaptive melodic discrimination test 
outperformed the adaptive Version 1 test, achieving a correlation of r = 0.79 with 10 items and r = 0.88 with 20 
items. The adaptive Version 1 test, meanwhile, outperformed the non-adaptive Version 1 test, with a correlation 
of r = 0.70 (vs. r = 0.63) for 10 items and r = 0.81 (vs. r = 0.73) for 20 items. These differences in correlations were 
statistically significant for all test lengths greater than zero, according to Fisher’s68 z test (p < 0.05) as computed 
by the cocor package69, except when the test contained only one item, in which case adaptive and non-adaptive 
implementations of test Version 1 were not significantly different (p = 0.786).

Conclusion. This study investigated the reliability of Version 2 of the adaptive melodic discrimination test. 
Both empirical data and simulation data suggested that Version 2 provides substantial performance improve-
ments upon Version 1, likely due to achieving better coverage at the low end of the ability spectrum. Additionally, 
the simulation study indicated that both adaptive tests substantially outperform the non-adaptive Version 1 test, 
suggesting therefore that adaptive testing makes an important contribution to the test’s reliability.

General Discussion
The aim of this paper was to demonstrate the application of several modern psychometric techniques to the con-
struction of a melodic discrimination test. These techniques included item response theory (IRT), computerised 
adaptive testing (CAT), and automatic item generation (AIG). Such techniques have been explored in detail in the 
field of psychometrics, but have yet to achieve mainstream usage in psychological research, especially in music 

Figure 6. Reliability as a function of test length, sample group, and test version, as assessed by (a) mean SE 
of ability estimates and (b) Pearson correlation between estimated abilities and true abilities (simulation 
experiment).
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psychology. This is unfortunate, as together these techniques can bring a number of advantages over traditional 
testing methods, including flexible test lengths, sophisticated reliability measures, improved testing efficiency, 
improved construct validity, avoidance of exposure effects, and improved test-construction efficiency.

The four studies conducted here support the viability of the new melodic discrimination test. Construct valid-
ity was assessed both in terms of construct representation and nomothetic span. Study 1 provided strong support 
for the test’s construct representation by successfully modelling the relationship between structural item features 
and item difficulty. Studies 1 and 2 supported the test’s nomothetic span by analysing relationships between test 
scores and other person-level variables. Studies 1 and 3 showed that the test satisfies the standard assumptions 
of IRT modelling. Studies 2 and 4 showed evidence for the test’s reliability, both in terms of empirical test-retest 
correlations, IRT-based standard error estimates, and simulated reliability.

This work has therefore resulted in the construction of a well-validated and psychometrically sophisticated 
melodic discrimination test. This test should be useful for subsequent music psychology research, providing a 
way to assess a core aspect of musical ability efficiently and objectively. The test could also have useful educational 
applications, such as helping to identify appropriate streams for music classes, or to assess listening abilities as 
part of music scholarship exams.

Melodic discrimination is, however, just one of many aspects of musical sophistication. Effective all-round 
musical testing will necessitate extending these modern psychometric techniques to a range of different musical 
abilities, such as the ability to identify intended emotions in expressive music performance70, to discriminate 
rhythmic patterns4–6, and to entrain to a beat37, 38. Some of these abilities will be more challenging to assess than 
others; in particular, tasks that contain subjective aspects such as emotion inference might prove to be harder to 
operationalise than objective tasks such as melody discrimination. Nonetheless, the present paper should provide 
a useful framework for addressing such problems.

This paper has focused primarily on the musical domain, but the techniques described here should general-
ise well to other areas of individual differences research, such as emotional intelligence71 or facial processing72. 
Different applications present different challenges: an emotional intelligence test might require algorithmic gener-
ation of text describing emotional scenarios, whereas a facial processing test might require algorithmic generation 
of pictures of human faces. However, the underlying psychometric principles remain constant, as do the potential 
rewards such as improved construct validity and test efficiency.

The present research was primarily geared towards online testing. Much of the test calibration data were col-
lected online, as were all of the test validation data. We suggest that our new melodic discrimination test should 
also be suitable for laboratory use, but some differences between the two testing environments should be borne 
in mind. Generally speaking, laboratory testing environments are likely to facilitate melodic discrimination com-
pared to online testing environments, since psychology laboratories typically have minimal background noise 
and distractions. This is likely to result in higher estimated participant abilities. Moreover, laboratory testing 
environments are likely to be more consistent than online testing environments, since laboratory participants all 
experience the same environment, and this environment does not change during the test. This is likely to improve 
the test’s reliability.

The accuracy of item difficulty predictions has a direct impact on test reliability. Our results suggest that our 
item difficulty predictions are fairly accurate, but a more accurate predictive model would always be possible. This 
could be achieved in several ways, perhaps by using a larger calibration sample, controlling for a greater number 
of structural item features, or using a more sophisticated IRT model. We aim to explore these possibilities in 
future work.

Most IRT models assume that performance levels stay constant throughout a test. However, real-life situations 
often violate this assumption. For example, as the test progresses, performance might be aided by learning effects, 
or alternatively impaired by fatigue effects. In the present work we aimed to minimise such confounds by includ-
ing practice trials and keeping test lengths short, but some item-position effects may have remained nonetheless. 
One interesting possibility for future work would be to address these item-position effects by incorporating them 
explicitly into the psychometric model (e.g. ref. 73).

Given that the main benefit of CAT is improved testing efficiency, it would be interesting to compare the 
reliability of our test with that of pre-existing melodic discrimination tests. Unfortunately the reliability coeffi-
cients reported by previous studies are all sample-dependent, making it difficult to make meaningful comparisons 
between tests. A proper comparison of reliability would entail administering multiple tests to the same participant 
group and computing test-retest correlations. This would be a time-consuming endeavour, but would produce a 
useful comparison between the various tests available.

The melodic discrimination test described in this paper was constructed specifically with Western listeners in 
mind. Two aspects of the test are particularly Western-centric: the use of Irish folk melodies and the manipulation 
of tonality. Irish folk melodies share many stylistic aspects with Western music as a whole, and hence conform 
to musical schemata with which most Western listeners are familiar. However, non-Western listeners may well 
be less familiar with these schemata, resulting in impaired melodic discrimination performance and lower test 
scores74. Likewise, the salience of tonality violations to Western listeners likely derives from an implicit knowledge 
of Western tonal structure learned on the basis of passive exposure to Western tonal music75. Tonality violations 
may therefore be less salient to non-Western listeners who have not received the same exposure to Western tonal 
music, impairing melodic discrimination performance and lowering test scores as a result. These cultural biases 
should be taken into account when administering the new melodic discrimination test to non-Western listeners. 
An interesting way to address these biases might be to develop different test versions for different musical cul-
tures, perhaps by training the melody generation model on non-Western corpora instead of Irish folk music, and 
recalibrating the psychometric model on response data from non-Western listeners.

The current version of the adaptive melodic discrimination test is available upon request from the researchers. 
We have developed an online implementation using the Concerto platform54 which can be used either for online 
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testing or for laboratory testing. Test length can be specified by the researcher according to practical constraints; 
we suggest a short test (e.g. 10–20 items, 3–6 minutes) when the test is administered together with other individ-
ual differences tests, and a longer test (e.g. 20 to 35 items, 6–9 minutes) if the test is administered independently. 
We anticipate it being a useful tool for subsequent research.
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