
Author’s post-print. Published version available in International Journal of Climatology 

(2017) (in press)   

 

EURO-CORDEX regional climate model simulation of precipitation on Scottish 1 

islands (1971-2000): Model performance and implications for decision-2 

making in topographically complex regions 3 

Aideen Foley1* and Ilan Kelman2 4 

1 Department of Geography, Environment and Development Studies, Birkbeck, University of London. 5 

2 UCL Institute for Risk and Disaster Reduction and UCL Institute for Global Health, University College 6 

London and University of Agder, Kristiansand, Norway. 7 

* Corresponding author: Dr Aideen Foley, Department of Geography, Birkbeck, University of London, 8 

32 Tavistock Square, London WC1H 9EZ. Tel: +44 (0)20 3073 8393  Email: a.foley@bbk.ac.uk 9 

 10 

Running head: RCM extreme precipitation on Scottish islands 11 

Keywords: regional climate models, model evaluation, climate change, uncertainty 12 

  13 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/83943703?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Author’s post-print. Published version available in International Journal of Climatology 

(2017) (in press)   

 
Abstract 14 

Due to their scale and complex topography, islands such as the Hebrides and Shetland Islands are 15 

not fully resolved by global climate models, which may impact the quality of data that can be 16 

provided about future climate in such locations. In principle, dynamical downscaling may provide 17 

helpful additional detail about future local climate. However, there is also the potential for error and 18 

uncertainty to cascade through to the regional simulation. Here, we evaluate the simulative skill of 19 

the EURO-CORDEX regional climate model ensemble on regional and local scales in the Hebrides and 20 

Shetland Islands, and consider the potential for such models to aid decision-making in island 21 

settings, and other locations characterised by complex topography. Several precipitation indices 22 

(accumulated precipitation amount, mean daily precipitation amount, max 1-day and 5-day 23 

precipitation amounts, simple daily intensity, number of heavy and very heavy precipitation days) 24 

are used to assess model performance and identify bias relative to observations. Models are 25 

compared regionally, and at specific locations, namely Stornoway in the Hebrides and Lerwick in 26 

Shetland, for the period 1971-2000.  Regional evaluation utilises the UKCP09 gridded observational 27 

dataset and local evaluation at Stornoway Airport and Lerwick utilises observed mean precipitation 28 

and extreme indices from the European Climate Assessment & Dataset project. While no models 29 

perform skilfully across all the metrics studied, some models capture aspects of the precipitation 30 

climate at each location particularly well. Differences in model performance between the two case 31 

study sites highlight the value of evaluating models on multiple spatial scales. The implications of 32 

model uncertainty for decision-making are also discussed.  33 

1. Introduction 34 

Coastal communities in northern Europe are at risk from a wide range of climate change impacts, 35 

relating to sea-level rise and changing weather patterns, including extreme weather events (Muir et 36 

al., 2014). For island communities, risks associated with climate change may be further compounded 37 

by their geographical characteristics. Geographical remoteness gives rise to specific challenges. For 38 
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instance, Coll et al. (2012) highlights the vulnerability of ferry services of the Western Isles of 39 

Scotland to extreme weather, noting their vital role in local trade and communication networks. In 40 

recent years, the storm of 11-12 January, 2005,  highlighted the  impacts of extreme weather in the 41 

Outer Hebrides, causing five fatalities and  extensive damage to properties and infrastructure (Angus 42 

and Rennie, 2014). There may also be geographical constraints on adaptation options within island 43 

communities. For example, consultation with the community of Kilpheder in the Outer Hebrides has 44 

highlighted local opposition to withdrawing from the coast as it erodes (Young et al., 2014). The 45 

Uists in the Outer Hebrides also contain numerous sites of special scientific interest, most of which 46 

are low-lying and vulnerable to storm damage (Angus and Rennie, 2014). 47 

Given this challenging range of potential climate impacts, it is critical to anticipate and prepare for 48 

future risks through appropriate adaptation measures. Whether approaches to adaptation planning 49 

are top-down (Wilby and Dessai, 2010) or bottom-up (Brown, 2004; Prudhomme et al., 2010), 50 

climate model data may play a role, providing scenarios of climate change but also aiding in critical 51 

thinking around decision-making (Weaver et al., 2013). For example, Tompkins et al. (2008) used 52 

stakeholder analysis, climate change management scenarios and deliberative techniques to assess 53 

long-term coastal management options on the south coast of England and the Orkney Islands off 54 

Scotland. 55 

However, global climate models (GCMs), such as those used in the Coupled Model Intercomparison 56 

Project Phase 5 (CMIP5; e.g. Arora et al., 2013) are still too coarse to represent complex local 57 

topography. While this may not be a limitation when developing adaptation priorities and plans at 58 

the national level, it may become more relevant as we move across spatial scales. For instance, 59 

Trivedi et al. (2008) note how the outcome of model projections of climate change impacts on 60 

Scottish plants is influenced by the choice of spatial scale, leading to different results for adaptation 61 

decisions.  62 
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This limitation can be partially overcome by using downscaling approaches to generate localised 63 

impacts scenarios. The importance of utilising high resolution modelling approaches, either in the 64 

form of regional climate models or statistical downscaling, in the context of certain island 65 

communities has been highlighted by (Cantet et al., 2014), who noted that in their study, the islands 66 

of Lesser Antilles are considered as land by a regional climate model (RCM), but are not resolved at 67 

all by the driving GCM. As the RCM is highly dependent on the driving conditions received from the 68 

GCM (Foley et al., 2013a), such a discrepancy has the potential to significantly impact the simulative 69 

skill of the RCM.  70 

Robust decision-making techniques demand critical reflection on the skilfulness of models and data 71 

being deliberated upon, particularly in topographically complex regions where models and datasets 72 

may lack the resolution to capture local features. Identifying model strengths and deficiencies can 73 

assist in developing bias-corrected RCM projections to inform climate adaptation decision-making 74 

(Dosio, 2016; Dosio and Paruolo, 2011), and can aid more generally in communicating with decision-75 

makers about the uses and limitations of model data. As Patt et al. (2007) describe, Climate Outlook 76 

Forums in Africa led to loss of trust when forecasts (at a much coarser scale than would be relevant 77 

for island communities) were taken as predictions, but the forecasts then did not come to fruition, 78 

highlighting the importance of insuring that decision-makers’ assumptions around the credibility of  79 

models is in line with the expectations of the modelling community. 80 

Yet, while there is a wealth of scholarship on climate model evaluation (E.g. Foley et al., 2013b; 81 

Kotlarski et al., 2014; Sillmann et al., 2013) and on decision-support mechanisms separately, it is 82 

rarer for these two strands of research to come together. Indeed, Goddard et al., (2010) highlights 83 

the need for “chains of experts and communications”, to ensure that climate information is 84 

appropriately disseminated and effectively applied in risk management and decision-making 85 

settings.  86 
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Therefore, in this study, we examine the simulative skill of the RCM ensemble generated by the 87 

CORDEX project on regional and local scales in the Hebrides and Shetland Islands and, informed by 88 

these results, discuss the potential for such data to aid in adaptation planning, drawing on examples 89 

of decision-making practice in other locations characterised by topographical complexity, such as 90 

small island developing states (SIDS; e.g. Kelman and West, 2009; Pelling and Uitto, 2001; Turvey, 91 

2007).  92 

2. Methodology 93 

2.1 Regional climate models 94 

The average grid resolution of CMIP5 models is ~2°in latitude/longitude (European Network for 95 

Earth System Modelling, n.d.), far coarser than would be required to resolve the complex 96 

topography of the Hebrides and Shetland Islands. 97 

Therefore, this study uses the CORDEX RCM simulations for the European domain (EURO-CORDEX) at 98 

the 0.11 degree (EUR-11, ~12.5km) scale (Jacob et al., 2013). The simulations use a rotated pole grid, 99 

with the North Pole at 39.25N, 162W.  The region of interest for this study is a sub-section of the 100 

EUR-11 domain, but no additional modelling takes place using this sub-section. As such, we refer to 101 

it as ‘analysis region’ in Fig. 1 rather than ‘domain’.  102 

The ensemble has previously been evaluated against observational data at the European scale with 103 

the findings that, while the RCMs are capable of capturing key features of the European climate, 104 

they also exhibit nontrivial biases; for example, most simulations studied exhibited excessive 105 

precipitation in summer over northern Europe (Kotlarski et al., 2014).  106 

Differences in how the models are configured (e.g. different calendar conventions) mean that the 107 

modelled data cannot be compared as a daily time series with observations. Instead, the modelled 108 

and observed data are summarised using aggregate metrics. Data are extracted for a 30-year 109 

hindcast period (1971-2000).  The 30 year 1971-2000 period is used as in a future phase of this work, 110 
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results will be used to compute changes in the future 2071-2100 period relative to the baseline. RCM 111 

and driving model combinations are detailed in Table 1. There are 15 simulations in total. 112 

2.2 Observed meteorological data 113 

Firstly, the modelled data is compared with UKCP09 5 km gridded observational data (Perry and 114 

Hollis, 2005). The finer-resolution observed data is interpolated to this coarser grid of the models to 115 

enable comparison.  116 

Secondly, the modelled data is compared to individual station records within the analysis region. 117 

This local evaluation is crucial, given that gridded observational data sets can exhibit deficiencies 118 

stemming from sparseness of meteorological stations (Zhang et al., 2011).  119 

For this second evaluation phase, Stornoway in the Hebrides and Lerwick in the Shetland Islands, 120 

both major population centres and key ports, are selected for study. The Hebrides and Shetland 121 

islands are both characterised by a temperate maritime climate, moderated by the North Atlantic 122 

current. Proximity to North Atlantic storm tracks result in a strong westerly regime. However, 123 

despite these similarities, the two locations differ in terms of latitude and the size of the landmass 124 

(Fig. 1). 125 

Observed precipitation extreme indices were available through the European Climate Assessment & 126 

Dataset (ECAD) project website. Mean daily precipitation amounts were also obtained. Data was 127 

accessed for Stornoway Airport and Lerwick meteorological stations. While raw station data is 128 

available from other sources for other sites in the region, the ECAD data are preferred as they have 129 

undergone quality control and homogeneity procedures. The raw modelled data is interpolated to 130 

the coordinates of these individual meteorological stations for direct comparison with station data.  131 

2.2 Precipitation metrics 132 
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Quantile-quantile (q-q) plots illustrate the similarity of observed and modelled distributions of daily 133 

precipitation amounts. Mean monthly precipitation totals are also calculated and compared with 134 

observations.  135 

Additionally, metrics are selected to capture the extreme statistics of precipitation, including the 136 

intensity, frequency and duration of extreme precipitation events. These metrics are summarised in 137 

Table 2. Similar approaches have been used by the World Meteorological Organization Expert Team 138 

on Climate Change Detection and Indices (ETCCDI, http://etccdi.pacificclimate.org/), and in other 139 

model evaluation studies (e.g. Casanueva et al., 2016; Sillmann et al., 2013). Metrics are calculated 140 

for each year. Annual values are averaged over the hindcast period to yield a single value, and 141 

compared to observed metrics using a percentage error method. 142 

As these annual average metrics could be skewed by the presence of trends in the data, the R2 value 143 

associated with a linear fit to the annual metric values was calculated. R2 values ranged from 0 to 144 

0.3, indicating an absence of major temporal trends. 145 

3. Results 146 

Fig. 2 presents the spatial distribution of bias in the annual accumulated precipitation, Rsum, for 1971-147 

2000. Observed precipitation totals are highly variable across the region, with the highest totals 148 

found in the western highlands, and the east coast tending towards much drier conditions. Several 149 

models have biases that effectively smooth this distribution, with a dry bias in the wettest regions 150 

and a wet bias in the driest regions. As the dry regions are in the rain shadow of the Scottish 151 

mountains, this may indicate that the issue stems from the representation of orography. Fig. 1 152 

illustrates that many models underestimate elevation in the Highlands, which may shift where 153 

orographic precipitation occurs in the models. 154 

Biases do not appear to be linked to the choice of driving GCM, given the diversity of spatial error 155 

patterns across RCMs that share a driving GCM (e.g. Fig. 2, (m), (n), (o)). However, is still inadvisable 156 

http://etccdi.pacificclimate.org/
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to consider RCMs driven by the same GCM as independent simulations, as to do so could lead to 157 

misconceptions about the relationship between model spread and uncertainty in the future climate 158 

projection (Abramowitz and Gupta, 2008). 159 

Evaluating performance at the two case study sites, the models largely capture the observed 160 

distribution of daily precipitation, as evidenced by the close agreement between plotted quantiles 161 

and the 1:1 reference line (Fig. 3). However, the modelled and observed data tends to diverge at the 162 

upper extremes of the distribution. In most cases, the models underestimate the magnitude of 163 

precipitation extremes, but there is not a systematic pattern to this divergence, with certain models 164 

overestimating precipitation values in the upper tail at one location, and underestimating in the 165 

other location. As such, it could be challenging to correct for these biases when using the data to 166 

simulate future climate. 167 

Fig. 4 presents mean monthly modelled and observed precipitation totals over the period studied. 168 

Some models, e.g. panel (a), represent the distribution of precipitation across the year at each site 169 

with skill, while others model a more uniform precipitation climate than observed, e.g. panel (d). As 170 

before, model performance is in some cases variable between sites, e.g. panel (o), with the lack of 171 

consistency in bias posing a potential problem for end-users of the data. Several models 172 

underestimate winter precipitation at one or both locations, which, if left uncorrected in future 173 

projections, could lead to an inaccurate perception of risks. Model (d) exhibits an especially flat 174 

distribution of precipitation at Stornoway Airport; this model had a strong dry bias in the Highlands 175 

(north-west, Fig. 2), where it underestimates elevation. Corresponding errors in orographic 176 

precipitation would be more prominent in the winter months, when precipitation tends to be 177 

associated with Atlantic depressions, than in spring and summer, when precipitation may take the 178 

form of convective showers, leading to a flatter annual distribution. These results highlight how 179 

regional climate modelling and the development of local climate projections rely on chains of 180 
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inferences, which must be evaluated within the local geographical context if they are to add value to 181 

decision-making. 182 

Lastly, Table 3 presents a range of precipitation metrics, calculated for each model and compared 183 

with observations. Shading indicates the magnitude and direction of percentage error when 184 

comparing modelled and observed metrics, with red indicating overestimation of the observed 185 

metric, and blue indicating underestimation. 186 

4. Discussion 187 

This research has demonstrated that RCMs may be limited in their ability to capture the extreme 188 

precipitation of Scottish island climates. Models in this study tend to perform well for a selection of 189 

metrics, but not all metrics and all case study sites. For instance, CCLM4-8-17 driven by EC-EARTH 190 

overestimates Rsum for Stornoway Airport, but captures values of R10 and R20 with remarkable 191 

accuracy (Table 3). Overestimation at this location occurs mainly in the summer months in this 192 

model (Fig. 4), and therefore this error has less impact on the calculation of wet extremes. However, 193 

deficiencies in the representation of summer precipitation may lead to misunderstanding of levels of 194 

risk in that season. 195 

Differences in model performance between the two case study sites highlight the value of evaluating 196 

models on multiple spatial scales. Results highlight the pitfalls of examining climate means only in 197 

model assessments. Some models (e.g. RACMO22E driven by HadGEM2-ES: Table 3) that capture the 198 

observed values of Rsum and Rmean with skill demonstrate a more limited capacity to capture metrics 199 

of extremeness, such as R10 and R20.  200 

While further developments in climate modelling and computing techniques should reduce some of 201 

the uncertainty associated with model projections, it cannot remove all error. Thus, uncertainty 202 

needs to be seen and conveyed as the norm, within which decision-making can and should take 203 

place, rather than as a barrier to decision-making. Such normalisation, rather than problematisation 204 
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of it, shifts decision-making away from a computation strategy, and towards approaches that will 205 

increasingly require stakeholder and community engagement (de Boer et al., 2010). Climate models 206 

can still add value in these contexts, by providing benchmarks against which to evaluate different 207 

adaptation and risk management proposals, e.g. within the context of a robust decision-making 208 

framework (Hall et al., 2012).  209 

However, Weaver et al. (2013) note that climate models are currently underutilised as decision-210 

support tools, due in part to the misconception that climate models are ‘prediction machines’ rather 211 

than ‘scenario generators’. The difference between ‘prediction’ and ‘projection’ needs to be 212 

emphasised to overcome this view. Projections are much more about suggesting scenarios under 213 

given circumstances, including certain and uncertain components, rather than providing 214 

probabilities of specific circumstances occurring.  215 

Scenarios have long been an important component of development- and disaster-related planning, 216 

which may encompass climate change adaptation, using methods such as “Future Search” (Weisbord 217 

and Janoff, 2009) and participatory action research (Maskrey, 2011). Daly et al. (2010) used 218 

participatory processes to produce coastal maps for Samoa, indicating contemporary and possible 219 

future hazards and vulnerabilities, combining external and local knowledge. Gaillard and Maceda 220 

(2009) describe Participatory 3-Dimensional Maps (P3M), developed and piloted in the Philippines, 221 

in which external scientists and local community members use local materials to construct a scale 222 

model of the community and then identify current and future risks. Island settings especially benefit 223 

from such approaches as the small spatial scale makes localisation essential, and achievable only 224 

with local input, due to the coarseness of external datasets.  225 

Similar approaches have also been analysed for Himalayan countries, indicating that the smaller, 226 

more isolated communities are likely to be more affected by climate change but that using only 227 

models in a top-down fashion does not and cannot meet those communities’ needs (Lamadrid and 228 

Kelman, 2012). Much more localisation was needed, with uncertainty per se not being a concern, 229 
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because as long as the uncertainties were indicated clearly, they could be incorporated into 230 

decision-making. By modellers working with various sectors within communities and providing 231 

model results, projections, and products which users request, top-down bottom-up adaptation is 232 

implemented and becomes much more effective and suited to local contexts.  233 

Given the modelling uncertainties identified in this study, questions worth exploring though 234 

scenario-based methods may include what sort of safety margins should be considered in planning 235 

to account for this uncertainty. What if designs are completed to allow for plenty of contingency, but 236 

then the actual extreme precipitation events are substantially less than the models project? Working 237 

through such scenarios and mapping out the positive and negative consequences can assist decision-238 

makers in deciding the costs and benefits which they might face depending on decisions made under 239 

uncertainty. Importantly, approaches must incorporate the knowledge of modellers into planning 240 

and decision-making, without letting this scientific knowledge dominate, or be dominated by, local 241 

needs and knowledge.  242 

5. Conclusions 243 

This paper provides a first-order examination of CORDEX RCMs’ ability to capture the characteristics 244 

of precipitation, including extremes, for two locations in the Scottish isles, Stornoway Airport and 245 

Lerwick. We find significant inter-model variability, with no model emerging as skilful across all 246 

metrics and case study sites when compared with contemporary climate observations. While further 247 

analyses, such as circulation type classification (Davies et al., 1990; Foley et al., 2013a), could be 248 

applied to attempt to determine the causes of biases, such information is likely to be more helpful 249 

for model developers than model end-users. Instead, this paper has sought to examine the potential 250 

for regional climate model data to add value to decision-making on local scales, accepting that it is 251 

likely not feasible to seek to address all model errors. 252 
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Future work will utilise these results to generate bias-corrected future scenarios of regional climate 253 

change. However, in light of the inherent uncertainty, it is particularly important to consider how the 254 

skill of models, and skill variations within different contexts, are effectively conveyed to users, in 255 

addition to model results. For example, the Pacific ENSO (El Niño Southern Oscillation) Applications 256 

Center (PEAC) uses climate forecasting and projections to inform longer-term and wider climate-257 

related capacity building and vulnerability reduction efforts for the American-affiliated Pacific 258 

islands, providing both model results and interpretation of those results (Schroeder et al., 2012). As 259 

with the Climate Outlook Forums—which have been held for islands in the Caribbean (Glantz, 2000), 260 

but never evaluated to the extent of Patt et al.'s (2007) work in Africa—it is an important example of 261 

top-down bottom-up adaptation, through working with communities to make climate science 262 

useable. Their work and methods could be emulated for the Scottish islands to provide users with 263 

understandable and useable information about climate models, including their limitations, and how 264 

to use them. 265 

If climate models are conceptualised as ‘prediction machines’, then the value to decision-making of 266 

this data may be perceived as limited. However, if models are considered as ‘scenario generators’, 267 

the data could be used effectively alongside other forms of knowledge, such as contemporary and 268 

historical climate data, and stakeholder inputs. Further research is needed to explore how to 269 

exchange with users regarding the workings and results of climate models, and their applications. 270 

This could include determining the level of detailed information required by different users, how the 271 

presentation of scenarios can be tailored to users, and optimal visualisation approaches for different 272 

contexts (see also Tufte and Graves-Morris, 1983). Visualising uncertainties would be an important 273 

component, to assist in conveying the importance of considering uncertainties without allowing 274 

them to hamstring decision-making.  275 
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 405 

Fig. 1 Top panels: Analysis region (red) in context of EUR-11 domain (dotted line) (left) , and actual 406 

orography in metres at 1 km (right), generated using NOAA NGDC Global Land One-kilometer Base 407 

Elevation project (GLOBE) data. Bottom panels: Modelled orography and coastlines. 408 
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 409 

Table 1 EURO-CORDEX RCM and driving GCM combinations and letter references for figures. 410 

ID Indicator  Unit 

R
sum

 Accumulated precipitation amount mm 

R
mean

 Mean daily precipitation amount  mm 

R
X1day

 Max 1‐day precipitation amount  mm 

R
X5day

 Max 5‐day precipitation amount  mm 

SDII 
Simple daily intensity  
(Ratio of total precipitation to number of wet days) 

mm/day 

R
10

 Number of heavy precipitation days  (≥ 10 mm)                  days 

R
20

 Number of very heavy precipitation days (≥ 20 mm)                 days 

 411 

Table 2 Description of precipitation met 412 

  413 

  
Regional climate model 
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CCLM 

4‐8‐17 
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d

el
 CM5A‐MR     a   b 
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EC‐EARTH  f g h i   
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MPI‐ESM‐LR  m   n o 
 



Author’s post-print. Published version available in International Journal of Climatology 

(2017) (in press)   

 

 414 

Fig. 2 Modelled mean annual Rsum bias relative to UKCP09 observations (mm). 415 

 416 
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 417 

Fig. 3 Q-Q plots of observed versus modelled daily precipitation (1971-2000), with best-fit lines, for 418 

Stornoway Airport (blue) and Lerwick (magenta). The 1:1 reference line is indicated (black).  419 
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 420 

Table 3 Observed and modelled precipitation metrics, calculated per year and averaged over 1971-421 

2000. Shading indicates magnitude and direction of percentage error when comparing modelled and 422 

observed metrics. 423 


