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Legionnaires’ disease is a severe form of pneumonia caused by
the bacterium Legionella pneumophila. L. pneumophila path-
ogenicity relies on secretion of more than 300 effector proteins
by a type IVb secretion system. Among these Legionella effec-
tors, WipA has been primarily studied because of its depen-
dence on a chaperone complex, IcmSW, for translocation
through the secretion system, but its role in pathogenicity has
remained unknown. In this study, we present the crystal struc-
ture of a large fragment of WipA, WipA435. Surprisingly, this
structure revealed a serine/threonine phosphatase fold that
unexpectedly targets tyrosine-phosphorylated peptides. The
structure also revealed a sequence insertion that folds into an
a-helical hairpin, the tip of which adopts a canonical coiled-
coil structure. The purified protein was a dimer whose dimer
interface involves interactions between the coiled coil of one
WipA molecule and the phosphatase domain of another. Given
the ubiquity of protein-protein interaction mediated by inter-
actions between coiled-coils, we hypothesize that WipA can
thereby transition from a homodimeric state to a heterodimeric
state in which the coiled-coil region of WipA is engaged in
a protein-protein interaction with a tyrosine-phosphorylated
host target. In conclusion, these findings help advance our
understanding of the molecular mechanisms of an effector
involved in Legionella virulence and may inform approaches to
elucidate the function of other effectors.

Legionnaires’ disease is a severe form of pneumonia first
reported in 1976 during an American Legion convention in
Philadelphia caused by the pathogen Legionella pneumophila
(1). Legionella bacteria annually infect ~15,000 people in the
United States, and similar numbers are reported in Europe.
Approximately 10% of these cases are lethal, particularly for
older or weaker people (2). Nosocomial outbreaks of the disease
are more severe, resulting in fatality rates up to 50% (3-5).
Treatment may require antibiotics for several weeks up to years
for chronic cases. Understanding the mechanisms by which
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Legionella strains cause infections is therefore important.
Moreover, there are striking similarities between the pathoge-
nicity mechanisms from Legionella and those from other bac-
terial pathogens such as Cowxiella burnetti, Mycobacterium
tuberculosis, and Rickettsiella grylli (6 -8).

Legionella bacteria are ubiquitous and mainly parasitize
freshwater protozoa (7). However, pathogenic strains can sur-
vive and replicate within alveolar macrophages after inhala-
tion of aerosols (e.g. from air-conditioning systems, hot
baths, showers) (9). Within the macrophage, the bacterium
establishes a protected vacuole (Legionella-containing vacu-
ole) that bypasses the usual phagosome maturation pathway
and provides an adequate niche in which the bacterium can
multiply and propagate (10). The most important virulence fac-
tor of L. pneumophila is a type IVb secretion system (T4bSS,
also known as the Dot/Icm secretion system)® (8). Proteins
secreted by the T4bSS (also known as protein effectors or effec-
tors) are directly involved in the construction of the Legionella-
containing vacuole, and in general they interfere with a large
variety of functions in the host organism (10, 11). Overall, ~300
open reading frames have been identified as effectors secreted
by the Dot/Icm system, which is ~10% of the entire L. pneumo-
phila genome (11). During the first step of protein transloca-
tion, specific chaperones (e.g. IcmSW, a chaperone consisting
of two proteins, IcmS and IcmW) bind effectors and promote
their secretion via the T4bSS. A number of effector proteins also
appear to have C-terminal signal sequences that target them to the
T4bSS, and many of these sequences are highly negatively charged,
being composed of glutamate residues (E-blocks) (12). However,
these block sequences are not universal, and the recruitment mode
of effectors remains unclear (12, 13).

Here we describe the crystal structure and biochemical prop-
erties of WipA (or IcmW-interacting protein A; lpg2718), an
effector protein originally identified because of its dependence
on the IcmSW complex for translocation, but for which the
function is unknown (14). The crystal structure reveals a
two-domain structure comprising a metallophosphoesterase
attached to an 85-A-long a-helical hairpin forming a coiled-coil at

2 The abbreviations used are: T4bSS, type IVb secretion system; RMSD, root
mean square deviation; PDB, Protein Data Bank; DiMFUP, 6,8-difluoro-
4-methylumbelliferyl phosphate; PTP, protein-tyrosine phosphatase;
CAPTPase, cold-active PTP; SeMet, selenomethionine; AU, asymmetric
unit; SEC-MALS, size-exclusion chromatography and multiangle light
scattering; FGFR, fibroblast growth factor receptor; BME, 3-mercapto-
ethanol; SEC, size exclusion chromatography.
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Crystal structure of the Legionella effector WipA
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Figure 1. Purified WipA proteins. Left panel, SDS-PAGE of purified WipA fragments. Right panel, table with the corresponding molecular masses.

its tip. Although WipA exhibits a serine/threonine phosphatase
fold, it functions preferentially as a protein-tyrosine phosphatase
(PTP), even though there are no structural similarities to the gen-
eral PTP fold (15). Site-directed mutagenesis of key residues in the
active site confirm the catalytic mechanism based on a binuclear
catalytic center. The protein forms homodimers in solution, and
the dimer is mediated by the tip of the helical hairpin domain. We
anticipate that the helical hairpin forms an extended binding area
for protein-protein interactions in the host cell.

Results
Purification of WipA and WipA fragments

WipA (520 residues in total) was initially expressed as a
fusion protein containing a decahistidine tag at the N terminus.
The protein, however, degraded into shorter fragments, the
most prominent of which had a molecular mass of 46 kDa. Mass
spectrometry analysis of this fragment yielded a sequence cov-
erage that included amino acids at the N and C termini from
residue 34 to residue 411. A construct of this core domain
(termed “WipA411”) was therefore produced, expressed, puri-
fied (Fig. 1), and crystallized, yielding crystals diffracting to 1.84
A resolution. Its structure was determined using the sin-
gle-wavelength anomalous dispersion method applied to
selenomethionine (SeMet)-substituted crystals of WipA411
(Table 1). Residues including nine residues of the N-terminal
His tag linker and the protein sequence up to residue 410
were visible in the electron density and were therefore
included in the final model. The WipA411 crystals contain
one molecule/asymmetric unit (AU) and no metal. Subse-
quently, a larger fragment, from residue 24 to residue 435
(termed “WipA435”) was produced containing a more com-
plete active site. WipA435 crystallized in the presence of MnCl,
and crystals diffracted to a resolution of 1.75 A. They contained
two molecules/AU. The WipA435 structure was determined
by molecular replacement using the WipA411 structure as a
search model (Table 1). The model of WipA435 contains residues
24—418 in one molecule and residues 24-—422 in the other. The
two protomers of WipA435 superimpose with each other with an
RMSD value of 0.72 A, suggesting identical structures.
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Larger fragments of WipA have the propensity to degrade from
the C terminus. Therefore, further attempts at producing these
and the full-length protein focused on C-terminal uncleavable
hexahistidine-tagged versions (supplemental Table S1). We were
able to purify a larger fragment of WipA, from residue 24 to resi-
due 503 (WipA503), as well as a more stable full-length protein
(Fig. 1); however, none of them crystallized. These proteins and
mutants thereof were, however, used for biochemical and activity
assays.

Overall structure

The description of the WipA structure focuses here on
WipA435, the most complete structure obtained. The WipA
monomer has overall dimensions of 104 X 66 X 44 A and is
comprised of two domains, a globular domain (in green and
yellow in Fig. 2) flanked by an 85 A long a-helical hairpin (in red
in Fig. 2). The globular domain consists of a central B-sandwich
flanked by a-helices (in green and yellow, respectively, in Fig. 2).
Each B-sheet in the B-sandwich is formed of four B-strands,
three of which are in a parallel configuration (81, 82, and 3 in
one B-sheet and B35, 86, and 37 in the other), whereas the fourth
(B8 for the first sheet and B4 for the second) forms an antipar-
allel side strand (Fig. 2B). The B-sandwich is decorated by ten
helices, five on either side of the central B-sandwich (in yellow
in Fig. 2). Thus, except for strand 8, which is formed by the
C-terminal end of the protein sequence, each B-sheet and their
associated five helices are clearly partitioned along the protein
sequence, with f1-3 and a1-5 formed by the N-terminal half
of the protein, whereas the C-terminal half of the protein forms
B4-7 and a6-10 (Fig. 2B).

A search for structures homologous to the WipA globular
domain in the Protein Data Bank using the DALI server (16)
revealed more than 70 deposited entries with RMSD values
between 2.0 and 3.0 A. All domains belonged to the metallo-
phosphoesterase family of proteins, which is a widely distrib-
uted superfamily among taxa (17), and require a variety of dif-
ferent metals for catalysis. The archetypal member of this
family is the bacteriophage A-phosphatase (17). This family of
proteins includes notably a very large number of serine/threo-
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Crystal structure of the Legionella effector WipA

Table 1
Data collection and refinement statistics
Information for the highest resolution shell is given in parentheses.

WipA 33-411

Native

SeMet

WipA 24—435 (native)

Data collection

Beamline 102 (Diamond) P13 (EMBL/Petralll) P13 (EMBL/Petralll)
Wavelength (A) 0.97949 0.9796 0.9999
Resolution range (A) 80.69-1.84 (1.94-1.84) 81.17-2.40 (2.54-2.40) 46.5-1.75 (1.84-1.75)
Space group Cc2 Cc2 P4,2,2
Cell parameters a, b, ¢, B (A, grad) 103.06, 57.48, 80.71, 91.15 103.16, 58.27, 81.20, 91.73 80.65, 80.65, 321.98
Total reflections 127,897 115,421 785,524
Unique reflections 38,861 34,054 108,230
Multiplicity 3.3(3.2) 3.4 (2.8) 7.3(7.3)
Completeness (%) 94.5 (80.5) 91.9 (62.3) 99.9 (100.0)
Mean I/o(I) 16.2 (1.58) 12.61 (0.96) 13.94 (1.25)
Wilson B-factor (A?) 46.8 79.8 34.6
R erge (%) 3.9 (95.1) 4.7 (73.8) 7.2 (135.6)
CC1/2 0.999 (0.900) 0.998 (0.603) 0.998 (0.555)
Refinement
Ryond Revee (%) 21.89/25.71 17.98/21.50
work! CClee 0.968/0.946 0.950/0.955
Protein atoms 3220 6631
Solvent molecules 154 629
Other atoms 4 Xacetate 4XMn*"
2XPO>"
6XBr~
2XMPD
1XBME
B-factor (A?)
Protein 60.91 43.20
Solvent 56.39 46.28
Ramachandran plot
Favored (%) 96.88 97.77
Allowed (%) 3.12 2.23
Outliers (%) 0.00 0.0
Clash score 7.00 3.66
RMSD
Bonds (A) 0.005 0.007
Angles (grad) 1.323 1.085
PDB code 5N72 5N6X

nine phosphatases including the PP1, PP2«, and PP5 subfami-
lies (Fig. 3, A and B, and supplemental Fig. S2). Among struc-
tural homologues, however, we identified one particularly
intriguing and unique phosphatase, the cold-active PTP from
Shewanella spongiae (PDB code 1v73; Fig. 3B) (18). The latter
was the only PTP in the list of structural homologues returned
by the DALI server. To date, S. spongiae cold-active PTP is the
only member of the metallophosphoesterase family to have
been shown to have tyrosine dephosphorylation activity. Clas-
sical PTP folds superpose poorly with either WipA435 or
S. spongiae structures (Fig. 3C).

What makes the structure of WipA unique is the presence of
the a-helical hairpin. This substructure is formed by a sequence
inserted between the two strands of a small B-sheet (81" and
B2’ colored in brown in Fig. 2) that links it to the globular
domain. The WipA «-helical hairpin displays a 161° antiparallel
left-handed twist spanning residues Asn®°-Ala'® (helix
aC1) and GIn''*-GIn'®® (helix «C2). Approximately one-
third of the hairpin is interacting with the globular domain.
The free-standing region of the a-helical hairpin (i.e. the
region of the hairpin not interfacing with the globular
domain) includes residues Leu®*—Leu’®® in the aC1 helix
and Leu'?*°~Leu'*! in the aC2 helix, and this region of the
hairpin forms a canonical coiled coil. The hairpin/globular
domain interface includes eight Hydrogen bonds (H-bonds)
and three salt bridges contributed by residues in a-helices a1,

9242 J Biol. Chem. (2017) 292(22) 9240-9251

@2, and o4 (Fig. 4A4). The 1,450 A2 of the interface area repre-
sent ~17% of the total hairpin surface.

WipA forms dimers in solution

Both WipA crystal structures suggest interaction interfaces
of potentially biological relevance (Fig. 4B and supplemental
Fig. S1). The first is between the tip of the a-helical hairpin of
one molecule and the globular domain from a symmetry-re-
lated molecule and is observed in both the WipA411 and
WipA435 structures (supplemental Fig. S1, A, left panel, and
interaction details in B). This interface includes five H-bonds
and one salt bridge covering a surface area of ~550 A% The second
interface is observed only in the WipA435 crystals and involves a
disulfide bridge from Cys*'* and a Mn*" ion coordinating two
Asp™ residues from symmetrically related molecules (supple-
mental Fig. S14, right panel). This interface, 780 AZ in size,
includes seven H-bonds. To identify whether any of these dimers
are present also in solution, we ran a series of size-exclusion chro-
matography and multiangle light scattering (SEC-MALS) experi-
ments using the full-length protein and different fragments
thereof. Overall, all proteins including the shorter WipA411 elute
asdimers (Fig. 4C). Thus, WipA is dimeric, and the interface medi-
ating dimer formation is likely the region involving the coiled-coil
tip of the a-helical domain. To test this hypothesis, we deleted this
region including residues 88 —137 in the WipA503 construct and
conducted SEC-MALS experiments to test dimer formation. We

SASBMB
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Crystal structure of the Legionella effector WipA
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Figure 2. The WipA structure and folding topology. A, cartoon representation of the WipA435 structure in two orientations rotated by 180°. Color coding is
based on the secondary structure elements and domains: a-helical hairpin in red, B-sheet linking the hairpin to the phosphatase domain in brown, remaining
B-strands in green, and a-helices in yellow. The N and C termini of the protein and the secondary structure elements are labeled. The manganese ion is
represented as a purple sphere, and the two coordinated water molecules are small red spheres. Key residues highlighting the active center are represented as
sticks. In the panel at right, the edge strands 87 and 38 are clearly visible: they contain residues 411-422, i.e. the region missing in WipA411 but present in
WipA435. B, the WipA435 folding topology. Color codes are as in A. The two central B-sheets are highlighted by dashed boxes. The positions of the phosphoe-

sterase motifs residues are labeled as solid black circles. The Arg®®® involved in the phosphotyrosine specificity is indicated with a white circle.

observed that this fragment missing the part of the interacting
region of the helical hairpin elutes as a monomer (Fig. 4C). These
results suggest that the protein in solution forms an antiparallel
dimer with the helical hairpin bridging two globular domains.

The active site

The strong structural homology of WipA with metallophos-
phoesterase family proteins suggested that metal ions, includ-

SASBMB

ing Mn>*, may be identified bound to WipA435. We therefore
collected a data set at the Mn>" K-edge (supplemental Table
S2). A difference anomalous Fourier map revealed the presence
of four Mn" ions: one in each molecule refined to full occu-
pancy that appear strongly bound (Fig. 54), two (one at the
interface between two WipA molecules (supplemental Fig.
S1A, right panel), and one in chain B in the proximity of the
active site) appearing to be weakly bound. The strongly bound
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Crystal structure of the Legionella effector WipA

A

Figure 3. Structural comparison of WipA with other phosphatases. A, cartoon representation of superposed structures from WipA in same color coding as
in Fig. 2 and the CAPTPase from S. spongiae in cyan (PDB code 1v73). Secondary structure elements of WipA common to both WipA and CAPTPase are labeled
according to Fig. 2 (the conserved a5-helix is not shown in this orientation). B, cartoon representation of superposed WipA (color-coded and oriented as in A)
and the human serine-threonine phosphatase PP1« in magenta (PDB code 3e7b). Secondary structure elements of WipA common to both WipA and PP1« are
labeled (the conserved a5-helix is not shown in this orientation). C, comparison of an archetypical protein-tyrosine phosphatase, PTP13 (PDB code 1pty) (left
panel) and WipA (right panel). Color coding of WipA is as in Fig. 2, whereas for PTP1, color coding is yellow for helices and green for strands.

ions locate within proximity of three sequence motifs (DXH,
GDXXDR, and GNHE) known to be signature motifs for met-
allophosphoesterases (17) (see below and supplemental Fig.
S2), suggesting that these ions (one in each protomer) might be
catalytic ions and that the residues around them might form the
active site. A strong additional density was also observed near
these Mn?" ions; this density was present in the composite omit
map (supplemental Fig. S1C) but not present in the anoma-
lous Fourier map obtained at the Mn®" edge. It was, how-
ever, larger in diameter than water and was interpreted as
phosphate, which is frequently observed at this position in
similar structures such as PP1a, PP23, PP5, and A-phospha-
tase (17, 19-21).

The DXH, GDXXDR, and GNHE sequences are located in
the B1-al loop (Asp®® and His??), B2-a2 loop (Asp*®°, Asp'®*,
and Arg'®), and the a2 helix (Asn*>'? and His*'?), respectively
(Fig. 2B and supplemental Fig. S2). All three sequences in the
structure locate in one region of the structure, suggesting that
the active site of WipA is located there (Fig. 54). This region
indeed comprises the one fully occupied Mn>" cation
described above in a tetrahedral bipyramidal arrangement
coordinated by the WipA residues Asp'®°, His**° (a residue
outside the phosphatase motifs), and Asn*'?, two water mole-

9244 | Biol. Chem. (2017) 292(22) 9240-9251

cules, and a phosphate ion (Fig. 54). The phosphate ion is
observed interacting with His*'?, the imidazole group of which
is acting as a proton carrier, supported in this role by the char-
ge-relay residue Asp'®*. Two oxygens from the phosphate ion
are further coordinated with the a-amino group of Arg'®® (Fig.
5A). Finally, Arg®>®®, a residue only conserved between WipA
and the cold-active PTP from Shewanella, projects toward the
phosphate ion but makes only a distant interaction with it (sup-
plemental Fig. S3A).

To assess whether WipA has phosphatase activity, purified
WipA and six mutants of the full-length protein were assayed
for hydrolysis of 6,8-difluoro-4-methylumbelliferyl phosphate
(DiIFMUP) substrate in the presence of 2 mm Mn>" using the
EnzChek phosphatase assay kit from Molecular Probes, a kit
particularly well suited to the monitoring of any phosphatase
activities in any proteins (Table 2). Five of the six mutants were
single-site mutants and included the mutations H32A, D180A,
R185A, H213A, and R369A (see location of these residues in
Fig. 5A4). One additional mutant consisted of full-length WipA
in which the 88 —137 region of the helical hairpin was deleted: as
shown above, this mutant is monomeric and was assayed for
phosphatase activity to test whether dimerization affects WipA
enzymatic activity.
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Crystal structure of the Legionella effector WipA
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(kDa) (kDa)
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Figure 4. WipA domain interfaces. A, cartoon representation of the interface between the phosphatase domain and the a-helical hairpin in WipA. Key
secondary structure elements of WipA are labeled, and color coding is as in Fig. 2. The interaction is based on an H-bond and salt-bridge network that is
highlighted by dashed lines. B, cartoon representation of the functionally relevant dimer of WipA. This dimer is found in both WipA411 and WipA435 crystals.
Itis mediated by interaction between the coiled-coil region of the a-helical hairpin and the globular phosphatase domain, which was shown to be the relevant
dimerin solution (see main textand C). C, SEC-MALS analysis of various WipA fragments. The inset reports on the MW measured experimentally using SEC-MALS

and the molecular mass calculated from the sequence.

Because mutations may affect the stability of the mutated
proteins and therefore affect the interpretation of activity
assays, we first assessed the stability of the WipA mutants. We
measured the melting temperatures (7,,) in the presence or
absence of Mn?*. Overall, the full-length protein in the SEC
buffer shows a T in the range of 58 -59 °C for most of the
mutants except the WipA H213A that is slightly lower
(56.62 °C). The addition of Mn?" in the buffer resulted an
increase of the T, of ~4° except from the WipA D180A and

SASBMB

WipA H32A where the melting temperature was increased by
1-2°. Each of these two mutants would coordinate a metal ion,
suggesting that the stabilizing effect of the Mn>* is due to coor-
dination in two different binding sites (Table 3).

Knowing that the chosen mutations do not affect the struc-
tural integrity of WipA and WipA variants, we proceeded to
carry out the activity assays. Any mutational effect that reduces
the activity (k_,/K,,) by >15% is defined as significant (22).
Mutation D180A that is structurally important for Mn>* bind-
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Figure 5. WipA active site and phosphopeptide specificity. A, cartoon representation of the active site following the color-coding of Fig. 2. The amino acids
of the phosphoesterase motif are labeled, and H-bond interactions are represented by dashed lines. Distances for those bonds are reported. B, dephosphory-
lation of phosphotyrosine and phosphothreonine-containing peptides by WipA. Time courses of hydrolysis are shown using 20 nm full-length wild-type WipA.
C, dephosphorylation of the phosphotyrosine peptide END(pY)INAS by WipA and WipA mutants. Phosphate release is plotted against increasing concentra-
tions of WipA proteins. D, dephosphorylation of the phosphothreonine peptide RRA(pT)VA by WipA and WipA mutants. Phosphate release is plotted against
increasing concentrations of WipA proteins. E, dephosphorylation of tyrosine-phosphorylated FGFR3 by WipA. The extent of tyrosine-phosphorylation of
residue Tyr”® and Tyr®*®in the FGFR3 kinase domain was monitored by Western blotting analysis followed by specific detection of the phosphorylation state
of these residues using specific anti-Tyr(P)”®° (a-pY760) and anti-Tyr(P)**® (a-pY648) antibodies (indicated for each panel). Left panel, from left to right the blots
indicate the phosphorylation levels of the FGFR3 Tyr’®® incubated at WipA concentrations of 0, 40, 100, and 140 nm; a control 140 nm WipA Arg>®® is shown.
Middle panel, same as in left panel but for phosphorylation levels of the FGFR3 Tyr®*2, Right panel, time course of phosphorylation levels of the FGRF3 Tyr’®°
incubated with 60 nm WipA at 0, 1,2, 5,and 10 min.

Table 3

Table 2 Melting temperatures (7)) for different WipA proteins in presence/

Kinetic parameters for hydrolysis of DiMFUP absence of MnCl,

. 2+
WipA was tested in the presence of Mn>", Ni**, Ca**, and Mg®*. All WipA Protein SEC buffer SEC buffer + Mn
mutants were measured in the presence of Mn?*. °C C
Protein X = K JK WipA 58.49 = 0.20 62.95 * 0.16
o ca ot WipA D180A 57.92 + 0.11 58.81 + 0.23
m min”! min”™ ! WipA H32A 58.31 =+ 0.30 60.25 = 0.23
WipA A88—137  0.0303 = 0.0043  9.2802 = 0.4275 306 WipA H213A 56.62 + 0.06 62.36 + 0.03
WipA (Mn*>") 0.0113 = 0.0008  2.435 * 0.067 214.9 WipA R185A 58.42 + 0.03 65.01 = 0.17
WipA (Ni**) 0.0244 + 0.0061  0.138 = 0.011 5.66 WipA R369A 59.19 *+ 0.30 63.02 + 0.34
WipA (Ca**) Inactive
WipA (Mg>") Inactive
WipA D180A Inactive ing displayed a complete loss of activity. Activity in H32A is also
WipA H32A Inactive : : :
Wig A Ho13A 30532+ 1964 1516 + 72 05 completely abrogated. H32A is part of the DHX motif, a motif
WipA R185A 0.0862 = 0.0009  8.045 * 0.335 93.4 previously characterized in phosphatases as being involved in
WipA R369A 0.0461 = 0.0029  3.218 = 0.131 69.8

binding of a second Mn”>" ion (supplemental Fig. S3A). In the
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Shewanella PTP structure, a Ca®" ion used for crystallization
was also observed bound to a similarly positioned His residue
(supplemental Fig. S3A). Thus, His?? is an essential catalytic
residue of WipA, likely because of its involvement in Mn2*
binding. The fact that we do not observe Mn>" bound to His*?
might be due to an incomplete structure lacking a large part of
the C terminus of the full-length protein. This is consistent with
WipA435 being inactive in the phosphatase assay (data not
shown). The H213A mutation in WipA also yields a protein
variant with significantly decreased activity, emphasizing the
central role for this residue in catalysis. The R185A and R369A
mutants displayed a loss of activity of ~60-70%, suggesting
non-essential yet important role in the reaction mechanism.
Truncation of residues 88 —137 in the a-helical hairpin has no
impact on the activity of WipA, indicating that dimer formation
does not play a role in WipA activity (Table 2).

The vast majority of structures returned by DALI as close
homologues of WipA are serine/threonine phosphatases.
Only one of the returned structures, that of the cold-active
PTP from Shewanella, has tyrosine phosphatase activity, yet
its structure is vastly different from classical PTP folds.
To assess the specificity of WipA against phosphopeptides,
phosphate release using the phosphotyrosine peptides END-
(pY)INAS and DADE(pY)LIPQQG, and the phosphothreo-
nine peptide RRA(pT)VA as substrates was measured. Pro-
gress curves using a concentration of 20 nm WipA are shown in
Fig. 5B. The results clearly demonstrate a much stronger activ-
ity toward tyrosine phosphopeptides compared with threonine
phosphopeptides. Further analysis using various concentra-
tions of WipA and plotting released phosphate concentration
versus WipA concentration (Fig. 5, C and D, and supplemen-
tal Fig. S3B) confirm that WipA has phosphatase activity
directed toward tyrosine-phosphorylated peptides. The activity
was also assayed using the phosphatase-dead mutant D180A,
and two additional mutants, R185A and R369A (Fig. 5, Cand D,
and supplemental Fig. S3B). In SH2 domains, domains known
to specifically bind to tyrosine-phosphorylated peptides, two
equivalent arginine residues make important interactions with
the phosphotyrosine (23, 24): one (equivalent to Arg'®® in
WipA) makes direct bidentate interaction with the phosphate,
whereas the other (equivalent to Arg®®® in WipA) locates right
above the phenyl ring of the phosphotyrosine and makes a dis-
tinct amino-aromatic interaction with it. Phosphotyrosine
phosphatase activity is abolished in both the R185A and R369A
WipA mutants (Fig. 5C), suggesting a potential similarity of
interactions with phosphopeptides between WipA and SH2
domains. However, R185A and R369A WipA mutants are also
inactive against a phosphothreonine peptide (Fig. 5D), al-
though the activity of wild-type WipA against this peptide is
low to start with, and thus, small reductions in activity might
not be detectable. Finally, phosphotyrosine phosphatase activ-
ity was also tested in the mutant of WipA where residues
88-137 were deleted, and activity was shown to be comparable
with that of wild-type (supplemental Fig. S3C), confirming that
dimerization of WipA has no impact on WipA enzymatic
activity. We note that the phosphatase activity of WipA (as
measured using 6,8-difluoro-4-methylumbelliferyl phos-
phate (DiIMFUP)) is ~3 times lower than the well-character-
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ized SHP2 under similar conditions and using the same assay
(25). Thus, WipA activity is lower than in other PTPs but nev-
ertheless is still significant.

We further tested the WipA phosphatase activity against the
kinase domain of the fibroblast growth factor receptor 3
(FGFR3) protein. The FGFR3 kinase can be autophosphorylat-
ed at the amino acid positions Tyr®*® and Tyr”®° (26). Incuba-
tion of a FGFR3 protein phosphorylated at these positions with
WipA clearly suggests a decrease of the phosphorylation levels
at the position Tyr”®® with both increasing concentrations and
increasing incubation time of WipA wild-type (Fig. 5E, left and
right panels). In contrast, no effect is observed for the Tyr(P)**®
position (Fig. 5E, middle panel), indicating that WipA is selec-
tive for Tyr”®® dephosphorylation.

Discussion

WipA is a Legionella effector of unknown function, which
was initially investigated for its IcmSW dependence for trans-
port. We show here that WipA is an unusual protein-tyro-
sine phosphatase with a threonine/serine phosphatase fold
mounted on a helical hairpin. The tip of the helical hairpin
contains a canonical coiled-coil involved in the dimerization
interface. Coiled coils are common sites of protein-protein
interactions, mediating interaction with other functional
domains including coiled-coils in protein partners. Interactions
between coiled-coils are usually in the range of low nanomolar
affinity (27) and obey general rules that are rather well charac-
terized (28). The fact that the observed dimer interface is not
mediated by interactions between the coiled-coil regions of two
WipA molecules may thus indicate that the WipA dimer might
be rather weak and that WipA might be able to transition
between a dimeric form where the coiled-coil is weakly engaged
with the globular phosphatase domain of another WipA mole-
cule, as seen in the dimeric structure presented here, and a
monomeric form where the coiled-coil is unmasked and avail-
able for engagement with other proteins, notably in the host. It
has been noted previously that antiparallel coiled coils, rather
than mediating homo-oligomerization, might be used more
commonly to promote interactions with other proteins (29).
We hypothesize here that the target of WipA in the host might
well be a coiled-coil-containing protein whose activity is regu-
lated by phosphorylation on tyrosine residues. Because the
scope of the study presented here was to elucidate the structure
and activity of WipA, we did not explore this hypothesis any
further.

The catalytic domain of the WipA structure displays a clear
resemblance to the phosphoesterase fold. WipA shows the
highest activity when bound to Mn>*; however, it is still active
in the presence of Ni*", whereas no activity was observed when
Ca®* or Mg>" were added in the buffer (Table 2). In general,
enzymes of the phosphoesterase family can utilize a variety
of different metals, even a combination of them (17). These
enzymes are in general active against phosphoserine/threonine
substrates, and indeed we have observed such an activity in
WipA. Nevertheless, this activity was ~7 times lower compared
with WipA activity toward phosphotyrosine peptides. On the
other hand, the vast majority of PTPs are based on the con-
served cysteine sequence motif CX;R (15), and furthermore,
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most PTP structures contain a single central B-sheet, usually
seven-stranded, irrespective of the catalytic residues involved
in the catalysis (Fig. 3C). Although we initially hypothesized
that a similar cysteine motif, around Cys*'?, might be respon-
sible for the specificity of WipA toward phosphotyrosine, the
structure clearly revealed that Cys*'* is not located within the
active site. Furthermore, the double central B-strand observed
in WipA is very different from any known PTP fold. We con-
clude that the catalytic domain of WipA belongs to the metal-
lophosphoesterase family yet supports an active PTP activity.

Such unusual PTP activity has been observed in the past for
the cold-active PTP (CAPTPase) from S. spongiae (30). In this
case, phosphotyrosine specificity was attributed to Tyr'®*; how-
ever, this residue is not conserved in WipA (the equivalently
positioned residue in the structural-based alignment is GIn**°)
but is present at the same position in serine/threonine phos-
phatases (supplemental Fig. S2). Thus, this residue cannot be
responsible for mediating specificity toward phosphotyrosine.
In a search for possible residues that can contribute to specific-
ity, we noticed that after the conserved motif LL(V)W in a-he-
lix a9 there is an arginine at position 369 that is conserved in the
CAPTPase but not in serine/threonine phosphatases (Fig. 3, A
and B, and supplemental Fig. S2). Moreover, both WipA and
CAPTPase contain bulky residues before and after the Arg>®®
that constrain and direct Arg>®® toward the active center. Our
observation that a WipA R369A mutant is inactive against
phosphotyrosine-containing peptides suggests that Arg>®®
might confer PTP specificity. This role might be mediated by
amino-aromatic interactions between the guanidinium group
of the arginine and the aromatic group of the phosphotyrosine
as observed previously in SH2 domains interaction with tyro-
sine-phosphorylated peptides (23, 24). However, this hypothe-
sis should be moderated by the fact that R369A WipA appears
to affect the phosphoserine/threonine activity of WipA, al-
though this activity is very low to start with, and small activity
differences might not be measurable at this very low level of
wild-type activity. Thus, the enzymatic domain of WipA dis-
plays two activity determinants: the actual active site of the
phosphoesterase domain that is hydrolyzing phosphates
based on the well-known mechanism of the binuclear center
and the surrounding active site residues that in the case of
WipA suggest an unexpected substrate specificity toward phos-
photyrosines. Remarkably, WipA is able to selectively dephos-
phorylate tyrosine residues within substrate proteins as dem-
onstrated here for FGFR3. Indeed, we show here that only one
of two phosphotyrosines within FGFR3 is dephosphorylated by
WipA: it could be that the site protected from WipA activity
might be less sterically accessible than the one targeted by
WipA, or it could also be that WipA specifically targets sites
with a defined sequence context around the phosphotyrosine
residue.

Previous sequence analysis of WipA suggested the existence
of two more paralogues, WipB and WipC, within L. pneumo-
phila, and alignment of the sequences indicates that both con-
tain the same phosphoesterase motifs (supplemental Fig. S4)
(14). WipA differs from WipB and WipC in having the long
sequence insertion corresponding to the a-helical hairpin,
whereas WipB differs from WipA and WipC in having an addi-
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tional C-terminal domain. WipC appears to be reduced to the
sequence encoding the phosphatase activity. Although all three
sequences are likely derived from a common ancestral gene, se-
quence insertions and deletions might confer various addi-
tional function to these proteins; because the enzymatic activity
appears to be conserved in all three, it is tempting to propose
that WipC is the ancestor and that the various sequences
grafted onto WipC, e.g. the a-helical hairpin of WipA or the
C-terminal domain of WipB, encode targeting functions that
localize these proteins in different places with the host cell.

Future work on WipA will need to identify its target(s) in the
eukaryotic host. We hypothesized above that this target could
be coiled-coil-containing proteins subjected to regulation
by tyrosine phosphorylation and dephosphorylation. WipA
knock-out is unlikely to be phenotypically effective because
most Legionella effectors appear to be highly redundant, and
the presence of WipA paralogues certainly suggests a certain
level of redundancy among WipA type of effectors. Neverthe-
less, one of the most exciting outcomes of research on Legion-
ella pathogens is the unraveling of novel mechanisms to high-
jack and subvert a vast array of eukaryotic cell biological
functions. In that regard, given the very distinct role tyrosine
phosphorylation/dephosphorylation plays in higher eukaryotes,
we would expect the discovery of novel targets of WipA to be just
as exciting.

Experimental procedures
Cloning of WipA, WipA fragments, and WipA mutants

The WipA DNA (AAU28775) encoding the wild-type pro-
tein (Q5ZS02_LEGPH, Ipg2718) was cloned in a modified
pETM14 vector (EMBL) using a PCR-based in-fusion HD clon-
ing system (Clontech). The expression cassette contained an
N-terminal decahistidine tag followed by a 3C protease cleav-
age site. Additional constructs were generated from this origi-
nal construct for different protein fragments, mutants, tags,
and tag positions with the use of the in-fusion HD cloning sys-
tem. Site-directed mutagenesis was performed using standard
molecular biology protocols. Details for all generated con-
structs are given in supplemental Table S1.

Expression and purification of WipA protein fragments

All recombinant proteins were overexpressed in C43(DE3)
bacterial strains using a previously described autoinduction
protocol (31). The cells were harvested by centrifugation
(6000 X g, 15 min) and resuspended in a lysis buffer containing
25 mm Tris-HCI, pH 7.5, 0.3 M NaCl, 5 mm B-mercaptoethanol
(BME), 10 mm imidazole, 5% glycerol, a tablet of protease inhib-
itors (Complete, EDTA-free by Roche), and 0.25 mg'ml ™"
lysozyme. The cells were lysed in a EmulsiFlex-C3 homogenizer
(Avestin), and the crude extract was centrifuged at 50,000 X g
for 45 min. The supernatant was loaded onto a 5-ml HisTrap
column (GE Healthcare) equilibrated with the lysis buffer, con-
nected on an AKTA purifier (GE Healthcare). Washing steps
were performed with extended volumes of lysis buffer though
the column as well high-salt buffer (25 mm Tris-HCIL, pH 7.5, 1
M NaCl, 5 mm BME, 10 mM imidazole, 5% glycerol). The protein
was eluted using an imidazole gradient (elution buffer: 25 mm
Tris-HCL, pH 7.5, 150 mm NaCl, 5 mm BME, 0.6 M imidazole, 5%
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glycerol). For the cleavage of the N-terminal decahistidine tag
for WipA411 and WipA435, an on-column cleavage protocol
was followed as described before (31). No His-tag removal was
observed for the WipA411 fragment, suggesting that the 3C
protease cleavage site is buried in the protein structure. The
eluted protein was then dialyzed overnight against buffer A (25
mwM Tris-HCI, pH 7.5, 5% glycerol) and loaded in a resource Q
column (GE Healthcare). The protein was eluted with a gradi-
ent of NaCl ata concentration of ~0.05— 0.1 M NaCl. The eluted
protein was further concentrated and loaded to a Superdex 200
16/60 column (GE Healthcare) equilibrated with a SEC buffer
(25 mm Tris-HCI, pH 7.5, 0.15 M NaCl, 5 mm BME, 5% glycerol).
Protein quality was assessed by SDS-PAGE. For most of the
constructs the protein purity was over 95%, whereas an addi-
tional faint degradation band was always present for the wild-
type protein.

To produce selenomethionine-containing WipA411 protein,
the SelenoMet kit from Molecular Dimensions was used fol-
lowing a slightly modified protocol compared with the unla-
beled protein. The expression plasmid was used to transform
C43(DE3) cells, and a 50-ml overnight culture was used the next
day to inoculate a 2-liter minimal medium culture containing
vitamins and trace elements. After 2 h of the starvation step, all
amino acids except methionine were added, and L-SeMet was
added at a quantity of 40 mg-ml~'. The cells were induced with
0.5 mm isopropyl B-p-1-thiogalactopyranoside and further
grown until the next morning reaching a final A, over 2.0 at
20 °C. All following expression and purification steps were the
same as for the non-labeled proteins.

Protein stability assay

Protein stability of WipA and WipA mutants was assessed
using a fluorescence thermal shift assay. The melting tempera-
ture (T,,) for each protein was measured in a real-time PCR
detection system IQ5 (Bio Rad) in a 96-well format according to
literature (31). The volume for each reaction was 25 ul with
a final protein concentration 4 um and SYPRO Orange 8X
(Molecular Probes) in the SEC buffer described above. The
melting temperature defined as the inflection point of the melt-
ing curve was calculated by GraphPad Prism using a sigmoidal
model.

Protein crystallization

Initial crystallization screens were performed using the sit-
ting-drop vapor-diffusion technique, by mixing equal volumes
(0.2 wl) of protein solution (13 mg'ml ™" in SEC buffer contain-
ing in addition 2 mm MnCl, for the case of WipA435) and
reservoir solution from commercial crystallization screens at
16 °C. Crystals for both proteins (WipA411 and WipA435)
appeared after 1-2 days reaching a maximum length of 0.3-0.6
mm in 5-7 days. The best crystals for WipA411 were observed
in a precipitant containing 0.2 M sodium acetate and 18% PEG
3350. The best crystals for WipA435 were obtained using 0.1 M
Bis-Tris propane, pH 7.5, 0.2 M NaBr, and 20% PEG 3350.
Before data collection, harvested crystals were immersed in a
solution containing the precipitant mixture and 10% 2-methyl-
2,4-pentanediol (MDP) and cryo-cooled in liquid nitrogen.

SASBMB

Crystal structure of the Legionella effector WipA

Data collection and refinement

All data sets were collected at 100 K. Crystals of the native
WipA411 were measured at the 102 Beamline (Diamond),
whereas all the remaining data sets were collected at the
Petralll P13 Beamline (EMBL-Hamburg/DESY) (32). All native
data sets and the SeMet WipA411 data set were indexed, pro-
cessed, and scaled using the XDS package (33) (Table 1). To
assess the identity of bound metal ions in the WipA435 crystals,
one more data set was collected at the Mn>* K-edge (supple-
mental Table S2). This data set was processed by XDS and
scaled by AIMLESS (34). The anomalous difference Fourier
map was generated using the anomalous structure factors and
calculated phases from the model using the programs SFALL
and FFT in CCP4 (35).

The WipA411 crystals belonged to the C 2 space group with
a solvent content of 54.5% corresponding to one molecule/AU.
The WipA435 crystals belonged to the P4,2,2 space group with
a solvent content of 57.2% corresponding to two molecules/
AU. Single-wavelength anomalous dispersion phases from the
WipA411 data set were derived using the SHELX suite (36) as
implemented in the HKL2MAP interface (37). These phases
were used to calculate an electron density map to a resolution of
2.4 A. A preliminary model encompassing 80% of the structure
was built using the ARP/wWARP suite (38). This model was then
used as a starting model for refinement using the high-resolu-
tion native data set of WipA411. After several iterations of
rigid-body, maximum-likelihood, and TLS refinement using
the PHENIX suite (39), manual building, and model inspection
using COOT (40), the final model converged to a final R,/
Ry, of 0.2189/0.2571 at a resolution of 1.84 A. The WipA411
model covers the WipA sequence from residues 33 up to 410,
and a large part of the linker connecting the His tag to the
protein sequence was visible in the electron density.

The WipA435 structure was determined by molecular
replacement using MOLREP (41) and the WipA411 coordi-
nates as reference model. The coordinates were further im-
proved by maximum-likelihood and TLS refinement using the
PHENIX suite and manual improvements of the model using
COOT. The final model converged to a final R /Rs.. Of
0.1798/0.2150 at a resolution of 1.75 A. The WipA435 model
covers the WipA amino acid sequence 24 —418 (chain A) and
24.—422 (chain B) with the last 17 (chain A) and 13 (chain B)
amino acids being disordered in the crystal. The model also
contains 629 water molecules, four Mn>" ions, two phosphate
ions, six Br™ ions, two MPD molecules, and one BME molecule
(Table 1).

Data analysis and bioinformatics

Analysis of the protein-protein interfaces was performed by
the online server PDBePISA(EMBL-EBI) (42). Structural align-
ment of the WipA structures with known PDB entries (Fig. 3)
and sequence alignment and assignment of secondary struc-
tural elements (supplemental Fig. S2) were performed by
PDBeFOLD(former ssm/EMBL-EBI) (43). The analysis of the
coiled-coil regions was performed by the SOCKET server (44).
Representation of sequence alignments was performed by the
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ESPript server (45). Molecular visualization of the crystal struc-
tures was done by PyMOL.

Analytical SEC-MALS

SEC was performed using a Superdex 200 Increase 10/300
GL column (GE Healthcare) equilibrated in the SEC buffer
described above. Separations were performed at 20 °C with a
flow rate of 0.6 ml'min~" using HPLC (Agilent Technologies
1100 series). The samples (100 wl) were injected at a concentra-
tion of 2 mg ml~'. Online MALS detection was performed with
a dawn 8+ detector (Wyatt Technology Corp., Santa Barbara,
CA) using a laser emitting at 690 nm and by refractive index
measurement using an Optilab T-rex (Wyatt Technology
Corp., Santa Barbara, CA). Data analyses were performed as
previously described (46).

Activity assays

To determine the Michaelis-Menten parameters we used the
EnzCheck® (Molecular Probes) continuous spectrophotomet-
ric assay (47). Specific activity toward dephosphorylated DiM-
FUP was measured in a 96-well plate in 100 ul of total volume.
The measurements were performed in the plate reader Syn-
ergy 2 (Biotek) using the Tungsten lamp and excitation/emis-
sion filters set at 360/460 nm. Each reaction was initiated after
mixing equal volumes of DiMFUP at concentrations 5, 10, 30,
50, 80, and 100 um in a 0.1 M acetate buffer, pH 5.0, and enzyme
in a SEC buffer containing in addition 2 mm MnCl,. All reagents
were pre-equilibrated at 37 °C, which was the temperature of
the reaction. The release of the dephosphorylated DIMFUP was
monitored every 10 s. To calculate the parameters V, , and K|,
in the Michalis-Menten equation, a non-linear regression
model with unweighted uncertainty for all data was applied,
using the Solver supplement of Microsoft Office Excel as pre-
viously described (48). The validity of the data were confirmed
independently using the software GraphPad Prism.

To determine the specificity of WipA against phosphopep-
tides, the tyrosine phosphatase and serine/threonine phospha-
tase assays systems from Promega were used. All reagents were
pre-equilibrated at 37 °C, the temperature at which the reac-
tions were performed. The enzymatic reaction was initiated by
adding 5 nmol of each phosphopeptide in a WipA solution in
SEC buffer containing in addition 2 mm MnCl,. The reaction
was stopped at specific time intervals by adding equal volume of
the molybdate dye/additive mixture supplied by the Promega
kits. The absorbance at 600 nm was measured in the same Syn-
ergy2 plate reader as above, and it was directly linked to the
amount of the released phosphate ions using reference phos-
phate concentrations in the SEC/MnCl, buffer. Blanks and
control were measured in the absence of WipA and in the
absence of buffers.

To determine whether WipA is active on tyrosine-phosphor-
ylated proteins (as opposed to tyrosine-phosphorylated pep-
tides as described above), the kinase domain of the FGFR3 cov-
ering the residues 455—768 was purified as described previously
in an unphosphorylated state (26). For the protein phosphory-
lation, ~60 ug of the kinase domain were incubated for 45 min
in a buffer containing 25 mm Tris-HCI, pH 8.0, 150 mm NaCl, 10
mMm MgCl,, 1 mm MnCl,, 2 mm NaVO,, 0.1 mm TCEP (kinase
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buffer), and 1 mm ATP in a total volume of 100 wl. To remove
the remaining ATP, the reaction mixture was then passed
through a PD-SpinTrap G-25 column (GE Healthcare) equili-
brated with the reaction buffer (25 mm Tris-HCI, pH 8.0, 150
mM NaCl, 1 mm MnCl,, 0.1 mm TCEP). For the dephosphory-
lation assay FGFR3 kinase aliquots of ~0.35 pg-ul ™" were incu-
bated for 2 min with WipA at concentrations 0, 40, 100, and 140
nMm at 37 °C. A sample containing the WipA R369A at 140 nm
was used as a negative control. The reaction was stopped by
addition of SDS-PAGE loading buffer and incubation for 5 min
at 70 °C. The samples were then analyzed on a 4-12% SDS-
PAGE. The phosphorylated tyrosines in FGFR3 were identified
through immunoblotting using antibodies recognizing FGFR1
phosphorylated tyrosines 654 (ab70959; AbCam) and 766
(ab59180; AbCam) that recognize FGFR3 phosphotyrosines
648 and 760, respectively. Bands were detected with ECL Prime
(GE Healthcare, Amersham Biosciences) and imaged using
Hyperfilm ECL (GE Healthcare, Amersham Biosciences). The
figures are representative of three independent assays.
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