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ABSTRACT 

Previous attempts at determining retinal surface area and surface area of the whole eye have been 

derived from mathematical calculations based upon retinal photographs, schematic eyes and from 

retinal biopsies of donor eyes. 3-D ocular magnetic resonance imaging (MRI) allows a more direct 

measurement, it can be used to image the eye in vivo, and there is no risk of tissue shrinkage.  The 

primary purpose of this study is to compare, using T2-weighted 3-D MRI, retinal surface areas for 

superior-temporal (ST), inferior-temporal (IT), superior-nasal (SN) and inferior-nasal (IN) retinal 

quadrants.  An ancillary aim is to examine whether inter-quadrant variations in area are concordant 

with reported inter-quadrant patterns of susceptibility to retinal breaks associated with posterior 

vitreous detachment (PVD).   

Seventy-three adult participants presenting without retinal pathology (mean age 26.25±6.06 years) 

were scanned using a Siemens 3-Tesla MRI scanner to provide T2-weighted MR images that 

demarcate fluid-filled internal structures for the whole eye and provide high-contrast delineation of 

the vitreous-retina interface. Integrated MRI software generated total internal ocular surface area 

(TSA).  The second nodal point was used to demarcate the origin of the peripheral retina in order to 

calculate total retinal surface area (RSA) and quadrant retinal surface areas (QRSA) for ST, IT, SN, 

and IN quadrants.  Mean Spherical Error (MSE) was -2.50±4.03D and mean axial length (AL) 

24.51±1.57mm. Mean TSA and RSA for the RE were 2058±189mm
2
 and 1363±160mm

2
, 

respectively. Repeated measures ANOVA for QRSA data indicated a significant difference within-

quadrants (p<0.01) which, contrasted with ST (365±43mm
2
), was significant for IT (340±40mm

2
 

p<0.01), SN (337±40mm
2 
p<0.01) and IN (321±39mm

2
 p<0.01) quadrants.  For all quadrants QRSA 

was significantly correlated with AL (p<0.01) and exhibited equivalent increases in retinal area/mm
 

increase in AL. Although the differences between QRSAs are relatively small, there was evidence of 

concordance with reported inter-quadrant patterns of susceptibility to retinal breaks associated with 

PVD. The data allow AL to be converted to QRSAs, which will assist further work on inter-quadrant 

structural variation. 
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Introduction 1 

Earlier attempts at determining retinal surface area and surface area of the whole eye have been 2 

derived from mathematical calculations based upon retinal photographs (Lempert, 2008; Croft et al. 3 

2014), schematic eyes (Taylor and Jennings, 1971) and from retinal biopsies of donor eyes (Robb 4 

1982; Panda-Jonas et al. 1994) (see Table 1). MRI possesses several advantages over previous 5 

methods used to quantify retinal surface area:  unlike donor eye dissection, MRI is carried out in 6 

vivo, hence there is no risk of tissue shrinkage; additionally, MRI allows a more direct measurement 7 

and does not rely upon approximate schematic eye models.  We have reported previously on the 8 

use of T2-weighted 3-dimensional (3-D) MRI to measure in vivo ocular volume and shape of the 9 

posterior vitreous chamber (Nagra et al. 2014; Gilmartin et al. 2013). As the technique is based on 10 

high-contrast delineation of the vitreo-retinal interface it can also be used to determine internal 11 

surface area of the retina. 12 

Although 3-D MRI has been used previously to determine surface area in Singaporean-Chinese 13 

newborn and young children’s eyes it has been restricted to total ocular surface area (TSA) (Lim et 14 

al. 2013; Lim et al 2011). In addition to determining TSA we use T2-weighted 3-D MRI to compare 15 

total retinal surface area (RSA) and retinal surface areas separately for  superior-temporal (ST), 16 

inferior-temporal (IT), superior-nasal (SN) and inferior-nasal (IN) retinal quadrants. (QRSA). 17 

Although adults without presenting pathology are used in  the present study (and with the 18 

presumption that there is a correlation between RSA and propensity to retinal anomalies) the ability 19 

to measure separately RSA  for different retinal quadrants is an opportunity to examine two recent 20 

studies on eyes with rhegmatogenous retinal detachment (RRD).  In their observational single-21 

centre case series, Shunmugam et al. (2014) analysed 844 patients with a mean age of 62±11 22 

years. Retinal breaks occurred most frequently in the ST quadrant (582 eyes; 69%); the 23 

superonasal and inferotemporal quadrants were involved in 341 (40%) and 274 (32%) eyes, 24 

respectively; the IN quadrant was involved the least frequently (144 eyes; 17%). Of the 328 eyes 25 

with only 1 break, it was most likely to be in the ST quadrant (182 eyes; 55%) and least likely to be 26 

in the IN quadrant (19 eyes; 6%). It was observed that quadrant breaks subsequent to an initial ST 27 



 

 

break would follow the sequence of SN, IT, and then IN. Further, the proportion of breaks that were 28 

detached was highest for the ST quadrant (92%) and lowest for the IN quadrant (60%) a feature 29 

that was linked to the proposal that posterior vitreous detachment (PVD) follows a sequential 30 

process starting in the ST quadrant and progressing inferiorly or, alternatively, to be the result of 31 

gravitational force. 32 

Similar findings were reported by Mitry et al. (2011), who found the percentage of RRD cases 33 

associated with PVD and related tractional tears was 86.3% and distributed as follows: 56% in the 34 

ST quadrant; 25.7% in the SN quadrant; 13.2% in the IT quadrant; 5.0% in the IN quadrant.  35 

 36 

The primary purpose of the study is to use T2-weighted 3-D MRI to compare retinal surface areas 37 

TSA, RSA and QRSAs in adult eyes for a wide range of longitudinal axial lengths and hence 38 

refractive error. An ancillary aim is to examine whether inter-quadrant variations in area are 39 

concordant with reported inter-quadrant patterns of susceptibility to retinal breaks associated with 40 

posterior vitreous detachment (PVD).   41 

 42 

METHODS 43 

The study was approved by the Aston University Ethics Committee; all aspects of the investigation 44 

were carried out in accordance with the tenets of the Declaration of Helsinki.  Informed consent was 45 

obtained from all individual participants included in the study.   46 

Participants 47 

Seventy-three adult participants, presenting without retinal pathology, were mainly recruited from a 48 

university student and staff population (females n=47, males n=26).  Participant age ranged from 18 49 

to 40 years (mean 26±6) and participants were predominantly of white European (n=56%) and 50 

South Asian (n=38%) ethnicity.  Right eye data are presented. 51 

Refractive Error and Axial Length 52 



 

 

Objective measurements of refractive error were obtained under cycloplegia (one drop, in each eye, 53 

of tropicamide ophthalmic solution 0.5%, Minims Bausch and Lomb, Surrey U.K) using the Shin 54 

Nippon SRW-5000 open-view binocular infrared autorefractor (Ryusyo Industrial Co. Ltd, Osaka, 55 

Japan). Five measurements of refractive error were taken from each eye, averaged, and expressed 56 

as mean spherical error (MSE, D).  The Zeiss IOLMaster (Carl Zeiss Meditec, Germany) was used 57 

to measure both axial length (AL) and anterior chamber depth (ACD). The instrument’s 58 

measurement principles for AL are based on partial coherence interferometry (PCI), and  an optical 59 

section is used to determine ACD from the anterior cornea to the anterior crystalline lens.  AL (mm) 60 

was expressed as the mean of five measurements and a single capture automatically generated 61 

mean ACD (mm) based on five measurements. 62 

Acquisition of MR images and surface areas 63 

The protocol, verification, and repeatability statistics for the MRI technique employed in this study 64 

have been previously reported, including the method used to locate the visual axis (Nagra et al. 65 

2014; Gilmartin et al. 2013; Singh et al. 2006); the technique has been applied previously to the 66 

measurement of internal ocular volume and ocular shape (Nagra et al. 2014; Gilmartin et al. 2013).  67 

In summary, participants underwent scanning using a Siemens Trio 3-Tesla whole-body MRI 68 

scanner using an 8-channel Phased-Array head-coil (Nagra et al. 2014; Gilmartin et al. 2013; Singh 69 

et al. 2006). A T2-weighted scan was used to demarcate fluid-based intraocular structures for each 70 

eye and thus provide high-contrast delineation of the internal surface of the eye including the 71 

vitreous-retina interface. The scan used a Half-Fourier Acquired Single-shot Turbo spin Echo 72 

(HASTE) sequence with parameters that provided isotropic voxel dimensions of 1x1x1mm. The 73 

scan time for each participant was 5 minutes 40 seconds, during which participants were asked to 74 

fixate steadily, with minimal blinking where possible, a distant fixation light viewed through a mirror 75 

mounted on the head-coil.  Cycloplegia was not induced for the MRI scans.   76 

Voxels were labelled using a 3-D flood-filling algorithm and automatically shaded. Axial, sagittal and 77 

coronal slices (between 22 and 29 slices per plane depending on globe dimensions) were then 78 

inspected and edited manually (by author MN) to rectify errors in automatic shading.  79 



 

 

A shrink-wrapping process followed the shading procedure whereby a model of a sphere is first 80 

constructed using a mesh of 32768 triangular polygons of equal area distributed uniformly across its 81 

surface and the vertices of each polygon shrunk towards the geometric centre of the eye in an 82 

iterative fashion until each vertex intersects a shaded voxel. The process alters the position of the 83 

vertices of each polygon that results in the redistribution and resizing of polygons across an initial 84 

internal representation of the eye globe. 85 

The corrugated shell generated is then smoothed, using local averaging of the vertex positions, to 86 

produce an internal interface. The surface model is defined by a standardised x-y-z 3-D coordinate 87 

system for each of the 32768 triangular polygons. 88 

Total internal surface area of the globe (TSA) was provided by customised freeware software 89 

mri3dX and compared with the surface area of an equivalent sphere based on participants’ 90 

longitudinal axial lengths using the standard formula for surface area (i.e. area=4πr
2
 where r = PCI 91 

axial length/2, see Table 3 and Figure 2) (see references Singh et al. 2006, Gilmartin et al. 2013, 92 

Nagra et al. 2014 for additional detail).  93 

The mri3dx software (Gilmartin et al. 2013; Singh et al. 2006) also provided, separately for each 94 

quadrant, areas of spherical segments that were contiguous with 1% linear increments along the 95 

visual axis. The location of the second nodal point (NP2) was assigned to the intersection of the 96 

posterior pole of the crystalline lens with the visual axis such that the line passing through NP2 and 97 

orthogonal to the axis demarcates approximately the origin of the peripheral retina.  The 98 

approximate location of NP2 was determined from measurement of the ACD and an assumed 99 

average lens thickness of 3.75mm based on 3D MRI lens data from a similar participant group 100 

(Sheppard et al. 2011). Total retinal surface area and retinal surface area for each quadrant 101 

(QRSAs: ST, SN, IT, IN) was then determined by the successive summation of each 1% increment 102 

of surface area from a point corresponding to NP2 to a point 95% along the visual axis (Gilmartin et 103 

al. 2013). Consistent with our previous report (Gilmartin et al. 2013), retinal areas were not sampled 104 

for the posterior 5% of longitudinal axial length owing to motion artefacts as the value of x (the 105 

height of the spherical sector from the visual axis) approached an asymptote as the maximum value 106 



 

 

of y (distance along the visual axis) was approached).  With reference to a sphere of diameter equal 107 

to the mean AL of the group (24.51mm) the spherical cap forming the posterior 5% region 108 

represented only 4.55% of total internal eye area [(93.60/2057.65*100) mm
2
].  109 

Statistical Analyses 110 

Statistical analyses were conducted using IBM SPSS Statistics 21 (IBM UK Ltd Portsmouth, UK). 111 

The level of statistical significance was taken as 5%. A repeated measures ANOVA was used to 112 

test differences between the four quadrants and planned contrasts were used to test, against 113 

quadrant ST, differences in mean retinal area for quadrants IT, SN and IN. 114 

RESULTS 115 

Paired Student’s t-test showed no significant inter-eye differences for Mean Spherical Error (MSE) 116 

(p=0.12) or axial length (p=0.88); right eye data only are presented.  As anticipated a more myopic 117 

MSE was correlated with a longer PCI AL (p<0.01, r=0.88). 118 

Mean group data for MSE, AL, TSA and QRSAs are shown in Table 2.  A one-way ANOVA, with 119 

gender as the between-subject factor, showed female participants to have a significantly more 120 

myopic mean MSE (p=0.006), but there were no significant differences between males and females 121 

in TSA, QRSAs or AL (all p>0.05). 122 

 123 

Total Internal Surface Area (TSA) 124 

Mean TSA was 2058±189mm
2
. Scatter plots indicated an increase in TSA as refractive error 125 

increased towards myopia (Figure 1 A), and with increasing axial length (Figure 1 B).   126 

To compare TSA generated by MRI with the TSA for an equivalent sphere, based solely on a 127 

measure of AL, the surface area of a sphere was calculated for each participant using the standard 128 

formula for surface area=4πr
2
, where r = PCI axial length/2. Scatter plots of the two surface area 129 

estimates against axial length (Figure 2 and Table 3) demonstrated an underestimation of TSA 130 

using the sphere formula of 289mm
2
 for axial lengths of 22mm and an overestimation of 34mm

2
 for 131 

axial lengths of 28mm with parity at approximately 27.50mm.  132 

 133 



 

 

Surface area of the retina 134 

Total Retinal Surface Area (RSA) 135 

Mean total RSA (i.e. all quadrants combined) was 1363±160mm
2
 and showed significant 136 

correlations with PCI AL (p<0.01, r=0.85) and MSE (p<0.01, r=-0.75) (see Figure 1 C&D).  137 

 138 

Quadrant Retinal Surface Areas (QRSAs) 139 

QRSAs were largest for the ST quadrant and smallest for the IN quadrant.  A repeated measures 140 

ANOVA for QRSA data indicated significant differences within- quadrants (p<0.01). Planned 141 

contrasts against the ST quadrant (365±43mm
2
) were all significant : IT (340±40 mm

2
 p<0.01), SN 142 

(337±40 mm
2 
p<0.01) and IN (321±39mm

2
 p<0.01)  143 

 144 

DISCUSSION 145 

We believe this to be the first study to measure in vivo, using MRI, total internal surface area (TSA), 146 

retinal surface area (RSA) and quadrant retinal surface areas (QRSAs) in human adult eyes (see 147 

Table 1).  148 

As anticipated, we observe significant positive correlations between greater surface area, longer 149 

axial length, and increase in myopic refractive error (Figures 1 & 3). The data indicate that, similar 150 

to our findings on total ocular volume (Nagra et al. 2014), accurate estimates of TSA cannot be 151 

made from the application of a spherical model based simply on longitudinal axial length, 152 

particularly with regard to shorter axial lengths (Figure 2 and Table 3).  The second-order 153 

polynomial fits in Figure 3 allow longitudinal axial lengths to be converted to retinal surface areas for 154 

each respective quadrant. For example, ST retinal surface areas for an axial length of 23.65mm 155 

(typical for an emmetropic eye) are 346mm
2
, for 25mm 375mm

2
, for 26.5mm 413mm

2 
and for 28mm 156 

455mm
2
.  Relative to the emmetropic eye these values of axial length represent percentage 157 

increases of 8.38%, 19.36% and 31.50% respectively.   Using the formula for retinal surface area 158 

(Fig 2), we find our data compare well with Taylor and Jennings’ prediction based on schematic 159 

eyes (see Table 1); a difference in area of 35mm
2
 for an axial length of 22.12 mm.   160 



 

 

That sphericity is a feature of the myopic eye was reported in the studies on ocular volume (Nagra 161 

et al. 2014) and ocular shape (Gilmartin et al. 2013) and is again clearly evident from Figure 2: TSA 162 

approaches that generated by an equivalent sphere as axial length, and hence myopic error, 163 

increases. With reference to our data on mean quadrant retinal surface areas (QRSAs), relative to 164 

the ST quadrant there was general concordance between the sequence of percentage ratios found 165 

(ST:1.0; SN:0.92; IT: 0.93; IN:0.88; Table 2) and the sequence of retinal breaks (expressed as 166 

percentage ratios for prevalence) reported by Shunmugam et al. (2014) (ST:1.0; SN:0.58; IT: 0.46; 167 

IN:0.25) and Mitry et al. (2011) (ST:1.0; SN:0.46; IT:0.24; IN:0.09) although the level of 168 

differentiation between quadrants was substantially less. Nevertheless mean retinal surface area of 169 

the ST quadrant was significantly greater than that of the IN quadrant by 12%, a difference which 170 

may, at least in part, contribute to additional biomechanical stress on retinal tissue in the ST 171 

quadrant and a hence a propensity to retinal breaks.   172 

Of interest is that the relative difference between ST and IN quadrants is independent of axial 173 

length (Figure 3) and hence brings into question whether susceptibility to retinal breaks is 174 

determined by the inter-quadrant differentials of retinal surface area rather than the absolute levels 175 

of surface area . Neither Shunmugam et al. (2014) nor Mitry et al. (2011) carried out a detailed 176 

analysis of their data with reference to axial length and the literature on the correlation between 177 

axial length and retinal breaks is equivocal (Shunmugam et al. 2014; Mitry et al. 2011; Ogawa and 178 

Tanaka 1987; Pierro et al. 1992; Cheng et al. 2013).  179 
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TABLES 

Table 1 Comparison of surface area data reported by previous studies  

Study Sample Methods Findings Comments 

Taylor and 
Jennings (1971) 

N/A Mathematical modelling 
based on schematic eyes 

 

RSA and quadrant 
retinal surface areas 
for an emmetropic eye, 
with an axial length of 
22.12mm, were 
estimated to be 
 
RSA 1133.8mm

2 

IN 289.8mm
2
 

SN 286.8 mm
2
 

IT 280.4 mm
2
 

ST 276.8 mm
2 

 

 

Calculations 
based on fixed 
values of axial 
length, corneal 
size, and the 
distance from ora 
serrata to limbus 
for each quadrant  

Robb et al 1982 

Children 
(n=33) 
Aged 6 months 
gestation to 6 
years 

Donor eye dissection RSA:  
 
Range 
300mm

2 
to 907mm

2 

Systemic 
conditions, which 
caused death, 
may have also 
impaired 
development of 
the eye (e.g. foetal 
anoxia) 

Panda-Jonas et al 
1994 

Children and 
adults 
(n=46) 
 
Aged 2-90 years  
 
(mean age 50.7 
± 20.4 years) 
 

Donor eye dissection Mean RSA mean±sd: 
1204±184 mm

2
  

 
Range  
681-1636 mm

2
 

While there is a 
risk of tissue 
shrinkage, this 
was factored into 
the estimates of 
surface area. 

Lim et al 2011 

Children (n=67) 
Aged 6 years 
(mean age, 
77.9±3.9 
months) 
Participants 
were of Chinese 
ethnicity 

In vivo 3-dimensional MRI Mean TSA: 
1757.05± 
109.58 mm

2 

 

 

3-Tesla scans. 
Did not investigate 
quadrant surface 
area 

Lim et al 2013 

Children 
(n=173) 
Aged 5-17 days 
Participants 
were of Chinese, 
Malay, and 
Indian ethnicity 

In vivo 3-dimensional MRI Mean TSA±sd: 
898±70 mm

2
  

 
Range  
677-1217 mm

2
 

 

1.5-Tesla scans. 
Did not investigate 
quadrant surface 
area 

Present study 

Young-adults, 
aged 18-40 
years. 
 

In vivo 3-dimensional MRI Mean TSA±sd: 
2058±189 mm

2
  

 
Range  

3-Tesla scans. 
Quadrant surface 
areas also 
reported 



 

 

Ethnicity 
predominantly 
White European 
(n=56%) and 
South Asian 
(n=38%)  

1504 - 2716 mm
2
  

 
 
Mean RSA: 
1363±160mm

2 

 
Range 
962-1857mm

2 

 

Table 2 Mean (RE) group data for MSE, AL, TSA, and mean QRSA ± 1 standard deviation. 

 

 

 

 

 

 

 

 

Table 3 Differences between the internal MRI surface area and surface area for an equivalent 

sphere.  

PCI axial 
length (mm) 

Sphere TSA 
(mm

2
) 

MRI TSA 
(mm

2
) 

Difference 
(MRI-Sphere) 

(mm
2
) 

Percentage 
difference 

22 1520 1809 289 15.98% 

23 1661 1903 242 12.72% 

24 1809 2001 192 9.60% 

25 1963 2102 139 6.61% 

26 2123 2207 84 3.81% 

27 2289 2316 27 1.17% 

27.50 2375 2371 -3 -0.17% 

28 2462 2428 -34 -1.40% 

 

 

  

Mean MSE (D) 
-2.50±4.03  

(range -10.56 to +9.50) 

Mean PCI axial length (mm) 
24.51±1.57  

(range 20.32-28.12) 

Mean TSA (mm
2
) 

2058±189 

(range 1504 to 2716) 

QRSAs (mm
2
):  

Superior-temporal  365±43  

Inferior-temporal 340±40  

Superior-nasal 337±40  

Inferior-nasal 321±39  



 

 

TITLES AND LEGENDS TO FIGURES: 

 

Figure 1 A) Correlation between MSE and Total Surface Area (TSA) B) Correlation between 

PCI Axial Length and Total Surface Area (TSA). C) Correlation between MSE and total retinal 

surface area (RSA).  D) Correlation between PCI Axial Length and total retinal surface area 

(RSA). Data for REs.   

 



 

 

 

Figure 2 MRI total internal surface area (TSA) and equivalent sphere surface area (r=PCI 

AL/2) both plotted as a function of PCI axial length. Data for REs.  

 

 

  



 

 

Figure 3 Quadrant retinal surface area (QRSA) for the whole group plotted as a function of 

(A) PCI axial length and (B) MSE. Data for REs. 



 

 



 

 

 


