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Abstract

This contribution relates to the use of risk measures for determin-
ing (re)insurers’ economic capital requirements. Alternative sets of
properties of risk measures are discussed. Furthermore, methods for
constructing risk measures via indifference arguments, representation
results and re-weighting of probability distributions are presented. It is
shown how these different approaches relate to popular risk measures,
such as VaR, Expected Shortfall, distortion risk measures and the ex-
ponential premium principle. The problem of allocating aggregate eco-
nomic capital to sub-portfolios (e.g. insurers’ lines of business) is then
considered, with particular emphasis on marginal-cost-type methods.
The relationship between insurance pricing and capital allocation is
briefly discussed, based on concepts such as the opportunity and fric-
tional costs of capital and the impact of the potential of default on

insurance rates.

Keywords: risk measures, economic capital, risk capital, premium princi-
ples, choice under risk, solvency, capital allocation, insurance pricing, return

on capital.



1 Introduction

A risk measure is a function that assigns real numbers to random variables
representing uncertain pay-offs, e.g. insurance losses. The interpretation
of a risk measure’s outcome depends on the context in which it is used.

Historically there have been three main areas of application of risk measures:

e As representations of risk aversion in asset pricing models, with a lead-
ing paradigm the use of the variance as a risk measure in Markowitz

portfolio theory [1].

e As tools for the calculation of the insurance price corresponding to
a risk. Under this interpretation, risk measures are called premium

calculation principles in the classic actuarial literature, e.g. [2].

e As quantifiers of the economic capital that the holder of a particular

portfolio or risks should safely invest in e.g. [3].

This contribution is mainly concerned with the latter interpretation of risk
measures.

The economic or risk capital held by a (re)insurer corresponds to the level
of safely invested assets used to protect itself against unexpected volatility
of its portfolio’s outcome. One has to distinguish economic capital from reg-
ulatory capital, which is the minimum required economic capital level as set
by the regulator. In fact, much of the impetus for the use of risk measures in
the quantification of capital requirements comes from the area of regulating
financial institutions. Banking supervision [4] and, increasingly, insurance
regulation [5] have been promoting the development of companies’ internal
models for modelling risk exposures. In that context, the application of a
risk measure (most prominently Value-at-Risk) on the modelled aggregate
risk profile of the insurance company is required.

Economic capital generally exceeds the minimum set by the regulator.
Subject to that constraint, economic capital is determined so as to maximise
performance metrics for the insurance company, such as total shareholder
return [6]. Such maximisation takes into account two conflicting effects of

economic capital [7]:



e An insurance company’s holding economic capital incurs costs for its

shareholders, which can be opportunity or frictional costs.

e Economic capital reduces the probability of default of the company
as well as the severity of such default on its policyholders. This en-
ables the insurance company to obtain a better rating of its financial

strength and thereby attract more insurance business at higher prices.

Calculation of the optimal level of economic capital using such arguments
is quite complicated and depends on factors that are not always easy to
quantify, such as frictional capital costs, and on further constraints, such as
the ability of an insurance company to raise capital in a particular economic
and regulatory environment.

We could however consider that there is a particular calibration of the
(regulatory or other) risk measure, which gives for the insurance company’s
exposure a level of economic capital that coincides with that actually held
by the company. In that sense risk measures can be used to interpret ex-
ogenously given economic capital amounts. Such interpretation can be in
the context of capital being set to achieve a target rating, often associated
with a particular probability of default. Discussion of economic capital in
the context of risk measures should therefore be caveated as being ez-post.

Finally, we note that the level of economic capital calculated by a risk
measure may be a notional amount, as the company will generally not invest
all its surplus in risk-free assets. This can be dealt with by absorbing the

volatility of asset returns in the risk capital calculation itself.

2 Definition and examples of risk measures

We consider a set of risks A that the insurance company can be exposed
to. The elements X € X are random variables, representing losses at a
fixed time horizon T'. If under a particular state of the world w the variable
X(w) > 0 we will consider this to be a loss, while negative outcomes will
be considered as gains. For convenience it is assumed throughout that the

return from risk-free investment is 1 or alternatively that all losses in X



are discounted at the risk-free rate. A risk measure p is then defined as a
functional
p: X — R (1)

If X corresponds to the aggregate net risk exposure of an insurance com-
pany (i.e. the difference between liabilities and assets, excluding economic
capital) and economic capital corresponds to p(X), then we assume that the
company defaults when X > p(X).

In the terminology of [3] (and subject to some simplification), a risky
position X is called acceptable if p(X) < 0, implying that some capital
may be released without endangering the security of the holder of X, while
p(X) > 0 means that X s a non-acceptable position and that some capital
has to be added to it.

Some examples of simple risk measures proposed in the actuarial and

financial literature (e.g. [8], [9]) are as follows.

Example 1 (Expected value principle).
p(X) = AE[X], A2 1 2)

Besides its application in insurance pricing, where it represents a propor-
tional loading, this risk measure in essence underlies simple regulatory mini-
mum requirements, such as the current EU Solvency rules, which determine

capital as a proportion of an exposure measure such as premium.

Example 2 (Standard deviation principle).
p(X) = E[X] + ko[X], 520 3)

In this case the loading is risk-sensitive, as it is a proportion of the standard
deviation. This risk measure is encountered in reinsurance pricing, while also
relating to Markowitz portfolio theory. In the context of economic capital,
it is usually derived as an approximation to other risk measures, with this
approximation being accurate for the special case of multivariate normal

(more generally elliptical) distributions [10].



Example 3 (Exponential Premium Principle).
1
p(X) = =InE[e**], a > 0. (4)
a

The exponential premium principle is a very popular risk measure in the
actuarial literature, e.g. [11]. Part of the popularity stems from the fact
that, in the classic ruin problem, it gives the required level of premium
associated with Kramer-Lundberg bounds for ruin probabilities. We note
that this risk measure has been recently considered in the finance literature

under the name ‘entropic risk measure’ [12].

Example 4 (Value-at-Risk).

p(X) =VaR,(X) = Fx'(p), p€ (0,1), (5)

where Fx is the cumulative probability distribution of X and F )}1 is its
(pseudo-)inverse. VaR,(X) is easily interpreted as the amount of capital
that, when added to the risk X, limits the probability of default to 1 —
p. Partly because of its intuitive attractiveness Value-at-Risk has become
the risk measure of choice for both banking and insurance regulators. For
example, the UK regulatory regime for insurers uses VaRg g95(X) [13], while
a similar risk measure has been be proposed in the context of the new EU-

wide Solvency II regime [5].

Example 5 (Expected Shortfall).

o) = ES,(X) = [ B @da. pe 0.1), (6)

This risk measure, also known as Tail-(or Conditional-) Value-at-Risk, corre-
sponds to the average of all VaR,s above the threshold p. Hence it reflects
both the probability and the severity of a potential default. Expected short-
fall has been proposed in the literature as a risk measure correcting some
of the theoretical weaknesses of Value-at-Risk [14]. Subject to continuity
of Fx at the threshold VaR,, Expected Shortfall coincides with the Tail
Conditional Expectation, defined by

p(X) = BIX|X > F5'(p)] (7)



Example 6 (Distortion risk measure).

0 00
p(X) = - / (1 - g(1 - Fy(a)))dz + /0 o1 - Fx(z)dz,  (8)

—0o0

where g : [0, 1] — [0, 1] is increasing and concave [15]. This risk measure can
be viewed as an expectation under a distortion of the probability distribution
effected by the function g. It can be easily shown that Expected Shortfall is
a special case obtained by a bilinear distortion [14]. Distortion risk measures
can be viewed as Choquet integrals [16], [17], which are extensively used in
the economics of uncertainty, e.g. [18]. An equivalent class of risk measures

defined in the finance literature are known as spectral risk measures [19].

3 Properties of risk measures

The literature is rich in discussions of the properties of alternative risk mea-
sures, as well as the desirability of such properties, e.g. [2], [3], [20], [9]. In
view of this, the current discussion is invariably selective.
An often required property of risk measures is that of monotonicity,
stating
If X <Y, then p(X) < p(Y). 9)

This reflects the obvious requirement that losses that are always higher
should also attract a higher capital requirement.

A further appealing property is that of translation or cash invariance,
p(X +a)=p(X)+a, for a € R. (10)

This postulates that adding a constant loss amount to a portfolio increases
the required risk capital by the same amount. We note that this has the

implication that
p(X = p(X)) = p(X) — p(X) =0, (11)

which, in conjunction with monotonicity, facilitates the interpretation of
p(X) as the minimum capital amount that has to be added to X in order

to make it acceptable.



Two conceptually linked properties are the ones of positive homogeneity,
p(bX) = bp(X), for b > 0, (12)

and subadditivity,
p(X+Y) <p(X)+pY), foral X,Y € X. (13)

Positive homogeneity postulates that a linear increase in the risk exposure X
also implies linear increase in risk. Subadditivity requires that the merging
of risks should always yield a reduction in rick capital due to diversification.

Risk measures satisfying the four properties of monotonicity, transla-
tion invariance, positive homogeneity and subadditivity have become widely
known as coherent [3]. This particular axiomatization, also proposed in an
actuarial context [16],[21], has achieved near-canonical status in the world of
financial risk management. While Value-at-Risk generally fails the subad-
ditivity property, due to its disregard for the extreme tails of distributions,
part of its appeal to regulators and practitioners stems of its use as an
approximation to a coherent risk measure.

Nonetheless, coherent risk measures have also attracted criticism because
of their insensitivity to the aggregation of large positively dependent risks
implied by the latter two properties, e.g. [20]. The weaker property of con-
vexity has been proposed in the literature [22], a property already discussed

in [23]. Convexity requires that:

PAX +(1=N)Y) < Ap(X)+ (1 = XN)p(Y), for all X, Y € X and X € [0, 1].
(14)
Convexity, while retaining the diversification property, relaxes the require-
ment that a risk measure must be insensitive to aggregation of large risks. It
is noted that subadditivity is obtained by combining convexity with positive
homogeneity. Risk measures satisfying convexity and applying increasing
penalties for large risks have been proposed in [24].
Risk measures produce an ordering of risks, in the sense that p(X) <
p(Y) means that X is considered less risky than Y. One would wish that

ordering to conform to standard economic theory, i.e. to be consistent



with widely accepted notions of stochastic order such as 1st and 2nd or-
der stochastic dominance and convex order, see [25], [9]. It has been shown
that under some relatively mild technical conditions, risk measures that are
monotonic and convex produce such a consistent ordering of risks [26].

A further key property relates to the dependence structure between risks

under which the risk measure becomes additive
p(X +Y) = p(X)+ p(Y), (15)

as this implies a situation where neither diversification credits nor aggre-
gation penalties are assigned. In the context of subadditive risk measures,
comonotonic additivity is a sensible requirement, as it postulates that no
diversification is applied in the case of comonotonicity (the maximal level of
dependence between risks, e.g. [27]). On the other hand, one could require
a risk measure to be independent additive. If such a risk measure is also
consistent with the stop-loss or convex order, by the results of [28], it is
guaranteed to penalize any positive dependence by being superadditive (i.e.
p(X +Y) > p(X)+ p(Y)) and reward any negative dependence by being
subadditive.

The risk measures defined above satisfy the following properties:

Expected value principle Monotonic, positive homogenous, additive for

all dependence structures.

Standard deviation principle Translation invariant, positive homogenous,

subadditive.

Exponential premium principle Monotonic, translation invariant, con-

vex, independent additive.

Value-at-Risk Monotonic, translation invariant, positive homogenous, sub-
additive for joint-elliptically distributed risks [10], comonotonic addi-

tive.

Expected Shortfall Monotonic, translation invariant, positive homoge-

nous, subadditive, comonotonic additive.



Distortion risk measure Monotonic, translation invariant, positive ho-

mogenous, subadditive, comonotonic additive.

Finally we note that all risk measures discussed in this contribution are
law invariant, meaning that p(X) only depends on the distribution func-
tion of X [21], [29]. This implies that two risks characterised by the same
probability distribution would be allocated the same amount of economic

capital.

4 Constructions and representations of risk mea-

sures

4.1 Indifference arguments

Economic theories of choice under risk seek to model the preferences of
economic agents with respect to uncertain pay-offs. They generally have
representations in terms of preference functionals V : —X +— R, in the sense
that

—X is preferred to —Y & V(-X)>V(-Y). (16)

(Note that the minus sign is applied because we have defined risk as losses,
while preference functionals are typically applied on pay-offs.)

Then a risk measure can be defined by assuming that the addition to
initial wealth W of a liability X and the corresponding capital amount p(X)

does not affect preferences [8]
VW — X + p(X)) = V(Wo). (17)

Often in this context W = 0 is assumed for simplicity.
The leading paradigm of choice under risk is the von Neumann-Morgenstern

expected utility theory [30], under which
V(W) = Elu(W)], (18)

where u is an increasing and concave utility function. A popular choice of

utility function is the exponential utility

u(w)==(1-€e""), a>0. (19)



It can be easily seen that equations (17), (18) and (19) yield the exponential
premium principle defined in section 2.

An alternative theory is the dual theory of choice under risk [31], under
which

0 0
V(W) = —/ (1 — k(1 — Fy (w)))dw +/0 h(1 — Fy(w))dw,  (20)

—0o0

where h : [0,1] — [0, 1] is increasing and convex. It can then be shown that
the risk measure obtained from (17) and (20) is a distortion risk measure
with g(s) =1 — h(1 — s). For the function

h(s)=1—(1—s)7, v>1 (21)

the well known proportional hazards transform with g(s) = s% is obtained
[15].

More detailed discussions of risk measures resulting from alternative the-
ories of choice under risk and references to the associated economics litera-
ture are given in [24], [32].

It should also be noted that the construction of risk measures from eco-
nomic theories of choice must not necessarily be via indifference arguments.
If a risk measure satisfies the convexity and monotonicity properties, then by
setting U(W) = —p(—W) we obtain a monotonic concave preference func-
tional. The translation invariance property of the risk measure then makes
U also translation invariant. Hence we could consider convex risk measures
as the subset of concave preference functionals that satisfy the translation
invariance property (subject to a minus sign). Such preference functionals
are sometimes called monetary utility functions, as their output can be in-
terpreted as being in units of money rather than of an abstract notion of

satisfaction.

4.2 Axiomatic characterisations

An alternative approach to deriving risk measures is by fixing a set of proper-
ties that risk measures should satisfy and then seeking an explicit functional

representation.

10



For example, coherent (i.e. monotonic, translation invariant, positive

homogenous and subadditive) risk measures can be represented by [3]

p(X) = sup Ep[X], (22)
PeP

where P is a set of probability measures. By adding the comonotonic ad-
ditivity property one gets the more specific structure of P = {P : P(A) <
v(A) for all sets A}, where v is a submodular set function known as a (Cho-
quet) capacity [17]. The additional property of law invariance enables writ-
ing v(A) = g(Py(A)) where Py is the objective probability measure and g a
concave distortion function [21]. This finally yields a representation of co-
herent, comonotonic additive, law invariant risk measures as distortion risk
measures. An alternative route towards this representation is given by [29].

The probability measures in P have been termed generalized scenarios
[3] with respect to which the worst case expected loss is considered. On the
other hand, representations such as (22) have been derived in the context
of robust statistics [33] and decision theory, known as the multiple-priors
model [34].

A related representation result for convex risk measures is derived in
[22], while results for independent additive risk measures are given in [35],
[36].

4.3 Re-weighting probabilities

An intuitive construction of risk measures is by re-weighting the probability

distribution of the underlying risk

p(X) = E[X((X)], (23)

where ( is generally assumed to be an increasing function with E[¢(X)] =1
and representation (23) could be viewed as an expectation under a change of
measure. Representation (23)is particularly convenient when risk measures
and related functionals have to be evaluated by Monte-Carlo simulation.
Many well-known risk measures can be obtained in this way. For exam-

ple, making appropriate assumptions on F'x and g one can easily show that

11



for distortion measures it is
p(X) = E[Xg'(1 - Fx(X))]. (24)

On the other hand the exponential principle can be written as:

1 efan
X)=F|X ——dy| . 25
P =E|X [ 5] (25)
The latter representation is sometimes called a ‘mixture of Esscher princi-

ples’ and studied in more generality in [35], [36].

5 Capital allocation

5.1 Problem definition

Often the requirement arises that the risk capital calculated for an insurance
portfolio has to be allocated to business units. There may be several rea-
sons for such a capital allocation exercise, the main ones being performance
measurement / management and insurance pricing.

Capital allocation is not a trivial exercise, given that in general the risk
measure used to set the aggregate capital is not additive. In other words, if
one has an aggregate risk Z for the insurance company, breaking down to
sub-portfolios X1, ..., X, such that

Z=Y X, (26)

j=1
it generally is
n
p(Z) # > p(X;), (27)

j=1

due to diversification / aggregation issues.
The capital allocation problem then consists of finding constants dy, ..., d,

such that

n

> di=p(2), (28)

=1

12



where the allocated capital amount d; should in some way reflect the risk
of sub-portfolio X;. Early papers in the actuarial literature that deal with
cost allocation problems in insurance are [37], [38], the former taking a risk
theoretical view, while the later examining alternative allocation methods
from the perspective of cooperative game theory. A specific application of
cooperative game theory to risk capital allocation, including a survey of the

relevant literature, is [39].

5.2 Marginal cost approaches

Marginal cost approaches associate allocated capital to the impact that
changes in the exposure to sub-portfolios have on the aggregate capital.

Denote for vector of weights w € [0,1]",
n
7= w;X;. (29)
j=1

Then the marginal cost of each sub-portfolio is given by

Ip(Z™)

8’[1)7;

MC(X;; Z) = ‘ w=1, (30)

subject to appropriate differentiability assumptions. If the risk measure is

positive homogenous, then by Euler’s theorem we have that
n
S MO(X;: 2) = p(2) (31)
j=1

and we can hence use marginal costs directly d; = M C(X;; Z) as the capital
allocation.

If the risk measure is in addition subadditive then we have that [40]
d; = MO(X;: Z) < p(X0), (32)

i.e. the allocated capital amount is always lower than the stand-alone risk
capital of the sub-portfolio. This corresponds to the game theoretical con-
cept of the core, in that the allocation does not provide an incentive for

splitting the aggregate portfolio. This requirement is consistent with the

13



subadditivity property, which postulates that there is always a benefit in
pooling risks.

In the case that no such strong assumptions as positive homogeneity (and
subadditivity) are made with respect to the risk measure, marginal costs will
in general not yield an appropriate allocation, as they will not add up to
the aggregate risk. Cooperative game theory then provides an alternative
allocation method, based on the Aumann-Shapley value [41], which can be

viewed as a generalisation of marginal costs
1
AC(X;, Z) :/ MC(Xi;vZ)dy. (33)
0

It can easily be seen that if we set d; = AC(X;, Z) then the d;s add up to
p(Z) and that for positive homogenous risk measures the Aumann-Shapley
allocation reduces to marginal costs. Early applications of the Aumann-
Shapley value to cost allocation problems are [42], [43].

For the examples of risk measures that were introduced in section 2, the

following allocations are obtained from marginal costs / Aumann-Shapley.

Example 7 (Expected value principle).
d; = AE[X}] (34)

Example 8 (Standard deviation principle).

Cov(X;, Z)
d; = BE[X; _—
[(Xi] + K (7] (35)
Example 9 (Exponential Premium Principle).
d - L B[X; exp(yaZ)) (36)
Elexp(vaZ)]
Example 10 (Value-at-Risk [44]).

under suitable assumptions on the joint probability distribution of (X;, Z).

14



Example 11 (Expected Shortfall [44]).
d; = E[XZ‘Z > VaRp(Z)}, (38)
under suitable assumptions on the joint probability distribution of (X;, Z).

Example 12 (Distortion risk measure [45]).
di = B[X;g' (1 — Fz(2))] (39)

assuming representation (24) is valid.

5.3 Alternative approaches

While marginal cost-based approaches are well-established in the literature,
there are a number of alternative approaches to capital allocation. For exam-
ple, we note that marginal costs generally depend on the joint distribution
of the individual sub-portfolio and the aggregate risk. In some cases this
dependence may not be desirable, for example when one tries to measure
the performance of sub-portfolios to allocate bonuses. In that case, a simple

proportional repartition of costs [38] may be appropriate:

p(Z)
R S v a) o
Different issues emerge when the capital allocation is to be used for man-
aging the performance of the aggregate portfolio, as measured by a particular
metric such as return-on-capital. Assume that Xi, i =1,...,n correspond
to the liabilities from sub-portfolio i minus reserves corresponding to those
liabilities, such that E[X;] = 0. We then have the breakdown

X;=X; - pi, (41)

where p; corresponds to the underwriting profit from the insurer’s sub-
portfolio (e.g. line of business) i, such that 2?21 Xj = Z and 2721 pj =D.

Then we define the return on capital for the whole insurance portfolio by

p

RoC = —.
p(Z)

(42)

15



This is discussed in depth in [44] for the case that p is a coherent risk
measure. It is then considered whether assessing the performance of sub-

portfolios by
pi

RoC; = )
) 4

(43)

where d; represents capital allocated to Xi, provides the right incentives for
optimizing performance. It is shown that marginal costs is the unique allo-
cation mechanism that satisfies this requirement as set out in that paper. A
closely related argument is that under the marginal cost allocation a port-
folio balanced to optimize aggregate return on capital has the property that
RoC = RoCj for all . While this produces a useful performance yardstick
that can be used throughout the company, some care has to be taken when
applying marginal cost methodologies. In particular, if the marginal capital
allocation to a sub-portfolio is small e.g. for reasons of diversification, the
insurer should be careful not to let that fact undermine underwriting stan-
dards. A proportional allocation method could also be used for reference,
to avoid that danger.

Often one may be interested in calculating capital allocations that are
in some sense optimal. For example, in [46] capital allocations are cal-
culated such that a suitably defined distance function between individual
sub-portfolios and allocated capital levels is minimized. This methodology
reproduces many capital allocation methods found in the literature, while
also considering the case that aggregate economic capital is exogenously
given rather than calculated via a risk measure. A different optimization
approach to capital allocation is presented in [47].

An alternative strand of the literature on capital allocation relates to
the pricing of the policyholder deficit due to the insurer’s potential default
[48]. This is discussed in slightly more detail in section 6.2.

16



6 Economic capital and insurance pricing

6.1 Cost of capital

A way of associating risk measures and economic capital with insurance
prices is via cost of capital arguments. It is considered that the shareholders
of an insurance company incur an opportunity cost by providing economic
capital. Therefore they also require a return on that capital, in excess of the
risk free rate. This is typically calculated via equilibrium arguments, with
the methodology of Weighted Average Cost of Capital (WACC) being the
prime example [49]. It is furthermore assumed that the additional return on
capital will be earned by including a cost-of-capital adjustment in insurance
premiums.

If we denote by CoC' the cost of capital associated with the insurance
company, then, using the notation of the previous section, the required profit

for its insurance portfolio Z = Z— p is:
p=CoC-p(2). (44)

It should be apparent from the preceding discussion that cost of capital and
return on capital are closely linked concepts; in fact evaluation of the former
often leads to a target level for the latter.

A capital allocation >, d; = p(3_7_, X;) = p(Z) then yields the re-
quired profit for each sub-portfolio:

Pi = CoC - dl (45)

6.2 Frictional capital costs and the cost of default

Cost-of-capital approaches to insurance pricing have been criticised in the

literature for a number of reasons, including [6]:

e The return on (or cost of) capital considered may be a an inadequate
measure of performance, as the total shareholder return is influenced

by other factors too.

17



e The methodology does not explicitly allow for the potential default of
the insurer. Hence, by associating a fixed cost with economic capital,

the benefits of increased policyholder security are disregarded.

An alternative approach is to break down the insurance price into three

parts [7]:
e The economic (market consistent) value of the insurance liability.
e The frictional cost of holding capital.
e The cost of the insurer’s default to policyholders.

The economic value of the liability Z, denoted here by EV(Z) where
FEV is a linear pricing functional derived by a financial valuation method
e.g. equilibrium or no-arbitrage arguments. The frictional costs, which may
comprise double taxation, agency costs and the costs of financial distress [7],
may be written in their simplest form as a fixed percentage fc of aggregate
capital, i.e. fc-p(Z).

The loss to policyholders caused by the insurer’s default or policyholder
deficit is given by

(Z = p(Z))s (46)

that is by the excess of the insurer’s liabilities over its assets. It is argued
by [48] that the economic value of this cost should be removed from the
insurance premium, as it corresponds to a loss to policyholders, given the
insurer’s shareholders’ limited liability; an expression similar to (46) has
thus been termed the limited liability put option or default option.

The total premium for the insurer can then be calculated as
EV(Z) + fe- p(Z) — EVI(Z — p(2)):]. (47)

Based on expression (48), and assuming p is a coherent risk measure,
marginal costs give us the allocation of the insurance price for sub-portfolio
X; by

EV(X;) + fe-di — EV[(Xi — di)Lz> p211]s (48)

where I4 denotes the indicator of set A.

18



The discussion on allocating capital by the value of the default option
is in the main motivated by [48]. That paper, as well as [50] which antici-
pates it, adopts a slightly different approach, whereby the aggregate capital
allocated to sub-portfolios is exogenously given rather than calculated via a
risk measure. Moreover, these papers are set in a dynamic framework rather

than the simple one-period one adopted in this contribution.

6.3 Incomplete markets and risk measures

As discussed in section 1, risk measures have been traditionally used in the
insurance industry to calculate prices. The difference p(X) — E[X] then
is considered as a safety loading. When the risk measure is law invariant,
such as those considered here, then the safety loading depends only on the
distribution of X and does not reflect market conditions. Moreover, as
illustrated in [51], using law-invariant risk measures as pricing functionals,
e.g. to reflect market frictions, can also be problematic.

In financial economics securities are priced using no-arbitrage arguments,
which in a complete market result in the price of a risk equal to the cost of
its replication by traded instruments. Such a market consistent approach
to valuation of insurance liabilities is propagated in the context of Solvency
IT [5]. However, insurance markets are typically incomplete, meaning that
no exact replication can be achieved by trading. This motivates approaches
where the price equals the cost of replication with some acceptable level of
accuracy. Only two examples of incomplete market approaches based on
partial replication are mean-variance [52] and quantile hedging [53].

The formulation of such pricing methods often utilizes risk measures to
define the quality of replication. Different calibrations of these risk mea-
sures, corresponding to different levels of risk aversion, give rise to a range
of possible prices. In can thus be argued that there is a continuum between
pricing and holding risk capital in incomplete markets, with the main dif-
ference being the degree of risk aversion considered in each application. (A
rather different approach to incomplete market pricing is based on indiffer-
ence arguments in a dynamic setting is [54], which is closely related to the

risk measures discussed in section 4.1.) Hence one could consider financial
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pricing of insurance as being a dynamic extension of the traditional actuar-
ial risk measures or premium principles, taking place in a richer economic

environment where dynamic trading is possible.
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