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Abstract Thank to the observation that in massive multi-input multi-output
(MIMO) systems, the channels associated with different base station (BS)
antennas may share common sparse support, the significant path delays can
be accurately captured by only few pilots, leading to a reduction of pilot
overhead. However, when the number of pilots is small, the path gains can
not be accurately estimated and this limits the system performance. To solve
this problem, in this paper we propose a decision aided compressive sensing
based channel estimation scheme, which utilizes the decoded data to refine the
channel estimation. This scheme can effectively improve the channel estimation
without increasing the length of pilot sequence, which is confirmed by both
analyses and simulation results.

Keywords Massive MIMO · channel estimation · compressive sensing

1 Introduction

As a promising technology for the future fifth-generation wireless communi-
cation, massive multiple-input multiple-output (MIMO) systems with a large
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number of antennas at the base station (BS) have received enormous atten-
tion [1]. It is shown that with the increase number of BS antennas, the massive
MIMO techniques could reduce transmit power while provide unprecedented
spectral efficiency and array gains. However, there are also some issues begin-
ning to resurface. One of the key challenges for massive MIMO system is the
channel estimation, where a large number of pilots is required to distinguish
the channel impulse response (CIR) of each receiving antenna. Things are get-
ting worse at the user terminal (UT) side where each user has to accurately
estimate channels from the large number of BS antennas. For this reason, the
time division duplex (TDD) mode is more desirable for massive MIMO sys-
tems, where the acquired uplink CIR at the BS can be directly fed back to
the users thanks to the channel reciprocity in slow time-varying channels [2]
or used as basis to obtain the downlink CIR in fast time-varying channels [3].
In this way, the heavy overhead of the pilots in the downlink transmission as
well as the battery power consumption at the user terminal for channel esti-
mation can be saved. Thus, accurate CSI acquisition for uplink is critical since
it affects the signal detection at both transmission directions directly.

Recently, compressive sensing (CS) based channel estimation becomes pop-
ular in massive MIMO systems, since it could accurately reconstruct the chan-
nels by exploiting the sparse nature of MIMO channels [4]. Moreover, thank
to the observation that the channels of different BS antennas may share com-
mon support, the path delays (i.e., the locations of the significant taps) can
be estimated cooperatively among the BS antennas [2]-[5]. As a result, BS can
acquire the path delays accurately with only few pilots. However, from pre-
vious works we found that the limited number of pilots is insufficient for the
conventional CS recovery algorithms to accurately estimate the path gains,
although the path delays can be well captured. To solve this problem, in this
paper we propose a decision aided channel estimation scheme for the uplink
massive MIMO systems. To estimate both of the path delays and path gains
accurately with only few pilots, we acquire the path delays by cooperating the
BS antennas while estimate the path gains by jointly using the pilots and the
detected data [8][9]. Theoretical analyses and simulation results show that the
proposed method could improve the channel estimation performance without
increasing the pilot overhead.

The rest of the paper is organized as follows. We first describe the uplink
massive MIMO OFDM system model in Section II. Then the Decision aid-
ed Subspace Pursuit (DSP) algorithm is proposed in Section III. Section IV
presents the performance analyses of the proposed scheme while Section V
discusses the simulation results. Finally, Section VI concludes the paper.

2 MASSIVE MIMO SYSTEM MODEL

Consider the uplink massive MIMO OFDM system with M antennas at the
BS and U autonomous single-antenna user terminals (UTs) (M > U) us-
ing the orthogonal frequency division multiplexing (OFDM). The CIR be-
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tween the mth BS antenna and one certain UT can be denoted as hm =
[hm(0), hm(1), · · · , hm(L − 1)]T with 1 ≤ m ≤ M , where L is the maximum
delay spread of the CIR. Normally, the channel is sparse with the number of
nonzero elements K in hm, satisfying K ≪ L [2].

Suppose the number of OFDM subcarriers is N , among which Np subcarri-
ers are randomly employed to transmit pilot symbols. Thus we can denote the
signal transmitted from one certain UT to the BS as x = [x1, · · · , xj , · · · , xN ],
where xj = ±1. Moreover, the corresponding subcarrier indices of Np pilot-
s are expressed as Ω = [P1, · · · , Pj , · · · , PNp

]. Thus, at the mth antenna of
the BS, the received signal vector is ym = [ym,1, ym,2, · · · , ym,N ]T while the
received pilot vector is

yΩ
m = diag{xΩ}FΩ

Lhm + ηm

= Φhm + ηm,
(1)

where yΩ
m = [ym,P1

, · · · , ym,Pj
, · · · , ym,PNp

]T , xΩ = [xP1
, xP2

, · · · , xPNp
]T and

diag{xΩ} is the diagonal matrix with xΩ at its main diagonal. FΩ
L is a Np×L

submatrix formed by collecting the Np rows whose indices belong to Ω, and
the first L columns of the standard N ×N discrete Fourier transform matrix
F , Φ , diag{xΩ}FΩ

L where tr(ΦΦH) = NpK, and ηm is the additive white
Gaussian noise with mean zero and variance ν [5].

3 DECISION AIDED CHANNEL ESTIMATION ALGORITHMS

It has been proved that the CIRs of different BS antennas may have simi-
lar path arrival times since the antenna spacing at the BS is far less than
the distance between the UT and BS.[4]. Therefore, it is safe to say that the
CIRs share a common support, indicating that S1 = S2 = · · · = SM , where
Sm = supp{hm} = {l : |hm(l)| > 0}L−1

l=0
denotes the largest K elements in the

support of {hm}. To take advantage of the common support, in [6] a coordi-
nated method between the BS antennas has been proposed to reach a decision
on the most probable channel support for all the antennas. In this way, the
path delays can be acquired accurately with only few pilots. However, these
pilots are not enough to accurately estimate the path gains, which fundamen-
tally limits the performance of channel estimation. To solve this problem, we
propose the Decision aided Subspace Pursuit (DSP) (as elaborated in Algo-
rithm 1), which uses the decoded data to refine the estimation of the path
gains and hence achieve more accurate channel estimation performance with
few pilots.

Note that in Algorithm 1, Ŝ is the estimated support set, vk,m and ct,m

are the residuals at the kth iteration and tth iteration, respectively. Operators
H and † represent Hermite and Moore-Penrose matrix inversion, respectively.
There are two main differences between the proposed algorithm and the stan-
dard subspace pursuit (SP) algorithm. Firstly, the proposed algorithm uses a
simple antenna cooperation method we previously proposed in [6]. In order to
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Algorithm 1

1: Input: Received pilot sequence yΩ
m, sensing matrix Φ.

2: Initialization:

3: v1,m = yΩ
m, c1,m = ym, Ŝm ← ∅, k = 1, t = 1;

4: while ‖vk,m‖2 < ‖vk−1,m‖2 do

5: zm ← ΦHvk,m;

6: Ŝm ← Ŝm ∪ suppK(zm);

7: zm ← Φ†

Ŝm
yΩ
m;

8: Ŝm ← suppK(zm);

9: Obtain Ŝ according to (2) - (4);

10: ĥm ← Φ†

Ŝ
yΩ
m;

11: k ← k + 1;
12: vk,m ← yΩ

m − ΦH ĥm;
13: end while

14: while ‖ct,m‖2 < ‖ct−1,m‖2 do

15: Φ̂m = ymĥ
H

m;
16: Obtain x̂ according to (5);
17: Randomly select Ng data as the new pilots and add
18: their indices into Ω;

19: ĥm ← Φ†

Ŝ
yΩ
m;

20: t = t+ 1;
21: ct,m ← yΩ

m − ΦH ĥm;
22: end while

23: Output: The estimated CIR vector ĥm.

capture the common support efficiently, the BS antennas share their informa-
tion about the estimated support Ŝm with each other, to reach a decision on
the most probable channel support for all the antennas. In details, we define
an integer vector om = [o0,m, o1,m, · · · , oL−1,m] as the score vector to record

the path delays of the mth antenna and then update the om according to Ŝm

which is obtained from Line 8 of Algorithm 1 at each iteration as

ol,m =

{

1, l ∈ Ŝm

0, l /∈ Ŝm

. (2)

Once all the BS antennas have updated their vector scores, an aggregate score
of each channel tap is obtained by

ōj =

M
∑

m=1

oj,m, 0 ≤ j ≤ L− 1. (3)

According to the law of large numbers, the ōj corresponding to the true path
delays should get higher scores since S1 = S2 = · · · = SM . Therefore, we sort
ō = [ō0, ō1, · · · , ōL−1] and then obtain the estimated support Ŝ by selecting
the K indices with the largest magnitude in ō as

Ŝ = argmax|Ŝ|=K
‖ō

Ŝ
‖ (4)



Title Suppressed Due to Excessive Length 5

The other difference is that the proposed algorithm employs detected data
to refine the channel estimation iteratively. In details, after detecting the re-
ceived sensing matrix Φ̂m at the mth antenna as shown in Line 15, we easily
obtain the decoded data as x̂m = Φ̂mFL

H . Then we combine the data detec-
tion on each receive antenna to obtain the estimates of the transmitted data
x̂ , which can be expressed as

x̂j =















1,
M
∑

m=1

x̂m,j ≥ 0

−1,
M
∑

m=1

x̂m,j < 0

(5)

where x̂j and x̂m,j are the jth element of x̂ and x̂m respectively. Obviously, x̂
should be more accurate than x̂m since the antennas have shared their infor-
mation within the antenna array to strengthen the beliefs about the detected
signals. After that, we randomly select Ng data from x̂ and add their indices
into Ω. Finally, the matched filter (MF) detector is exploited to obtain the
path gains according to “new pilot sequence” (i.e., the original Np pilots plus
Ng decoded data) as shown in Line 19 of Algorithm 1. These steps in the loop
are performed until the convergence is achieved.

4 PERFORMANCE ANALYSES

In this section, the performance of the proposed DSP algorithm is analyzed.
Specifically, we are interested in both the normalized mean absolute error
(NMAE) of the channel matrix [10] and the computational complexity of the
proposed scheme. From the closed-form results, we can obtain simple insights
into how the decoded data can be exploited to enhance the channel estimation
performance.

4.1 NMAE analysis of the channel estimation

By utilizing the method of matrix and probability, we obtain the following
theorem on the NMAE of the channel matrix.

Theorem 1 : The normalized mean absolute error (NMAE) of hm satisfies

E

(

‖H − Ĥ ‖F
‖H ‖F

)

≤
1

1− δ2K
+

√

MKν

Np(1− δ2k)

Γ (M − 1

2
)

Γ (M)
, (6)

where H = [h1,h2, · · · ,hM ], δ2k is the restricted isometry property (RIP)
constant [11].

Proof : See Appendix A.
From Theorem 1 we can see that the NMAE of the channel matrix decreases

with the increase of the number of pilots Np. That is to say, we can improve
the channel estimation performance by increasing Np. However, increasing Np
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will consequently reduce the spectral efficiency. Hence, in our proposed scheme,
we euphemistically increase the number of pilots by employing the detected
data. In this way, the proposed scheme could improve the channel estimation
performance without sacrificing spectral efficiency. It is also worth noting that
due to the noise and inaccurate channel estimation, it is possible that x̂ is not
accurate to x . However, we still have the belief that our algorithm can achieve
better performance for the following reasons: 1) the detection error could be
corrected when strong channel coding scheme (e.g., automatic repeat request)
is applied in actual applications [8]; 2) the detected data are further refined
by the antenna cooperation strategy, which improves the accuracy of the data;
3) the locations of Ng decoded data are selected randomly so that the threats
of burst errors can be avoid. Therefore, we believe that even the data is not
perfectly detected, the use of these detected data can still improve the channel
estimation performance.

4.2 Complexity analysis

The complexity of the traditional channel estimator based on the SP scheme
is dominated by the complexity of SP algorithm which is roughly O(NpK

3 +
8K4), where Np is the number of pilots, K is the channel sparsity and L is
the maximum spread of the channel [11]. For the DSP scheme, the complexity
of the SP part (from Line 4 to Line 13 of Algorithm 1) is the same as the
traditional SP scheme. However, the MF combining (Line 15) with complexity
of O(Np + Ng)K

2 + K3) [12] is required in DSP. As a result, its complexity
is about O(NpK

2(K + 1) + K3(8K + 1) + NgK
2)1. Suppose G is the total

number of iterations, the overall complexity of DSP is about O(NpK
2(K +

G) +K3(8K +G) +GNgK
2). From the simulation results of DSP we can see

that G is a small number and Np can be reduced by roughly 3 times. Therefore,
it is reasonable to say that the computational complexity of the proposed DSP
is roughly on the same order of the standard SP.

5 SIMULATION RESULTS

We consider an M = 32 massive MIMO system with N = 2048 subcarriers in
one OFDM symbol. The typical 6-tap multipath ITU-VB channel model with
the maximum delay spread L = 151 is used [6].

In the first experiment, we set Ng = 32 and compare the mean square error
(MSE) performance of the proposed DSP scheme in 5 iterations. For Fig.1(a),
the transmit SNR is set to 0 dB while in Fig.1(b) SNR equals to 10 dB. From
these figures we observe that the channel estimation performance improves as
t increases under higher value of SNR (e.g., SNR = 10dB). However, when the
value of SNR is low (e.g., SNR = 0dB), t has little effect on the performance

1 The complexity of antenna cooperation is omitted since it is negligible, and the extra
complexity introduced by the MF combining is far less than the complexity of SP.
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of DSP. This is because that the data detection is not accurate at low SNR.
As a result, using the inaccurate decoded data iteratively can not refine the
channel estimation performance.

1 2 3 4 5
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(a) SNR=0dB
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t
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S
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(b) SNR=10dB

 

 

DSP Np=16 DSP Np=32 DSP Np=64

Fig. 1 MSE comparisons of DSP under a varying number of iterations t.

Next, we set Np = 32 and present the MSE comparison of the proposed
DSP scheme under a varying number of selected data Ng in Fig.2. Moreover,
the structured SP (SSP) algorithm is applied for comparison [2]. It is obvious
that the proposed method outperforms the SSP although only few data are
used (i.e., Ng ≤ 16) to assist the channel estimation. In addition, we observe
that the improvement of the proposed method increases with Ng and tends
to flatten out when Ng > 32. Since the computational complexity of DSP
also increases with Ng (please refer to Section 4.2 for the details), we choose
Ng = 32 for the following simulation, considering the tradeoff between the
channel estimation performance and computational complexity.

In Fig.3 we present the MSE comparison of DSP under a varying number
of pilots Np. From this figure, we observe that the proposed DSP algorithm
has substantial performance gain over the SSP. Specifically, when Np = 32
and MSE = 10−2 are considered, DSP is superior to SSP by over 5 dB.
Meanwhile, the curve of DSP with Np = 32 is very close to the curve of
SSP with Np = 64 when SNR ≥ 10dB, implying a drastic reduction of pilot
overhead at roughly 50% that DSP could offer. Moreover, for the proposed
DSP method, Np = 32 pilots only occupy 1.7% subcarriers of the total N =
2048 subcarriers. For comparison, with similar estimation accuracy, the pilot
occupancy of joint subspace pursuit (JSP) method is 4.6% [7], where data
decisions are not exploited in channel estimation.

6 CONCLUDING REMARKS

This paper considers the challenging problem of the uplink channel estimation
for massive MIMO system. Decision aided subspace pursuit recovery algorithm
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Fig. 2 MSE comparisons of SP and DSP under Np = 32 and a varying number of selected
data Ng .
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Fig. 3 MSE comparisons of SP and DSP under a varying number of pilots Np.

is designed to iteratively exploit the detected data to enhance the channel esti-
mation performance. We analyze the normalized mean absolute error and the
computational complexity with the proposed scheme. Simulation results show
that the proposed DSP could improve the channel estimation performance by
over 5 dB compared with the SSP algorithm, without sacrificing the spectral
efficiency.
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Appendix: Proof of Theorem 1

First, equation (1) can be rewritten as

Y =
1

√
Np

ΦH +N = ΘH +N , (7)

where Y = [ 1√
Np

yΩ
1 , · · · , 1√

Np
yΩ
M ], H = [h1, · · · ,hM ] and N = [ 1√

Np
η1, · · · , 1√

Np
ηM ].

The term 1√
Np

is to normalize the measurement matrix Θ to satisfy tr(ΘHΘ) = K, so as

to fit into the analytical framework of compressive sensing [10].

Note that Ĥ = Θ†

Ŝ
Y according to Line 19 in Algorithm 1, and Y = ΘH + N =

Θ
Ŝ
H

Ŝ
+ Θ

S−Ŝ
H

S−Ŝ
+ N , where S and Ŝ are the support and the estimated support of

H respectively [11], we have

E

(‖H − Ĥ ‖F
‖H ‖F

)

≤ E

(‖H
S−Ŝ
‖F

‖H ‖F

)

︸ ︷︷ ︸

I1

+ E

(‖Θ†

Ŝ
Θ

S−Ŝ
H

S−Ŝ
‖F

‖H ‖F

)

︸ ︷︷ ︸

I2

+E

(‖Θ†

Ŝ
N ‖F

‖H ‖F

)

︸ ︷︷ ︸

I3

, (8)

where ‖ · ‖F is the F-norm operation.

Firstly, for the term I1 inside the summation in (8), we can easily obtain
‖H

S−Ŝ
‖F

‖H‖F
≤ 1

since ‖H
S−Ŝ
‖F is always smaller than ‖H ‖F .

Next, according to the restricted isometry property (RIP) in [10], we have ‖Θ†

Ŝ
Θ

S−Ŝ
‖ ≤

δ2K
1−δK

, where δK and δ2K are RIP constants that only relate to the sparsity K. Hence,

I2 ≤ E

(‖H
S−Ŝ
‖F

‖H ‖F
δ2K

1− δK

)

≤ δ2K

1− δK
(9)

Finally, note that Θ†

Ŝ
is a partial discrete Fourier transform matrix and has at most

K non-zero singular values with upper bound of 1√
1−δk

according to the RIP property

[10]. Moreover, since N and H are i.i.d complex Gaussian distributed with variance ν and
1 respectively, we have ‖N ‖F ∼ ν/2 · χ2(2K) and ‖H ‖F ∼ 1/2 · χ2(2Np) where χ2(2K)
and χ2(2Np) denotes the chi-square distribution with 2K and 2Np degrees of freedom,
respectively. Thus [10],

I3 = E

(‖Θ†

Ŝ
N ‖F

‖H ‖F

)

≤
√

2MKν

Np(1− δK)
E

(

(χ2M )−
1

2

)

≤
√

MKν

Np(1− δK)

Γ (M − 1
2
)

Γ (M)

. (10)
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Applying (8), (9) and (10) to (7), we have

E

(‖H − Ĥ ‖F
‖H ‖F

)

≤ 1 +
δ2K

1− δK
+

√

MKν

Np(1− δK)

Γ (M − 1
2
)

Γ (M)

(a)

≤ 1

1− δ2K
+

√

MKν

Np(1− δ2K)

Γ (M − 1
2
)

Γ (M)

, (11)

where (a) is a consequence of the fact that δK ≤ δ2K < 1 [11].

This completes the proof of the Theorem 1.
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