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Abstract 

The reactions of the complexes [Mo(CO)2(η
4-C4Ph4CO)2] and [Mo(CO)3(NCMe)(η4-

C4Ph4CO)] with the alkynes dimethyl acetylenedicarboxylate (DMAD, RC≡CR where R = CO2Me) 

and methyl propiolate (RC≡CH) have been studied. In the case of DMAD, the initial product is the 

green carbonyl complex [Mo(CO)(RC≡CR)(η5, σ-C4Ph4COCR=CR)] (3), in which two alkyne 

molecules have been incorporated: one is linked to the carbonyl group of the tetracyclone ligand, 

whereas the other is π-bound to the metal as a 4-electron donor. Oxidation of this compound 

affords yellow [Mo(O)(RC≡CR)(η5, σ-C4Ph4COCR=CR)] (8); on replacing the π-acceptor carbonyl 

ligand by the π-donor oxo group, the alkyne ligand changes orientation: it lies parallel to the Mo–

CO bond in 3 but perpendicular to the Mo=O group in 8. Analogous complexes (9, 10) were 

isolated in the case of methyl propiolate; each exists as a mixture of two isomers depending on the 

orientation of the unsymmetrical alkyne ligand.  

 

Introduction 

Originally isolated as low yield products from the reactions of metal carbonyls with alkynes,1 

complexes containing cyclopentadienone ligands have attracted a substantial amount of renewed 

interest in recent years. Among these, ruthenium complexes of tetraphenylcyclopentadienone 

(commonly referred to as tetracyclone), and in particular Shvo's catalyst, [Ru2(CO)4(µ-H)(µ, η5, η5-

C4Ph4COHOCC4Ph4)], have been demonstrated to be active catalysts for a number of important 

reactions, such as the transfer hydrogenation of aldehydes, ketones and imines and the 

dehydrogenation of ammonia-borane.2, 3 The catalyst functions by reversible dissociation to the 

interrelated mononuclear fragments [RuH(CO)2(η
5-C4Ph4COH)] and [Ru(CO)2(η

4-C4Ph4CO)] 

which can act as hydrogenating and dehydrogenating agents respectively (Scheme 1). It is therefore 

an example of a bifunctional system, in that one hydrogen is delivered from the metal and the other 

from the hydroxy group of the ligand.4 More recently, attempts have been made to replace 

ruthenium with cheaper, more earth-abundant metals such as iron in catalysts developed by Casey, 

Beller, Wills and others.5 
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Scheme 1. Formation of catalytically active species by dissociation of Shvo's catalyst. 

 

Some time ago we reported efficient preparations of several molybdenum complexes 

containing tetracyclone ligands, including [Mo(CO)2(η
4-C4Ph4CO)2] 1 and [Mo(CO)3(NCMe)(η4-

C4Ph4CO)] 2 (Chart 1) and demonstrated that their reactions with phosphines afforded complexes 

of the type [Mo(CO)3L(η4-C4Ph4CO)] (L = PPh3, PPh2Me, PPh2H) or [Mo(CO)2(L2)(η
4-C4Ph4CO)] 

(L2 = dppm, dppe).6 In these reactions one (and only one) of the tetracyclone ligands of 1 could be 

displaced by a phosphine. Although molybdenum is not traditionally associated with high catalytic 

activity in hydrogenation reactions, it is interesting to note that Waymouth and co-workers have 

recently reported that 2 also displays Shvo-type reactivity in transfer hydrogenation reactions.7 

 

 

Chart 1 

 

Recently we showed that the reaction of 1 with phenylacetylene resulted in an unusual 

cyclotrimerisation process to give an η6-fulvene ligand.8 In this paper we report the reactions of 1 

and 2 with the activated alkynes DMAD (RC≡CR; R = CO2Me throughout this paper) and methyl 

propiolate (RC≡CH). Part of this work was included in a preliminary publication.9 
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Results and Discussion 

Reactions with DMAD 

Heating a toluene solution of 1 with an excess of DMAD to reflux for 17 h led to the 

production of green [Mo(CO)(RC≡CR)(η5, σ-C4Ph4COCR=CR)] 3 in 70% yield as the only 

organometallic product after separation by column chromatography (Scheme 2). The organic by-

products included tetracyclone, hexamethyl mellitate from the cyclotrimerisation of DMAD, and 

dimethyl tetraphenylphthalate formed by the Diels-Alder reaction of the liberated tetracyclone with 

DMAD. Curiously, in the light of the results obtained below, complex 2 did not give any tractable 

products when treated with DMAD. 

 

 

Scheme 2. Synthesis of the DMAD complexes 3 and 8. 

 

Complex 3 was initially characterized by spectroscopic techniques. The mass spectrum and 

analytical data established the loss of one tetracyclone ligand and the incorporation of two alkyne 

molecules. The IR spectrum showed a terminal CO absorption at 2000 cm–1 together with weaker 

peaks at 1735 and 1720 cm–1 due to the ester groups. The 1H NMR spectrum revealed the presence 

of four inequivalent methyl groups in addition to phenyl peaks due to one tetracyclone ligand. The 

main point of interest, however, proved to be the 13C{1H} NMR spectrum. Two different sets of 

peaks for the two alkyne moieties were observed: the C≡C carbons of the first resonate at 193.2 and 

190.0 ppm, and those of the second at 161.1 and 155.2 ppm. Assignment of the spectrum in the 

140-200 ppm region was assisted by recording a 1H-coupled version; the alkyne carbons and the 

carbonyl of the cyclopentadienone ring remain as singlets whereas the ester carbonyl groups 

collapse to quartets due to coupling with the methyl protons. The carbon atoms of the 
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cyclopentadienone ring also show coupling to the ortho hydrogens of their respective phenyl rings 

(see Supplementary Information). 

In our original communication we proposed structure 4, [Mo(CO)(RC≡CR)2(η
4-C4Ph4CO)], 

for the product (Chart 2).9 However we later realized that structure 3, in which one alkyne is linked 

to the cyclopentadienone ring, is more consistent with the spectroscopic data. For example, it is 

well established that in Mo(II) complexes the 13C chemical shifts of alkyne ligands can be 

correlated with the number of electrons donated to the metal; typical values are approximately 200 

ppm for 4-electron donor alkynes and 115 ppm for 2-electron donors.10, 11 In structure 4 the two 

alkyne ligands would be required to donate six electrons in total to the Mo(CO)(η4-C4Ph4CO) unit 

to achieve an 18-electron configuration, and even though it would be a Mo(0) complex as drawn, 

the two alkynes would probably be equivalent with an average shift of around 150-180 ppm. The 

alternative, that one alkyne donates four electrons and the other two, is unlikely, and even then the 

shift of the latter would be rather high. In structure 3, however, the peaks at lower field can be 

readily assigned to the four-electron donor alkyne, whereas the vinylic carbons would be expected 

to appear at the observed value of ca. 150-160 ppm. Secondly, previous work has shown that the 

Shvo complex [Ru2(CO)4(µ-H)(µ, η5, η5-C4Ph4COHOCC4Ph4)] reacts with alkynes such as C2Ph2 to 

afford the related vinyl complex [Ru(CO)2(η
5, σ-C4Ph4COCPh=CPh)] 5 in which a similar linking 

of the alkyne to the cyclopentadienone has occurred; moreover the 13C chemical shift of the vinylic 

carbons in these compounds was also around 150 ppm.12 Further literature precedent for such a 

structure can be found in the products of the reaction between [Fe2(CO)9] and methyl 

phenylpropiolate: not only was cyclopentadienone complex 6 isolated, but so was 7, its addition 

product with further alkyne.13 The nucleophilic nature of the carbonyl oxygen in cyclopentadienone 

complexes can be attributed to the canonical form shown in Chart 3, in which it bears a negative 

charge. 
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Chart 2 

  

 

Chart 3 

 

After many years we succeeded in growing crystals of 3 suitable for X-ray diffraction; the 

structure is shown in Figure 1 with important bond lengths given in its caption. There are two 

independent molecules in the unit cell, one of which exhibits disorder of the carbonyl oxygen of 

one of the CO2Me groups; the molecule depicted here (B) is the non-disordered one. The structure 

determination confirms the linking of the tetracyclone carbonyl oxygen to one of the alkyne 

molecules, creating a cyclopentadienyl ligand tethered through the vinyl group. The five-membered 

ring is bonded to the metal in a slightly tilted η5 manner: the Mo-C bond lengths lie between 

2.302(4) and 2.392(4) Å with those to C(4) and C(5) being shortest. In complex 5, the ligand was 
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significantly tilted the opposite way, with the oxygen-bearing carbon being closest to the Ru. The 

bond lengths in the vinylic portion of the ligand are the same, within experimental error, as those in 

complex 5.12, 14 

The second alkyne is bound to the molybdenum as an η2-ligand; the compound therefore 

belongs to the well established CpM(RC≡CR)LX class.15, 16 Both the C≡C bond length of 1.312(6) 

Å and the Mo–C bond lengths [2.031(4) and 2.059(4) Å] are commensurate with this ligand acting 

as a 4-electron donor, as required by electron counting considerations.11 It is also noteworthy that 

the alkyne lies parallel to the CO ligand, a point discussed further below. 

 

 

Figure 1. Single crystal X-ray structure of [Mo(CO)(RC≡CR)(η5, σ-C4Ph4COCR=CR)] 3. Selected 

bond lengths (Å): Mo(1B)-C(1B) 2.014(5); Mo(1B)-C(32B) 2.151(4); Mo(1B)-C(35B) 2.031(4); 

Mo(1B)-C(36B) 2.059(4); C(31B)-C(32B) 1.345(6); C(35B)-C(36B) 1.312(6); O(10B)-C(2B) 

1.374(5); O(10B)-C(31B) 1.396(5). 
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Although complex 3 is relatively air stable in the solid state, exposure of a dichloromethane 

solution to air overnight resulted in a color change from green to yellow accompanied by the 

disappearance of the carbonyl peak in the IR spectrum. The same transformation can be brought 

about instantaneously by dissolving the compound in THF that has been deliberately exposed to air 

and sunlight (the active agent presumably being a peroxide). From the yellow solutions, the 

corresponding oxo complex [Mo(O)(RC≡CR)(η5, σ-C4Ph4COCR=CR)] 8 can be isolated in 

excellent yield (Scheme 2). The presence of the Mo=O group was confirmed by observation of a 

peak at 937 cm–1 in the solid state IR spectrum. The 1H NMR spectrum of 8 is very similar to that 

of 3, with four inequivalent methyl groups, but distinct differences are apparent in the 13C NMR 

spectrum, where all four alkyne carbons now appear in the region between 167.2 and 149.7 ppm, 

i.e. there is an upfield shift of approximately 40 ppm in the metal bonded alkyne. We attribute this 

to the replacement of the π-acceptor carbonyl by the π-donor oxo ligand which can compete with 

the alkyne ligand for available metal orbitals, as discussed extensively by Templeton and others.17-20 

For example, the average chemical shift of the alkyne carbons in [W(CO)(HC≡CH)(S2CNEt2)2] is 

206 ppm, typical for a four-electron donor alkyne, whereas in the analogous oxo complex 

[W(O)(HC≡CH)(S2CNEt2)2] it is 150 ppm, i.e. the alkyne is a much less effective π-donor in the 

latter. 

The X-ray crystal structure of 8 is shown in Figure 2, with important bond lengths detailed in 

the caption. The Mo=O distance of the terminal oxo ligand is 1.693(5) Å which is typical for 

Mo(IV) oxo complexes of this type.21 Whereas the bonds between Mo and the four former diene 

carbons C(8) to C(11) are equal within experimental error, that to the oxygen-bearing carbon C(7) 

is now significantly shorter than in complex 3. The remaining distances within the vinylic portion 

of the complex are however unchanged. 
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Figure 2. Single crystal X-ray structure of [Mo(O)(RC≡CR)(η5, σ-C4Ph4COCR=CR)] 8. Selected 

bond lengths (Å): Mo(1)-O(1) 1.693(5); Mo(1)-C(1) 2.173(8); Mo(1)-C(36) 2.100(8); Mo(1)-C(37) 

2.101(7); C(1)-C(2) 1.333(11); C(36)-C(37) 1.293(11); C(2)-O(2) 1.378(8); C(7)-O(2) 1.363(9). 

 

The main structural change concerns the alkyne ligand. The Mo-C distances have increased 

significantly, in accordance with the idea that the alkyne is less strongly bound in the oxo complex. 

Although the C≡C bond length might have been expected to decrease, this does not appear to be the 

case within experimental error [1.312(6) Å in 3 compared to 1.293(11) Å in 8]. A more obvious 

difference is the reorientation of the alkyne ligand so that it is now perpendicular to the Mo=O bond 

i.e. it has rotated by 90° compared to its position in the carbonyl complex 3, due to competition for 

the available metal d-orbitals with the strong π-donor oxo ligand. The same reorientation of the 

alkyne ligand was shown to have taken place in the X-ray crystal structures of two related 

complexes, [Mo(CO)(SC6F5)(F3CC≡CCF3)(η-C5H5)] and [Mo(O)(SC6F5)(F3CC≡CCF3)(η-C5H5)],
21 

and the alkyne in [W(O)(Ph)(PhC≡CPh)(η-C5H5)] also adopts the same geometry.22 
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Reactions with methyl propiolate 

Our initial problems in obtaining crystals for structural characterization from the complexes 

derived from DMAD prompted us to explore the reactions of 1 and 2 with methyl propiolate, 

because of the additional information that the CH groups of the alkyne might provide in the 1H and 

13C NMR spectra, especially since the CH and CR carbons can be readily distinguished in the latter 

by use of an attached proton test. This indeed proved to be the case, though the results were 

complicated by the presence of two isomers. 

The reaction of complex 1 with an excess of methyl propiolate in refluxing toluene proceeded 

in a similar way to the DMAD reaction above; a green zone could be separated by chromatography 

which was shown to contain two isomers of [Mo(CO)(RC≡CH)(η5, σ-C4Ph4COCH=CR)] 9a, 9b 

together with a small amount of the corresponding oxo species [Mo(O)(RC≡CH)(η5, σ-

C4Ph4COCH=CR)] 10a, 10b, which also exists as two isomers (Scheme 3). Also present in the 

crude material was methyl tetraphenylbenzoate derived from Diels-Alder addition of tetracyclone 

with methyl propiolate. 

In the hope of obtaining a product free from organic contaminants, the reaction of the alkyne 

with 2, which contains a labile MeCN ligand, was explored under milder conditions. Stirring a THF 

solution of 2 with methyl propiolate (5 equiv.) at room temperature for 1 h caused a change from 

orange to green. Column chromatography gave some free tetracyclone due to decomposition, a 

small amount of an organometallic by-product, [Mo2(H2O)(CO)5(µ-C4Ph4CO)(η-C4Ph4CO)], which 

is presumably formed by the presence of adventitious water23 and a green zone consisting of 9.  It is 

not necessary to isolate pure 2 as a starting material; a one-pot synthesis directly from [Mo(CO)6] 

gave 9 in an improved yield of 76%. 
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Scheme 3. Synthesis of the methyl propiolate complexes 9 and 10. The major isomer 9a is 

depicted; in the minor isomer 9b the η2-methyl propiolate ligand is rotated by 180°. 

 

There are four possible isomers of complex 9, depending on the orientation of the alkyne 

ligand and the regiochemistry of the alkyne-cyclopentadienone linkage, but only two of these are 

observed, in a ratio of 1.3:1. The 1H NMR spectrum of the mixture of isomers shows peaks for the 

CH of the π-bound alkyne ligand at δ 10.86 for the major isomer 9a and at δ 11.49 for the minor 

isomer 9b.23 The corresponding peaks for the vinylic CH groups appear at δ 7.58 and 7.64 

respectively. In the reaction of Shvo's complex with PhC≡CH to give [Ru(CO)2(η
5, σ-

C4Ph4COCPh=CH)] (the analogue of 5), the 1H NMR signal for the vinylic proton was observed at 

5.81 ppm, on which basis the coupling of the cyclopentadienone oxygen was proposed to occur 

exclusively to the CPh terminus of the alkyne; only one isomer was present.12 This shift is far 

removed from those in 9, implying the opposite regiochemistry in our case, a deduction confirmed 

crystallographically.25 Given that the linkage with the tetracyclone ligand is likely to be 

regiospecific, attacking the CH terminus of the alkyne, we attribute the presence of two isomers to 

the two possible orientations of the unsymmetrical alkyne ligand. This is clearly confirmed by the 

1H-coupled 13C NMR spectrum: as shown in Fig. 3, the signal due to the CO ligand of the minor 

isomer exhibits a coupling of 10 Hz to the proton of the alkyne ligand. By analogy with the 

structure of 3, we assume that this isomer has the CH terminus located closer to the CO ligand. 

Interconversion of the two isomers (e.g. by alkyne rotation) was not observed even at elevated 

temperatures (1H NMR, 353 K in d8-toluene). 
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Figure 3. (a) Expansion of 13C{1H} spectrum of 9 in the carbonyl region. (b) 1H-coupled 

spectrum showing J(CH) of 10 Hz in isomer 9b. 

 

A combination of attached proton test, 1H-coupled spectra and 2D-NMR techniques allowed 

the complete assignment of the 13C NMR spectra of both isomers of 9 (see the Supplementary 

Information for full details). The alkyne carbons appear at approximately 190 ppm, with the vinylic 

carbons at about 170 ppm (CH) and 151 ppm (CCO2Me) respectively (see Table 1 below), 

consistent again with the alkyne acting as a 4-electron donor. 

Exposure of the isomeric mixture of 9 to air results in complete conversion to the 

corresponding oxo complex 10, which again exists as two isomers, again in a ratio of 1.3:1.26 The 

1H NMR spectrum of 10 contains peaks at δ 9.00 and 8.22 due to the CH protons of 10a and at δ 

8.80 and 8.20 for its isomer 10b. The alkyne protons have shifted significantly to higher field 

compared to those in the carbonyl analogue, consistent with the reduced π-donor capability of the 

alkyne ligand in the oxo complex, whereas the vinylic protons have moved slightly in the opposite 

direction, presumably as a consequence of the higher oxidation state of the Mo atom. Detailed 

examination of the 13C NMR spectrum revealed that the vinylic carbon atoms remain relatively 

unchanged by the oxidation process, whereas the chemical shifts of the alkyne carbons are reduced 

by over 40 ppm (Table 1). 
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Compound δ of alkyne CH 

(1J(CH) in Hz) 

δ of alkyne CCO2Me,  

(2J(CH) in Hz) 

δ of vinylic CH,  

(1J(CH) in Hz) 

δ of vinylic CCO2Me,  

(2J(CH) in Hz) 

9a 189.9 (213) 190.2 (9) 170.7 (194) 151.5 (8) 

9b 191.2 (224) 190.15 (8) 171.1 (193) 151.6 (8) 

10a 143.9 (217) 147.0 (9) 178.6 (192) 155.8 (9) 

10b 151.5 (223) 140.0 (12) 177.6 (192) 156.4 (9) 

 

Table 1. 13C chemical shifts and C–H coupling constants for the alkyne-derived carbon atoms in 

complexes 9 and 10. 

 

Confirmation that the cyclopentadienone oxygen is linked to the CH terminus of the alkyne 

was obtained from an X-ray crystal structure determination of one isomer of 10 (see Supplementary 

Information).25 The gross features of the structure are similar to those of complex 8, with the π-

bound methyl propiolate ligand orientated perpendicular to the metal-oxo bond.  

 

Conclusions 

In this paper we have shown that the reaction of [Mo(CO)2(η
4-C4Ph4CO)2] with electrophilic 

alkynes results in the incorporation of two alkyne molecules: one of these becomes linked to the 

oxygen of the cyclopentadienone ligand whereas the other is coordinated to the metal as a 4-

electron π-bound ligand. In the case of methyl propiolate the same complex can be prepared from 

[Mo(CO)6] in a one-pot reaction via the acetonitrile complex [Mo(CO)3(NCMe)(η4-C4Ph4CO)]. 

Clearly the coupling of cyclopentadienone ligand and alkyne parallels the reaction of Shvo's 

complex with alkynes. However the ability of the molybdenum complexes to lose additional 

ligands (tetracyclone ring and CO in 1, acetonitrile and CO in 2) allows the coordination of a 

second alkyne molecule. Oxidation of the complex leads to the replacement of the Mo–CO group 

by a Mo=O unit and provides a further example of the reorientation of an alkyne ligand depending 

on the π-acceptor/π-donor properties of the co-ligand in two analogous complexes that have both 

been crystallographically characterized. 
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Experimental 

General experimental techniques were as detailed in other papers from this laboratory.6, 8, 27 

Infra-red spectra were recorded in CH2Cl2 solution (0.5 mm NaCl cells) over the range 2200-1550 

cm–1, as KBr disks or neat with a diamond ATR device over the range 4000-400 cm–1, on a Perkin 

Elmer Spectrum Two instrument. The 1H (400 or 500 MHz) and 13C (100 MHz or 125.8 MHz) 

NMR spectra were obtained in CDCl3 solution (unless otherwise stated) on Bruker Avance AV400 

or AV500 machines, the first of these having an automated sample-changer. Chemical shifts are 

given on the δ scale relative to SiMe4 = 0.0 ppm. The 13C{1H} NMR spectra were routinely 

recorded using an attached proton test technique (DEPT pulse sequence). Mass spectra were 

recorded on a Kratos MS 80 instrument operating in fast atom bombardment mode with 3-

nitrobenzyl alcohol as matrix, or on VG AutoSpec instrument operating in electron impact mode, 

and are given for the most abundant isotope (98Mo). Elemental analyses were carried out by the 

Microanalytical Service of the Department of Chemistry.  

Tetracyclone and the complexes [Mo(CO)2(η
4-C4Ph4CO)2] and [Mo(CO)3(NCMe)(η4-

C4Ph4CO)] were prepared by literature procedures.6, 28 Alkynes were obtained from Aldrich and 

used as received. Light petroleum refers to the fraction boiling in the range 40-60 °C. THF for 

oxidation reactions was prepared by allowing a stoppered clear glass flask of the solvent to stand on 

a sunny windowsill for several weeks. Warning! All peroxides should be treated as potentially 

explosive and under no circumstances should THF treated in this way be subsequently distilled. 

 

Synthesis of [Mo(CO)(RC≡CR)(η5, σ-C4Ph4COCR=CR)] 3. 

Five equivalents of DMAD (1.0 cm3, 8.15 mmol) were added to a solution of [Mo(CO)2(η
4-

C4Ph4CO)2] (1.528 g, 1.59 mmol) in toluene (175 cm3).  The yellow solution was heated to reflux 

for 17 hours, changing first to purple then to green-brown.  Monitoring by TLC showed that the 

purple color was due to released tetracyclone. The reaction mixture was allowed to cool to room 

temperature, a small amount of silica was added and the toluene was removed on the vacuum line. 

The resulting solid was loaded onto a chromatography column. Elution with a mixture of light 

petroleum and dichloromethane (1:1) produced a faint yellow band that was not collected, followed 

by the recovered tetracyclone. Elution with dichloromethane afforded a yellow band of organic 

material (IR 1741 cm–1), identified as a mixture of dimethyl tetraphenylphthalate (by comparison 
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with an authentic sample prepared from DMAD and tetracyclone in refluxing toluene)29 and 

hexamethyl mellitate.30  Elution with a mixture of CH2Cl2 and acetone (99:1) separated a small 

yellow-brown band, and changing to a 95:5 ratio of the same solvents produced the dark green zone 

due to [Mo(CO)(RC≡CR)(η5, σ-C4Ph4COCR=CR)]. Yield = 922.3 mg, 70%. On some occasions an 

unidentified dark red band could subsequently be eluted with acetone; IR (KBr) 1736 cm–1. 

Data for 3: M.p. 135-138 °C. IR(CH2Cl2): 2000, 1735, 1720 cm–1; 1H NMR: δ 7.79-6.49 (m, 

20H, Ph), 3.98, 3.62, 3.58, 3.50 (all s, 3H, Me); 13C{1H} NMR: δ 230.4 (CO), 193.2, 190.0 (both 

CCO2Me), 170.6, 168.7, 166.6, (all CO2Me), 161.1 (CCO2Me) 156.2 (CO2Me), 155.2 (CCO2Me), 

146.0 (ring CO), 132.6-127.6 (m, Ph), 114.4, 102.8, 101.9, 100.6 (all CPh), 53.3, 52.8, 52.1, 51.7 

(all Me). Found: C, 61.02; H, 4.36. Calc. for C42H32O10Mo.0.5CH2Cl2: C, 61.11; H, 3.95%. Mass 

spectrum m/z 766 (M–CO)+. 

 

Synthesis of [Mo(O)(RC≡CR)(η5, σ-C4Ph4COCR=CR)] 8. 

Complex 3 (519.4 mg) was dissolved in 50 cm3 of THF containing peroxides and stirred 

under argon for 1 h. The solution rapidly changed color from green to yellow. The solvent was 

removed at room temperature on a rotary evaporator and the residue triturated with light petroleum 

to remove a small amount of tetracyclone. The yield was virtually quantitative. 

Alternatively, dichloromethane (175 cm3) was slowly added to [Mo(CO)(RC≡CR)(η5, σ-

C4Ph4COCR=CR)] (352.9 mg, 425 mmol) with stirring in air. The solution was then placed under 

an argon atmosphere and stirred for 18 hours.  The products were separated by column 

chromatography.  Elution with a mixture of light petroleum and CH2Cl2 (1:1) afforded a small 

amount of tetracyclone. Elution with a dichloromethane/acetone mixture (99:1) produced a yellow 

band which yielded [Mo(O)(RC≡CR)(η5, σ-C4Ph4COCR=CR)] (213.5 mg, 273.7 mmol, 78%) after 

removal of the solvent. 

Data for 8: M.p.: darkens above 68 °C, melts at 110-114 °C. IR(CH2Cl2): 1772, 1719 cm–1. 

IR(KBr) 937 cm–1 (Mo=O). 1H NMR: δ 7.73-6.91 (m, 20H, Ph), 3.77, 3.75, 3.65, 3.58 (all s, 3H, 

Me); 13C{1H) NMR: δ 170.3, 167.9 (both CO2Me), 167.2 (CCO2Me) , 165.4, 158.4 (both CO2Me), 

153.5, 150.1, 149.7 (all CCO2Me) 142.4 (ring CO), 131.9-126.6 (m, Ph), 120.3, 116.0, 114.8, 109.9 

(all CPh), 53.0, 52.8, 52.5, 52.2 (all Me). Found: C, 63.07; H, 4.34. Calc. for C41H32O10Mo: C, 

63.08; H, 4.10%. Mass spectrum m/z 783 (M+H)+. 
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Synthesis of [Mo(CO)(RC≡CH)( (η5, σ-C4Ph4COCH=CR)] 9 from 

[Mo(CO)3(NCMe)(η4-C4Ph4CO)]. 

Five equivalents of methyl propiolate (0.7 cm3, 8.25 mmol) were added to a solution of 

[Mo(CO)3(NCMe)(η4-C4Ph4CO)] (1.0102 g, 1.65 mmol) in THF (175 cm3).  The resulting mixture 

was stirred at room temperature with periodic TLC monitoring. After 1 h the product mixture was 

absorbed onto silica and chromatographed. Tetracyclone (0.1568 g) was eluted with a mixture of 

light petroleum and CH2Cl2 (1:1). Use of a 1:3 mixture of the same solvents caused the elution of a 

small orange band identified as [Mo2(H2O)(CO)5(µ-η5, σ-C4Ph4CO)(η4-C4Ph4CO)] (48.4 mg, 0.043 

mmol, 5.2%). The green band of [Mo(CO)(RC≡CH)(η5, σ-C4Ph4COCH=CR)] (402 mg, 36%) was 

eluted with CH2Cl2 and recrystallized by diffusion from toluene and diethyl ether. The product 

consists of an inseparable mixture of the two isomers of 9. 

In a separate experiment the synthesis was conducted as a one-pot procedure. Distilled 

acetonitrile (200 cm3) was added to [Mo(CO)6] (5.0 g, 18.9 mmol). The solution was stirred and 

heated to reflux for 4.75 h.  The solvent was removed in vacuo and the resulting yellow-green 

[Me(CO)3(MeCN)3] was redissolved in THF. Tetracyclone (7.5 g, 19.5 mmol) was added and the 

reaction mixture was stirred overnight.  Methyl propiolate (8.6 cm3, 94.5 mmol) was then added 

and stirring was continued for a further 3 h.  Column chromatography as above afforded orange 

[Mo2(H2O)(CO)5((µ-η5, σ-C4Ph4CO)(η4-C4Ph4CO)] (430 mg, 0.385 mmol, 4%) and a green band 

(9.7 g). Crystallisation by diffusion of light petroleum into a chloroform solution produced a blue 

solid which consists of a 1.3:1 mixture of isomers 9a and 9b, and which dissolves to give a blue-

green solution. 

M.p. 190-192 °C. IR(CH2Cl2): 1963, 1728, 1716, 1688, 1602 cm–1. Mass spectrum m/z 689 

(M+). Found: C, 67.27; H, 4.18; Calc. for C38H28O6Mo: C, 67.46; H, 4.14%. 

Isomer 9a (major): 1H NMR δ 10.83 (s, 1H, CH), 7.57 (s, 1H, CH), 7.80-6.30 (m, 20H, Ph), 

4.05, 3.40 (both s, 3H, CO2Me); 13C{1H} NMR: δ 235.7 (CO), 190.2 (CCO2Me), 189.9 (CH), 170.7 

(CH), 170.2 (CO2Me), 169.7 (CO2Me), 151.5 (CCO2Me), 139.0 (ring CO), 133.1-127.7 (m, Ph), 

112.4, 102.9, 98.9, 96.5 (all CPh), 52.9, 51.5 (both Me). 

Isomer 9b (minor): 1H NMR: δ 11.48 (s, 1H, CH), 7.63 (s, 1H, CH), 7.80-6.30 (m, 20H, Ph), 

3.57, 3.42 (both s, 3H, CO2Me); 13C{1H} NMR: δ 238.1 (CO), 191.2 (CH), 190.15 (CCO2Me), 
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171.4 (CO2Me), 171.1 (CH), 169.55 (CO2Me), 151.6 (CCO2Me), 136.7 (ring CO), 133.1-127.7 (m, 

Ph), 112.9, 101.2, 100.9, 99.7 (all CPh), 52.3, 51.5 (both Me). 

 

Synthesis of [Mo(CO)(RC≡CH)(η5, σ-C4Ph4COCH=CR)] 9 from [Mo(CO)2(η-

C4Ph4CO)2]. 

Five equivalents of methyl propiolate (1.5 cm3, 16.4 mmol) were added to a solution of 

[Mo(CO)2(η
4-C4Ph4CO)2] (3.02 g, 3.28 mmol) in toluene (175 cm3) and the reaction mixture was 

refluxed for 17 h with TLC monitoring. The solution was then absorbed onto a small amount of 

silica and chromatographed. A mixture of light petroleum and CH2Cl2 (1:1) eluted tetracyclone 

followed by two narrow yellow bands consisting of organic by-products which were not collected. 

A green band (1.47 g) was then eluted with CH2Cl2. The 1H NMR spectrum showed it to consist of 

a mixture of the complexes 9a and 9b, with small amounts of 10a, 10b, and methyl-2, 3, 4, 5-

tetraphenylbenzoate [1H NMR δ 7.95 (s, 1H, CH), 7.34-6.75 (m, 20H, Ph), 3.62 (s, 3H, CO2Me)].  

 

Synthesis of [Mo(O)(HC≡CR)(η5, σ-C4Ph4COCH=CR)] 10 

An isomeric mixture of 9a and 9b from the above experiments (103.9 mg, 0.154 mmol) was 

dissolved in toluene (175 cm3).  The solution was briefly exposed to air by removing a stopper of 

the flask, and then reconnected to the argon supply and stirred for 18 h with TLC monitoring. 

Column chromatography gave tetracyclone, eluted with a mixture of light petroleum and CH2Cl2 

(2:5) followed by the yellow product [Mo(O)(HC≡CR)(η5, σ-C4Ph4COCH=CR)] which was eluted 

with CH2Cl2 and recrystallized from ethyl acetate and diethyl ether. Yield: 73.2 mg, 0.110 mmol, 

73%. 

Alternatively, 9 (303.6 mg, 0.44 mmol) was dissolved in CH2Cl2 (10 cm3) and THF 

containing peroxides (5 cm3) was added.31 The solution was stirred for 15 min, during which it 

changed from green to yellow. After addition of silica (5 g) the solvent was removed and the 

residue chromatographed. A mixture of light petroleum and CH2Cl2 (1:1) eluted a small amount of  

tetracyclone, and elution with CH2Cl2 and acetone (19:1) gave a yellow band of product. The 

solvent was rotary evaporated to leave an oil, which was dissolved in diethyl ether. Addition of 

light petroleum precipitated the product as a yellow solid. 
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IR(CH2Cl2): 1772, 1730, 1603 cm–1. IR(KBr) 936 cm–1 (Mo=O). Mass spectrum m/z 665 

(M+). Found: C, 63.71; H, 4.39. Calc. for C37H28O6Mo.0.5CH2Cl2: C, 63.69; H, 4.10%. 

Isomer 10a (major): 1H NMR: δ 9.02 (s, 1H, CH), 8.23 (s, 1H, CH); 7.80-6.60 (m, 20H, Ph), 

3.64, 3.62 (both s, 3H, Me); 13C{1H} NMR (CD2Cl2): δ 178.6 (CH), 170.05, 169.7 (CO2Me), 155.8 

(CCO2Me), 147.0 (CCO2Me), 143.9 (CH), 139.9 (ring CO), 132.1-126.7 (m, Ph), 119.3, 114.0, 

112.1, 108.8 (all CPh), 51.9, 51.6 (both Me). 

Isomer 10b (minor): 1H NMR δ 8.83 (s, 1H, CH), 8.22 (s, 1H, CH), 7.80-6.30 (m, 20H, Ph), 

3.70, 3.65 (both s, 3H, Me). 13C{1H} NMR (CD2Cl2): δ 177.6 (CH), 170.1, 170.0 (CO2Me), 156.4 

(CCO2Me), 151.5 (CH), 140.0 (CCO2Me), 139.4 (ring CO), 132.1-126.7 (m, Ph), 121.2, 113.2, 

112.4, 110.1 (all CPh), 52.7, 51.7 (both Me). 

 

 

Associated content 

Supporting information 

1H and 13C NMR spectra of all compounds and full assignment of 13C spectra with 

comparison between decoupled/coupled spectra, with tables of crystal data for complexes 3, 8 and 

10. 
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