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Abstract

This paper presents FitSpec, a tool providing automated assistance
in the task of refining sets of test properties for Haskell functions.
FitSpec tests mutant variations of functions under test against a
given property set, recording any surviving mutants that pass all
tests. The number of surviving mutants and any smallest survivor are
presented to the user. A surviving mutant indicates incompleteness
of the property set, prompting the user to amend a property or to add
a new one, making the property set stronger. Based on the same test
results, FitSpec also provides conjectures in the form of equivalences
and implications between property subsets. These conjectures help
the user to identify minimal core subsets of properties and so to
reduce the cost of future property-based testing.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging — Testing tools

Keywords property-based testing, mutation testing, systematic
testing, formal specification, Haskell.

1. Introduction

Property-based testing tools automatically test a set of properties
describing a set of functions. QuickCheck (Claessen and Hughes
2000) and SmallCheck (Runciman et al. 2008) are well-known
examples of such tools for Haskell. Two interesting questions arise
for any specific application of property-based testing:

• Does the set of properties completely describe the set of func-
tions? Is there no other set of functions that passes the tests?

• Is this set of properties minimal? Is there a property that is
redundant? When doing regression tests, can a property be
excluded to speed up the process?

This paper presents FitSpec, a tool providing automated assis-
tance in the task of refining sets of test properties for Haskell func-
tions. FitSpec does not require sources for functions under test: it
only requires a tuple of those functions as component values. Sets
of test properties are wrapped to become the result of a function,
whose argument is such a tuple of functions (§3).

FitSpec enumerates small finite black-box mutations of functions
under test (§4.1 and §4.3). It tests those mutants against the property
set, recording the ones that survive by passing all the tests (§4.2
and §4.4). It presents the number of surviving mutants along with

any smallest surviving mutant (§4.5). A surviving mutant indicates
incompleteness of the property set, prompting the user to amend a
property or to add a new one. When there is apparent redundancy
in a property set, FitSpec provides conjectures in the form of
equivalences and implications between properties, helping the user
to identify minimal core subsets of properties (§4.6).

Example 1 Consider the following property set describing a sort
function:

1. \xs -> ordered (sort xs)
2. \xs -> length (sort xs) == length xs
3. \x xs -> elem x (sort xs) == elem x xs
4. \x xs -> notElem x (sort xs) == notElem x xs
5. \x xs -> minimum (x:xs) == head (sort (x:xs))

If we supply this property set as input, FitSpec reports that it is
neither minimal nor complete:

Apparent incomplete and non-minimal specification
20000 tests, 4000 mutants

3 survivors (99% killed), smallest:
sort’ [0,0,1] = [0,1,1]
sort’ xs = sort xs

minimal property subsets: {1,2,3} {1,2,4}
conjectures: {3} = {4} 96% killed (weak)

{1,3} ==> {5} 98% killed (weak)

Completeness: FitSpec discovers three mutants that survive testing
against all properties. The smallest surviving mutant is clearly not a
valid implementation of sort, but indeed satisfies all properties. As
a specification, the property set is incomplete as it omits to require
that sorting preserves the number of occurrences of each element
value: \x xs -> count x (sort xs) == count x xs

Minimality: FitSpec discovers two possible minimal subsets of
properties: {1,2,3} and {1,2,4}. As measured by the number of
killed mutants, each of these subsets is as strong as {1,2,3,4,5}. So
far as testing has revealed, properties 3 and 4 are equivalent and
property 5 follows from 1 and 3. It is up to the user to check whether
these conjectures are true. Indeed they are, so in future testing we
could safely omit properties 4 and 5.

Refinement: If we omit redundant properties, and add a property
to kill the surviving mutant, our refined property set is:

1. \xs -> ordered (sort xs)
2. \xs -> length (sort xs) == length xs
3. \x xs -> elem x (sort xs) == elem x xs
4. \x xs -> count x (sort xs) == count x xs

FitSpec reports that this property set is apparently complete but not
minimal: both 2 and 3 now follow from 4. Since that is true, we
might remove properties 2 and 3 to arrive at a minimal and complete
property set. �
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Contributions The main contributions of this paper are:

1. an enumerative black-box mutation-testing technique that does
not need function sources or mutation operators, and always
returns a smallest or simplest surviving mutant if there is one;

2. a technique to conjecture equivalences and implications between
subsets of properties based on mutation testing;

3. a tool (FitSpec) that implements these techniques providing
key information for Haskell programmers refining sets of test
properties;

4. several small case studies illustrating and evaluating the applica-
bility of FitSpec.

Road-map The rest of this paper is organized as follows. §2
defines minimality, completeness, equivalence and implication
of property sets; §3 describes how to use FitSpec; §4 describes
how FitSpec works internally; §5 presents example applications
and results; §6 discusses related work; §7 draws conclusions and
suggests future work.

2. Definitions

We need suitable definitions of completeness, equivalence, impli-
cation and minimality of property sets. These are given here, each
followed by simple examples.

Definition (complete specification) A set of properties specifying
a set of typed and distinctly named functions is complete if no other
binding of functional values to these names, with the same types,
satisfies all properties.

Example 2 The following property set describing the standard
function not :: Bool -> Bool is incomplete:

1. \p -> not (not p) == p

For example, the identity function id :: Bool -> Bool is dis-
tinct from not and satisfies the above property.

The following property set, again describing not, is complete:

1. \p -> not (not p) == p
2. not True == False

There is no other Bool -> Bool function distinct from the standard
not function that satisfies the above specification. �

We emphasise that we are viewing functions as black-box
correspondences between inputs and outputs. For example, though
the alternative declarations

not True = False not p = if p then False
not False = True else True

differ, they define the same function.

Definition (equivalence of property sets) Two sets of properties
for similarly named and typed functions are equivalent if the sets of
functional-value bindings satisfying them are the same.

Example 3 The property set

2. not True == False

for the not function is not equivalent to the property set

3. not False == True

as, for example, the function (const False) :: Bool -> Bool
satisfies property 2 but not property 3.

The property set

1. \p -> not (not p) == p
2. not True == False

is equivalent to the property set

1. \p -> not (not p) == p
3. not False == True

as both are satisfied only when the functional-value binding for not
is the standard one. �

Definition (implication between property sets) A set of properties
implies another set, if whenever a functional-value binding satisfies
the first set, it also satisfies the second. In other words, the set
of functional-value bindings satisfying the first is a subset of the
bindings satisfying the second.

Example 4 The following property set for the not function

1. \p -> not (not p) == p
2. not True == False

implies the property set

3. not False == True

as all bindings of a functional value to not that satisfy both proper-
ties 1 and 2 also satisfy property 3. The converse implication does
not hold: the binding not = const True is a counter-example. �

Definition (minimal property sets) A set of properties for a set of
typed and distinctly named functions is minimal if none of its proper
subsets is equivalent to it.

Example 5 The following property set for not is not minimal

1. \p -> not (not p) == p
2. not True == False
3. not False == True

as by inspection properties 1 and 2 completely specify the standard
not function. This pair of properties is minimal, as neither property
1 nor property 2 alone is a complete specification. �

3. How FitSpec is Used

FitSpec is used as a library (by “import Test.FitSpec”). Un-
less they already exist, instances of the Listable and Mutable
typeclasses are declared for types of arguments and results of the
functions under test (step 1). Properties are gathered in an appro-
priately formulated list (step 2), and passed to the report function
(step 3). Property sets are then iteratively refined, based on report
results (step 4). This section details this process.

1. Provide typeclass instances for user-defined types The types
of arguments and results for functions under test must all be
members of the Listable (§4.1) and Mutable (§4.3) type-classes.
Where necessary, we declare type-class instances for user-defined
types. FitSpec provides instances for most standard Haskell types
and a facility to derive instances for user-defined algebraic data
types using Template Haskell (Sheard and Jones 2002). Writing

deriveMutable ’’<Type>

is enough to create the necessary instances. In §4 we show how to
define such instances manually, and why that is desirable in some
cases.

2. Gather properties We must gather properties in a list, to form
the body of a property-map function with the functions under test
as argument. Given a potentially mutated version of a (tuple of)
function(s), a property map returns a list of properties over it. The
typical form of a property-map declaration is:
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properties :: (<ty0>,<ty1>,...,<tyN>) -> [Property]
properties (<fun0>,<fun1>,...,<funN>) =

[ property $ \<args1> -> <property1>
, property $ \<args2> -> <property2>
, ... ... ...
, property $ \<argsN> -> <propertyN>
]

The property function encodes a Testable property in a
format suitable for FitSpec, of the type Property:

property :: Testable a => a -> Property

Essentially, Testable values are functions with Listable
argument types and a Bool result. The internal representations of
these types and classes are described in §4.

3. Call the report function Results are presented by the report
function. It takes as arguments a tuple of functions under test
and a property map, each of monomorphic type. It prints on
standard output a report about any surviving mutants and conjectured
equivalences or implications. A report application can be used as
the body of a main function to form a compilable program

main = report (fun0,fun1,...,funN) properties

or alternatively report applications can be expressed and evaluated
using a REPL interpreter.

By default, FitSpec will try to analyse a given property-set for
5 seconds. A reportWith function allows variations of the default
settings for controlling values such as: the time limit, the number of
test values, and the number of mutant variations.

4. Use results to refine the property-set If a surviving mutant is
reported, a typical response from the user is to add a new property,
or to strengthen an existing one, so as to “kill” this mutant; then
re-test (step 3).

If there are reported conjectures, a typical response from the
user is first to examine these conjectures to see if they are indeed
true. (Where this cannot be determined, the relevant subset of
properties might be re-tested using larger test-control values.) Where
a conjecture is verified, there is an opportunity to remove one or
more properties from the set used for testing; then re-test (step 3).

If no surviving mutant or plausible conjecture is reported, we
can stop. Provided that we take care when removing properties, in
the end we may hope to obtain a property-set that is stronger than
the one we started with, yet simpler. At the least it will be no weaker,
and without any redundancies discovered by testing.

When there are no surviving mutants, we may conjecture that
a property-set is complete. However, because of the inevitable
limitations of testing, this conjecture could turn out to be false:
there may be a mutant beyond those tested that would have survived.
(Here again, one option for the user is re-testing with larger test-
control values.)

Example 1 (revisited) The following Haskell program analyses
the final property-set from the example in the introduction.

import Test.FitSpec
import Data.List (sort) -- function under test

properties :: ([Int]->[Int]) -> [Property]
properties sort =

[ property $ \xs -> ordered (sort xs)
, property $ \xs -> length (sort xs) == length xs
, property $ \x xs -> elem x (sort xs) == elem x xs
, property $ \x xs -> count x (sort xs) == count x xs
]

main = reportWith args { names = ["sort␣xs"] }
sort
properties

Values of the sort argument of the properties function will
be mutated variants of the original and definitive sort function
passed as argument to reportWith. Since FitSpec uses type-guided
enumeration, we have to bind sort to a specific type in the type
signature of properties. �

4. How FitSpec Works

This section presents details of how FitSpec works. We explore
how data values and mutants are enumerated (§4.1 and §4.3), how
properties are tested (§4.2), how mutants are tested against properties
(§4.4) in searches for surviving mutants (§4.5), how conjectures are
made based on test results (§4.6), how we control the extent of
testing (§4.7), and how we show mutants (§4.7).

4.1 Enumerating Test Data

To mitigate the combinatorial explosion when enumerating data
values, FitSpec uses a size-bounded enumeration technique. The
enumeration works in a similar way to Feat (Duregård et al. 2012).
However, the ranking and ordering of values are defined differently
to align better with our needs when enumerating functional mutants.
Parallel to QuickCheck’s Arbitrary, SmallCheck’s Serial and
Feat’s Enumerable typeclasses, we define Listable:

class Listable a where
tiers :: [[a]]

A Listable instance’s tiers value is a possibly infinite list of
finite sublists (or tiers): the first tier contains values of size 0, the
second tier contains values of size 1, and so on. Size varies with
the type being enumerated: for integers, it is the absolute value; for
tuples, it is the sum of component sizes; for algebraic data types,
the derivable default definition of size is the number of constructor
applications of positive arity.

Given tiers, it is easy to compute a list of all values in non-
decreasing order of size:

list :: Listable a => [a]
list = concat tiers

Listable instances can be defined using a family of functions
cons<N> and an operator \/. Each function cons<N>, takes as
argument a constructor of arity N, each of whose argument types is
Listable, and returns tiers containing all possible applications of
the constructor. The operator \/ produces the sum of two lists of
tiers. So, the general form of an instance for algebraic datatypes is:

tiers = cons<N> ConsA
\/ cons<N> ConsB
... ... ...
\/ cons<N> ConsZ

The order between different constructors only affects the order of
enumeration between same-sized elements. The form of expression,
using \/ to combine cons<N> applications, will be familiar to
SmallCheck users: tiers and series declarations are similar.

The sum and product of two tier-lists are defined by:

(\/) :: [[ a ]] -> [[ a ]] -> [[ a ]]
xss \/ [] = xss
[] \/ yss = yss
(xs:xss) \/ (ys:yss) = (xs ++ ys) : xss \/ yss

(><) :: [[ a ]] -> [[ b ]] -> [[ (a,b) ]]
_ >< [] = []
[] >< _ = []
(xs:xss) >< yss = [xs ** ys | ys <- yss]

\/ []:(xss >< yss)
where
xs ** ys = [(x,y) | x <- xs, y <- ys]
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Tier Number of data values of type:

Bool Nat (Nat,Nat) [Nat] [[Nat]]

0 2 1 1 1 1
1 – 1 2 1 1
2 – 1 3 2 2
3 – 1 4 4 5
4 – 1 5 8 13
5 – 1 6 16 34
6 – 1 7 32 89
7 – 1 8 64 233
8 – 1 9 128 610

Table 1. Numbers of data values in successive tiers for several
example data types.

So, when both tier-lists are infinite:

[t0,t1,t2,...] \/ [u0,u1,u2,...] =
[ t0 ++ u0, t1 ++ u1, t2 ++ u2, ... ]

[t0,t1,t2,...] >< [u0,u1,u2,...] =
[ t0**u0
, t0**u1 ++ t1**u0
, t0**u2 ++ t1**u1 ++ t2**u0
, ...
]

Each cons<N> is defined in terms of ><.

Example 6 Here is a Listable instance for Bool:

instance Listable Bool where
tiers = cons0 False

\/ cons0 True

There are two Bool values, both of size 0:

tiers :: [[Bool]] = [[False,True]] �

Example 7 For the following natural-number type, defined as a
wrapper over Ints,

newtype Nat = Nat Int

assuming a Num instance, a Listable instance can be defined by

instance Listable Nat where
tiers = cons0 0

\/ cons1 (+1)

so

tiers :: [[Nat]] = [ [0], [1], [2], [3], ... ]

as the size of each number is just the number itself — or equivalently,
the number of applications of (+1) used to compute it. �

Example 8 Here is a Listable instance for lists:

instance Listable a => Listable [a] where
tiers = cons0 []

\/ cons2 (:)

So, for example,

tiers :: [[ [Nat] ]] =
[ [ [] ]
, [ [0] ]
, [ [0,0] ,[1] ]
, [ [0,0,0], [0,1], [1,0], [2] ]
, ...
]

is the tier-list for lists of natural numbers. �

Example 9 As a final example, for the tree type

data Tree a = E | N a (Tree a) (Tree a)

we may define a Listable instance by

instance Listable a => Listable (Tree a) where
tiers = cons0 E \/ cons3 N

so, for example:

tiers :: [[ Tree Nat ]] =
[ [ E ]
, [ N 0 E E ]
, [ N 0 E (N 0 E E), N 0 (N 0 E E) E, N 1 E E ]
, ...
] �

Table 1 shows the number of values in each tier for several
types. The ratios between these quantities for successive sizes is far
smaller, for example, than the ratios between quantities of values for
successive depths in SmallCheck — where an increase in depth may
increase the size of a test-data set by orders of magnitude (Duregård
et al. 2012).

An auxiliary function setsOf :: [[a]] -> [[ [a] ]] takes
as argument tiers of element values; it returns tiers of size-ordered
lists of elements without repetition. For example:

setsOf (tiers :: [[ Bool ]]) =
[ [ [] ]
, [ [False], [True] ]
, [ [False,True] ]
]

Another similar auxiliary function bagsOf :: [[a]] -> [[
[a] ]] also takes as argument tiers of element values; but returns
tiers of size-ordered lists of elements possibly with repetition.

The setsOf and bagsOf functions will be useful when defining
tiers of mutants (cf. §4.3) and tiers of values satisfying a data
invariant (cf. §5.3, §5.4, §5.6).

4.2 Testing Properties

Using the enumeration described in §4.1, FitSpec provides several
functions to check whether properties hold. Consider first:

holds :: Testable a => Int -> a -> Bool

The function holds takes as arguments a number of tests n and a
Testable property; its result is True if the property is found to hold
for n tests (or in all cases if there are fewer than n possibilities) and
False otherwise. For example, to check the ordered-result property
of sort for the first 1000 lists of naturals we may evaluate:

holds 1000 (\xs -> ordered (sort (xs::[Nat])))

The type annotation of xs is necessary to determine the instance of
Listable used when enumerating values for testing.

4.3 Enumerating Mutants

Unlike traditional mutation-testing techniques (Demillo et al. 1978),
FitSpec adopts a black-box view of functions under test. Mutants
have a finite list of exceptional cases in which their results differ
from those of the original function. So mutants of a function f can
be expressed in the following form:

\x -> case x of
<value1> -> <result1>
<value2> -> <result2>
... -> ...
<valueN> -> <resultN>
_ -> f x

This section explains how such mutants are enumerated.
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Mutants defined in this way may be stricter than the original
function. As we test properties only with finite and fully defined
arguments, strictness is rarely an issue in practice. However, if the
result of a property test is undefined, we catch the exception and
treat the test as a failing case.

Mutable typeclass Instances of a Mutable typeclass define a
mutiers function computing tiers of mutants of a given value:

class Mutable a where
mutiers :: a -> [[a]]

The first tier contains the equivalent mutant, of size 0, the second
tier contains mutants of size 1, the third tier contains mutants of
size 2, and so on. The size of a mutant is defined by the instance
implementor. As a default, mutant-size can be calculated as the sum
of the number of mutated cases and the sizes of arguments and
results in these cases.

The equivalent mutant is the original function without mutations.
As the first tier contains exactly the equivalent mutant, a product of
mutiers can be computed by ><. Also, tail mutiers contains
exactly the non-equivalent mutants.

The mutants function lists mutants of a given value of some
Mutable type:

mutants :: Mutable a => a -> [a]
mutants = concat . mutiers

Enumerating Data Mutants For Listable datatypes in the Eq
class, the following function can be used as the definition of
mutiers:

mutiersEq :: (Listable a, Eq a) => a -> [[a]]
mutiersEq x = [x] : deleteT x tiers

The deleteT function deletes the first occurrence of a value in a list
of tiers. Assuming the underlying Listable enumeration has no
repeated element, this definition guarantees that there is no repeated
mutant. Having no repeated data mutant will be necessary to avoid
equivalent and repeated functional mutants.

Example 7 (revisited) Recalling the natural-number type Nat, a
Mutable instance for Nat is given by:

instance Mutable Nat where
mutiers = mutiersEq

Evaluating (mutiers 3) :: [[Nat]] yields:

[ [3], [0], [1], [2], [], [4], [5], [6], [7], ...

The original value has size zero; other mutant values have one added
to their sizes; the fifth tier is empty as there is no inequivalent mutant
to occupy it. �

Enumerating Functional Mutants Each single-case mutation of
a function is defined by an exception pair. The mutate function
mutates a function given a list of exception pairs:

mutate :: Eq a => (a -> b) -> [(a,b)] -> (a -> b)
mutate f ms = foldr mut f ms

where
mut (x’,fx’) f x = if x == x’ then fx’ else f x

The mutationsFor function returns tiers of exception pairs for
a given function in a given single case.

mutationsFor :: Mutable b
=> (a -> b) -> a -> [[(a,b)]]

mutationsFor f x =
((,) x) ‘mapT‘ tail (mutiers $ f x)

Tier Number of mutants of:

not id (+) sort
:: Bool :: Nat :: Nat :: [Nat]
-> Bool -> Nat -> Nat -> [Nat]

-> Nat

1 2 0 0 0
2 1 2 3 2
3 – 2 4 4
4 – 5 12 13
5 – 7 24 32
6 – 13 56 87
7 – 19 113 220
8 – 34 247 581
9 – 49 499 1470

10 – 80 1034 3772

Table 2. Numbers of inequivalent mutants in successive tiers for
several original functions.

The mutiersOn function takes a function and a list of arguments
for which results should be mutated; it returns tiers of mutant
functions.

mutiersOn :: (Eq a, Mutable b)
=> (a -> b) -> [a] -> [[a -> b]]

mutiersOn f xs = mutate f ‘mapT‘
products (map (mutationsFor f) xs)

We can now give a Mutable instance for functional types:

instance (Eq a, Listable a, Mutable b)
=> Mutable (a -> b) where

mutiers f = mutiersOn f ‘concatMapT‘ setsOf tiers

We omit details of the functions concatMapT and products, but
they are straightforward.

Example 10 The function not :: Bool -> Bool has three in-
equivalent mutants:

\p -> case p of False -> False; _ -> not p
\p -> case p of True -> True; _ -> not p
\p -> case p of False -> False; True -> True

The first two are of size 1. The last is of size 2. �

Example 11 The first four inequivalent mutants for the identity
function id :: Nat -> Nat are:

\x -> case x of 0 -> 1; _ -> id x
\x -> case x of 1 -> 0; _ -> id x
\x -> case x of 0 -> 2; _ -> id x
\x -> case x of 2 -> 0; _ -> id x

The first two are of size 2, and the last two are of size 3. �

Example 12 The first three inequivalent mutants of the natural-
number addition function (+) are:

\x y -> case (x,y) of (0,0) -> 1; _ -> x + y
\x y -> case (x,y) of (0,1) -> 0; _ -> x + y
\x y -> case (x,y) of (1,0) -> 0; _ -> x + y �

Table 2 shows, for a few example functions, the number of
inequivalent mutants in successive tiers. In the worst case, this
number increases by around 3× as size increases by one.

4.4 Testing Mutants against Properties

As we saw in §3, in order to collect property functions of different
types into a single list, we apply FitSpec’s property function to
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each of them. The property function is polymorphic over the class
of Testable types:

property :: Testable a => a -> Property

The Property type is defined as a synonym:

type Property = [([String],Bool)]

Here each list of strings is a printable representation of one possible
choice of argument values for the property. Each boolean paired
with such a list indicates whether the property holds for this choice.
The outer list is potentially infinite and lazily evaluated.

A function propertyHolds, similar to holds, takes as argu-
ments a number of tests and a Property; it returns True if the
property holds in all tested cases, and False otherwise.

propertyHolds :: Int -> Property -> Bool
propertyHolds n = and . map snd . take n

Example 1 (revisited) Consider the following sort mutant:

sort’ :: [Nat] -> [Nat]
sort’ [0,0,1] = [0,1,1]
sort’ xs = sort xs

To test whether sort’ satisfies the final property-set in Example 1
for 1000 test lists, we evaluate

propertyHolds 1000 ‘map‘ properties sort’

obtaining

[True, True, True, False]

as sort’ gives ordered results, preserving length and membership,
but not preserving element count in the exceptional case. �

4.5 Searching for Survivors

Surviving mutants are those for which every test result returned by
propertyHolds is True.

Example 1 (revisited) Recall the incomplete property set describ-
ing sort given in §1. Testing up to 4000 mutants for 4000 test
arguments

[m | m <- take 4000 . tail $ mutants sort
, and $ propertyHolds 4000 ‘map‘ properties1 m]

three mutants survive:

[ \x -> case x of [0,0,1] -> [0,1,1]; _ -> sort x
, \x -> case x of [0,1,0] -> [0,1,1]; _ -> sort x
, \x -> case x of [1,0,0] -> [0,1,1]; _ -> sort x ]

If instead we use the complete property set, the result of the same
test is an empty list. �

In the actual FitSpec implementation, any reported surviving
mutant is taken from the list of surviving mutants for the strongest
property-set equivalence class — see the next section.

4.6 Conjecturing Equivalences and Implications

This section describes how FitSpec conjectures equivalences and
implications between subsets of properties.

Properties × Mutants Using propertyHolds and mutants, We
test m mutants against each of p properties using n choices of
test arguments. We derive p × m boolean values each indicating
whether a mutant survives testing against a property. These results
are computed as a value of type [(Int,[Bool])] where each Int
is a property number, paired with test outcomes for each mutant.

Property sets × Mutants Then, for each mutant, we generate
2
p
× m boolean values — the conjunctions of test results for

each property subset. These results are computed as a value of
type [([Int],[Bool])] where each [Int] represents a property
subset.

Equivalence Classes × Mutants Next, property sets are grouped
into equivalence classes. Two sets are put in the same class if
they kill the same mutants. Equivalence classes are then sorted
by the number of surviving mutants. The results are now of type
[([[Int]],[Bool])] where each [[Int]] represents an equiva-
lence class of property subsets.

Finally, we identify apparent equivalences and implications, ac-
cording to the following definitions, and report those not subsumed
by any other.

Definition (apparent equivalence) Two property sets are appar-
ently equivalent (with respect to specified sets of mutant functions
and test arguments) if the property sets kill the same mutants. �

Definition (apparent implication) A set of properties apparently
implies another set (with respect to specified sets of mutant functions
and test arguments) if whenever a mutant survives testing against
the first set it also survives testing against the second. �

Strength We have observed that conjectures often do not hold
when a supporting survival rate is either 0% or 100%. By interpo-
lation, we speculate that equivalences and implications are more
likely to hold when survival rates for mutants are closer to 50%, and
less likely to hold when survival rates are closer to 0% or 100%. So
when FitSpec reports equivalences and implications it sorts them ac-
cordingly, reporting first those most likely to hold. Each conjecture
is also labelled “strong”, “mild” or “weak” according to the scale in
Figure 1.

StrongMildWeak Mild Weak

0% 11% 33% 66% 88% 100%

Figure 1. Conjecture strengths by % of surviving mutants.

4.7 Controlling the Extent of Testing

Choosing the Numbers of Tests and Mutants There is no general
rule for choosing appropriate numbers of mutants and test arguments.
The most effective values vary between different applications.

By default, FitSpec starts with 500 mutants and 1000 test values
per property. As we saw in §3, reportWith allows the user to
choose different values. After each round of testing, both numbers
are increased by 50%. Testing continues until a time limit is reached
(by default, 5 seconds).

Choosing the Sizes of Types During case studies (§5) involving
polymorphic functions, we found it helpful to limit generated test
values using small instance types. FitSpec predefines types for small
signed integers (IntN) and unsigned integers (WordN), where N is a
bit-width in the range 1..4. See §5.2 for further discussion.

Showing mutants FitSpec provides two different functions to
show mutants: one shows mutants as a tuple of lambdas; the other
shows the inequivalent mutants only, as top-level declarations. Both
have the following type:

ShowMutable a => [String] -> a -> a -> String

The [String] argument gives names of functions. The other
arguments are a tuple of original functions and a tuple of mutated
functions. We omit details of the ShowMutable class: it has a
method to show a mutated value given also the original value;
instances for user-defined datatypes can be automatically derived.
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Example 13 One mutant of id :: Int -> Int swaps results
for argument values 1 and 2:

id’ :: Int -> Int
id’ = id ‘mutate‘ [(1,2),(2,1)]

Evaluating

showMutantAsTuple ["id","not"] (id, not) (id’, not)

yields (as a string):

( \x -> case x of
0 -> 1
1 -> 0
_ -> id x

, not )

If we instead use showMutantDefinition, we get:

id’ 0 = 1
id’ 1 = 0
id’ x = id x �

ShowMutable instances for user-defined types can be automati-
cally derived by the function deriveMutable (§3).

5. Applications and Results

In this section, we use FitSpec to refine properties of: boolean
negation and conjunction operators (§5.1); sorting (§5.2); merge on
min-heaps (§5.3); set membership, insertion, deletion, intersection,
union (§5.4), powersets and partitions (§5.5); path and subgraph on
digraphs (§5.6).

In §5.1 and §5.3, we use QuickSpec (Claessen et al. 2010)
to generate initial property sets. QuickSpec already incorporates
some techniques to refine its output, but we hope for further
refinements in the light of FitSpec results. In §5.2, our evaluation
includes measurements showing the influence of element-type on
FitSpec’s performance. In most of the examples where functions
have polymorphic types, we use instances for the Word2 type.

5.1 Boolean Operators

As a very simple first application, we apply FitSpec to properties
generated by QuickSpec (Claessen et al. 2010) for boolean negation
and conjunction. Given the functions not and (&&), and the value
False, QuickSpec generates the following set of properties.

1. \p -> not (not p) == p
2. \p q -> p && q == q && p
3. \p -> p && p == p
4. \p -> p && False == False
5. \p q r -> p && (q && r) == (p && q) && r
6. \p -> p && not p == False
7. \p -> p && not False == p

There are four different minimal subsets of these properties that
completely specify the pair of functions (not,(&&)). By testing
63 mutant pairs, FitSpec finds and reports this result.

Complete but non-minimal specification
22 tests (exhausted), 63 mutants (exhausted)

0 survivors (100% killed)
minimal property subsets: {1,3,6} {1,4,7}

{3,6,7} {4,6,7}
conjectures: {3} ==> {5} 76% killed

{2,7} ==> {5} 88% killed
{2,4} ==> {5} 88% killed
... 6 conjectures omitted ...

Type Parameters for converging results
#-mutants #-tests / prop. Time Memory

Bool 1000 1000 1s 28MB
Word1 2000 2000 3s 39MB
Word2 4000 4000 12s 62MB
Word3 4000 100000 6m 43s 114MB
Int 4000 100000 6m 36s 114MB

Table 3. How enlarging the sorted element-type increases the time
required for convergence. In practice, Word2 is sufficient to obtain
good results.

The absence of commutativity (property 2) and associativity (prop-
erty 5) from all four minimal property subsets might seem surpris-
ing, but both are indeed entailed by each of these subsets. The
first conjecture {3} ==> {5} was even more surprising to one of
our colleagues, and to at least one reviewer, but it is correct — all
idempotent binary boolean operators are associative.

5.2 Sorting

Consider the following properties of sort, which are similar to
those given in the introduction. This set of properties is a complete
but not minimal specification of sort.

1. \xs -> ordered (sort xs)
2. \xs -> length (sort xs) == length xs
3. \x xs -> elem x (sort xs) == elem x xs
4. \x xs -> count x (sort xs) == count x xs
5. \xs -> permutation xs (sort xs)
6. \x xs -> insert x (sort xs) == sort (x:xs)

Effect of element type on performance As sort is polymorphic,
testing depends on the choice of a specific element type. This choice
affects both the results obtained and the resources needed to obtain
them.

We say that FitSpec results have converged when increasing
the number of test-cases used makes no significant difference to
the results obtained: the reported minimal property-subsets and
conjectures stay the same. The smaller the type, the lower the values
of test-control parameters, and the less run-time, we need to obtain
convergence (see Table 3). For all the examples we present, Word2
(or Int2) offers a good balance between diversity of values and
performance. So, we shall use Word2 for this and other examples
involving polymorphic functions.

In Table 3, it might seem surprising that converging parameters
for the isomorphic types Bool and Word1 are different. However,
their Listable instances differ, hence the difference:

tiers :: [[ Bool ]] = [ [False,True] ]
tiers :: [[ Word1 ]] = [ [0], [1] ]

FitSpec results Given the above properties, FitSpec reports:

Apparent complete but non-minimal specification
28000 tests, 4000 mutants

0 survivors (100% killed)
apparent minimal property-subsets: {6} {1,4} {1,5}
conjectures: {4} = {5} 99% killed (weak)

{4} ==> {2,3} 99% killed (weak)

Two of the reported apparent minimal sets, {1,4} and {1,5}, are
indeed minimal and complete specifications for a sorting function.
The two reported conjectures are also correct.

Property 6 is also reported as an apparently complete specifica-
tion, but consider the function sort’ defined by
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sort’ :: (Ord a, Bounded a) => [a] -> [a]
sort’ = foldr insert [maxBound]

or equivalently (for finite and fully-defined arguments):

sort’ xs = sort xs ++ [maxBound]

Substituting sort’ for sort in property 6, it is easy to see that it
holds: unfold both uses of sort’ and then the right-hand foldr
application. Yet the results of sort and sort’ differ for all finite
and fully-defined arguments!

Mutants like sort’, which alter the result in an unbounded
number of cases, are not generated by FitSpec. If a user realises
there is a counter-example of this kind, their best option currently
is to declare it as a user-defined mutant. If we declare sort’ as
a mutant, property 6 alone is correctly reported as an incomplete
specification. For further discussion see §7.

5.3 Binary Heaps

In this section, we apply FitSpec to the Heap example provided with
the QuickSpec tool package. To limit the extent of this example, we
only explore properties of the function merge:

merge :: Ord a => Heap a -> Heap a -> Heap a

If we run QuickSpec with all other functions declared as part of the
background algebra, it generates the following properties:

1. \h h1 -> merge h h1 == merge h1 h
2. \h -> merge h Nil == h
3. \x h h1 -> merge h (insert x h1)

== insert x (merge h h1)
4. \h h1 h2 -> merge h (merge h1 h2)

== merge h1 (merge h h2)
5. \h -> findMin (merge h h) == findMin h
6. \h -> null (merge h h) == null h
7. \h -> merge h (deleteMin h)

== deleteMin (merge h h)
8. \h h1 -> (null h && null h1)

== null (merge h h1)

We soon discover that we should add a pre-condition to properties 5
and 7, as they only work for non-null heaps.

5. \h -> not (null h) ==>
findMin (merge h h) == findMin h

7. \h -> not (null h) ==>
merge h (deleteMin h) == deleteMin (merge h h)

In order to apply FitSpec, we first wrap the properties appro-
priately, to form a declaration of a FitSpec property-map. We then
declare an appropriate Listable instance for Heaps:

instance (Ord a, Listable a)
=> Listable (Heap a) where

tiers = mapT fromList (bagsOf tiers)

Running FitSpec, we obtain this report:

Apparent complete but non-minimal specification
32000 tests, 2000 mutants

0 survivors (100% killed)
apparent minimal property subsets: {3} {4} {1,2,5,7}

Property 4 alone is reported as an apparent minimal (and complete)
property subset but it is not. For example, a merge function always
giving Nil as result follows property 4 but does not follow properties
2, 5, 6, 7 and 8.

conjectures: {2,5} ==> {6} 64% killed (strong)
{2,7} ==> {6} 68% killed (mild)
{8} ==> {6} 74% killed (mild)
{1,2,6} = {1,2,8} 98% killed (weak)
{1,2,5} ==> {8} 99% killed (weak)
{1,2,7} ==> {8} 99% killed (weak)

It is striking that three conjectures suggest property 6 is implied
by other properties. Indeed, it is easy to see that it follows from
property 8 (let h1=h). It might seem strange that property 3 specify
merge, but looking at its definition, we can see why:

insert :: Ord a => a -> Heap a -> Heap a
insert x h = merge h (branch x Nil Nil)

The function insert is defined by merge — and since FitSpec
treats functions as black-box, it does not mutate the application
of merge in insert’s definition. In order to check that property 3
alone should be excluded as a complete specification, one option
would be to add insert to the tuple of functions to be mutated.

Properties 1, 2, 5 and 7 give the best refinement of the initial
property set.

5.4 Operations over Sets

We next apply FitSpec to a basic repertoire of six functions from
a set library: set membership (<˜), insertion (insertS), dele-
tion (deleteS), intersection (/\), union (\/) and set containment
(subS).

For FitSpec runs reported in this section, the time limit was the
default 5s, and the declared type of element values was Word2.

First, we need a suitable Listable instance for sets, for which
the underlying representation is ordered lists without repetition.

instance (Ord a, Listable a)
=> Listable (Set a) where

tiers = mapT set (setsOf tiers)

Turning now to properties, our approach for this example is to
begin by formulating the first properties that come to mind, ensuring
that each function under test occurs in at least one property. We then
let FitSpec results guide us in a process of refinement towards a
minimal and complete specification. Our initial properties are:

1. \x s -> x <~ insertS x s
2. \x s -> not (x <~ deleteS x s)
3. \x s t -> (x <~ (s \/ t)) == (x <~ s || x <~ t)
4. \x s t -> (x <~ (s /\ t)) == (x <~ s && x <~ t)
5. \s t -> subS s (s \/ t)
6. \s t -> subS (s /\ t) s
7. \s t -> (s \/ t) == (t \/ s)
8. \s t -> (s /\ t) == (t /\ s)

FitSpec reports that this initial set of properties is neither com-
plete nor minimal:

Apparent incomplete and non-minimal specification
3200 tests (exhausted), 750 mutants

49 survivors (93% killed), smallest:
subS’ {0} {} = True
subS’ s t = subS s t

apparent minimal property-subsets: {1,2,3,4,5}
{1,2,3,4,6}

conjectures: {3} ==> {7} 45% killed (strong)
{4} ==> {8} 31% killed (mild)

{3,6} ==> {5} 72% killed (mild)
{3,4,5} = {3,4,6} 75% killed (mild)
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Prompted by the surviving mutant, we realise that no property involv-
ing subS ever demands a False result. All the reported implications
do indeed hold, so we choose to remove properties 7 and 8 — from
any minimal specification and test set, at least. We also replace prop-
erties 5 and 6 by a stronger combined property about subS using a
minor variant allS of the standard all function already defined in
the Set library.

1. \x s -> x <~ insertS x s
2. \x s -> not (x <~ deleteS x s)
3. \x s t -> (x <~ (s \/ t)) == (x <~ s || x <~ t)
4. \x s t -> (x <~ (s /\ t)) == (x <~ s && x <~ t)
5. \s t -> subS s t == allS (<~ t) s

FitSpec now reports minimality but incompleteness of the property
set, indicating the following surviving mutant:

deleteS’ 0 {} = {1}
deleteS’ x s = deleteS x s

There are no further conjectures for us to think about. But the sur-
viving mutant draws attention to a remaining weakness: property
2 requires that deleteS removes the given element, but not that
it retains others. Other surviving mutants point to a similar defi-
ciency for property 1 about insert. We strengthen both properties
accordingly:

1. \x y s -> x <~ insertS y s == (x == y || x <~ s)
2. \x y s -> x <~ deleteS y s == (x <~ s && x /= y)
3. \x s t -> (x <~ (s \/ t)) == (x <~ s || x <~ t)
4. \x s t -> (x <~ (s /\ t)) == (x <~ s && x <~ t)
5. \s t -> subS s t == allS (<~ t) s

FitSpec reports no conjectures and no surviving mutants:

Apparent complete and minimal specification
2816 tests, 750 mutants

Indeed, these five properties provide an exact specification, by
correspondence with results of Boolean membership test, for these
operations on sets.

5.5 Powersets and Partitions

Two further functions from the same library each take a set as
argument. One computes all subsets (powerS) and the other all
divisions into pair-wise disjoint non-empty subsets (partitionsS).

For properties of these functions, we proceed in a similar
way. The basic functions, including those for which properties
were developed in the previous section, are now fixed. We work
instead with properties of powerS and partitionsS — and mutant
variations of these functions.

Our initial properties are as follows.

1. \s t -> (t <~ powerS s) == subS t s
2. \s -> allS (allS (‘subS‘ s)) (partitionsS s)

For powerS we show we have learnt our lesson from §5.4! For
partitionsS we know Property 2 is not enough, but will FitSpec
results point to the deficiencies?

Apparent minimal but incomplete specification.
2542 survivors (91% killed), smallest:

partitionsS’ {} = {}
partitionsS’ s = partitionsS s

We add a limited refinement driven directly by the reported mutant.

3. \s -> nonEmptyS (partitionsS s)

Now FitSpec reports

Apparent minimal but incomplete specification.
459 survivors (97% killed), smallest:

partitionsS’ {} = {{{}}}
partitionsS’ s = partitionsS s

so we add:

4. \s -> allS (\p -> unionS p == s &&
allS nonEmptyS p)

(partitionsS s)

Again we run FitSpec:

Apparent incomplete and non-minimal specification
288 tests, 19210 mutants

6 survivors (99% killed), smallest:
partitionsS’ {0,1} = {{{0,1}}}
partitionsS’ s = partitionsS s

apparent minimal property-subsets: {1,3,4}
conjectures: {4} ==> {2} 71% killed (mild)

Seeing the conjecture is indeed true, we remove property 2.
Prompted by the unduly restrictive mutant, which excludes the valid
partition {{0},{1}}, we combine and reformulate properties 3 and
4 to form a new property 2:

1. \s t -> (t <~ powerS s) == subS t s
2. \s p ->

(p <~ partitionsS s) ==
(unionS p == s &&
allS nonEmptyS p &&
sum (map sizeS (elemList p)) == sizeS s)

FitSpec reports that these two properties apparently form a minimal
and complete specification of powerS and partitionsS — as
indeed they do.

Bug report During our work on this example, we actually found a
long-concealed bug. (My fault! CR) As we were refining properties
of partitionsS, at one stage FitSpec reported:

ERROR: The original function-set
does not follow property-set.

Counter-example to property 2: {0,1,2} {{0,1,2}}
Aborting.

A data invariant for the set representation requires ordered lists.
The definition of partitionsS was intended to list partitions in a
“clever” way to avoid reordering, but in some cases could break the
invariant for the outer set. We fixed it. Conclusion: applying a new
tool can be insightful!

5.6 Operations over Digraphs

Lastly, we apply FitSpec to a directed-graph library based on the
datatype

data Digraph a = D {nodeSuccs :: [(a,[a])]}

where values of some ordered type a are node identifiers — or
more simply “nodes”. Each pair in a strictly ordered nodeSuccs
list represents a node and an ordered list of its digraph successors.

To limit the extent of this example, we focus on two functions:

isPath :: (Ord a, Eq a) =>
a -> a -> Digraph a -> Bool

subGraph :: Eq a =>
[a] -> Digraph a -> Digraph a

Given two nodes and a digraph, isPath tests whether there is a path
in the digraph from the first node to the second. Given a list of nodes
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and a digraph, subgraph returns a restricted version of the digraph
excluding any nodes not in the list. (The reader is invited to write
down a few properties they expect these functions to satisfy.)

We first declare a Listable instance for Digraph:

tiers = concatMapT graphs $ setsOf tiers
where
graphs ns = mapT (D . zip ns)

. listsOfLength (length ns)

. setsOf
$ toTiers ns

Then we formulate a few properties we expect the two functions to
satisfy, including a property involving both of them. Our properties
make use of three more basic functions from the digraph library:
nodes lists the nodes in a graph; isNode and isEdge check whether
a given node or edge occur in a graph.

1. \n d -> isPath n n d == isNode n d
2. \n1 n2 n3 d -> isPath n1 n2 d && isPath n2 n3 d

==> isPath n1 n3 d
3. \d -> subgraph (nodes d) d == d
4. \ns1 ns2 d -> subgraph ns1 (subgraph ns2 d)

== subgraph ns2 (subgraph ns1 d)
5. \n1 n2 ns d -> isPath n1 n2 (subgraph ns d)

==> isPath n1 n2 d

Strengthening the property set FitSpec reports a surviving
isPath mutant:

isPath’ 0 1 (D [(1,[1])]) = True
isPath’ n1 n2 d = isPath n1 n2 d

Except in the case where they are equal (property 1), we have
not said that starting and finishing nodes of a path at least occur in
the digraph! More generally, for distinct nodes, we realise that
transitivity (property 2) only holds isPath to account by self-
consistency. As a remedy, we add:

6. \n1 n2 d -> isPath n1 n2 d
==> isNode n1 d && isNode n2 d

7. \n1 n2 d -> isPath n1 n2 d && n1 /= n2
==> any (\n1’ -> isPath n1’ n2 d)

(succs n1 d)

FitSpec now reports a surviving subgraph mutant:

subgraph’ [1] (D [(0,[]),(1,[])]) = D []
subgraph’ ns d = subgraph ns d

Aside from the special all-nodes case (property 3) we have not said
what nodes or edges subgraph should retain or discard. Again an
algebraic law, this time commutativity (property 4), only requires
self-consistency. We add a definitive property about subgraph nodes,
and another about subgraph edges:

8. \n ns d -> isNode n (subgraph ns d)
== (isNode n d && n ‘elem‘ ns)

9. \n1 n2 ns d -> isEdge n1 n2 (subgraph ns d)
== (isEdge n1 n2 d && n1 ‘elem‘ ns

&& n2 ‘elem‘ ns)

FitSpec reports the following mutant:

isPath’ 1 0 (D [(0,[]),(1,[0])]) = False
isPath’ n1 n2 d = isPath n1 n2 d

By making property 7 an implication with an isPath test on the
left, we allow a false-for-true mutant to survive. Our reformulation
involves subgraph:

Example #-mutants #-tests time space

Bool (§5.1) 63 8 < 1s 18MB
Sorting (§5.2) 4000 4000 12s 62MB
Heaps (§5.3) 4000 2000 42s 102MB
Basic Sets (§5.4) 750 1024 5s 22MB
Sets of Sets (§5.5) 17441 256 5s 58MB
Digraphs (§5.6) 750 1500 12s 1853MB

Table 4. Summary of Performance Results: figures are mean values
across all runs;#-mutants = number of mutants; #-tests = maximum
number of test-cases for any property; time = rounded elapsed time
and space = peak memory residency (both from GNU time).

7. \n1 n2 d -> n1 /= n2 ==>
isPath n1 n2 d ==
let d’ = subgraph (nodes d \\ [n1]) d in
any (\n1’ -> isPath n1’ n2 d’) (succs n1 d)

At last it seems we have a specification:

Apparent complete but non-minimal specification
0 survivors (100% killed)

Minimizing the property-set FitSpec’s report continues:

apparent minimal property subsets:
{1,4,7,8} {1,7,8,9} {4,5,6,7,8} {5,6,7,8,9}

conjectures:
{1,7} ==> {6} 52% killed (strong)
{6} ==> {2} 47% killed (strong)
{7} ==> {2} 41% killed (strong)
{4,8} = {8,9} 68% killed (mild)
{4,8} ==> {3} 68% killed (mild)
{5} ==> {2} 80% killed (mild)
{1,5,7} = {5,6,7} 87% killed (mild)
{1,4,6} ==> {5} 96% killed (weak)
{1,6,8} ==> {5} 98% killed (weak)

In brief, the following property set indeed minimally specifies
subgraph and isPath:

1. \n d -> isPath n n d == isNode n d
7. \n1 n2 d -> n1 /= n2 ==>

isPath n1 n2 d ==
let d’ = subgraph (nodes d \\ [n1]) d in
any (\n1’ -> isPath n1’ n2 d’) (succs n1 d)

8. \n ns d -> isNode n (subgraph ns d)
== (isNode n d && n ‘elem‘ ns)

9. \n1 n2 ns d -> isEdge n1 n2 (subgraph ns d)
== (isEdge n1 n2 d && n1 ‘elem‘ ns

&& n2 ‘elem‘ ns)

5.7 Performance Summary

Our tool and examples were compiled using ghc -O2 (version
7.10.3) under Linux. The platform was a PC with a 2.2Ghz 4-
core processor and 8GB of RAM. Some performance results are
summarized in Table 4.

When using FitSpec, ideally users should decide how long they
want to wait for FitSpec to run; the simplest parameter to adjust
with confidence is the time limit. Reported figures for numbers of
mutants and test-cases help the user decide whether to re-run FitSpec
allowing more time.

As noted in §5.2, for polymorphic functions, the element affects
both the results obtained and resources needed to obtain them. For
the examples we present, Word2 offers a good balance between
diversity of values and performance.
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6. Related Work

Since the introduction of QuickCheck (Claessen and Hughes 2000),
several other property-based testing libraries and techniques have
been developed, such as Smallcheck, Lazy SmallCheck (Runciman
et al. 2008; Reich et al. 2013) and Feat (Duregård et al. 2012).

QuickSpec Claessen et al. (2010) present the QuickSpec tool,
which is able to generate algebraic specifications automatically.
Although QuickSpec has rules by which some properties can be
discarded as redundant, the goal of its developers was not to generate
minimal sets of properties, but instead interesting properties.

Bool (§5.1) and Heaps (§5.3) As we show in §5.1 and §5.3,
FitSpec can assist in the refinement of specifications generated
by QuickSpec.

Basic Sets (§5.4) For comparison, consider again the basic func-
tions of the set library (§5.4), an example where we did not start
with QuickSpec-generated properties. We can compare our final
specification with QuickSpec’s output. For comparison, in the Set
library example, QuickSpec 1 (Claessen et al. 2010) generates a
complete specification with 70 properties. QuickSpec 2 (Smallbone
and Johansson 2016) generates a complete specification with 43
properties, not including any of ours.

MuCheck Le et al. (2014) present MuCheck, a tool for mutation
testing in Haskell. Both MuCheck and FitSpec provide a measure
for property-set completeness. Unlike FitSpec, MuCheck: depends
on source-code annotations; generates mutants by transformations
of the source code; does not provide conjectures or any form of
automated guidance towards minimization; may generate mutants
equivalent to the original function. For comparison, we apply
MuCheck (version 0.3.0.0, with QuickCheck test adapter version
0.3.0.4) to two of the case studies from §5.

Sorting (§5.2) Consider the following explicit definition of sort,
which is used as an example in Le et al. (2014).

sort [] = []
sort (x:xs) = sort l ++ [x] ++ sort r

where l = filter (< x) xs
r = filter (>= x) xs

Given this definition, and properties 1–6 listed in §5.2, MuCheck
with default settings gives the following output.

Total mutants: 13
alive: 1/13
killed: 12/13 (92%)

MuCheck does not detect that the only surviving mutant is actually
an equivalent mutant formed by swapping pattern match cases.
MuCheck does not consider property subsets. However, if we
manually select subsets of properties, results include:

• 1 (equivalent) surviving mutant for properties 2, 4, 5 and 6 alone;

• 3 surviving mutants for properties 1 and 3 combined (e.g.: the
mutant in which >= is changed to >);

• 5 surviving mutants for property 1 (e.g.: changing >= to ==);

• 5 surviving mutants for property 3 (e.g.: changing >= to /=).

It takes from 2 to 4 seconds to run MuCheck for each property
subset. MuCheck’s default settings allow up to 300 mutants, but for
this example it only generates 13.

In this example, with regards to evaluating minimality and
completeness, FitSpec outperforms MuCheck with default settings.
However, MuCheck results might be improved by the definition of
custom mutation operators.

Basic Sets (§5.4) MuCheck derives no mutants for any of
insertS, deleteS, subS, \/ or /\ (cf. §5.4). The reason may
be that there are no MuCheck mutation operators specific to the Set
type, as we did not add any. For <˜, MuCheck does derive three
mutants, but it then fails because of an internal error. We did not
investigate this error, nor did we try applying MuCheck to other
functions in the set library.

Ultra-lightweight black-box mutation testing During the Haskell
Implementor’s Workshop 2014, Jonas Duregård gave a five-minute
“lightning talk” about a lightweight technique for mutation testing
in Haskell (Duregård 2014): ultra-lightweight black-box mutation
testing. The technique damages result values randomly.

Mutation testing beyond Haskell In a survey of the development
of mutation testing, Jia and Harman (2011) specifically identify
equivalent mutants as one of the barriers to wider adoption of
mutation testing. They propose several possible approaches to the
problem of equivalent mutants. The approach we have adopted in our
work on FitSpec can be characterised in their terms as: (1) “avoiding
their initial creation”, and (2) “interest in the semantic effects
of mutation”. The competent programmer hypothesis (Demillo
et al. 1978) states: “[Competent programmers] create programs
that are close to being correct”. In mutation-testing literature, mostly
concerned with imperative languages (Jia and Harman 2011; Le
et al. 2014), closeness is usually regarded as syntactic closeness. We
suggest that a semantic notion of closeness is even more suitable
for pure strongly-typed functional programs: minor syntactic slips
are very often caught by the type-checker; errors that are harder
to detect involve incorrect associations between input and output
values.

Haskell Program Coverage The coverage tool HPC (Gill and
Runciman 2007) records fine-grained expression-level coverage,
and value coverage in syntactically boolean contexts. By applying
HPC to sources of properties, test-value generators and functions
under test, we can check the scope and reach of property-based
testing. We can also detect automatically when further exploration of
the test-space seems unproductive. However, there are well-known
limitations of code-coverage measures: for example, they do not
reveal faults of omission (Marick 1999). HPC does not provide the
kind of information needed to discover apparent completeness or
minimality of test properties.

7. Conclusions and Future Work

Conclusions In summary, we have presented the FitSpec tool to
evaluate minimality and completeness of sets of test properties for
Haskell functions, providing automated assistance in the task of
refining those sets. As set out in §3 and §4, FitSpec tests mutant
variations of the functions under test and reports the number of
surviving mutants and, if present, a smallest surviving mutant. When
there is apparent redundancy in a property set, FitSpec reports
conjectures in the form of equivalences and implications between
property subsets. We have demonstrated in §5 FitSpec’s applicability
for a range of small examples, and we have briefly compared in §6
some of the results obtained with related results from other tools.

Completeness and the Value of Surviving Mutants Our experience,
as represented by our account of example applications in §5, is that
details of surviving mutants do point out weaknesses of property sets
in a specific and helpful way. Though any mutant-killing refinement
of properties depends on the programmer, the smallest-mutant
reports are indeed valuable prompts.

Reports of no surviving mutants suggest completeness. However,
inherent limitations of a test-based approach make these suggestions
uncertain in most cases, and this is one reason for the somewhat
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repetitive preambles at the head of all FitSpec reports: “Apparent . . .
specification, N tests, M mutants”. We saw in §5 examples where
property sets are incomplete yet kill all mutants. In some cases
uncertainty can be resolved by increasing the numbers of mutants
and tests, but in other cases would-be survivors are never generated.
As a limited remedy, FitSpec allows the user to provide manually
defined mutants to be tested alongside those automatically generated.
We shall return to this issue shortly, when considering future work.

Minimality and the Value of Conjectures The conjectured equiva-
lences and implications reported by FitSpec are surprisingly accurate
in practice, despite their inherent uncertainty in principle. As we
hoped, these conjectures provide helpful pointers to apparently re-
dundant properties. Because conjectures are not guaranteed, before
removing any test properties programmers should seek to verify a
conjecture that would justify the removal. As we illustrated in §5,
once we have a conjecture, verifying it often only requires a few
straightforward steps appealing to the properties involved — though
in general, of course, verification can be a difficult task.

Ease of use Arguably, a tool is easier to use if it requires less work
from the programmer. As we illustrated in §3, writing a minimal
program to apply FitSpec takes only a few lines of code. FitSpec
provides functions mainDefault and mainWith, similar to report
and reportWith but parsing command-line arguments to configure
test parameters. If only standard Haskell datatypes are involved, no
extra Listable instances are needed. If user-defined data types can
be freely enumerated without a constraining data invariant, instances
can be automatically derived. The wrapping of any existing test
properties into a property-map declaration is a minor chore.

However, often we do need to restrict enumeration by a data
invariant, and a crude application of a filtering predicate may be
too costly, with huge numbers of discarded values. Effective use of
FitSpec may require careful programming of custom Listable
instances, even if suitable definitions can be very concise. The
FitSpec library does not currently incorporate methods to derive
enumerators of values satisfying given preconditions (Bulwahn
2012; Lindblad 2007).

Future Work Finally we note a few avenues for further investi-
gation that could lead to improved versions of FitSpec or similar
tools.

Alternative mutation techniques The current mutation technique
based on individual exception cases has the advantage of simplicity,
but its limitations are most apparent in reports of zero survivors
despite incomplete properties. A hybrid approach could generate in
addition mutants that alter results for all arguments, or a large class
of arguments. This is a characteristic of source-based mutants, but
there are suitable classes of black-box mutants too. For example, as
we saw in §5, constant-result mutants may survive properties that
kill exception-based mutants; or where there is an argument of the
result type, projection-based mutants would be another possibility.

Mutation of higher-order functions Our current mutation tech-
nique only works for first-order functions. We might investigate
ways to mutate higher-order functions.

Relaxed specifications Our current definition of completeness
requires equality of results for all functions satisfying a property
set. FitSpec regards the results of an original unmutated function
as canonical; any other result computed by a mutant function is
incorrect. But the natural specification of some functions is more
relaxed. For example, sometimes the order of elements in a list is

immaterial; in this case, the programmer could resolve the issue by
defining a newtype for which the equality test disregards order. Not
all examples are so simply resolved however: a function to find a
shortest path between two nodes in a digraph may return any one of
several shortest paths. We might therefore investigate more general
ways to characterize equivalence of functional results, with respect
to argument values if necessary.

Availability

FitSpec is freely available with a BSD3-style license from either:

• https://hackage.haskell.org/package/fitspec

• https://github.com/rudymatela/fitspec
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