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This paper will introduce the use of the approximate Bayesian computation (ABC) algo-
rithm for model selection and parameter estimation in structural dynamics. ABC is a
likelihood-free method typically used when the likelihood function is either intractable
or cannot be approached in a closed form. To circumvent the evaluation of the likelihood
function, simulation from a forward model is at the core of the ABC algorithm. The algo-
rithm offers the possibility to use different metrics and summary statistics representative
of the data to carry out Bayesian inference. The efficacy of the algorithm in structural
dynamics is demonstrated through three different illustrative examples of nonlinear sys-
tem identification: cubic and cubic-quintic models, the Bouc-Wen model and the Duffing
oscillator. The obtained results suggest that ABC is a promising alternative to deal with
model selection and parameter estimation issues, specifically for systems with complex
behaviours.
� 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In many areas of engineering and science, researchers or engineers are dealing with model selection and comparison
issues, in particular when several competing models are consistent with the selection criteria and could potentially explain
the data reasonably well. In most cases, selecting the most likely model among a set of competing models may be quite chal-
lenging, often requiring a deep understanding of the physics involved. Several methods have been proposed in the literature,
and arguably the most popular currently is the Bayesian approach. During the last two decades, the Bayesian approach has
been successfully implemented in many areas to deal with model selection and parameter estimation issues. Compared with
other statistical methods, Bayesian theory provides a comprehensive and coherent framework, and a generally applicable
way to make inference about models from data. The reader can refer to the following references [1–6] and the references
therein, where many varied examples illustrating the use of the Bayesian method are investigated. In the Bayesian paradigm,
the best model is the one that satisfies the parsimony principle, which means the right balance between complexity of the
model and goodness-of-fit. Given a number of potential models, and one or more data sets, model selection should identify
the model structure and the set of parameters that may explain the data best, while simultaneously penalising overly-
complex models. Different methods have been proposed in the literature for model selection based on the Bayes theory;
the most popular is reversible-jump Markov chain Monte Carlo (RJ-MCMC) [7]. However, the implementation of the
RJ-MCMC algorithm is quite challenging. This is because when one deals with a large number of models with different
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dimensionalities, the algorithm needs to define a so-called ‘dimension-matching’ mapping law which requires additional
computation. The reader is referred to [7] for details. Bayes factors [8] have been considered for a long time as the standard
tools for performing Bayesian model comparison; however, these provide only a relative comparison of competing models,
not the absolute values of their posterior probabilities.

Sandhu et al. [5] have proposed the use of the Metropolis-Hastings (MH) MCMC simulation and nonlinear filtering. Par-
ticle filters as the sequential importance sampling/resampling (SIS/SIR) [9] could be used to make model selection as shown
in [10]. More traditional statistical methods such as the Akaike Information Criterion (IC), the Bayesian IC or the deviance IC
have been extensively used and investigated in the literature also [11–14]. Essentially, the evaluation of those metrics is
based on the maximum likelihood estimate and a penalty term to penalise complex models (complexity is measured usually
by the number of parameters in the model). In those methods, the marginal likelihood estimation is undertaken for each
model separately, and then these results are used to compute the plausibility of each model. This may be a problem, typically
when one deals with a large number of competing models composed of a large number of parameters. Moreover, in the sta-
tistical methods based on the ICs, the likelihood is supposed to be very peaked, however, in problems with different types of
nonlinearities, the density may be non-Gaussian (e.g., bimodal, multimodal or heavily skewed). In such cases, the ICs cannot
be used to compare the candidate models, and this limits their widespread use. Another alternative to deal with model selec-
tion and parameter estimation is to use the nested sampling (NS) method proposed by Skilling [15,16]. The algorithm works
by transforming the multidimensional parameter space integral into a one dimensional integral where classical numerical
approximation techniques to estimate the area under a function can be applied. The algorithm has been successfully applied
in various research areas [17,18].

The diversity of the methodologies proposed in the literature reflects the complexity of the model selection task; more-
over, it shows that there is no universal method that can be used in any circumstances. The choice of the suitable method
depends mainly on the available data to conduct Bayesian inference. In this paper, the use of the approximate Bayesian com-
putation (ABC) algorithm is introduced as a promising alternative to deal with model selection and parameter estimation.
Compared with the methods above, the ABC is more straightforward and general in the sense that there is no need to eval-
uate any extra criterion to discriminate between candidate models, and the inference can be performed through any suitable
metric to assess the similarity between the observed and simulated data, circumventing the problem of an intractable like-
lihood function and the Gaussianity assumption which cannot not always be guaranteed. Moreover, in structural dynamics
with complex nonlinearity types, it is often the case that the hypothesis of Gaussianity is not guaranteed. Another major
advantage offered by the ABC algorithm is its independence of the dimensionality of the competing models; ABC jumps
between the different model spaces without the need of any mapping function to be defined, which is a major benefit in
dealing with larger numbers of models. In practice, the ABC algorithm compares the competing models simultaneously,
and eliminates progressively the least likely models, to converge to the most plausible one(s). The widespread use of ABC
in several fields, and its efficiency to deal with model selection and parameter estimation, simultaneously motivated the cur-
rent authors to investigate more the capability of the ABC to infer complex nonlinear systems in structural dynamics. The
algorithm shows some attractive properties, including its flexibility to use different kinds of metrics to make system infer-
ence and its ability to explore both model and parameter spaces efficiently. The flexibility offered by the ABC algorithm is of
paramount importance, as in some circumstances, the likelihood function cannot be analytically formulated or even be
approached using approximate methods. Therefore, ABC by its flexibility makes inference possible for many challenging
problems.

During the last decade, the ABC algorithm has been applied in many areas for both levels of inference (parameter and
model): genetics [19], biology [20,21] and psychology [22]. The rapid developments and continuous improvements of the
ABC algorithm attracted many other areas, and recently it has been introduced in structural dynamics by the authors for
model selection [23] and parameter estimation in [24]. In [24], the authors show that the combination of the ABC principle
with the subset simulation concept [25], introduced to estimate rare events, decreases the computational time and provides
the same precision as other variants of the ABC algorithm proposed in the literature such as ABC sequential Monte Carlo
(SMC) and ABC-MCMC [26]. In the present work, a more extensive application of ABC-SMC as an efficient tool for model
selection and parameter estimation in structural dynamics is presented. ABC appears to be a promising alternative for prac-
titioners in structural dynamics to overcome the inference problem of systems with complex behaviours which may undergo
bifurcations and/or chaos.

Furthermore, ABC offers the possibility to manage larger datasets and a higher number of competing models with differ-
ent dimensionalities, circumventing the limitation of RJ-MCMC. Besides the major advantages mentioned so far, the simplic-
ity of the ABC method and its capability of extending the Bayesian framework to any computer simulation has exponentially
increased its popularity. It is worth mentioning that this algorithm already takes into account the parsimony requirement
because complex models with larger number of parameters will generate wider posterior distributions. As a result, models
with more parameters will be more times below the ABC tolerance threshold, thus promoting simpler models. This property
will be investigated in the illustrative examples presented in this work, by considering several models with different degrees
of complexity and analysing the behaviour of the algorithm through the inference process.

The paper starts out with an introduction to the ABC algorithm and the selection of the different hyperparameters
required for its implementation. Then, in Section 3, the application of the ABC algorithm is illustrated and investigated
through three illustrative examples using simulated data and forms the core of the paper. Finally, the paper is closed with
some conclusions about the strengths of the ABC method and future work.
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2. Approximate Bayesian computation

In the ABC algorithm, the objective is to obtain a good and computationally affordable approximation to the posterior
distribution:
pðnju�;MÞ / f ðu�jn;MÞpðnjMÞ ð1Þ
where M is the model based on a set of parameters n; pðnjMÞ denotes the prior distribution over the parameter space and
f ðu�jn;MÞ is the likelihood of the observed data u� for a given parameter set n.

To overcome the issue of intractable likelihood functions encountered in various real-world problems, the ABC algorithm
relies on systematic comparisons between observed and simulated data. The main principle consists of comparing the sim-
ulated data, u, with observed data u�, and accepting simulations if a suitable distance measure between them, Dðu; u�Þ, is less
than a specified threshold defined by the user, e. The ABC algorithm thus provides a sample from the approximate posterior
of the form:
pðnju�;MÞ � peðnju�;MÞ /
Z

f ðu�jn;MÞI Dðu; u�Þ 6 eð ÞpðnjMÞdu ð2Þ
where IðaÞ is an indicator function returning unity if the condition a is satisfied and a zero otherwise, when e is small enough,
peðnju�;MÞ is a good approximation to the true posterior distribution.

In this work, the ABC-SMC algorithm presented in [27] will be used to make Bayesian inference for model selection and
parameter estimation. Generally speaking, the algorithm works as a particle filter which can be used to identify nonlinear
dynamical systems [28]. Its mechanism is similar to sequential importance sampling (resampling) SIS/SIR. The SIS/SIR algo-
rithm is a Monte Carlo (MC) method that forms the basis for most sequential MC filters developed over the past decades (see,
[29–31]). The key idea of ABC-SMC is to represent the required posterior density function by a set of random samples with
associated weights. The algorithm converges through a number of intermediate posterior distributions before converging to
the optimal approximate posterior distribution satisfying a convergence criterion defined by the user.

Following the scheme shown in Algorithm 1, for the first iteration, one may start with an arbitrarily large tolerance
threshold e1 to avoid a low acceptance rate and computational inefficacy. One selects directly from the prior distributions
pðmÞ and pðnÞ, evaluates the distance Dðu�; uÞ, and then compares this distance to e1, in order to accept or reject the
ðm; nÞ selection. This process is repeated until N particles distributed over the competing models are accepted. One then
assigns equal weights to the accepted particles for each model. For the next iterations ðt > 1Þ the tolerance thresholds are
set such that e1 > e2 > � � � > et . The choice of the final tolerance schedule, denoted here by et , depends mainly on the goals
of the practitioner.

The dynamics by which e evolves is a matter of choice, although there is no general prescription; the tolerance threshold
can be selected manually or adaptively, based on the distribution of the accepted distances in the previous iteration, t � 1.
For instance, the threshold of the second iteration can be set to the pth percentile of the distances in the first iteration. This
would seem to be the most common choice of tolerance threshold sequence since it is intuitive and simple to define. Both
methods of selecting the tolerance thresholds sequence have been used in this work and seem to work very well in the sense
that an appropriate acceptance rate is maintained over the populations. For the second strategy, it was found that a per-
centile between 20 and 40 is a rational choice. Then, once, e2 is set, one selects a model and a particle from the previous
weighted set of particles. This particle is perturbed by a predefined kernel, again the selection of the kernel is a matter of
choice. It should be noted that there are a number of ways to specify the perturbation kernel in the ABC-SMC algorithm.
A widely used technique is to define the perturbation kernel as a multivariate Gaussian centered on the mean of the particle
population with a covariance matrix set to the covariance of the particle population obtained in the previous iteration. For a
deep discussion of various schemes for specifying the perturbation kernels, the reader is referred to [32].

In this work, the particle perturbation distribution is uniform and symmetric around 0, with the interval length (in each
parameter) taken to be equal to the range of the parameter in the previous population. The chosen kernel denoted by
Knðnt jnðt�1ÞÞ consists of perturbing the j-th particle to any value in the interval ½�rt

j ;þrt
j �, in which rt

j is given by:
rt
j ¼

1
2

max
16k6N

fnðk;t�1Þ
j g � min

16k6N
fnðk;t�1Þ

j g
� �

ð3Þ
Then, one calculates the distance Dðu�; uÞ compared with the new tolerance threshold and accepts the new particle if
Dðu�; uÞ 6 e2, otherwise the particle is rejected. This process is repeated until a new set of N particles is assembled. One then
updates the particle weights according to the kernel. The entire procedure is repeated for the subsequent iterations, until
convergence is met. One simple way to ensure convergence is to impose a target threshold close to zero. Another way is
to control the acceptance ratio, which is measured in each iteration. The acceptance ratio is the ratio of the number of pro-
posals accepted by the distance threshold, to the full number of proposed particles at every step. Once this ratio for an iter-
ation falls below the imposed threshold, the algorithm has converged and is suspended. Another method to ensure
convergence is by monitoring the fractional change in the distance threshold ðe1e2 � 1Þ after each iteration. When the fractional

change becomes smaller than some specified tolerance level, the algorithm has reached convergence. Another convergence
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criterion that can be used, is through the derived uncertainties of the inferred parameters measured after each iteration.
When the uncertainties stabilise and show negligible variations, convergence is ensured. Finally from the last population,
the approximate marginal posterior distribution for model M‘ is given by:
PrðM‘ju�Þ � Accepted particles forM‘

Total number of particles N
ð4Þ
As one may see, the implementation of the algorithm necessitates the selection of a number of hyperparameters. A careful
choice of those hyperparameters is a crucial point since the performance of the algorithm is very dependent on them. A bad
choice may lead to a prohibitive computational time and yield biased estimations.

Algorithm 1. ABC-SMC for model selection

Input: Observed data u�; n competing models Mn
k¼1; N number of particles, tolerance threshold e1, prior distributions

pðaÞ; pðMkÞ
Output: Model posterior probabilities, parameter distributions
1: At iteration t = 1
2: for i ¼ 1 : N do
3: repeat
4: Select M� ¼ mk from the prior distribution
5: Select n�k from the prior: pðnkjmkÞ
6: Simulate u from Mkðujn�kÞ
7: until Dðu�; uÞ < e1
8: Set the particle as MðiÞ

1 ¼ mk and nðiÞM1
¼ n�k with weight xðiÞ

1 ¼ 1
N

9: end for
10: for t ¼ 2; . . . ; T do
11: for i ¼ 1; . . . ;N
12: repeat
13: Select M� ¼ mk from the prior distribution.

14: Sample nðiÞk;t�1 with corresponding weights xðjÞ
t�1 and perturb the particle by generating n�k

15: Simulate u from Mðujn�Þ
16: until pðn�kjmkÞ > 0 and Dðu; u�

kÞ < ek
17: Set the particle as MðiÞ

t ¼ mk and nðiÞMt
¼ n�k with weight:
xðiÞ
t ¼ p n�kjmk

� �
PN

j¼1x
ðjÞ
t�1Kn n�kjnðjÞk;t�1

� �
end for
18: For every mk; k ¼ 1; . . . ; ‘, normalise the weights
19: end for
3. Illustrative examples

In this section, three illustrations of the usefulness of the ABC-SMC algorithm to deal with model selection and parameter
estimation issues are provided. In the first example, model selection is performed, considering the cubic and cubic-quintic
oscillators as competing models. In the second example, one aims to identify the Bouc-Wen model, treated here as a model
selection task. In the first two examples, the time-series are used to make inferences. In the third illustration, one considers
the identification of the Duffing oscillator using the probability density function of the acceleration as the main feature to
infer the model. This example serves as an illustration of the flexibility of the ABC-SMC to integrate any suitable feature
and its corresponding metric to assess the similarity between observed and simulated data and to therefore make Bayesian
inference.

3.1. Example 1: cubic and cubic-quintic models

The cubic and cubic-quintic models denoted respectively by M1 and M2 are considered in this example. The equation of
motion associated to each one is given by:
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M1 : m€yþ c _yþ kyþ k3y3 ¼ f ðtÞ ð5Þ
M2 : m€yþ c _yþ kyþ k3y3 þ k5y5 ¼ f ðtÞ ð6Þ
wherem is the mass, c is the damping, k is the linear stiffness, k3 and k5 are the non-linear stiffness coefficients. y; _y and €y are
displacement, velocity and acceleration responses, respectively. The excitation f ðtÞ is a Gaussian sequence with mean zero
and standard deviation 10, as shown in Fig. 1. Here, two scenarios are considered: in the first one, one assumes that the
model response is corrupted by noise while in the second, the excitation is corrupted by noise.

The training data shown in Fig. 2 was synthetically generated by integrating numerically the cubic-quintic model given by
Eq. (6) using the fourth-fifth order Runge-Kutta method. The duration of measurements is T ¼ 5 s with sampling frequency,
f 0 ¼ 100 Hz, so that the number of data points is n ¼ 500. It should be noted that for both models, the unknown parameters
are assumed to be uniformly distributed. Table 1 gives the true values used to generate the training data and their respective
ranges. As one may see, vague priors are considered on parameters in order to assess the ability of the ABC-SMC method to
sample effectively over a large space. A noise of 1% RMS was added to the training data (the RMS of the entire time history is
0.0088 m).

For ABC-SMC implementation, one sets the prior probabilities of each model to be equal, i.e., PrðM1Þ ¼ PrðM2Þ ¼ 1
2. A pop-

ulation of 1000 particles is used here, and the normalised mean square error (MSE) given by Eq. (7) is selected as a metric to
measure the level of agreement between the observed and simulated data.
Dðu�; uÞ ¼ 100
nr2

u�

Xn
i¼1

u�
i � ui

� �2 ð7Þ
where n is the size of the training data, r2
u� is the variance of the observed displacement; u� and u are the observed and sim-

ulated displacements given by the model, respectively. Furthermore for this example, the tolerance thresholds sequence is
manually selected and given below:
e19t¼1 ¼ f100; 80; 60; 40; 30; 20; 10; 5; 3; 2; 1; 0:5; 0:35; 0:3; 0:15; 0:1; 0:075; 0:05; 0:03g:

Once the required hyperparameters are defined, ABC-SMC can now be implemented following the scheme shown in Algo-

rithm 1 to determine the most likely model which may best fit the data.
Fig. 3 shows the model posterior probabilities over the different populations and the associated tolerance threshold. One

observes that at high tolerance thresholds ðe > 10Þ, there is no strong evidence for either model. Between populations 8 and
15, although the training data was generated from the cubic-quintic model, the algorithm tends to favour the simplest model
(the cubic model). In other words, the algorithm tries at first to converge towards the most simple model. This means that
the complex model with higher number of parameters is implicitly penalised. For instance, this is quite obvious at popula-
tion 14, where the probability associated to the cubic model is equal to 0.797 against 0.203 for the cubic-quintc model. How-
ever, by further decreasing the tolerance threshold, it seems that the cubic model is no longer able to guarantee model
prediction with sufficiently good accuracy, and for that reason, the algorithm jumps to the complex model to better accom-
modate the nonlinearity coming from the quintic term and satisfy the requested accuracy. At population 16 ðe ¼ 0:1Þ, the
algorithm gives a higher evidence to the cubic-quintic model. The algorithm ends up by finding the true model at population
17 with strong evidence where the cubic model is eliminated, since at that level of precision, the model is no longer able to
explain the data. In the subsequent iterations the algorithm refines the model parameter estimates associated to the true
model. Fig. 4 shows the histograms of the cubic-quintic model parameters. One may observe that these histograms are well
peaked around the true values fromwhich the training data were generated. Table 2 shows the statistics related to the cubic-
quintic model estimated from the last population. The results are excellent because the true values are within the (5th, 95th)
percentiles. Using the mean value estimates from the last population, the prediction can now be made. Fig. 5 shows the train-
ing data and the model prediction with the 99% confidence interval. One observes a good agreement between the observed
and predicted data where the MSE is equal to 0.0101. It should be noted that the 99% confidence interval is estimated from
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Fig. 1. Forcing function f ðtÞ.



Fig. 3. Posterior probabilities for the cubic and cubic-quintic models.
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Fig. 2. Training data from the cubic-quintic model (free-of-noise).

Table 1
Parameter ranges of the cubic and cubic-quintic models.

Parameter True value Lower bound Upper bound

m 1 0.1 10
c 0.05 0.005 0.5
k 50 5 500
k3 103 102 104

k5 105 104 106
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the obtained posterior distribution of model parameters. One way to do this is to generate randomly a large number of sam-
ples, simulate the model responses and then the 99% confidence interval is found pointwise.

One may observe from Fig. 6, how the extent of model parameters evolves over populations. It is clear how by gradually
decreasing the tolerance thresholds, the algorithm moves towards the true parameter values. After a few iterations, the
uncertainties related to the unknown parameters start to stabilise and the algorithm converges.
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Fig. 4. Histograms of the cubic-quintic model parameters (the red triangles show the parameter values used to generate the training data). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Parameter estimates for the cubic-quintic model.

Parameter True value Summary statistics

Mean, l Std. Dev, r [5th, 95th] percentiles

m 1 0.9965 0.0105 [0.9794, 1.01411]
c 0.05 0.0505 0.0062 [0.04060, 0.0611]
k 50 49.5090 2.0055 [46.2561, 52.8409]
k3 103 1:07� 103 393.2295 [430.3821, 1722.4006]

k5 105 9:58� 104 1:96� 104 [6:49� 104; 1:29� 105]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
 Time [s]

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

 D
is

pl
ac

em
en

t [
m

]

Training data Predicted data 99% CI

Fig. 5. Comparison between the observed and predicted data using the cubic-quintic model.
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As one may notice earlier from Fig. 3, based on the training data generated from the cubic-quintic model, it was very dif-
ficult to favour one model at the beginning of the algorithm. This means that both models could potentially explain the data.
To better examine the prediction capability of the cubic model, one assumes that the target tolerance is equal to 0.15 (pop-
ulation 15). Based on the mean parameter values obtained from that population, one may now predict the response. Fig. 7
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Fig. 7. Prediction using the cubic model, e ¼ 0:15; MSE ¼ 0:0946.
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shows that even the cubic model provides acceptable prediction. The estimated parameters used to predict the response are
summarised in Table 3. As one may observe, the nonlinear stiffness parameter in the cubic model is overestimated to com-
pensate for the nonlinearity coming from the quintic term. The cubic model fits the training data with accuracy MSE = 0.0946
while the cubic-quintic model exhibits the better MSE = 0.0101.



Table 3
Parameter estimates for the cubic model, (population 15, e ¼ 0:15).

Parameter True value Summary statistics

Mean, l Std. Dev, r [5th, 95th] percentiles

m 1 0.9589 0.0166 [0.9307, 0.9848]
c 0.05 0.0306 0.0106 [0.0134, 0.047943]
k 50 39.6658 1.5462 [37.0629, 42.2462]
k3 103 2:996� 103 238.6501 [2:5929� 103, 3:3896� 103]
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Fig. 8. Cubic-quintic model prediction using test data set.
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To investigate the validity of the selected model against new data, an independent data set of length 500 is synthetically
generated. Fig. 8 shows the model prediction and the 99% credibility interval where one observes that the model performs
perfectly well. An estimation of the MSE gives a value of 0.0171.

One important point should be highlighted in this example is the uncertainty on the cubic and quintic stiffness coeffi-
cients. From Table 2, one can see that those parameters have been inferred with large uncertainty. This is related to the
selected target tolerance threshold value which is equal to 0.03 to keep the computational time reasonable. It should be
noted that in the ABC algorithm in general, one usually aims to strike the right balance between the computational time
and the precision on the posterior estimates. To reduce the uncertainty on the posterior estimates, one can further decrease
the target tolerance threshold value to 9:4� 10�3. Table 4 summarises the posterior estimates from where one can see that
the uncertainty on the posterior estimates has been considerably reduced. Obviously, the decrease in the target tolerance
threshold value automatically increases the computational time.

In the following, one considers noisy excitation to investigate how this may impact the model selection issue. A Gaussian
noise with zero mean and 5 per cent standard deviation is added to the base excitation. The same hyperparameters defined
previously are used for the ABC-SMC implementation. Fig. 9 shows the model posterior probabilities over the populations. At
the beginning of the algorithm, the plausibilities of the competing models are almost the same until iteration 7, then there is
some evidence to suggest that the correct model is the cubic one (for instance at population 14, the posterior probability of
the cubic model is 0.811 against 0.189 for the cubic-quintic). Then, at population 15 ðe ¼ 0:15Þ the algorithm assigns nearly
the same plausibility to both models before converging to the true model at population 16. Fig. 10 depicts the model pre-
diction using the mean values estimated from the last population and the 99% confidence interval. Here the
MSE = 0.0256. Table 5 summarises the statistics related to the model parameters. The obtained results are excellent, since
Table 4
Parameter estimates for the cubic-quintic model with reduced uncertainty ðe ¼ 9:4� 10�3).

Parameter True value Summary statistics

Mean, l Std. Dev, r [5th, 95th] percentiles

m 1 0.9947 8:3895� 10�5 [0.9946, 0.9949]

c 0.05 0.0505 5:0320� 10�5 [0.0504, 0.0506]

k 50 49.3713 1:5799� 10�2 [49.3453, 49.3969]

k3 103 1:0873� 103 3.0493 [1:0824� 103, 1:0922� 103]
k5 105 9:3887� 104 1:5482� 102 [9:3631� 104, 9:4144� 104]



Fig. 9. Posterior probabilities for the cubic and cubic-quintic models using noisy excitation.
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Fig. 10. Cubic-quintic model prediction using noisy excitation.

Table 5
Parameter estimates related to the cubic-quintic model under noisy excitation.

Parameter True value Summary statistics

Mean, l Std. Dev, r [5th, 95th] percentiles

m 1 1.0033 0.01579 [0.9782, 1.0293]
c 0.05 0.04684 0.0097 [0.03095, 0.0629]
k 50 49.7935 2.5377 [45.49519, 53.84228]
k3 103 1:025� 103 491.9020 [241.0759, 1826.4790]

k5 105 1:03� 105 2:54� 104 [6:13� 104, 1:45� 105]
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the true values are within the (5th, 95th) percentiles. From the same table, one can see that the cubic and quintic stiffness
coefficients have been inferred with large uncertainty. As mentioned before the uncertainty on the stiffness coefficients
could be more reduced by further decreasing the target tolerance threshold value.

So far, the main conclusion derived from the first example is the ability of the ABC-SMC to converge efficiently towards
the true model fromwhich the training data was generated even in the presence of noise in either the system response or the
input excitation. One important feature which can be noticed is that at the beginning of the Bayesian inference, the algorithm
favours simpler models which is consistent with the Bayesian philosophy and the parsimony principle. In other words, the
algorithm penalises implicitly complex models. This point is fundamental in Bayesian inference to avoid overfitting issues
and then to guarantee a better generalisation capability with the selected model. It is clear from this example that the
ABC-SMC approach automatically enforces model parsimony without the need of any other information criteria to be
evaluated.

As before, one can now evaluate the predictive performance of the selected model using an independent test data set.
Fig. 11 shows the model prediction and the 99% credibility bounds where one can see that the model performs quite well.
The MSE estimated on the test data set is equal to 0.0671.

3.2. Example 2: identification of a Bouc-Wen model

The identification of the Bouc-Wen (BW) model has been widely investigated in the literature by various different meth-
ods [33]. The highly nonlinear nature of the BW model, along with a large number of model parameters, has made the iden-
tification of this system a challenging task. The model has been receiving more attention in recent times due to the
development of efficient numerical algorithms that can be used to identify the model parameters more accurately. Several
methods have been discussed in the literature to accomplish this, including Levenberg-Marquardt [34], reduced gradient
methods [35], and extended Kalman filters [36]. Due to the nonlinear nature of the problem, stochastic optimisation algo-
rithms have been also found to be well suited. Algorithms such as genetic algorithms [37,38], particle swarm optimisation
[39], and differential evolution [40] have been successfully implemented. However, optimisation algorithms provide a single
optimum value, while the Bayesian inference allows users to get the full parameter distribution, yielding more important
information.

3.2.1. Equations of motion
The general single-degree-of-freedom (SDOF) hysteretic system described in the terms of Wen [41], is represented below,

where gðy; _yÞ is the polynomial part of the restoring force, zðy; _yÞ is the hysteretic part and f ðtÞ is the excitation force:
-

-
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m€yþ gðy; _yÞ þ zðy; _yÞ ¼ f ðtÞ ð8Þ

where, m is the mass, and the polynomial part of the restoring force is assumed to be linear given by the following equation:
gðy; _yÞ ¼ c _yþ ky ð9Þ

The hysteretic component is defined by Wen [41] via the additional equation of motion:
_z ¼ �aj _yjzn � b _yjznj þ A _y; for n odd
�aj _yjzn�1jzj � b _yjznj þ A _y; for n even

�
ð10Þ
The parameters a; b and n govern the shape and the smoothness of the hysteresis loop. It should be noted that the equations
offer a simplification from the point of view of parameter estimation, in that the stiffness term in Eq. (9) can be combined
with the A _y term in the state equation for z. The reader can refer to [42] for full details.

In this example, the response output will be assumed to be displacement. The sampling interval was taken as 0.001 s,
corresponding to a sampling frequency of 1000 Hz. Here, as in the first example, the excitation is Gaussian with zero mean
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Fig. 11. Cubic-quintic model prediction using test data set under noisy excitation.



Table 6
Parameter ranges of the Bouc-Wen model.

Parameter True value Lower bound Upper bound

m 1 0.1 10
c 20 2 200
a 1.5 0.15 15
b �1.5 �15 �0.15
A 6680 668 66800
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Fig. 12. Training data from the Bouc-Wen model.
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Fig. 13. Hysteresis loops in the Bouc-Wen model input-output plane for different forcing conditions.
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and standard deviation of 10. The exact parameter values used to generate the training data and the parameter ranges are
summarised in Table 6. Fig. 12 shows the BW model response with n ¼ 2. The training data used here were composed of
1000 points corresponding to a record duration of 1 s. Fig. 13 shows (from left to right) the hysteresis loops obtained for
three different standard deviation values of the excitation equal to 10, 30 and 40.

To identify the BW model parameters, one converts the problem of parameter identification into a model selection prob-
lem for design purposes. One can illustrate the model selection problem by proposing a range of potential models: first a
simple linear model is considered. Then, more complex models are defined by varying n in the equations of motion from
1 to 4. In total, five competing models are considered denoted by:
M1 : m€yþ c _yþ Ay ¼ f ðtÞ ð11Þ
M2:5 : Eqs: ð8Þ and ð10Þ; n ¼ 1 : 4 ð12Þ
To implement the ABC-SMC algorithm, equal prior probabilities PrðMi¼1:5Þ ¼ 1
5 are considered. In this example, the toler-

ance threshold sequence is adaptively defined. It has been found after a few tests that a tolerance threshold set at the 20th
percentile of the particle distances from the previous iteration maintains a quite satisfactory acceptance rate through the
populations. The rest of the hyperparameters are selected as in the first example. The stopping criterion chosen here is when
the difference between two consecutive tolerance thresholds is less than or equal to 5� 10�4. The obtained results are sum-
marised below using noisy measurements; noise of RMS 1% was added to the displacement signal.



Fig. 14. Model posterior probabilities of the Bouc-Wen model over the populations.
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Fig. 15. Histograms of the identified Bouc-Wen model parameters (the red triangles show the true values). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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Table 7
Bouc-Wen model parameter estimates from the last population.

Parameter True value Summary statistics

Mean, l Std. Dev, r [5th, 95th] percentiles

m 1 0.9976 0.0017 [0.9947, 1.0004]
c 20 19.965 0.0248 [19.9241, 20.006]
a 1.5 1.6339 0.0149 [1.6083, 1.6577]
b �1.5 �1.5005 0.3124 [�2.031, �0.9937]
A 6680 6665.1173 13.148 [6643.3231, 6687.1163]
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Fig. 16. Comparison between the training and predicted data using the Bouc-Wen model.
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Fig. 14 shows how ABC-SMC eliminates the least likely models progressively. One may observe that M5 is the first one to
be eliminated which means that it is inadequate to explain the data. Next, the linear model is eliminated one population
after. The models M2!4 seem the most likely candidates to explain the data since after eliminating M5 and M1, it seems
quite difficult to favour one model over another. One may observe from Fig. 14 that only at population 18 ðe ¼ 0:0058Þ, does
the algorithm start to favour M3. This would suggest that even M2 and M4 may explain the data reasonably well with a
preference for M3. The algorithm identifies with an obvious evidence, the true model at population 19 ðe ¼ 0:0042Þ.
Fig. 15 shows the histograms of the model parameter values, in which one can see a visible bias on all the parameter esti-
mates except b because of the noise in the training data. From the last population, one may estimate the parameter statistics
related to the selected model (see, Table 7). The training data and the model prediction with the 99% confidence interval are
shown in Fig. 16 from where one can see a sufficient accuracy. The estimation of the MSE gives a value equal to 0.0024.

Once again, the ABC-SMC algorithm is shown to be efficient in problems with a relatively large number of competing
models and more importantly when those competing models are quite similar. As one may observe from Fig. 14, M2 and
M4 are simultaneously eliminated at population 18 with closer posterior probabilities (0.182 for M2 against 0.174 for
M4). To further investigate which model is more plausible in order to provide a rational rank and to gain confidence in model
posterior probabilities, a number of simulations are carried out (20 in this case). Fig. 17 shows the box-plots of the posterior
model probabilities over a few populations. Clearly, the posterior model probabilities are quite repeatable with acceptable
variation levels. One may observe that overall, the variations of the posterior model probabilities decrease over the popula-
tions. Finally, the simulations show that M2 is more plausible than M4 which validates the results obtained from a single
simulation.

Once the model is selected and its parameters are estimated, it can now be used to make predictions on new unseen data.
To do so, a test data set of length 1000 is synthetically generated. Fig. 18 shows the model prediction with the 99% credibility
interval. The result shows a good agreement between the test data set and the model prediction. An estimation of the MSE
gives a value of 0.007.

Based on the examples presented so far, it is clear that ABC-SMC deals well with model selection and parameter estima-
tion. In the first two examples, the MSE based on the time series has been used to measure the similarity between the
observed and simulated data. The next example, will investigate in more detail, the flexibility of ABC-SMC to infer system
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Fig. 17. Boxplots of the Bouc-Wen model posterior probabilities over some selected populations (20 simulations have been performed).

320 A. Ben Abdessalem et al. /Mechanical Systems and Signal Processing 99 (2018) 306–325
models by using other features and through different metrics to measure the similarity between observed and simulated
data.

3.3. Example 3: Duffing oscillator

The final example is about the identification of a Duffing oscillator without linear stiffness. In this case, the system may
bifurcate and show a high sensitivity to small variations that may affect the parameters. Through this example, we aim to
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Fig. 18. Bouc-Wen model prediction using test data set.
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Fig. 19. Comparison between the Duffing oscillator responses using the true and perturbed parameters.

Table 8
True and perturbed parameters used for the Duffing oscillator.

m c k3 MSE

True parameters 1 0.05 1
Perturbed parameters 0.999 0.0489 1.005 32.1707
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Fig. 20. Comparison between the acceleration PDFs using the Duffing oscillator with the true and perturbed set of parameters.
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Fig. 21. Posterior model probabilities: Duffing oscillator.
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investigate the potential of the ABC-SMC algorithm to deal with such complex scenarios by choosing a suitable feature and a
corresponding metric to make inference possible. The Duffing oscillator considered here is given by Eq. (13):
m€yþ c _yþ k3y3 ¼ f ðtÞ ð13Þ

where m is the mass, c is the damping coefficient and k3 is the nonlinear stiffness, f ðtÞ is a Gaussian input force.

Fig. 19 shows the displacement output of the Duffing oscillator using the true and perturbed set of parameters shown in
Table 8. It should be noted that the perturbed values were obtained from the system output using the restoring force surface
method [43]. One observes a clear divergence (the grey band in Fig. 19) which means that the perturbed parameters that
could be a potential solution for the system would be rejected. This is a typical example where the classical Bayesian infer-
ence based on the time-series data and a Gaussian likelihood function cannot perform well. Here, it is demonstrated how
ABC-SMC can deal with such a challenging situation and infer the model by selecting a suitable feature and a corresponding
metric to measure the level of agreement between observed and simulated data.

In this illustrative example, it was found that the probability density function (PDF) of the acceleration is insensitive to
small changes and thus can be used as a main feature to make inference. Fig. 20 depicts the PDFs of the acceleration using
initial and perturbed sets of parameters. It is clear that the acceleration PDF is a promising feature since it remains nearly
invariant when input parameters are subjected to small changes. As one may see from the same figure, the variation is
mainly visible on the tails of the distributions which gives small impact on the metric value. This means that the PDF of
the acceleration might serve as a robust feature to infer the Duffing oscillator. The Euclidean distance between the observed
and simulated PDFs, given by Eq. (14), is used to measure the degree of agreement. Of course, the inference can be carried out
using other kinds of features, for instance, it was shown in [44] that the spectrum is also insensitive to small parameter vari-
ations, which means that it can be used as a basis for comparison. In the same way, various metrics such as the Kullback-
Leibler divergence [45] or the maximum mean discrepancy [46] for instance, can be used to measure the similarity/dissim-
ilarity between two PDFs.
Dðpl
f ; p̂

l
f Þ ¼

Xn
l¼1

logðpl
f Þ � logðp̂f

lÞ
� �2

" #1
2

ð14Þ
where pl
f and p̂l

f are the probabilities associated with the observed and simulated data, respectively.
In the final example, model selection is again pursued to infer the Duffing oscillator model (denoted here by M2). This is

illustrated by considering the linear model (denoted here by M1) as another potential candidate. For ABC-SMC implemen-
tation, one keeps the same hyperparameters with a total number of iterations set to 25. As in the previous examples, the
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Fig. 22. True and predicted PDFs of the acceleration using MCS for the Duffing oscillator.
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acceleration was corrupted by noise, a 1% RMS of the response is added to the signal. Fig. 21 shows the model posterior prob-
abilities over the populations. After a few populations, the algorithm converges to the correct model as expected, precisely at
population 6. From population 7 to population 25 the algorithm refines the model parameter estimates.

Fig. 22 shows in the logarithmic scale the PDF of the true response and the predicted ones obtained from Monte Carlo
simulations (MCS) (1000 realisations) over a few populations. One observes how by decreasing gradually the tolerance
schedule value, one gains confidence in the prediction.



Table 9
Model parameter estimates of the Duffing oscillator.

Parameter True value Summary statistics

Mean, l Std. Dev, r [5th, 95th] percentiles

m 1 1.0000 0.0003 [0.9995, 1.0005]
c 0.05 0.0500 0.0001 [0.0499, 0.0501]
k3 1 1.0001 0.0015 [0.9976, 1.0025]
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Fig. 24. Comparison between the true and predicted PDFs of the acceleration using the Duffing oscillator.
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Fig. 23 shows the histograms of the Duffing oscillator parameters. One may observe that the obtained histograms are well
peaked in the true values. Fig. 24 shows the observed and predicted PDFs of the acceleration in the logarithmic scale, in
which a good agreement is shown (the 99% confidence interval is not shown here as it is indistinguishable from the plotted
responses). This example shows that the PDF of the acceleration can be used as a robust feature to infer the Duffing oscillator
model. One can see from Table 9 that the original parameters are accurately estimated.

In short, this example demonstrates that the acceleration PDF remains invariant when the Duffing oscillator undergoes
small changes in parameters. Thus, the acceleration PDF can be used as a feature to perform model selection and parameter
estimation in a Bayesian framework, unlike the time-series error. Despite its simplicity, this example shows many interest-
ing and promising aspects of the ABC-SMC algorithm to deal efficiently with model selection and parameter estimation by
introducing new features as a basis for comparison to infer complex system models.
4. Conclusion

Through different illustrative examples, it has been demonstrated that the ABC-SMC algorithm is an excellent way to deal
with model selection and parameter estimation issues with some advantages over traditional Bayesian methods in the speci-
fic circumstances described in this paper. The ABC-SMC algorithm has several very useful properties: (i) ease of implemen-
tation, (ii) generality of application and (iii) the ability to deal with model selection for larger numbers of models in a
straightforward way. The flexibility offered by ABC-SMC can be useful to infer systems with complex behaviours using dif-
ferent kinds of features for systems with larger datasets, from which one may extract useful summary statistics.

In conclusion, the algorithm was capable of estimating the parameters of three different dynamical systems efficiently by
using different kinds of features and metrics. Hence, ABC-SMC offers a new possibility for model selection and parameter
estimation for dynamical systems in an efficient way. Scope for future work is vast, including the replacement of the sim-
ulation by a surrogate model to reduce the computational requirements and speed up the algorithm for more challenging
situations. In addition, the development of ‘‘good” features, insensitive to small variations to deal with model selection
and parameter estimation efficiently, can be used in a more challenging context, such as model validation. Finally, we hope
that the present paper will fuel further studies in the structural dynamics community on more realistic case studies.

Acknowledgements

The support of the UK Engineering and Physical Sciences Research Council (EPSRC) through grant reference No. EP/
K003836/1 is greatly acknowledged.



A. Ben Abdessalem et al. /Mechanical Systems and Signal Processing 99 (2018) 306–325 325
References

[1] M. Muto, J.L. Beck, Bayesian updating and model class selection for hysteretic structural models using stochastic simulation, J. Vib. Control. 14 (1–2)
(2008) 7–34.

[2] B.A. Zárate, J.M. Caicedo, J. Yu, P. Ziehl, Bayesian model updating and prognosis of fatigue crack growth, Eng. Struct. 45 (2012) 53–61.
[3] Ph. Bisaillon, R. Sandhu, M. Khalil, C. Pettit, D. Poirel, A. Sarkar, Bayesian parameter estimation and model selection for strongly nonlinear dynamical

systems, Nonlinear Dyn. 82 (2015) 1061–1080.
[4] J.L. Beck, K.V. Yuen, Model selection using response measurements: Bayesian probabilistic approach, J. Eng. Mech. 130 (2) (2004) 192–203.
[5] R. Sandhu, M. Khalil, A. Sarkara, D. Poirelc, Bayesian model selection for nonlinear aeroelastic systems using wind-tunnel data, Comput. Methods Appl.

Mech. Eng. 282 (2014) 161–183.
[6] T.G. Ritto, L.C.S. Nunes, Bayesian model selection of hyperelastic models for simple and pure shear at large deformations, Comput Struct. 156 (2015)

101–109.
[7] P.J. Green, Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika 82 (4) (1995) 711–732.
[8] R.E. Kass, A.E. Raftery, Bayes factors, J. Am. Stat. Assoc. 90 (1995) 773–795.
[9] DB. Rubin, Using the SIR algorithm to simulate posterior distributions, in: Proceedings of the Third Valencia International Meeting, 1987, Bayesian

Statistics (3), 1989, pp. 395–402.
[10] F. Cadini, C. Sbarufatti, M. Corbetta, M. Giglio, A particle filter-based model selection algorithm for fatigue damage identification on aeronautical

structures, Struct. Control Health Monit. (2017) e2002.
[11] H. Akaike, Information theory and an extension of the maximum likelihood principle, Breakthroughs in Statistics, vol. I, Springer, 1992, pp. 610–624.
[12] G. Schwarz, Estimating the dimension of a model, Ann. Stat. 6 (2) (1978) 461–464.
[13] A.A. Neath, J.E. Cavanaugh, The Bayesian information criterion: background, derivation, and applications, Wiley Interdiscip. Rev. Comput. Stat. 4 (2)

(2012) 199–203.
[14] C.A. McGrory, D.M. Titterington, Variational approximations in Bayesian model selection for finite mixture distributions, Comput. Stat. Data Anal. 51

(2007) 5352–5367.
[15] J. Skilling, Nested sampling, in: R. Fischer, R. Preuss, U.V. Toussaint (Eds.), American Institute of Physics Conference Series, 2004, pp. 395–405.
[16] J. Skilling, Nested sampling for general Bayesian computation, Bayesian Anal. 1 (4) (2006) 833–860.
[17] L. Mthembu, T. Marwala, M. Friswell, S. Adhikari, Model selection in finite element model updating using the Bayesian evidence statistic, Mech. Syst.

Signal. Process. 25 (2011) 2399–2412.
[18] AH. Elsheikh, I. Hoteit, M.F. Wheeler, Efficient Bayesian inference of subsurface flow models using nested sampling and sparse polynomial chaos

surrogates, Comput. Methods Appl. Mech. Eng. 269 (2014) 515–537.
[19] M. Beaumont, J. Cornuet, J. Marin, C. Robert, Adaptive approximate Bayesian computation, Biometrika 96 (4) (2009) 983–990.
[20] T. Toni, M.P.H. Stumpf, Simulation-based model selection for dynamical systems in systems and population biology, Bioinformatics 26 (1) (2010) 104–

110.
[21] Ch. Barnes, D. Silk, M.P.H. Stumpf, Bayesian design strategies for synthetic biology, Interface Focus 1 (2011) 895–908.
[22] B.M. Turner, T. Van Zandt, A tutorial on approximate Bayesian computation, J. Math. Psychol. 56 (2012) 69–85.
[23] A. Ben Abdessalem, N. Dervilis, D. Wagg, K. Worden, Identification of nonlinear dynamical systems using approximate Bayesian computation based on

a sequential Monte Carlo sampler, in: International Conference on Noise and Vibration Engineering, September 19–21, 2016, Leuven, Belgium.
[24] M. Chiachio, J.L. Beck, J. Chiachio, G. Rus, Approximate Bayesian computation by Subset Simulation, SIAM J. Sci. Comput. 36 (3) (2014) A1339–A1358.
[25] S.K. Au, J.L. Beck, Estimation of small failure probabilities in high dimensions by subset simulation, Probab. Eng. Mech. 16 (2001) 263–277.
[26] P. Marjoram, J. Molitor, V. Plagnol, S. Tavare, Markov chain Monte Carlo without likelihoods, Proc. Natl. Acad. Sci. USA 100 (2003) 15324–15328.
[27] T. Toni, D. Welch, N. Strelkowa, A. Ipsen, M.P.H. Stumpf, Approximate Bayesian computation scheme for parameter inference and model selection in

dynamical systems, J. Roy. Soc. Interface 6 (2009) 187–202.
[28] J. Ching, J.L. Beck, K. Porter, Bayesian state and parameter estimation of uncertain dynamical systems, Probab. Eng. Mech. 21 (2006) 81–96.
[29] A. Doucet, On sequential Monte Carlo methods for Bayesian filtering, Dept. Eng., Univ. Cambridge, UK, Tech. Rep., 1998.
[30] A. Doucet, S. Godsill, C. Andrieu, On sequential Monte Carlo sampling methods for Bayesian filtering, Statist. Comput. 10 (3) (2000) 197–208.
[31] A. Doucet, A.M. Johansen. A tutorial on particle filtering and smoothing: fifteen years later, technical report, 2008.
[32] S. Filippi, C.P. Barnes, J. Cornebise, M.P.H. Stumpf, On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo, Stat.

Appl. Genet. Mol. Biol. 12 (2013) 87–107.
[33] J.P. Noël, G. Kerschen, Nonlinear system identification in structural dynamics: 10 more years of progress, Mech. Syst. Signal. Process. 83 (2017) 2–35.
[34] Y.Q. Ni, J.M. Ko, C.W. Wong, Identification of non-linear hysteretic isolators from periodic vibration tests, J. Sound Vib. 217 (4) (1998) 737–756.
[35] H. Zhang, G.C. Foliente, Y. Yang, F. Ma, Parameter identification of inelastic structures under dynamic loads, Earthq. Eng. Struct. Dyn. 31 (2002) 1113–

1130.
[36] J.S. Lin, Y. Zhang, Nonlinear structural identification using extended Kalman filter, Comput. Struct. 52 (4) (1994) 757–764.
[37] B.P. Deacon, K. Worden, Identification of hysteretic systems using genetic algorithms, in: Proceedings of EUROMECH-2nd European Nonlinear

Oscillations Conference, Prague, 1996, pp. 55–58.
[38] K. Chwastek, J. Szczyglowski, Identification of a hysteresis model parameters with genetic algorithms, Math. Comput. Simul. 71 (2006) 206–211.
[39] S. Xiao, Yangmin Li, Dynamic compensation and H1 control for piezoelectric actuators based on the inverse Bouc-Wen model, Robot. Cim. Int. Manuf.

30 (2014) 47–54.
[40] A. Kyprianou, K. Worden, Identification of hysteretic systems using the differential evolution algorithm, J. Sound Vib. 248 (2) (2001) 289–314.
[41] Y. Wen, Method for random vibration of hysteretic systems, ASCE J. Eng. Mech. Division 102 (2) (1976) 249–263.
[42] K. Worden, J.J. Hensman, Parameter estimation and model selection for a class of hysteretic systems using Bayesian inference, Mech. Syst. Signal.

Process. 32 (2012) 153–169.
[43] K. Worden, Data processing and experiment design for the restoring force surface method. Part II: Choice of excitation signal, Mech. Syst. Signal.

Process. 4 (1990) 321–344.
[44] K. Worden, Some thoughts on model validation for nonlinear systems, in: IMAC-XIX, 19th International Modal Analysis Conference in Orlando, Florida,

2001.
[45] S. Kullback, Information Theory and Statistics, Dover Publications Inc., Mineola, New York, 1968.
[46] A. Gretton, K.M. Borgwardt, M. Rasch, B. Schölkopf, A.J. Smola, A Kernel approach to comparing distributions, Proceedings of the Twenty-Second AAAI

Conference on Artificial Intelligence, A (2007) 1637–1641.

http://refhub.elsevier.com/S0888-3270(17)30332-1/h0005
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0005
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0010
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0015
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0015
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0020
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0025
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0025
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0030
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0030
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0035
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0040
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0050
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0050
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0055
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0055
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0060
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0065
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0065
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0070
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0070
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0075
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0075
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0075
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0075
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0075
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0080
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0085
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0085
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0090
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0090
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0095
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0100
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0100
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0105
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0110
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0120
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0125
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0130
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0135
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0135
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0140
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0150
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0160
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0160
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0165
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0170
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0175
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0175
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0180
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0185
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0185
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0185
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0190
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0195
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0195
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0195
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0200
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0205
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0210
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0210
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0215
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0215
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0220
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0220
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0220
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0220
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0225
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0225
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0230
http://refhub.elsevier.com/S0888-3270(17)30332-1/h0230

	Model selection and parameter estimation in structural dynamics using approximate Bayesian computation
	1 Introduction
	2 Approximate Bayesian computation
	3 Illustrative examples
	3.1 Example 1: cubic and cubic-quintic models
	3.2 Example 2: identification of a Bouc-Wen model
	3.2.1 Equations of motion

	3.3 Example 3: Duffing oscillator

	4 Conclusion
	Acknowledgements
	References


