
This is a repository copy of Verifiable Classroom Voting in Practice.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/117987/

Version: Accepted Version

Article:

Hao, Feng, Clarke, Dylan, Randell, Brian et al. (1 more author) (2018) Verifiable
Classroom Voting in Practice. IEEE Security & Privacy. pp. 72-81. ISSN 1540-7993

https://doi.org/10.1109/MSP.2018.1331032

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1

Verifiable Classroom Voting in Practice
Feng Hao∗, Dylan Clarke∗, Brian Randell∗, and Siamak F. Shahandashti†

∗Newcastle University, UK †University of York, UK

✦

Abstract—Classroom voting is an important pedagogical technique in

which students learn by voting on the answers to questions. The same

voting platform is also often used for exercises such as rating lecturer

performance and voting for prizes. In this paper, we present VCV, an

end-to-end (E2E) verifiable classroom voting system built based on the

DRE-i protocol. Our system provides E2E verifiability without tallying

authorities; it supports voting through mobile phones with constrained

computing resources; it reports the tallying results instantly after voting

is finished along with cryptographic proofs that enable the public to verify

the tallying integrity. Since 2013, the VCV system has been used regu-

larly in real classroom teaching, as well as academic prize competitions,

in Newcastle University with positive user feedback. Our experience

suggests that E2E verifiable voting through the internet and using mobile

phones is feasible for daily routine activities such as classroom voting.

1 INTRODUCTION

Starting with Chaum’s seminal paper published in IEEE
Security & Privacy [4] in 2004, research on end-to-end (E2E)
verifiable e-voting has become a thriving field. Informally,
the notion of being E2E verifiable refers to verifiability at
two levels. At the individual level, it means each voter is
able to verify if their vote has been cast as intended and
recorded as cast. At the universal level, it means anyone
can verify if all votes are tallied as recorded. (Here we do
not consider verifying the voter eligibility as that relates to
voter authentication which we regard as a separate issue.)
By contrast, in a traditional paper-based voting system, a
voter can only check up to the point that the completed
ballot is dropped into the box, not how it will be recorded
and tallied in the subsequent process.

Researchers have proposed many E2E voting systems
that build on a similar concept to Chaum’s but improve
on it in various ways. Notable E2E voting schemes include
MarkPledge, Prêt à Voter, Punchscan, Scantegrity, Scant-
egrity II, scratch & vote, STAR-Vote, Wombat, Adder and
Helios; see [7] for a review of existing systems. Some of these
systems have been used in practical applications. In partic-
ular, Helios [2] was used to elect the president of Université
catholique de Louvain in 2009, and since 2010, has been
used for elections in universities and associations (IACR
and ACM). Scantegrity [5] was adopted in the municipal

This manuscript has been accepted for publication and is to appear in the IEEE
Security & Privacy magazine in 2017.
Hao, Clarke, and Randell are with the School of Computing Science, Newcas-
tle University, UK. Emails: { feng.hao, dylan.clarke, brian.randell } @ncl.ac.uk.
Shahandashti is with the Department of Computer Science, University of York,
UK. Email: siamak.shahandashti@york.ac.uk.

elections of Takoma Park, USA in 2009 and 2011. A variant
of the Prêt à Voter system [3] was used in the 2014 Victoria
State election in Australia.

This paper describes a special type of E2E verifiable
voting system that does not involve any tallying authorities
(TAs): i.e., trustworthy individuals with computing and
cryptographic expertise who are tasked to perform decryp-
tion and tallying operations. Finding such TAs in a typical
classroom environment is not realistic and indeed is difficult
in other voting scenarios (see [2]). We have built a concrete
prototype of such a TA-free E2E verifiable system called
Verifiable Classroom Voting (VCV), which uses DRE-i [10]
as the underlying cryptographic protocol.

Since 2013, the VCV system has been used in real class-
room teaching, as well as academic awards competitions,
in Newcastle University and has received positive user
feedback. The underlying DRE-i protocol is designed to be
scalable to support large-scale elections [10]. It is different
from boardroom voting protocols [13] in that it is centralized
and does not require interactions between voters. Voters
only interact with a central web server to cast votes in a way
that is E2E verifiable. Although the VCV system is primarily
developed for classroom voting, it can be easily applied for
larger elections, such as campus voting as in Helios [2].
In the following sections, we will explain how the VCV
system works, and share our experience of implementing
and deploying such a system in the real-world application
of classroom voting.

2 BACKGROUND

2.1 Classroom Voting

Classroom voting is a pedagogical technique in which a
teacher poses a question to students, allows them to think
about the answer or discuss it with classmates, and then
has them vote electronically on the answer. It was initially
developed for use in teaching physics by Eric Mazur from
Harvard University and has been developed further for use
in chemistry, mathematics and other subjects [14].

Several commercial classroom voting systems are avail-
able, e.g., TurningPoint1 (which is commonly used among
UK universities including Newcastle University). However,
they suffer from two main limitations. First, such systems
are expensive. As well as license fees, they often require
the use of proprietary hardware which may be prohibitively

1. http://www.turningtechnologies.co.uk

2

expensive for many educational contexts. Second, these
commercial systems do not provide verifiability; users can-
not be sure that the system recorded their votes and tallied
them correctly.

Our aim was to develop a practical classroom voting
system that does not require any proprietary hardware and
can be freely available to teachers and students, especially
those in developing countries. This would overcome the first
limitation, which has hampered the wider adoption of this
modern pedagogy.

We also aimed to address the second limitation by
leveraging the latest E2E verifiable voting techniques. This
second limitation may not immediately seem like much of
an issue for classroom voting. However, in practice class-
room voting may also be used for such tasks as course
feedback and voting for prizes for students or lecturers.
Verifiability can both remove the risk of cheating from these
voting sessions, and improve the trust that students have
in them. Furthermore, the added assurance on the tallying
integrity has the potential to greatly extend the traditional
scope of classroom voting, from a pure pedagogical tool to
a more general voting platform where people can exercise
democratic rights on daily matters.

2.2 The DRE-i Protocol

Among existing E2E voting schemes, we choose DRE-i [10]
as the underlying cryptographic protocol to build the VCV
system. DRE-i is specifically designed to provide E2E verifi-
ability without needing to find a set of trustworthy tallying
authorities, hence the system is “self-enforcing”. Further-
more, DRE-i does not require any cryptographic operations
at the client side (hence obviating the need to install any
Java plug-in or use JavaScript to perform expensive cryp-
tographic operations in the browser). With the exception of
digital signing, all cryptographic operations are performed
before the election, thus latency during voting is minimized.
Finally, in DRE-i, the tallies are instantly available once the
last ballot is recorded, accompanied by publicly verifiable
audit data to prove the tallying integrity. All these properties
suit the practical requirement of classroom voting.

We provide here an overview of how the protocol works;
a reader wishing further details and security proofs is re-
ferred to [10]. The central technique used by DRE-i involves
pre-computing all electronic ballots in the encrypted form
before the election, in such a way that the multiplication
of the ciphertexts will cancel out the random factors and
allow anyone to verify the tally without needing tallying
authorities.

Take for example a single candidate election with “Yes”
and “No” choices. The system generates n = m × s ballots
before the election, where n is a product of the maximum
number of eligible voters m and a safety factor s for audit-
ing. Let E(Fq) be an elliptic curve defined over a finite field
Fq where q is a large prime and G be a generator for the
subgroup over E(Fq) of prime order p. For each ballot i, a
random public key is generated: xi · G where xi is a value
chosen uniformly at random from [1, p − 1]. When this is
done for all ballots, a restructured public key Pi for each
ballot is computed as below:

Pi =
∑

j<i

xj ·G−
∑

j>i

xj ·G. (1)

Here, Pi can be expressed in the form of Pi = yi · G
where yi =

∑

j<i xj−
∑

j>i xj mod p. It is important to note
that

∑

i xiyi = 0 mod p, which is called the “cancellation
formula” [12]. This formula plays a critical role in the design
of the DRE-i system.

For each ballot i, the value of the encrypted vote is
defined as xi · yi · G + vi · G where vi ∈ {0, 1} for “No”
and “Yes” respectively. In addition, a non-interactive zero-
knowledge proof (ZKP) is required to prove the encrypted
vote is well-formed, i.e., vi can only be either 0 or 1. This can
be realized by using the standard 1-of-2 ZKP technique [6],
made non-interactive by the Fiat-Shamir transformation [8].
The encrypted ballot together with the ZKP forms a cryp-
togram, as shown in Table 1. The first three columns are
published on a public bulletin board (a publicly accessible
website), while the “Yes” and “No” cryptograms in the last
two columns are kept secret. Here, all public key operations
are defined over an elliptic curve (we use NIST P-256)
instead of a finite field as in [10]. This is to be consistent
with the actual implementation in practice. The underlying
DRE-i protocol is not changed.

The pre-computation generates “Yes” and “No” cryp-
tograms that satisfy several properties. The first property is
called “concealing”, which means that for any selected row
of Table 1, if the voter is only given a single cryptogram,
she will not be able to tell if it is “Yes” or “No” since the
given cryptogram is indistinguishable from random. The
second property is called “revealing”, which means that
if both cryptograms are given, she will be able to trivially
distinguish “Yes” from “No”, since the encrypted value of
the former is the latter adding G. The third property is
called “self-tallying”, which defines the relation between
ballots. Suppose a single cryptogram is arbitrarily selected
from every row of Table 1. Given such selected cryptograms,
anyone is able to compute the tally of the “Yes” votes
contained in the entire selection, though without being able
to learn values of individual votes. This tallying process can
be done by anyone without needing any tallying authority.
For mathematical proofs of these properties, we refer the
reader to [10].

Once the election setup has been done, voting is a simple
two-step procedure. First, a voter chooses a candidate and
receives its cryptogram printed on the receipt. Second, the
voter chooses to confirm or cancel the selection. In the case
of “confirm”, the vote is cast and the receipt is appended
with a notice that the vote has been cast. Otherwise, the
vote is cancelled and the receipt is appended with the other
cryptogram, the previously selected candidate and a notice
that the vote has been cancelled. This allows the voter to
audit whether the cryptograms have been assigned correctly
to candidates. In this case, the voter is given another unused
ballot to start over from step 1 (in Section 3.2, we will show
an example interaction in VCV to illustrate the voting and
tallying process in more detail).

3

Ballot Random Restructured Cryptogram Cryptogram
No public key public key of no-vote of yes-vote

1 x1 ·G y1 ·G x1 · y1 ·G, 1-of-2 ZKP x1 · y1 ·G+G, 1-of-2 ZKP
2 x2 ·G y2 ·G x2 · y2 ·G, 1-of-2 ZKP x2 · y2 ·G+G, 1-of-2 ZKP
.
n xn ·G yn ·G xn · yn ·G, 1-of-2 ZKP xn · yn ·G+G, 1-of-2 ZKP

Table 1: Setup before the election

3 CLASSROOM FUNCTIONALITY

The DRE-i protocol only provides the functionality needed
to vote for one candidate out of a list. A fully featured
educational polling system must handle registration, voter
authentication, sessions with multiple questions, questions
with different input types, the display of results, election
generation and verification. We explain details of these
features in this section.

3.1 Session Generation

Coordinator. In VCV, the person who creates the election
is called a coordinator. First, the coordinator logs on to
the coordinator’s account on the e-voting website2. The
authentication of the coordinator is currently through the
campus LDAP service, so anyone who is a member of
staff or a student of Newcastle University can log on using
their campus credentials without needing to register. (We
are adding external user registration facilities to make VCV
publicly available under the support of an ERC Proof-of-
Concept Grant).

Voting session. Often an election coordinator wants to
present several questions for students to answer in one go.
To allow this, we design the VCV system so that each voting
session can consist of as many questions as the coordinator
requires, which are presented to the voter in order.

There are four types of questions supported in VCV.

1) Multiple choice with a single answer;
2) Multiple choice with multiple answers;
3) Free numerical input;
4) Free text input.

The first two types of questions are implemented based
on the DRE-i protocol. For type-1 questions, the VCV system
provides one “Yes”/“No” election for each candidate and
allows each voter to cast a “Yes” vote in one election and
“No” votes in all of the other elections. At the verification
stage it is possible to check that the number of votes cast
is equal to the number of “Yes” votes in each election. The
type-2 questions are handled in a similar way except that
voters are allowed to cast more than one “Yes” votes. At the
verification stage it is possible to check that the number of
“Yes” votes is equal to or less than the number of choices
allowed per voter multiplied by the number of votes cast.
In this case, we no longer have a strict equality that can
be used to detect stuffing of “Yes” votes, but a malicious
system adding votes in this way can still be detected if the
voter opts to audit the vote, as we will explain.

The last two types of questions do not use any E2E
verifiable scheme. Students simply enter free inputs (either
number or text), and the server displays the received inputs

2. https://evoting.ncl.ac.uk

in the end. No audit data is provided to allow public
verifiability. (We are not aware of any E2E voting system
that can support these types of questions without involving
tallying authorities.) Nonetheless, these types of questions
are useful in practice as they allow open-ended questions to
be asked to gauge student understanding and/or provoke
discussion. Since the implementation of these questions is
no different from existing classroom voting products, we
will not discuss them further, but instead will focus on the
first two types of questions.

Authentication. When creating a voting session, the
coordinator can choose one of the following options for
voter authentication.

1) No passcode. The session requires no passcode. Any-
one who knows the election ID can vote.

2) Group passcode. The session requires one common
passcode. Only those who know the election ID and
the passcode can vote.

3) Individual passcode. The session requires a unique
passcode from each individual. Each individual
passcode can be used only once.

The first two authentication options are suitable for
routine classroom questions where ballot stuffing is not of
any concern. The group passcode is usually communicated
to the class of students verbally by the teacher or through
the display of a computer projector. This ensures that only
the students attending the class will know the passcode.
However, it does not prevent a student from sending an-
swers multiple times using the same group passcode. The
option of “no passcode” allows students to vote without any
passcode. In this case, the VCV system provides a simple
locking mechanism to prevent potential vandalism. The
coordinator can “lock” the session right after its creation. A
locked session does not accept any vote until it is unlocked
by the coordinator, which is normally done during the class.
This basic lock/unlock control limits the session to open
only for a specific time slot controlled by the coordinator.

The third authentication option is intended to be used
for voting sessions in which the “one person one vote” rule
needs to be enforced (e.g., rating the lecturer’s performance
or voting for a prize). The system generates random individ-
ual passcodes based on the number of eligible voters speci-
fied by the coordiantor. Typically, the passcodes are printed
onto individual slips of paper, folded and placed in a box,
and physically mixed in front of voters in a room before
being handed out to each voter. Any remaining passcodes
are destroyed. This enables observers to see exactly who
has been issued a passcode, without being able to link the
passcodes to voters. After voting, everyone is able to check
if the number of cast ballots recorded on the bulletin board
matches the number of voters. In Section 4.2, we will give
examples on how this has been done in practice.

4

3.2 Voting

The VCV system allows students to vote using their own
mobile devices, typically smart phones, but also tablets or
laptops as long as the devices are connected to the internet.
In general, we provide three voting interfaces: an Android
app3, an iOS app4 and a generic web voting page5. In prac-
tice, we recommend the students to use the web interface,
since this avoids needing to install yet another app on their
phones.

We now show an example interaction of voting through
the web interface. The experience using the Android/iOS
apps to cast a vote is similar. The voting procedure is basi-
cally the same as in [10], except that it is now done through
the Internet in an unsupervised environment instead of
using touch-screen DREs in a supervised environment at
polling stations. First, the voter enters an election ID and a
passcode (if any) as shown in Figure 1a. A voting session be-
gins with a list of candidates to choose from (see Figure 1b).
In this example, it is a single-answer question, so the voter
is limited to select only one candidate.

Casting a vote follows two stages. In Stage 1, the voter
chooses one candidate from the list. The server returns a
receipt, which is a truncated hash (based on SHA-512) of
the following data: the encrypted yes-vote for the chosen
candidate and the encrypted no-votes for all the other candi-
dates. The computation of the hash is deterministic based on
the public keys published before the election. The truncated
hash and the full audit data including the ZKPs and a digital
signature (based on ECDSA) are published on the bulletin
board. In this example, the truncated hash consists of 24
characters in Crockford’s base-32 encoding6 (see Figure 1c).

In Stage 2, the voter is prompted to confirm or cancel
this selection. To minimize the interactions, this step is
integrated with the display of the stage 1 receipt as shown
in Figure 1c. If the voter opts to cancel, then the server issues
the second part of the receipt: a notice that this is a cancelled
vote along with the name of the cancelled candidate; see
Figure 1d. Meanwhile, this receipt and the full audit data
including the encrypted no-vote for the chosen candidate,
the encrypted yes-votes for all the other candidates, the
ZKPs and a digital signature, are published on the bulletin
board. The voter can choose to start over with a new ballot
or skip answering this question. The voter can cancel up to s

ballots, where s is a safety factor that is configurable during
the election setup (by default, s = 5). On the other hand, if
the voter chooses to confirm, the server records the vote and
issues the second part of the receipt: a notice that the ballot
is confirmed (see Figure 1e, 1f, 1g for an example of steps to
cast a confirmed vote). This receipt, together with a digital
signature, is published on the bulletin board. In all figures,
the “Verify Your Receipt” button is a hyperlink that points
to the public bulletin board where the same content of the
given receipt is published.

In VCV, a public bulletin board is simply implemented as
publicly readable web pages on which the server publishes

3. https://play.google.com/store/apps/details?id=uk.ac.ncl.evoting
4. https://itunes.apple.com/us/app/newcastle-university-evoting/

id565080670
5. https://evoting.ncl.ac.uk
6. http://www.crockford.com/wrmg/base32.html

audit data with accompanying digital signatures to prove
the data authenticity. Any voter who wishes to audit the
system performs auditing as follows. At Stage 1, the voter
checks if the given receipt matches what is published on
the bulletin board. At Stage 2, when cancelling the vote, the
voter checks if the same receipt is published on the bulletin
board, along with the cancelled candidate name that should
match the voter’s selection. In the case of confirming the
vote, the voter checks if the given receipt matches what is
published on the bulletin board. Out of concern for usability,
these verification options are made available to voters, but
not imposed on them as required steps.

3.3 Tallying and Verification

Once all students have cast votes, the coordinator closes the
voting session using the web portal. The tallies are instantly
available (Figure 1h) since the server directly records votes
according to DRE-i. Meanwhile, any unused ballots are
published on the bulletin board with both “Yes” and “No”
cryptograms revealed and a note to indicate that they are
unused. These, together with the previous confirmed and
cancelled ballots, and full digital signatures, are available
on the bulletin board and can be downloaded as a single
XML file. The XML format allows a computer program to
process the file and verify all data in a batch operation.
On the bulletin board, an open-source verification program
written in Java is also provided, but anyone can write their
own verification programs.

3.4 Other Functions

We now briefly explain some other functions that we have
found useful in practice. First, we find that users sometimes
wish to use the same session (or very similar sessions) on
multiple occasions – for example, a lecturer may want to
reuse the same voting questions as in previous years. Hence
the session generation application allows for an existing
session to be duplicated, and for this duplicated session
to be changed before it is created. Second, for each created
voting session, the VCV system generates a downloadable
PDF file with all questions and answers in a format that can
be displayed in a slide show through a computer projector.
This serves as a useful fall-back mechanism in the case that
the Internet is down and VCV cannot be used. With the
saved PDF slides, the lecturer will still be able to practise
the classroom voting pedagogy, albeit in an old-fashioned
way by asking students to raise hands to vote for answers.

3.5 Security and Privacy Considerations

There are several security and privacy considerations that
need to be highlighted. First, by design, the DRE-i web
server records the vote directly (similar to a Direct Record-
ing Electronic machine). Hence, the privacy of the voter
relies on physical or procedural means to ensure the voting
is anonymous: i.e., the server does not know the voter’s
real identity. Second, although DRE-i is free from tallying
authorities, it requires all audit data to be available on the
bulletin board in order to verify the tally (because the can-
cellation of random factors involves all ballots). This adds

5

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: An example interaction of voting through the web interface

to the robustness requirement for a practical implementa-
tion. Finally, the VCV system is implemented for internet
voting in an unsupervised environment. It does not provide
resistance against coercion, e.g., a coercer may stand over
the voter’s shoulder. For this reason, VCV is only suitable
for low-coercion elections (as is the case for Helios [1]).

4 PRACTICAL EXPERIENCE

In this section, we share our experience of implementing
and deploying the VCV system for practical use.

4.1 A Pedagogical Tool for Classroom Teaching

Building on an early implementation of DRE-i for inter-
net voting and trials in 2011 [11], we developed the first
prototype of the VCV system with built-in functions for

classroom voting in 2013. The system was initially available
to only a few lecturers in the School of Computing Science,
at Newcastle University, and the student feedback on the
pedagogical value of VCV was overwhelmingly positive.
For example, in a survey conducted in 2013 among a class
of MSc students, 95% of the 20 respondents considered that
voting made the lecture more fun, and 100% of them agreed
that voting helped them learn. Subsequent surveys indicate
similarly positive feedback [9].

Encouraged by this positive student feedback, we contin-
ued to use the VCV system for the following academic years
in 2014, 2015 and 2016, and plan to continue its use in future.
In 2014, the system was extended to be made available
to the campus of Newcastle University; any member who
has a campus account can log on to the e-voting server
and create elections. With the positive student feedback

6

that confirms the pedagogical value of classroom voting,
the VCV system has been adopted by lecturers in other
schools (e.g., EEE and Business) at Newcastle University in
their classroom teaching. Currently, we are extending the
VCV system to make it publicly available to users outside
Newcastle University.

4.2 Academic Awards Competition

Besides its use in classroom teaching as a pedagogical
tool, the VCV system has been regularly used for aca-
demic competitions with a prize for the winner. For this
kind of application, the option of “individual passcodes”
should be used and the proper physical procedure followed
in distributing passcodes in order to ensure “one person
one vote”. As an example, on 10 February 2016, over 50
members of the Secure & Resilient Systems (SRS) group
in the School of Computing Science, Newcastle University,
used the VCV system in the annual “Best Paper Award”
competition to vote for their favourite paper written by a
PhD student or Research Associate within the group during
2015. Individual passcodes were printed on paper slips,
folded and physically randomized before being handed out
to people who were attending the competition event. Voting
started after a series of presentations by candidates who
submitted their papers for this competition. The results
were instantly announced in the presence of all attendees
in the room with the winner being awarded an Amazon
voucher of £200. Similar voting competitions based on VCV
were held in other research groups by following a similar
procedure, e.g., the formal methods and the computational
biology groups.

The VCV system has also been used in some university
events. On 18 November 2015, in a Research Impact in SAgE
(RISe) event organized by the Faculty of Science, Agriculture
& Engineering at Newcastle University with over 150 atten-
dees including many external to the university, the VCV
system was used to let attendees vote for their favourite
presentation for the “Impact in Progress” award. The voting
results were instantly announced on the spot with the win-
ner being awarded a cheque of £1,000. The use of democratic
voting for selecting the winner, the convenience of using
VCV for that purpose and the instant availability of results
with public audit data to prove the tallying integrity were
commented on positively by the attendees.

4.3 Truncated Hashed Receipts

The use of a truncated hash for the receipt, instead of the
full hash or full cryptographic data, is motivated by an
observation in [11] that most users found it difficult to
compare two long strings of random-looking cryptographic
data (in base-64 encoding). Therefore, to make it easier for a
voter to verify the receipt, we chose to use a short truncated
hash with the first n characters given to the voter. The
truncated hash is encoded using Crockford’s base-32 instead
of base-64 to make the receipt not only human readable,
but also pronounceable (which will allow integrating VCV
with accessibility tools such as a screen reader for visually
impaired voters in our future developments.)

Clearly, using the truncated hash and base-32 encoding
presents a trade-off between security and usability. We begin

by noting that the public keys are generated at random
before the election and are made public in advance. The
restructured public keys can be subsequently computed by
anyone. A base-32 encoding with length n gives us 32n

possible values. With n = 24 (default value used in the
system), that corresponds to 32n = 3224 = 2120. Each full
receipt has the ballot number of each cryptogram and the
surrounding XML fully specified. Hence, the only way that
the system can generate another valid receipt is to swap one
or more cryptograms in the receipt.

We first consider the case with type 1 questions. Here,
exactly one answer must be chosen, so any valid receipt
must contain one “yes” cryptogram and “no” cryptograms
for every other answer. Hence, the only changes that can be
made to a valid receipt (without turning it into an invalid
receipt) is to swap the yes cryptogram for the corresponding
no cryptogram and swap one of the no cryptograms for the
corresponding yes cryptogram. If there are m answers then
there are m− 1 ways this can be done.

Under the random oracle model we assume that the hash
value returned for each of these m − 1 receipts is random.
Hence, given these m− 1 receipts, the probability of one of
them giving the same receipt value as the original receipt is
m−1

32n
. For n = 24 and m = 5, this gives the probability of

3.0× 10−36.

We now consider the case with type 2 questions. Here,
we do not have the case where exactly one answer must
be chosen, with instead any number of answers between 1
and some upper bound being allowed. Hence, if there are m

answers then, in the extreme case where the upper bound is
m, the system can produce t =

∑m

i=1

(

m

i

)

= 2m − 1 valid
receipts, giving a probability of t−1

32n
that a different receipt

has the same truncated hash as the original receipt. With
n = 24 and m = 5, the probability is 2.2× 10−35.

In the analysis above, we have assumed that the elec-
tion setup is done honestly. However, it is possible that
a dishonest server may repeatedly try the setup until it
finds collisions in the truncated hash. With n = 24, it will
require 2120 operations, which is computationally infeasible.
If the attacker has a vast amount of memory, he might
try the birthday attack, which will require 260 operations
to find a collision (with 50% chance of success). This will
involve supplying inputs of the encrypted votes to the
hash function. In the simplest (2-candidate) case, the input
contains a pair of encrypted votes with the minimum size
of 66 bytes (compressed points over the NIST P-256 curve).
This attack will require a memory space of 260 × 66 bytes:
that is 76 million terabytes. This is beyond the capability
of an ordinary attacker. We note that the VCV system is
designed only for low-sensitive elections.

In conclusion, we find that n = 24 is a suitable value
for providing minimum required security for common class-
room voting scenarios without imposing too much strain on
voters to verify the receipt. In the election setup, the value
of n is configurable by the coordinator. For highly sensitive
elections, we recommend that a longer length should be
chosen. On the other hand, for those types of elections, a
polling station based implementation in a supervised envi-
ronment [15] would be more appropriate than our internet-
based VCV system.

7

Table 2: Ballot Generation Time as Number of Answers
Varies

Questions Answers Per Question Voters Time (sec)

1 2 50 39.6
1 3 50 68.0
1 4 50 81.8
1 5 50 108.6

Table 3: Ballot Generation Time as Number of Questions
Varies

Questions Answers Per Question Voters Time (sec)

1 4 50 81.8
2 4 50 163.3
3 4 50 246.3
4 4 50 328.0

4.4 Performance

We analyse the performance of two functions of the system:
election generation, and verification of election results. Vote
casting is not analysed as this involves no cryptographic
operations other than the production of digital signatures,
and does not result in any noticeable delay to users.

Ballot Generation. The ballot generation time is mea-
sured on a virtual machine (VM) with access to one 2.8 GHz
core and 4 GB memory running CentOS, where the VCV
web server is currently hosted.

The ballot generation time is shown as number of ques-
tions varies in Figure 2, as number of answers per question
varies in Figure 3 (a minimum of two answers is required for
a multiple choice question), and as number of voters varies
in Figure 4. In each case, the question generated was of type
1, although the ballot generation for type 2 questions should
perform the same operations. Taken together, these figures
show that ballot generation times are approximately linear
in the product of the number of questions, the number of
voters and the total number of answers (that is, the number
of actual ballots that need to be generated). They also show
that elections for reasonable class and session sizes can be
generated quickly using standard hardware.

Verification. The verification of election results can be
done by anyone. In our experiment, the time of verification
was measured on a 2.8 GHz dual-core PC with 4 GB mem-
ory running Windows. Verification times were calculated
as one parameter was varied: the number of answers. As
verification involves checking figures for each ballot in turn,
verification time should depend upon the number of ballots,
whether they are varied through increasing the number of
answers, the number of questions or the number of voters.
We fixed the number of questions at 1, the number of voters
at 50 and the number of available ballots (to allow for
auditing) at 5 per answer per voter.

The verification procedure involves the following steps.
1) (Tally) The cryptograms published on the bulletin board

Table 4: Ballot Generation Time as Number of Voters Varies

Questions Answers Per Question Voters Time (sec)

1 4 50 81.8
1 4 75 121.6
1 4 100 165.7
1 4 125 204.2

Table 5: Verification Time (sec) as Number of Answers Varies

Answers Tally ZKP Signature Audit Keys

2 0.05 117.5 8.9 0.06 0.11
3 0.09 171.8 9.0 0.07 0.14
4 0.13 228.7 9.1 0.08 0.18
5 0.16 287.1 9.2 0.09 0.22

are multiplied (according to DRE-i) and the result is checked
to be equal to ti · G, where G is the base point on the
elliptic curve and ti is the tally for answer i; 2) (ZKP) all
zero-knowledge proofs are checked to be valid; 3) (Digital
signature) all digital signatures are checked to be valid; 4)
(Audit) for cancelled and unused ballots, the relationships
between the two cryptograms are checked to be correct,
and additionally, for cancelled ballots, the stage-1 receipt
matches the voter choice that is revealed in the stage-2
receipt; 5) (Keys) the restructured keys are checked to be
correctly generated from the public keys for each answer.
The times taken for verification as the number of answers
varies are shown in table 5.

These values show us three key facts. First, the time
taken to verify the proofs is much more significant to
the overall verification time than the other three values
combined. Second, the verification time increases in an
approximately linear manner as the number of answers, and
hence ballots, increases. Third, a normal sized session can be
verified in a reasonable space of time on a home computer.

Low-spec server. The VM that hosts the web server has
limited resources, however it is still sufficient for the campus
use. Largely, this is because the VCV system pre-computes
all cryptographic encryptions before the election, so the
latency during voting is minimized. Typically, a lecturer
creates a voting session one day before the class to allow
plenty time for the pre-computation to finish. The latency
during voting is the most sensitive to users; in practice, it
is almost negligible even when many voters are using the
system simultaneously.

4.5 Lessons Learned and Future Work

STV. The first lesson we learned is the need for supporting
versatile election schemes. In 2014, the Newcastle Univer-
sity Students Union (NUSU) contacted us and expressed a
strong interest to use the VCV system for their presidential
elections. The union elections had been using paper ballots
based on Single Transferable Vote (STV), but many voters
were dissatisfied with the manual tallying process which
was error-prone and slow. However, VCV was found un-
suitable for their purpose, since it did not support STV and
the union did not want to change the tradition of using STV.
How to extend VCV to support STV is a research challenge
that we are working on.

Usability. A second lesson concerns the usability. Some
users asked us to remove the confirm/cancel step to make
the system more usable. In one example, during the voting
competition at the RISe event in 2015, we observed that,
when explaining to the audience in the room how to vote,
the host explicitly asked people to choose “confirm” in step
2. The option of confirm/cancel in step 2 is to enable voter-
initiated auditing, allowing the voter to check if the system

8

is behaving honestly. In practice, we find that ordinary
voters seem more willing to trust the system or expect
others to audit the system rather than performing auditing
by themselves. This shows a subtle gap between what
researchers want voters to do and what voters actually want
to do. Bridging this gap is non-trivial and needs further
research.

Other areas. We also highlight a few other areas that we
plan to improve in future work. First, the option of “indi-
vidual passcodes” currently requires a physical procedure
to distribute the passcodes, which is not always convenient.
We plan to add support of an electronic distribution mech-
anism, e.g., following a similar email-based method to that
used in Helios [1]. Second, the current VCV system does not
provide dispute resolution. If a voter claims the receipt does
not match, it is difficult for a third party to judge if the server
is misbehaving or the voter is being dishonest. This seems
an inherent issue for internet voting and demands further
research to address it. Third, although the pre-computation
approach has the advantage of minimizing the voting la-
tency, it also limits the voting schemes to simple ones like
voting from a pre-determined candidate list. In future work,
we plan to incorporate more E2E voting protocols into the
VCV platform to cover a wider range of voting schemes.

5 CONCLUSION

We have presented, to our knowledge, the first practical
verifiable classroom voting (VCV) system. We have detailed
the functionality needed to turn a verifiable e-voting pro-
tocol into a fully functioned verifiable classroom voting
system, which has been used in real classroom teaching
with positive student feedback. We intend to continue with
further work to improve functionality and usability, as well
as making the system publicly available.

ACKNOWLEDGEMENT

This work is supported by ERC Starting Grant (No. 306994)
on “Self-Enforcing E-Voting” and ERC Proof-of-Concept
Grant (No. 677124).

REFERENCES

[1] Ben Adida. Helios: Web-based open-audit voting. In USENIX
Security Symposium, volume 17, pages 335–348, 2008.

[2] Ben Adida, Olivier De Marneffe, Olivier Pereira, Jean-Jacques
Quisquater, et al. Electing a university president using open-audit
voting: Analysis of real-world use of helios. EVT/WOTE, 2009.

[3] Craig Burton, Chris Culnane, and Steve Schneider. vvote: Verifi-
able electronic voting in practice. IEEE Security & Privacy, 14(4):64–
73, 2016.

[4] David Chaum. Secret-ballot receipts: True voter-verifiable elec-
tions. IEEE security & privacy, 2(1):38–47, 2004.

[5] David Chaum, Richard Carback, Jeremy Clark, Aleksander Essex,
Stefan Popoveniuc, Ronald L. Rivest, Peter Y. A. Ryan, Emily
Shen, and Alan T. Sherman. Scantegrity II: End-to-end verifiability
for optical scan election systems using invisible ink confirmation
codes. In Proceedings of the Conference on Electronic Voting Tech-
nology, EVT’08, pages 1–13, Berkeley, CA, USA, 2008. USENIX
Association.

[6] Ronald Cramer, Ivan Damgard, and Berry Schoenmakers. Proofs
of partial knowledge and simplified design of witness hiding
protocols. In YvoG. Desmedt, editor, Advances in Cryptology -
CRYPTO 94, volume 839 of Lecture Notes in Computer Science, pages
174–187. Springer Berlin Heidelberg, 1994.

[7] Feng Hao and Peter Y A Ryan (Eds). Real-world Electronic Voting:
Design, Analysis and Deployment. Series in Security, Privacy and
Trust. CRC Press, 2016.

[8] Amos Fiat and Adi Shamir. How to prove yourself: Practical
solutions to identification and signature problems. In Proceedings
on Advances in cryptology - CRYPTO ’86, pages 186–194, London,
UK, UK, 1987. Springer-Verlag.

[9] Feng Hao, Dylan Clarke, and Carlton Shepherd. Verifiable class-
room voting: Where cryptography meets pedagogy. In Bruce
Christianson, James A. Malcolm, Frank Stajano, Jonathan An-
derson, and Joseph Bonneau, editors, Security Protocols Workshop,
volume 8263 of Lecture Notes in Computer Science, pages 245–254.
Springer, 2013.

[10] Feng Hao, Matthew N Kreeger, Brian Randell, Dylan Clarke,
Siamak F Shahandashti, and Peter Hyun-Jeen Lee. Every vote
counts: Ensuring integrity in large-scale electronic voting. The
USENIX Journal of Election Technology and Systems, pages 1–25,
2014.

[11] Feng Hao, Brian Randell, and Dylan Clarke. Self-enforcing elec-
tronic voting. In Security Protocols XX: 20th International Workshop,
Cambridge, UK, April 12-13, 2012, Revised Selected Papers, volume
7622, pages 23–31. Springer, 2012.

[12] Feng Hao and Piotr Zieliński. A 2-round anonymous veto proto-
col. In Security Protocols Workshop 2006, pages 202–211. Springer,
2009.

[13] Dalia Khader, Ben Smyth, Peter YA Ryan, and Feng Hao. A
fair and robust voting system by broadcast. In 5th International
Conference on Electronic Voting (EVOTE), volume 205, pages 285–
299, 2012.

[14] E. Mazur. Peer Instruction: A User’s Manual. Series in Educational
Innovation. Prentice Hall, 1997.

[15] Siamak F Shahandashti and Feng Hao. DRE-ip: a verifiable e-
voting scheme without tallying authorities. In European Symposium
on Research in Computer Security, pages 223–240. Springer, 2016.

