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Abstract. Program synthesis via heuristic search often requires a great
deal of ‘boilerplate’ code to adapt program APIs to the search mecha-
nism. In addition, the majority of existing approaches are not type-safe:
i.e. they can fail at runtime because the search mechanisms lack the
strict type information often available to the compiler. In this article,
we describe Polytope, a Scala framework that uses polytypic program-

ming, a relatively recent advance in program abstraction. Polytope

requires a minimum of boilerplate code and supports a form of strong-
typing in which type rules are automatically enforced by the compiler,
even for search operations such as mutation which are applied at run-
time. By operating directly on language-native expressions, it provides
an embeddable optimization procedure for existing code. We give a tu-
torial example of the specific polytypic approach we adopt and compare
both runtime efficiency and required lines of code against the well-known
EpochX GP framework, showing comparable performance in the former
and the complete elimination of boilerplate for the latter.
Keywords: polytypic programming, datatype generic programming, ge-
netic programming, functional programming, Scala.

1 Introduction

For over 20 years, Genetic Programming (GP) has been applied to a wide va-
riety of program induction tasks, yielding an impressive list of (often human-
competitive) results [1]. Most such endeavours require the domain-specific code,
expressed in some host language (e.g. JavaTM in the case of the popular ECJ
GP framework[2]), to be manipulable by some search mechanism (e.g. an evo-
lutionary algorithm in the case of GP). Technically, this is often achieved by
mapping the host language API of interest to individual functions in the GP
instruction set. For instance, in order to manipulate programs which use the
API of a computer vision library (e.g., OpenCV [3], as in the GP/GI work of
[4,5,6]), one could provide adaptor code for each API call of interest. This task
is nowadays greatly facilitated by availability of a rich choice of domain-agnostic



software packages (ECJ [2], EpochX [7] and DEAP [8] to name a few), which
offer a extensive support for the representations and operators of GP.

However, tailoring a domain-agnostic search framework to a problem/do-
main comes at price: the GP instructions in question have to be implemented
according to the contracts mandated by a given framework. In the prevailing
object-oriented paradigm, this requires extending certain framework classes (rep-
resenting programs, instructions, data etc). In common domains (e.g. numeric
and Boolean regression), this can be achieved at relatively low human effort.
Otherwise, one is forced to realize the instructions as ‘wrappers’ that delegate
the actual execution to the host language, which results in substantial amounts
of boilerplate code, i.e. code which does little other than act as adaptor, but
which is sufficiently different on a per-API basis that conventional automation
approaches (e.g. C++ style macros) are insufficent. For example, Listing 1 shows
some of the EpochX code required for Boolean expressions. Moreover, produc-
ing and maintaining such code may become particularly labour-intensive if a
non-trivial grammar and/or type system is required, which becomes a necessity
when approaching real-world program synthesis problems.

The majority of Genetic Improvement (GI) work has been in an offline set-
ting, i.e. taking source- or object- code as input and producing transformed code
for subsequent compilation/execution. However, the desire for systems which can
respond adaptively to dynamic environments [9] has motivated a trend towards
online approaches. Previous work on dynamic GI frameworks include Gen-O-

Fix [10], Templar [11] and ECSELR [12]. Gen-O-Fix operates at runtime via
reflection on the abstract syntax trees generated by the Scala compiler, which
Templar is a wrapper for EpochX GP which makes it easy to generate the
multiple variation points of a user-specified algorithm skeleton [13]. In the spirit
of ‘Embedded Dynamic Improvement’ [14], both Gen-O-Fix and Templar can
be configured via an embeddable callback mechanism which allows the training
phase to take place either once, periodically or asynchronously. ECSELR ex-
tends the ‘Java Agent’ monitoring API to apply evolutionary operators to state
snapshots of the JVM.

Despite recent work in GI (e.g. [4]), relatively little has been done to manip-
ulate domain-specific functionality (as expressed in the host language) without
the additional effort of re-presenting that knowledge in a form acceptable to
the search framework. In this article, we describe Polytope, an embeddable
Scala framework operating directly on the host language. The main features of
Polytope are:

1. It allows the creation of manipulable (optimizable) expressions and programs
with a minimum of boilerplate code.

2. It provides a strongly typed approach to GP [15], with typing rules auto-
matically enforced by the Scala compiler. This is in direct contrast to other
approaches, in which types must be cast/queried at runtime (see Listing 1).

3. Operates directly on language constructs, thereby easing the path to wider
adoption of SBSE techniques by mainstream software developers.



The reader desiring an advance look at the resulting simplicity for the practi-
tioner is referred to Listing 8. Crucially, the Boolean expression presented there
is expressed in the host language and requires no knowledge that it is to be
manipulated via Polytope, nor does it depend on Polytope in any sense typ-
ically considered in software engineering. Hence, it could have been equally well
taken verbatim from an existing Scala library, without the intent of actually
being manipulated by GP, GI or indeed any other synthesis approach. All the
domain-specific knowledge (as implied by the grammatical structure of possible
programs — see next section) that is necessary for forthcoming synthesis or im-
provement is automatically derived by building upon mechanisms available in
standard Scala.

We proceed in Section 2 with the theoretical underpinnings of Polytope,
then experimentally compare its performance with a popular GP framework in
Section 3, and discuss consequences and prospects in Sections 4 and 5.

2 Background

GP can be considered to be constrained by the production rules of a user-
specified grammar. For example, here is an EBNF for a grammar representing
Boolean expressions:

<BoolEx> ::= <Const> | <Var> | <AndEx>

| <OrEx> | <XorEx> | <NotEx> | <IfEx>

<Const> ::= <True> |<False>

<Var> ::= Var <Varname>

<Varname> ::= string

<AndEx> ::= And <BoolEx> <BoolEx>

<OrEx> ::= Or <BoolEx> <BoolEx>

<XorEx> ::= Xor <BoolEx> <BoolEx>

<NotEx> ::= Not <BoolEx>

<IfEx> ::= If <BoolEx> <BoolEx> <BoolEx>

In the expression trees are manipulated via traditional GP, the grammar is
implicit and (as can be seen in Listing 1) describing the production rules for
each entity in the grammar can require a lot of boilerplate code. In the case
of Grammatical Evolution [16], the grammar rules are explicit, though they
typically have some interpreted representation (e.g. as strings) which cannot be
checked for validity at compile-time. In either case, the required type system
must be implemented explicitly within a GP software framework, which often
involves additional classes for representing particular types (cf. GPType class in
ECJ [2]). This code often duplicates in part the type system of the underlying
programming language, but with the attendant need for runtime type checking
(again, Listing 1).

In contrast, mainstream programming languages have progressively increased
in their ability to abstract across datatypes. Starting in the 1960s with subtype
polymorphism [17], it became possible to use inheritance to express common



class AndNode extends Node {
@Override
public Object eval() {
if(getChildren().length == 2) {

Boolean b1 = (Boolean)getChild(0).eval();
Boolean b2 = (Boolean)getChild(1).eval();
return b1 && b2;

}
else throw new IllegalStateException();

}

@Override
public Class<?>
getReturnType(Class<?>... inputs) {
return inputs.length == 2 ? Boolean.class : null;

}
}

class OrNode extends Node {
@Override
public Object eval() {
if(getChildren().length == 2) {

Boolean b1 = (Boolean)getChild(0).eval();
Boolean b2 = (Boolean)getChild(1).eval();
return b1 || b2;

}
else throw new IllegalStateException();

}

@Override
public Class<?>
getReturnType(Class<?>... inputs) {
return inputs.length == 2 ? Boolean.class : null;

}
}

class ConstNode extends Node {
public ConstNode(boolean value) { this.value = value; }
@Override
public Object eval() {

if(getChildren().isEmpty)
return value;

else
throw new IllegalStateException();

}

@Override
public Class<?>
getReturnType(Class<?>... inputs) {
return inputs.isEmpty() ? Boolean.class : null;

}
}
// Similarly for Var, Not, Xor and If.

Listing 1. Some of the boilerplate code required for Boolean expressions in EpochX



sealed trait Nat
case object Zero extends Nat
case class Succ(n: Nat) extends Nat
// Example use:
val three: Nat = Succ(Succ(Succ(Zero)))

Listing 2. Algebraic datatype for Peano arithmetic in Scala

behaviours via the abstraction of a shared superclass. In the 1970s, paramet-
ric polymorphism was introduced [18], allowing the expression of functions and
datatypes that do not require knowledge of the type of their arguments (e.g.
a function to determine the length of a list is independent of the type of the
elements it contains). More recently, there have been a number of developments
in polytypic programming, whereby the specific structure of a datatype is ab-
stracted away by one of a number of alternative generic mechanisms. These al-
ternative approaches have a variety of names, e.g. type-parametric programming
or structural-/shape-/intensional- polymorphism. In particular, the Haskell com-
munity tends to use the term data-generic programming, which should not be
confused with the more populist notion of ‘generic programming’, since the latter
refers only to parametric polymorphism.

Unlike parametric polymorphism whose strength derives from type agnosti-
cism (e.g. as with the list length example above), polytypic programming cap-
tures a wide class of algorithms which are defined by interrogating the structure
of the data type, e.g. so as to operate inductively upon it. Over the last 10
years or so, the functional programming community has shown particular in-
terest in polytypic programming, originating a range of alternative approaches
[19,20,21,22,23]. Algorithms which have been defined polytypically include equal-
ity tests, parsers and pretty printers.

3 The Polytope framework
3.1 Polytypic Programming in Scala

Languages such as Scala and Haskell achieve considerable expressive power via
their support for Algebraic Data Types (ADTs) 4, where the creation and manip-
ulation of ADT expressions is ubiquitous programming practice. As shown in the
example in Listing 2, ADT expressions are built-up via inductive construction,
which, amongst other benefits, allows them to be conveniently manipulated via
sophisticated statically-checked pattern matching. Polytope combines poly-
typic programming with an embedded search procedure that makes it possible
to directly manipulate expressions of the host language (such as the last line of
Listing 2) by an arbitrary combinatorial search mechanism, including GP. This
in turn allows replacing the existing expressions with optimized equivalents (GI),
or even synthesizing new expressions according to some specification or exam-
ples (GP). The polytypic approach we use here is essentially the Scala variant

4 Not to be confused with the weaker notion of abstract data types



sealed trait BoolEx {
def eval: Boolean

}

case class And(x: BoolEx, y: BoolEx) extends BoolEx {
override def eval: Boolean = x.eval && y.eval

}

case class Or(x: BoolEx, y: BoolEx) extends BoolEx {
override def eval: Boolean = x.eval || y.eval

}

case class Xor(x: BoolEx, y: BoolEx) extends BoolEx {
override def eval: Boolean = x.eval ˆˆ y.eval

}

case class Not(x: BoolEx) extends BoolEx {
override def eval: Boolean = !x.eval

}

case class If(cond: BoolEx, then: BoolEx, els: BoolEx) extends BoolEx {
override def eval: Boolean = if cond.eval then.eval else els.eval

}

case class Const(override val eval: Boolean) extends BoolEx

case class Var(name: String) extends BoolEx{
override def eval: Boolean = symbolTable.lookupVar(name)

}

Listing 3. Scala algebraic datatype for Boolean expressions

of Hinze’s ‘Generics for the Masses’ [24] given by Oliveira and Gibbons [21], in
which ADTs are converted to/from a universal representation.

In the following, we give a tutorial introduction to polytypic programming
with a simple example, namely the polytypic calculation of size for a program
tree5. This example is relevant to polytypic GP, as determining program size is
an important part of GP workflow, allowing (for example) size-related feasibility
checking. Other necessary functionality for GP, in particular mutation, is realized
in a directly analogous fashion.

Boolean expressions can be represented in Scala by the ADT in Listing 3,
which in the following is our example host language for either synthesis (GP) or
modification (GI) of programs. We define literals of ‘atomic’ types such as int,

char, double etc to have a size of 1. Given these atomic building blocks, the poly-
typic approach allows us to inductively define size independantly of any specific

5 We focus on tree-based GP in this paper.



trait Size[T] {
def size(t: T): Int

}

object Size {
def atomicSize[T] = new Size[T] {
def size(t: T): Int = 1

}

implicit def intSize: Size[Int] = atomicSize
implicit def booleanSize: Size[Boolean] = atomicSize
implicit def charSize: Size[Char] = atomicSize
// ... short, long, float etc
implicit def doubleSize: Size[Double] = atomicSize

// syntactic sugar:
def size[T](x: T)(implicit ev: Size[T]) = ev.size(x)

}

Listing 4. Size typeclass and specializations for atomic types

ADT, so that the compiler can generate code for e.g. both size(Not(Const(true)))

and size(Succ(Succ(Succ(Zero)))), yielding 3 and 4 respectively.

Since we wish to add this functionality in a non-intrusive manner, i.e. without
requiring any change to the ADT we wish to operate on, we adopt the technique
of typeclasses, well-known to the functional programming community. First de-
veloped in Haskell, this approach allows the post-hoc addition of functionality to
any datatype. The essence of the approach is to provide a trait (for purposes of
this article, equivalent to a Java interface) which defines the required methods,
together with specialized subclasses for all types of interest.

Listing 4 shows the Size typeclass, together with specializations for atomic
types. To make use of this functionality of Polytope, one uses the statement
import polytope.Size. (Listing 8). In result of this, the functions defined in the
Size object are brought into scope, and automatic promotion from some atomic
type A to the corresponding imported specialization of Size[A] is made possible
via the use of the implicit keyword.

For this mechanism to be fully operational, apart from the specializations of
Size for atomic types in Listing 4, it is also necessary to provide specializations
for ADTs. Listing 5 shows how this could be done manually for the first few
subclasses of Ex. In Polytope, we achieve this automatically, and not just for
Ex, but for any ADT. Confronting Listing 5 with Listing 3 reveals that there
is a common pattern which is driven by the shape of the subclass constructor.
Indeed, it is the ability to ‘abstract over shape’ that characterizes polytypic pro-
gramming. In the following section, we explain how we employ this mechanism
to automate creation of such specializations and avoid manually writing such
boilerplate code as Listing 5.



implicit def constSize(implicit ev: Size[Boolean]) =
new Size[Const] {
def size(x: Const): Int = 1 + ev.size(x.value)

}

implicit def andSize(implicit ev: Size[BoolEx]) =
new Size[And] {
def size(x: And): Int = 1 + ev.size(x.a) + ev.size(x.b)

}

implicit def orSize(implicit ev: Size[BoolEx]) =
new Size[Or] {
def size(x: Or): Int = 1 + ev.size(x.a) + ev.size(x.b)

}

// Similarly for other subclasses of BoolEx...

Listing 5. Manual specializations of Size for some subclasses of Ex. The equivalent
functionality is achieved automatically in Polytope.

3.2 Product and Coproduct Types

Automatic specialization of ADT like the one exemplified in Listing 5 requires
generic mechanisms for the decomposition, transformation and reassembly of
ADTs. It turns out that it is possible to provide the remaining required special-
izations of Size (and other operations of interest for GP) for all ADTs in terms
of a generic ‘sum of products’ representation [21]. This requires consideration
of the elementary building blocks of ADTs, viz. products and coproducts6. The
conversion of an ADT to and from this representation is described extensively
by Hinze [24] and is beyond the scope of this article, but fortunately the Scala li-
brary Shapeless [25,26] provides complete support for this and a variety of other
polytypic methods (e.g. [20]).

Products will already be familiar in the guise of tuples — the type of a tuple
is the ‘Cartesian product’ of the types it contains. The Shapeless product type is
HList, a heterogeneous list with compile-time knowledge of the different types of
each of its elements. It is actually more general than a tuple, in that it supports
an ‘append’ constructor ‘::’. Thus, a HList(2.3,”hello”) would have type Int ::

String :: HNil, where HNil represents the type-level analog of the well-known use
of Nil as a list terminator. If a Double is appended, the resulting type would be
Int :: String :: Double:: HNil. As seen in the above listings, an ADT consists of a
collection of subclasses implementing a given trait. Each subclass has zero or
more attributes and can therefore be generically represented as a HList of these
attributes.
6 The term ‘coproduct’ represents a generalized notion of ‘sum’ inherited from Cate-
gory Theory.



implicit val productBase = new Size[HNil] {
def size(x: HNil): Int = 0

}

implicit def productInductionStep[H, T <: HList](
implicit h: Size[H], t: Size[T]) =
new Size[H :: T] {
def size(x: H :: T) = {
val hd = h.size(x.head)
val tl = t.size(x.tail)
hd + tl

}
}

implicit val coproductBase = new Size[CNil] {
def size(x: CNil): Int = 0

}

implicit def coproductInductionStep[H, T <: Coproduct](
implicit h: Size[H], t: Size[T]) =
new Size[H :+: T] {
def size(x: H :+: T): Int = x match {
case Inl(l) => h.size(l)
case Inr(r) => t.size(r)

}
}

Listing 6. Generic Size specialization for product and coproduct types

Regarding coproducts, each subclass in an ADT can be considered to rep-
resent a specific choice of construction step. They can therefore be represented
by a disjoint union of subclass types. The canonical example of disjoint union
in Scala or Haskell is the type Either[A,B], which contains an object known at
compile-time to be of type A or else of type B. The corresponding ‘shapeless’
coproduct type for types A and B is denoted by A :+: B7. Hence the ADT Nat of
Listing 2 can be generically represented as the type Zero :+: Succ :+: CNil, with
CNil being the coproduct equivalent of HNil.

Specialization for generic product and coproduct types is defined inductively,
starting with the base case, as represented by the types HNil and CNil respec-
tively. The top two functions in Listing 6 show how this is done for product
types, and the bottom two functions for coproduct types. The induction step is
simplified via a recursive nesting technique: as is well-known, all n-tuples can
be represented by recursive nesting of pairs, e.g. the triple (a, b, c) can be repre-
sented as (a, (b, c)). For purposes of building specializations one inductive step
at a time, the tails of product and coproduct types are similarly nested. De-

7 Type constructors in Scala can be infix and composed of non-alphabetic characters.



trait SubtreeMutate[T] {
def mutate(t: T, index: Int): Option[T] =
mutateImpl(t, index) match {
case Left(t) => Some(t)
case Right(newIndex) => None

}

protected def mutateImpl(t: T, index: Int): Either[T,Int] = ...
}

def mutate[T](x: T, rng: Random)(
implicit m: SubtreeMutate[T], sz: Size[T]): T =
ev.mutate(x,rng.nextInt(sz.size(x))).getOrElse(x)

}

// client code:
import Size.
import SubtreeMutate.

val ex = Not(Xor(Var(”a”),Const(false)))
val mutated = mutate(ex)

Listing 7. Mutation typeclass and client code

termining the specialization for the nested tail T of the HList is dispatched to
some other specialization of Size via the call to t.size(x.tail). Specialization for
coproducts relies on analogous dispatching, where Inl and Inr denote left and
right type-projections respectively, i.e. Inl(H :+: T) yields H, Inr(H :+: T) yields
T.

The universal product and coproduct specializations in Listing 6, together
with the support provided by Shapeless for conversion to/from this generic ‘sum
of products representation’ [21] is all that is required to allow the compiler to
synthesize code for size(x) for any ADT built up from the atomic specializations,
automating so the functionality that would have to be otherwise implemented
manually (Listing 5), for any host language expressed in standard Scala, in-
cluding the example in 2, the Boolean domain in 3, and most of other common
domains.

3.3 Initialization and mutation

Polytope employs the principles of polytypic programming in the design of
all operators necessary to perform program synthesis or improvement, thereby
allowing manipulation of arbitrary ADTs. In the current version, programs are
stochastically initialized using the well-known ‘full’ method [27] and subtree-
replacing mutation (a randomly selected subtree in a program is replaced by a
random ‘full’ tree). The generic definitions for tree initialization and mutating
a subtree follow the same general pattern as the Size example. As can be seen



Table 1. Parameters common to all Mux-6 experiments

Parameter Value

population-size 1,000
max-generations 100
max-initial-tree-depth 5
tree-initialization-method Full
mutation-method Subtree

in Listing 7 (which gives the SubtreeMutate typeclass and an example of the
corresponding client code), the actual mutation is performed in the method
mutateImpl. The implementation of this method is slightly more complex than
the Size example, since it requires additional book-keeping to keep track of the
node indexing. This is represented by the Either[T,Int] return type, in which the
Int value represents the index of the node for subsequent consideration. The
corresponding overridden versions for atomic, product and coproduct types are
too lengthy for this article, but are implemented analogously. Similar remarks
apply to the initialization operator. As in the case of Size, both mutation and
initialization work for any domain-specific host language expressible in Scala.

3.4 Comparison of Lines of Code

For the Boolean domain considered here, the total required by EpochX 1.4.1 is
301 lines of code (LOC) (specifically that for the classes AndFunction,OrFunction,

NotFunction,XorFunction,ImpliesFunction in the org.epochx.epox.bool package). We
discount the EpochX code required for Const since it is provided by built-in
support for ephemeral random constants. In contrast, Polytope can operate
directly on the 20 LOC given in the classes of Listing 3. However, the important
thing to note is that the code of Listing 3 will in general be some arbitrarily
complex API that has already been implemented and that we wish to manipulate
via search.

4 Experiments

With Polytope’s generic initialization and mutation operators, we can apply
search routines to obtain an instance of any ADT, optimized to some user-
specified criterion. To this end, Polytope provides an implementation of the
well-known Evolution Strategies (ES) metaheuristic [28], specifically, Algorithms
18 and 19 from Luke [29].

Polytope can either be applied to optimize existing code (i.e. an ADT
expression) or else can synthesize an ADT from scratch. Listing 8 shows the
client code required to obtain an optimized expression for Mux6, the well-known
6-input multiplexer problem [27], for both ex-nihilo synthesis (GP-style) and
improvement of existing code (GI-style). In contrast to the boilerplate of Listing
1, the only client responsibility is the implementation of the fitness function
(here, the normalized sum of the zero/one errors on all possible 26 fitness cases).

To determine the performance relative to a traditional GP implementation,
we compared our ES approach against EpochX on Mux6 over 30 runs with



// client code
def mux6Fitness(x:BoolEx): Double = // error of x.eval on fitness cases. . .

def main(args: Array[String]) = {

// bring implicit specializations into scope
import polytope.Size.
import polytope.FullInitializer.
import polytope.SubtreeMutate.

// 1. ex−nihilo synthesis
val opt1 = polytope.optimize(mux6Fitness)
println( opt1, opt1.eval )

// 2. Improvement of some existing expression
val ex = If(Or(Var(”x”),False),
And(Var(”y”),Var(”z”)),
Or(Not(Var(”x”)),True))

val opt2 = polytope.optimize(mux6Fitness,ex)
println( opt2, opt2.eval )

}

Listing 8. Client code for Mux6 problem. Note the ‘last-minute’ import of Polytope.

common parameters as given in Table 1. We compare against two variants of
EpochX: EpochX-1 uses EpochX ‘out of the box’, i.e. with default parame-
ters8 (i.e. subtree crossover with probability 0.9, elitism count=10, max tree
depth=17). EpochX-2 is intended to provide a more ‘like for like’ comparison
with the current implementation of Polytope, and therefore has no crossover
and no upper bound on max-tree-depth. Although a lack of crossover is some-
what unusual in GP (Cartesian GP being a notable exception [30]) it is not so
common in GI (e.g. [31]). For the ES-specific parameters, we use a (λ + µ)-ES
we take λ to be population size and µ = λ/5. A run is terminated once a correct
program is found or 100 generations elapse, whichever comes first.

Experiments were run on a Windows 10 desktop PC with 8GB of RAM and
an Intel Core i5-3570 CPU @ 3.40GHz. Table 2 shows the results of the experi-
ments, giving averaged normalized fitness, execution time in seconds, number of
generations at termination, processing time per individual (elapsed time divided
by the number of generations), and 0/1 success rate (defined as ‘1 for the opti-
mum output, else 0’), accompanied with 0.95-confidence intervals. The rates of
convergence to the optimum make it clear that the absence of crossover is detri-
mental to solution quality. Comparing Polytope with the EpochX-2 setup, the
performance of the former can be explained in part by the fact that it lacks a
bloat control method [32], which fails to impose selection pressure against large

8 http://www.epochx.org/javadoc/1.4/



Table 2. Results of Mux-6 experiment

Algorithm Fitness Time (s) Generations Time per 0/1 Success
individual (ms) rate

EpochX-1 0.00 ± 0.00 2.26 ± 0.95 17.10 ± 6.71 7.14 ± 1.17 100%
EpochX-2 0.06 ± 0.11 3.60 ± 2.01 62.40 ± 31.63 17.49 ± 4.74 7.3%
Polytope 0.25 ± 0.14 7.26 ± 1.96 92.03 ± 18.77 13.29 ± 1.85 6.7%

expressions and leads to trees which take longer to evaluate. However, the end-
of-run fitness of Polytope is not statistically significantly worse9 than that of
EpochX-2, and the ‘zero or one’ success rate is comparable.

Concerning the time for processing a program, Polytope performs slightly
better than the ‘like for like’ comparator EpochX-2, which might be explained
by the amount of compile-time support afforded by our chosen polytypic ap-
proach. Since there are no theoretical obstacles to adding polytypic equivalents
for crossover and bloat control to Polytope, it would then be expected to be-
have comparably to (or even slightly better than) the ‘out of the box’ version of
EpochX.

5 Discussion and Conclusion

We have described how polytypic programming (specifically Oliveira and Gib-
bons [21] variant of Hinze’s ‘Generics for the Masses’ [24]) can be used to provide
initialization and mutation operators for arbitrary datatypes, and have imple-
mented Polytope, a Scala framework which uses embedded optimization to
perform synthesis and improvement of Scala code with minimal end-user effort.

Using Polytope as a GP system frees the end-user from having to write the
significant amounts of instruction-set specific code that is necessary when using
most popular GP frameworks (Listing 1). Although previous work [33,10] has
used runtime reflection as a means of reducing this burden, we describe how this
can be via compile-time techniques. We explain how methods from polytypic
programming can achieve this via the automatic and non-intrusive derivation of
the grammatical structure of datatypes.

In addition to manipulating existing datatypes, Polytope resembles GP in
that it also supports ex-nihilo synthesis of expressions involving these datatypes.
This is in contrast to some other GI frameworks [31,34] that manipulate pro-
grams by ‘plastic surgery’ (i.e. moving around pre-existing expressions modulo
variable re-naming). With the historical emphasis on GI being ‘offline, top-down’,
Polytope can therefore be considered to occupy an intermediate position be-
tween traditional notions of GP and GI.

The current version of Polytope lacks both crossover and any built-in mech-
anism for bloat control. The experiments in Section 4 show that that both are
desirable. There is no intrinsic technical obstacle to the implementation of ei-
ther and they are suitable subjects for further work. Regarding bloat-control,

9 as determined by the nonparametric Wilcoxon Signed Rank test



irrespective of the provision of a general mechanism for this, reducing expres-
sions to some minimal-size form via domain-specific rewrite rules [35] can be im-
plemented very naturally on ADTs using pattern-matching. Nevertheless, even
without these extensions, we anticipate two distinguishing uses of Polytope in
its current form: as a ‘rapid prototyping tool’ for GP, in which development time
is more of an issue than raw speed, and as a background optimization process
in long-running systems, continuing to adapt to an operating environment that
changes over time.
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rattari. The irace package, Iterated Race for Automatic Algorithm Configuration.
Technical Report TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles,
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