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Size-based indicators are well established as a management tool in shelf seas as they respond to changes in fishing pressure and describe im-
portant aspects of community function. In the deep sea, however, vital rates are much slower and body size relationships vary with depth,
making it less clear how size-based indicators can be applied and whether they are appropriate for detecting changes through time. The
deep-sea fish stocks of the North Atlantic underwent a period of exploitation followed by management and conservation action that relieved
this pressure. We used data from a deep-water bottom trawl survey in the Rockall Trough, at depths of 300–2000 m, to test whether size-
based indicators changed over a 16-year period, during which fishing pressure decreased. We applied four indicators to these data: mean
body length, mean maximum length, large fish indicator (LFI), and the slope of the biomass spectrum. Patterns were analysed within four dif-
ferent depth bands. The LFI and slope of the biomass spectrum showed positive change over time, suggesting recovery from fishing pressure.
This response was generally most apparent in the shallowest depth band, where most fishing activity has been distributed. Values of the LFI
were much higher overall than in shelf seas, so the same reference points cannot be applied to all marine ecosystems. These findings imply
that size-based indicators can be usefully applied to the deep sea and that they potentially track changes in fishing pressure in the medium
term.

Keywords: body size, demersal fish, deep-sea fishing, size structure.

Introduction
The deep sea is the largest ecosystem on the planet (Ramirez-

Llodra et al., 2011), but due to its inaccessibility, we have known

relatively little about it until recent decades. Exploitation of the

deep sea increased dramatically at the end of the 20th century as

technologies allowed industrial-scale trawling of the deep sea to

progress (Morato et al., 2006). Initial high-yield fisheries for spe-

cies such as blue ling (Molva dypterygia), orange roughy

(Hoplostethus atlanticus), and deep-water sharks including the

Portuguese dogfish (Centroscymnus coelolepis) quickly underwent

serial depletion and eventual collapse. This mainly reflected the

slow vital rates (slow growth, late age at maturity) of deep-sea

fish that make them more vulnerable to exploitation and distur-

bance than their shallow-water counterparts (Drazen and

Haedrich, 2012). Consequently, there has been growing concern

over the sustainability of human activities in the deep sea and a

need to measure how the ecosystem is responding to human ex-

ploitation so that we can better manage these pressures.

One way to monitor changes in fish communities is to use

size-based indicators. These indicators represent the health of

communities by summarizing their size structure. Body size is

particularly relevant when examining impacts of fishing for two

main reasons. First, fishing is size-selective, meaning that it is

likely to produce a change in size structure by removing large
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individuals from the system (Bianchi et al., 2000). Second, these

changes are important for understanding how fishing impacts

ecosystem structure and because of the role that body size plays

in virtually all aspects of a fish’s life: namely trophic level

(Jennings et al., 2001), diet breadth and choice (Scharf et al.,

2000), maturity and fecundity (Winemiller and Rose, 1992),

growth (Jobling, 1983), and survival (Pauly, 1980). The use of

size-based indicators is well established in coastal waters and they

are used to compute reference values to monitor impact and re-

covery of fishing in areas such as the North Sea (e.g. Jennings and

Dulvy, 2005; Greenstreet et al., 2011) and the Celtic Sea

(e.g. Blanchard et al., 2005; Shephard et al., 2013). The respon-

siveness of size-based indicators to changes in fishing pressure has

also been corroborated by modelling studies (Blanchard et al.,

2014; Thorpe et al., 2015).

Deep-sea fish communities are harder to access and have been

less routinely sampled than those in shelf seas, and size-based indi-

cators have not yet been widely applied to this ecosystem. There is

some evidence for a steepening of the size spectrum in the deep sea

to the west of the British Isles between 1973 and 2000 due to in-

creasing fishing pressure over this period (Basson et al., 2001).

However, these results remained somewhat inconclusive due to the

variety of surveys and gears considered, and the lack of data for

depths beyond 1400 m. As deep-sea research surveys continue, lon-

ger time series of abundance and body size data that have been mea-

sured consistently throughout the study period are becoming more

available. One such survey has been conducted by Marine Scotland

on the continental slope of the Rockall Trough, Northeast Atlantic.

Fishing pressure has been decreasing in this area since the early

2000s due to the introduction, and subsequent decline, of Total

Allowable Catches, and recently it has been proposed that no bot-

tom trawl fisheries will operate at depths of more than 800 m.

Therefore, the Rockall Trough provides a model study site to exam-

ine the effect of decreasing fishing pressure in the deep sea

(at depths of 300–2067 m) using size-based indicators.

Due to the large environmental differences between sites of dif-

ferent depths (namely water pressure, temperature, and oxygen

levels; Lalli and Parsons, 1993; Kaiser et al., 2011), species compo-

sition changes across depths (e.g. Gordon and Bergstad, 1992;

Carney, 2005; Yeh and Drazen, 2009), as does body size

(e.g. Polloni et al., 1979; Macpherson and Duarte, 1991; Collins

et al., 2005; Mindel et al., 2016a). Additionally, fishing pressure in

the Rockall Trough has only occurred at depths up to 1500 m, al-

though it has been found that the effects of fishing can propagate

deeper than the areas fished (Bailey et al., 2009). Thus, effects

may be masked if depths are not analysed separately and we must

account for depth when investigating trends over time.

In this study we used four indicators that are well established

in shallow seas: (i) mean body length, (ii) mean maximum length,

(iii) large fish indicator (LFI), and (iv) slope of the normalized

biomass spectrum. Mean body length illustrates the average ob-

served size of individuals and decreases as increasing fishing pres-

sure removes large individuals (Shin et al., 2005). Mean

maximum length illustrates changes in species composition and

the relative abundance of small and large species; it is also ex-

pected to decrease under exploitation because high pressure will

favour short-lived species that mature faster (Shin et al., 2005).

The LFI is calculated as the proportion of biomass at a site that is

made up of individuals over 40 cm in length (Greenstreet et al.,

2011; Fung et al., 2012; ICES, 2013). This indicator was developed

due to the importance of large individuals in marine assemblages

and high values indicate a healthy system. The normalized bio-

mass spectrum is important in the marine environment because

it symbolizes how all individuals are arranged along a size axis

(Sheldon et al., 1972). The slope of the descending right-hand

side of the spectrum becomes steeper under fishing pressure be-

cause large individuals are removed (Bianchi et al., 2000;

Blanchard et al., 2005).

The trends in these four indicators were analysed over time

from 1998 to 2013 [a time period of a length that has been shown

to have sufficient power to detect trends in size-based indicators

(Jennings and Dulvy, 2005)] in each of four depth bands.

We tested the hypothesis that all four indicators would show re-

covery from fishing pressure (i.e. an increase in the values of the

indicators) due to decreasing levels of exploitation throughout

the study period. We predicted that the two shallower depth

bands would show the biggest change, as these are the depths at

which fishing occurs. We interpreted these patterns alongside

data on fishing effort (STECF, 2013) and sea bottom temperature.

The latter was examined because increasing temperatures can

have a positive effect on size-based indicators (Marshall et al.,

2016; Robinson et al., 2017).

Methods
Data
A deep-water bottom trawl survey was conducted by Marine

Scotland (Scottish Government) in September 1998, 2000, 2002,

2004–2009, and 2011–2013 along the continental slope of the

Rockall Trough in the Northeast Atlantic (Figure 1; ICES area VIa,

latitude 55�–59�N, longitude �9�W) at depths of 300–2067 m

(Neat and Burns, 2010). The gear was designed to sample demersal

fish (those that live on or around the seabed, including those classi-

fied as benthopelagic) so mesopelagic fish (those that live in the wa-

ter column) and invertebrates were excluded from this analysis. Sea

bottom temperature was recorded on the survey at the depth of the

haul from 2005 onwards (205 out of a total of 325 hauls).
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Figure 1. Location of hauls of the Marine Scotland deep-water
bottom trawl survey in the Northeast Atlantic from 1998 to 2013.
Shading indicates depth, where light represents shallow and dark
represents deep. Labelled sections represent ICES areas.
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During the survey, catch was identified to the finest taxonomic

resolution possible (which was species level for 99.9% individuals

caught) and the lengths of individual fish were measured. Where

applicable, standard length, pre-anal fin length or pre-supra cau-

dal fin length were converted to total length (ICES, 2012) using

conversion factors calculated from a subset of the survey data

(Supplementary Table S1). Species-specific conversion factors es-

tablished from survey data were also used to convert lengths to

weights in order to calculate the indicators that are based on bio-

mass. Individuals for which length–weight relationships were un-

known (n ¼ 7006; 0.01% of individuals caught) were excluded

from the analysis. This resulted in a final dataset of 686 832 indi-

viduals, belonging to 105 species. The full taxonomy of species

was determined using the World Register of Marine Species

(WoRMS Editorial Board, 2014).

Depth-specific trends were analysed by separating hauls into four

depth bands: Shallow (S) � 750 m (minimum depth ¼ 300 m);

Medium (M) ¼ 751–1200 m; Deep (D) ¼ 1201–1650 m; Very deep

(V) > 1650 m (maximum depth ¼ 2067 m). There was a consistent

increase over time in the number of hauls taken in the deepest

depth band (Table 1) so the results from this depth band were inter-

preted with caution.

The Scientific, Technical and Economic Committee for

Fisheries (STECF, 2013) reported on fishing effort in the deep sea

of ICES (International Council for the Exploration of the Sea)

area VI by ICES member states. As these data are not depth-

resolved, we use them for illustrative purposes only, rather than

to quantify the impact of fishing. Here we present bottom trawl

effort data, in order to focus on demersal fish, from the EU waters

of ICES area VI, which equates to area VIa (Figure 1). We exclude

2002 as recommended in the report due to the unreliability of

that year’s data (STECF, 2013).

Indicators
Due to the unreliability of catching very small individuals on the

survey, all individuals of � 32 g were excluded from the calcula-

tion of indicators. This value was suggested by Jennings and

Dulvy (2005) as a potentially optimal cut-off point, and from ex-

amination of the data used in the present study, it captures the

sizes of fish that are consistently caught by the Marine Scotland

survey.

Mean body length of the community was the mean total length

across all individuals caught in a haul:

�L ¼
X

N
L=N

where L is body length and N is numerical abundance.

Mean maximum length of the community was calculated by

assigning each individual an Lmax based on its species and averag-

ing this across all individuals in a haul:

Lmax ¼
X

i
NiLmaxi

=N

where i is a species index. Lmax illustrates the potential maximum

size of a species and was set as the maximum length listed on

FishBase for that species (Froese and Pauly, 2016), or the maxi-

mum length recorded on the deep-water trawl survey, whichever

was the greater (Supplementary Table S1). This approach was

chosen so that Lmax consistently equates to the largest known

length for that species (Mindel et al., 2016a).

The LFI was calculated as the proportion by weight of individ-

uals >40 cm in length per haul (ICES, 2013):

LFI ¼ W>40 cm=W

where W is biomass and W>40 cm is biomass of individuals greater

than 40 cm in length.

The slope of the size spectrum was calculated using a

normalized biomass spectrum (Platt and Denman, 1977). This

was calculated for each combination of year and depth band,

rather than for each haul, as hauls did not represent enough data

to create a reliable biomass spectrum. Individuals were separated

into weight classes that were of equal widths on a log2 scale.

Biomass caught per hour of trawling in each weight class was

summed across hauls within each year and depth band. These val-

ues of biomass were divided by the width of the weight class to

give an estimate of the abundance density of organisms in each

weight class (Platt and Denman, 1977). The slope of the

normalized size spectrum was then derived from the relationship

between log10 of the mid-point of the weight class versus log10 of

the normalized biomass in that weight class, for each year and

depth band combination. The slope was established by fitting a

linear regression to the descending section of the relationship

(Blanchard et al., 2005), which was judged to start from the

weight class 25–26 g.

Analysis
General linear models (LMs) were fitted to the relationships be-

tween indicator values and year, including the interaction be-

tween time and depth band. For mean body length, mean

maximum length, and LFI, the haul was the unit of analysis. For

the slope of the size spectrum, the unit of analysis was year. Post

hoc multiple comparison Tukey tests were performed for the indi-

cators without significant interactions using the R package

(R Core Team, 2015) multcomp (Hothorn et al., 2008). The rela-

tionship between sea bottom temperature and year was analysed

for each depth band using general LMs. All analyses were per-

formed using R version 3.2.3 (R Core Team, 2015); figures were

produced using the packages ggplot2 (Wickham, 2009), gridExtra

(Auguie, 2016), and marmap (Pante and Simon-Bouhet, 2013).

Table 1. Number of hauls taken in each year of the survey from
each depth band.

Year
Shallow
� 750 m

Medium
751–1200 m

Deep
1201–1650 m

Very deep
> 1650 m

1998 10 9 0 0
2000 13 11 9 0
2002 15 8 7 1
2004 12 8 5 1
2005 5 8 5 1
2006 11 10 7 1
2007 6 6 6 1
2008 8 9 8 3
2009 8 16 7 4
2011 7 6 9 4
2012 7 8 8 6
2013 7 8 8 8
Total 109 107 79 30
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Results
For mean body length in the community, there was no interac-

tion between year and depth band (F ¼ 1.3, p ¼ 0.29) so the

model was fitted without the interaction, and this model had

high explanatory power (LM: F ¼ 73.8, df ¼ 4, 320, R2 ¼ 0.47).

There was no significant change in mean body length over time,

but the trend was increasing (Figure 2a; LM: b ¼ 0.13, s.e. ¼ 0.10,

p ¼ 0.17). There were significant differences in mean body length

between depth bands: Shallow (S) differed from all other depth

bands and Medium (M) and Deep (D) differed from each other

(Figure 2a; Table 2).

For mean maximum length in the community, there was no

interaction between year and depth band (F ¼ 2.4, p ¼ 0.07) so

the model was fitted without the interaction, and this model had

high explanatory power (LM: F ¼ 91.4, df ¼ 4, 320, R2 ¼ 0.53).

There was no significant change in mean maximum length over

time (Figure 2b; LM: b ¼ �0.05, s.e. ¼ 0.17, p ¼ 0.79). Overall

mean maximum length differed significantly between all depth

bands apart from M and Very deep (V) (Figure 2b; Table 2).

For the LFI, there was a significant effect of year (F ¼ 33.8,

p < 0.001), depth band (F ¼ 110.5, p < 0.001), and their interac-

tion (F ¼ 4.3, p ¼ 0.005), and the model had high explanatory

power (LM: F ¼ 54.0, df ¼ 7, 317, R2 ¼ 0.53). The LFI increased

over time in depth band S (Figure 2c; LM: b ¼ 0.011,

s.e. ¼ 0.0027, p < 0.001), but did not change over time in any of

the other depth bands (Figure 2c; LM: M: b¼�0.0011, s.e. ¼
0.0038; D: b¼�0.0010, s.e. ¼ 0.0044; V: b¼�0.0031, s.e. ¼
0.0082).

For the slope of the biomass spectrum, the interaction between

year and depth band was very close to significant at the 5%

confidence threshold (F ¼ 2.7, p ¼ 0.058), so it was decided that

the interaction should remain in the model in order to retain as

much information as possible, and it had good explanatory power

(LM: F ¼ 12.2, df ¼ 7, 37, R2 ¼ 0.64). There was a significant

effect of year (F ¼ 28.5, p < 0.001) and depth band (F ¼ 16.3,

p < 0.001) on the slope of the biomass spectrum. The slope in-

creased significantly over time (in other words, became less nega-

tive, so the biomass spectrum became more shallow) in depth

bands S and V, but did not change over time in depth bands
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Figure 2. Change over time in the indicators (a) mean body length, (b) mean maximum length, (c) LFI, and (d) slope of the normalized
biomass spectrum, in each of four depth bands. Lines represent the fitted general LM; significant changes over time are depicted as solid lines,
non-significant relationships are dashed lines.

Table 2. Statistical results of post hoc multiple comparison Tukey
tests for indicators not found to have a significant interaction.

Indicator
Depth
bands Estimate

Standard
error p value

Mean body length S-M 10.9 1.0 <0.001
S-D 16.5 1.1 <0.001
S-V 13.9 1.5 <0.001
M-D 5.6 1.1 <0.001
M-V 3.0 1.5 0.19
D-V �2.6 1.5 0.32

Mean maximum
length

S-M 15.1 1.8 <0.001
S-D 37.2 2.0 <0.001
S-V 18.4 2.8 <0.001
M-D 22.1 2.0 <0.001
M-V 3.3 2.8 0.63
D-V �18.8 2.9 <0.001

Estimates represent the differences in intercept between depth bands.
Models were implemented using the R package multcomp (Hothorn et al.
2008). S ¼ shallow, up to 750 m; M ¼ medium, 751–1200 m; D ¼ deep,
1201–1650 m; V ¼ very deep, over 1650 m.
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M and D (Figure 2d; LM: S: b ¼ 0.042, s.e. ¼ 0.011, p < 0.001;

M: b ¼ 0.0092, s.e. ¼ 0.016; D: b ¼ 0.015, s.e. ¼ 0.017; V:

b ¼ 0.055, s.e. ¼ 0.020). The individual size spectra for each

combination of year and depth band, and the associated statisti-

cal results, are presented in Supplementary Appendix S1

(Supplementary Figures S1–S4; Supplementary Table S2).

There was no significant change in sea bottom temperature

from 2005 onwards for any depth band, though in the shallowest

depth band there was a minor increasing trend (Figure 3; LM:

S: b ¼ 0.041, s.e. ¼ 0.022, p ¼ 0.06; M: b¼�0.019, s.e. ¼ 0.045,

p ¼ 0.67; D: b ¼ 0.023, s.e. ¼ 0.016, p ¼ 0.15; V: b¼�0.0065, s.e.

¼ 0.010, p ¼ 0.54).

Bottom trawling effort according to STECF (2013) has de-

creased over the study period (Figure 4) but there is no informa-

tion as to whether this has been equal across depth bands.

Discussion
The fish community of the deep Northeast Atlantic is functionally

and taxonomically diverse and primarily structured by depth

(Mindel et al., 2016a,b). Previous studies of this ecosystem have

shown that species diversity has remained stable over time

(Campbell et al., 2011), but that for some commercial species,

such as the roundnose grenadier (Coryphaenoides rupestris), there

is evidence for recent changes in size composition (Neat and

Burns, 2010). Here we show that out of the four size-based indi-

cators examined, two (the LFI and the slope of the normalized

biomass spectrum) show change over time in the demersal fish

community of the Rockall Trough. The statistically significant

trends were positive, which is consistent with recovering fish

stocks from coastal areas. Depth had a strong influence on the

values of size-based indicators and the positive changes seen in

the two significant indicators varied with depth.

The indicator that showed the most striking pattern was the

LFI. There was a significant increase over time in the LFI in the

Shallow depth band (� 750 m), but not in any other depth band.

The values of the LFI in the shallowest depth band were much

lower than in any other depth band at the start of the study pe-

riod, but by the most recent year surveyed, the values were ap-

proaching those in the other depth bands. This implies that in the

Shallow depth band the fish increased in size, which may reflect

the relaxed fishing pressure in recent years. In contrast, in the

deeper zones the assemblages appear not to have changed signifi-

cantly, potentially reflecting the lower level of fishing pressure in

deeper areas.

Similarly, the slope of the biomass spectrum increased (i.e. the

slope became less steep) in the Shallow depth band, but not in the

Medium (751–1200 m) or Deep (1201–1650 m) depth bands.

In the Very deep depth band (>1650 m) there was also an in-

crease in the slope over time, however this must be interpreted

with caution as sampling effort at those depths has increased

markedly over time. Thus, the main conclusions that can be

drawn are similar to those seen in the LFI and are consistent with

an effect of relaxed fishing pressure in the shallowest depth band.

This is because as fishing pressure decreases, individuals are able

to grow larger and the bias towards highly abundant small indi-

viduals decreases, resulting in a shallower slope of the size spec-

trum (Nicholson and Jennings, 2004; Blanchard et al., 2005, 2009;

Piet and Jennings, 2005). As fishing pressure extends as deep as

1500 m in the area, the lack of response in the Medium depth

band is likely to be because assemblages therein are slower to re-

cover from fishing pressure than in the Shallow depth band.

However in the Deep depth band, where there is little or no fish-

ing pressure, the lack of change implies that they were not im-

pacted by exploitation, despite there being the potential for

fishing effects to propagate through depths due to vertical migra-

tion or daily movement of fish (Bailey et al., 2009).

Mean body length, on the other hand, did not change over

time in any depth band. This may be because it is highly influ-

enced by large numbers of small individuals (Shin et al., 2005).

If decreased exploitation has led to higher recruitment success,

then this could manifest itself as an influx of small individuals,

hence causing mean body length to remain low (Shin et al., 2005;

Houle et al., 2012). Mean maximum length also did not show

change over time, implying that species composition has not

shifted in favour of larger species during the period of declining

fishing pressure. For this indicator, it may be that exploitation

was never severe enough to cause an initial shift in species com-

position to those with smaller maximum sizes.

The positive change in size-based indicators in the Rockall

Trough can be qualitatively related to the decreasing fishing pres-

sure reported by the Scientific, Technical and Economic Committee
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Figure 3. Temperature of hauls from the period 2005–2013 in each
of the four depth bands. None of the relationships over time were
significant.
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Figure 4. Bottom trawl effort in the deep sea of ICES area VIa by
ICES member states from 2000 to 2012, as reported by STECF (2013).
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for Fisheries (STECF, 2013). However, these fishing effort data are

not thorough enough to be used to quantify the impact of fishing.

The first issue with the fishing effort data is that they are not depth-

resolved. Thus, the different patterns of indicator variation within

different depth bands cannot as yet be fully ascribed to either vary-

ing fishing pressures in the depth bands, or varying patterns of re-

covery. Additionally, although the area included by STECF (2013)

and the present study site overlap, we cannot know the precise effort

at the Rockall Trough only. We must also use the report’s definition

of deep-sea species and are limited to fishing fleets that have pro-

vided data for that report (STECF, 2013).

Despite the limitations of the fishing effort data, we can infer

that the change in size-based indicators over time is likely to be

due to the reduction in fishing pressure. Environmental factors

could also potentially affect community size structure, but

Blanchard et al. (2005) illustrated that the impact of fishing is

likely to outweigh these effects. It has been shown that oxygen

concentration has a minimal impact on fish community size

structure and that net primary production is only the most im-

portant determinant when the size structure is stable over time

(Marshall et al., 2016). One environmental factor that has been

found to affect values of size-based indicators is temperature

(Marshall et al., 2016; Robinson et al., 2017); however, we are

able to rule out this potential effect in this study, as there was no

change in temperature over time for any of the depth bands.

Nevertheless, it should be noted that over a longer timescale

(1975–2013), temperature and salinity have increased over time

in upper waters (30–800 m) and stayed roughly constant in

Labrador Sea Water (>1200 m) in the Rockall Trough (Holliday

et al., 2015). These water masses cannot necessarily be translated

directly onto the depth bands used here, and do not always

equate to sea bottom temperature, so it would be unwise to inter-

pret the alternative patterns in different depth bands using this

information alone. However, it is important to recognize that

long-term environmental changes could be impacting overall

indicator values, because temperature affects body size

(e.g. Angilletta et al., 2004) and climate change can alter the depth

distribution of species (Dulvy et al., 2008).

For all of the analyses presented here, only individuals above a

predicted weight of 32 g were included. This is to exclude small

individuals that are considered to be poorly sampled by the sur-

vey gear, and the specific threshold value was chosen based on

recommendations by Jennings and Dulvy (2005). When the

analysis was repeated with the inclusion of all individuals

caught on the survey, the results were unaffected (Supplementary

Figure S5). However, the choice of threshold could generate dis-

crepancies when comparing specific indicator values among stud-

ies that do not use the same methods. This is one of the reasons

why it has been suggested that “reference directions” (suggested

trends that indicators will show in response to recovery) rather

than “reference points” (suggested values of indicators in healthy

assemblages) are more suitable for use in ecosystem assessment

(Jennings and Dulvy, 2005; Shin et al., 2005). Reference directions

are expected to be consistent across surveys, areas, and different

marine ecosystems, while reference points are much harder to es-

tablish (Shin et al., 2005). However, difficulty with using refer-

ence directions arises when implementing management action,

because reference points are still required to establish when man-

agement objectives have been achieved so that the focus can shift

to maintaining, rather than improving, the current state of the

ecosystem (Modica et al., 2014). Ecosystem assessments may

therefore require a combination of approaches, depending on the

data available, the timescale being examined, and the manage-

ment goals (Samhouri et al., 2011).

The issue of establishing target reference points that are appli-

cable across a range of marine areas is illustrated here, as the val-

ues of the LFI seen in the deep sea, even before fishing pressure

started to decline, are extremely high in comparison to the value

of 0.3 that has been suggested to equate to a healthy ecosystem in

the North Sea (ICES, 2007; Greenstreet et al., 2011). The high val-

ues in the deep, even in the depth band � 750 m, show that there

are more large fish in proportion to small fish in the deep sea

than in coastal waters. One reason for this may be that some fish

species spawn in shallow waters and move deeper as they grow

(Lin et al., 2012; Trueman et al., 2013). Additionally, the value of

a healthy LFI for the North Sea was set as 0.3 using data from the

1920s–1980s (ICES, 2007), when shelf seas were already being ex-

ploited. Thus, it may be that in the deep sea we are able to see

true pre-exploitation values of the LFI—a feat that has not been

possible in shallower waters. In order to produce LFI values in

the deep-sea assemblages studied here that are similar to the shelf

sea reference point of 0.3, the calculation would need to be

changed to the proportion of fish at least over 60 cm in length

(Supplementary Figure S6). If this alternative calculation is used,

the overall patterns remain the same: recovery is shown in the

shallowest depth band, and all other depth bands show no change

(Supplementary Figure S6).

Although we present higher values of the LFI here than have

been recorded in shelf seas, recovery of the LFI in shallow waters

can be particularly rapid. The LFI increased from � 0.05 in 2001

to 0.22 in 2008 in the North Sea (Greenstreet et al., 2011) and

from 0.17 in 1996 to 0.42 in 2008 in the Bay of Biscay (Modica

et al., 2014). However, the extreme to which the LFI has been af-

fected in shallow seas may mean that initial improvement in the

indicator can appear to be quick, but that full recovery to baseline

levels may take much longer. Shephard et al. (2013) predicted

that even if fishing pressure were to be removed entirely from the

Celtic Sea, recovery of the LFI to the values seen in 1986 would

still take �30 years. The power to detect meaningful rates of re-

covery in various size-based indicators can vary from 10 years

(Jennings and Dulvy, 2005) to 75 years (Nicholson and Jennings,

2004) of data. Thus, the improvement in the LFI and the slope of

the biomass spectrum presented here appears to be occurring on

a reasonable timescale, despite the high vulnerability of deep-sea

species (Koslow et al., 2000; Morato et al., 2006; Drazen and

Haedrich, 2012; Norse et al., 2012).

The slope of the size spectrum also highlights the difficulty of

predicting indicator values across different areas of the oceans.

The three shallowest depth bands show normalized biomass spec-

trum slopes of around �1 in the most recent years of the survey,

which is in the range of what is expected for unexploited or

weakly exploited demersal fish communities in shelf seas using

the same method [e.g. in the Mediterranean Sea (Macpherson

et al. 2002), the Celtic Sea (Blanchard et al., 2005) and the North

Sea (Blanchard et al. 2014)]. However, in the deepest depth band

(over 1650 m), during the most recent years when data collection

for these depths was at its highest, the slope approaches values of

�0.5. The biomass spectrum for these depths is therefore sub-

stantially shallower than at other depths in the deep sea and in

shelf seas. This shallow slope may be due to the absence of fishing

pressure at those depths, or alternatively the depth bands could

naturally differ in the shapes of their size spectra. Indeed, it has
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been shown that functional differences within communities result

in different values for the slope of the spectrum (Haedrich and

Merrett, 1992; Blanchard et al., 2009). Additionally, “subsidized”

communities can exhibit inverted biomass pyramids, which may

even lead to positive size spectrum slopes (Trebilco et al., 2016).

Such external resource subsidies could be said to occur in the

deep sea, e.g. through whale falls (Hilario et al., 2015).

Our results suggest that relaxed fishing pressure in the deep sea

of the Rockall Trough has allowed assemblages to recover, as

shown by positive responses of the LFI and the slope of the

normalized biomass spectrum, and that the positive change is

most apparent at the shallowest depths. Mean body length and

mean maximum length did not vary over time, perhaps because

the former is unduly influenced by recruitment events that keep

body size values low, while the latter may take longer to either be

affected or to show signs of reversal. We suggest that size-based

indicators can be applied to the deep sea with the same success

that they have achieved in shelf seas, but that the same reference

points cannot be used for these different ecosystems. It is encour-

aging that even in the medium-term, deep-sea fish assemblages

show signs of recovery, implying that they may be more resilient

than previously thought (Koslow et al., 2000), which is just one

of many paradigms that are now being questioned in the deep sea

(Drazen and Haedrich, 2012; Danovaro et al., 2014). Non-size-

based indicators such as mean trophic level, biodiversity indica-

tors and those based on life histories, should also be applied to

the deep sea where there is sufficient information on the relevant

traits of these poorly known species.
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