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Abstract In this article we investigate whether the following conjecture is true or not:

does the addition-free theta functions form a canonical notation system for the linear

versions of Friedman’s well-partial-orders with the so-called gap-condition over a

finite set of n labels. Rather surprisingly, we can show this is the case for two labels,

but not for more than two labels. To this end, we determine the order type of the

notation systems for addition-free theta functions in terms of ordinals less than ε0. We

further show that the maximal order type of the Friedman ordering can be obtained

by a certain ordinal notation system which is based on specific binary theta functions.
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1 Introduction

A major theme in proof theory is to provide natural independence results for for-

mal systems for reasoning about mathematics. The most prominent system in this
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respect is first order Peano arithmetic, or almost equivalently its second order ver-

sion ACA0. Providing natural independence results for stronger systems turned out

to be rather difficult. The strongest system considered in reverse mathematics [19]

is Π 1
1 -CA0 which formalizes full Π 1

1 -comprehension (with paramters) over RCA0.

Buchholz [2] provided a natural hydra game for Π 1
1 -CA0 but this follows closely a

path which is delineated by the classification of the provably recursive functions in

terms of a corresponding Hardy hierarchy. Harvey Friedman [18] obtained a spec-

tacular independence result for Π 1
1 -CA0 by considering well-quasi-orders on labeled

trees on which he imposed a so-called gap-condition. It is still an open problem to

classify the strength of Friedman’s assertion for the case that the set of labels con-

sists of n elements where n is fixed from the outside. Nowadays it is known that

the proof-theoretic strength of a well-quasi-order-principle can be measured in terms

of the maximal order type of the well-quasi-order under consideration. Hence, the

open problem can be translated into the following question: ’What are the maximal

order types of Friedman’s well-partial-orders?’. In [18], it is only shown that the

maximal order type is bounded from below by ψ0Ωn. Weiermann [21] conjectured

that the collapsing functions ϑi can define a maximal linear extension of Friedman’s

well-partial-orders in a straightforward way. This would mean that the ordinal nota-

tion system based on the ϑi-functions defines the maximal order types of Friedman’s

well-partial-orders.

The maximal order type for the Friedman ordering is known for n = 1 by results

of Schmidt and Friedman. Recently, Weiermann’s conjecture has been proven to be

true for the case n = 2 [13], meaning that the maximal order type of Friedman’s well-

partial-order for n = 2 can be expressed using higher collapsing functions ϑ0 and

ϑ1.

As an intermediate step in classifying the general case it seems natural to classify

the situation where trees are replaced by sequences over a finite set of cardinality n.

The hope is that the simpler case indicates how to deal with the general case of trees.

Investigations on finite sequences with respect to the Friedman ordering have been

undertaken by Schütte and Simpson [17]. They showed how the Friedman ordering

can be reduced to suitably nested versions of the Higman ordering [6]. Moreover

they considered the corresponding Buchholz-style ordinal notation system in which

the addition function has been dropped. Curiously this lead to an ordinal notation

system which in the limit (for unbounded n) reached ε0. It is quite natural to consider

finite sequences as iterated applications of unary functions and it is quite natural to

ask whether the ordinal notation system which is based on n collapsing functions

(which in [17] are denoted by π0, . . . ,πn−1) generates the maximal order type for

the Friedman ordering for sequences over a set with n elements, denoted by Sw
n (see

Definition 9). But it turns out that this is not the case: to produce the maximal order

type for the Sw
n one needs the functions π0, . . . ,π2n. It is known that the so called

theta functions θi grow faster than the functions πi and it is natural to ask whether

their addition-free analogues ϑ0, . . . ,ϑn generate the maximal order type of Sw
n . This

is actually Weiermann’s conjecture [21] applied on sequences instead of trees. For

n = 2, it turned out to be true and so one would expect that Weiermann’s conjecture

for sequences would generalize to n ≥ 3. Quite surprisingly this is not the case: to

obtain the maximal order type of Sw
n one requires the functions ϑ0, . . . ,ϑ2·n−3.
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So the question remains whether Sw
n can be realized by a suitable choice of unary

functions. It turns out that this, as we will show, is indeed possible using specific

binary theta functions. However, with unary functions the question is still open.

In a sequel project, we intend to determine the relationship between other ordinal

notation systems without addition (e.g. ordinal diagrams [20], Gordeev-style notation

systems [5] and non-iterated ϑ -functions [3,22]) with the systems used in this article.

2 Preliminaries

2.1 Well-partial-orders

Well-partial-orders are the natural generalizations of well-orders. They have applica-

tions in computer science, commutative algebra and logic.

Definition 1 A well-partial-order (hereafter wpo) is a partial order that is well-

founded and does not admit infinite antichains. Hence, it is a partial order (X ,≤X )
such that for every infinite sequence (xi)i<ω in X there exist two indices i < j such

that xi ≤X x j. If the ordering is clear from the context, we do not write the subscript

X .

wpo’s appear everywhere in mathematics. For example, they are the main in-

gredients in Higman’s theorem [6], Graph Minor theorem [4], Fraı̈ssé’s order type

conjecture [9] and Kruskal’s theorem [8]. The latter is used in field of term rewriting

systems.

In this paper, we are interested in wpo’s with the so-called gap-condition intro-

duced in [18]. We are especially interested in the linearized version, which is already

studied by Schütte and Simpson [17] (see subsection 2.2 for more information). With

regard to these wpo’s, we want to study ordinal notation systems which correspond

to their maximal order types and maximal linear extensions.

Definition 2 The maximal order type of the wpo (X ,≤X ) is equal to sup{α: ≤X⊆�,

� is a well-order on X and otype(X ,�) = α}. We denote this ordinal by o(X ,≤X ) or

by o(X) if the ordering is obvious from the context.

The following theorem by de Jongh and Parikh [7] shows that this supremum is

actually a maximum.

Theorem 1 (de Jongh and Parikh [7]) Assume that (X ,≤X ) is a wpo. Then there

exists a well-order � on X which is an extension of ≤X such that otype(X ,�) =
o(X ,≤X ).

Definition 3 Let X be a wpo. Every well-order � on X that satisfies Theorem 1 is

called a maximal linear extension.

The following definition and lemma are very useful.

Definition 4 A quasi-embedding e from the partial order (X ,≤X ) to the partial order

(Y,≤Y ) is a mapping such that for all x,x′ ∈ X , if e(x)≤Y e(x′), then x ≤X x′ holds.
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Lemma 1 Assume that e is a quasi-embedding from the partial order X to the partial

order Y . If Y is a wpo, then X is also a wpo and o(X)≤ o(Y ).

Definition 5 Let α be an ordinal. Define ω0[α] as α and ωn+1[α] as ωωn[α]. Write

ωn for the ordinal ωn[1].

2.2 Well-partial-orders with the gap-condition

In 1982, Harvey Friedman introduced a well-partial-order of finite rooted trees with

labels in {0, . . . ,n− 1} with a gap-embeddability relation on it. This was later pub-

lished by Simpson in [18]. This wpo was very important, because it was one of the

first natural examples of statements not provable in the strongest theory of the Big

Five in Reverse Mathematics, Π 1
1 -CA0.

Definition 6 Let Tn be the set of finite rooted trees with labels in {0, . . . ,n−1}. An

element of Tn is of the form (T, l), where T is a finite rooted tree, which we see as a

partial order on the set of nodes, and l is a labeling function, a mapping from T to the

set {0, . . . ,n− 1}. Define (T1, l1) ≤gap (T2, l2) if there exists an injective order- and

infimum-preserving mapping f from T1 to T2 such that

1. ∀τ ∈ T1, we have l1(τ) = l2( f (τ)).
2. ∀τ ∈ T1 and for all immediate successors τ ′ ∈ T1 of τ , we have that if τ ∈ T2 is

strictly between f (τ) and f (τ ′), then l2(τ)≥ l2( f (τ ′)) = l1(τ
′).

Theorem 2 (Simpson/Friedman[18]) For all n, (Tn,≤gap) is a wpo and Π 1
1 -CA0 6⊢

∀n < ω ‘(Tn,≤gap) is a wpo’.

We are interested in the linearized versions of these wpo’s, which have been stud-

ied extensively by Schütte and Simpson [17]. Before we give the definition of these

linearized wpo’s, we introduce the disjoint sum and cartesian product between wpo’s

and the Higman ordering.

Definition 7 Let X0 and X1 be two wpo’s. Define the disjoint sum X0 +X1 as the set

{(x,0) : x ∈ X0}∪{(y,1) : y ∈ X1} with the following ordering:

(x, i)≤ (y, j)⇔ i = j and x ≤Xi
y.

For an arbitrary element (x, i) in X0+X1, we omit the second coordinate i if it is clear

from the context to which set the element x belongs to. Define the cartesian product

X0 ×X1 as the set {(x,y) : x ∈ X0,y ∈ X1} with the following ordering:

(x,y)≤ (x′,y′)⇔ x ≤X0
x′ and y ≤X1

y′.

Definition 8 Let X∗ be the set of finite sequences over the partial order (X ,≤X

). Denote x0 . . .xk−1 ≤∗
X y0 . . .yl−1 if there exists a strictly increasing function f :

{0, . . . ,k−1}→ {0, . . . , l−1} such that for all 0 ≤ i ≤ k−1, xi ≤X y f (i) holds. If the

ordering on X is clear from the context, we write X∗ instead of (X∗,≤∗
X ).
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Hence, if we write X∗, we mean the set of of finite sequences over X or the

partial order (X∗,≤∗
X ). The context will make clear what we mean. Define Sn as

{0, . . . ,n− 1}∗ and S as N∗. Sn and S are either sets of finite sequences or partial

orders.

Theorem 3 (de Jongh-Parikh[7], Schmidt[16]) If X0, X1 and X are wpo’s, then

X0 +X1, X0 ×X1 and X∗ are still wpo’s, and

o(X0 +X1) = o(X0)⊕o(X1),

o(X0 ×X1) = o(X0)⊗o(X1),

where ⊕ and ⊗ is the natural sum and product between ordinals, and

o(X∗) =











ωωo(X)−1
if o(X) is finite,

ωωo(X)+1
if o(X) = ε +n, with ε an epsilon number and n < ω ,

ωωo(X)
otherwise.

Now, we define the linearized versions of the gap-embeddability relation.

Definition 9 In this context, let Sn be the set of the finite sequences over {0, . . . ,n−
1}. We say that s = s0 . . .sk−1 ≤

w
gap s′0 . . .s

′
l−1 = s′ if there exists a strictly increasing

function f : {0, . . . ,k−1}→ {0, . . . , l −1} such that

1. for all 0 ≤ i ≤ k−1, we have si = s′
f (i),

2. for all 0 ≤ i < k − 1 and all j between f (i) and f (i + 1), the inequality s′j ≥
s′

f (i+1) = si+1 holds.

This ordering on Sn is called the weak gap-embeddability relation. The partial order

(Sn,≤
w
gap) is also denoted by Sw

n . The strong gap-embeddability relation fulfills the

extra condition

3. for all j < f (0), we have s′j ≥ s′
f (0) = s0.

This ordering on Sn is denoted by ≤s
gap We also write Ss

n for the partial order (Sn,≤
s
gap

).

We now give an overview of the results in the article of Schütte and Simpson [17].

Theorem 4 (Schütte-Simpson[17], Simpson/Friedman[18]) For all n, (Sn,≤
w
gap)

and (Sn,≤
s
gap) are wpo’s.

Theorem 5 (Schütte-Simpson[17])

ACA0 6⊢ ∀n < ω ‘(Sn,≤
w
gap) is a wpo’,

ACA0 6⊢ ∀n < ω ‘(Sn,≤
s
gap) is a wpo’.

Theorem 6 (Schütte-Simpson[17])

For all n, ACA0 ⊢ ‘(Sn,≤
w
gap) is a wpo’,

For all n, ACA0 ⊢ ‘(Sn,≤
s
gap) is a wpo’.
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Definition 10 Denote the subset of Sn of elements s0 . . .sk that fulfill the extra con-

dition s0 ≤ i by Sn[i]. Accordingly as in Definition 9, (Sn[i],≤
w
gap), respectively

(Sn[i],≤
s
gap), is denoted by Sw

n [i], respectively Ss
n[i].

Definition 11 Take two partial orders X0 and X1. We say that X0 and X1 are order-

isomorphic if there exists a bijective function f such that x ≤X0
y ⇔ f (x) ≤X1

f (y)
for all x and y in X0. We denote this by X0

∼= X1.

If X0
∼= X1 and X0 or X1 is a wpo, then the other one is also a wpo with the same

maximal order type.

The proofs by Schütte and Simpson [17] also yield results on the maximal order

types of the sequences with the gap-embeddability relation. More specifically, they

prove the next lemma (which is in Lemma 5.5 in [17]). However, there is a small error

in their proof, although we believe that this can actually be seen as a typo. For clarity

reasons, the proof is given here. ε denotes the empty string in Ss
n or Sw

n , whereas ()
denotes the empty string in (Ss

n)
∗ or (Sw

n )
∗.

Theorem 7 (Schütte-Simpson[17])

Ss
n+1

∼= Ss
n × (Ss

n)
∗.

Proof Assume n ≥ 0. We define an order-preserving bijection hn from Ss
n+1 to the

partial order Ss
n×(Ss

n)
∗. Let hn(ε) be (ε,()). Take an arbitrary element s∈ Ss

n+1\{ε}.

Then s = t0 . . . tl ∈ {0, . . . ,n}∗. s is of the form t ′00t ′10 . . .0t ′k with k ≥ 0 and t ′i ∈
{1, . . . ,n}∗ as follows. Define i0 = min{l : tl = 0}, i1 = min{l : tl = 0 and l > i0},. . . ,

ik−1 = min{l : tl = 0 and l > ik−2}. k is the least number where ik is undefined.

Then t ′1 = t0 . . . ti0−1, t ′2 = ti0+1 . . . ti1−1, etc. Remark that is possible that t ′i is the

empty sequence. There exist unique si ∈ {0, . . . ,n − 1}∗ such that s+i = t ′i for ev-

ery i, where s+i is the result of replacing every number j in si by j + 1. Hence,

every element s ∈ Ss
n+1\{ε} has a unique representation s = s+0 0s+1 0 . . .0s+k with

si ∈ {0, . . . ,n− 1}∗. For example if s = 021003, then s0 = ε , s1 = 10, s2 = ε and

s3 = 2, as s = s+0 0s+1 0s+2 0s+3 . Define then hn(s) as (s0,(s1, . . . ,sk)). Note that for the

sequence s = 0, k is not zero, i.e. s = s+0 0s+1 with s0 = s1 = ε . In other words, k repre-

sents the number of 0’s occurring in s. Because s can be written in an unique way as

s = s+0 0s+1 0 . . .0s+k , hn is a injection. It’s also easy to see that hn is a surjection from

Ss
n+1 to the partial order Ss

n × (Ss
n)

∗.

We know prove that s ≤ s′ yields hn(s) ≤ hn(s
′) by induction on lh(s)+ lh(s′).

If s or s′ are ε , then this is trivial. So assume s = s+0 0 . . .0s+k and s′ = s′
+
0 0 . . .0s′

+
l .

If s = s′, the claim is trivial. Assume s < s′. If k = 0, then l = 0 and s+0 < s′
+
0 , or

l > 0 and s+0 ≤ s′
+
0 . In both cases, hn(s) < hn(s

′). Assume k > 0. Then s < s′ yields

l > 0, s+0 ≤ s′
+
0 and s+1 0 . . .0s+k ≤ s′

+
j 0 . . .0s′

+
l for a certain j ≥ 1. From s+1 0 . . .0s+k ≤

s′
+
j 0 . . .0s′

+
l , one can prove as before (or by an additional induction argument on

k) that s+1 ≤ s′
+
j and s+2 0 . . .0s+k ≤ s′

+
j2

0 . . .0s′
+
l for a certain j2 ≥ j + 1. In the end,

we have s+0 ≤ s′
+
0 and (s+1 , . . . ,s

+
k ) ≤

∗ (s′+1 , . . . ,s
′+
l ). This yields hn(s) ≤ hn(s

′). The

reverse direction hn(s)< hn(s
′)→ s < s′ can be proven in a similar way by induction.

Corollary 1 o(Ss
n+1) = o(Ss

n)⊗o((Ss
n)

∗).
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Hence, from the maximal order type of Ss
1, which is the ordinal ω , one can cal-

culate the maximal order types of all Ss
n. Following the same template, one also has

the following lemma.

Lemma 2 o(Sw
n+1) = o(Sw

n+1[0]) = o(Ss
n+1[0]) = o((Ss

n)
∗).

Proof The equality o(Ss
n+1[0]) = o((Ss

n)
∗) follows from the proof of Theorem 7.

o(Sw
n+1[0]) = o(Ss

n+1[0]) is trivial as they refer to the same ordering. To prove o(Sw
n+1)=

o(Sw
n+1[0]), note that Sw

n+1[0]⊆Sw
n+1, hence o(Sw

n [0])≤ o(Sw
n ). Furthermore, the map-

ping e which plots s0 . . .sk−1 to 0s0 . . .sk−1 is a quasi-embedding from Sw
n to Sw

n [0].
Hence, o(Sw

n )≤ o(Sw
n [0]).

These results yield for example

o(Sw
2 ) = ωωω

.

de Jongh, Parikh, Schmidt, Schütte and Simpson’s results imply an easy calcula-

tion of the maximal order types of Sw
n and Ss

n. In this article, we want to connect these

maximal order types with well-known addition-free ordinal notation systems. We ex-

pected that addition-free ordinal notation system based on the collapsing functions

ϑ0, . . . ,ϑn−1 defines a maximal linear extension on Sw
n and Ss

n. However, we show

that this is only the case for n = 2.

Definition 12 Let Sn be the subset of Sn which consists of all sequences s0 . . .sk−1

in Sn such that for all i < k− 1, si − si+1 ≥ −1. This means that if si = j, then si+1

is an element in {0, . . . , j+1}. For example 02 /∈ S3. Like in Definition 9, we denote

the subset of Sn that fulfill the extra condition s0 ≤ i by Sn[i]. We denote (Sn,≤
w
gap)

by S
w

n , (Sn,≤
s
gap) by S

s

n, (Sn[i],≤
w
gap) by S

w

n [i] and (Sn[i],≤
s
gap) by S

s

n[i].

The reason why we define these substructures S
w

n and S
s

n of the wpo’s Sw
n and

Ss
n is that the addition-free ordinal notation system based on the ϑi-functions has the

same property if you look to the indices of the occurring ϑi in the terms of the notation

system (see Definitions 24 and 25). Furthermore, it turns out that the maximal order

types of these substructures are exactly equal to an ω-tower. It is expected that the

ordinals of the addition-free ordinal notation systems with the ϑi-functions are also

ω-towers.

Lemma 3 o(S
w

n+1) = o(S
w

n+1[0]) = o(S
s

n+1[0]) = o((S
s

n[0])
∗) = o((S

w

n [0])
∗)

= o((S
w

n )
∗).

Proof Completely similar as in Theorem 7, Corollary 1 and Lemma 2: one can use

the same embeddings and mappings between the partial orders.

Corollary 2 For all n, o(S
w

n ) = ω2n−1.

We remark that the maximal order type of Sw
n and Ss

n are in general not ω-towers.
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2.3 Ordinal notation systems

In this subsection, we introduce several ordinal notation systems for ordinals smaller

than ε0. All of them do not use the addition operator.

2.3.1 The Veblen hierarchy

Assume that (T,<) is a notation system with otype(T ) ∈ ε0\{0}. Define the repre-

sentation system ϕT 0 recursively as follows.

Definition 13 – 0 ∈ ϕT 0,

– if α ∈ ϕT 0 and t ∈ T , then ϕtα ∈ ϕT 0.

Define on ϕT 0 the following total order.

Definition 14 For α,β ∈ ϕT 0, α < β is valid if

– α = 0 and β 6= 0,

– α = ϕt1α ′, β = ϕt2β ′ and one of the following cases holds:

1. t1 < t2 and α ′ < β ,

2. t1 = t2 and α ′ < β ′,

3. t1 > t2 and α ≤ β ′.

Theorem 8 Assume otype(T ) = α ∈ ε0\{0}. Then (ϕT 0,<) is a notation system for

the ordinal ωω−1+α
.

Proof A proof of this fact can be found in [10].

2.3.2 Using the πi-collapsing functions

We use an ordinal notation system that employs the πi-collapsing functions. These

functions are based on Buchholz’s ψi-functions [1]. We state some basic facts that

the reader can find in [1,17].

Definition 15 Let Ω0 := 1 and define Ωi as the ith regular ordinal number strictly

above ω . Define Ωω as supi Ωi.

Define the sets Bm
i (α) and Bi(α) and the ordinal numbers πiα as follows.

Definition 16 – If γ = 0 or γ < Ωi, then γ ∈ Bm
i (α),

– if i ≤ j, β < α , β ∈ B j(β ) and β ∈ Bm
i (α), then π jβ ∈ Bm+1

i (α),
– define Bi(α) as

⋃

m<ω Bm
i (α),

– πiα := min{η : η /∈ Bi(α)}.

Lemma 4 1. if i ≤ j and α ≤ β , then Bi(α)⊆ B j(β ) and πiα ≤ π jβ ,

2. Ωi ≤ πiα < Ωi+1,

3. πi0 = Ωi,

4. α ∈ Bi(α) and α < β yields πiα < πiβ ,

5. α ∈ Bi(α), β ∈ Bi(β ) and πiα = πiβ yields α = β .
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Definition 17 For ordinals α ∈ B0(Ωω), define Gi(π jα) as

{

/0 if j < i,

Giα ∪{α} otherwise.

Define Gi(0) as /0.

This is well-defined, because one can prove that π jα ∈B0(Ωω) yields α ∈B0(Ωω).
For a set of ordinals A and an ordinal α , we write A < α if for all β ∈ A(β < α).

Lemma 5 If α ∈ B0(Ωω), then Gi(α)< β iff α ∈ Bi(β ).

Proof We prove this by induction on the length of construction of α . If α = 0 or

α = π jδ with j < i, then this is trivial. Assume α = π jδ with j ≥ i. α = π jδ ∈
B0(Ωω) yields δ ∈ B j(δ ). Now, Gi(α)< β is valid iff Gi(δ )< β and δ < β . By the

induction hypothesis, this is equivalent with δ ∈Bi(β ) and δ < β , which is equivalent

with α = π jδ ∈ Bi(β ) because δ ∈ B j(δ ).

Now we define the ordinal notation systems π(ω) and π(n), but first, we have to

define a set of terms π(ω)′ and π(n)′.

Definition 18 – 0 ∈ π(ω)′ and 0 ∈ π(n)′,
– if α ∈ π(ω)′, then D jα ∈ π(ω)′,
– if α ∈ π(n)′ and j < n, then D jα ∈ π(n)′.

Definition 19 Let α,β ∈ π(ω)′ or α,β ∈ π(n)′. Then define α < β if

1. α = 0 and β 6= 0,

2. α = D jα
′, β = Dkβ ′ and i < j or i = j and α ′ < β ′.

Lemma 6 < is a linear order on π(ω)′ and π(n)′.

Proof Similar as Lemma 2.1 in [1].

Definition 20 For α ∈ π(ω)′,π(n)′, define Gi(α) as follows.

1. Gi(0) = /0,

2. Gi(D jα
′) :=

{

Gi(α
′)∪{α ′} if i ≤ j,

/0 if i > j.

Now, we are ready to define to ordinal notation systems π(ω)⊆ π(ω)′ and π(n)⊆
π(n)′.

Definition 21 π(ω) and π(n) are the least sets such that

1. 0 ∈ π(ω), 0 ∈ π(n),
2. if α ∈ π(ω) and Gi(α)< α , then Diα ∈ π(ω),
3. if α ∈ π(n), i < n and Gi(α)< α , then Diα ∈ π(n).

Apparently, the D jα’s correspond to the ordinal functions π jα:
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Definition 22 For α ∈ π(ω) or α ∈ π(n), define

1. o(0) := 0,

2. o(D jα
′) := π j(o(α

′)).

Lemma 7 For α,β ∈ π(ω) or α,β ∈ π(n), we have:

1. o(α) ∈ B0(Ωω),
2. Gi(o(α)) = {o(x) : x ∈ Gi(α)},

3. α < β → o(α)< o(β ).

Proof A similar proof can be found in [1].

Lemma 8 1. {o(x) : x ∈ π(ω)}= B0(Ωω),
2. {o(x) : x ∈ π(ω) and x < D10}= π0Ωω ,

3. {o(x) : x ∈ π(n) and x < D10}= π0Ωn if n > 0.

Proof A similar proof can be found in [1].

Define π(ω)∩D10 as π0(ω) and π(n)∩D10 as π0(n). It is very important to see

that we work with two different contexts: one context is at the level of ordinals, i.e.

if we use the πi’s. The other context at the syntactical level, i.e. if we use the Di’s

(because it is an ordinal notation system). The previous results actually indicate that

Di and πi play the same role and for notational convenience, we will identify these

two notations: from now on, we write πi instead of Di. The context will make clear

what we mean. If we use Ωi in the ordinal context, it is interpreted as in Definition

15. In the other context, at the level of ordinal notation systems, we define Ωi as Di0

(which is now also denoted by πi0).

We could also have defined π(ω) in the following equivalent way.

Definition 23 Define π(ω) as the least set of ordinals such that

1. 0 ∈ π(ω),
2. If α ∈ π(ω) and α ∈ Bi(α), then πiα ∈ π(ω).

Define π(n) in the same manner, but with the restriction that i < n.

In [17], the following theorem is shown. Therefore, π0(n) is an ordinal notation

system for ωn[1] if n > 0 and π0(ω) is a system for ε0.

Theorem 9 1. π0Ωn = ωn[1] if n > 0,

2. π0Ωω = ε0.

2.3.3 Using the ϑi-collapsing functions

In this subsection, we give an ordinal representation system that is based on the ϑi-

functions. For more information about this system that includes the addition-operator,

see [14,15]. In this subsection, we introduce them without the addition-operator.
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Definition 24 Define T and the function S simultaneously as follows. T is the least

set such that 0 ∈ T , where S(0) :=−1 and if α ∈ T with S(α)≤ i+1, then ϑiα ∈ T

and S(ϑiα) := i. We call the number of occurrences of symbols ϑ j in α ∈ T , the

length of α and denote this by lh(α). Furthermore, let Ωi := ϑi0.

Like in the Di-case, Ωi is defined as something syntactically because T is an

ordinal notation system. However, the usual interpretation of Ωi in the context of

ordinals is as in Definition 15. S(α) represents the index i of the first occurring ϑi in

α , if α 6= 0.

Definition 25 Let n < ω . Define Tn as the set of elements α in T such that for all

ϑ j in α , we have j < n. Let T [m] be the set of elements α in T such that S(α) ≤ m.

Define Tn[m] accordingly.

For example T1 = T1[0] = {0,ϑ00,ϑ0ϑ00, . . .}. For every element α in T , we

define its coefficients. The definition is based on the usual definition of the coefficients

in a notation system with addition.

Definition 26 Let α ∈ T . If α = 0, then ki(0) := 0. Assume α = ϑ j(β ). Let ki(α)
then be

{

ϑ j(β ) = α if j ≤ i,

ki(β ) if j > i.

Using this definition, we introduce a well-order on T (and its substructures). This

ordering is based on the usual ordering between the ϑi-functions defined with addi-

tion.

Definition 27 1. If α 6= 0, then 0 < α ,

2. if i < j, then ϑiα < ϑ jβ ,

3. if α < β and kiα < ϑiβ , then ϑiα < ϑiβ ,

4. if α > β and ϑiα ≤ kiβ , then ϑiα < ϑiβ .

Definition 28 If α,β ∈ T and β < Ω1, let α[β ] be the element in T where the last

zero in α is replaced by β .

The following lemma gives some useful properties of this ordinal notation system.

Lemma 9 For all α,β and γ in T and for all i < ω ,

1. ki(α)≤ α ,

2. if α = ϑ j1 . . .ϑ jnt with j1, . . . , jn ≥ i and (t = 0 or t = ϑkt ′ with k ≤ i), then

t < ϑi(α),
3. ki(α)< ϑiα ,

4. ki(α)[γ] = ki(α[γ]) for γ < Ω1,

5. if γ < Ω1, then γ ≤ β [γ] and the last inequality is only an equality if β = 0,

6. if α < β and γ < Ω1, then α[γ]< β [γ].

Proof 1. The first assertion is easy to see.
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2. By induction on lh(α) and sub-induction on lh(t). If α = 0, then the claim is

trivial. Assume from now on α > 0. If t = 0 or t = ϑkt ′ with k < i, then this is

trivial. Assume t = ϑit
′. Then t = ϑiϑl1 . . .ϑlmki(t

′) with l1, . . . , lm > i. The sub-

induction hypothesis, lh(ki(t
′))< lh(t) and α = ϑ j1 . . .ϑ jn ϑiϑl1 . . .ϑlmki(t

′) yield

ki(t
′) < ϑiα . If t ′ < α , then t = ϑit

′ < ϑiα . Assume t ′ > α . Note that equality

is impossible because t ′ is a strict subterm of α . We claim that t = ϑit
′ ≤ ki(α),

hence we are done. We know that ki(α) =ϑ jp . . .ϑ jn ϑit
′ for a certain p with jp = i

or ki(α) = ϑit
′. In the latter case, the claim is trivial. In the former case, the main

induction hypothesis on ϑ jp+1
. . .ϑ jn ϑit

′ yields t < ϑiϑ jp+1
. . .ϑ jn ϑit

′ = ki(α).
3. This follows easily from the second assertion because α = ϑ j1 . . .ϑ jn ki(α) with

j1, . . . , jn > i.

4. Follows easily by induction on lh(α).
5. By induction on lh(γ) and sub-induction on lh(β ). If γ = 0, the statement is

trivial to see. From now on, let γ = ϑ0γ ′. If β = 0 or β = ϑiβ
′ with i > 0, the

statement also easily follows. Assume β = ϑ0β ′. We see β [γ] = ϑ0(β
′[γ]). Sup-

pose γ ′ < β ′[γ]. Assume γ ′ = ϑ j1 . . .ϑ jk k0(γ
′) with j1, . . . , jk > 0 and define β

as β [ϑ0ϑ j1 . . .ϑ jk 0]. The main induction hypothesis yields k0(γ
′) ≤ β [k0(γ

′)] =
β [γ] = ϑ0(β

′[γ]). Note that equality is not possible because k0(γ
′) is a strict

subterm of β [k0(γ
′)], hence γ = ϑ0γ ′ < ϑ0(β

′[γ]) = β [γ]. Assume γ ′ > β ′[γ].

The sub-induction hypothesis yields γ ≤ k0(β
′)[γ]

γ<Ω1= k0(β
′[γ]). Hence, γ ≤

k0(β
′[γ])< ϑ0(β

′[γ]) = β [γ].
6. By induction on lh(α)+ lh(β ). If α = 0 and β 6= 0, then the previous assertion

yields α[γ] = γ < β [γ]. Assume α = ϑiα
′ < ϑ jβ

′ = β . If i < j, then also α[γ]<
β [γ]. Suppose i = j. Then either α ′ < β ′ and ki(α

′) < ϑ jβ
′, or α ≤ k j(β

′). In

the former case, the induction hypothesis yields α ′[γ] < β ′[γ] and ki(α
′[γ])

γ<Ω1=
ki(α

′)[γ]< (ϑ jβ
′)[γ] =ϑ j(β

′[γ]). Hence, α[γ] = (ϑiα
′)[γ] =ϑi(α

′[γ])<ϑ j(β
′[γ]) =

(ϑ jβ
′)[γ] = β [γ]. In the latter case, the induction hypothesis yields α[γ]≤ k j(β

′)[γ]
γ<Ω1=

k j(β
′[γ])< ϑ j(β

′[γ]) = (ϑ jβ
′)[γ] = β [γ].

On T and its substructures, we define the following partial order E, which can be

seen as a natural sub-order of the ordering < on T (see Lemma 11).

Definition 29 1. 0Eα ,

2. if α E kiβ , then α Eϑiβ ,

3. if α Eβ , then ϑiα Eϑiβ .

Apparently, Tn with this natural sub-ordering is the same as S
s

n.

Lemma 10 (Tn,E)∼= (Sn,≤
s
gap).

Proof Define e : Tn → Sn as follows. e(0) is the empty sequence ε . Let e(ϑiα) be

(i)⌢e(α). For example e(ϑ2ϑ10) is the finite sequence 21. From the definitions of

e, Tn and Sn, it is trivial to see that e is a bijection: remark that there are Sn-like

restrictions on Tn. So the only thing we still need to show is that for all α and β in

Tn, e(α)≤s
gap e(β ) if and only if α Eβ . We show this by induction on the sum of the

lengths of α and β . If α or β are equal to 0, then this is trivial. Assume α and β are



Title Suppressed Due to Excessive Length 13

different from 0. Hence, α = ϑiα
′ and β = ϑ jβ

′. Assume α Eβ . Then α E k jβ
′ or

i = j and α ′Eβ ′. In the latter case, the induction hypothesis yields e(α ′)≤s
gap e(β ′),

hence e(α) = (i)⌢e(α ′) ≤s
gap (i)⌢e(β ′) = e(β ). In the former case, assume β ′ =

ϑl1 . . .ϑlk β ′′, with l1, . . . , lk > j and S(β ′′) ≤ j such that k j(β
′) = β ′′. The induction

hypothesis yields e(α) ≤s
gap e(β ′′). From the strong gap-embeddability relation we

obtain i≤ S(β ′′)≤ j, hence e(α)≤s
gap ( jl1, . . . lk)

⌢e(β ′′) because j, l1, . . . , lk ≥ i. The

reverse direction can be proved in a similar way.

The previous proof also yields (Tn[0],E) ∼= (Sn[0],≤
s
gap) = (Sn[0],≤

w
gap). We

prove that the linear order < on Tn is a linear extension of ⊳. Let α ⊳ β if α E β
and α 6= β .

Lemma 11 If α Eβ , then α ≤ β .

Proof We prove this by induction on the sum of the lengths of α and β Assume

α E β . If α = 0, then trivially α ≤ β . Assume α = ϑiα
′. α E β yields β = ϑiβ

′

and either α E kiβ
′ or α ′Eβ ′. In the first case, the induction hypothesis yields α ≤

kiβ
′ < ϑiβ

′ = β . Assume that α ′Eβ ′. The induction hypothesis yields α ′ ≤ β ′. if

α ′ = β ′, we can finish the proof, so assume α ′ < β ′. We want to prove that kiα
′ < β .

Using the induction hypothesis, it is sufficient to prove that kiα
′ ⊳ β . This follows

from α = ϑiϑ j1 . . .ϑ jl kiα
′Eβ (with j1, . . . , jl > i) and Lemma 10.

The previous lemmata imply that the linear ordering on Tn[0] is a linear extension

of Sn[0] with the strong (and weak) gap-embeddability relation and furthermore,

o(Tn[0],E) = o(S
s

n[0]) = o(S
w

n [0]) = o(S
w

n ).

These results also hold in the case if we allow the addition-operator: the ordinal

notation systems using ϑi and the addition-operator corresponds to a linear extension

of Friedman’s wpo Tn[0] with the strong and weak gap-embeddability relation (Tn[0]
is defined in a similar way as Sn[0], but with trees). It is our general belief that this is a

maximal linear extension. In [11,12] we already obtained partial results concerning

this conjecture. In this paper, we want to investigate whether this is also true for the

linearized version of the gap-embeddability relation, i.e. if the well-order (Tn[0],<)
is a maximal linear extension of (Tn[0],E)∼= (Sn[0],≤

s
gap) = (Sn[0],≤

w
gap). This can

be shown by proving that the order type of (Tn[0],<) is equal to the maximal order

type of (Sn[0],≤
s
gap), which is ω2n−1.

Quite surprisingly, the maximal linear extension principle is not true in this se-

quential version: if n > 2, then the order type of (Tn[0],<) is equal to ωn+1. We

remark that the maximal linear extension principle is true if n = 1 and n = 2. We

prove these claims in the next sections.
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3 Maximal linear extension of gap-sequences with one and two labels

It is trivial to show that the order type of (T1[0],<) is equal to ω , hence (T1[0],<)
corresponds to a maximal linear extension of S

s

1[0]. So we can concentrate on the

case of T2[0]. We show that the order type of (T2[0],<) is equal to ωωω
. This implies

that (T2[0],<) corresponds to a maximal linear extension of S
w

2 [0] and that the order

type of (T2[0],<) is equal to o(S
w

2 ). More specifically, we show that

sup
n1,...,nk

ϑ0ϑ n1
1 . . .ϑ0ϑ

nk
1 (0) = ωωω

.

The supremum is equal to ϑ0ϑ1ϑ2(0) and knowing that Ωi is defined as ϑi(0), we

thus want to show

ϑ0ϑ1Ω2 = ωωω
.

Theorem 10 ϑ0ϑ1Ω2 = ωωω

Proof We present a order-preserving bijection from ϕω 0 to ϑ0ϑ1Ω2. Lemma 8 then

yields the assertion.

Define χ0 := 0 and χϕnα := ϑ0ϑ n
1 χα . Then χ is order preserving. Indeed, we

show α < β ⇒ χα < χβ by induction on lh(α)+ lh(β ). If α = 0 and β 6= 0, then

trivially χα < χβ . Let α = ϕnα ′ < β = ϕmβ ′. If α ′ < β and n < m then the in-

duction hypothesis yields χα ′ < ϑ0ϑ m
1 χβ ′ and then n < m yields χα = ϑ0ϑ n

1 χα ′ <
ϑ0ϑ m

1 χβ ′ = χβ . If n = m and α ′ < β ′ then χα = ϑ0ϑ n
1 χα ′ < ϑ0ϑ n

1 χβ ′ = χβ . If

α ≤ β ′, then χα ≤ χβ ′ < ϑ0ϑ m
1 χβ ′.

It might be instructive, although it is in fact superfluous, to redo the argument for

the standard representation for ωωω
. First, we need an additional lemma.

Lemma 12 Let α,β and γ be elements in T .

1. α < β < Ω1 and li < n, ki > 0 for all i ≤ r yield

ϑ
k0
0 ϑ l1

1 ϑ k1
0 . . .ϑ lr

1 ϑ kr
0 ϑ n

1 α < ϑ0ϑ n
1 β ,

2. α < β < Ω1 and li j < n, ki j > 0 for all i, j yield

ϑ
k00
0 ϑ

l01
1 ϑ

k01
0 . . .ϑ

l0m0
1 ϑ

k0m0
0 ϑ n

1 . . .ϑ
kr0
0 ϑ lr1

1 ϑ kr1
0 . . .ϑ

lrmr
1 ϑ

krmr
0 ϑ n

1 α <

ϑ
p00
0 ϑ

q01
1 ϑ

p01
0 . . .ϑ

q0s0
1 ϑ

p0s0
0 ϑ n

1 . . .ϑ
pr0
0 ϑ

qr1
1 ϑ

pr1
0 . . .ϑ

qrsr
1 ϑ

prsr
0 ϑ n

1 β ,

3. li < n and ki > 0 for all i ≤ r yield ϑ
k0
0 ϑ l1

1 ϑ k1
0 . . .ϑ lr

1 ϑ kr
0 0 < ϑ0ϑ n

1 0.

Proof The first assertion follows by induction on r: if r = 0, then ϑ
k0
0 ϑ n

1 α < ϑ0ϑ n
1 β

follows by induction on k0. If r > 0, then the induction hypothesis yields ξ =ϑ k1
0 . . .ϑ lr

1 ϑ kr
0 ϑ n

1 α <

ϑ0ϑ n
1 β . We have ξ < ϑ n−l1

1 β because k1 > 0, and thus ϑ l1
1 ξ < ϑ n

1 β . We prove

ϑ
k0
0 ϑ l1

1 ξ < ϑ0ϑ n
1 β by induction on k0. First note that we know k0(ϑ

l1
1 ξ ) = ξ <

ϑ0ϑ n
1 β , hence the induction base k0 = 1 easily follows. The induction step is straight-

forward.

The second statement follows from the first by induction on the number of involved

blocks.

The third assertion follows by induction on r.
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Proof (Another proof of Theorem 10) Define χ : ωωω
→ ϑ0ϑ1Ω2 as follows. Take

α < ωωω
. Let n be the least number such that α < ωωn

. Let m then be minimal such

that

α = ωωn−1·m ·αm + · · ·+ωωn−1·0 ·α0,

with αm 6= 0 and α0, . . . ,αm < ωωn−1
. Put χα as the element

ϑ0ϑ n
1 χ(α0) · · ·ϑ0ϑ n

1 χ(αm).

It is trivial to see that χ is surjective. We claim that α < β yields χ(α) < χ(β ). We

prove the claim by induction on lh(α)+ lh(β ).

Let α = ωωn−1·m ·α ′+ α̃ and β = ωωn′−1·m′
·β ′+ β̃ with α ′,β ′ > 0, α̃ < ωωn−1·m and

β̃ < ωωn′−1·m′
. If n < n′, then χ(β ) contains a consecutive sequence of ϑ n′

1 which has

no counterpart in χ(α). Hence, χα < χβ follows from a combination of the second

and third assertion of the previous lemma. If n = n′ and m < m′ then χ(β ) contains

at least one more consecutive sequence of ϑ n
1 than the ones occurring in χ(α). Thus

again χα < χβ using the second and third assertion of the previous lemma. If n = n′

and m=m′ and α ′< β ′ then the induction hypothesis yields χ(α ′)< χ(β ′). We know

χ(α) = χ(α̃)ϑ0ϑ n
1 χ(α ′) and χ(β ) = χ(β̃ )ϑ0ϑ n

1 χ(β ′). So, the second assertion of

the previous lemma yields the assertion. If n = n′ and m = m′ and α ′ = β ′ then α̃ < β̃
and the induction hypothesis yield χ(α̃) < χ(β̃ ) and χ(α) = χ(α̃)ϑ0ϑ n

1 χ(α ′) and

χ(β ) = χ(β̃ )ϑ0ϑ n
1 χ(β ′). The assertion follows from the sixth assertion of Lemma

9.

4 The order type of (Tn[0],<) with n > 2

As mentioned before, we expected that (Tn[0],<) corresponds to a maximal linear

extension of S
w

n [0] and S
s

n[0]. This could have been shown by proving that the order

type of (Tn[0],<) is equal to ω2n−1. However, by calculations of the second author,

we saw that (Tn[0],<) does not correspond to a maximal linear extension. Instead we

now show that the order type of (Tn[0],<) is equal to ωn+1 for n ≥ 2. We will show

that

ωn+2 = ϑ0ϑ1ϑ2 . . .ϑnΩn+1,

for n ≥ 1. The next Lemma shows that this is sufficient to prove. To prove the lower

bound (≤) of

ωn+2 = ϑ0ϑ1ϑ2 . . .ϑnΩn+1,

we use results by Schütte and Simpson [17]. The other direction will be shown by

turning the already convincing sketch of the second author into a general argument.

Lemma 13 The order type of (Tn+1[0],<) is equal to

ϑ0ϑ1ϑ2 . . .ϑnΩn+1 = ϑ0ϑ1ϑ2 . . .ϑnϑn+10.
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Proof We show that

ϑ0ϑ1ϑ2 . . .ϑnϑn+10 = sup
n1,...,nk<n+1 with ϑ0ϑn1

...ϑnk
0∈T

ϑ0ϑn1
. . .ϑnk

0

= sup
α∈Tn+1[0]

α.

1. We prove by induction on the length of α , that ∀k≤ n∀α ∈Tn+1[k], α <ϑkϑk+1 . . .ϑnϑn+10.

If α = 0, the claim is trivial. Assume α = ϑlα
′ with l ≤ k. If l < k, then the claim

is trivial. Assume l = k. α ′ is a term in Tn+1[k+1], hence α ′ < ϑk+1 . . .ϑnϑn+10.

Furthermore, kkα ′ ∈ Tn+1[k] is a term of length strictly smaller than α , hence

kkα ′ < ϑkϑk+1 . . .ϑnϑn+10. Hence, ϑkα ′ < ϑkϑk+1 . . .ϑnϑn+10.

2. To prove that ϑ0ϑ1ϑ2 . . .ϑnϑn+10 is a least upper bound1, we show by induction

on the length of β that ∀k ≤ n∀β ∈ T , if β <ϑkϑk+1 . . .ϑnΩn+1, then β ∈ Tn+1[k].
The only thing we have to show is that β does not contain ϑ j’s for j ≥ n+ 1. If

β = 0, this is trivial. Assume β = ϑlβ
′. If l < k ≤ n, then β ′ ∈ T [k]. Hence,

β ′ < ϑk+1 . . .ϑnΩn+1 because S(β ′) < k+1. Therefore, β ′ and β are in Tn+1[k].
Suppose that l = k ≤ n. β < ϑkϑk+1 . . .ϑnΩn+1 yields β ≤ kkϑk+1 . . .ϑnΩn+1 = 0

or (β ′ < ϑk+1 . . .ϑnΩn+1 and kkβ ′ < ϑk . . .ϑnΩn+1). In the former case, the claim

follows trivially. Assume the latter. β ′ < ϑk+1 . . .ϑnΩn+1 yields β ′ ∈ Tn+1[k+1].
Hence β = ϑkβ ′ ∈ Tn+1[k]. This ends the proof.

4.1 Lower bound

In this subsection, we prove ωn+2 ≤ ϑ0ϑ1ϑ2 . . .ϑnΩn+1, where n ≥ 1.

Definition 30 1. If α ∈ T , define

diα :=

{

ϑiα if Sα ≤ i,

ϑidi+1α otherwise.

2. For ordinals in π(ω), define · as follows:

– 0 := 0,

– πiα := di+1α .

3. On T , define 0[β ] := β and (ϑiα)[β ] := ϑi(α[β ]).
4. Let ψ be the function from ϕπ0(n)0 to T which is defined as follows:

– ψ0 := 0,

– ψϕπ0α β := d0α[ψβ ].

It is easy to see that the image of ψ lies in Tn+1[0]. We show that ψ is order-

preserving in order to obtain a lower bound for the order type of Tn+1[0].

Lemma 14 Let α,β be elements in π(ω) and γ,δ elements in T .

1. α < β and γ,δ < Ω yields α[γ]< β [δ ],

1 Remark that Tn+1[0] does not have a maximum: one can prove by induction on the length of α that

α < ϑ0α .
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2. γ < δ < Ω yields α[γ]< α[δ ],
3. Gkα < β and γ,δ < Ω yield kk+1α[γ]< dk+1β [δ ],
4. α < β , Gkα < β and γ,δ < Ω yields dk+1α[γ]< dk+1β [δ ],
5. If ζ ,η ∈ ϕπ0(n)0, then ζ < η yields ψζ < ψη .

Proof We prove assertions 1.–4. simultaneously by induction on lh(α). If α = 0,

then 1. and 2. are trivial. Assertion 3. is also easy to see because kk+1α[γ] = γ <
Ω ≤ dk+1β [δ ]. In assertion 4., dk+1α[γ] = ϑk+1γ . Now, dk+1β [δ ] = ϑk+1ζ for a

certain ζ ≥ Ω . Therefore, γ < ζ and kk+1γ = γ < dk+1β [δ ], which yields dk+1α[γ] =
ϑk+1γ < dk+1β [δ ].

From now on, assume α = πiα
′.

Assertion 1.: α < β yields β = π jβ
′ with i ≤ j. If i < j, then the assertion fol-

lows. Assume i = j. Then α ′ < β ′. We know that Gi(α
′)< α ′ because πiα

′ ∈ π(ω).
Assertion 4. and α ′ < β ′ yield di+1α ′[γ]< di+1β ′[δ ], which is α[γ]< β [δ ].

Assertion 2.: We know that Gi(α
′)<α ′, hence Gl(α

′)<α ′ for all l ≥ i. Assertion

3. then yields kl+1α ′[γ] < dl+1α ′[δ ] for all l ≥ i. If α ′ = 0, then assertion 2. easily

follows from γ < δ . Assume α ′ 6= 0.

If S(α ′) ≤ i+ 1, then α[γ] = di+1α ′[γ] = ϑi+1α ′[γ]. Therefore, assertion 2. fol-

lows if α ′[γ] < α ′[δ ] and ki+1α ′[γ] < ϑi+1α ′[δ ] = di+1α ′[δ ]. We already know that

the second inequality is valid. The first inequality follows from the main induction

hypothesis.

Assume now S(α ′) > i + 1. We claim that d jα ′[γ] < d jα ′[δ ] for all j ∈ {i +
1, . . . ,S(α ′)}. Assertion 2. then follows from j = i+ 1. We prove our claim by in-

duction on l = S(α ′)− j ∈ {0, . . . ,S(α ′)− i− 1}. If l = 0, then j = S(α ′) > i+ 1.

Then the claim follows if k jα ′[γ] < d jα ′[δ ] and α ′[γ] < α ′[δ ]. The first inequality

follows from assertion 3. and the fact that G j−1(α
′)< α ′. The second inequality fol-

lows from the main induction hypothesis. Now, assume that the claim is true for l.

We want to prove that it is true for l + 1 = S(α ′)− j. Hence, l = S(α ′)− ( j + 1).
The induction hypothesis yields d j+1α ′[γ] < d j+1α ′[δ ]. We also see that j ≥ i+ 1,

so j − 1 ≥ i, hence k jα ′[γ] < d jα ′[δ ]. Because S(α ′)− j = l + 1 > 0, we have

S(α ′) > j. Hence, d jα ′[γ] = ϑ jd j+1α ′[γ]. The claim follows if k jα ′[γ] < d jα ′[δ ]
and d j+1α ′[γ]< d j+1α ′[δ ], but we already know that both inequalities are true.

Assertion 3.: If i < k, then kk+1α[γ] = α[γ]< dk+1β [δ ] because S(α[γ]) = i+1 <
k+1.

If i > k, then kk+1α[γ] = kk+1α ′[γ]. Therefore, Gk(α) = Gk(α
′)∪{α ′} < β and the

induction hypothesis yield the assertion.

Assume that i = k. Then kk+1α[γ] = α[γ] = dk+1α ′[γ] and Gk(α) = Gk(α
′)∪{α ′}<

β . The induction hypothesis on assertion 4. yields dk+1α ′[γ]< dk+1β [δ ], from which

we can conclude the assertion.

Assertion 4.: α < β yields β = π jβ
′ with i ≤ j.

If i+1= S(α)≤ k+1, then dk+1α[γ] =ϑk+1α[γ]. There are two sub-cases: either

j+1 = S(β [δ ])≤ k+1 or not. In the former case, we obtain dk+1β [δ ] = ϑk+1β [δ ].
Assertion 4. then follows from assertions 1. and 3. and the induction hypothesis. In

the latter case, we have dk+1β [δ ] = ϑk+1dk+2β [δ ]. Assertion 4. follows from α[γ]<
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dk+2β [δ ] and assertion 3. The previous strict inequality is valid because S(α[γ]) =
i+1 ≤ k+1 < k+2.

From now on assume that i+ 1 = S(α) > k+ 1. Actually, we only assume that

S(α)≥ k.

Gkα < β yields Glα < β for all l ≥ k. We claim that d j+1α[γ] < d j+1β [δ ] for

all j ∈ {k, . . . ,S(α)} and show this by induction on l = S(α)− j ∈ {0, . . . ,S(α)−k}.

The assertion then follows from taking l = S(α)− k.

If l = 0 or l = 1, then S(α) = k or equals k+1, hence the claim follows from the

case S(α)≤ k+1. Assume that the claim is true for l ≥ 1. We want to prove that this is

also true for l +1 = S(α)− j. The induction hypothesis on l = S(α)− ( j+1) yields

d j+2α[γ] < d j+2β [δ ]. Now because l ≥ 1, we have S(β ) ≥ S(α) ≥ j + 2 > j + 1.

So, d j+1α[γ] = ϑ j+1d j+2α[γ] and d j+1β [δ ] = ϑ j+1d j+2β [δ ]. Then the claim is valid

if d j+2α[γ] < d j+2β [δ ] and k j+1α[γ] < d j+1β [δ ]. We already know the first strict

inequality. The second one follows from assertion 3. and j ≥ k.

Assertion 5.: We prove this by induction on lh(ζ )+ lh(η). Assume ζ = ϕπ0α γ <
ϕπ0β δ = η . There are three cases.

Case 1: π0α < π0β and γ < η . The induction hypothesis yields ψ(γ) < ψ(η).
Furthermore, we know that α < β . If α = 0, then d0α[ψ(γ)] = ϑ0ψ(γ). We want

to check if this is strictly smaller than ψ(η) = d0β [ψ(δ )] = ϑ0d1β [ψ(δ )]. Triv-

ially ψ(γ) < d1β [ψ(δ )]. Furthermore, k0(ψ(γ)) = ψ(γ) < ψ(η). Hence ψ(ζ ) =
ϑ0ψ(γ)< ϑ0d1β [ψ(δ )] = ψ(η). Assume now 0 < α < β . We want to prove that

d0α[ψ(γ)] = ϑ0d1α[ψ(γ)]

< d0β [ψ(δ )] = ϑ0d1β [ψ(δ )].

Assertion 4., α < β and G0(α)<α < β yield d1α[ψ(γ)]< d1β [ψ(δ )]. Additionally,

k0d1α[ψ(γ)] = ψ(γ)< ψ(η) = ϑ0d1β [ψ(δ )],

hence d0α[ψ(γ)]< d0β [ψ(δ )].

Case 2: π0α = π0β and γ < δ . The induction hypothesis yields ψ(γ)<ψ(δ ). As-

sertion 2. on π0α then yields π0α[ψ(γ)]< π0α[ψ(δ )]. Hence, d1α[ψ(γ)]< d1α[ψ(δ )] =
d1β [ψ(δ )]. Additionally,

k0d1α[ψ(γ)] = ψ(γ)< ψ(δ ) = k0(d1β [ψ(δ )])≤ ϑ0(d1β [ψ(δ )]),

hence d0α[ψ(γ)]< d0β [ψ(δ )].

Case 3.: π0α > π0β and ζ < δ . Then ψ(ζ )<ψ(δ )≤ k0(d1β [ψ(δ )])≤ϑ0(d1β [ψ(δ )])=
ψ(η).

Corollary 3 ωn+2 ≤ ϑ0ϑ1 . . .ϑnΩn+1

Proof From the Theorems 8 and 9, we know that the order type of ϕπ0(n)0 is ωn+2.

Therefore, using assertion 5 in Lemma 14, we obtain ωn+2 ≤ otype(Tn+1[0]) =ϑ0 . . .ϑnΩn+1.
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4.2 Upper bound

In this subsection, we prove ϑ0ϑ1ϑ2 . . .ϑnΩn+1 = otype(Tn+1[0]) ≤ ωn+2. For this

purpose, we introduce a new notation system with the same order type as Tn.

Definition 31 Let n < ω . Define T ′
n+1 as the least subset of Tn+1 such that

– 0 ∈ T ′
n+1,

– if α ∈ T ′
n+1, Sα = i+1 and i < n, then ϑiα ∈ T ′

n+1,

– if α ∈ T ′
n+1, then ϑnα ∈ T ′

n+1.

Note that for all α ∈ T ′
n+1, we have Sα ≤ n. Let T ′

0 be {0} and define T ′
n [m] accord-

ingly as Tn[m].

Lemma 15 The order types of T ′
n and Tn are equal.

Proof Trivially, T ′
n ⊆Tn, hence otype(T ′

n)≤ otype(Tn). Now, we give an order-preserving

function ψ from Tn to T ′
n . If n = 0, this function appears trivially. So assume n =

m+1 > 0.
ψ : Tm+1 → T ′

m+1,
0 7→ 0,
ϑiα 7→ ϑiϑi+1 . . .ϑmψ(α).

Let us first prove the following claim: for all i ≤ m, if ψ(ξ ) < ψ(ζ ) < Ωi+1 =
ϑi+10, then ψ(ϑiξ ) < ψ(ϑiζ ). We prove this claim by induction on m− i. i = m,

then ψ(ϑmξ ) = ϑmψ(ξ ) and ψ(ϑmζ ) = ϑmψ(ζ ). Hence, ψ(ϑmξ )< ψ(ϑmζ ) easily

follows because km(ψ(ξ )) = ψ(ξ ) < ψ(ζ ) = km(ψ(ζ )) < ϑm(ψ(ζ )). Let i < m.

Then

ψ(ϑiξ ) = ϑi . . .ϑmψ(ξ ),

ψ(ϑiζ ) = ϑi . . .ϑmψ(ζ ).

Using the induction hypothesis, we obtain ψ(ϑi+1ξ )=ϑi+1 . . .ϑmψ(ξ )<ψ(ϑi+1ζ )=
ϑi+1 . . .ϑmψ(ζ ). Furthermore, ki(ϑi+1 . . .ϑmψ(ξ )) = ki(ψ(ξ )) = ψ(ξ ) < ψ(ζ ) =
ki(ψ(ζ ))= ki(ϑi+1 . . .ϑmψ(ζ ))<ϑi(ϑi+1 . . .ϑmψ(ζ )). Hence, ψ(ϑiξ ) =ϑi . . .ϑmψ(ξ )<
ψ(ϑiζ ) = ϑi . . .ϑmψ(ζ ). This finishes the proof of the claim.

Now we prove by main induction on lh(α)+ lh(β ) that α < β yields ψ(α) <
ψ(β ). If α = 0, then the claim trivially holds. Assume 0 < α < β . Then α = ϑiα

′

and β = ϑ jβ
′. If i < j, then ψ(α) < ψ(β ) is also trivial. Assume i = j ≤ m and let

α ′ =ϑ j1 . . .ϑ jk kiα
′ and β ′ =ϑn1

. . .ϑnl
kiβ

′ with j1, . . . , jk,n1, . . . ,nl > i. α < β either

yields α ≤ kiβ
′ or α ′ < β ′ and kiα

′ < β . In the former case, the induction hypothesis

yields ψ(α)≤ ψ(kiβ
′) = ki(ψ(ϑn1

. . .ϑnl
kiβ

′)) = ki(ψ(β ′)) = ki(ϑi+1 . . .ϑmψ(β ′))
< ϑi(ϑi+1 . . .ϑmψ(β ′)) = ψ(β ).

Assume that we are in the latter case, meaning α ′ < β ′ and kiα
′ < β . The in-

duction hypothesis yields ψα ′ < ψβ ′ and ψ(kiα
′) < ψβ . Like before, we attain

ψ(kiα
′) = ki(ϑi+1 . . .ϑmψ(α ′)) < ψβ = ϑi(ϑi+1 . . .ϑmψ(β ′)). So if we can prove

ϑi+1 . . .ϑmψ(α ′)<ϑi+1 . . .ϑmψ(β ′), we are done. But this follows from the claim: if

i= j <m, then S(α ′),S(β ′)≤ i+1≤m, hence ψ(α ′)<ψ(β ′)<Ωi+2, so ϑi+1 . . .ϑmψ(α ′)=
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ψ(ϑi+1α ′)< ψ(ϑi+1β ′) = ϑi+1 . . .ϑmψ(β ′). If i = j = m, then ϑi+1 . . .ϑmψ(α ′) and

ϑi+1 . . .ϑmψ(β ′) are actually ψ(α ′) and ψ(β ′) and we know that ψ(α ′) < ψ(β ′)
holds.

The previous proof also yields that the order types of T ′
n [m] and Tn[m] are equal.

4.2.1 The instructive part: ϑ0ϑ1ϑ2Ω3 ≤ ωωωω

In this subsection, we prove that ωωωω

is an upper bound for ϑ0ϑ1ϑ2Ω3 as an in-

structive instance for the general case

ϑ0ϑ1ϑ2 . . .ϑnΩn+1 = otype(Tn+1[0])≤ ωn+2.

We will show this by proving that otype(T ′
3 [0]) ≤ ωωωω

. We start with two simple

lemmata, where we interpret Ωi as usual as the ith uncountable cardinal number for

i > 0.

Lemma 16 If Ω2 ·α +β < Ω2 · γ +δ and α,γ < ε0 and β ,δ < Ω2 and if β = ξ ·β ′

where β ′<Ω1 ·ω
γ +ωωγ

·δ and ξ <ωωγ
, then Ω1 ·ω

α +ωωα
·β <Ω1 ·ω

γ +ωωγ
·δ .

Proof Note that it is possible that β ,δ ≥ Ω1. If α = γ then β < δ and the assertion

is obvious. So assume α < γ . β ′ < Ω1 ·ω
γ +ωωγ

·δ yields β = ξ β ′ < ξ (Ω1 ·ω
γ +

ωωγ
· δ ) = Ω1 ·ωγ +ωωγ

· δ since Ω1 and ωωγ
are multiplicatively closed. By the

same argument ωωα
β < ωωα

(Ω1 ·ω
γ +ωωγ

· δ ) = Ω1 ·ω
γ +ωωγ

· δ . Finally, Ω1 ·
ωα +ωωα

·β < Ω1 ·ω
α +Ω1 ·ω

γ +ωωγ
·δ = Ω1 ·ω

γ +ωωγ
·δ .

Lemma 17 If Ω1 ·α+β <Ω1 ·γ+δ and α,γ < ε0 and β ,δ <Ω1 and if β <ωωγ
·δ ,

then ωωα
·β < ωωγ

·δ .

Proof If α = γ , then β < δ and the assertion is obvious. So assume α < γ . Then

ωωα
·β < ωωα

ωωγ
·δ = ωωγ

·δ .

The last two lemmata indicate how one might replace iteratively terms in ϑi (start-

ing with the highest level i) by terms in ω,+,Ωi in an order-preserving way such that

terms of level 0 are smaller than ε0.

Definition 32 Define E as the least set such that

– 0 ∈ E,

– α ∈ E, then ωα ∈ E,

– α,β ∈ E, then α +β ∈ E.

Define the subset P of E as the set of all elements of the form ωα for α ∈ E. This

actually means that P is the set of the additively closed ordinals strictly below ε0.

A crucial role is played by the following function f .

Definition 33 Let f (0) := 0 and f (ωα1 +α2) := ωα1 + f (α1)+ f (α2).
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This definition even works (by magic) also for non Cantor normal forms. So if

ωα1 +α2 =α2 we still have f (ωα1 +α2)=ωα1 + f (α1)+ f (α2)[= f (α2)]. The func-

tion f is easily shown to be order-preserving. Moreover, one finds ωα1 ≤ f (ωα1 +
α2)< ωα1+1 if α2 < ωα1+1.

Fix a natural number n. We formally work with 4-tuples (α,β ,γ,δ ) ∈ E ×T [n−
1]×P×E with α,δ ∈ E, γ ∈ P, β ∈ T [n−1] and δ < γ . Let T [−1] := {0}. We order

these tuples lexicographically. Intuitively, we interpret such a tuple as the ordinal

Ωn ·α + γ ·β +δ ,

where Ωi is as usual the ith uncountable ordinal for i > 0, but now Ω0 is interpreted

as 0.

We remark that the interpretation of (α,β ,γ,δ ) as an ordinal number is not en-

tirely correct: the lexicographic order on the tuples is not the same as the induced

order by the ordering on the class of ordinals On. But in almost all applications,

we know that γ = ω f (α). And if this is true, we know that the order induced by the

ordering on On is the same as the defined lexicographic one. Additionally, the en-

countered cases where γ 6= ω f (α), we know that if we compare two tuples (α,β ,γ,δ )
and (α ′,β ′,γ ′,δ ′) such that α = α ′, then we already know that γ = γ ′. Hence, the

order induced by the ordering on On between these terms is also the same as the

lexicographic one.

β is either 0 or of the form ϑ jβ
′ with j < n, hence we can interpret that β <Ωn for

n > 0. Assume that ζ ∈ P. Then we know that ζ ·Ωn = Ωn. Hence using all of these

interpretations, ζ ·(α,β ,γ,δ ) is still a 4-tuple, namely it is equal to (α,β ,ζ ·γ,ζ ·δ ).
We can also define the sum between 4-tuples: assume n > 0. If α ′ > 0, then

(α,β ,γ,δ )+(α ′,β ′,γ ′,δ ′) = Ωn ·α + γ ·β +δ +Ωn ·α
′+ γ ′ ·β ′+δ ′

= Ωn · (α +α ′)+ γ ′ ·β ′+δ ′

= (α +α ′,β ′,γ ′,δ ′)

If α ′ = 0 and β ′ = 0, then

(α,β ,γ,δ )+(α ′,β ′,γ ′,δ ′) = Ωn ·α + γ ·β +δ +Ωn ·α
′+ γ ′ ·β ′+δ ′

= Ωnα + γ ·β +(δ +δ ′)

= (α,β ,γ,δ +δ ′)

We do not need the case α ′ = 0 and β ′ 6= 0. If n = 0, then

(α,β ,γ,δ )+(α ′,β ′,γ ′,δ ′) = Ωn ·α + γ ·β +δ +Ωn ·α
′+ γ ′ ·β ′+δ ′

= δ +δ ′

= (0,0,0,δ +δ ′)

From now on, we write

Ωn ·α + γ ·β +δ ,

instead of the 4-tuple (α,β ,γ,δ ), although we know that the induced order by the

ordering on On is not entirely the same as the lexicographic one.
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Definition 34 Define T all
n as the set consisting of Ωn ·α +ω f (α) ·δ +γ , where α,γ ∈

E with γ < ω f (α) and δ ∈ T [n−1].

Note that after an obvious translation, T all
0 = E and Tn ⊆ T [n−1]⊆ T all

n .

Lemma 18 Assume α ′,β ′ ∈ T [0]. If

α = ϑ1ϑ n1
2 . . .ϑ1ϑ

np

2 α ′ < β = ϑ1ϑ l1
2 . . .ϑ1ϑ

lq
2 β ′

with ni, li > 0, then

Ω1 · (ω
n1 + · · ·+ωnp)+ωωn1+···+ωnp+np ·α ′+ωωn1+···+ωnp

+ωωn1+···+ω
np−1

+ · · ·+ωωn1

< Ω1 · (ω
l1 + · · ·+ω lq)+ωω l1+···+ω lq+lq ·β ′+ωω l1+···+ω lq

+ωω l1+···+ω
lq−1

+ · · ·+ωω l1 .

Proof Note that f (ωn1 + · · ·+ωnp) = ωn1 + · · ·+ωnp +np and that ωn1 + · · ·+ωnp

is not necessarily in Cantor normal form. We prove by induction on lh(α)− lh(α ′)+
lh(β )− lh(β ′) that the assumption yields

(ωn1 + · · ·+ωnp ,α ′,ωn1 + · · ·+ωnp−1 , . . . ,ωn1)

<lex (ω
l1 + · · ·+ω lq ,β ′,ω l1 + · · ·+ω lq−1 , . . . ,ω l1).

From this inequality, the lemma follows.

If lh(α) = lh(α ′), then p = 0. If q > 0, then this is trivial, so we can assume that q

is also 0. But then ωn1 + · · ·+ωnp =ω l1 + · · ·+ω lq = 0 and α ′ =α < β = β ′. Now as-

sume that p > 0. It is impossible that q = 0. α < β yields either ϑ1ϑ n1
2 . . .ϑ1ϑ

np

2 α ′ <

ϑ1ϑ l2
2 . . .ϑ1ϑ

lq
2 β ′ or (ϑ n1

2 . . .ϑ1ϑ
np

2 α ′<ϑ l1
2 . . .ϑ1ϑ

lq
2 β ′ and ϑ1ϑ n2

2 . . .ϑ1ϑ
np

2 α ′<ϑ1ϑ l1
2 . . .ϑ1ϑ

lq
2 β ′).

In the former case, the induction hypothesis yields

(ωn1 + · · ·+ωnp ,α ′,ωn1 + · · ·+ωnp−1 , . . . ,ωn1)

<lex (ω
l2 + · · ·+ω lq ,β ′,ω l2 + · · ·+ω lq−1 , . . . ,ω l2).

If l2 ≤ l1, then trivially

(ω l2 + · · ·+ω lq ,β ′,ω l2 + · · ·+ω lq−1 , . . . ,ω l2 ,ω l1)

<lex (ω
l1 + · · ·+ω lq ,β ′,ω l1 + · · ·+ω lq−1 , . . . ,ω l1 +ω l2 ,ω l1).

If l2 > l1, then

(ω l2 + · · ·+ω lq ,β ′,ω l2 + · · ·+ω lq−1 , . . . ,ω l2)

= (ω l1 +ω l2 + · · ·+ω lq ,β ′,ω l1 +ω l2 + · · ·+ω lq−1 , . . . ,ω l1 +ω l2)

<lex (ω
l1 + · · ·+ω lq ,β ′,ω l1 + · · ·+ω lq−1 , . . . ,ω l1 +ω l2 ,ω l1).
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Assume that we are in the latter case. ϑ n1
2 . . .ϑ1ϑ

np

2 α ′ < ϑ l1
2 . . .ϑ1ϑ

lq
2 β ′ yields

n1 < l1 or n1 = l1 and ϑ1ϑ n2
2 . . .ϑ1ϑ

np

2 α ′ < ϑ1ϑ l2
2 . . .ϑ1ϑ

lq
2 β ′.

Suppose n1 < l1. The induction hypothesis on

ϑ1ϑ n2
2 . . .ϑ1ϑ

np

2 α ′ < ϑ1ϑ l1
2 . . .ϑ1ϑ

lq
2 β ′

implies

(ωn2 + · · ·+ωnp ,α ′,ωn2 + · · ·+ωnp−1 , . . . ,ωn2)

<lex (ω
l1 + · · ·+ω lq ,β ′,ω l1 + · · ·+ω lq−1 , . . . ,ω l1).

Let

s := (ωn2 + · · ·+ωnp ,α ′,ωn2 + · · ·+ωnp−1 , . . . ,ωn2)

s′ := (ω l1 + · · ·+ω lq ,β ′,ω l1 + · · ·+ω lq−1 , . . . ,ω l1).

Note that lh(s) = p and lh(s′) = q+ 1. If lh(s) < lh(s′) and si = s′i for all i < lh(s),
then

(ωn1 + · · ·+ωnp ,α ′,ωn1 + · · ·+ωnp−1 , . . . ,ωn1)

= (ωn2 + · · ·+ωnp ,α ′,ωn2 + · · ·+ωnp−1 , . . . ,ωn2 ,ωn1)

<lex (ω
l1 + · · ·+ω lq ,β ′,ω l1 + · · ·+ω lq−1 , . . . ,ω l1),

where for the last inequality we need n1 < l1 if p = q. If there exists an index j <
min{lh(s), lh(s′)} such that s j < s′j and si = s′i for all i < j, then

(ωn1 + · · ·+ωnp ,α ′,ωn1 + · · ·+ωnp−1 , . . . ,ωn1)

(ωn2 + · · ·+ωnp ,α ′,ωn2 + · · ·+ωnp−1 , . . . ,ωn2 ,ωn1)

<lex (ω
l1 + · · ·+ω lq ,β ′,ω l1 + · · ·+ω lq−1 , . . . ,ω l1).

Now assume n1 = l1. The induction hypothesis on ϑ1ϑ n2
2 . . .ϑ1ϑ

np

2 α ′<ϑ1ϑ l2
2 . . .ϑ1ϑ

lq
2 β ′

implies

(ωn2 + · · ·+ωnp ,α ′,ωn2 + · · ·+ωnp−1 , . . . ,ωn2)

<lex (ω
l2 + · · ·+ω lq ,β ′,ω l2 + · · ·+ω lq−1 , . . . ,ω l2).

Let

s := (ωn2 + · · ·+ωnp ,α ′,ωn2 + · · ·+ωnp−1 , . . . ,ωn2)

s′ := (ω l2 + · · ·+ω lq ,β ′,ω l2 + · · ·+ω lq−1 , . . . ,ω l2).

Note that lh(s) = p and lh(s′) = q. If lh(s)< lh(s′) and si = s′i for all i < lh(s), then

one can easily prove

(ωn1 +ωn2 + · · ·+ωnp ,α ′,ωn1 + · · ·+ωnp−1 , . . . ,ωn1 +ωn2)

<lex (ω
l1 +ω l2 + · · ·+ω lq ,β ′,ω l1 + · · ·+ω lq−1 , . . . ,ω l1 +ω l2),
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hence

(ωn1 +ωn2 + · · ·+ωnp ,α ′,ωn1 + · · ·+ωnp−1 , . . . ,ωn1 +ωn2 ,ωn1)

<lex (ω
l1 +ω l2 + · · ·+ω lq ,β ′,ω l1 + · · ·+ω lq−1 , . . . ,ω l1 +ω l2)

<lex (ω
l1 +ω l2 + · · ·+ω lq ,β ′,ω l1 + · · ·+ω lq−1 , . . . ,ω l1 +ω l2 ,ω l1).

If there exists an index j < min{lh(s), lh(s′)} such that s j < s′j and si = s′i for all

i < j, then also

(ωn1 +ωn2 + · · ·+ωnp ,α ′,ωn1 + · · ·+ωnp−1 , . . . ,ωn1 +ωn2)

<lex (ω
l1 +ω l2 + · · ·+ω lq ,β ′,ω l1 + · · ·+ω lq−1 , . . . ,ω l1 +ω l2),

hence

(ωn1 +ωn2 + · · ·+ωnp ,α ′,ωn1 + · · ·+ωnp−1 , . . . ,ωn1 +ωn2 ,ωn1)

<lex (ω
l1 +ω l2 + · · ·+ω lq ,β ′,ω l1 + · · ·+ω lq−1 , . . . ,ω l1 +ω l2 ,ω l1).

Define τ0 as the mapping from T ′
3 [0] to T all

0 = E as follows: let τ00 := 0. If α =

ϑ0ϑ1ϑ n1
2 . . .ϑ1ϑ

np

2 α ′ with α ′ ∈ T ′
3 [0] and n1, . . . ,np, p > 0, define τ0α as

ωωωn1+···+ωnp

·(ωωn1+···+ωnp+np ·τ0α ′+ωωn1+···+ωnp
+ωωn1+···+ω

np−1
+ · · ·+ωωn1 ).

Lemma 19 Assume α,β ∈ T ′
3 [0]. If α < β , then τ0α < τ0β .

Proof We prove this by induction on the length of α and β . If α = 0, then this is

trivial. So we can assume that 0 < α < β . Hence,

α = ϑ0ϑ1ϑ n1
2 . . .ϑ1ϑ

np

2 α ′

and

β = ϑ0ϑ1ϑ l1
2 . . .ϑ1ϑ

lq
2 β ′

with α ′,β ′ ∈ T ′
3 [0] and n1, . . . ,np, l1, . . . , lq, p,q > 0.

We want to prove that

τ0α = ωωωn1+···+ωnp

· (ωωn1+···+ωnp+np · τ0α ′+ωωn1+···+ωnp
+ · · ·+ωωn1 )

< τ0β = ωωωl1+···+ωlq

· (ωω l1+···+ω lq+lq · τ0β ′+ωω l1+···+ω lq
+ · · ·+ωω l1 ).

α = ϑ0ϑ1ϑ n1
2 . . .ϑ1ϑ

np

2 α ′ < β = ϑ0ϑ1ϑ l1
2 . . .ϑ1ϑ

lq
2 β ′ yields two cases: either α ≤

k0(ϑ1ϑ l1
2 . . .ϑ1ϑ

lq
2 β ′) = β ′ or (ϑ1ϑ n1

2 . . .ϑ1ϑ
np

2 α ′ < ϑ1ϑ l1
2 . . .ϑ1ϑ

lq
2 β ′ and α ′ < β ).

In the former case, the induction hypothesis yields τ0α ≤ τ0β ′ < τ0β .

So assume the latter case. Then the induction hypothesis yields τ0α ′ < τ0β . Using

Lemma 18, we know that

Ω1 · (ω
n1 + · · ·+ωnp)+ωωn1+···+ωnp+np · τ0α ′+ωωn1+···+ωnp

+ωωn1+···+ω
np−1

+ · · ·+ωωn1

< Ω1 · (ω
l1 + · · ·+ω lq)+ωω l1+···+ω lq+lq · τ0β ′+ωω l1+···+ω lq

+ωω l1+···+ω
lq−1

+ · · ·+ωω l1 .
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If ωn1 + · · ·+ωnp < ω l1 + · · ·+ω lq , then

ωωωn1+···+ωnp

·ωωn1+···+ωnp+np · τ0α ′ < ωωωn1+···+ωnp

·ωωn1+···+ωnp+npτ0β = τ0β .

Therefore,

ωωωn1+···+ωnp

· (ωωn1+···+ωnp+np · τ0α ′+ωωn1+···+ωnp
+ · · ·+ωωn1 )

< ωωωn1+···+ωnp

·ωωn1+···+ωnp+np · τ0α ′

+ωωωn1+···+ωnp

· (ωωn1+···+ωnp
+ · · ·+ωωn1 )

< τ0β ,

because ωωωn1+···+ωnp

·(ωωn1+···+ωnp
+ · · ·+ωωn1 )< ωωωl1+···+ωlq

. We used the stan-

dard observation that ξ < ρ +ωµ and λ < µ imply ξ +ωλ < ρ +ωµ .

Assume ωn1 + · · ·+ωnp =ω l1 + · · ·+ω lq and τ0α ′< τ0β ′. Then τ0α <ωωωn1+···+ωnp

·

ωωn1+···+ωnp+np · (τ0α ′+1)≤ ωωωn1+···+ωnp

·ωωn1+···+ωnp+np · τ0β ′ ≤ τ0β .

Assume ωn1 + · · ·+ωnp =ω l1 + · · ·+ω lq , τ0α ′= τ0β ′ and ωωn1+···+ωnp
+ωωn1+···+ω

np−1
+

· · ·+ωωn1 < ωω l1+···+ω lq
+ωω l1+···+ω

lq−1
+ · · ·+ωω l1 . Then trivially, τ0α < τ0β .

4.2.2 The general part: ϑ0 . . .ϑnΩn+1 ≤ ωn+2

We show that otype(T ′
n+1[0])≤ωn+2. The previous section gives us the idea of how to

deal with this question, however the order-preserving embeddings in this subsection

are slightly different than the ones proposed in the previous Subsection 4.2.1 for

technical reasons. Fix a natural number n strictly bigger than 0.

Definition 35 τm are functions from T ′
n+1[m] to T all

m . We define τmα for all m simul-

taneously by induction on the length of α . If m ≥ n+ 1, then T ′
n+1[m] = T ′

n+1 and

define τmα = α = Ωm0+ω0α +0 for all α . Note that α ∈ T ′
n+1 ⊆ T [n]⊆ T [m−1].

Assume m ≤ n. Define τm0 as 0. Define τmϑ jα as ϑ jα if j < m. Define τmϑmα as

Ωmωβ +ωωβ
(ω f (β ) · τmkmα +η)+1 if τm+1α = Ωm+1β +ω f (β )kmα +η .

First we prove that τm is well-defined.

Lemma 20 For all m > 0 and α ∈ T ′
n+1[m], there exist uniquely determined β and η

with η < ω f (β ) such that τmα = Ωmβ +ω f (β )km−1α +η . Furthermore, η is either

zero or a successor.

Proof We prove the first claim by induction on lh(α) and n+ 1−m. If m ≥ n+ 1,

then this is trivial by definition. Assume 0 < m ≤ n. From the induction hypothesis,

we know that there exist β , η , β1, η1 such that τm+1α =Ωm+1β +ω f (β )kmα+η with

η < ω f (β ) and τmkmα = Ωmβ1 +ω f (β1)km−1kmα +η1 with η1 < ω f (β1). We want
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to prove that there exist β ′ and η ′ such that τmϑmα = Ωmβ ′+ω f (β ′)km−1ϑmα +η ′

with η ′ < ω f (β ′). Using the definition,

τmϑmα

= Ωmωβ +ωωβ
(ω f (β ) · τmkmα +η)+1

= Ωmωβ +ωωβ
(ω f (β ) · (Ωmβ1 +ω f (β1)km−1kmα +η1)+η)+1

= Ωm(ω
β +β1)+ωωβ

ω f (β )(ω f (β1)km−1kmα +η1)+ωωβ
η +1

= Ωm(ω
β +β1)+ωωβ

ω f (β )ω f (β1)km−1kmα +ωωβ
ω f (β )η1 +ωωβ

η +1

= Ωm(ω
β +β1)+ω f (ωβ+β1)km−1kmα +ωωβ

ω f (β )η1 +ωωβ
η +1

= Ωm(ω
β +β1)+ω f (ωβ+β1)km−1ϑmα +ωωβ

ω f (β )η1 +ωωβ
η +1.

Define β ′ as ωβ +β1 > 0 and η ′ as ωωβ
ω f (β )η1+ωωβ

η+1. Note that ωωβ
ω f (β )η1 <

ωωβ
ω f (β )ω f (β1) = ω f (β ′), ωωβ

η < ωωβ+ f (β ) ≤ ω f (β ′) and 1 < ω f (β ′), hence η ′ <
ω f (β ′).

That η is either zero or a successor for all m and α follows by construction.

The argument in the proof of Lemma 20 is crucially based on the property of f

regarding non-normal forms. The lemma implies that τm is well-defined for all m > 0

and it does not make sense for m = 0 because we did not define k−1α . But, looking

to the definition of τ0, it is easy to see that τ0 is also well-defined.

Note that one can easily prove τ0α ∈ T all
0 for all α ∈ T ′

n+1[0]. Furthermore, τ0α
is also either zero or a successor ordinal. For all m and α , define (τmα)− as τmα , if

η is zero, and as τmα but with η − 1 instead of η , if η is a successor. Additionally,

note that if m > 0 and τmα = Ωmβ +ω f (β )km−1α +η we have β > 0 iff η > 0.

In the next theorem, we will again use the standard observation that ξ < ρ +ωµ

and λ < µ imply ξ +ωλ < ρ +ωµ .

Theorem 11 For all natural m and α,β ∈ T ′
n+1[m], if α < β , then τmα < τmβ .

Proof We prove this theorem by induction on lhα + lhβ . If α and/or β are zero, this

is trivial. So we can assume that α = ϑiα
′ and β = ϑ jβ

′. One can easily prove the

statement if i < j, even if j = m. So we can assume that i = j. If i = j < m, then this

is also easily proved. So suppose that i = j = m. If m > n, then τmα = α < β = τmβ ,

hence we are done. So we can also assume that m ≤ n.

α = ϑmα ′ < ϑmβ ′ yields α ≤ kmβ ′ or α ′ < β ′ and kmα ′ < β . In the former case,

the induction hypothesis yields τmα ≤ τmkmβ ′ < τmϑmβ ′ = τmβ , where τmkmβ ′ <
τmϑmβ ′ follows from the definition of τmϑmβ ′. (One can also look at the proof of

Lemma 20 for m > 0. The case m = 0 is straightforward.) So we only have to prove

the assertion in the latter case, i.e. if α ′ < β ′ and kmα ′ < β . The induction hypothesis

yields τm+1α ′ < τm+1β ′ and τmkmα ′ < τmβ . Assume

τm+1α ′ =Ωm+1 ·α1 +ω f (α1) · kmα ′+α2,

τm+1β ′ =Ωm+1 ·β1 +ω f (β1) · kmβ ′+β2,
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where α2 < ω f (α1), β2 < ω f (β1). Then

τmα =Ωm ·ωα1 +ωωα1 (ω f (α1) · τmkmα ′+α2)+1,

τmβ =Ωm ·ωβ1 +ωωβ1 (ω f (β1) · τmkmβ ′+β2)+1.

The inequality τm+1α ′ < τm+1β ′ yields α1 ≤ β1. Assume first that α1 = β1. Then

τm+1α ′ < τm+1β ′ yields kmα ′ ≤ kmβ ′. If kmα ′ = kmβ ′, then α2 < β2 and τmα < τmβ .

If kmα ′ < kmβ ′ then the induction hypothesis yields τmkmα ′ < τmkmβ ′ and ω f (α1) ·
τmkmα ′+α2 <ω f (α1) ·τmkmβ ′+β2, since α2 <ω f (α1). We then find that τmα < τmβ .

So we may assume that α1 < β1.

Case 1: kmα ′ < ϑm0. Then τmkmα ′ = kmα ′. Hence,

τmα = Ωm ·ωα1 +ωωα1 (ω f (α1) · kmα ′+α2)+1

< Ωm ·ωβ1 +ωωβ1 (ω f (β1) · τmkmβ ′+β2)+1

= τmβ

follows in a straightforward way.

Case 2: kmα ′≥ϑm0. Using the definition, we then have (τmkmα ′)−+1= τmkmα ′.

We show that

ωωα1 ω f (α1) · (τmkmα ′)−+ωωα1 (ω f (α1)+α2)+1 < (τmβ )−

holds, hence

τmα = Ωm ·ωα1 +ωωα1 ω f (α1) · (τmkmα ′)−+ωωα1 (ω f (α1)+α2)+1

< Ωm ·ωα1 +(τmβ )−

= (τmβ )−

< τmβ .

We know τmkmα ′ < τmβ , hence

(τmkmα ′)− < (τmβ )− = Ωm ·ωβ1 +ωωβ1 (ω f (β1) · τmkmβ ′+β2).

Therefore, ωωα1 ω f (α1) ·(τmkmα ′)−<ωωα1 ω f (α1) ·(τmβ )−=(τmβ )− because ωωα1 ω f (α1)=
ω f (ωα1 ) and f (ωα1)< ωα1+1 ≤ ωβ1 .

The last term in the normal form of ωωβ1 · β2 is bigger than ωωβ1 . Note that

τm+1β ′ = Ωm+1 · β1 +ω f (β1) · kmβ ′ + β2. The observation just before this theorem

yields β2 > 0 otherwise β1 is zero, a contradiction (because β1 > α1). So if

ωωα1 (ω f (α1)+α2)+1 < ωωβ1 ,

we can finish the proof by the standard observation ξ < ρ +ωµ and λ < µ imply

ξ +ωλ < ρ +ωµ .
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Now,

ωωα1 (ω f (α1)+α2)+1

= ωωα1 ω f (α1)+ωωα1 α2 +1

< ωωβ1

because ωωα1 α2 < ωωα1 ω f (α1) = ω f (ωα1 ) and f (ωα1)< ωα1+1 ≤ ωβ1 .

Lemma 21 For all α ∈ T ′
n+1[m+1] we have that if τm+1α = Ωm+1β +ω f (β )kmα +

η , then
{

β < ω0 = ω0 if m ≥ n,

β < ωn−m if m < n.

Proof We prove this by induction. If m ≥ n, then τm+1α = Ωm+10+ω0α , hence we

are done. Assume m < n. If α = ϑ jα
′ with j < m+1, then β = 0 < ωn−m. Assume

α = ϑm+1α ′. Assume τm+2α ′ = Ωm+2β ′ +ω f (β ′)km+1α ′ + η ′ and τm+1km+1α ′ =
Ωm+1β1+ω f (β1)kmkm+1α ′+η1. From the induction hypothesis, we know β ′<ωn−m−1

and β1 < ωn−m. Then

τm+1α

= Ωm+1ωβ ′
+ωωβ ′

(ω f (β ′)(Ωm+1β1 +ω f (β1)kmkm+1α ′+η1)+η ′)+1

= Ωm+1ωβ ′
+ωωβ ′

ω f (β ′)(Ωm+1β1 +ω f (β1)kmα ′+η1)+ωωβ ′

η ′+1

= Ωm+1(ω
β ′
+β1)+ωωβ ′

ω f (β ′)(ω f (β1)kmα ′+η1)+ωωβ ′

η ′+1.

Now, ωβ ′
+β1 < ωn−m.

Lemma 22 Let n ≥ 1. For all α ∈ T ′
n+1[0] we have that τ0α < ωn+2.

Proof We prove this by induction on lh(α). If α = 0, this is trivial. Assume α ∈

T ′
n+1[0], meaning α = ϑ0α ′ with α ′ ∈ T ′

n+1[1]. Assume τ1α ′ = Ω1β ′+ω f (β ′)k0α ′+

η ′ with η ′ < ω f (β ′). Using Lemma 21, we know that β ′ < ωn−0 = ωn. Additionally,

the induction hypothesis yields τ0k0α ′ < ωn+2. Now,

τ0ϑ0α ′ = ωωβ ′

(ω f (β ′)τ0k0α ′+η ′)+1.

From the definition of f , one obtains that f (β ′)≤ β ′ ·ω . Hence, ω f (β ′)τ0k0α ′+η ′ <

ω f (β ′)(τ0k0α ′+1)< ωn+2, so τ0ϑ0α ′ < ωn+2.

Corollary 4 otype(T ′
n+1)≤ ωn+2.

Proof By Theorem 11, τ0 is an order preserving embedding from T ′
n+1[0] to T all

0 =
E. Furthermore, from Lemma 22, we know τ0α < ωn+2 for all α ∈ T ′

n+1[0]. Hence

otype(T ′
n+1)≤ ωn+2.

Corollary 5 ϑ0ϑ1 . . .ϑnΩn+1 ≤ ωn+2.

Proof By Lemma 15, we know

ϑ0ϑ1 . . .ϑnΩn+1 = otype(Tn+1[0]) = otype(T ′
n+1[0]),

hence the previous corollary yields ϑ0ϑ1 . . .ϑnΩn+1 ≤ ωn+2.
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5 Binary ϑ -functions

So the question remains whether a maximal linear extension of S
w

n can be realized

by a suitable choice of unary functions. It turns out that this, as we will show, is

possible using specific binary theta-functions. However, the question if this is doable

with unary functions remains open. Let n be a fixed non-negative integer. In this

subsection, we also use the notation Tn, however it is different then the previous one.

Definition 36 Let Tn be the least set such that the following holds. On Tn, define S

and Ki.

1. 0 ∈ Tn, S0 :=−1, Ki0 := /0,

2. if α,β ∈ Tn, Sα ≤ i+1 and Sβ ≤ i < n, then θ iαβ ∈ Tn, Sθ iαβ := i and

K jθ iαβ :=

{

K jα ∪K jβ if j < i,

{θ iαβ} otherwise.

Note that all indices in Tn are strictly smaller than n.

Definition 37 For θ iαβ ,θ jγδ ∈ Tn, define θ iαβ < θ jγδ iff either i < j or i = j and

one of the following alternatives holds:

– α < γ & Kiα ∪{β}< θ jγδ ,

– α = γ & β < δ ,

– α > γ & θ iαβ ≤ Kiγ ∪{δ}.

Let 0 < θ iαβ for all θ iαβ ∈ Tn\{0}.

Here θ iαβ ≤ Kiγ ∪{δ} means that θ iαβ ≤ ξ for some ξ ∈ Kiγ ∪{δ}.

Lemma 23 For θ iαβ ∈ Tn, we have β < θ iαβ .

Proof This can be proven by induction on lh(β ).

Definition 38 Define OTn ⊆ Tn as follows.

1. 0 ∈ OTn,

2. if α,β ∈ OTn, Sα ≤ i+1, Sβ ≤ i < n and Kiα = /0, then θ iαβ ∈ OTn

Note that Kiα = /0 yields that α does not contain any θ j for j ≤ i.

Definition 39 If K0α = /0, let α− be the result of replacing every occurence of θ i by

θ i−1.

Lemma 24 If α < β & K0α = K0β = /0, then α− < β− and (Ki+1α)− = Kiα
−.

Proof This can be proven in a straightforward way by induction on lh(α)+ lh(β ).

Therefore, if θ iαβ ∈ OTn, then α− is defined and it is an element of OTn−1.

Additionally, if i = 0, then S(α−),S(β )≤ 0.

Definition 40 Define OTn[0] as OTn ∩Ω1, where Ω1 := θ 000



30 Michael Rathjen et al.

Definition 41 Define o1 : OT1[0]→ ω as follows. An arbitrary element of OT1 is of

the form θ 0(0,θ 0(0, . . .θ 0(0,0) . . .)). Define the image of this element under o1 as k

if θ 0(·, ·) occurs k many times. Define on : OTn[0]→ ω2n−1 for n > 1 as follows.

1. on(0) := 0,

2. on(θ 0αβ ) := ϕon−1(α−)on(β ).

Note that S(α−),S(β )≤ 0 if θ 0αβ ∈ OTn[0].

Theorem 12 For every n ≥ 1, on is order-preserving and surjective.

Proof The surjectivity of on is easy to prove. We prove that on is order-preserving. If

n = 1, this is trivial. Assume n > 1 and assume that on−1 is order preserving. We will

show that for all α,β ∈ OTn[0], α < β yields on(α)< on(β ). If α and/or β are equal

to zero, this is trivial. Assume 0 < α < β . Let α = θ 0α1α2 and β = θ 0β1β2. Then

α < β iff one of the following cases holds:

1. α1 < β1 and α2 < θ 0β1β2,

2. α1 = β1 and α2 < β2,

3. α1 > β1 and θ 0α1α2 ≤ β2.

Note that α1 < β1 yields α−
1 < β−

1 by Lemma 24, hence on−1(α
−
1 ) < on−1(β

−
1 ).

Furthermore, the induction hypothesis yields that the previous case i. is equivalent

with the following case i. for all i.

1. on−1α−
1 < on−1β−

1 and onα2 < onθ 0β1β2,

2. on−1α−
1 = on−1β−

1 and onα2 < onβ2,

3. on−1α−
1 > on−1β−

1 and onθ 0α1α2 ≤ onβ2.

Hence the above case i. is equivalent with the following case i.:

1. on−1α−
1 < on−1β−

1 and onα2 < ϕon−1β−
1

onβ2,

2. on−1α−
1 = on−1β−

1 and onα2 < onβ2,

3. on−1α−
1 > on−1β−

1 and ϕon−1α−
1

onα2 ≤ onβ2.

This is actually the definition of ϕon−1α−
1

onα2 <ϕon−1β−
1

onβ2, so onθ 0α1α2 < onθ 0β1β2.

This yields the following corollary.

Corollary 6 otype(OTn[0]) = ω2n−1 if n ≥ 1.

This ordinal notation system corresponds to a maximal linear extension of S
s

n[0] =
S

w

n [0].

Definition 42 Define f from S
s

n to OTn as follows. f (ε) := 0 if ε is the empty se-

quence. f (ii1 . . . ik js) := θ i( f (i1 . . . ik))( f ( js)) if i < i1, . . . , ik and j ≤ i. This yields

that f (i) is defined as θ i(0,0).

Lemma 25 OTn is a linear extension of S
s

n.
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Proof We prove by induction on the length of s and t that s ≤s
gap t yields f (s)≤ f (t).

If s and/or t are ε , then this is trivial. Assume not, then s = ii1 . . . ik js′ and t =
pp1 . . . prqt′ with i1, . . . , ik > i ≥ j and p1, . . . , pr > p ≥ q. If i < p, then f (s)≤ f (t) is

trivial. Furthermore, s≤s
gap t yields that i> p is impossible. Therefore we can assume

that i = p. If the first i of s is mapped into qt′ according to the inequality s ≤s
gap t, then

i = q and s ≤s
gap qt′, hence f (s)≤ f (qt ′). From Lemma 23, we know f (qt′)< f (t),

hence we are done. Assume that the first i of s is mapped onto the first i = p of t ac-

cording to the s ≤s
gap t inequality. Then js′ ≤s

gap qt′ and i1 . . . ik ≤
s
gap p1 . . . pr. The in-

duction hypothesis yields f ( js′)≤ f (qt′) and f (i1 . . . ik)≤ f (p1 . . . pr). If f (i1 . . . ik)=
f (p1 . . . pr), then f (s)≤ f (t) follows from f ( js′)≤ f (qt′). If f (i1 . . . ik)< f (p1 . . . pr),
then f (s)≤ f (t) follows from f ( js′)≤ f (qt′)< f (t) and Ki( f (i1 . . . ik)) = /0.

Corollary 7 OTn[0] is a maximal linear extension of S
w

n [0] = S
s

n[0].

Proof The previous lemma yields that OTn[0] is a linear extension of Sn[0]. We also

know that otype(OTn[0]) = ω2n−1 = o(Sn[0]).

In a sequel project, we intend to determine the relationship between other ordinal

notation systems without addition with the systems studied here. More specifically,

we intend to look at ordinal diagrams [20], Gordeev-style ordinal notation systems

[5] and non-iterated ϑ -functions [3,22]. This will be published elsewhere.
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