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Efficient calculation of degenerate atomic rates by

numerical quadrature on GPUs

V. Aslanyana,∗, A. G. Aslanyan, G. J. Tallentsa

aYork Plasma Institute, University of York, York, Heslington, YO10 5DD, United

Kingdom

Abstract

The rates of atomic processes in cold, dense plasmas are governed strongly
by effects of quantum degeneracy. The electrons follow Fermi-Dirac statis-
tics and their high density limits the number of quantum states available
for occupation after a collision. These factors preclude a direct solution to
the usual rate coefficient integrals. We summarise the formulation of this
problem and present a simple, but efficient method of evaluating collisional
rate coefficients via direct numerical integration. Numerical quadrature has
an intrinsically high level of parallelism, ideally suited for graphics processor
units. GPUs are particularly suited to this problem because of the large
number of integrals which must be carried out simultaneously for a given
atomic model. A CUDA code to calculate the rates of significant atomic
processes as part of a collisional-radiative model is presented and discussed.
This approach may be readily extended to other applications where rapid
and repeated evaluation of many integrals is required.

Keywords: Plasma, Fermi-Dirac, Quadrature, GPU
PACS: 52.25.Jm, 05.30.Fk, 52.50.Jm

1. Introduction

Fermi-Dirac statistics have long been used to describe the distribution
of electrons in metallically bonded solids, but plasmas of comparable elec-
tron densities have only recently become experimentally accessible. Re-
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cent advances in short wavelength lasers have allowed the creation of warm
dense plasmas at solid or greater densities, due to their correspondingly high
critical densities. These advances have spurred investigations into the ef-
fects of degeneracy on the atomic rates and hence on macroscopic plasma
properties[1, 2, 3].

Fermi-Dirac statistics complicate the calculation of quantities in dense
plasmas because many of the integrals in the calculations of basic plasma
properties and atomic rates, which are discussed below, do not have closed-
form solutions. Collisional-radiative models typcially require > 100 rates to
be assembled into the rate matrix and may in turn be evaluated at a large
number of spatial or temporal points in line with a hydrodynamic solver. We
therefore require a large degree of parallelism to make this problem tractable.
The Compute Unified Device Architecture is a programming tool to enable
large scale parallel computation on Nvidia GPUs, which are emerging as a
computational asset for physicists.

In Section 2 we review the Fermi-Dirac distribution and its use in the
integrals for atomic rates in degenerate plasmas. In Section 3 we discuss
quadrature on GPUs, which may be of general interest. In Section 4 we
present the results of a simple collisional-radiative model of a degenerate
plasma, which is greatly sped up by carrying out integrals on a GPU. Ex-
ample code for generic 1- and 2-dimensional quadrature on GPUs, as well as
the collisional-radiative model are available for download[4].

2. Definition of atomic rate coefficients

2.1. The Fermi-Dirac distribution and chemical potential

For a given electron kinetic energy ϵ, density ne and temperature Te, the
Fermi probability of occupation is given by[5]

F (ϵ, Te) =
1

exp
(

ϵ−µ
Te

)

+ 1
, (1)

where µ(Te, ne) is the chemical potential. It is convenient to use the familiar
units of electronvolts (1 eV = qe J, where qe is the elementary charge) for
energies; temperatures are implicitly multiplied by the Boltzmann constant,
kB = 8.617 eV K−1. The energy distribution function is given by

fFD(ϵ, Te) =
G

ne

√
ϵF (ϵ, Te) (2)
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with G = 4π (2me/h
2)

3/2
the degeneracy of a free electron. The chemical po-

tential is defined so as to normalise this distribution, but it is computationally
convenient to use a direct formula; for example, see the Padé approximation
given here[6]. A collision in a degenerate plasma may only occur if there are
sufficient unoccupied quantum states for all the resultant fermions and we
take account of this by using Pauli blocking factors,

F̃ (ϵ, Te) = 1− F (ϵ, Te). (3)

Finally, the Fermi-Dirac distribution has a corresponding heat capacity de-
fined through

CV (Te, ne) =
G

ne

∫ ∞

0

ϵ3/2

1 + exp( ϵ−µ
T
)
dϵ. (4)

The total electron kinetic energy density ε = neCV allows the electron tem-
perature to be determined. We do this by inverting the heat capacity through
a Padé approximation.

2.2. Definition of atomic rate coefficients

The rate coefficients of atomic or nuclear processes are typically given
by an integral over the cross-section weighted by the distribution function,
typically denoted ⟨σv⟩. The usual approach to define such integrals is usually
ad hoc; a more rigorous approach[7] is generalised for degenerate rates in
Appendix A.

The total collisional excitation rate follows directly from the treatment
in Appendix A, given by

J↑(Ej, Te, µ) = NiG

√

2

me

∫ ∞

Ej

Ω

(

ϵ0
Ej

)

F (ϵ0, Te)F̃ (ϵ0 − Ej, Te)dϵ0, (5)

where Ej is the excitation energy and the collision strength is related to
the total cross-section by Ω(ϵ0) = σ(ϵ0)/ϵ0. We consider a collision strength
typical of optically allowed transitions,

Ω

(

ϵ0
Ej

)

= B0 ln

(

ϵ0
Ej

)

+
5

∑

k=1

Bk

(

ϵ0
Ej

)−(k−1)

. (6)

The methods presented here can be extended to optically forbidden transi-
tions straightforwardly.
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The collisional ionization rate is given by

K↑ = NiG

√

2

me

∫ ∞

Ei

∫ ϵ0−Ei

0

ϵ0
dσ↑

dϵ1
F (ϵ0, Te)F̃ (ϵ1, Te)F̃ (ϵ0− ϵ1−Ei, Te)dϵ1dϵ0,

(7)

where Ei is the ionization potential and dσ↑

dϵ1
is the differential cross-section.

This differential cross-section gives the distribution of outgoing electrons and
is necessary to account for both blocking factors in this case. The experi-
mental uncertainty in differential cross-sections is typically much higher than
that for the total collisional ionization cross-sections. We have proposed[3] a
differential cross-section similar to that by Mott, modified to be consistent
with the well-known BELI[8] formula,

dσ↑

dϵ1
=

1

2Eiϵ0

[

C0Ei

(ϵ1 + a)(ϵ1 + b)
+

C0Ei

(ϵ0 − ϵ1 − Ei + a)(ϵ0 − ϵ1 − Ei + b)

+
∑

k=1

kCk
ϵk−1
1 + (ϵ0 − ϵ1 − Ei)

k−1

ϵk0

]

, (8)

with the quantities

a =
1

2

(

√

ϵ20 + 4E2
i − ϵ0

)

b = a+ Ei.

In the calculations below, we consider for simplicity that the outer electrons
are ionized preferentially, as the effect of Pauli blocking is severe for inner-
shell electrons.

These atomic rates may be related to their inverse through simple al-
gebraic formulas, which can be derived using the approach in Appendix A
together with appropriate micro-reversibility relations[7], noting in particu-
lar that F̃ (ϵ, Te) = exp ((ϵ − µ)/Te)F (ϵ, Te). In particular, we have for the
rate of collisional deexcitation

J↓ =
gj
gj′

exp(Ej/Te)J
↑, (9)

where the g factors correspond to the degeneracies of the upper and lower
level respectively. For three body recombination, we have

K↓ =
gi
gi+1

exp(µ/Te) exp

(

Ei

Te

)

K↑. (10)
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The total rate of photoionization, for radiation with a photon of energy
ϵγ and spectral intensity I(ϵγ), is given by

L↑ = Ni

∫ ∞

Ei

σγ(ϵγ)I(ϵγ)F̃ (ϵγ − Ei, Te)dϵγ. (11)

The photoionization cross-section typically falls off above threshold as some
negative power of the photon energy; for example, the cross-section for
hydrogen-like ions scales as σ(ϵγ) ∝ ϵ−3

γ Z−2. We parameterize the photoion-
ization cross-section above threshold by

σγ = D0

(

ϵγ
Ei

)−2

+D1

(

ϵγ
Ei

)−3

. (12)

Aside from including the Fermi-Dirac energy distribution, the effects of de-
generacy do not alter the rate of radiative recombination from its classical
form, because the outgoing photons are bosons and not subject to Pauli
blocking. Furthermore, radiative recombination is likely to be insignificant
compared to photoionization for the large radiation fluxes in high energy
density physics experiments.

Radiative processes have an effect not only on the ionization of the
plasma, but also the temperature. Photoionization also heats the plasma,
because the remainder of the photon energy is carried away mostly by the
ionized electron. The corresponding rate of change in the electron kinetic
energy is

(

dε

dt

)

L

= Ni

∫ ∞

Ei

(ϵγ − Ei)σγ(ϵγ)I(ϵγ)F̃ (ϵγ − Ei, Te)dϵγ. (13)

Photons are captured by free electrons in the presence of ions by inverse
bremsstrahlung, with a corresponding rate of change of kinetic energy

(

dε

dt

)

IB

=

∫ ∞

ϵc

∫ ∞

0

κIB(ϵγ)I(ϵγ)F (ϵ0, Te)F̃ (ϵγ + ϵ0, Te)dϵ0dϵγ, (14)

where the inverse bremsstrahlung absorption coefficient is given by

κIB =
1

6
√
6π5/2

e6(hc)2

ε30(mec2)3/2
ϵ−3
γ

[

1− exp

(

− ϵγ
Te

)] Z
∑

i=1

i2Ni,j. (15)
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Radiation with frequencies below the resonant electron frequency is reflected
and we therefore take the corresponding critical photon energy ϵc = ℏc ×
√

nee2/mec2ε0 as the lower limit for the inverse bremsstrahlung integral. The
integral over the electron energy ϵ0 can be carried out analytically, leaving
the integral over the photon energy to be done numerically.

If the distibution of incoming photons fγ is close to a delta function, as
in a laser, the total rate of photoionization differs in a degenerate plasma
only by a Pauli blocking factor, so that it is Γ↑ = NiIσγ(ELaser)F̃ (ELaser −
Ei, Te)/ELaser. However, of particular interest is the case of incoming black
body radiation where the photon distribution function is given by a Bose-
Einstein distribution at temperature Tr with vanishing chemical potential,

IBB(ϵγ, Tr) =
8πϵ3γ
(hc)3

1

exp
(

ϵγ
Tr

)

− 1
. (16)

In summary, we require efficient solutions for Equation (5) for every tran-
sition between two atomic levels, for Equations (7), (11) and (13) for each
atomic level, and once for Equation (14). In particular, collisional ionization
requires a double integral as given in Equation (7). Inverse collisional rates
are calculated by the algebraic detailed balance relations of Equations (9)
and (10); we do not calculate the inverse radiative rates here.

2.3. Upper limits of integration

In order to numerically integrate the functions in the definition of atomic
rates, the integrals which normally run to infinity must be truncated at some
finite upper limit A. This limit must be selected sufficiently high to capture
the main contribution to the integral, but low enough to exclude the region
where the integrand has effectively vanished. The Fermi-Dirac distribution
tends to zero faster than the cross-sections of atomic processes and therefore
the upper limit is largely defined by it.

For each integrand H, we define the relative accuracy of a truncated
integral by the parameter p,

∣

∣

∣

∣

∣

1−
∫ A

E
H(ϵ)dϵ

∫∞

E
H(ϵ)dϵ

∣

∣

∣

∣

∣

< 10−p. (17)

Simple formulae for the upper limits for a given accuracy parameter p for
the integrals considered in §2.2 are given in Table 1, valid for accuracies
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5 ≤ p ≤ 15 and for the range of parameters 0.1 < Te < 30 eV (above this
the Maxwell-Boltzmann distribution can typically be used) and ne < 1024.
Several quantities appear in the table, which depend on the desired accuracy
and need only be calculated once.

Integral Upper limit

Collisional excitation 2Ej + 2|µ|+ Te[7.5 + p ln(10)]
Collisional ionization Ei + |µ|+ 50 + Te[13.74 + p ln(10)]

Photoionization
µ ≤ 0: Ei + Trx
µ > 0: Ei + µ+ Trx

Inverse bremsstrahlung
0.1 < Te ≤ 3: Tr/Te[y1 + z1µ/Te]
3 < Te ≤ 30: Tr/Te[y2 + z2µ/Te]

Table 1: Upper limits of integration for the degenerate atomic rates considered in this
article. For values of x, y, z, see text. The radiative rates assume a black body radiation
spectrum at a temperature Tr.

The quantity x used for the photoionization integrals is the solution to
the transcendental equation

4(1 + x) exp(−x) = 10−p. (18)

In particular, we have that x(p = 5) = 15.7 and x(p = 6) = 18.2. For the
inverse bremsstrahlung integral, we have derived an upper limit given by

A =
Tr

Te

ln

(

exp(u)

exp(u)− 1

)

, (19)

where the quantity

u =
10−p

2
ln







(

1 +
√

1 + exp(µ/Te)
)Te/Tr

(

1 +
√

1 + exp(µ/Te)
)Te/Tr

− 1






. (20)

Direct numerical evaluation of this formula requires several computationally
expensive function calls, which significantly slows down the calculation of
this rate. Instead, we choose for A the upper bound to Equation (19), valid
over some region in parameter space, such that

A =
Tr

Te

(

y +
µ

Te

z

)

>
Tr

Te

ln

(

exp(u)

exp(u)− 1

)

. (21)
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For p = 5, we have for 0.1 < Te ≤ 3 y1 = 11.97, z1 = 0.0053961 and for
3 < Te ≤ 30 y2 = 11.66, z2 = 0.066357.

We present an example of the derivations of these upper limits in Ap-
pendix B in addition to strategies to widen the range of valid parameters.
Calculating an upper limit is a bottleneck in the evaluation of the correspond-
ing integral; therefore they should ideally involve only arithmetic operations.
We find that an accuracy of 10−5 is sufficient to solve time-dependent rate
equations or to invert the rate matrix to find the steady state ion populations,
which are typical uses of atomic rate coefficients.

3. Quadrature

3.1. Nodes and weights in Gaussian quadrature

The general process of quadrature involves approximation of a definite
integral by a discrete sum of the integrand evaluated at certain nodes xj,
weighted at each node by some coefficient wj,

∫ b

a

f(x)dx ≈
N
∑

j=1

wjf(xj). (22)

In order to approximate the definite integral to a given accuracy, there is a
general tradeoff between the number of function evaluations and the com-
plexity of the nodes and weights. The Newton-Cotes methods, for instance,
take many simplified nodes to calculate an integral. It is therefore clear for
this application that even a relatively large initial investment to compute the
nodes and weights is prudent, as they will allow repeated subsequent integral
evaluations. Gaussian quadrature formulae are for this reason most suited
to the current problem.

Using the Golub-Welsch algorithm[9], the nodes and weights may be ob-
tained respectively from the eigenvalues and eigenvectors of a symmetric
tridiagonal Jacobi matrix. If an eigenvalue λj has a corresponding eigenvec-
tor qj, then the nodes and weights are given by[10]

xj = λj (23)

wj = (q[1]j)
2, (24)

where q[1] is the first element of the vector.
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3.2. Choice of nodes and weights

We have found that the simplest Gauss-Legendre method is sufficient for
the current problem. In this case, the diagonal α and off-diagonal β elements
of the symmetric tridiagonal Jacobi matrix are

αi = 0 (25)

βi =
1

√

1− (2i)2
. (26)

We require that the error in integration be at least equal to the truncation
error discussed in §2.3 or better. In order to match this truncation error, we
have undertaken numerical experiments for a wide range of the parameters
Te and ne. For values of these parameters, we found the minimum number
of nodes required to obtain a result with a relative error < 10−p, as shown
in Figure 1.

4 5 6 7 8 9

Accuracy parameter p

10

20

30

40

50

60

70
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re
q
u

ir
e
d

Figure 1: (color online). The number of nodes required to achieve a given value of the
accuracy parameter p, required to ensure that the integrals are accurate to 10−p, following
the truncation formulas in §2.3. The circles correspond to different values of Te and ne,
their maximum given by the red line. As CUDA warps typically execute 32 threads
simultaneously, it is useful to use a multiple of 32 as the number of nodes for GPU
implementation; this is indicated by the shaded region.

9



3.3. Implementation in CUDA

In order to evaluate the nodes and weights required for Gaussian quadra-
ture, we have chosen to compute the eigenvalues and eigenvectors of the
Jacobi matrix using the CPU LAPACKE routine dstev, which is optimised
for this type of real, symmetric, tridiagonal matrix. A single set of nodes
and weights are copied once to the GPU and used for every subsequent inte-
gral (once for both dimensions of the double integral). We typically choose
N = 32 nodes, as this gives sufficient accuracy in accordance with the dis-
cussion in §3.2 and is the standard warp size; we provide tabulated values
for nodes and weights for this case in Appendix C, if using LAPACKE is unde-
sirable.

In a CUDA implementation of numerical quadrature, we therefore choose
a block dimension of y warps (32y threads per block), each thread in a warp
evaluating the integrand at one node. The optimal choice of y depends on
the type of GPU; the total time to evaluate 9600 J↑, K↑ and L↑ integrals on
three GPUs described in Table 2 is given for different choices of y in Figure
2. We see that a choice of y = 2 or y = 6 minimizes the computation time.

Device Clock speed [MHz] Driver Version

GeForce GTX 580 772 7050
GeForce GTX 680 1058 8000
GeForce GTX TITAN Black 980 7050

Table 2: Types and details of GPUs used to benchmark numerical quadrature, as described
in this section. The code was compiled with nVidia’s compiler, nvcc, with CUDA toolkit
version 6.0.

One advantage of evaluating the integrand on a GPU is the efficient sum-
mation of the integrands by a reduction operation via shared memory. This
type of operation, unique to modern accelerators, allows a vector with N ele-
ments to be summed in a time ∝ log(N) rather than ∝ N as may be expected
when adding values sequentially to an accumulator. For two-dimensional in-
tegrals as in Equation (7), reduction is possible only over the first dimension,
while summation over the second dimension may be carried out by using
device memory to store intermediate partial sums. However, calculations
performed on a variety of GPUs have shown that it is faster to evaluate the
first dimension of the integral on each thread and then perform a reduction
sum as for a one-dimensional integral.
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Figure 2: (color online). The total computation time (including memory copies) to carry
out 9600 J↑, K↑ and L↑ integrals as a function of the number of warps per block y in (a)
double precision (b) single precision and (c) single precision, with the fast math compiler
option. (d) The computation speed in each case for the optimal choice of y. The total
computation time for an optimal choice of y as a function of the number of integrals for (e)
double precision and (f) single precision (solid) with fast math (dashed). The execution
times were recorded using the nVidia profiler, nvprof.
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All atomic rate coefficients as defined in §2.2 depend on only a few shared
variables (such as electron density and temperature) and do not affect one
another. This implies that the computation time is far larger than the mem-
ory copy latency, as a typical atomic model has between 102 and 105 atomic
transitions, each with a corresponding integral. We show the calculation time
when varying the size of the problem in Figures 2e and 2f. We confirm that
the calculation time is linear with the size of the problem above some small
threshold, corresponding to the memory copies.

Depending on the desired accuracy and experimental uncertainty in the
cross-sectional data, it may be worthwhile to perform calculations in single
precision. In this case, the observed speed-up in Figure 2 is consistent with
the greater single precision processing power of GPUs. In addition, we see
a speed-up in single precision when using the fast math compiler option,
which reduces the number of floating point operations required to evaluate
mathematical functions. It should be noted that this theoretically decreases
the precision, though this has not been found to be noticeable. Calculating
atomic rates using the Maxwell-Boltzmann distribution or by assuming a
constant differential cross-section for collisional ionization may be necessary
for performance issues, but produces errors of the order of tens of percent[11];
such errors are much larger than the loss in accuracy switching from double
to single precision for the sake of the speed-up conferred.

This analysis shows a high level of utilization of the GPU for numerical
quadrature in both double and single precision. The inherent parallelism of
numerical quadrature applies equally well to CPUs, but the relatively high
utilization of the GPU guarantees an advantage over a comparable number
of CPUs for this type of calculation, as the former have far higher theoretical
maximum performance.

4. Example collisional-radiative calculation

4.1. Model description

In order to demonstrate the use of GPUs to evaluate integrals in a realis-
tic scenario, we have constructed a simple collisional-radiative model. With
this aim in mind, we have reduced the physical and computational complex-
ity of the model outside the calculation of rate coefficients. We consider an
aluminum plasma close to solid density, as this element is well studied. Fur-
thermore, as it is metallicaly bonded, the valence electrons may be modelled
by a Fermi-Dirac distribution leading to a significant electron density (and
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therefore degree of degeneracy) even at low temperatures. The cross-section
data is taken from the ALADDIN database[12] and from the Los Alamos
atomic physics code database[13].

We consider charge states states from 3+ to 6+, with a total of 14 su-
perconfiguration levels (those, for which reliable atomic data was readily
available); the lower ionization stages are not considered for simplicity, be-
cause aluminum is a metalically bonded solid whose valence electrons are
taken to be free. Autoionization, dielectronic and radiative recombination
are not included in this demonstrative model, because they do not involve
the evaluation of an integral and therefore do not stand to benefit from GPU
implementation. These processes are also typically of secondary importance
for this type of plasma. We take a background radiation field to be that of
a black body at Tr = 250 eV.

The collisional radiative rates of §2.2 are assembled into a rate matrix
M and supplementary matrix M ′, so that the rates of change of the atomic
populations N⃗ and electrons’ kinetic energy ε are given by

dN⃗

dt
= MN⃗ (27)

and
dε

dt
=

∑

M ′N⃗ +

(

dε

dt

)

IB

(28)

respectively. Collisional-radiative codes have well-known approaches to solve
these equations, particularly when they are “stiff” and the rate matrices are
sparsely populated, which are beyond the scope of this work. We solve these
coupled equations using the RK-4 method, keeping the timestep fixed for sim-
plicity; for more details of our approach, see[14]. On the host CPU, matrix
operations are carried out using standard BLAS routines, while the chem-
ical potential and heat capacity are evaluated using Padé approximations.
The latter cannot be readily parallelized, meaning that the total speed-up is
smaller than might be expected from the speed of numerical quadrature in
Section 3.3.

The code used in this work is available here[4]. It is split into two parts,
so that the CPU-only code may be run without a working GPU or nVidia’s
compiler. The functions contained therein are ready to be included into an
established collisional-radiative code.
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Figure 3: (color online). Results of a time dependent collisional-radiative simulation of
near-solid density aluminum (total ion density 9 × 1022 cm−3) irradiated by isotropic
black body photons at Tr = 250 eV, comparing rate coefficients and heat capacity for free
electrons with Fermi-Dirac (solid) and Maxwell-Boltzmann (dashed) statistics. (a) The
electron temperature Te and (b) density ne. (c) Evolution of the ion populations for the
Fermi-Dirac distribution.
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4.2. Results

A sample calculation with 5 × 106 timesteps is shown in Figure 3. We
compare a model with the degenerate rate coefficients (integrating over the
Fermi-Dirac distribution) to one with analytical integrals over the Maxwell-
Boltzmann distribution. Running a serial CPU-only version of the degenerate
calculation took over 10 hours (on an Intel E5-2680 v2 processor), while the
GPU-assisted version (with the GTX 580, as outlined in §3.3) took approxi-
mately 40 minutes. A notable speedup is therefore achieved, even comparable
to the case where all 10 cores of the given CPU were to be fully utilized.

Physically, we see a large difference in results for the two distribution
functions. There is a significantly higher degree of ionization (and hence
electron density) in the case of the Fermi-Dirac distribution, which leads (if
the absorbed energy is roughly comparable) to a lower temperature since the
heat capacity is invariably positive. The main reason for this large difference
in the degree of ionization is the effect of blocking factors. The rates of colli-
sional ionization and three body recombination are both significantly slowed
particularly at the relatively low temperatures considered here. Meanwhile,
the rate of photoionization is affected far less by blocking factors due to
the large photon energies of the Bose-Einstein distribution at Tr = 250 eV.
Therefore, the rate of photoionization is proportionately higher than three
body recombination in the case of the Fermi-Dirac distribution, leading to a
higher degree of ionization.

5. Summary and conclusions

We have shown that a large practical speedup can be achieved by em-
ploying the large inherent degree of parallelism of GPUs to perform many
simultaneous integrals. We have achieved a reasonable fraction of the the-
oretical maximum GPU speed, which far outperforms a single comparable
CPU. The inherent latency of host/device memory transfer becomes negli-
gible when many integrals are carried out with the same small set of input
parameters. Further work implementing the evaluation of degenerate atomic
rate coefficients using GPUs into existing collisional-radiative codes may yield
additional increases in speed-up on heterogeneous clusters.

We have shown that GPUs can make tractable the problem of performing
double integrals over the differential collisional ionization cross-section, which
may be necessary for simulations of dense plasmas. We have presented the
results of a time-dependent collisional-radiative model of aluminum, where
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the valence electrons are treated as free, irradiated by black body radiation.
The results show a significant difference between Fermi-Dirac and Maxwell-
Boltzmann statistics when the free electron temperature is low and density
is high.
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Appendix A. General form of atomic rates

A generalised rate coefficient for a process involving m incoming and l
outgoing interacting particles is given by

R =

∫ ∞

0

dϵ0· · ·
∫ ∞

0

dϵnδ(S)�
m
∏

j=0

vjf(ϵj)

[

l−1
∏

k=0

d

dϵk

]

σ(ϵ0 . . . ϵn), (A.1)

where ϵ is the kinetic energy of each particle, v =
√

2ϵ/M their velocity, f(ϵ)
the energy probability distribution and σ the relevant quantum mechaincal
cross-section. The δ represents the Dirac delta function with the argument
being the sum over all energies

S =
m
∑

j=0

ϵj − Ethreshold −
l

∑

k=0

ϵk, (A.2)

which ensures energy conservation. The cross-section has been differentiated
l − 1 times, where the resulting differential cross-section is a measure of the
distribution of the outgoing particles. The symbol � corresponds to the total
effect of the Pauli blocking factors, given in a degenerate plasma by

� =
l

∏

k=0

F̃ (ϵk, Te), (A.3)

while in a classical Maxwellian plasma � = 1. To obtain the total rate of
transfer of ions from a given energy state, we multiply by the density of the
given ions and the densities of all incoming particles,
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dNi

dt
= −RNi

m
∏

j=0

Nj (A.4)

The inverse rates of a given process are usually found through micro-reversibility
relations. This allows a single cross-section to be used for a process and its
inverse, only by exchanging the incoming particles with the outgoing.

While this formulation of the often familiar rate coefficients may seem
needlessly complicated, it is necessary in order to take full account of all
the interacting particles and their energies; the outgoing particles, which
are ignored in the classical calculation, are particularly important when the
plasma is degenerate, as detailed below. It should be noted that the kinetic
energies of participating ions are typically not included in Equation (A.1),
because their speed is unchanged by the collision due to their large mass. It is
worth noting that one of the integrals in Equation (A.1) must be chosen to be
carried out over the delta function, so the constraint of energy conservation
naturally reduces the dimensionality of the integral by one.

Appendix B. Derivations of integrals’ upper limits

As discussed in §2.3, we must truncate integrals at some finite upper limit
while preserving their accuracy. Consider the integral

I =

∫ ∞

Ei

ϵγ − Ei

exp(ϵγ/Tr)− 1
F̃ (ϵγ − Ei, Te)dϵγ, (B.1)

which appears in the rate of heating due to photoionization by a black-
body radiation spectrum of temperature Tr. It is the part of the integral in
Equation (13) over the part of the cross-section containing the D1 coefficient.
Consider the case when µ ≤ 0, so that 1

2
≤ F̃ (ϵγ − Ei, Te) ≤ 1. In general,

we have that [exp(ϵγ/Tr) − 1]−1 > exp(−ϵγ/Tr). We therefore have a lower
bound for the integral,

I ≥ 1

2

∫ ∞

Ei

(ϵγ − Ei) exp(−ϵγ/Tr)dϵγ, (B.2)

I ≥ T 2
r

2
exp(−Ei/Tr). (B.3)
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We can break up the integral I into two parts (denoting the integrand by
H(ϵγ) for short),

I =

∫ Ei+A

Ei

H(ϵγ)dϵγ +

∫ ∞

Ei+A

H(ϵγ)dϵγ, (B.4)

I = I1 + I2, (B.5)

where I1 will be our approximation to the integral and I2 is an error term
which we must minimise by appropriate selection of A. If we assume that A ≥
Tr, then exp(ϵγ/Tr)− 1 > 1

2
exp(ϵγ/Tr) over the entire domain of integration

of I2. Consequently,

I2 ≤
∫ ∞

Ei+A

(ϵγ − Ei)

exp(ϵγ/Tr)− 1
dϵγ, (B.6)

I2 ≤ 2

∫ ∞

Ei+A

(ϵγ − Ei) exp(−ϵγ/Tr)dϵγ, (B.7)

I2 ≤ 2Tr exp

(

−Ei + A

Tr

)

(A+ Tr). (B.8)

It is clear that the relative error of the integral is given by I2/I. Substi-
tuting our lower bound for I from Equation (B.3) and upper bound for I2
from Equation (B.8), we have that

I2
I

≤
2Tr exp

(

−Ei+A
Tr

)

(A+ Tr)

T 2
r

2
exp(−Ei/Tr)

. (B.9)

Requiring that this error term be smaller than 10−p and by introducing x =
A/Tr, it follows that the solution to

4(x+ 1) exp(−x) = 10−p (B.10)

satifies this requirement.
In the case when µ > 0, we can split the integral into three parts,

I =

∫ Ei+µ

Ei

H(ϵγ)dϵγ +

∫ Ei+µ+A

Ei+µ

H(ϵγ)dϵγ +

∫ ∞

Ei+µ+A

H(ϵγ)dϵγ, (B.11)

I = I0 + I1 + I2. (B.12)
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The lower bound estimate of Equation (B.3) now holds for I1 and clearly I ≥
I1. Therefore, we can choose as the upper limit A+ µ, where A is the result
derived above. We simultaneously evaluate the two photoionization integrals
of Equations (11) and (13), each with two cross-section terms. Repeating
this procedure, we find that this limit is larger than the other three, so we
select it to allow simultaneous evaluation of both integrals.

The strategy for obtaining upper limits for the other integrals is similar
to the example given here. We use analytically integrable functions to ob-
tain a lower bound for the total integral I and an upper bound for the error
term I2. Their ratio allows an upper limit to be calculated given a required
accuracy, similarly to Equation (B.9). Such an expression may then be sim-
plified for the sake of increasing computation speed by narrowing the range
of possible parameters; the case above may be simplified, for example, if we
could guarantee that µ ≤ 0.
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Appendix C. Nodes and weights for 32-point Gaussian quadrature

xj wj

1.36806908E-03 3.50930500E-03

7.19424423E-03 8.13719737E-03

1.76188722E-02 1.26960327E-02

3.25469620E-02 1.71369315E-02

5.18394221E-02 2.14179490E-02

7.53161931E-02 2.54990296E-02

1.02758102E-01 2.93420467E-02

1.33908941E-01 3.29111114E-02

1.68477867E-01 3.61728971E-02

2.06142121E-01 3.90969479E-02

2.46550046E-01 4.16559621E-02

2.89324362E-01 4.38260465E-02

3.34065699E-01 4.55869393E-02

3.80356319E-01 4.69221995E-02

4.27764019E-01 4.78193600E-02

4.75846167E-01 4.82700443E-02

5.24153833E-01 4.82700443E-02

5.72235981E-01 4.78193600E-02

6.19643681E-01 4.69221995E-02

6.65934301E-01 4.55869393E-02

7.10675638E-01 4.38260465E-02

7.53449954E-01 4.16559621E-02

7.93857879E-01 3.90969479E-02

8.31522133E-01 3.61728971E-02

8.66091059E-01 3.29111114E-02

8.97241898E-01 2.93420467E-02

9.24683807E-01 2.54990296E-02

9.48160578E-01 2.14179490E-02

9.67453038E-01 1.71369315E-02

9.82381128E-01 1.26960327E-02

9.92805756E-01 8.13719737E-03

9.98631931E-01 3.50930500E-03

Table 3: The nodes and weights, as defined for use in Equation (22), for

32-point Gaussian quadrature to 8 decimal places.
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