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SUMMARY

Adaptive hierarchical refinement in isogeometric analysisis developed to model cohesive crack propagation
along a prescribed interface. In the analysis, the crack is introduced by knot insertion in the NURBS basis,
which yieldsC−1 continuous basis functions. To capture the stress state smoothly ahead of the crack tip, the
hierarchical refinement of the spline basis functions is used starting from a coarse initial mesh. A multi-level
mesh is constructed, with a fine mesh used for quantifying thestresses ahead of the crack tip, and knot
insertion, to insert the crack, and coarsening in the wake ofthe crack tip, since a lower resolution suffices
there. This technique can be interpreted as a moving mesh around the crack tip. To ensure compatibility
with existing finite element programs, an element-wise point of view is adopted using Bézier extraction. A
detailed description is given how the approach can be implemented in a finite element data structure. The
accuracy of the approach to cohesive fracture modelling is demonstrated by several numerical examples,
including a double cantilever beam, an L-shaped specimen, and a fibre embedded in an epoxy matrix.
Copyright c© 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The numerical simulation of fracture is a technically relevant and scientifically challenging issue,
and has been a focal point of attention since the early simulations in the 1960s [1, 2], see also
[3, 4] for overviews. From the very beginning, two different approaches have been pursued, discrete
methods in which cracks are treated as geometric discontinuities, leading to topological changes [1],
and the distributed, or smeared approach, in which discontinuity is modelledby distributing it over
a small, but finite band (with concomitant high local strains), e.g. [2]. Later, the smeared approaches
were cast in a damage format, e.g. [5], and more recently, phase-field models were introduced to
describe brittle fracture in an elegant manner [6–9]. The close relation between phase-field models
for brittle fracture and gradient-enhanced continuum damage models was recently discussed in
detail, including similarities and differences [10].

In spite of the conceptual elegance, and its ability to represent complex crack patterns in a
straightforward manner [11, 12] the phase-field approach to brittle fracture cannot be extended
easily to cohesive fracture. A framework has been published[13], but subsequent investigations
[14, 15] have put question marks on how a phase-field approach for cohesive fracture can
be developed on unstructured meshes. This has motivated thefurther development of discrete
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2 L. CHEN

approaches for cohesive fracture, which is applicable to fracture processes in many quasi-brittle
and ductile materials, in particular when the size of the fracture process zone is non-negligible
compared to the structural dimensions.

Following the early work in [1], in which fracture was simply modelled by the release of double
nodes at existing element boundaries, much research has been undertaken to let the crack path evolve
independent from the original discretisation. Mesh refinement [16–19], and the introduction of the
extended finite element method [20–22] are notable developments. With respect to the latter, it is
noted that a straightforward extension to cohesive fracture has been achieved [23–25].

More recently, the flexibility of isogeometric analysis, which uses B-splines instead of the
traditional Lagrange polynomials as basis functions, has been exploited to lower the order of
continuity to C−1, thus locally creating a discontinuity [26]. Applicable to any fracture model,
in principle, the approach has been utilised in several cases of adhesive fracture – using Non-
Uniform Rational B-Splines (NURBS) – and cohesive fracture– using T-splines [26]. Alternatives
to this approach of discrete crack modelling within the framework of isogeometric analysis are
isogeometric interface elements [27–29], which is particularly useful when the crack propagation
path is known, Powell-Sabin B-splines, which can exploit standard remeshing algorithms for
triangles [30], and an approach that is rooted in computational contact mechanics [31].

Even though the higher-order continuity of the basis functions in isogeometric analysis provides
a much improved stress prediction, this continuity can be reduced near a crack tip. Hence, it is
desirable to locally refine the discretisation. Adaptive hierarchical refinement is a powerful tool
to achieve this within the framework of isogeometric analysis, and herein we will describe how
this can be done using Truncated Hierarchical NURBS. Moreover, we will show how Truncated
Hierarchical NURBS can be coarsened, e.g. in the wake of a crack tip where a less dense mesh
suffices. In this paper, an element point of view is adopted, whereby Bézier extraction is exploited
to cast isogeometric analysis in a framework which utilisesstandard finite element datastructures
[32, 33], which is an improvement on earlier work using the concept of knot insertion to simulate
cracking [26].

To provide a proper background, we will first provide a succinct description of cohesive
fracture modelling, followed by a recapitulation how fracture can be embedded within the
isogeometric concept using continuity reduction. Next, fundamentals of hierarchical basis functions
and refinement are summarised, and the use of hierarchical refinement in the analysis of cracking
is discussed. An important issue is the implementation of hierarchical refinement. This is treated in
some detail, including algorithmic aspects and data structures. Finally, some numerical examples
are presented to validate the approach and conclusions are drawn.

Figure 1. A domainΩ with an internal discontinuityΓc. The latter is represented as overlapping positive and
negative sides,Γ+

c andΓ−

c , respectively.
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HIERARCHICAL REFINEMENT OF NURBS IN COHESIVE FRACTURE 3

2. COHESIVE ZONE FORMULATION

Introduced in [34, 35], cohesive zone models are now widely employed to model fracture, especially
in quasi-brittle and ductile materials [36, 37]. Cohesive-zone models essentially relate the tractions
on a two-dimensional surface in a three-dimensional body tothe crack opening and the crack
sliding. The very fact that this so-called traction-separation law acts on a surface, which is of a
lower dimension than the surrounding three-dimensional continuum, entails some complications
[38, 39]. However, when the crack path is known a priori, as, for instance, in delamination of
composite structures, interface elements can be embedded in the continuum at pre-defined locations,
thus leading to a relatively straightforward discretisation [40–45].

In a cohesive zone model a crack is represented as an interface Γc in the physical domainΩ,
Figure1. In this contribution the interfaceΓc is assumed to be pre-defined, as is the case of crack
propagation along a material interface. Small displacement gradients have been assumed, so that the
kinematic equations read:

εεε =
1

2

(

∇u+ (∇u)T
)

on Ω; [[u]] = u+ − u− on Γc (1)

whereεεε is the infinitesimal strain tensor.
The crack opening[[u]] is defined in the global coordinate system(x1, x2), where it is noted that

the extension to three dimensions is straightforward. The crack sliding and the crack opening in the
local coordinate system(s, n) (Figure1) are given by:

[[v]] = ([[vs]] , [[vn]])
T
= R [[u]] = R ([[ux1

]] , [[ux2
]])

T (2)

with R as the rotation matrix [27].
Assuming linear elastic material behaviour, the equilibrium equations in their strong form read:















∇ ·σσσ = 0 on Ω
u = û on Γu

σσσ · n = t̂ on Γt

σσσ · n = t ([[u]]) on Γc

(3)

wheren denotes the normal vector at the boundaries,û andt̂ represent the prescribed displacements
and tractions, respectively, andσσσ is the Cauchy stress tensor, which relates toεεε as

σσσ = Dεεε (4)

with D the fourth-order elastic stiffness tensor.
The tractiont in the global coordinate system(x1, x2) is obtained from the tractiontd in the local

coordinate system via a standard transformation:

t = RTtd (5)

The traction-opening relation

td = td ([[v]]) (6)

sets the relation between the traction acting atΓc and the displacement jump across it. A range
of different traction-opening relations have been proposed, with applications ranging from ductile
to quasi-brittle fracture. Important parameters are the fracture strengthtu, which is the maximum
traction that can be exerted on the interfaceΓc and the fracture energyGc, which is the amount of
energy that is needed to create a unit area of cracked surface, but also the shape of the decohesion
curve can significantly affect the fracture process.

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2017)
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4 L. CHEN

Figure 2. NURBS patch without (top) and with (bottom) crack interfaceΓc. The knot vectors for the top
patch areΞ1 = {0, 0, 0, 1, 1, 1} andΞ2 = {0, 0, 0, 0.25, 0.5, 1, 1, 1}. For the bottom patch, the knot vectors

readΞ1 = {0, 0, 0, 0.5, 0.5, 0.5, 1, 1, 1} andΞ2 = {0, 0, 0, 0.25, 0.5, 1, 1, 1}.

3. NURBS REPRESENTATION OF A SOLID WITH A PRE-DEFINED INTERFACE

In the present study, NURBS basis functions are employed to describe the geometry of the solid.
This conforms well to the modeling technique used in CAD [46], and in an isoparametric sense,
they can be used to interpolate the displacement fieldu:

x
(

ξ1, ξ2
)

=

nc
∑

I=1

NI

(

ξ1, ξ2
)

XI u
(

ξ1, ξ2
)

=

nc
∑

I=1

NI

(

ξ1, ξ2
)

UI (7)

whereXI represents the coordinates of the control points,UI denotes the degrees of freedom at the
control points, andnc is the total number of control points. The NURBS basis functionNI

(

ξ1, ξ2
)

is defined as:

NI

(

ξ1, ξ2
)

=
Np

i

(

ξ1
)

N q
j

(

ξ2
)

wij

W (ξ1, ξ2)
(8)

with

W
(

ξ1, ξ2
)

=

n
∑

i=1

m
∑

j=1

Np
i

(

ξ1
)

N q
j

(

ξ2
)

wij (9)

andwij weight factors. The indexI is a function of the indicesi andj of the univariate B-spline
basis functionsNp

i andN q
j [47]. Np

i , N
q
j are piecewise polynomials of orderp, respectivelyq,

defined over a non-decreasing knot vectorΞ1:

Ξ1 =
{

ξ11 , ξ12 , · · · , ξ1n+p+1

}

(10)

The non-zero knot intervals inΞ1 can be conceived as elements. If the knot valueξ1i is repeated,
the multiplicity of ξ1i is denoted bymi. Due to this multiplicity, the basis functionNp

i becomes
Cp−mi continuous, which means thatNp

i is p−mi times continuously differentiable over the knot
i. Depending on the values ofp andmi, higher-order or lover-order continuity can be achieved.
This is beneficial for solving higher-oder differential equations, e.g. [48–54], but is also useful to
insert an interfaceΓc

(

ξ1d, ξ
2
)

in the model [26], see Figure2. The interface is defined along the

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2017)
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Figure 3. Sparsity pattern of the stiffness matrix with and without interfaceΓc for the NURBS patch of
Figure 2: (a) sparsity pattern of stiffness matrix of the bulk material without Γc; (b) sparsity pattern of
stiffness matrix of the bulk material withΓc; (c) sparsity pattern of stiffness matrixKint; (d) sparsity pattern

of the composite stiffness matrixKtan.

parametric directionξ2 at ξ1 = ξ1d, and knot insertion is carried to increase the multiplicityof ξ1d to
md = p+ 1, which yieldsC−1-continuous basis functions.

NURBS basis functions are defined over an entire patch, Figure 2. It is, however, convenient
to directly incorporate NURBS in a standard finite element data structure and the use of Bézier
extraction has enabled this by representing the NURBS basisfunctions as element-wise Bernstein
shape functions [32]:

Ne = WeCe B

W e
with W e = (we)TCeB (11)

whereNe denotes the element-specific NURBS basis function;Ce represents the element-specific
Bézier extraction operator,B contains the element-local Bernstein shape functions,we is the
element weight vector andWe is the diagonal matrix of element weights.

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2017)
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6 L. CHEN

3.1. Isogeometric finite element discretisation

To solve Equation (3), it is first cast in its weak form, resulting in:
∫

Ω

δε : σdΩ +

∫

Γc

δ [[u]] · t ([[u]]) dΓ =

∫

Γt

δu · t̂dΓ ∀δu ∈ ν0 (12)

whereδε, δu andδ [[u]] are the virtual strain, virtual displacement and virtual relative displacement,
respectively. The solutionu belongs to the function spaceν:

ν =
{

v : vi ∈ H1 (Ω) , vi|ΓD = ûi
}

ν0 =
{

v : vi ∈ H1 (Ω) , vi|ΓD = 0
}

(13)

in whichH1 denotes the first-order Sobolev space.
Considering the kinematic relation, Equation (1), and the NURBS approximation, Equation (7),

the weak form, Equation (12), yields a set of non-linear equations:

fint (u) = fext (14)

with

fint (u) =

∫

Ω

BT
σdΩ +

∫

Γc

HTt ([[u]]) dΓ fext =

∫

Γt

NTt̂dΓ (15)

The matricesN, B and H contain the shape functions, their derivatives, and the relative
displacements, respectively [26]. Linearisation yields the tangential stiffness matrix:

Ktan = Kbulk +Kint =

∫

Ω

BTDBdΩ +

∫

Γc

HTRTTdRHdΓ (16)

with Kbulk and Kint are tangential stiffness contributions from the bulk and the interface,
respectively. The tangent stiffness of traction-opening law at the interface is given by [27]:

Td =
∂td
∂[[v]]

(17)

The sparsity pattern of the stiffness matrix, obtained whenthe unknowns are ordered in a ’natural’
manner, is shown in Figure3. Figures3(a) and3(b) illustrate the sparsity pattern of the stiffness
contribution of the bulk material. It is observed that the parts with bulk material are related in the
absence of an interface. On the contrary, there is no connection between the left and right parts with
the interface being in place. This connection is established throughKint as shown in Figure3(c).
The resulting matrixKtan is shown in Figure3(d).

4. HIERARCHICAL REFINEMENT FOR COHESIVE CRACK GROWTH

Hierarchical B-splines were originally introduced for thelocal refinement of a surface [55, 56],
and subsequently employed in analysis [57–68]. To further improve the capability of hierarchical
refinement truncated hierarchical basis functions were proposed in [69–72].

We will concisely discuss the fundamental idea of hierarchical basis function, and the multi-level
implementation of hierarchical refinement [68]. Then, we will present the application of hierarchical
refinement to cohesive crack growth.

4.1. Hierarchical basis function

In this contribution, the hierarchical basis function is considered from an element-wise point of
view, which fully conforms to the framework of Bézier extraction. The hierarchical basis function
is defined over multiple hierarchy levels. The strong condition is assumed over the boundaries of

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2017)
Prepared usingnmeauth.cls DOI: 10.1002/nme



HIERARCHICAL REFINEMENT OF NURBS IN COHESIVE FRACTURE 7

Figure 4. (a) Basis functions and meshes for a hierarchy of two levels: (b) examples of a subdivision of
NURBS basis functions, which is a linear combination of refined basis functions. The knot vector of
hierarchy level 0 isΞ0 = {0, 0, 0, 0.25, 0.5, 0.5, 0.5, 0.75, 1, 1, 1}. The weight factor of the basis function
of hierarchy level 0 isw0 = {1, 2, 1, 1, 1, 0.5, 0.5, 1}. The NURBS basis functions of hierarchy level 1 are
obtained by successive uniform knot insertion intoΞ

0. The knots at each hierarchy level are indicated by×.

different hierarchy levels [60], which produces a nested hierarchical element structure.Here, we
take an univariate NURBS to illustrate the construction of hierarchical basis functions. Due to the
tensor product structure, the multi-variate case can be deduced in straightforward manner.

First, we construct a hierarchy ofP levels. The basis functions at each hierarchy level are defined
over a knot vectorΞi (i = 0, 1, ... P − 1) with the same polynomial degreep, andΞi is obtained by
successive uniform knot insertions withinΩd from initial knot vectorΞ0. The univariate parametric
domain is denoted byΩd. Subsequently, one obtains nested parametric domainsΩi

d ⊂ Ωi+1

d and
nested knot vectorsΞi ⊂ Ξi+1, Figure4(a). Each knot vectorΞi defines a set of NURBS basis
functionsNi =

{

N i
j

}ni

j=1
, which forms a nested NURBS approximation spaceN i. Due to the nested

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2017)
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8 L. CHEN

nature ofN i, the basis function of hierarchy leveli can be described by basis functions at hierarchy
level j:

Ni = Si,jNj =

j−1
∏

l=i

Sl,l+1Nl+1 (18)

with Sl,l+1 the subdivision or refinement operator [68]. It is noted thatSl,l+1 is very sparse. An
example of the NURBS subdivision is shown in Figure4(b), where each NURBS basis function
of hierarchy level 0 has been expressed as a linear combination of the NURBS basis function of
hierarchy level 1. The entries inSl,l+1 are defined as:

Sl,l+1

IJ =
wl

I

wl+1
J

M l,l+1

IJ (19)

with wl
I the weight factor of theIth basis function on hierarchy levell, andM l,l+1

IJ is an entry in
the linear subdivision or refinement operator for the B-spline basis functions of hierarchy levell and
l+ 1 [73]. The B-spline basis functions of hierarchy levell andl + 1 are defined by the knot vectors
Ξl andΞl+1 with weight factorw = 1.

To construct the hierarchical basis function spaceA, the active elements and the basis functions
in the multi-level hierarchy must be identified. The active element is chosen by a marking criterion,
for instance a posteriori error estimator [72]. It is defined across different hierarchy levels without
overlap or gap, Figure5(a). The parametric domain of active elements

Ωd =

P−1
⋃

i=0

Ei
A with Ei

A =
⋃

e

Ωe,i
d (20)

is plotted in green, andP is the number of hierarchy levels. Further,Ei
A represents the parametric

domain of all active elements on hierarchy leveli andΩe,i
d denotes the parametric domain of the

elemente on hierarchy leveli.
Next, a linearly independent hierarchical basis function spaceA can be defined. This space will

be employed to describe the geometry of the solid and to approximate the solution space. We will
take an element-based selection approach to constructA as in [68], and illustrate this concept by
introducing two additional parametric domains for hierarchy levell:

Ωl+
d =

P−1
⋃

i=l+1

Ei
A Ωl−

d =

l−1
⋃

i=0

Ei
A (21)

With the parametric domainsΩd, Ωl+
d andΩl−

d three sets of basis function space are defined:














































Al =
{

N l
j ∈ N l : supN l

j

⋂

El
A 6= ∅

}

A+ =

P−1
⋃

l=0

Al
+ with Al

+ =
{

N l
j ∈ Al : supN l

j

⋂

Ωl+
d 6= ∅

}

A
−
=

P−1
⋃

l=0

Al
−

with Al
−

=
{

N l
j ∈ Al : supN l

j

⋂

Ωl−
d 6= ∅

}

(22)

Herein,Al is the union of basis functions defined over the active elements on hierarchy levell, see
Figure5(a). Al

+ denotes the basis functions inAl with support over the active elements on finer
hierarchy levels, which is plotted in dashed lines, Figure5(a).Al

−

represents the basis functions in
Al with support over the active elements on coarser hierarchy levels, which is indicated by dotted
lines in Figures5(a). Finally, the definition of hierarchical basis functionspaceA is given as:

A =

P−1
⋃

l=0

Al
a with Al

a = Al \ Al
−

(23)

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2017)
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HIERARCHICAL REFINEMENT OF NURBS IN COHESIVE FRACTURE 9

Figure 5. Definition of the basis function space; (a) illustration of basis function setsAl, Al
−

andAl
+; (b)

final hierarchical basis functions; (c) final truncated hierarchical basis functions.

where ”\” is the logic NOT;Al
a denotes the active basis functions of hierarchy levell, Figure5(b).

A denotes the standard hierarchical basis function space [60].
From linear combinations of basis functions at hierarchy levels l andl + 1, we can obtain a so-

called truncated hierarchical basis function space [69], see Figure5(c):

AT =

P−1
⋃

l=0

Al
T,a with Al

T,a =
{

τ li ∈ Al
a : sup τ li * El+1

A

}

(24)

where

τ li =
{

τ li ∈ N l : τ li =
∑

Sl,l+1

ij N l+1
j

}

(25)

see Equation (18). In general, standard hierarchical basis functions do notsatisfy the partition of
unity property, which is different for the truncated hierarchical basis functions, which do fulfill this
property.

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2017)
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10 L. CHEN

Figure 6. Sparsity pattern of the stiffness matrix and the hierarchical subdivision operator generated by the
standard hierarchical basis function in Figure5(b): (a)K from Equation (26); (b) hierarchical subdivision
operator; (c) hierarchical stiffness matrixKh; (d) final hierarchical stiffness matrix (the red stars represent

the supplementary identity terms).

4.2. Multi-level implementation of hierarchical basis function

With the active elements and basis functions defined in Section 4.1, the stiffness matrix can be
computed in a multi-level adaptivity approach.

First, the stiffness matrix of active elements at each hierarchy level is computed by using Bézier
extraction, without considering possible interaction between the multi-level basis functions. After
assembly of the stiffness matrix at each level, the global system of equations follows as

KU = F (26)

whereU includes the nodal degrees of freedom at each hierarchy level, F represents the force
vector,K is a sparse matrix with the submatricesKi along the diagonal, Figures6(a) and7(a). The
stiffness submatrixKi is built from the active elements at hierarchy leveli, and is a square sparse
matrix of 2ni

c × 2ni
c, with ni

c the number of control points at hierarchy leveli. It is noted thatKi

also has a high degree of sparsity, see Figures6(a) and7(a). The empty spaces inKi reflect that
there is no contribution from the inactive elements at leveli.

Equation (26) does not consider the interaction between the multi-levelhierarchical basis
functions. This interaction is incorporated in the analysis by the hierarchical subdivision operator
Mh. The final hierarchical system of equation then reads:

KhUh = Fh with Kh = MhKMT
h and Fh = MhF (27)

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2017)
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HIERARCHICAL REFINEMENT OF NURBS IN COHESIVE FRACTURE 11

Figure 7. Sparsity pattern of the stiffness matrix and hierarchical subdivision operator generated by the
truncated hierarchical basis function in Figure5(c). The caption of each subfigure is the same as Figure6.

The sparsity ofKh is shown in Figures6(c) and7(c). There are many zero entries inKh due to
the multi-level interaction of the hierarchical basis functions and the inactive elements at each level,
which renders it singular. To regularise this,Kh can be restructured according to the active basis
function spaceA or AT , yielding a resizedKh-matrix [68]. Alternatively,Kh can be kept constant
in size, adding units on the main diagonal at the zero entries, red stars in Figures6(d) and7(d). This
approach will only marginally increase the memory requirement for storingKh.

The hierarchical subdivision operatorMh is defined as:

Mh =















I0 M̂0,1 M̂0,2 . . . M̂0,P−1

I1 M̂1,2 . . . M̂1,P−1

I2 . . . M̂2,P−1

.. .
0 IP−1















(28)

with

I lIJ =

{

1 for I = J and N l
I ∈ Al

a

0 else
(29)

The subdivision operator̂Ml,k in Equation (28) is defined for standard hierarchical basis function
and for truncated hierarchical basis function, respectively. For standard hierarchical basis function,

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2017)
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12 L. CHEN

it is given by

M̂ l,k
IJ =

{

Sl,k
IJ for N l

I ∈ Al
+

0 else
(30)

whereSl,k
IJ is defined in Equation (18). For truncated hierarchical basis function, the entries of M̂l,k

are given by:

M̂ l,k
IJ =

{

Sl,k
IJ for N l

I ∈ Al
+ and Nk

J ∈ Ak
−

0 else
(31)

The solution of Equation (27) yields the displacementUh for the control points associated with
the hierarchical basis functions. In a non-linear calculation, computation of the stiffness matrixK
requires the displacement vectorU rather thanUh from the previous iteration, see Equation (26),
and is obtained as:

U = MT
hUh (32)

4.3. Adaptive hierarchical refinement for cohesive crack growth

To decide on local, adaptive refinement and coarsening, we use [[vc]], which is defined as:

[[vc]] =















[[vn]] mode-I cracking

[[vs]] mode-II cracking
√

[[vn]]
2
+ β2 [[vs]]

2 mixed-mode cracking

(33)

with β a mode-mixity parameter. Using[[vc]], element refinement and coarsening is then decided
according to:

(1) δ1 ≤ [[vc]] ≤ δ2 Mark the elements adjacent to the interfaceΓc for refinement;
(2) [[vc]] ≥ δm Mark the elements adjacent to the interfaceΓc for coarsening.

Two special conditions can occur:

(1) If an element marked for refining is at the highest hierarchy level, no further refinement will
take place; the element will not be marked to be refined.

(2) Conversely, if an element marked for coarsening is at thefirst hierarchy level, no further local
coarsening will occur.

The steps for the adaptive hierarchical refinement for cohesive crack growth can be summarised
as follows:

S1 Solve Equation (27) for the displacementsUh and then computeU through Equation (32).
To properly take into account the Dirichlet boundary condition, the displacement boundary
condition must be modified such that:

U I =

{

Û I on Γu when NI ∈ A or AT

0 on Γu else
(34)

S2 Compute the jump[[v]] at the interfaceΓc from Equations (1), (2) and (7).
The opening[[v]] at the interfaceΓc is evaluated at the integration points, which are employed
to computeKint in Equation (16). In Figure8, the integration points are denoted by red circles.
Herein, full Gaussian quadrature is employed, which involvesp+ 1 integration points per
element along the interface (p denotes the polynomial degree of the NURBS basis function).

S3 Check whether[[vc]] is within a range[δ1, δ2] or bigger thanδm.
If [[vc]] of any integration point in an element meets the conditionδ1 ≤ [[vc]] ≤ δ2, the element
will be refined. The refinement of a single element will lead totwo active child elements per
parametric direction, see Figure8. In this figure, elemente1 must to be refined, which yields
four child elements (1, 2, 3, 4).

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2017)
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HIERARCHICAL REFINEMENT OF NURBS IN COHESIVE FRACTURE 13

Figure 8. Refinement and coarsening along the interfaceΓc. Here, we refer to elements (1, 2, 3, 4) as the
child elements of elemente1, or vice versa, to elemente1 as the parent element of elements (1, 2, 3, 4). The

same applies to elemente2 and the elements (5, 6, 7, 8).

If [[vc]] of all integration points of an element satisfies[[vc]] ≥ δm, the elementEadj will be
coarsened. Henceforth, we denote the parent element ofEadj asEp. To maintain the nested
structure, it must be checked whether all child elements ofEp at the interfaceΓc need to
be coarsened. Consider Figure8, for example. After evaluation of[[vc]], element 5 is marked
for coarsening. Therefore, it is also checked whether element 6 should be coarsened as well,
since both arise from the same parent element (e2). In this case, both elements (5 and 6) will
be coarsened.

S4 Refine or coarsen the marked elements. If no element is required to be refined or coarsened,
stop the calculation, otherwise return toS1.

Remark:To obtain a well-conditioned stiffness matrixKh in Equation (27), for the element
refinement and coarsening, the adjacent elements are forcedto be from the same, or at most from
two consecutive hierarchy levels.

5. IMPLEMENTATION ASPECTS

Having derived the formulation for the adaptive hierarchical refinement for cohesive crack growth,
we now outline the implementation aspects in the context of anisogeometric analysis framework.
First, we introduce the data structure. Then, the refinementprocedure will be described in detail.
Finally, we will provide the mapping of the displacement vector and the history variables for the
newly activated elements. To preserve transparency, we will focus on a two-dimensional case.

5.1. Data structures

We adopt an element-wise point of view for the implementation, and consider a hierarchy ofP
levels. Initially, the following three data sets will be considered and saved:

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2017)
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(a) setup of panel with interfaceΓc (b) saved elements at hierarchy level 0

(c) saved elements at hierarchy level 1 (d) saved elements athierarchy level 2

Figure 9. Saved elements at each hierarchy level. In this example, three hierarchy levels are considered.

(1) The knot vector
(

ΞI
1, Ξ

I
2

)

and the control pointsPI on each hierarchy level are defined by
successive uniform knot insertion starting from the initial knot vector

(

Ξ0
1, Ξ

0
2

)

and the initial
control pointsP0, which can be inferred from the CAD model. Using

(

ΞI
1, Ξ

I
2

)

, the basis
functions can be constructed for each hierarchy level.

(2) Given the knot vector
(

ΞI
1, Ξ

I
2

)

, the elements and corresponding Bézier extractor in Equation
(11) are obtained for each hierarchy level. The parent-child relation between elements on
different hierarchy levels are determined.

(3) The subdivision operatorSl,l+1 is computed from Equation (19). Here, we only retain the
subdivision operator between two consecutive hierarchy levels.

Since the crack propagates along the interfaceΓc, element refinement and coarsening will occur
at the elements adjacent toΓc. To reduce the storage of these data sets, we will only keep the four
elements adjacent toΓc for hierarchy level higher than 0 and store their data, see Figure9. Due to
the reduced number of elements in storage, the degrees of freedom in Equations (26) and (27) will
also be reduced.

In the refinement process, two sets of boolean vectors are defined to indicate the state of the
elements – active or inactive – at each hierarchy level. The length of these vectors isneT , which is
the total number of elements at theP hierarchy levels. They are initialised asfalse:

(1) Ea: indicator of active elements.Ei
a = {true : elementi is active}.

(2) Eac: indicator of active child elements.Ei
ac = {true : child elements of elementi areactive}.

On the basis ofEa andEac, three sets of boolean vectors are obtained which indicate the active
and inactive state of basis functions at each hierarchy level. The length of the vectors isnbT , which
equals the total number of basis functions at theP hierarchy levels. They are initialised asfalse.
Further, we define the basis functions at theP hierarchy levels as:N =

{

N i
}

, (i = 1, 2, · · · , nbT ):

(1) Aa: indicator of the basis function in the space of hierarchical basis functionsA
or AT . A and AT are obtained from Equations (23) and (24), respectively.Ai

a =
{

true : N i ∈ A or AT

}

.
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(2) A
−

: indicator of the basis function in the setA
−

, Equation (22). Ai
−

=
{

true : N i ∈ A
−

}

.

(3) A+: indicator of the basis function in the setA+, Equation (22). Ai
+ =

{

true : N i ∈ A+

}

.

To obtain the hierarchical system of equation (27), one needs to computeMh in Equation (28). Mh

will be saved in a sparse format. To obtainMh, the data setsAa, A
−

, A+ andSl,l+1 are used. A
pseudo code to computeAa, A

−
andA+ can be found in [68].

5.2. Refinement procedure

Based on the data structure of Section5.1, the procedure for adaptive hierarchical refinement of
cohesive crack growth has been developed and is shown in Algorithm 1.

Algorithm 1 Adaptive hierarchical refinement for cohesive crack growth

S1 Read the geometry data to obtain the initial knot vector
(

Ξ1
0, Ξ

2
0

)

and the initial control points
P0.

S2 Carry out successive uniform knot insertion to generate
(

ΞI
1, Ξ

I
2

)

andPI for each hierarchy
levelI from

(

Ξ0
1, Ξ

0
2

)

andP0.

S3 Compute the subdivision operatorSl,l+1 between two consecutive hierarchy levelsl andl + 1.
S4 Obtain the list of active elements and active child elements to computeEa andEac.

For the first iteration, the active elements and active childelements are defined as those from
previous load step, and for the first load step, the active elements are directly provided by the
initial mesh.

S5 Compute the boolean vectorsAa, A+, A
−

and the subdivision operatorMh.

S6 Apply the Newton-Raphson scheme to obtainU.

S7 Check whether each element should be refined or coarsened and mark it accordingly, see
Algorithm 2.

When there are no elements marked for refinement or coarsening, stop the calculation for the
current load step and go to the next load step. Otherwise, obtain the new list of active elements
and active child elements on the basis of the marked elementsand return toS4.

WhenU has been computed, we can proceed to the kernel of adaptive hierarchical refinement:
element refinement and coarsening. Herein we will focus on element refinement and coarsening for
crack growth, but this can be extended to other non-linearities, such as plasticity.

Algorithm 2 Element refinement and coarsening.

RC1 Compute the opening[[v]] of each active element adjacent to the interfaceΓc, see Equation
(2). [[v]] is evaluated at the integration points alongΓc.

RC2 Check whether[[vc]] is within a range[δ1, δ2] or beyondδm, see Equation (33). Mark the
elements for refinement and coarsening.

RC3 Refine the elements in order to get the new list of active elements and active child elements.
Here, the elements to be refined are represented asEr and all child elements ofEr asErc.

– Get the old list of active elements and active child elements, Ea andEac.
– Set elementEr inactive in the list of active elements andEa(Er) = false. Set element
Er active in the list of active child elements andEac(Er) = true.

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2017)
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– Set all child elementsErc active in the list of active elements andEa(Erc) = true. Set
Erc inactive in the list of active child elements andEac(Erc) = false.

RC4 Coarsen the elements to make the updated list of active elements and active child elements,
Ea andEac. The elements to be coarsened are denoted byEc, the parent element ofEc byEp

and all child elements ofEp byEAc.

– Obtain the list of active elements and active child elementsafter element refinement,Ea

andEac.
– Set the parent elementEp active in the list of active elements andEa(Ep) = true. Set the

parent elementEgp ofEp active in the list of active child elements andEac(Egp) = true.

– Set all child elementsEAc inactive in the list of active elements andEa(EAc) = false.
Set the parent elementEp inactive in the list of active child elements andEac(Ep) =
false.

5.3. Update of the displacement vector and the history variables

During refinement and coarsening, new elements are introduced in, or deleted from the set of active
elements. For non-linear problems, this requires a transfer of the displacements from the previous
time stept to provide initial values for the new elements at time stept+∆t. The transfer of the
displacement vector from coarse elements to finer elements is exact. However, when transferring
information from finer elements to coarser elements, information may be lost.

We consider atU, obtained at time stept. The corresponding hierarchical basis function spaces
aretA or tAT . For the next time stept+∆t, certain elements can have been marked for refinement
or coarsening, and elements will be activated or deactivated. As a consequence, their basis functions
and control points will be also activated, or deactivated. We denote the space of the hierarchical
basis functions at time stept+∆t by t+∆tA, or t+∆tAT .

In a non-linear solution scheme, we need to map the vectortU at time stept so as to produce
a new initial vectort+∆t

0 U at time stept+∆t. During element refinement, the mapping oftU to
t+∆t
0 U is exact, and is given by:

t+∆t
0 Ul+1 =

(

S̃l,l+1
)T tUl (35)

wherel is the hierarchy level, and̃Sl,l+1 denotes the modified subdivision operator, which is derived
from Equation (19), as follows:

S̃l,l+1

IJ =

{

Sl,l+1

IJ for N l+1

J ∈ t+∆tAl+1 or t+∆tAl+1

T

0 else
(36)

During coarsening information can be lost during the mapping of tU to t+∆t
0 U. Herein, a global

least-squares fit is employed to carry out the mapping, whichis achieved by minimising:

ψ =

∫

Ω

∥

∥

t+∆t
0 u− tu

∥

∥dΩ =

∫

Ω

∥

∥

t+∆tNA
t+∆t
0 U− tu

∥

∥dΩ (37)

in whichu is the displacement, andt+∆tNA denotes the basis functions associated with the active
elements at time stept+∆t. Minimising Equation (37) with respect tot+∆t

0 U yields:

M t+∆t
0 U = p (38)

with

M =

∫

Ω

(

t+∆tNA

)T t+∆tNAdΩ (39)
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which is obtained directly by Gaussian quadrature at each active element att+∆t, and

p =

∫

Ω

(

t+∆tNA

)T tudΩ =

∫

Ωt

(

t+∆tNA

)T (

tNA

)

tUdΩ (40)

where the integration is carried out at each active element at t. tNA andt+∆tNA represent the basis
functions associated with the active elements att andt+∆t, respectively. An alternative approach
to carry out the mappingtU to t+∆t

0 U during coarsening would be to exploit the pseudo-inverse of
the subdivision matrix [74].

The introduction of new elements will also result in new cohesive segment along the interface.
Accordingly, the history parameters of the integration points alongΓc need to be updated. Herein,
for the refinement of cohesive segment, the history parameters are updated by an approach similar
to that in Equation (35). During coarsening, this issue of updating the history variables is not
encountered since full debonding will then already have taken place.

6. NUMERICAL EXAMPLES

To investigate the performance of the approach, three examples are presented. In the examples, the
truncated hierarchical basis function spaceAT is employed to describe the geometry of the solid
and to span the solution space. The interfaceΓc is defined by NURBS basis functions and knot
insertion has been used to achieveC−1-continuity. The Xu-Needleman cohesive zone relation has
been employed throughout to describe the adhesive fracture[36].

During refinement it must be checked whetherδ1 ≤ [[vc]] ≤ δ2 or [[vc]] > δm. To determineδ1, δ2
andδm, the crack mode indicated in Equation (33) should be considered. In this single mode crack
growth,δ1, δ2 andδm are assumed to be:

δ1 = (0.5 δn or 0.5 δs) , δ2 = (2 δn or 2 δs) , δm = (5 δn or 5 δs) (41)

in which δn and δs are characteristic length parameters related to the fracture strength and the
fracture toughness [26].

For propagation in a single crack mode, element refinement aswell as coarsening will be
considered. However, for mixed-mode crack propagation mode, the approach outlined above will
be adopted for refinement only, and coarsening will not be considered in the examples.

Figure 10. Setup of a peel test of a double cantilever beam.

6.1. Double cantilever beam test

The peel test of a double cantilever beam has been chosen as a first illustration of the adaptive
hierarchical refinement, see Figure10. Upon an increase of the external forceF , the interface
Γc will debond progressively. The dimensions of the beam arel = 10 mm andh = 1 mm. Along
the interface, there is an initial traction-free segment with lengthb = 1 mm. The bulk material
is modelled as linear isotropic with a Young’s modulusE = 100 MPa and a Poisson’s ratio

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2017)
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ν = 0.3. Plane-strain conditions are assumed. The tensile strength and fracture energy are given
as tu = 1 MPa andGc = 0.1 N/mm, respectively. To avoid interpenetration, a penalty stiffness
kp = 1× 105 MPa/mm is specified in the normal direction ofΓc. A displacement control has been
adopted to fully trace the load-displacement path with steps of 0.05 mm in the first 20 increments,
and steps of0.2 mm in the next 20 increments, and0.5 mm thereafter.

0 2 4 6 8
0

0.05

0.1

0.15

0.2

Figure 11. Force-displacement curve for the double cantilever beam.

Initially, the beam has been discretised by linear NURBS with a knot vector
(

Ξ0
1, Ξ

0
2

)

=
([0 0 1 1] , [0 0 1 1]) and control points(0, 0), (0, 10), (1, 0) and(10, 1). The weight factorsw have
been taken 1 for all control points. Next, the polynomial degree is increased by order elevation to
p, q = 2, see Equation (8). The interfaceΓc is introduced in the parametric domain by knot insertion,
which leads toΞ0

2 = [0 0 0 0.5 0.5 0.5 1 1 1]. Then, the knot vectorsΞ0
1 andΞ0

2 are equally divided
into 20× 2 and40× 4 elements, respectively, which yields the final initial knotvector

(

Ξ0
1, Ξ

0
2

)

and the control pointsP0. A hierarchy of 3 and 4 levels, respectively, has been used toconstruct the
space of the hierarchical basis functions. To construct such a hierarchy, the knot vector

(

ΞI
1, Ξ

I
2

)

and the control pointsPI at each hierarchy level are defined by successive uniform knot insertions,
starting from the initial knot vector

(

Ξ0
1, Ξ

0
2

)

and the control pointsP0.
The force-displacement curve is shown in Figure11. A good agreement is obtained with results

in [13]. Moreover, results of a similar quality can be obtained by using a coarser initial mesh
(20× 2 elements) when increasing the number of hierarchy levels. Figure12 gives contour plots
of displacements and stresses for two different load levels. The calculation has been carried out for
an initial mesh of40× 4 elements. The displacement and stress are smooth in either part of the
beam due to theC1-continuity of the second-order NURBS basis functions. Thecrack propagates
smoothly through the interfaceΓc and no oscillations in the stresses are observed. Coarsening in the
wake of the crack tip has been carried out in a manner discussedin Section4.3.

6.2. L-shaped beam

Next, the L-shaped beam of Figure13 is considered. Roller boundary conditions are employed, as
also shown in the figure. The beam is loaded in the horizontal as well as in the vertical direction by
gradually increasing the displacementū of the bottom and the left edges. Linear isotropic elasticity
is used to describe the bulk material, with a Young’s modulusE = 250 MPa and a Poisson’s ratio
ν = 0.2. Plane-strain conditions have been assumed. The interfaceis indicated by a dashed line
along the diagonal of the beam. A Xu-Needleman cohesive zonemodel has again been employed
to describe the debonding of the interface withtu = 1 MPa andGc = 0.1 N/mm. The penetration
stiffness is setkp = 1× 105 MPa/mm to prevent the interpenetration.
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(a)u2 contour plot forū = 0.75mm (b)u2 contour plot forū = 1.0mm

(c) σ1 contour plot forū = 0.75mm (d)σ1 contour plot forū = 1.0mm

Figure 12. Displacements and stress distribution for different load steps (no magnification).

Figure 13. L-shaped beam.

At the onset, the beam has been discretised by linear NURBS with the control points(25, 0),
(50, 0), (25, 25), (25, 50), (0, 25), (0, 50) and the knot vector

(

Ξ0
1, Ξ

0
2

)

= ([0 0 1 1] , [0 0 0.5 1 1]).
The weight factorsw of the control points have been set equal to 1. Next, order elevation is used to
increase the polynomial degree top, q = 2, and knot insertion is employed to introduce the interface
Γc in the parametric domain, which leads toΞ0

2 = [0 0 0 0.5 0.5 0.5 1 1 1]. Eventually, the knot
vectorsΞ0

1 andΞ0
2 are divided into10× 20 elements, which generates the final initial knot vector

(

Ξ0
1, Ξ

0
2

)

and the control pointsP 0.
A hierarchy of 4 levels is constructed from the initial mesh of 10× 20 elements. The response

curves for different meshes are presented in Figures14. A global mesh of30× 60 elements has been
used to provide a reference solution. The figure shows that the results obtained using a hierarchy
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0.04
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0.06

0.07

Figure 14. Response curves for the L-shaped beam. The stresscomponentσ1 at xA = (37.5, 0)mm is
plotted vs the prescribed displacementū. A global mesh with30× 60 elements is employed to provide

the reference solution.

(a)ur contour plot under̄u = 0.2mm (b)ur contour plot under̄u = 0.4mm

(c) σr contour plot under̄u = 0.2mm (d)σr contour plot under̄u = 0.4mm

Figure 15. Distribution of the radial displacementur and the radial stressσr in the beam for different load
levels. The displacements have been amplified by a factor 10.

of 4 levels with a coarser initial mesh, are in good agreementwith the reference solution. Figures
15 show the radial displacements and the radial stress distribution for a partially propagated crack.
The calculation is based on a hierarchy of 4 levels. The stress distribution is again smooth without

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2017)
Prepared usingnmeauth.cls DOI: 10.1002/nme



HIERARCHICAL REFINEMENT OF NURBS IN COHESIVE FRACTURE 21

oscillations around the crack tip. Element refinement and coarsening work smoothly and without
problems or need for user intervention.

Figure 16. Fibre with a circular cross section: problem definition. (a) schematic representation of the full
model; (b) one quarter of the fibre with symmetric boundary conditions.

Figure 17. Initial mesh for the fibre-epoxy model. The interfaceΓc is indicated by a red circle.

Figure 18. Response curves for fibre-epoxy debonding. The stress componentσ1 at xA = (15, 0)µm is
plottedvsthe prescribed displacementū.

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2017)
Prepared usingnmeauth.cls DOI: 10.1002/nme



22 L. CHEN

6.3. Fibre-epoxy debonding

The example of fibre-epoxy debonding has been studied beforein [26]. The problem is analyzed
by a two-dimensional model assuming plane-strain conditions. The geometry of the specimen is
shown in Figure16. Due to symmetry, only one quarter of the specimen has been considered
with symmetry-enforcing boundary conditions. The material properties are as follows. For the
fibre Young’s modulusE = 225 GPa and Poisson’s ratioν = 0.2, and for the epoxy we have a
Young’s modulusE = 4.3 GPa and a Poisson’s ratioν = 0.34. The tractions at the fibre-epoxy
interface have again been assumed to follow the Xu-Needlemanrelation with tu = 50 MPa and
Gc = 4× 10−3 N/mm. To prevent interpenetration, a penetration stiffness has been added with
kp = 105 MPa/mm.

A hierarchy of 3 levels has been constructed on the basis of the initial mesh of Figure17. The
order of the NURBS basis functions isp, q = 2. The response curve is presented in terms of the
horizontal stressσ1 as a function of the prescribed displacementū, see Figure18. The results agree
well with the solution in the literature [26].

The debonding process of fibre and epoxy is illustrated in Figure 19. The crack propagates
gradually with the increase of the prescribed displacement. The element refinement is performed
with the crack growth. The stress distribution remains smooth in the fibre and as well as in the
epoxy.

(a)u1 contour plot under̄u = 0.1µm (b)u1 contour plot under̄u = 0.2µm

(c) σ1 contour plot under̄u = 0.1µm (d)σ1 contour plot under̄u = 0.2µm

Figure 19. Contour plots for the displacements and the stresses at different load levels. The displacements
have been amplified by a factor 10.

7. CONCLUDING REMARKS

A NURBS basis has been used to represent a crack interface. This has been achieved by knot
insertion untilC−1-continuity has been attained. To capture the stress state smoothly ahead of
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the crack tip, hierarchical refinement has been employed. A coarse initial mesh was refined by
successive knot insertion in the domain of interest. The useof an element-wise point of view to a
multi-level mesh allows to dynamically change the mesh during the simulation. Bézier extraction
makes it possible to implement the method in any existing finite element code.

Algorithmically, a multi-level mesh is generated by successive knot insertion starting from an
initially coarse mesh. Subsequently, the Bézier extraction is applied at each hierarchy level to
obtain the stiffness matrix, without considering possiblemulti-level interactions. This interaction
is enforced by a subdivision operator. Two cases have been presented for hierarchical refinement:
standard hierarchical refinement and truncated hierarchical refinement. Both algorithms have been
elaborated. Moreover, aspects concerning the crack propagation analysis have been illustrated,
including the algorithms and implementation aspects for element refinement and coarsening along
an interfacial crack.

Numerical examples have been given. They show that the dynamic refinement ability of the
hierarchical refinement is suitable for the analysis of crack propagation. The solutions appear to
be accurate also for relatively coarse initial meshes. Importantly, the method results in smooth
stress fields, which is an appealing aspect for fracture analyses. This holds a fortiori when cracks
are considered that do not propagate along predefined interfaces, since the direction of crack
propagation is highly influenced by an accurate prediction of the stress field ahead of the crack
tip.
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solution of Kichhoff-Love plate theory using Bézier extraction. International Journal for Numerical
Methods in Engineering2016;107:205–233.

[52] Gomez H, Calo VM, Bazilevs Y, Hughes TJR. Isogeometric analysis of the Cahn-Hilliard phase-field
model.Computer Methods in Applied Mechanics and Engineering2008;197:4333–4352.
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