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Abstract

Within the field of forensic speech science there is increasing acceptance of the likeli-

hood ratio (LR) as the logically and legally correct framework for evaluating forensic

voice comparison (FVC) evidence. However, only a small proportion of experts cur-

rently use the numerical LR in casework. This is due primarily to the difficulties

involved in accounting for the inherent, and arguably unique, complexity of speech in a

fully data-driven, numerical LR analysis. This thesis addresses two such issues: the

definition of the relevant population and the amount of data required for system testing.

Firstly, experiments are presented which explore the extent to which LRs are affected

by different definitions of the relevant population with regard to sources of systematic

sociolinguistic between-speaker variation (regional background, socio-economic class

and age) using both linguistic-phonetic and ASR variables. Results show that different

definitions of the relevant population can have a substantial effect on the magnitude

of LRs, depending on the input variable. However, system validity results suggest

that narrow controls over sociolinguistic sources of variation should be preferred to

general controls. Secondly, experiments are presented which evaluate the effects of

development, test and reference sample size on LRs. Consistent with general principles

in statistics, more precise results are found using more data across all experiments.

There is also considerable evidence of a relationship between sample size sensitivity

and the dimensionality and speaker discriminatory power of the input variable. Further,

there are potential trade-offs in the size of each set depending on which element of LR

output the analyst is interested in. The results in this thesis will contribute towards im-

proving the extent to which LR methods account for the linguistic-phonetic complexity

of speech evidence. In accounting for this complexity, this work will also increase the

practical viability of applying the numerical LR to FVC casework.
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Chapter 1

Introduction

Forensic speech science (FSS) is the application of linguistics, phonetics and acous-

tics to criminal investigations and legal casework (for an overview see Foulkes and

French 2001; Nolan 2001; Jessen 2008). Speech is an increasingly common form of

expert forensic evidence. This is due, in part, to the increased availability of speech

recorded during crimes, the development in the technology used to record speech

and a more advanced understanding of the principles underlying the identification of

individuals from their voice. Speech evidence can be divided into two broad categories.

Before the apprehension of a suspect, an expert may be instructed to conduct a speaker

profile of an unknown offender. Based on the observed speech patterns, the expert will

attempt to determine socio-indexical information about the speaker’s background (e.g.

regional background, class, age), thus narrowing the population of which the offender

is a member (Foulkes and French 2001, 2012; see Ellis 1994 for a case report).

More commonly, forensic speech scientists become involved in legal casework after

the apprehension of a suspect. This is referred as speaker identification (Nolan 1997),

which itself takes two forms: naïve and technical. Naïve speaker identification involves

cases where a lay (i.e. untrained) listener hears the voice of an offender but does not

see their face (e.g. in a masked bank robbery). Since no recording of the offender

exists the ear-witness may be required to demonstrate their ability to identify the voice

using the aural equivalent of a visual line-up (a voice parade) (Nolan and Grabe 1996;

Nolan 2003). Issues relating to the ability of naïve listeners to identify voices in forensic

contexts and the salient perceptual cues which listeners attend to are discussed in Bull
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1. Introduction

and Clifford (1984, 1999), Nolan et al. (2009) and Nolan, McDougall and Hudson

(2013).

Technical speaker identification involves analysis by a forensic speech scientist, al-

though it is now more commonly referred to as forensic voice comparison (Rose 2002;

French and Harrison 2007; Rose and Morrison 2009; Jessen 2012).

1.1 Forensic voice comparison

Forensic voice comparison (FVC) accounts for the majority of casework undertaken by

forensic speech scientists (c. 70%; Foulkes and French 2012). FVC typically involves a

recording of the voice of an unknown offender (e.g. in a covertly recorded drug deal)

and a recording of the voice of a known suspect (from a police interview in the UK;

PACE 1984). The expert is instructed to conduct a comparison of the speech patterns in

the suspect and offender recordings to aid the court in establishing whether the voices

in the two recordings belong to the same or different individual(s). This evidence is

then used by the trier-of-fact (judge and/or jury), along with all other evidence, to make

a decision regarding the defendant’s innocence or guilt.

There is currently no clear consensus amongst forensic speech scientists as to the most

appropriate way of analysing FVC evidence. Gold and French (2011) present the results

of an international survey, conducted in 2010, on current practises in FVC. The aim of

the survey was to make available current working practises in FVC casework around the

world. Participants consisted of 34 practising forensic speech scientists from a range of

academic institutions and forensic laboratories (both private and governmental) in 13

countries. Those surveyed were asked about their methods of analysis in FVC cases,

the variables considered the best for speaker discrimination and the frameworks used

to express conclusions. According to Gold and French (2011), there are four common

methodological approaches for the analysis of speech in FVC casework: auditory-

phonetic analysis, acoustic-phonetic analysis, combined auditory and acoustic analysis,

and automatic speaker recognition (ASR).
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1.1.1 Auditory phonetic analysis

Auditory phonetic analysis involves making auditory judgements about a range of

linguistic-phonetic variables (see §1.1.3) without the aid of spectrographic-acoustic

analysis. Auditory judgements are commonly qualitative, involving detailed phonetic

transcription following the protocols of the International Phonetic Alphabet (IPA). For

certain variables, auditory-only analysis may be quantified using counts based on the

frequency of occurrence (e.g. allophonic realisations of a phoneme, frequency of lexical

items). As highlighted by Baldwin and French (1990), historically, auditory analysis

was the only available method for performing a linguistic-phonetic comparison of

speech samples in FVC cases. However, given the advancements in techniques for

performing acoustic analysis, the use of the auditory-only approach is now relatively

rare. Gold and French (2011) report that this approach is used by just three of the 34

experts (9%) surveyed. Further discussion of auditory-only FVC analysis is found in

Baldwin and French (1990) and French (1994).

1.1.2 Acoustic phonetic analysis

Acoustic phonetic analysis involves making observations of linguistic-phonetic vari-

ables without listening to the suspect and offender samples. An early form of acoustic-

only analysis is voice printing (see Kersta 1962). Voice printing involves qualitative,

largely text-dependent, visual comparison of spectrograms of the same utterance from a

pair of suspect and offender recordings. The approach was initially claimed to achieve

100% recognition rates. Although challenging the early claims of infallibility, im-

pressive accuracy rates are also reported in Tosi (1979) based on carefully controlled

sections of recordings. However, voice printing has been largely dismissed by the

FSS community1 as unscientific and unreliable (Gruber and Poza 1995; Hollien 2002),

and in United States v Robert N Angleton [2003] was ruled inadmissible as a form

of forensic analysis in Texas (Morrison 2014). Despite this, voice printing is still

admissible as expert evidence in other states of America (Tiersma and Solan 2012).

1International Association of Forensic Phonetics and Acoustics (IAFPA) Resolution - Voiceprints:

http://iafpa.net/voiceprintsres.htm (accessed: 30th April 2014)
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Modern acoustic-only analysis has a more principled linguistic-phonetic basis involving

the extraction of acoustic-phonetic variables (e.g. formant frequencies). Despite this,

there is still scepticism regarding the use of acoustic analysis without auditory analysis.

Of the experts in Gold and French’s (2011) survey, just one uses the acoustic-only

approach.

1.1.3 Combined auditory and acoustic analysis

The majority of FVC evidence presented and admitted in courts (including in the UK,

Germany, Turkey, Brazil and China) (Gold and French 2011) is based on a combination

of auditory and acoustic analysis. This involves making qualitative judgements using

auditory-analysis and where possible quantifying observations using spectrographic-

acoustic analysis. A range of linguistic-phonetic variables is typically analysed and

an overall conclusion provided to the court. For this reason auditory-acoustic analysis

may also be referred to as the componential approach. The linguistic-phonetic variables

analysed include segmental variables (vowels and consonants), suprasegmental vari-

ables (e.g. voice quality, prosody (incl. articulation rate, rhythm)), speech pathologies

(e.g. stuttering, hyper-nasality), higher-order linguistic variables (e.g. lexical choice,

syntax) and non-linguistic variables (e.g. hesitation phenomena, clicks) (see French et

al. 2010: 146-147).

Gold and French (2011) report that all experts using the combined approach analyse

mean fundamental frequency (f0). Voice quality (VQ) was considered the best speaker

discriminant, although it is not routinely examined by all experts. Further, of those ex-

perts who do conduct VQ analysis, it is far from clear how such analyses are conducted

and how methods differ between analysts. Gold and French (2011) also report that

97% of experts analyse vowel formants in FVC casework. The use of acoustic analysis

(and specifically the extraction of vowel formants) as part of FVC was, in effect, made

obligatory following the Northern Irish Court of Appeal decision in R v O’Docherty

[2002] which is persuasive in England and Wales. Although the England and Wales

Court of Appeal in R v Flynn [2008] re-affirmed the judgement in R v Robb [1991] that

the use of acoustic analysis should be determined on a case-by-case basis, experts have

largely continued to follow the guidelines in O’Docherty [2002].
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1.1.4 Automatic speaker recognition (ASR)

An alternative to the analysis of linguistic-phonetic variables is the use of ASR systems.

ASR systems can consist of a piece of stand-alone, commercial software which performs

signal processing, speaker selection and statistical modelling (e.g. BATVOX2). ASR

systems may also be built manually using widely available speech processing and

statistical software (e.g. MATLAB). ASRs differ from linguistic-phonetic approaches

in three key areas: how the speech signal is processed and analysed, the variables

extracted, and the procedures for statistical modelling.

ASR typically involves treating the speech-active portion (i.e. with silences removed)

of a recording holistically, by analysing the signal at equally spaced intervals (called

frames). Following this global approach, the signal is not analysed as a series of

discrete linguistic units as in §1.1.3 (although segmental ASR analysis is possible;

Rose 2011a, 2013a). ASRs typically extract cepstral coefficients (CCs) (although many

other variables are extractable in automatic analyses; e.g. PLPs) from each frame,

which provide information about the power spectrum of the signal, capturing properties

of the size, shape and short-term configuration of the supralaryngeal vocal tract. CCs

can also be used to calculate derivatives which capture information about the dynamic

properties of spectral change. Finally, the performance of ASR systems is typically

analysed statistically using Gaussian Mixture Models (GMMs) (Reynolds et al. 2000).

A detailed explanation of ASR variables and GMMs is presented in Chapter 3.

The benefit of the ASR approach is that a considerable amount of speaker discrim-

inatory information can be extracted from speech samples without requiring labour

intensive procedures for preparing or segmenting samples. ASR data are also contin-

uous, allowing for efficient statistical modelling to generate probabilistic, numerical

output. However, CCs are highly sensitive to noise in recordings, technical quality

(e.g. sampling rate) and channel mismatch (commonly in FVC the offender sample is

recorded via telephone transmission, while the suspect sample is recorded directly),

although procedures for compensating for these factors are available (Alexander et al.

2004; Botti et al. 2004; Alexander 2005). Gold and French (2011) report that eight

2http://www.agnitio-corp.com/products/government/batvox (accessed: 29th

April 2014)
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experts (24%) currently use ASR for FVC. In all cases, the analysis includes some

element of human supervision, although the role of the human-supervisor was not made

explicit.

1.2 Expressing conclusions in forensic science

A number of frameworks are used for evaluating evidence and expressing expert

conclusions in FVC cases. These include a binary decision (the suspect and offender

are the same or different speaker(s); §2.1.1), classical probability scales (involving a

gradient assessment of the likelihood of the suspect and offender being the same or

different speaker(s); §2.1.2) and the UK position statement (two stage evaluation of the

consistency and distinctiveness of the suspect and offender samples; §2.1.3). However,

there have been increasing cross-disciplinary demands for changes in the way such

forensic comparison evidence is evaluated and presented to the courts. This has led to

claims that the field of expert evidence provision is undergoing a paradigm shift (Saks

and Koehler 2005; Morrison 2009a). This shift involves a move away from expert

judgements based on the probability (or likelihood) of the suspect and offender being

the same or different individual(s), and towards the evaluation of the evidence using the

likelihood ratio (LR) framework (§2.1.4).

Across forensic sciences, the LR is now widely accepted as the “logically and legally

correct” (Rose and Morrison 2009: 143) approach for evaluating the strength of expert

comparison evidence (Aitken and Stoney 1991; Robertson and Vignaux 1995b). The

LR provides a gradient assessment of the strength, or weight, of the evidence, indicating

the degree to which the it supports both the prosecution and defence. Applied to FVC,

the LR involves analysing the similarity of the suspect and offender samples to each

other, as well as the typicality of the offender sample (i.e. the evidence) with respect

to the wider (relevant) population. Considerable support for the LR as the appropriate

framework for the evaluation of expert evidence has also developed within the field of

FSS (Rose 2002; Morrison 2010), and since 2001 there has been extensive quantitative

research applying the numerical LR to FVC (Kinoshita 2001; see §2.2.2).

Despite this, worldwide very little FVC casework is performed using the numerical
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LR framework (four of the 34 experts surveyed in Gold and French 2011). This is due,

primarily (but not exclusively), to theoretical and practical difficulties in generating a

single numerical estimate of the strength of speech evidence. Such difficulties derive,

primarily, from the inherent complexity of speech as a form of forensic evidence;

difficulties which are commonly overlooked in much of the current LR-based FVC

research and casework.

1.3 Research aims and implications

This thesis explores some of the difficulties in applying the data-driven, numerical

LR framework to FVC, by considering and accounting for the complexity of speech

evidence from a linguistic-phonetic perspective. Numerical LR output in a given FVC

case is necessarily dependent on decisions made by the analyst: the initial sample of

suspect and offender speech, methods of analysis (§1.1) and choice of variables for

comparison, as well as method-internal factors such as the definition of the relevant

population, collection of representative data for testing, amount of data used, formula

for LR computation, procedure for calibration and means of combining LRs from

individual variables. Therefore, it is essential to understand the extent to which such

dimensions of variability affect the numerical estimate of the strength of evidence and

the performance of LR-based FVC systems.

Two specific issues for numerical LR computation are considered in this thesis. The first

relates to the definition of the relevant population, against which the typicality element

of the LR is quantified. In particular, consideration is given to varying dimensions of

sociolinguistic sources of between-speaker variation (e.g. regional background, age

and socio-economic class), and the extent to which such factors should be controlled in

LR-based FVC using both linguistic-phonetic and ASR input variables. The second

issue is the effects of different sources of sample size variation on numerical LR output.

This involves analysing both how many and which speakers are used as development (or

training), test and reference data (§3.2.1) in LR-based system testing. The experiments

in this thesis also consider how the amount of data per reference speaker affects the

resulting LRs.
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The findings of this thesis have a number of implications for LR-based FVC, and

potentially other areas of forensic science by extension. The results of these studies will

allow analysts to understand and acknowledge the effects of the wide-range of different

sources of variation encountered throughout LR-based analyses. The results of these

experiments will also help analysts determine which sources of variation to control,

based on the magnitude of their potential effects on the resulting LRs. More generally,

these findings will contribute towards increasing the extent to which LR-based FVC

accounts for the linguistic-phonetic complexity of speech evidence. In accounting

for this complexity, the quality of FVC evidence will be improved in terms of the

underlying, fundamental linguistic principles involved in the analysis. The studies will

therefore help make the numerical LR more practically viable for the analysis of FVC

evidence in casework. Further, from a theoretical perspective, the analysis of particular

linguistic-phonetic and ASR variables will expand our understanding of how group and

individual (Garvin and Ladefoged 1963; see further §3.3.1.1) information is encoded in

FVC variables and how this information affects LR output.

The analysis of both linguistic-phonetic and ASR variables will contribute towards

the integration of linguistic-phonetic and automatic methods of speech analysis. This

is particularly important for two reasons. Firstly, there is a general consensus within

the field of FSS that an integrated approach based on linguistic-phonetic and ASR

analysis will provide the best method for successful speaker discrimination (as shown

in the evaluation of human assisted speaker recognition (HASR) systems in NIST

2010; Greenberg et al. 2010). Secondly, ASR research very rarely considers the

sociolinguistic dimensions of variability known to affect the distributions of linguistic-

phonetic variables. ASR systems are commonly viewed as ‘black boxes’ and are treated

with suspicion by the courts. The integration of techniques from linguistics and ASR

therefore helps to improve the understanding of ASRs, in turn addressing recent calls

for the improvement in the quality and transparency of forensic evidence presented to

the courts (National Research Council 2009; Law Commission of England and Wales

2011).
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1.4 Overview of the thesis

The Research Review in Chapter 2 discusses different approaches to the expression

of conclusions in FVC cases. Further, it provides an overview of the position of the

paradigm shift in FVC and the development, and application, of the LR in research and

casework. The complexity of speech evidence, and the specific problems this causes for

the definition of the relevant population and the collection of data for system testing,

are also considered in detail. Finally, Chapter 2 provides a critical review of current

approaches for dealing with these issues and outlines the specific research questions

addressed in the thesis.

Chapter 3 presents the general methods applied throughout the experiments in the

thesis. These include the speech corpora used, the structure of LR-based experiments,

methods for LR computation, the linguistic-phonetic and ASR variables analysed, and

the procedures used for extracting quantitative data. The general limitations of the

experiments are also outlined.

Chapters 4, 5, 6 and 7 provide empirical data relating to theoretical issues of the

definition of the relevant population. Chapters 4 and 5 explore how regional variation

affects LR output using linguistic-phonetic variables (namely the formant trajectories

of /u:/ and /aI/). Chapter 6 considers the effects of regional variation on LR output using

ASR variables (CCs and derivatives). Chapter 7 examines the role of socio-economic

class and age in defining the relevant population using the formant trajectories of /eI/.

Chapters 8, 9 and 10 provide empirical analysis relating to the practical issue of the

amount of data required in LR-based system testing. Chapter 7 presents preliminary

studies into the number of reference speakers and tokens per reference speaker using the

raw data from Chapters 4 and 5. Chapter 9 considers the upper limit of the number of

reference speakers and tokens required for LR testing based on Monte Carlo simulations

(MCS) using articulation rate (AR) data. Chapter 10 expands the methods in Chapter 9

by using MCS to investigate the number of development, test and reference speakers

(see §3.2.1) required in LR-based FVC using formant data from the hesitation marker

UM (erm).

Finally, in Chapter 11 there is a discussion of the findings of the experiments with
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suggestions for alternative approaches to the definition of the relevant population for

FVC. This chapter also presents implications for future research and casework, and a

series of general conclusions.
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Chapter 2

Research Review

Across the forensic sciences there has long been debate about the most appropriate

methods for analysing and presenting forensic evidence to the courts. Over time the

criteria for the admissibility of expert evidence has changed. In Frye v United States

[1923], the court ruled that expert testimony was admissible if the method used had

received general acceptance within the relevant scientific community. Prior to Frye, the

admissibility of expert evidence had been based on the expertise and experience of the

analyst. The Frye ruling therefore shifted the focus for admissibility away from the

expert and onto the widespread professional acceptance of the methods themselves.

However, the Supreme Court in Daubert v Merrell Dow Pharmaceuticals [1993] ruled

that Frye was superseded by Federal Rule of Evidence (FRE) 702 (1975) which stated

that “if scientific, technical, or other specialized knowledge will assist the trier-of-fact

to understand the evidence or determine a fact in issue, a witness qualified as an expert

by knowledge, skill, experience, training, or education, may testify thereto in the form

of an opinion or otherwise.”3 FRE 702 therefore does not include the Frye requirement

for general acceptance within the relevant field in determining admissibility. The

court in Daubert also produced a series of guidelines for determining what constitutes

admissible scientific evidence in US courts. Amongst other requirements, the court

determined that valid scientific methodology should be based on empirical testing and

peer review and that the error rates of the method should also be known.

3http://www.law.harvard.edu/publications/evidenceiii/rules/702.htm

(accessed: 20th September 2014).
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Saks and Koehler (2005) identified Daubert as the “driving force” (Morrison 2009a:

299) behind what they describe as a paradigm shift in the methods applied to evaluating

forensic evidence. According to Saks and Koehler (2005), the new paradigm is based

on “empirically grounded science” (p. 892) consistent with practices in forensic DNA

analysis. Similarly, in 2009 the National Research Council (NRC) produced a report

calling for the improvement in the quality of forensic evidence presented to the courts

in line with the paradigm advocated by Saks and Koehler (2005). Morrison (2009a:

299) claims that implicit within both Saks and Koehler (2005) and the NRC report

(2009) is the proposition that forensic evidence (of all kinds) should be evaluated using

the likelihood ratio (LR) framework.

There has also been much debate within the field of FSS as to the most appropriate

methods for analysing samples in FVC and the reliability of such evidence (for an

overview see Nolan 2001; Foulkes and French 2001; Eriksson 2011). Central to this

debate is the issue of how experts express their conclusions, since as Nolan (2001)

states “the expression of the opinion is . . . an outward sign of the way (an expert)

conceptualises the task in which they are engaged” (p. 12). Within the field of FVC

there is considerable acceptance of the LR as the logically and legally correct framework

for evaluating evidence, at least in principle. Yet the complexity of speech as a form

of forensic evidence introduces issues with the application of a fully numerical, data-

driven LR approach, such as that advocated in Morrison (2014). Therefore, it is fair to

say that the paradigm outlined in Morrison (2014) is not consistent with the Frye ruling

that methods of forensic evaluation should be generally accepted within the field.

This chapter considers the frameworks currently used for evaluating FVC evidence, the

development of the LR in FVC and the place of the paradigm shift within FVC. The

theoretical and practical issues with the application of the numerical LR to FVC are

explored in light of the complexity of speech evidence. Attention is then given to the

specific issues relating to the experiments in this thesis: the definition of the relevant

population and the collection of data for LR-based system testing. Finally, the research

questions are detailed.
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2.1 Conclusion frameworks in FVC

In their survey, Gold and French (2011) found that several frameworks are currently

used worldwide for evaluating evidence and expressing conclusions in FVC casework.

The use of different frameworks is determined by legal rulings in different countries,

employers and governments, as well as by individual experts themselves. This section

provides an overview of these frameworks. For each approach, the acceptance within

the FSS community is discussed together with the logical, legal and practical issues

surrounding its use.

To contextualise these issues, it is useful to define the elements of FVC analysis in

terms of conditional probability or likelihood (p) based on propositions (or hypotheses)

(H) and evidence (E). Propositions relate to the statements offered to the court by

the prosecution and defence to explain the evidence. As is typical in the forensic

statistics literature, the term proposition is preferred here since the term hypothesis has

implications of frequentist hypothesis testing (Aitken and Taroni 2004: 6-7). Applied

to FVC, the prosecution proposition is typically that the suspect and offender are the

same speaker, while the defence proposition, in general terms, is that the suspect and

offender are different speakers. The evidence is the data extracted from the offender

sample (i.e. the unknown source).

2.1.1 Binary decision

Following the binary decision framework, the expert is restricted to a two-way, categor-

ical decision: either the samples contain the voice(s) of the same or different speaker(s).

A limitation of this approach is that it prohibits a gradient assessment of the degree

of consistency between the samples. The expert is therefore forced to make illogical

cliff-edge decisions about the identity of the offender (Robertson and Vignaux 1995b:

118). The cliff-edge effect refers to the arbitrary turning point between the two poten-

tial conclusions and the evidence required to move from one to the other. Given the

multidimensionality of speech variables analysed as evidence and the inherent sources

of variability (see §2.2.5), the binary decision approach has largely been rejected by the

FSS community. This is reflected in the fact that just two of the experts surveyed in
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Gold and French (2011) currently use this framework.

2.1.2 Classical probability scales

Some of the limitations of the binary decision framework are resolved by classical

probability scales, in which the expert expresses conclusions in terms of the gradient

probability of the samples containing the voice(s) of the same or different speaker(s)

given the evidence. An example of such a scale is in Table 2.1. Gold and French (2011)

report that classical probability scales are the most commonly used framework for FVC

evidence, accounting for 13 of the 34 (38%) practitioners surveyed. This approach is

used worldwide (including Europe, USA, Brazil, South Korea and Australia) and is

typically employed by experts using auditory and acoustic analysis (§1.1.3).

Table 2.1: Example of a classical probability scale for FVC conclusions (Broeders 1999:

129; equivalent to that in Baldwin and French 1990: 10)

Positive identification Negative identification

sure beyond reasonable doubt probable

there can be very little doubt quite probable

highly likely likely

very probable highly likely

probable

quite possible

possible

. . . that they are the same person . . . that they are different people

2.1.2.1 Issues with posterior probability

Both the binary decision and the classical probability scale frameworks have been

criticised within the field of FSS (Broeders 1999, 2001; Champod and Evett 2000;

Champod and Meuwly 2000) and the wider forensic community (Robertson and Vi-

gnaux 1995b). The primary criticism is that these frameworks are based on posterior

probability involving an assessment of the probability of the propositions given the

14



2. Research Review

evidence p(H|E). However, posterior probability is ultimately an issue for the trier-of-

fact, as it is equivalent to an assessment of the probability of the innocence or guilt

of the suspect based on the evidence. The overlap between the expert and trier-of-

fact when expressing p(H|E) conclusions is most evident where the offender sample

constitutes the crime, meaning that propositions are formulated at the offence level

(Lucy 2005: 118). Labov (1988; see also Labov and Harris 1994) reports a case in

which a baggage handler was accused of making threatening telephone calls to Los

Angeles airport. Based on auditory and acoustic analysis, Labov concluded that the

voices in the samples belonged to different speakers, and the suspect was subsequently

found innocent. However, such a categorical decision is directly equivalent to the

trier-of-fact’s assessment of the innocence of the accused.

Furthermore, in order to determine posterior probability the expert requires access to

information “from sources other than an objective scientific evaluation of the (suspect)

and (offender) samples” (Morrison 2009c: 4). That is, to assess the likelihood of

the suspect and offender being the same or different individual(s), it is necessary

to have access to all of the evidence presented to the court, such as whether the

suspect was in the country at the time or whether they had an alibi. Such information

should theoretically only be available to and assessed by the trier-of-fact. Even if such

knowledge is available to the expert, it is not the expert’s role to evaluate it. It is also

essential that the other evidence in the case does not influence the expert’s conclusion,

even subconsciously or inadvertently.

Finally, conclusions expressed as a binary decision or using a classical probability

scale only account for the probability of one proposition (usually the prosecution

proposition). However, only with an assessment of the likelihood of the evidence under

both the prosecution and defence propositions is the trier-of-fact able to evaluate its

strength with regard to innocence and guilt. To consider only one proposition is also

inconsistent with the objective responsibility of the expert to aid the court. Therefore, it

is preferable to use a framework which considers the strength of the evidence under

the competing propositions rather than the probability of the propositions themselves.

This is emphasised by the ruling in R v Doheny and Adams [1996], which states that

“the scientist should not be asked his opinion on the likelihood that it was the defendant
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who left the crime stain” (Rose 2007b).

2.1.3 UK Position Statement (UKPS)

To address these issues, French and Harrison (2007) present an alternative model for

evaluating FVC evidence, now often referred to as the UK Position Statement (UKPS).

UKPS is the result of debate within a sub-section of the FSS community (French 2005;

French and Harrison 2006) regarding the appropriateness of classical probability scales,

which until 2007 had been the dominant framework for expressing conclusions in UK

casework.

Figure 2.1: Flow chart of the UK Position Statement framework for FVC evidence

(from Rose and Morrison 2009: 143)

UKPS consists of a two-stage evaluation (Figure 2.1). The first stage requires an

assessment of the similarity between the suspect and offender samples, termed the

consistency judgement. It allows experts to reach one of three mutually exclusive

conclusions: consistent, not consistent or no decision. According to French and

Harrison (2007), a not consistent verdict should be preferred unless the differences
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between the samples can be explained by “established models of acoustic, phonetic

or linguistic variation” (p. 141). If the two samples are judged to be consistent, the

expert moves to the second stage, termed the distinctiveness judgement. This is an

assessment of the typicality of the shared features across the samples within the wider

population since, as Nolan (2001) states, strength of evidence is dependent on “whether

the values found matching . . . are vanishingly rare, or sporadic, or near universal in the

general (relevant) population” (p. 16). Distinctiveness is classified using the following

five-point scale:

5. Exceptionally distinctive - the possibility of this combination of features being

shared by other speakers is considered to be remote

4. Highly distinctive

3. Moderately distinctive

2. Distinctive

1. Not distinctive

from French and Harrison (2007: 141)

Distinctiveness is, for the majority of variables, assessed qualitatively. That is, while the

analysis of the samples may involve quantification of acoustic variables, their typicality

is assessed based on the expert’s knowledge and professional experience, or with

reference to published studies of sociolinguistic variation. When applying the UKPS,

the “general (relevant) population” (Nolan 2001: 16) used to assess distinctiveness is

defined according to the regional and social groups to which the expert believes the

offender belongs.

UKPS has been signed by 25 forensic practitioners and interested academics. According

to Gold and French (2011), UKPS is currently employed by 11 (32%) of the 34

practitioners surveyed and has largely replaced classical probability scales in the UK.

With the exception of one expert, the combined auditory and acoustic approach is the

preferred method of analysis for those using UKPS.
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2.1.3.1 Limitations of UKPS

Although UKPS represents a shift away from posterior probability, there remain logical

shortcomings with the approach, as raised in Rose and Morrison’s (2009) response

to French and Harrison (2007). Firstly, consistency and distinctiveness are analysed

on different scales, meaning that it is difficult to interpret the relative similarity and

typicality of the suspect and offender samples. Secondly, the scales are categorical with

a finite number of potential outcomes and are serially ordered such that distinctiveness

is only assessed if the samples are judged to be consistent with each other (issues with

similar two-stage approaches are discussed in Evett 1991: 10-11). This is problematic

since it prohibits the gradient assessment of the strength of the evidence under the two

competing propositions in all cases. Thirdly, the categorical, binary outcome of the

consistency judgement introduces cliff-edge effects into the analysis. A not consistent

judgement is also equivalent to an assessment of the propositions given the evidence (i.e.

the samples contain the voices of different speakers). Finally, Rose and Morrison (2009)

state that it is not clear how the analysis of multiple variables should be combined using

UKPS.

However, the overarching criticism of UKPS in Rose and Morrison (2009) is that it

falls short of either a conceptual or numerical implementation of the Bayesian LR

(discussion of French et al.’s 2010 rejoinder to Rose and Morrison 2009 is at §2.2.4).

2.1.4 The Bayesian approach

The LR is the probabilistic framework used for the evaluation of forensic DNA evi-

dence, and the move towards the LR reflects the role of DNA in “setting the standard”

(Balding 2005: 55) across forensic sciences. The LR forms a component of Bayes’

theorem which may be applied to the entire criminal trial. This section discusses the

application of Bayes’ theorem and Bayesian inference for reasoning under uncertainty

in criminal trials. The LR as an independent component for estimating the strength of

forensic evidence is then discussed.
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2.1.4.1 Bayes’ theorem and Bayesian reasoning

Bayes’ theorem (Bayes 1763) provides the theoretical foundation for a branch of

statistics based on conditional probability, in which probability is considered as a

measure of belief in an event or series of events. It is conditional in that it is dependent

on available information (Redmayne 2001: 55). According to Aitken and Taroni (2004:

22), Bayes’ theorem is defined by two fundamental elements: (1) that belief can be

modified as new information emerges or existing information changes, and (2) that

different individuals’ beliefs in the same event will vary due to differences in the

weights attached to each piece of information. Bayes’ theorem may be expressed as:

p(Hn|E) = p(Hn)p(E|Hn) (2.1)

from Lee (2004: 8)

where p is probability, E is evidence, Hn is a sequence of events and | is given. Ac-

cording to Bayes’ theorem, the probability of a sequence of events given the evidence

p(Hn|E) is equivalent to the product of the prior probability of that sequence events

p(Hn) and the probability of the evidence assuming that series of events p(E|Hn)

(Iversen 1984: 12).

The conceptual application of Bayes’ theorem is commonly referred to as Bayesian

inference or reasoning. Bayesian inference plays an important and natural role in

daily life, since our beliefs and opinions relating to uncertainty change as we come

into contact with relevant information. Since the real world truths of the events of a

crime are inherently uncertain, Bayesian inference provides the probabilistic model

for making judgements in criminal trials. On the basis of the combined weight of

the evidence presented to the court, the trier-of-fact assesses the likelihood of the

defendant’s innocence or guilt (Good 1991: 89-90). Since the burden of proof lies

with the prosecution, a guilty verdict may only be reached when the likelihood of guilt

assigned by the trier-of-fact is greater than the beyond reasonable doubt threshold (i.e.

where likelihood of guilt approaches one).
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The odds form of Bayes’ theorem as applied to criminal trials is given as:

p(Hp)

p(Hd)
× p(E|Hp)

p(E|Hd)
=
p(Hp|E)

p(Hd|E)
(2.2)

where Hp is the prosecution proposition (guilty), Hd is the defence proposition (inno-

cent) and E is evidence. The prior odds reflect the trier-of-fact’s assessment of the

probability of the competing propositions before the introduction of (new) evidence.

The weight or strength of each piece of evidence is expressed as the ratio of p(E|Hp) and

p(E|Hd) (the LR or Bayes Factor) which modifies the prior odds to establish the poste-

rior odds. The posterior odds concern the “ultimate issue” (Lynch and McNally 2003:

96) of innocence or guilt; an assessment of the probability of the competing propositions

given the combined weight of the evidence.

There are a number of advantages to using Bayes’ theorem in criminal trials. The

theorem is flexible, allowing the trier-of-fact’s belief in the competing propositions to

be modified as new evidence is introduced. Further, in Bayes’ theorem conditional

probability is subjective (Redmayne 2001: 54). Therefore, where a jury is entrusted

with interpreting the evidence, Bayes’ theorem allows each individual to assign different

weights to that evidence and thus potentially generate different posterior probabilities.

For forensic evidence, where the trier-of-fact cannot reasonably be expected to interpret

the evidence, the expert is responsible for assessing the weight of the evidence and,

following Bayes’ theorem, can do this using the LR. The trier-of-fact can then use this

to generate posterior probability.

However, there are a number of issues with the practical application of Bayes’ theorem

in criminal trials. The first is the appropriate definition of the prior odds, to reflect

the initial assumption that the suspect is innocent until proven guilty. Cohen (1982)

highlights that the presumption of innocence requires the prior probability to be zero,

meaning posterior probability would also necessarily be zero, irrespective of the evi-

dence. It is preferable, therefore, to think about the prior odds in terms of the island

problem (Aitken and Taroni 2004: 117-118). A crime is committed on an island with a

population N, of which the suspect is a member. Without any evidence, each member of

the population is assumed to be equally likely to have committed the crime. Robertson

and Vignaux (1995b) argue that the prior odds can then be thought of as the ratio of the

probability of choosing the suspect at random from the population (p(Hp)) divided by
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the probability of choosing any other member of the population at random (p(Hd)):(
1
N

)(
N−1
N

) =
1

N − 1
(2.3)

Secondly, the assessment of posterior probability requires an arbitrary division between

innocence and guilt. p(H|E) is therefore necessarily susceptible to the cliff-edge effect

since the trier-of-fact needs to make a categorical decision as to whether the defendant

is guilty beyond a reasonable doubt (Evett 1991: 12). It is not clear how the threshold

for determining innocence and guilt is determined by juries. Finally, the formal quan-

tification of Bayes’ theorem in criminal trials (i.e. assigning numerical values to each

piece of evidence to generate an overall probability of innocence and guilt) has largely

been rejected by the courts in England and Wales (see §2.1.4.5.

2.1.4.2 Assessing strength of evidence using the LR

The LR provides a gradient estimation of the strength of the evidence (E) based on the

ratio of its probability given the prosecution proposition (Hp) and its probability given

the defence proposition (Hd):

p(E|Hp)

p(E|Hd)
(2.4)

As a ratio, the outcome is a value centred on one, such that LRs of greater than one

offer support for Hp while LRs of less than one offer support for Hd. The magnitude of

the LR determines how much more likely the evidence is given one proposition over the

other (Evett et al. 2000). A LR of ten, for instance, means that the evidence is ten times

more likely assuming the proposition that the samples contain the voice of the same

speaker than assuming the proposition that the samples contain the voices of different

speakers.

The numerator of the LR is equivalent to the similarity between the suspect and offender

samples (i.e. the probability of the offender values assuming they were produced by

the suspect). The denominator is equivalent to the typicality of the offender sample

with respect to the relevant population (i.e. the probability of the offender values

assuming they were produced by another member of the relevant population) (Aitken

and Taroni 2004: 206; see §2.3). Using the numerical data-driven approach, typicality
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is quantified using statistical models generated from a sample of the relevant population

(the forensic scientist may also estimate typicality based on experience and expertise,

although there is considerable debate over how to implement this approach scientifically,

with suggestions including testing the performance of experts in controlled experiments;

see Evett 1991: 21). Such a sample is termed the background or reference data, and the

statistical model of these data is called the background or reference model.

Figure 2.2: Univariate example of a LR computed using Lindley’s (1977) model for a

same speaker comparison based on midpoint F1 (Hz) values for New Zealand English

(NZE) /u:/

An example of the computation of a numerical LR is shown in Figure 2.2. The data

consist of midpoint F1 (Hz) values for /u:/ from the Origins of New Zealand English

(ONZE) corpus (see further §3.1.2). The background model is generated using 50

speakers (13 tokens per speaker) and the suspect model consists of 13 tokens from

a single speaker. Following Lindley (1977), these data are modelled using normal

distributions. The evidence is a single offender value for F1 of 410 Hz. The evidence is

firstly assessed under the assumption that it was produced by the suspect, by calculating
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its probability at the intersection with the suspect model (p(E|Hp) = 0.0196). The

evidence is then evaluated under the assumption that it was produced by a random

speaker in the relevant population, by calculating its probability at the intersection with

the background model (p(E|Hd) = 0.0072). The LR is the ratio of these probabilities.

Consistent with the fact that the suspect and offender data are from the same speaker in

this example, the LR is greater than one (2.72) and so offers support for the prosecution.

Bayes’ theorem also allows experts to combine different pieces of evidence. Naïve (or

idiot’s) Bayes (Kononenko 1990) states that numerical LRs from separate sources can

be combined by taking their product providing the strands of evidence are independent

of each other. This is because the product of LRs from correlated pieces of evidence will

overestimate their strength by weighting the same evidence more than once. Although

the LR is a fundamental element of the Bayesian approach, its application in forensic

contexts is independent of Bayes’ theorem since it “does not (itself) make use of prior

probabilities” (Morrison 2009c: 4). Therefore, the LR is free from the criticisms of

Bayes’ theorem outlined in §2.1.4.1.

2.1.4.3 Logical and legal correctness of the LR

Robertson and Vignaux (1995b) emphasise that “expert evidence should be restricted

to the (LR) given by the test or observation of its components” (p. 21). There are a

number of logical and legal arguments for this. The distinction between assessing the

probability of the propositions and the probability of the evidence separates the roles

of trier-of-fact and expert. This theoretically leaves the trier-of-fact free to interpret

the expert forensic evidence within the context of the other evidence presented to the

court. Further, by applying the LR, the expert’s conclusion is not informed by priors

which should be determined by the trier-of-fact or influenced by information beyond

the scope of the FVC evidence itself. The LR overcomes logical shortcomings of the

UKPS since it ensures that similarity is considered relative to typicality, rather than

having two independent stages of analysis. Therefore, it is not the case that typicality

is only assessed if there is judged to be consistency between the suspect and offender

samples. Rather, the denominator of the LR ensures that the defence proposition is

considered when judging typicality. Furthermore, the LR provides a gradient estimation
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of the probability of the evidence, thus avoiding cliff-edge effects.

2.1.4.4 Logical fallacies

Despite the logical and legal correctness of the LR, there remain a number of poten-

tial fallacies in probabilistic reasoning and inference when presenting the results of

expert analysis to the court. The prosecutor’s fallacy (Thompson and Schumann 1987)

involves presenting the probability of the evidence in terms of the probability of the

propositions. This fallacy is also referred to as the transposed conditional since E and H

are inappropriately switched such that probability is conditional on the evidence p(H|E)

rather than on the propositions p(E|H). An example of this is provided in Aitken and

Taroni (2004: 112) in which a bloodstain from an unknown offender is compared with

the blood of the known suspect. There is a match between the blood groups across

the samples meaning that p(E|Hp) is equal to one. This blood group is also found in

1% of the population, meaning that p(E|Hd) is 0.01 (for evidence types where p(E|Hp)

is equal to one (e.g. DNA evidence), p(E|Hd) is referred to as the random match

probability). The prosecutor’s fallacy involves presenting this assessment of typicality

as a 99% (posterior) probability that the suspect is guilty, despite the fact that the LR

(strength of evidence) is 1/0.01 = 100. Clearly a 99% chance of guilt is not the same

as the evidence providing 100 times more support for the prosecution proposition than

the defence proposition.

Aitken and Taroni (2004: 115) also provide an example of the defender’s fallacy

(Thompson and Schumann 1987). Considering the same case as above where the

analysis of the bloodstains provided a LR of 100, assume that the relevant population

consists of 200,000 people. Based on the assessment of typicality (1% of the population

share that blood group), the defence claim that there are 2000 people who share that

blood group. Therefore the probability that the defendant is guilty is 1/2000 and so the

evidence is of little probative value. There are number of issues with such inference.

Firstly, the evidence is again presented in terms of posterior probability which is

inappropriate since it requires access to the prior odds. Secondly, the assumption about

the probability of guilt assumes that each of the 2000 people who share that blood group

are equally likely to have committed the crime. However, based on other evidence in
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the case this assumption is likely to be inappropriate. Finally, as highlighted by Aitken

and Taroni (2004) “evidence which increases the odds in favour of guilt from 1/200,000

to 1/2000 is surely relevant” (p. 115).

2.1.4.5 Bayes and the LR in the courts

The courts in England and Wales have displayed sensitivity to the issues of fallacious

interpretation and presentation of statistical evidence. Early legal concerns over the

expression of conclusions based on DNA evidence were raised by the Court of Appeal

in England and Wales in R v Deen [1993], following Deen’s conviction for rape in

1990. The court quashed the original conviction based on a re-evaluation of the forensic

evidence which reduced the original random match probability of 1 in 700,000 to 1

in 33. The court’s decision was also based on the fact that the expert at the court of

first instance had committed the prosecutor’s fallacy by presenting the random match

probability as the probability of guilt (see further Balding 2005). The overestimation of

the strength of forensic (DNA) evidence and the presentation of evidence in the form

of posterior probability has also provided the grounds for successful appeals in R v

Doheny and Adams [1996] and R v Clark [2003].

Despite this, the courts have largely rejected the formal application of Bayes’ theorem to

criminal trials. In 1994, Dennis Adams was found guilty of rape, in part based on a DNA

random match probability of 1 in 200,000,000, despite alibi testimony and the victim’s

evidence which suggested that Adams did not look like the offender (Balding 2005:

151). Based on the defence expert’s advice the judge directed the jury to assess this and

other evidence in the case in terms of Bayes’ theorem based on numerical probabilities.

However, the conviction was quashed by the Court of Appeal in R v Adams [1996]

based on the fact that the prosecution expert had committed the prosecutor’s fallacy.

Further, the court ruled that “to introduce Bayes’ theorem, or any similar method, into

a criminal trial plunges the jury into inappropriate and unnecessary realms of theory

and complexity deflecting them from their proper task.”

The courts reception of the LR has been somewhat mixed. In George v R [2007], the

re-evaluation of the firearm discharge residue evidence (used as one of primary pillars

of the prosecution case in the original trial) in the form of a LR was well received
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by the England and Wales Court of Appeal. This, in part, led to the conviction being

quashed. However, the LR has been challenged by the Court of Appeal in R v T [2010].

The appeal focused on the use of the LR to express the expert’s opinion based on an

analysis of footwear mark evidence at the original murder trial. The Court of Appeal

concluded that “outside the field of DNA (and possibly other areas where there is a firm

statistical base) . . . Bayes’ theorem and (LRs) should not be used.” Morrison (2012)

argues forcefully that the court displayed fundamental misunderstandings of the LR.

Morrison claims that the court equated the LR directly with the use of quantitative data

and statistical models, rather than treating the logical framework and the numerical

implementation as two distinct elements. That is, the LR can and should be used as a

conceptual framework to evaluate evidence without the need for databases to estimate

a numerical value to express the strength of evidence. Although the ruling applies to

forensic shoeprint evidence, it has been criticised by Berger et al. (2011), Aitken et al.

(2011), Redmayne et al. (2011) and others for its potential implications as precedent in

other areas of forensic science.

2.2 The LR in FVC

2.2.1 Acceptance of the LR framework for FVC

The first explicit discussion of the application of the LR to speech is in Champod

and Meuwly (1998, 2000) (see also Lewis 1984; Broeders 1995; Rose 1998, 1999).

Champod and Meuwly outline the value of Bayes’ theorem in other branches of forensic

science, the logical fallacies associated with posterior probability, and the conceptual

correctness of the LR for FVC, but do not discuss the application of these principles to

research or casework. Broeders (1999) was the first author to outline specific limitations

of classical probability scales (see §2.1.2), but also acknowledges the difficulties of

applying the LR to speech data. Champod and Evett (2000) provide a response to

Broeders (1999), calling more strongly for the use of the LR in FVC. Discussion on

the appropriateness of the LR for FVC is also found in Nolan (2001), Rose (2002) and

Morrison (2010).
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The last decade and a half has seen a rapid rise in the level of general acceptance of

the LR framework, in principle, for FVC. However, in practice, the UKPS (2.1.3) still

holds sway for evaluating FVC evidence in casework in many countries (e.g. UK).

Therefore, as highlighted by Morrison “the paradigm shift (in FVC) is incomplete

and those working in the new paradigm still represent a minority within the (FSS)

community” (2009a: 298).

2.2.2 LR-based research

The increasing acceptance of the framework has been reflected in an exponential

increase in the amount of LR-based FVC research. The first quantitative LR-based

study of linguistic-phonetic variables appears to be Kinoshita (2001), who analysed

midpoint F3 values from /o m s/ in spontaneous realisations of moshimoshi (hello in

Japanese), as well as F2 of /i/ and F2 and F3 of /e/ from target words elicited via a map

task. Participants were ten male speakers of Standard Japanese aged between 21 and 36.

Cross-validated comparisons (see further §3.2.2.3) were performed using the formula

in Aitken (1995) and classified using a LR distance approach based on posterior odds.

An overall LR (OLR) was generated by taking the product of the LRs from individual

variables. Optimally 81 of the 90 (90%) same speaker (SS) comparisons achieved

OLRs of greater than one (i.e. support for the prosecution), while 174 of the 180 (97%)

different-speaker (DS) comparisons achieved OLRs of less than one (i.e. support for

the defence).

Kinoshita (2001) is limited primarily by the procedures available at the time for com-

puting and analysing LRs. As highlighted in Kinoshita (2001: §6.6.1.3), the only

available formula (Aitken 1995; based on Lindley 1977) was developed for analysing

refractive indices of glass, where p(E|Hp) is expected to be one (i.e. if the recovered

and comparison samples came from the same source there will be a 1:1 match between

the samples). Therefore, Aitken (1995) does not adequately capture the occasion-to-

occasion variability in speech produced by the same individual. Aitken (1995) also

assumes that variables are normally distributed, which is not necessarily appropriate

for linguistic-phonetic variables. Furthermore, individual LRs were combined using

naïve Bayes, despite evidence of correlations between variables for certain speakers
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(Kinoshita 2001: §6.6.2.2).

Since 2001, considerable methodological advancements have been made in LR-based

research, such as the application of LR formulae from other areas of forensic science.

These include the Multivariate Normal and Kernel Density (MVKD) approaches (Aitken

and Lucy 2004; see §3.2.2.1) developed for glass fragment analysis. The availability

of different formulae has also expanded the range of variables which can be analysed

using the LR. Much of the research in LR-based linguistic-phonetic FVC has focused

on the speaker discriminatory power of vowel acoustics. Studies have considered

the performance of formant midpoints (Alderman 2004a; Rose 2010) and trajectories

modelled with parametric curves to reduce dimensionality (Kinoshita and Osanai 2006;

Morrison 2009b; Enzinger 2010).

The performance of other segmental variables has also received some attention. A

number of studies have considered the LR-based speaker discriminatory power of

different acoustic properties of nasals (Enzinger and Balazs 2011; Kavanagh 2012;

Kasess et al. 1993; Yim and Rose 2012; Enzinger and Kasess 2013). LR-based

analyses have also been conducted using spectral properties of fricatives (Rose 2011b;

Kavanagh 2012). Less attention has been given to suprasegmental variables, although

studies have considered the performance of long-term f0 (LTf0) (Kinoshita 2005;

Gold 2014), localised intonation contours (Wang and Rose 2012; Pang and Rose 2012)

and articulation rate (AR) (Gold 2014; see Chapter 9). Recently, LR-based studies have

also been conducted to evaluate the speaker discriminatory performance of the acoustic

properties of VQ (Enzinger et al. 2012) and the glottal waveform (Vandyke 2014)

which captures the vibratory motion of the vocal folds.

The development of techniques for the application of the LR to ASR has a somewhat

longer history. Notably, the Gaussian Mixture Model - Universal Background Model

(GMM-UBM) approach was developed for ASR and outlined in Reynolds et al. (2000),

although the use of GMMs for modelling ASR data is reported earlier (Reynolds 1995).

The development of the GMM-UBM approach has led to a considerable amount of

research into the speaker discriminatory power of cepstral coefficients (CCs) and deriva-

tives (Rose 2011a, 2013a) and semi-automatic variables such as long-term formant

distributions (LTFDs: Becker, Jessen, and Grigoras 2008; Becker, Jessen, and Grigo-
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ras 2009; Gold, French, and Harrison 2013; Jessen and Enzinger 2014). A number of

studies have also considered the comparative performance of GMM-UBM and MVKD

for linguistic-phonetic variables (Rose and Winter 2010; Morrison 2011a).

Finally, considerable advancement has been made in the methodologies available

for empirically assessing validity (Brümmer and du Preez 2006; van Leeuwen and

Brümmer 2007) and reliability (Morrison, Thiruvaran, and Epps 2010; Morrison, Zhang,

and Rose 2011), optimising system performance through calibration (Brümmer and

du Preez 2006), and combining LRs from correlated pieces of evidence (Pigeon et al.

2000; Brümmer 2007). These advancements have been made primarily in the field

of ASR and have subsequently been applied to linguistic-phonetic FVC. Given the

developments made in modelling and analysing FVC data over the last 20 years, speech

is now situated towards the forefront of the claimed paradigm shift and informs LR

practice in other disciplines (Ramos-Castro 2012; Morrison 2013).

2.2.3 LR-based casework

Despite widespread acceptance of the LR in principle, the mass of LR-based research

and the developments in techniques for LR testing, only seven of the 34 (20.5%) experts

surveyed by Gold and French (2011) use the LR in FVC casework and, of those, just

four (11.8%) use the numerical LR approach. Rose (2013b) is the only published report

of the application of the numerical LR to casework in which LR-based evidence was

received by the court (reference is also made to the presentation of LR-based FVC

evidence in the courts in Australia in Morrison 2009a). The case came to trial in 2008

and involved a fraudulent telephone call (containing 14 seconds of offender speech)

made to an Australian bank requesting the transfer of $150 million. The suspect samples

were a series of recordings made during police interviews and house searches, as well

telephone intercepts of the suspect talking to a friend.

The comparison focused on the word yes and the phrase not too bad. From yes, the

onset, midpoint and offset of the first three formants of /je/ were analysed along with a

“crude” (Rose 2013b: 304) analysis of the lower cut-off in the spectrum of /s/. From

not too bad, Rose analysed time-normalised f0 contours sampled across their trajectory
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and F1, F2 and F3 midpoints from /o/ in not, /u:/ in too and /æ/ in bad (using Rose’s

phoneme symbols). In the absence of a specific alternative hypothesis, the relevant

population was defined as adult male speakers of General Australian English (AusEng)

(based on assumptions about the offender; see §2.3). The reference data consisted

of 35 adult males aged between 20 and 70, recorded over the telephone. The analyst

prompted responses of yes and not too bad using questions such as how’s it going? and

attempted to “indirectly prime” the speakers by producing the phrase not too bad with

the “correct intonation” at the beginning of the conversation (Rose 2013b: 285). Each

participant was recorded twice to obtain non-contemporaneous (i.e. random variability

introduced by recording speakers on two separate occasions separated by some period

of time) assessments of within-speaker variability.

Modelling the reference data both normally and with kernel density (KD), Rose achieved

a LR of 70 for the formant analysis of /je/. The low cut-off analysis of /s/ generated

a roughly estimated LR of 2.5. The acoustic analysis of the f0 pattern in not too

bad generated a LR of 20, while a categorical analysis of the tonal structure of the

phrase generated a rough LR estimate of marginally greater than one. For the formants

extracted from not too bad, LRs of 24 (/o/), five (/u:/) and 11 (/æ/) were estimated

respectively. Despite calculating an OLR of 11 million using naïve Bayes, a more

conservative OLR of 300,000 was arrived at by “simply discard(ing) the putatively

correlated LRs (e.g. from individual formants in not)” (2013b: 305).

Rose (2013b) also provides a critique of the procedures applied, claiming that system

performance should ideally have been presented to the court as a means of interpreting

the validity and reliability of the final OLR. The availability of data for pre-testing

would also have allowed for the OLR to be calibrated (see §3.2.4), thus potentially

improving system validity. Rose’s analysis also fails to empirically account for between-

variable correlations in determining a conservative OLR. As outlined in §2.2.2, since

2008 techniques for doing this have been developed for FVC. Finally, Rose highlights

that the use of relatively small amounts of suspect and offender data means that the LR

estimate will be relatively imprecise and that, in such cases, “it is better, if possible, to

try to avoid (absolute numerical values for the OLR)” (Rose 2013b: 305).

Beyond Rose’s critique, there are other limitations of the analysis. Firstly, the motivation
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for the choice of variables is not made explicit. The analysis is based on a limited set

of continuous, acoustic variables. However, within yes and not too bad there are other

variables that may have affected evidential support. There may also have been variables

of evidential value in the other sections of the offender sample aside from yes and not

too bad. Secondly, the ecological validity of the procedures used to collect reference

data is questionable. The context in which the samples for the reference data were

made is cognitively different from that of the evidential samples. Further, reference

speakers were prompted to produce the target word and phrase and were primed to

produce the appropriate intonation contour. The potential effects of such mismatch, or

of the non-Bayesian, subjective decisions made by the analyst, on LR output are not

explored in Rose (2013b). There are also a number of issues with the definition of the

relevant population which are considered in §2.3.1.

There are no published guidelines for the application of the numerical LR to FVC

casework. However, given the current state of methodological techniques, a set of

procedures can be determined based on the paradigm advocated in Morrison (2014)

and its application in Enzinger and Morrison (2014). The procedures for computing a

LR for a single variable are:

1. Extraction of acoustic data from the variable of interest from the suspect and

offender samples.

2. Decision regarding the relevant population (see §2.3).

3. Multiple recordings, matching the facts of the case at trial, from a sample of the

relevant population collected for use as development, test and reference data.

4. Extraction of acoustic data from the variable of interest for the development, test

and reference speakers.

5. SS and DS scores (prior to calibration LRs are referred to as scores) computed

(using an appropriate LR formula) for the development and test data using the

reference data to assess typicality (feature-to-score stage; see §3.2.2).

6. Calibration coefficients generated by applying logistic regression (see §3.2.4.1)

to the scores from the development data (training stage).
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7. Calibration coefficients applied to the scores from the test data to convert the

scores into calibrated LRs (score-to-LR mapping; see §3.2.4).

8. Validity and reliability (see §3.2.3 calculated based on calibrated LRs from the

test data (this is presented to the court as a means of interpreting the performance

of the system under the conditions of the case at trial).

9. Score computed for the suspect and offender data using the same LR formula as

in (5).

10. Calibration coefficients generated from the development data applied to the score

for the suspect and offender data to convert the value into a calibrated LR.

If multiple correlated variables are analysed, as is typical in linguistic-phonetic FVC,

further stages of analysis are implemented:

1. Stages (1) to (5) repeated for each variable.

2. Logistic regression fusion coefficients (Brümmer et al. 2007) derived from the

scores for the development set.

3. Fusion coefficients applied to the scores for the test set to convert the scores for

individual variables into a calibrated OLR (which incorporates the correlation

between the variables).

4. System validity and reliability metrics calculated based on the OLRs for the test

data.

5. As in stage (9), scores computed for each variable using the suspect and offender

data.

6. Scores for the suspect and offender data combined using the fusion coefficients

from the development data to generate a calibrated OLR.

2.2.4 Issues with the LR in FVC

The reluctance of experts to use the LR in casework is due, primarily, to the difficulties

in implementing a fully numerical LR analysis in FVC (highlighted by the complexity

of the procedures in §2.3.2). Indeed, French and Harrison acknowledge “the desirability
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of . . . (the LR) . . . framework” (2007: 142), but claim that the difficulties involved in its

application make the UKPS a preferable alternative for FVC. Rose and Morrison (2009)

highlight that the theoretical definition of the relevant population and practical issue of

the collection of reference data are “real problems” for the numerical LR approach, but

state that “these problems, however real, do not prevent the use of (LRs)” (p. 156). In

response, French et al. (2010) claim that “it is unrealistic to see it as merely a matter

of time and research before a rigorously and exclusively quantitative LR approach can

be regarded as feasible” (pp. 149-150). They claim that this is primarily because there

is insufficient available data to estimate the distribution within the relevant population

of all of the potential variables analysed in a given case. French et al. (2010) also

challenge the available methods for collecting such reference data (see further §2.4).

There are two further issues with the practical application of the LR to FVC evidence,

which underlie the arguments in French et al. (2010). Firstly, by examining the

probability of the evidence rather than the probability of the hypotheses, the LR

framework introduces a level of analyst objectivity which is not present in posterior

probability-based approaches. However, in computing a numerical LR the analyst must

make methodological decisions at several steps: the initial sampling of suspect and

offender speech, choice of variables for comparison, methods of analysis, definition

of the relevant population, collection of representative reference data, sampling the

reference data, selecting the formula for LR computation and calibration procedure, the

means of combining LRs from separate variables, and so on. The extent to which these

decisions affect LR output is rarely considered. Secondly, as highlighted by Nolan

(2001), the intrinsic link between the method of analysis and the conclusion framework

in FVC means that there is inevitably an extent to which the framework dictates how

the analysis is performed (e.g. what can be analysed).

Such issues and concerns relating to the application of the LR to FVC stem primarily

from the inherent, and arguably unique, complexity and multidimensionality of speech

as evidence. The following section explores the complexity of speech evidence and the

issues that this causes for LR-based FVC.
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2.2.5 Complexity of speech evidence

Firstly, LR-based analyses typically focus on a small number of acoustic variables

which yield continuous, quantitative data compared across the same word or phrase.

The benefit of using the same word or phrase is that the material is directly comparable

across the evidential samples and within-speaker variability is minimised by normalising

for phonological context and syntactic function. Underlying this approach is also an

assumption that a small subset of variables is able to accurately represent the properties

of the suspect and offender voices. This sampling approach is claimed to be akin to the

proportion of the genome analysed in forensic DNA analysis (Morrison p.c.). However,

this assumption is potentially insufficient given the number of variables available to the

analyst in componential linguistic-phonetic FVC (§1.1.3) which may have a substantial

effect on the resulting strength of evidence.

Gold and Hughes (2014) state that the primary reason for the focus on continuous,

acoustic data is that this is the only type of data which can be handled by current

LR formulae. Speech is complex for LR modelling since it consists of numerous

variables which may be continuous or discrete, normally or non-normally distributed,

display different distributions within and between speakers, and contain multiple, highly

correlated features. At present, there are no means of empirically computing LRs for

discrete data such as allophonic consonantal variation (although see Schwartz et al.

2011), frequencies of lexical items and the analysis of VQ and vocal settings. As

outlined in Gold and Hughes (2014), for the numerical LR to become a more realistic

proposition in FVC, it is necessary for new LR models to be developed. Only a small

amount of work has considered these issues (Aitken and Gold 2013; Foulkes et al.

2013-2015; Nair et al. 2014; Neocleous et al. 2014).

Secondly, speech variables display complex patterns of structured between-speaker

variation (Rose 2002; Foulkes and Docherty 2006; French et al. 2010). Such variation

is found as a function of factors such as regional background, socio-economic class,

age, and ethnicity, as well as the social networks and communities of practice in

which a speaker participates. Within a single regional variety different variables are

often stratified in different ways. For example, /u:/-fronting is a widespread change in

progress in English, and is generally correlated with age. By contrast, another on-going
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change, /@U/-fronting, correlates with both age and sex, being led by young females

(Haddican et al. 2013; Williams and Kerwill 1999). Across regional varieties, the social

stratification of variables may also differ. For instance, /@U/ and /eI/ carry considerable

socially conditioning in the north east of England, but much less in the south east

(Watt 2000, 2002).

In collecting development, test and reference data, it is important that samples match

the (relevant) facts of the case at trial otherwise the resulting strength of evidence

may be misrepresentative. This is because a speaker will never produce the same

word or sentence in exactly the same way even consecutively, meaning that p(E|Hp)

for speech evidence will never be one (unlike forensic DNA analysis). In current

LR-based research and casework, within-speaker variability is captured using non-

contemporaneous samples from each speaker separated by some undefined period of

time. Non-contemporaneity encompasses multiple sources of structured and random

within-speaker variability across samples. Results from Enzinger and Morrison (2012)

show that system validity and reliability are overoptimistic when using contempora-

neous, compared with non-contemporaneous, samples. However, very little research

has empirically tested these issues with different variables commonly analysed in FVC

(with the exception of Coe 2012).

Further, evidence from sociolinguistics and sociophonetics indicates that there are

numerous, complex sources of within-speaker variability which affect speech produc-

tion. These include interlocutor, conversational topic and function, level of formality,

self-consciousness, physical setting, time of day, illness, fatigue and intoxication. In a

given FVC case, a large number of these factors are likely to be relevant: suspect and

offender samples are typically recorded with different interlocutors who have a different

level of familiarity with the speaker, talking about different topics in different degrees

of formality at different times of day. At the present time, no empirical research has

investigated the extent to which such factors affect LR output, or whether such factors

have a much bigger effect on the resulting LRs than the use of non-contemporaneous

samples.

Finally, speech variables form highly correlated sub-systems due to a range of factors.

The biological structure of the vocal apparatus means that variables such as vowel
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formants are inherently interrelated within and between phonemes. Correlations are

also determined by the linguistic system, such that in cases of (vowel) change there are

push-pull effects which are thought to ensure that sounds remain acoustically distinct.

There is also evidence of linguistically arbitrary correlations due to social factors, for

example speakers in Derby with TH-fronting (/T D/→ [f v]) also typically produce

labial-r (/r/ → [V w]) (Milroy 1996). Although methods for empirically combining

LRs have been developed in ASR (logistic regression fusion), Gold and Hughes (2014)

argue that it is an empirical question as to whether such methods capture the linguistic-

phonetic complexity of the correlations in the raw data.

This thesis considers the implications of the complexity of speech evidence for two

specific issues in LR-based FVC: the definition of the relevant population and the

collection of development, test and reference data.

2.3 Definition of the relevant population

One of the primary benefits of the LR framework is that the evidence is evaluated under

the competing propositions of both prosecution and defence. In most FVC cases, Hp

will be the straightforward proposition that the offender sample contains the voice of

the known suspect. The definition of Hd is more problematic for the evaluation of

comparison evidence. This is because in order to calculate p(E|Hd) it is necessary to

assess the probability of the evidence relative to a model of the relevant population,

which is defined by the defence (or alternative) proposition. For example, if the defence

were to claim that the suspect did not commit the crime but that one of his brothers did,

the relevant population would necessarily consist solely of the suspect’s brothers.

However, often the defence offer a non-specific alternative proposition such as it was

not the defendant who committed the crime, it was someone else, where the relevant

population technically consists of any member of the population excluding the suspect.

In many cases the defence offer no alternative proposition at all. As highlighted by

Robertson and Vignaux, “it is . . . difficult if not impossible to determine the probability

of the evidence with a vague and ill-defined (alternative) hypothesis” (1995b: 31). This

is because with a non-specific alternative proposition the prior odds will be extremely
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small. Assuming, for the sake of exposition, that the relevant population consists of all

other people in the world and that there is no other information available, the prior odds

are:

p(Hp)

p(Hd)
=

(
1
N

)(
N−1
N

) =

(
1

7.243×109
)(

7.243×109−1
7.243×109

) = 1.38× 10−10 (2.5)

where N is the size of the relevant population, i.e. the estimated world population of

around 7.243 billion.4 The LR based on such a broadly defined relevant population will

also be small (Aitken and Taroni 2004: 206) and the evidence will offer little probative

value to the court. Therefore, it is necessary to reduce the relevant population “to more

manageable proportions” (Aitken and Taroni 2004: 206), unless “there is no evidence

to separate the perpetrator from the . . . population (at large)” or where the evidence is

independent of variation within sub-populations (Robertson and Vignaux 1995b: 36).

In most cases certain pragmatic assumptions about the defence proposition must be

made. The concept of the relevant population was first defined by Coleman and Walls

(1974: 276) as:

those persons who could have been involved (in the crime); sometimes it

can be established that the crime must have been committed by a particular

class of persons on the basis of age, sex, occupation or other sub-grouping,

and it is then not necessary to consider the remainder of, say the United

Kingdom.

This definition has subsequently been developed by Smith and Charrow (1975), who

use the term suspect population to refer to “the smallest population known to possess

the culprit as a member” (p. 556). Similarly, suspect population is used by Lempert

(1977) to refer to the population of potential offenders. Following such definitions, the

relevant population must be based on what is known (or can be assumed) about the

offender, rather than the suspect (Robertson and Vignaux 1995a). Furthermore, since

the relevant population is defined by the defence proposition, it must, logically, remain

constant across all forensic evidence presented to the court.

4http://www.worldometers.info/world-population/ (accessed: 30th June 2014).
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2.3.1 Logical relevance

As in Coleman and Walls (1974), assumptions about the alternative proposition may

be made based on factors which define sub-groups within the population at large, such

as regional background, age and sex. This approach is referred to as logical relevance

(Kaye 2004, 2008) and factors may be considered logically relevant if they affect

the distribution of a variable in the wider population. This approach has been used

extensively in forensic DNA analysis. Since allele frequencies differ between racial

groups (Gill and Clayton 2009), the logically relevant population is typically defined

by race. In the UK, three databases are used to evaluate DNA evidence based on broad

racial groups: white Caucasian, Afro-Caribbean and Asian. As it is not possible to infer

racial background from the offender sample, multiple LRs are often presented based on

different assumptions about the relevant population.

Variation in allele frequencies between sub-populations within racial groups has gener-

ally been shown to be relatively minor (Gill and Clayton 2009; Balding et al. 1996;

Budlowe et al. 1999). Gill et al. (2000) assessed the level of regional variation in DNA

profiles across 24 European populations making up the ENFSI DNA Short Tandem

Repeat (STR) Population Database.5 They concluded that for white Caucasians a single

pan-European database is sufficient for generating stable LR output. Where such varia-

tion (e.g. regional variation due to high coancestry - regional groups displaying genetic

similarity based on interrelatedness) is considered important, it may be accounted for

by incorporating a coancestry coefficient (FST ) into the LR calculation (Balding and

Nichols 1994). Beyond race and regional background, the National Research Council

(NRC) states that, in some cases, it may also be necessary to consider other potentially

logically relevant factors such as age and sex in forensic DNA analysis (1996: 30).

Applying the principles of logical relevance to FVC, Rose (2004: 4) claims that, in the

absence of a specific alternative proposition, the underlying assumption should be that

the voice in the offender sample does not belong to the suspect, but to “another same-sex

speaker of the language.” Following this approach, the relevant population is defined

by the sex and language of the offender. This definition has been used in almost all LR-

based FVC research (Kinoshita 2002; Alderman 2004a; Kinoshita 2005; Rose 2006;
5http://strbase.org (accessed: 30th June 2014).
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Rose, Kinoshita, and Alderman 2006; Rose 2007a; Morrison and Kinoshita 2008;

Morrison 2009b) and casework (Rose 2013b), and in the collection of FVC databases

(Rose 2007-2010; Morrison et al. 2010-2013; Zhang and Morrison 2011).

2.3.1.1 Limitations

The Rose (2004) application of logical relevance makes two potentially problematic

assumptions about FVC cases. Firstly, this approach assumes that language and sex

information are readily extractable from the offender sample. However, many cases

present themselves where even these matters are not trivial (French et al. 2010: 145).

For example, Foulkes and French (2012) describe a case in which the unknown speaker

on a telephone recording was assumed to be an adult female drug addict, but was in

reality a child. The issue of language is also complex due to issues of multilingualism,

mobility and identity. Further issues are encountered which defining language more

narrowly in terms of regional dialect, since dialect does not equate directly to geo-

graphical background. This is due to linguistic differences associated with the physical

and psychological spaces (Britain 2013), meaning that certain regional varieties are

linguistically well-defined whilst for other dialects regional patterns may be much

more heterogeneous. Such incompatibility between social groupings and linguistic

differences is reflective of the broader difficulties in defining what is meant by the term

speech community (see Patrick 2008).

Secondly, the Rose (2004) approach assumes that sex and language are the most

important sources of between-speaker variation, at least for those variables which are

typically analysed in LR-based FVC (e.g. vowel formants). However, this reflects

a naïve view of the complexity of between-speaker variation in speech. Unlike in

forensic DNA analysis, it is in principle possible for the sociolinguistically-informed

expert to determine considerably more demographic information about the offender,

beyond sex and language (French and Harrison 2006). Furthermore, for many of the

available variables in auditory-acoustic FVC, sociolinguistic sources of variation other

than language and sex may be far more relevant. For instance, there is no expectation

for marked differences between males and females in terms of VOT in British English

(BrEng), but there may well be differences between ethnic groups (Heselwood and
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McChrystal 2000).

However, only a limited number of studies have acknowledged the complexity of

between-speaker variation and the associated issues for defining the relevant population.

Alderman (2004b) compared the Bernard (1970) and Cox (1999) databases of AusEng

as reference data using F1, F2 and F3 midpoints from the tense monophthongs /i a o 0 3/.

LR testing was conducted using non-contemporaneous recordings of 11 speakers aged

between 18 and 26, and OLRs were calculated using naïve Bayes. Output was similar

across the two sets although Cox (1999) (72.7%) marginally outperformed (1970)

(63.6%) by 9.1% in SS discrimination. Alderman concludes that both are useful for

FVC, although “as more time passes and further change occurs (Bernard’s) usefulness

as a reference distribution will diminish” (2004b: 182). However, other sources of

between-speaker variation, such as regional background and age, were not assessed.

Further, it is considered problematic to judge the usefulness of reference data purely

on the output of speaker discrimination tests, rather than on whether it represents an

appropriate definition of the relevant population which answers the question asked by

the court.

Rose et al. (2006) examined the speaker discriminatory value of AusEng /aI/ based on

a dual-target analysis (see §3.3.1) of the first three formants. As in Alderman (2004a),

typicality was assessed using Bernard (1970) as reference data, and the issue of change

over time is again acknowledged. Based on a comparison with Cox’s (1999) data, Rose

et al. (2006) claim that the first target of F2 is now c. 100 Hz lower and that the second

target of F1 is now c. 30 Hz higher. Despite acknowledging that such change is “impor-

tant” (p. 330), the potential effect on LRs was not investigated. Similarly, Morrison’s

(2008) study of AusEng /aI/ acknowledges the use of heterogeneous reference data with

regard to regional variation and age (19 to 64 years). However, the logical relevance of

these factors and their effect on the resulting LRs were overlooked. Only Zhang et al.’s

(2008) study of midpoint F1, F2 and F3 values for /i y/ in Standard Chinese extends

Rose’s (2004) definition in controlling for age, sex and regional dialect.

The most extensive discussion of the complexity of the logically relevant population

is Loakes (2006), who investigated the performance of a test set of four pairs of male

twins from Melbourne aged 18 to 20. Input consisted of F1, F2 and F3 midpoint
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values from the eleven monophthongs of AusEng extracted from non-contemporaneous

samples. The twin data were initially compared with the reference data from Sydney

from Bernard (1970). However, based on this pre-testing only a subset of the available

formants from each phoneme were excluded from LR-based testing due to the levels of

divergence between the test and reference data. Loakes (2006: 214) offers a number of

potential reasons for the divergence, including regional variation (test data = Melbourne,

reference data = Sydney), variation in the tasks performed by the test and reference

speakers and the level of sociolinguistic heterogeneity (with regard to age, class etc.) in

the reference data. As suggested in Alderman (2004a) and Rose et al. (2006), processes

of sound change in the time separating the test and reference data may also account for

the differences in formant frequencies. These factors lead Loakes (2006) to conclude

that in defining the relevant population “tighter controls on (other) social variables might

also be applied” (p. 198) such as age, communities of practise, education, occupation

and friendship groups.

However, there are also a number of problems with narrowly defining the relevant

population according to sociolinguistic factors. The first relates to the appropriateness

of the expert defining the relevant population. Given that the relevant population is

defined by the defence proposition, it is not, strictly speaking, the role of the expert to

make assumptions about it. However, there are good reasons to prefer decisions relating

to FVC evidence to be made by the linguistics expert rather than by the court, legal

professionals or lay people (although this view is not universal; see §2.3.2). Secondly,

an issue for the definition of logical relevance more generally is the paradox that without

knowing the identity of the offender, it is not possible to know for certain the logically

relevant population of which he/she is a member. This applies equally to the general

Rose (2004) default as well as more specific propositions.

2.3.2 Lay listener-judged similarity

The importance of considering the appropriate definition of the relevant population is

also addressed by Morrison et al. (2012) who present an alternative to logical relevance

based on lay listener-judged similarity. Morrison et al. (2012: 64) argue that the default

defence proposition in FVC should be that:
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the suspect is not the speaker on the offender recording but is someone

who sounds sufficiently similar to the voice on the offender recording that

a police office (or other appropriate individual) would submit the offender

and suspect recordings for forensic comparison.

That is, the relevant population consists of speakers who sound similar to the offender

based on the judgements of a panel of lay (i.e. linguistically naïve) listeners. This

definition is based on the fact that suspect and offender samples are submitted to an

expert based on a judgement made by a lay listener, usually a police officer, that the

voices sound sufficiently similar to warrant expert analysis.

Morrison et al. (2012) also offer suggestions as to how this should be implemented to

generate a representative set of reference data. The panel of lay listeners responsible

for assessing similarity should match the profile of the listener who made the original

decision to submit the recordings for analysis. The degree of match between the lay

listeners and the original listener extends to occupation (i.e. police officer), regional

background and level of FVC experience or linguistic training. The listeners should be

presented with recordings which match with the relevant facts of the suspect sample.

Therefore, if the suspect sample contains telephone transmitted speech, then this should

be reflected in the samples played to the lay listeners. The samples should also match in

terms of the ambient conditions in which the suspect sample was made. Finally, since

the original decision was a subjective one, the reference data generated by lay listeners

may include speakers of different sociolinguistic backgrounds (e.g. males and females,

different regional varieties, different ages).

Morrison et al. (2012) also provide three examples of how this approach could have

been applied in previous cases. The casework examples outline procedures for dealing

with mismatched suspect and offender samples, judgements about speaker sex and

accent and identifying the appropriate properties of the lay listeners. Finally, Morrison

et al. (2012) provide an empirical demonstration of the speaker similarity approach

using a generic ASR system to identify speakers who are closest to the offender based

on distances within the multidimensional Mel-frequency cepstral coefficient (MFCC)

space (as a proxy for lay-listener judged similarity; although the equivalence between

MFCC- and lay listener-based assessments of speaker similarity is questionable). The
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performance of this system was then compared with the performance of a system based

on data extracted at random from a larger database. The results suggest that systems

based on data selected using the similarity approach outperform the use of randomly

selected datasets in terms of validity.

2.3.2.1 Limitations

Lay listener-judged similarity overcomes the limitations of logical relevance since

the expert is not responsible for making potentially incorrect decisions about the

sociolinguistic background of the offender. Further, the relevant population is defined

by a single grouping factor, namely speaker similarity, rather than the potentially

numerous demographic factors involved in logical relevance. However, there are also

significant limitations of this approach which make it problematic for FVC. As with

logical relevance (§2.3.1), these limitations stem from a naïve view of the linguistic-

phonetic complexity of variation in both speech production and perception.

First, evidence from the literature on ear-witness reliability (Bull and Clifford 1999),

perceptual dialectology (Montgomery 2007) and voice parades (Atkinson in progress)

shows that listeners’ linguistic backgrounds can have a substantial effect on their

decisions about speaker identity and similarity. Therefore, the background of the

listeners may need to be controlled far more narrowly than suggested in Morrison et al.

(2012). Specifically, the controls over the listeners should focus on those factors which

affect the perception of similarity and ignore other factors. For example, ensuring that

the panel of lay listeners consists of individuals of the same age may be more important

than ensuring that the listeners are police officers. Further research is required to

identify the potential sources of variability in lay listener judgements of similarity. The

question of which of these factors to control is therefore an empirical one. However,

even with knowledge of which factors to control, it is not clear how narrowly to control

them (e.g. do listeners need to be exactly the same age, or within a certain age range?).

Second, even for lay listeners of the same background, any set of data judged accord-

ing to similarity is expected to display a high degree of within-group variation since

individual listeners attend to different elements of the speech signal (McDougall 2013).

Therefore, it is possible, if listeners are presented with samples from a truly sociolin-
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guistically heterogeneous database, that the resulting dataset would contain males and

females, as well as speakers of different regional and social backgrounds. Morrison

et al. (2012) claim that this is acceptable since the decisions were made using logical

assumptions about the relevant population, irrespective of the sociolinguistic make-up

of the resulting dataset. However, given that decisions may not be linguistically prin-

cipled, the resulting dataset will not necessarily consist of “those persons who could

have been involved (in the crime)” (Coleman and Walls 1974: 276). This also has

potential implications for the courts. The decisions about which speakers are included

in as population data may not be transparent. The LR-based results are also not likely

to be replicable because different panels of lay listeners will make potentially wildly

different judgements about similarity.

Thirdly, there are a number of practical issues with the way in which decisions are

made by the police officer in the first instance and subsequently by the lay listeners. In

most cases, it is questionable whether the original decision to submit recordings for

expert analysis will be based purely on an objective judgement about the similarity of

the voices in the suspect and offender samples. Rather, it is likely that this decision is

made based, at least to some extent, on other information in the case. Therefore, it is

not clear whether the panel of lay listeners is really making the same type of decision

as that made in the first instance. Further, many FVC cases involve initial analysis by

the expert to assess the viability of the samples prior to a full analysis for the courts

(in terms of whether there is sufficient similarity between the samples to generate a SS

proposition, as well as technical factors). Thus, the decision to analyse the recordings

is often made by the expert, rather than a police officer.

There are necessarily differences in the conditions under which the original decision

was made and the conditions under which the lay listeners make their judgements

of similarity (e.g. time of day, motivation in performing the task, structure of the

task). It is essential to understand how these differences affect perceptions of speaker

similarity and their effect on the resulting LR output. There are also issues with the

recordings presented to the panel of listeners for comparison with the offender sample.

Although in theory listeners would be presented with samples from a sociolinguistically

diverse range of speakers, in reality, as much for practical reasons, it is necessary for
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the analyst to make prior decisions as to which speakers the listeners hear (Enzinger

and Morrison 2014). Such decisions will almost certainly relate to the database from

which potential speakers for LR testing are identified. For the majority of databases

which may be used for this task (see §2.4.2.2), speakers are controlled only for sex and

language (reflecting Rose 2004). This is not equivalent to the panel making decisions

from a heterogeneous database representative of the entire population, and introduces a

degree of analyst subjectivity which this approach is designed to avoid.

Furthermore, the issue of within-speaker variability is not resolved in Morrison et al.’s

(2012) claim that samples should match the “speaking style” of the suspect sample. The

issue of style is an extremely complex one which has received considerable attention in

the sociolinguistic literature (e.g. Coupland 2007). As highlighted in §2.2.5, there are

potentially numerous sources of within-speaker variability. It may be possible for the

analyst to infer these from the suspect sample (e.g. intoxication), but in many cases

it may not (e.g. time of day). Such complexity is oversimplified in Morrison et al.

(2012). Yet, the range of sources of within-speaker variability are expected to have a

significant effect on how listeners make judgements relating to similarity. Therefore, it

is necessary to know empirically how controls over the samples presented affect the

population data identified by lay listeners.

2.4 Collection of development, test and reference data

Another significant issue for the application of the LR framework is how the relevant

population should be sampled once it has been appropriately defined. In forensic DNA

analysis, databases are collected using convenience sampling from blood banks and

disease screenings. This is possible for DNA since allele profiles are “uncorrelated with

the means by which samples are chosen” (National Research Council 1996). However,

as highlighted by the multitude of sources of within-speaker variability in §2.2.5, speech

variables are intrinsically affected by the situation in which they were elicited. This

means that it is extremely difficult to collect a sample of the relevant population which

sufficiently matches the facts of the case at trial.

It is also important to emphasise that any set of data used for LR-based testing will
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necessarily display some degree of mismatch with the facts of the case at trial, due to

the wide range of factors affecting within- and between-speaker variation. The extent

to which such mismatch affects the resulting LR estimates is an empirical question and

has received little attention in the literature. However, it is essential that the influence of

any mismatch is acknowledged and understood by practitioners in casework. There are

currently three alternatives for assembling quantitative data for LR testing: case specific

data, existing non-forensic corpora and existing forensic databases. The benefits and

limitations of these approaches are considered below. A further approach, of course,

which is not considered in detail here, is that the analyst estimates patterns in the

relevant population based on experience and previous research.

2.4.1 Going and getting it (Rose 2007b)

Rose (2007b) argues that “we (forensic speech scientists) have . . . to be prepared to

go and get a suitable reference sample for each case.” The use of case-specific data

provides the expert with much greater scope to control relevant elements of the facts of

the case at trial. An example of the collection of case-specific reference data in FVC is

given in Rose (2013b). The limitations of the specific procedures in Rose (2013b) are

outlined in §2.2.3. There are also more general limitations of the going and getting it

approach.

Firstly, there will still inevitably be some degree of mismatch with the facts of the

case at trial, given that the expert is responsible for making subjective decisions over

which factors to control and which to ignore. In Rose (2013b), the limitations of the

case-specific reference data were not considered in terms of their potential effect on

LR output. Secondly, there are considerable financial and time constraints imposed

when conducting casework. Given these constraints, there is a danger that case-specific

reference data will have more shortcomings, in terms of the facts of the case, than off-

the-shelf data (§2.4.2). Thirdly, such constraints mean that it is only possible to collect

reference data for analysing very short amounts of speech or a limited set of variables.

For example in Rose (2013b) analysis is limited to the word yes and the phrase not too

bad. It is therefore considered prohibitively difficult to collect case-specific data for a

componential analysis of a range of linguistic-phonetic variables (§1.1.3), especially

46



2. Research Review

where variables occur in different utterances, words and phonological contexts.

2.4.2 Off-the-shelf data

2.4.2.1 General corpora

It may be possible to use general corpora which were not originally collected for

forensic purposes in LR testing. A significant benefit of this approach is that data need

not be collected for each case. This improves the time and cost efficiency of the analysis

and potentially extends the range of variables which may be analysed. The most suitable

corpora are probably those collected as part of sociolinguistic research. Sociolinguistic

corpora often contain speakers controlled for numerous sociolinguistic factors, allowing

for a definition of the logically relevant population with varying narrowness. The

breadth of sociolinguistic research means that data are available for a range of different

regional and social groups. Such corpora also contain relatively long samples (c. 40-60

mins) and, in some cases, multiple samples of speakers in different speaking styles

(e.g. spontaneous speech, ethnographic interview, read text). Examples of such corpora

include ONZE (Gordon et al. 2007), the Big Australian Speech Corpus (Wagner et al.

2010) and the Northern (British) Englishes corpus (Haddican 2008-2013).

However, the lack of forensic realism in such corpora is potentially problematic, since

they are likely to display considerable divergence from the facts of any case at trial. In

particular, samples recorded for general corpora do not generally involve transmission

mismatch (Künzel 2001; Byrne and Foulkes 2004), mismatch in background noise and

signal-to-noise ratio (SNR), or stylistic variability relevant for forensic purposes such

as speech under stress or different emotional states. Sociolinguistic corpora can also be

very small, with few containing more than 30 speakers from the same sociolinguistic

community. Further, corpora containing multiple recordings from each speaker are

generally made in a single session, rather than non-contemporaneously.
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2.4.2.2 Forensic databases

Finally, there are a small number of databases available which were collected specifi-

cally for forensic purposes. The only existing forensic corpus for any variety of BrEng

is the Dynamic Variability in Speech corpus (DyViS) (Nolan et al. 2005-2009; see

§3.1.1). Forensic databases also exist for AusEng (Rose 2007-2010; Morrison et al.

2010-2013) and Standard Chinese (Zhang and Morrison 2011). In the field of ASR,

considerably more forensic databases are available (see Campbell and Reynolds 1999).

Forensic databases have the benefit of having been controlled for the typical facts of

casework, such as transmission mismatch, non-contemporaneity samples and mismatch

in speaking style. Such databases are also commonly much larger than general corpora,

allowing for testing using different subsets of the available data.

However, there are also limitations with forensic databases. There is limited availability

of forensic databases. In the case of BrEng, even DyViS is limited since it contains only

speakers of Standard Southern British English (SSBE). This is inadequate for narrower

definitions of the logically relevant population, even with regard to regional background.

Conversely, other forensic databases contain speakers from very wide, sociolinguisti-

cally heterogeneous populations, reflecting the Rose (2004) default relevant population

based on sex and language. For example, Morrison et al. (2010-2013) contains male

speakers of AusEng, with no control over other potentially sociolinguistically relevant

factors. The relative lack of usable forensic databases is highlighted by French and

Harrison as a primary reason “for precluding the quantitative application of (the LR)

approach” (2007: 142) in casework. Further, forensic databases, in particular those

used for ASR, often contain relatively small short samples for each speaker and little

spontaneous material.

2.5 Amount of development, test and reference data

A final issue for the application of the LR to FVC is the amount of development, test

and reference data needed for robust system testing. The limited amount of previous

research in this area has focused on the effects of the number of reference speakers on

LR output. Ishihara and Kinoshita (2008) analysed LTf0 from non-contemporaneous
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samples of spontaneous speech produced by 241 male speakers of Japanese. The

samples were extracted from the larger non-forensic Corpus of Spontaneous Japanese

(CSJ) (Maekawa et al. 2000). LTf0 was parameterised using the long-term mean

and standard deviation (SD) as well as skew, kurtosis, mode and modal density. The

speakers were divided into two groups and within each group 12 differently sized

population samples were created containing between ten to 120 speakers. This allowed

for the computation of two LRs for each comparison for the same population size. Cross-

validated (§3.2.2.3) MVKD (§3.2.2.1) LRs were computed using all 241 speakers as

test data and typicality assessed against the differently sized reference sets.

Ishihara and Kinoshita (2008) found the median SS log10 LR (LLR; §3.2.2.4) to be up

to three orders of magnitude greater when using ten reference speakers compared with

using all 120. The overall range of LR scores also decreased as the amount of reference

data increased. DS pairs were found to be more sensitive to the size of the reference

sample. With ten speakers the median DS LLR value was around -30, although for

certain pairs values extend far beyond -30. In the 120 speakers condition, the DS

median was located between -2 and -3. As with the SS results, the overall range of

scores decreased as the size of the sample increased. Ishihara and Kinoshita (2008)

also found that equal error rate (EER; §3.2.3.1) generally improved as the number of

speakers increased, although “improvement seems more rapid up to the population

size 30” (p. 1943). As a crude form of calibration, the study also included an analysis

of the EER threshold relative to the LLR zero threshold (i.e. neutral evidence; see

further §3.2.2.4). When using ten reference speakers the EER threshold was found to

be furthest away from zero, with increasing convergence as the number of speakers

increased.

Ishihara and Kinoshita (2008) conclude that “we do need a large population data in

order to produce reliable (LRs)” and that “(LRs) produced using anything smaller

than 30 (reference speakers) (are) highly unreliable” (p. 1944). Although their results

provide evidence against the use of small amounts of reference data, there is no explicit

discussion as to why small samples should produce such imprecise LRs. Further, given

the intrinsic properties of how MVKD LRs are computed (particularly for variables with

different numbers of dimensions) (§3.2.2.1), there is reason to predict that sample size
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should affect different variables from different regional and social groups in different

ways. Further, although the issue of calibration was considered with regard to accept-

reject thresholds, Ishihara and Kinoshita (2008) did not assess the effect of sample

size on calibrated LRs (§3.2.4) or log LR cost function (Cllr; validity metric which is

logically consistent with the Bayesian approach, see §3.2.3.1).

Whilst Ishihara and Kinoshita (2008) focus on the effects of small numbers of reference

speakers, Rose (2012) investigated an upper limit for reference sample size at which

point LR performance becomes asymptotic. Rose (2012) used Monte Carlo simulations

(MCS; see Chapters 9 and 10 in this thesis) to synthesise F1, F2 and F3 midpoint values

for AusEng /a:/ for up to 10,000 speakers based on values in Bernard (1970). Using both

the multivariate normal and KD approaches, LRs were computed for real suspect and

offender data which were known to have been produced by the same speaker. Typicality

was assessed as a function of the number of reference speakers between five and 60.

Output was compared against the true LR, which was defined as the LR computed

using the maximum amount of reference data (in this case 10,000 speakers).

The results of Rose (2012) are comparable with those of Ishihara and Kinoshita (2008).

Based on univariate LR analyses of F1, F2 and F3, SS scores were generally higher in

magnitude than the true value when using small amounts of reference data (fewer than

ten speakers). The overall range of LRs was also considerably greater when using small

numbers of reference speakers. However, relatively stable scores were achieved (within

two SDs of the true scores) by the inclusion of 30+ reference speakers. This was the

case even for F2, which displayed the greatest sensitivity to sample size. A similar

pattern was found in the multivariate analysis, with the distributions of values skewed

towards stronger scores when using small samples. Compared with the univariate

analysis, however, the range of scores was far more sensitive to sample size using

MVKD.

However, Rose’s (2012) preliminary study has a number of limitations. The test data

are based on a single suspect and offender comparison. It would be preferable to assess

the performance of a large set of test data, where it is known a priori whether samples

came from SS or DS pairs, as a function of the number of reference speakers. In the

absence of such data, Rose (2012) was unable to assess how system validity metrics
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such as EER and Cllr are affected by sample size. Further, the scores were not calibrated

based on coefficients generated from an appropriate set of development data. Therefore,

it was not possible to assess the role of calibration in determining the overall sensitivity

of LR output to reference sample size.

A limited amount of work has also considered the issue of sample size for ASR. Van der

Vloed et al. (2011) investigated the inbuilt reference population optimisation algorithm

in Batvox6 which identifies the N closest speakers, based on Kullback-Leibler distances

calculated from the MFCC vectors, to the suspect (note that Batvox bases population

selection on the suspect rather than the offender) from a larger database of speakers.

LRs were computed for a test set (i.e. mock suspects and offenders) of 16 male

speakers of Swiss-French in Batvox using three population data conditions. The first

contained 35 speakers extracted from a 45-speaker subset of the 1995 speakers in

the Swiss-French PolyPhone database (Chollet et al. 1996). The second condition

contained 35 reference speakers extracted from the whole database of 1995 speakers,

and the third condition contained 1400 speakers extracted from the 1995 speakers.

Tests were conducted using samples of speech transmitted via the Global System for

Mobile Communications (GSM) and the Public Switched Phone Network (PSTN) (see

Bigelow 1997; Kondoz 2004).

For both transmission types, condition two (35 speakers out of 1995) produced the

weakest LRs but, for the GSM condition, the lowest Cllr. Conditions one (35/45

speakers) and three (1400/1995 speakers) performed equally well in terms of Cllr. Van

der Vloed et al. (2011) explain this result in terms of the ratio of the size of the subset

to the total size of the database rather than the absolute size of the reference data

(i.e. the two systems generate similar Cllr values because the ratio of speakers used

as population data extracted from the larger database is roughly the same). This is

because in condition two the 35 reference speakers will be more like the suspect and

more homogeneous, since they were identified from a much larger sample. However,

the choice of absolute sample sizes appears arbitrary and the results do not provide

useful information in addressing how LR output is affected by monotonic increases in

sample size. Further, given that these results were computed using Batvox based on CC

6http://www.agnitio-corp.com/products/government/batvox (accessed: 9th

July 2014).
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input and inbuilt algorithms, their transferability to other variables and LR formulae is

not clear.

The only study to have investigated sample size beyond the number of reference

speakers is Ishihara and Kinoshita (2012). They assessed the effect of the number of

tokens per test speaker on the two components of Cllr (Cllr_min and Cllr_cal). Cllr_min is

the lowest Cllr value achievable when the system is optimally calibrated, while Cllr_cal

is system calibration loss (i.e. the difference between the Cllr and the Cllr_min). Input

data consisted of ten tokens of the Japanese filler expression e- (/e:/) produced by

118 male speakers of Japanese from the CSJ. 16 MFCCs were extracted from a 20ms

hamming window at the temporal midpoint of each token. MVKD LRs based on

non-contemporaneous samples were computed using two, four, six, eight and ten tokens

per test speaker. To assess how the inclusion of different tokens affected LR output

the experiment was conducted using consecutive tokens from each sample, and by

reversing the order of the tokens.

Ishihara and Kinoshita (2012) found different patterns for the two elements of Cllr.

Cllr_cal increased considerably as the number of tokens per speaker increased. This had

the overall effect of worsening Cllr as sample size increased (from around 0.5 with two

tokens to 2.5 with ten tokens). This pattern was found in both forms of the experiment.

However, Cllr_min decreased as the number of tokens increased. The magnitude of this

decrease was around 0.2 (from 0.4 to 0.2). The different patterns found for Cllr_min and

Cllr_cal lead Ishihara and Kinoshita to conclude that “additional data can improve the

quality of LRs, as long as we calibrate the obtained LRs” and that “uncalibrated LRs

can be extremely misleading” (2012: 3). Unfortunately, however, the distributions of

calibrated LLRs as a function of the amount of data per test speaker were not provided.

It seems that no empirical work has yet analysed how much data per reference speaker

is required to generate stable estimations of within-speaker variation for LR testing.

Furthermore, no empirical work has considered the effects of the size of the development

and test sets in LR-based testing. Therefore, the experiments in this thesis address these

issues.
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2.6 Research questions

This thesis considers the definition of the relevant population and the collection of

sufficient data in LR-based testing, by addressing the following research questions:

Definition of the relevant population

1. To what extent is LR output affected by different definitions of the logically

relevant population with regard to regional background?

(a) Are different formants more robust to the effects of regional variation?

(b) Are ASR variables more robust to the effects of regional variation than

linguistic-phonetic variables?

2. To what extent is LR output affected by different definitions of the logically

relevant population with regard to sources of between-speaker variation other

than language and sex, specifically socio-economic class and age?

(a) Are certain sources of between-speaker variation more important than oth-

ers? How does the sensitivity of LRs based on definitions of class and age

compare with the sensitivity of LRs based on regional background?

3. Are there alternative approaches to defining the relevant population other than

logical relevance (§2.3.1) and lay listener-judged similarity (§2.3.2) which are

more appropriate for the inherent complexity of speech data?

Collection of development, test and reference data

4. To what extent is LR output affected by the number of reference speakers used in

system testing?

(a) Are different variables affected in different ways by the number of reference

speakers?

(b) How does calibration affect the sensitivity of LR output to variation in the

number of reference speakers?
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5. To what extent is LR output affected by the number of tokens (i.e. amount of

data) per reference speaker in system testing?

(a) Are different variables affected in different ways by the number of tokens

per reference speaker?

(b) How does calibration affect the sensitivity of LR output to variation in the

number of tokens per reference speaker?

6. To what extent is numerical LR output affected by the number of development

and test speakers used in system testing?

(a) Is LR output most sensitive to the size of the development, test or reference

data?

(b) Are there trade-offs between the number of speakers used for development,

test and reference data?

As highlighted earlier, it is clear that numerical LR output is dependent on the decisions

made by the analyst at all stages of a case (e.g. adding a single speaker to the reference

data will necessarily change the absolute numerical value of the LR for a pair of suspect

and offender samples). Therefore, the primary concern of the experiments in this thesis

is the magnitude of the effects on LRs of key analytic decisions made by the analyst, and

the extent to which such variation is systematic. In terms of the practical implications of

the results of this thesis, by far the best outcome would be to find very little difference

in LR output when varying the definition of the relevant population or sample size.

However, the extent to which such factors are important is an empirical question.

In Chapter 3, the methods used throughout the experiments in this thesis are presented.

The subsequent chapters present the individual experiments which test the issues of

the definition of the relevant population (research questions 1-3; Chapters 4-7) and the

collection of data for LR-based testing (research questions 4-6; Chapters 8-10).
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General Methodology

This chapter provides an overview of the methodologies used throughout this thesis.

It discusses the corpora used, the principles of testing LR-based FVC systems and

evaluating their performance, the general structure of the experiments, the choice of

input variables and data extraction. Separate methods sections are also included in each

data chapter to explain experiment-specific procedures.

3.1 Corpora

Multiple corpora were used in this thesis, each chosen to meet the specific needs of

individual experiments. The justifications for the choice of datasets are outlined in the

specific chapters in which they are used. This section provides an overview of their

structure.

3.1.1 Dynamic Variability in Speech (DyViS)

DyViS (Nolan et al. 2005-2009) is a corpus designed for forensic research containing

100 male speakers of SSBE, aged between 18 and 25. All participants were students at

the University of Cambridge. SSBE is described as a prestige variety spanning across

the south of England (Hughes et al. 2005; Wells 1982).SSBE is defined linguistically

by the FOOT-STRUT split and BATH-broadening (Hawkins and Midgley 2005), as
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well as innovations such as GOOSE fronting (Harrington et al. 2008; Chládkova

and Hamann 2011) and /t/ glottaling (Fabricius 2000). For an overview of SSBE see

Kerswill (2006). DyViS participants were not controlled for geographical background,

but were included based on self-assessment and the judgement of a DyViS researcher.

Therefore, the extent to which the speakers make up a sociolinguistically “homogeneous

group” (Nolan et al. 2009: 37) is potentially questionable.

Figure 3.1: Example of a slide from DyViS Task 1 containing information about the

mock suspect’s story (Nolan et al. 2009: 42)

DyViS Task 1 involves a mock police interview, which elicited “spontaneous speech

in a situation of ‘cognitive conflict,’ where speakers (were) made to lie” (Nolan et al.

2009: 41). Participants were presented with slides containing prompts (Figure 3.1) and

asked to describe the information in black type, avoiding incriminating information in

red. The slides displayed target words (Nolan et al. 2009: 53) containing segmental

variables of interest. Task 1 recordings were digitised at a sampling rate of 44.1 kHz

and a 16-bit depth, and are between 20 and 30 minutes in duration. An issue with Task

1 for FVC is the extent to which the speech elicited is entirely spontaneous, since target

items were read from a screen. Interviewers were also careful to ensure that participants

produced as many of the target items as possible. Where target words were missed
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the interviewers questioned the participants to ensure elicitation or directly asked the

participants to say the word.

In Task 2, participants conducted a landline telephone conversation with a mock accom-

plice. The accomplice was also a male SSBE speaker who had attended the University

of Cambridge. The mock accomplice was chosen to elicit “a reasonably relaxed speak-

ing style . . . such as they might use when talking to a friend” (Nolan et al. 2009). As

in Task 1, the participant recalled information from slides presented on a computer.

Recordings were made directly and sampled at a rate of 44.1 kHz and 16-bit depth.

Task 2 was also recorded at the opposite end of the telephone line, following typical

landline band-pass filtering of between 300 and 3400 Hz (Byrne and Foulkes 2004).

3.1.2 Origins of New Zealand English (ONZE)

ONZE consists of three corpora containing speakers born between 1850 and 1987. This

thesis utilises the Canterbury Corpus (CanCor) (Maclagan and Gordon 1999; Gordon et

al. 2007) which constitutes the most up to date database of New Zealand English (NZE).

CanCor contains 418 speakers born between 1935 and 1985 with almost equal numbers

of younger (20-30) and older (45-60) speakers, males and females, and professionals and

non-professionals. All participants were born in NZ, with the majority from Canterbury.

CanCor has been collected since 1994 as part of an on-going undergraduate module

at the University of Canterbury. Each student records two participants in spontaneous,

sociolinguistic interviews of around 30 minutes. Given that recordings were made by

different students, there is some variability in interview style and recording quality.

Phoneme-level forced-alignment (see Sjölander 2003) was performed as part of ONZE

using the Hidden Markov Model Toolkit (HTK; Young et al. 2006), based on ortho-

graphic transcriptions for each sample. For more information on the specific details of

how forced-alignment of the ONZE data was conducted see Fromont and Hay (2012).

The ONZE sound files along with orthographic transcriptions, coding at different levels

of representation and Meta-data about speakers are embedded within the LaBB-CAT

software (Fromont and Hay 2008). LaBB-CAT is an online platform for storing and

sharing large corpora. It is optimised to search for specific linguistic variables according
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to different speaker groups and can be used to automatically extract large amounts of

acoustic data. Due to ethics restrictions, it is not possible to access CanCor outside of

the University of Canterbury. For the purposes of Chapters 4 and 8, formant data were

generated automatically without access to the sound files. Fortunately, it was possible

to visit the University of Canterbury to extract the data in Chapter 7.

3.1.3 Northern Englishes (NE)

The NE dataset was collected by Haddican (2008-2013). NE consists of sociolinguistic

corpora from Manchester, Newcastle, Derby and York. For the purposes of the experi-

ments in this thesis, only the Manchester and York corpora are used. The Manchester

corpus contains 47 speakers from a wide age range (17-82), with roughly equal numbers

of males and females and working and middle class speakers. All participants were

recorded in spontaneous sociolinguistic interviews of roughly 45 minutes in duration.

In the same session, speakers were recorded in spontaneous ethnographic interviews.

This involved questions relating to speakers’ attitudes towards their hometown, identity

and accent. All of the NE recordings were digitised at a sampling rate of 44.1 kHz and

a 16-bit depth

The York corpus consists of eight males and ten females aged between 18 and 22.

Participants were recorded performing the same tasks as the Manchester corpus. In

Haddican (2008-2013), the 2008 York recordings were combined with an older corpus

recorded in 1998 for the Roots of Identity (RoI) project (1996-1998), to generate a

real-time dataset of York English. RoI consists of 32 speakers divided equally between

males and females and older (59-78) and younger (17-31) speakers. Although no

explicit control was made over speakers’ socio-economic class, Haddican et al. state

that “speakers were all judged to be from the upper working or lower middle class”

(2013: 376). RoI consists of spontaneous sociolinguistic interviews of c. 45 minutes.

RoI recordings were digitised at a rate of 22.05 kHz.
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3.1.4 Phonological Variation and Change (PVC)

The PVC corpus consists of recordings from Newcastle and Derby (Milroy, Milroy,

and Docherty 1994-1997; for an overview see Milroy et al. 1999). The dataset contains

64 speakers, divided equally between Newcastle and Derby, older (45-65) and younger

(16-25), and working and middle class speakers. Each participant was recorded in

casual conversation with a peer group member and sessions lasted between 48 and 64

minutes. Recordings were digitised at a sampling rate of 16 kHz and a 16-bit depth.

3.1.5 TIMIT

The TIMIT Acoustic-Phonetic Continuous Speech Corpus, released by NIST in 1990,

was designed by SRI International, Texas Instruments (TI) and the Massachusetts

Institute of Technology (MIT). TIMIT contains 630 speakers (438 males) aged between

21 and 65 (mean = 31) from seven major dialect regions (DRs) (Figure 3.2) within the

United States and an eighth group named Army Brats who moved geographical location

during childhood. According to Garofolo et al. (1993), a speaker’s DR was defined as

“the geographical area in the US where he or she had lived during their childhood years

(age 2 to 10)” (1993: 15). The number of speakers in each DR is shown in Table 3.1.

Speakers were recorded in a noise-isolated sound booth reading a set of ten target

sentences. Target sentences were defined as: (i) dialect sentences (SA) designed to

“expose . . . dialectal variants” (TIMIT 1990: 2), (ii) phonetically compact sentences

(SX) to provide a “good coverage of pairs of phones, with extra occurrences of phonetic

contexts thought to be either difficult or of particular interest” (TIMIT 1990: 2), and

(iii) phonetically-diverse sentences (SI) taken from the Brown Corpus (Kuchera and

Francis 1967) or the Playwrights Dialog (Hultzen et al. 1964). Each speaker read both

SA sentences, five random SX sentences and three random SI sentences. Two-channel

recordings were made using a head-mounted microphone and a far field pressure

microphone, although only the recordings made using the head-mounted microphone

were included in the released version of TIMIT. Samples were initially digitised at a

sampling rate of 20 kHz and then downsampled to 16 kHz (Fisher et al. 1986).
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Figure 3.2: Map of USA with TIMIT dialect regions marked (from Garofolo et al.

1993: 17)

TIMIT has been used widely in linguistic research to investigate acoustic-phonetic

variation between speakers (Byrd 1992; Sun and Deng 1995), the performance of

phoneme (and speech) recognition systems (Kapadia et al. 1993), the performance

of speech segmentation and labelling systems (Ljolje and Riley 1991), formant mea-

surement errors (Harrison 2013), and the performance of speaker recognition systems

(Reynolds 1995; Reynolds et al. 1995).

3.2 LR testing

This section provides a detailed overview of the principles involved in LR-based system

testing and the specific procedures used in this thesis. The term system is used in its

broadest sense to refer to “a set of procedures and databases that are used to compare

two samples, one of known origin and one of questioned origin, and produce a (LR)”

(Morrison 2013: 174). This use of the term system is not to be confused with the

much narrower use of the term in ASR referring to a stand-alone piece of commercial

software.
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Table 3.1: Number of male speakers in each of the dialect regions (DRs) in the TIMIT

corpus (from Garofolo et al. 1993: 16)

Dialect Region (Number) N Males Total N Speakers

New England (1) 31 (63%) 49 (8%)

Northern (2) 71 (70%) 102 (16%)

North Midland (3) 79 (67%) 102 (16%)

South Midland (4) 69 (69%) 100 (16%)

Southern (5) 62 (63%) 98 (16%)

New York City (6) 30 (65%) 46 (7%)

Western (7) 74 (74%) 100 (16%)

Army Brat (8) 22 (67%) 33 (5%)

TOTAL 438 (70%) 630

3.2.1 Development, test and reference data

The first stage of LR testing is the feature-to-score stage. This involves the computation

of LRs (called scores; Morrison 2013) from multiple pairs of samples where it is known,

a priori, whether they were produced by the same (SS) or different (DS) speaker(s).

The feature-to-score stage is initially implemented to compute scores for a set of SS

and DS pairs called the test data, which function as mock suspect and offender samples

matching the facts of the case at trial. The typicality element of LR computation is

based on reference data containing representative speakers from the relevant population.

The scores for the test data can be used to assess validity and reliability of the system

(§3.2.3).

Preferably, the second stage of testing involves score-to-LR mapping (referred to as

calibration; Morrison 2013). Calibration is a means of optimising system performance

(see §3.2.4). To calibrate, it is necessary to have a set of development (or training) data,

consisting of speakers who are representative of the relevant population and samples

which reflect the facts of the case at trial. The feature-to-score stage is implemented to

compute scores for the development data and these scores are used to train a calibration

model. The model is then applied to the scores for the test data to generate calibrated

LRs from which system validity and reliability can be calculated.
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3.2.2 Feature-to-score stage

3.2.2.1 Modelling

Both the Multivariate Kernel Density (MVKD; Aitken and Lucy 2004) and Gaussian

Mixture Model - Universal Background Model (GMM-UBM; Reynolds et al. 2000)

approaches were used during the feature-to-score stages of the experiments in this

thesis.

MVKD

The numerator of the MVKD LR is given as:

f0(ȳ1, ȳ2|U,C) = (3.1)

(2π)−p|D1|−
1
2 |D2|−

1
2 |C|−

1
2

(mhp)−1|D−11 +D−12 + (h2C)−1|−
1
2

exp

{
−1

2
(ȳ1 − ȳ2)T (D1 +D2)

−1(ȳ1 − ȳ2)
}

m∑
i=1

exp

{
−1

2
(y∗ − x̄i)T ((D−11 +D−12 )−1 + (h2C))−1(y∗ − x̄i)

}
and the denominator is given as:

f1(ȳ1, ȳ2|U,C) = (3.2)

(2π)−p|C|−1(mhp)−2

2∏
i=1

[|Dl|−
1
2 |D−1l + (h2C)−1|−

1
2

m∑
i=1

exp

{
−1

2
(ȳl − x̄i)T (Dl + h2C)−1(ȳl − x̄i)

}
]

from Aitken and Lucy (2004: 116-117)

where:

U,C = within-, between-speaker variance/covariance matrices

n1, n2 = number of replicates per speaker
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m = number of speakers in reference data

p = number of assumed correlated variables per speaker

Dl = D1, D2 = offender, suspect variance/covariance matrices = n−11 U, n−1s U

h = optimal smoothing parameter for KD = (4/2p+ 1))1/(p+4)m−1/(p+4)

ȳl = ȳ1, ȳ2 = offender, suspect mean vector

from Rose (2013a: 94)

The MVKD LR is the ratio of Equations 3.1 and 3.2. Using this approach, the suspect

data are modelled using a Gaussian distribution while the background data are modelled

using speaker-dependent Gaussian KD estimation. The reference model is speaker-

dependent meaning that it is generated using equally-weighted Gaussians for each

reference speaker based on the mean and variance of their values. Equation 3.1 is

equivalent to the probability of the offender value at the intersection of the suspect

model and Equation 3.2 is the probability of the offender value at the intersection of

the reference model. Where there are multiple offender values, the mean of the LRs is

taken (Morrison 2010) to give a single LR for the offender data.

MVKD is generally preferred for analysing linguistic-phonetic variables, with Morrison

claiming that it is “considered the standard procedure . . . in acoustic-phonetic (FVC)”

(2011a: 244). This is because it is suited to small amounts of data per speaker where the

distributions of speakers’ values are normally distributed (Jessen and Enzinger 2014).

MVKD is also preferable for multivariate data which consist of a relatively small

number of correlated features (Nair et al. 2014). As stated by Rose (2013a: 95),

correlations are handled through the variance-covariance matrices between-speakers

(C) and the inversion of the within-speaker variance-covariance matrices for the suspect

and offender data (D1,D2), which “contribute towards the decorrelation of the individual

features . . . and the equalisation of their contribution” (Khodai-Joopari 2006: 145).

Figure 3.3 displays a visualisation of MVKD based on bivariate suspect and reference

distributions of F1 and F2 values for /u:/ from the same data as in Figure 2.2.
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With the exception of Chapter 7, MVKD LRs were computed using a MATLAB

implementation7 of Aitken and Lucy’s (2004) formula. Multiple SS and DS MVKD

LRs were computed using a loop script.8 The script performs LR comparisons based

on contemporaneous samples by dividing the data for each speaker in half to create

suspect (1st half) and offender (2nd half) data. This allows for a single SS comparison

per speaker and two DS comparisons per speaker pair (1sus vs. 2off and 2sus vs. 1off).

In Chapter 7, MVKD LRs were computed in R using the Comparison package.9 The

same format for testing was implemented in Chapter 7 as in the other chapters, in

which contemporaneous samples were divided in half to allow for SS comparisons. The

limitations of using contemporaneous samples for computing LRs are outlined in §3.4.

GMM-UBM

An alternative to MVKD for multivariate data is the GMM-UBM approach. The

formula for computing a GMM-UBM natural log LR (see §3.2.2.4 score is:

s =
1

T

T∑
i=1

log (p(xi|λsus))− log (p(xi|λbkd)) (3.3a)

p(xi|λ) =
M∑
i=1

wi

(2π)
D
2 |Σi|

1
2

× exp
(
−1

2
(xt − µi)′(Σi)

−1(xt − µi)
)

(3.3b)

M∑
i=1

wi = 1 (3.3c)

where:

s = Score

D = Number of variables measured for each token (i.e. dimensions)

xt = D × 1 vectors of measurements offender (unknown) data, where T is the number

of tokens

λsus, λbkg = Suspect, background models

7Morrison, G. S. (2007). MATLAB implementation of Aitken and Lucy’s (2004) forensic likelihood-

ratio software using multivariate-kernel-density estimation (2007). http://geoff-morrison.

net/#MVKD (accessed: 31st May 2011).
8‘ss_ds_lr_loop.m’ written by Philip Harrison (2011).
9Lucy, D. (2013). Comparison (version 1.0-4) (R package). http://cran.r-project.org/

web/packages/comparison/index.html (accessed: 8th August 2014).
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3. General Methodology

M = Number of Gaussians per GMM parameterised by a D × 1 mean vector µi, a

D ×D covariance matrix Σi, and a scalar weight wi

from Morrison (2011a: 244-245)

A benefit of GMM-UBM is that it is capable of modelling non-normally distributed

suspect and reference data. Unlike MVKD, the GMM background model (UBM) is

speaker independent in that it consists of pooled data from all reference speakers. The

UBM is a GMM trained using the expectation maximisation algorithm (Duda et al.

2000). In this thesis, GMM suspect models are constructed using raw suspect data

(rather than MAP adaptation; see Morrison 2011a), following the same procedure

as the UBM (examples of this approach are in Becker et al. 2008 and Becker et al.

2009). The number of Gaussians in a GMM is dependent on the amount of data and

its multidimensionality. A visualisation of suspect and background GMMs using four

Gaussians per model for hypothetical f0 data is in Figure 3.4 (Morrison 2010: 28).

Figure 3.4: GMMs of hypothetical suspect and reference data for f0 constructed using

four Gaussians per model (from Morrison 2010: 28)
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For each offender value within each feature (xi), a LR score (s) is computed as the

probability density of the value at the intersection of the suspect model p(xi|λsus)

divided by probability density of the value at the intersection of the background model

p(xi|λbkg). A single score per feature is calculated by taking the mean of the scores

from each offender value for that feature (Equation 3.3). The OLR score is the mean

of the scores across all features of the variable. GMM-UBM is typically used in

ASR research (Alexander and Drygajlo 2004b; González-Rodríguez et al. 2006;

Ramos-Castro 2007) since the speaker independent UBM is suited to large amounts

of data (Jessen and Enzinger 2014). In this thesis, GMM-UBM scores were computed

using MATLAB functions from the Speaker Recognition Project (see Alexander and

Drygajlo 2004a). Since contemporaneous samples were used when computing GMM-

UBM LRs, comparisons were conducted by dividing each speaker’s data in half (as

above).

3.2.2.2 Intrinsic vs. extrinsic testing

Intrinsic LR testing involves a single database from which all speakers are extracted,

whereas extrinsic testing uses separate databases for the development, test and reference

sets. Intrinsic testing is more common, due to the paucity of usable datasets which are

sufficiently well matched for extrinsic testing (an exception is Rose et al. 2006). System

performance using intrinsic testing is generally expected to be better than that using

extrinsic testing. This is because the use of a single corpus increases the homogeneity of

the datasets in terms of the speakers used and the recording conditions. Extrinsic testing

is also considered more forensically realistic because in casework evidential samples

would not come from the database used to build the FVC system. A combination of

intrinsic and extrinsic testing is conducted in this thesis (see §3.4).

3.2.2.3 Independent sets vs. cross-validation

To compute meaningful LRs, it is important that the development, test and reference

sets contain different speakers. This is because p(E|Hd) refers to the probability of the

evidence assuming it was produced by a random member of the relevant population

other than the suspect. To include the suspect in the reference data would therefore be
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logically incorrect. The easiest way to deal with this issue is to use separate datasets.

However, this requires a large database of speakers. Cross-validation (Hastie et al. 2009:

241-249) allows speakers to function simultaneously as comparison and reference data

in the feature-to-score stage such that for each speaker pair the reference data consists of

all speakers excluding the suspect and offender. Therefore, using cross-validation, the

reference data changes for each comparison. Applying cross-validation in this thesis,

for DS pairs both speakers were excluded from the reference data. For SS pairs, the

target speaker and another random speaker were excluded from the reference data. This

ensures that the number of reference speakers remains constant across comparisons.

Cross-validation can also be used to calibrate (§3.2.4) a set of SS and DS scores. This

is done by generating calibration coefficients for each comparison pair based on the

scores from all pairs except those involving the speakers being compared. In this way,

the calibration coefficients change for each comparison. While not ideal, this approach

is useful where the number of comparisons is small. This approach was used in §10.2.1.

3.2.2.4 Log likelihood ratios (LLRs)

The distributions of raw LRs from FVC systems are often skewed. To account for this

LRs are converted to log LRs using a base x logarithm such that:

LLR = logx(LR) (3.4)

LR = xLLR

The value for x is typically either 10 (log10 or base 10) or e (≈2.71828 natural log or

base e). The relationship between raw LRs, log10 LRs and natural log LRs is shown in

Table 3.2. Where raw LRs take values between zero and∞ with threshold at one, log

LRs take values between −∞ and∞ with zero as threshold. This means the log scales

are symmetrical either side of zero, improving the interpretability of the relative weight

of the evidence (Lempert 1977; Edwards 1986).

In this thesis, log10 LR values were used to interpret strength of evidence. The abbrevi-

ation LLR is therefore used to refer to log10 LRs (unless otherwise stated). Given that

the distributions of LLRs may also be skewed their central tendency is described using

the median.
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Table 3.2: Raw values with base 10 and base e logarithm values

Raw value Base 10 log value Base e log value

1000 3 6.9078

100 2 4.6052

10 1 2.3026

1 0 0

0.1 -1 -2.3026

0.01 -2 -4.6052

0.001 -3 -6.9078

3.2.2.5 Tippett plots

Throughout this thesis the distributions of LRs are presented using Tippett plots

(Meuwly 2001; see Morrison 2011a: appendix 2). Figure 3.5 displays a Tippett

plot based on hypothetical LRs produced by a FVC system. The solid line represents SS

LRs and the dashed line represents DS LRs. The x-axis displays the log10 LR value with

zero marking the threshold between support for the prosecution (positive values) and

support for the defence (negative values). The y-axis displays the cumulative proportion

(or percentage) of comparisons that achieve a value less than (for SS)/ greater than (for

DS) or equal to the value on the x-axis. For example, based on Figure 3.5 approximately

60% of SS pairs achieve a LLR of less than +2. By extension, around 40% of SS pairs

achieve a LLR of more than +2. The further the SS line to the right and the further the

DS line to the left the stronger LRs.

The Tippett plot also provides information about the validity of the system. The

point on the y-axis at which the lines cross is the equal error rate (EER) (§3.2.3.1).

The proportion of misses (i.e. SS pairs offering support for the defence) occurs at

the point on the y-axis where the SS line crosses the zero threshold into negative

values. Conversely the proportion of false hits (i.e. DS pairs offering support for the

prosecution) occurs at the point on the y-axis where the DS line crosses zero into

positive values. The magnitude of the contrary-to-fact LRs is determined by how far

the SS line extends into negative values and how far the DS line extends into positive

values.
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Figure 3.5: Tippett plot based on hypothetical SS and DS LRs produced by a FVC

system

3.2.2.6 Verbal LRs

Whilst Lucy claims that “a (LR) is an . . . easily interpretable quantity which expresses

the persuasive power of evidence” (2005: 133), the extent to which triers-of-fact are

able to comprehend numerical estimates of strength of evidence is a significant concern

for the courts. Therefore, numerical LRs may be converted into a verbal expression.

Table 3.3 shows the scale proposed in Champod and Evett (2000: 240). However, since

the meaning of such scales “can vary both between and within the several interested

groups” (Rose 2002: 62), the verbal outcome is claimed to be arbitrary (Buckleton et al.

2005). Further, categorical distinctions impose cliff-edge effects whereby the difference

between two LLRs of 9.9 and 10 is equivalent to the difference between limited and

moderate support for the prosecution (Table 3.3). The difficulties in the interpretation

of verbal scales for the trier-of-fact are highlighted in Mullen et al. (2013) and Martire

et al. (2014).
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Table 3.3: Verbal expressions of raw and LLRs according to Champod and Evett’s

(2000: 240) scale

LLR Verbal expression

±4 : ±5 Very strong support

±3 : ±4 Strong support

±2 : ±3 Moderately strong support

±1 : ±2 Moderate support

0 : ±1 Limited support

Nonetheless, in this thesis, Table 3.3 was used as a means of contextualising numerical

values, and for broad cross-comparison of the LR output from different systems.

3.2.3 System performance: validity and reliability

The performance of a forensic comparison system can be analysed in terms of validity

(or accuracy) and reliability (or precision). Validity refers to how well a system performs

the task it is claimed to do. In the case of FVC systems, this is to discriminate between

SS and DS pairs and generate low magnitude contrary-to-fact values (i.e. SS LLRs < 0

and DS LLRs > 0). Reliability refers to the degree of variability (or imprecision) in LR

estimates from the same comparisons (i.e. how close the observed LR is to the mean).

Figure 3.6 displays a visual representation of validity and reliability from Morrison

(2011b: 92) based on the proximity of a distribution of measurements of a given object

to the true value of that object.

3.2.3.1 Validity

Equal error rate (EER)

EER is a metric for assessing categorical system validity using the LR as a discriminant

function. The categorical decisions made by a LR-based system are defined in Table 3.4.

In calculating EER, the percentages of false hits and misses are assessed using a series

of thresholds between the minimum and maximum LLRs. EER is the percentage at
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which the proportion of false hits and misses is equal. In this thesis, EER was calculated

using a MATLAB function10 which tests for false hits and misses with 2000 thresholds.

Figure 3.6: Visual representation of validity (accuracy) and reliability (precision) (from

Morrison 2011b: 92)

Table 3.4: Categorical correct (consistent-with-fact) and incorrect (contrary-to-fact)

decisions made by a LR-based biometric system (equivalent to that in Morrison 2011b:

93)

SS comparison DS comparison

LLR > 0 3 false hit

LLR < 0 miss 3

There are two primary limitations of EER. Firstly, the threshold for EER is often not

zero. Therefore, sets of non-overlapping SS and DS LLRs with an EER of 0% may still

have a high proportion of one type of error when using zero as threshold. Secondly, EER

considers each contrary-to-fact LR as an error irrespective of its magnitude. Therefore,

EER fails to capture the fact that a system which produces high magnitude contrary-to-

fact LRs is worse than a system which produces low magnitude contrary-to-fact LRs,

even if the absolute percentage of errors is the same.
10Ketabdar, H. (2004). ‘jEER_DET.m’ (version 1.2 with amendments by Anil Alexander).
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Log LR cost function (Cllr)

An alternative to categorical validity is Cllr. Cllr was developed for ASR (Brümmer and

du Preez 2006; van Leeuwen and Brümmer 2007) but has since been used extensively

in linguistic-phonetic FVC (Morrison 2009b; Morrison 2011b; Rose 2010; Morrison

and Kinoshita 2008). Cllr penalises the system based on the magnitude, rather than

the proportion, of contrary-to-fact LLRs (Rose and Winter 2010). The assessment

of the “gradient goodness of a set of LRs” (Morrison 2009c: 6) provides a logically

appropriate means of analysing system validity.

It is defined as:

Cllr =
1

2

(
1

Nss

Nss∑
i=1

log2

(
1 +

1

LRssi

)
+

1

Nds

Nds∑
i=1

log2

(
1 +

1

LRdsi

))
(3.5)

where:

Nss = Number of SS comparisons

Nds = Number of DS comparisons

LRss = SS LR

LRds = DS LR

from González-Rodríguez et al. (2007)

By assessing the magnitude of contrary-to-fact LRs, there is an assumption that not

all errors are equally problematic for system performance. That is, contrary-to-fact

LRs closer to zero are preferred to contrary-to-facts LRs of a higher magnitude. The

closer Cllr is to zero the better the performance. Values approaching one (unity) reflect

bad system validity, whilst values of above one indicate very bad performance (van

Leeuwen and Brümmer 2007: 343-344). A system which produces LRs of one (LLR

= zero), irrespective of the input, will produce a Cllr of one, and so offers no useful

information for the purposes of FVC. However, the interpretation of the Cllr is difficult,

since its value does not correspond directly to system decisions (unlike EER, where

interpretation is clear). Therefore, the power of Cllr lies in comparing the validity of

multiple systems. In this thesis, Cllr was calculated using MATLAB functions from

Brümmer’s FoCal toolkit.11

11FoCal toolkit: https://sites.google.com/site/nikobrummer/focal (accessed:
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3.2.3.2 Reliability

Credible intervals (CIs)

The most common approach for assessing the reliability of FVC systems is to use

95% Credible intervals (CIs). The CI is the Bayesian equivalent of the frequentist

confidence interval, which is “philosophically consistent with the (LR) framework”

(Morrison 2011b: 95). CIs are typically used to capture the imprecision across multiple

non-contemporaneous comparisons of the same comparison pairs using the same system.

However, in this thesis CIs are used to estimate the imprecision of LRs from the same

test comparisons across systems based on different definitions of the relevant population

(Chapters 6 and 7). They are then compared across experiments to assess which input

variables and logically relevant factors generate the greatest imprecision.

In this thesis, CIs were calculated using the non-parametric procedure in Morrison,

Thiruvaran and Epps (2010), which assumes unequal variance across LRs from the

same comparisons (for an alternative approach see Morrison et al. 2011). Using this

approach, the mean LLR value (x̄i) is calculated for each SS and DS comparison across

conditions by:

x̄i =
1

ni

ni∑
j=1

xij (3.6)

where:

i = Specific SS or DS pair

ni = Number of LLRs per pair (up to eight in Chapter 6)

xij = jth LLR for comparison pair i

3rd June 2011).
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The deviation of each LLR (yij) from the mean for a given comparison is then:

yij = xij − x̄i (3.7)

from Morrison, Thiruvaran and Epps (2010: 65)

The CI for each comparison is calculated using local linear regression with a nearest

neighbour kernel, following the eight-stage procedure in Morrison, Thiruvaran and

Epps (2010: §2.2). The 95% CI is a probabilistic region of a posterior distribution

within which one can be 95% certain the true value is found, where the wider the

CI the greater the imprecision in the LLR estimate. The overall reliability of a FVC

system is analysed using the mean of the 95% CIs. The mean 95% CI is the average

± difference between the upper and lower bounds of the CI and the mean value for a

given comparison. Its value can be interpreted in terms of log10 magnitude.

3.2.4 Score-to-LR mapping

As outlined by Morrison (2013), scores are interpretable as comparative estimates of

strength of evidence (i.e. a larger score provides stronger evidence), but “the absolute

values of scores are, in general, not interpretable as . . . (LRs)” (p. 174). This is because

“all models are wrong and should be recalibrated empirically” (Neumann et al. 2012:

410). Calibration uses knowledge of how the system performs using development data

to update, and ultimately improve, performance in testing. Grigoras et al. (2013) claim

that “calibration can ameliorate what would otherwise be very misleading results, and

. . . it is essential if one wishes to interpret system output as (LRs)” (p. 620).

3.2.4.1 Logistic regression calibration

Logistic regression (Brümmer and du Preez 2006) is an approach for calibrating FVC

systems, which minimises the Cllr and also typically minimises the magnitude of

contrary-to-fact log scores as a result. A visual representation of the procedure is

displayed in Figure 3.7.
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Figure 3.7: Visual representation of logistic regression calibration involving modelling

of SS (red) and DS (blue) scores for a set of development data with Gaussian curves

(panel 1), with a probability curve (panel 2) and the linear relationship between the

score and the LLR in the log-odds space (panel 3) (from Morrison 2013: 182)

As explained in Morrison (2013), the distributions of SS and DS log scores (panel 1)

from a set of development data are transformed based on the modelled probability of

the samples coming from a SS pair given the score p(Hp|s) (panel 2). This involves

coding scores from SS comparisons as one and scores from DS comparisons as zero.

The probability space (panel 2) is then mapped to the logged odds space (panel 3) using

76



3. General Methodology

the equation:

log

(
p(Hp|s)
p(Hd|s)

)
= log

(
p(Hp|s)

1− p(Hp|s)

)
(3.8)

Morrison (2013: 181)

where:

s = Score

Hp = Prosecution proposition (same-speaker)

Hd = Defence proposition (different-speakers)

The logistic regression model is defined by the linear relationship between the score

and the LLR:

LLR = as+ b (3.9)

where:

LLR = Calibrated LLR

s = Score

Once trained, the logistic regression model in the log-odds space is applied to the scores

for the test data to convert them into calibrated LLRs using the linear equation in 3.9.

The linear term is the calibration scale value (a) which is multiplied to the score (s) and

the intercept (b) is the calibration shift value which is added to the product of the score

and the scale value.

In this thesis, calibration coefficients were calculated using a robust implementation12

of the logistic regression procedure from Brümmer’s (2007) FoCal toolkit.11 The results

in §4.3.1 are analysed using uncalibrated scores, since the number of test speakers

(eight per set) is considered insufficient for meaningful calibration.

3.3 Input variables

This section describes the input variables used in this thesis: namely formant dynamics

and cepstral coefficients (CCs) and derivatives. Although AR data were also used,
12Morrison, G. S. (2009). ‘train_llr_fusion_robust.m’ http://geoff-morrison.net/

#TrainFus (accessed: 14th December 2011).
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the justification for using AR and the procedures for data extraction are explained in

Chapter 9.

3.3.1 Formant dynamics

Formants are resonant frequencies which characterise any sounds with a phonatory

source filtered by the vocal tract, but are most commonly analysed in the context of

sonorants such as vowels, liquids and nasals. Formants are defined as high amplitude

harmonic peaks in the spectrum and can be seen in the spectrogram as a series of

bands spread across the frequency range. Source-filter theory (Fant 1960) assumes that

formant frequencies are a consequence of the interaction between the configuration of

the vocal tract from the larynx to the lips (determined by dynamic articulators such as

the tongue) and the overall physiology of the tract itself (e.g. vocal tract length). This

accounts for the intrinsic relationship between articulatory configuration and acoustic

output. For vowels, F1 is correlated with the open-close dimension, while F2 is related

to the front-back dimension, although the configuration of other articulators also affects

vowel acoustics (e.g. lowering of F2 and F3 during lip rounding; Stevens 2000).

Nolan (1983) describes speech as a series of phonetic targets which are the result of an

interaction between communicative intent, phonological representation and physical

implementation. Phonetic targets are perceived by listeners in decoding a speaker’s

communicative intent. In the analysis of vowel targets in mainstream phonetics and

sociophonetics, the acoustic structure of monophthongs has traditionally been defined

by a single formant measurement at the steady-state, approximately at the midpoint, to

minimise the coarticulatory effects of adjacent sounds (Daniloff and Hammarberg 1973:

239). As dynamic events with movement between two phonetic targets, the phonetic

quality of diphthongs is often captured using the dual-target model (Morrison and

Assmann 2013) involving two measurements from the steady-states of the onset and

offset targets.

However, an alternative to the analysis of vowels based on phonetic targets is to extract

multiple measurements across formant trajectories. This is often referred to as the

dynamic approach. The dynamic approach captures considerably more phonetic detail
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in vowel production and a number of studies have shown that it outperforms steady-

state analyses based on midpoints of monophthongs or the dual-target characterisation

of diphthongs in speaker discrimination (Greisbach et al. 1995; Ingram et al. 1996;

Rodman et al. 2002; Eriksson et al. 2004a, 2004b; McDougall 2004, 2005, 2006).

Nolan claims that the dynamics of speech are useful for FVC because they capture

information which is acquired individually through “trial and error” (1997: 749),

whereas phonetic targets are learned as part of shared knowledge of sociolinguistically

homogeneous speakers. However, Koops (2010) and Hughes et al. (2011) offer

evidence to suggest that vowel dynamics may also encode socio-indexical information

such as regional background, age and sex.

3.3.1.1 Speaker discrimination and individual formants

Individual formants are also expected to display different patterns in terms of the infor-

mation which they encode. The speech-speaker dichotomy (Mokhtari 1998) refers to

the two broad types of information encoded within the speech signal: information relat-

ing to linguistic content (speech) and information relating to the individual (speaker).

Speaker information can broadly be thought of as the source of between-speaker differ-

ences in the speech signal. According to Garvin and Ladefoged (1963: 194), speaker

information can be categorised as organic, relating to the anatomy of the speech appa-

ratus, or learned, defined by “behavioural differences in (the) usage of the moveable

articulators during speech production” (Mokhtari 1998: 4). However, as highlighted by

Nolan and Oh (1996), “it is normally impossible . . . to assign observable differences to

one source or the other” (p. 39). Further, Nolan (1983) claims that the organic-learned

dichotomy is a “gross oversimplification (which) conceals the complexity of the bases

of speaker-specific information in speech” (p.27).

Garvin and Ladefoged (1963) offer a second distinction for categorising speaker in-

formation based on the group and the individual. Group information relates to a

speaker’s regional and social background, while individual information relates to

speaker-specificity. Mokhtari (1998) argues that the group-individual distinction can be

thought of in terms of homogeneity and heterogeneity. That is, variables which encode

considerable regional and social speaker information generally display a high degree
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of homogeneity across speakers of the same linguistic background. Conversely, vari-

ables which are heterogeneous carry less regional and social information and therefore

potentially offer greater discriminatory power. However, as with the organic-learned

distinction, it is questionable whether the distinction between group and individual

variation is dichotomous since all linguistic-phonetic variables respond, at least to some

extent, to individual, regional, social and contextual factors.

It is traditionally argued that linguistic information relating to phonetic contrast is

encoded in F1 and F2 (Ladefoged and Johnson 2010; Clermont and Mokhtari 1998)

since these lower formants relate to broad articulatory differences in vocal tract configu-

ration. In this way, F1 and F2 encode a considerable amount speech related information.

The two lowest formants are also responsible for carrying considerable speaker in-

formation relating to regional and social background (i.e. group information). Since

higher formants in English are not responsible for phonetic contrast, there is reason to

predict that they are not regionally and socially stratified to the same extent as lower

formants. Furthermore, higher formants have been identified as carriers of speaker-

specific information since “they are less susceptible to . . . behavioural and anatomical

variation (within) speakers” (McDougall 2004: 123). It is argued that this is because

they are more closely related to resonances in smaller cavities within the vocal tract

(Peterson 1959; Rose 2002). From this observation it is reasonable to hypothesise that

higher formants furnish greater inter-speaker variability and intra-speaker stability.

The results of a number of studies offer considerable support for the claim that F3 and

higher formants are strong carriers of speaker-specificity. Based on formant contours of

German long vowels, Greisbach et al. (1995) found greater between-speaker variation

in F3 compared with F2 and particularly F1. Using 20 speakers from DyViS Task 1,

Simpson (2008) analysed the comparative performance of F1 to F4 across five short

vowel phonemes of SSBE based on F-ratios (the ratio of between- and within-speaker

variation) generated using ANOVAs and comparisons of SS and DS pairs. F3 and F4

consistently outperformed F1 and F2 across all metrics, with the highest proportion of

variance in F3 and F4 associated with speaker as compared with lexical set for F1 and

F2. These results are also consistent with the traditional view that F1 and F2 primarily

encode information for phonetic contrast.
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McDougall (2004) investigated the speaker discriminatory potential of formant trajec-

tories of /aI/ preceding /k/ under different speaking rates and levels of prosodic stress.

Linear discriminant analysis (DA) was performed on five speakers of General AusEng.

DA is a closed-set form of Bayesian posterior analysis which generates a classification

rate based on the proportion of cases (tokens) correctly assigned to a given group on

the basis of a series of input predictors (see Morrison 2008: 261-264). F3 classification

rates were generally found to be higher than those for F1 and F2, particularly with

small numbers of predictors. Further, analyses of combined formant performance were

consistently better with the inclusion of F3. Based on the magnitude of LRs, Kinoshita

(2001) found that F3 provided the best speaker discrimination for Japanese mid-point

vowel data, followed by F2, F1 and finally F4, although performance varied across

phonemes.

Despite the comparative performance of F3 relative to lower formants in previous

studies, there are a number of factors which may introduce systematic regional and

social variation, potentially diminishing its speaker discriminatory potential at least

for certain regional and social groups. F3 has been shown to have direct articulatory

correlates, with lip rounding and protrusion in particular causing a decrease in F3 (2001).

Stevens (2000) states that such lowering of F3 (and indeed of all resonant frequencies)

during rounding is an acoustic consequence of a decrease in the “cross-sectional area of

the anterior end of the vocal tract, and lengthening of the front part of the tract” (p. 291)

Consistent with this claim, Maeda (1990) maintains that the reduction in the proximity

of F3 and F2 is responsible for the auditory-phonetic distinction between [i] and [y].

Many lingual settings responsible for habitual differences in vocal tract configura-

tion have also been shown to cause variability in resonant frequencies (Laver 1994:

§13.5.2.3). Settings may also be variety-specific, causing systematic variation in F3

(e.g. velarised vocal setting in Liverpool and Birmingham; Esling and Dickson 1985).

Such systematic articulatory and phonatory factors are capable of encoding socio-

demographic information, which may compromise the speaker discriminatory power

of F3 within dialects. Conversely, such systematicity may improve the discriminatory

power of F3 across dialects.
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3.3.1.2 Data extraction

On the basis of previous research, the dynamic approach was adopted in this thesis for

the analysis of vowel formant trajectories. With the exception of Chapter 4, vowels

were analysed using F1, F2 and F3 (F1∼F3). For the majority of the data, the onset

and offset of vowel tokens were manually defined using interval tiers on PRAAT

(Boersma and Weenink 2011) TextGrids according to the criteria in §3.3.1.3. Where

forced-aligned TextGrids were available (i.e. ONZE), the onset and offset of tokens

determined by automatic segmentation were used with some manual correction based

on auditory analysis and visual inspection of the spectrogram where possible. Following

the procedures in McDougall (2004), time-normalised formant measurements were

taken at +10% steps across the duration of each vowel token (exemplified in Figure

3.8).

Figure 3.8: Example of points for time-normalised dynamic formant analysis with

measurements taken at +10% steps (McDougall 2004) for a token of /aI/ from the word

skype from DyViS sample 027-1-060425.wav
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A number of PRAAT scripts13 were used to extract dynamic data. The scripts create

a Formant object for the entire sound file using the To formant (burg). . . function

which performs short-term spectral analysis of windowed frames of 2.5ms (Gaussian

window = 5ms) shifted at 2.5ms steps. For each window, the function estimates formant

frequencies based on linear predictive coding coefficients using the burg algorithm (see

Harrison 2013). Pre-emphasis was also applied, which was set to amplify frequency

components above 50 Hz to account for the spectral tilt. The script then uses the regions

from the associated PRAAT TextGrids to extract the dynamic data at the appropriate

points.

Given that the To formant (burg). . . function in PRAAT performs spectral analysis on

frames across the whole speech sample, prior to data extraction for specific time stamps,

memory issues were encountered in PRAAT were processing large sound files. This

issue was overcome in a number of ways. For certain datasets in Chapters 4, 5 and

7, recordings were resampled to reduce file size or tokens were manually extracted to

separate sound files to preserve sampling rate. A similar approach was also used in

Chapter 10 whereby individual tokens were automatically extracted to separate sounds

files using a PRAAT script.14 For ONZE (Chapters 4, 7 and 8), the original sampling

rate was preserved by extracting data automatically using LaBB-CAT.

3.3.1.3 Defining the onset and offset of vowel tokens

When manually segmenting vowel tokens, the onset and offset were defined according

to a series of criteria depending on adjacent phonological context. These criteria were

implemented to ensure that vowel segmentation was accurate and consistent across

experiments. Table 3.5 displays the criteria for defining the onset of tokens based on the

preceding sound, and Table 3.6 displays the criteria for defining the offset based on the

13Chapters 4, 5, 7 and 8: Hudson, T. and Williams, C. ‘IntervalFormants_use_me3.praat’ and ‘com-

mon.praat’/ Chapter 10: adapted version of Lennes, M. (2003) ‘Collect_formant_data_from_files.praat’.

http://www.helsinki.fi/~lennes/praat-scripts/public/collect_formant_

data_from_files.praat (accessed: 15th May 2013)
14Lennes, M. (2003). ‘Save_intervals_to_wav_sound_files.praat’ http://www.helsinki.fi/

~lennes/praat-scripts/public/save_intervals_to_wav_sound_files.praat

(accessed: 29th July 2013)

83

http://www.helsinki.fi/~lennes/praat-scripts/public/collect_formant_data_from_files.praat
http://www.helsinki.fi/~lennes/praat-scripts/public/collect_formant_data_from_files.praat
http://www.helsinki.fi/~lennes/praat-scripts/public/save_intervals_to_wav_sound_files.praat
http://www.helsinki.fi/~lennes/praat-scripts/public/save_intervals_to_wav_sound_files.praat


3. General Methodology

following sound (Turk et al. 2006). Tokens adjacent to /r/ and /l/ were largely avoided

based on their expected long-term resonance effects (West 1999, 2000), although some

of these tokens were included where data were limited. In all cases, boundaries were

moved to the nearest zero crossing.

Table 3.5: Criteria used to define the onset of vowel tokens based on the preceding

sound

Preceding The vowel onset is defined by. . .

pause . . . full periodicity (excluding any period of creak) in the waveform,

coinciding with the presence of vertical striations and formant

structure in the spectrogram.

nasal . . . the end of the simple waveform structure and low overall ampli-

tude (relative to the vowel) with particularly weak higher formants

due to the absorption of energy “from the main nasal-pharyngeal

tube” (Harrington 1997: 114) in nasal production, the absence

of evidence of anti-formants in the spectrogram (Stevens 2000),

and the onset of a complex waveform structure and clear, high

amplitude formants.

plosive . . . the offset of aperiodicity in the plosive burst and the onset of

full periodicity (excluding any period of voiced friction).

fricative . . . the offset of aperiodicity and onset of full periodicity (excluding

any period of voiced friction).

lateral . . . a marked change in the spectrogram at which point the am-

plitude of higher formants is considerably greater than that in the

lateral, consistent with the “abrupt change in articulation” (Lade-

foged and Johnson 2010: 52) whereby the tongue tip is released

from the closure at the alveolar ridge, and possibly an increase in

F2 (which is typically quite low in /l/ realisation; F2 values for the

lateral vary on a continuum based on the darkness of the realisation

(amount of velarisation) with the darkest /l/ having the lowest F2).
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glide . . . the point at which F2 stabilises, following a decrease in F2

during the transition from the palatal glide into the vowel and

following an increase in F2 (partly due to lip unrounding) during

the transition from the labial-velar glide into the vowel.

Table 3.6: Criteria used to define the offset of vowel tokens based on the following

sound

Following The vowel offset is defined by. . .

pause . . . the absence of acoustic energy in the signal.

nasal . . . the change in waveform from a complex vowel structure to sim-

plistic nasal structure and a marked decrease in overall amplitude

(particularly in the higher formants).

plosive . . . the offset (or weakening) of energy in F2 indicating the pres-

ence of a closure in the oral tract (Foulkes et al. 2010: 67).

fricative . . . the offset of full periodicity in the vowel and the onset of any

aperiodicity characteristic of the fricative, or the offset of F2 to

indicate the presence of an oral closure for affricates.

glide . . . the point at which F2 begins to increase into the palatal glide.

3.3.1.4 Parametric representations of formant trajectories

More recently, attention in FVC has focused on curve fitting techniques which are able

to capture the dynamic properties of formant trajectories using a smaller number of

predictors than raw frequency input. The use of such parametric representations of the

data improves the statistical efficiency (and precision) involved in LR computation by

reducing the number of potentially correlated dimensions. One of the most common

curve fitting techniques applied to FVC is polynomial regression.
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For formant trajectories, polynomial regression provides an approximation of the non-

linear relationship between time and frequency. This relationship can be described as

an equation, of increasing complexity:

ỹ(Hz) = f(x) = a1 + a2x+ a3x
2 + a4x

3 . . . anx
i (3.10)

where ỹ is the frequency value on the curve of best fit (y-fit) and x is the +10% step. By

fitting ith order polynomials, the raw data are reduced to a series of coefficients (Seber

and Wild 1989) which describe properties of the trajectory. Coefficients are calculated

using the least squares method, which minimises the sum of the squared residuals (ε)

(Whittle 1983), where residuals are the difference at each point of x between the raw

data and the fitted data. The goodness of the fit is determined by the R2 value, which

increases towards one as a function of polynomial complexity:

R2 = 1−


N∑
i=1

ε2i

N∑
i=1

(yi − ỹ)2

 (3.11)

The first three coefficients can be interpreted as linguistically meaningful. The intercept

(a1) represents the y value at the point where x = zero (i.e. where the line crosses the

y-axis). The linear term (a2x) captures the slope of the trajectory defined by the amount

of movement between the onset and offset. The squared term (a3x2) captures the

magnitude of the parabola (i.e. deviation from a straight line). Beyond this, coefficients

become increasingly abstract in terms of their linguistic correlates. It is also important

to emphasise that polynomial coefficients are typically highly correlated with each

other, reflecting the trade-offs in least squares regression (Whittle 1983).

An issue for the experiments in this thesis is the choice of polynomial order applied.

Although increasing polynomial order improves the goodness of the fit, the principle

of parsimony in least squares regression demands the use of “models and procedures

that contain all that is necessary for modelling but nothing more” (Hawkins 2004: 1).

Where parsimony is violated, “overfitting” (Morrison 2008: 253) may occur, since

an overly complicated regression model exaggerates noise caused by factors such as

measurement errors, potentially resulting in worse speaker discriminatory performance.
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McDougall (2006) compared the performance of quadratic (2nd order) and cubic (3rd

order) polynomials extracted from formant trajectories of /aI/ with raw values at nine

time-normalised sampling points. Based on DA the cubic system plus duration achieved

the highest classification rate (optimally 96%). Despite containing four fewer predictors,

the performance of the quadratic system was not markedly lower (91%). Similarly,

based on an analysis of the F1 and F2 contours of /u:/, McDougall and Nolan conclude

that “although the cubic polynomials provide a better fit . . . it appears that a worthwhile

amount of speaker-distinguishing information can be captured with the quadratic ap-

proximations” (2007: 1828). Morrison (2009b) performed LR-based comparisons using

polynomial representations of formant trajectories from five diphthongs of AusEng.

The highest order representation (cubic) was found to achieve the lowest Cllr. However,

Morrison emphasises that “the parametric curve with the best performance for each

vowel phoneme (may need to) be determined on a case-by-case basis” (2009b: 2395).

Figure 3.9: Raw F2 (Hz) trajectory for a token of /aI/ from the word skype from DyViS

sample 027-1-060425.wav (as in Figure 3.8) fitted with quadratic, cubic and quartic

polynomial curves
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This section presents the results of pre-testing of different polynomial orders to establish

which should be used throughout this thesis. The comparative performance of quadratic,

cubic and quartic polynomial representations of F1∼F3 trajectories of /aI/ are analysed

with regard to the distributions of calibrated LLRs, Cllr and EER.

Method

Task 1 recordings for all 100 DyViS speakers (§3.1.1) were used. Dynamic F1∼F3 data

for /aI/ for the first 20 speakers were available from Hughes (2009). Tokens of /aI/ from

the remaining 80 speakers were manually segmented following the criteria in Tables 3.5

and 3.6. Only /aI/ tokens occurring in DyViS target words (Table 3.7) were analysed.

The relative lack of available data for each speaker meant that it was not possible to

ensure the same number of tokens in equivalent phonological contexts for each speaker.

Table 3.7: Target items containing /aI/ elicited by the interviewer for DyViS

/aIp/ /aIt/ /aIk/

type heights bike

pipeworks kite pike

typesetter tightrope hike

hypermarket pighty /"paIti:/ sky-coloured

skype tyke

The recordings were resampled at a rate of 11.025 kHz. Dynamic formant data were

then extracted (§3.3.1.2) searching maximally for between five and six formants (i.e.

an LPC order of 10 or 12) over a 0 to 5 kHz range and errors were hand-corrected. Of

the 100 speakers, three were removed due to small numbers of available tokens. The

resulting dataset contained 97 speakers with between 11 and 19 tokens per speaker.

Formant trajectories from all tokens were fitted with quadratic, cubic and quartic

polynomials (Figure 3.9) using an implementation of the MATLAB polyfit function.15

This reduced the nine raw frequency values to between three and five coefficients per

formant.
15‘polyfitcaller.m’ written by Ashley Brereton (2011). This function was used to fit polynomial curves

to the formant trajectory data throughout this thesis.
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To ensure comparable models of within-speaker variability, only the first ten tokens

per speaker were included. Of the 97 available speakers, 20 were identified at random

to function as development data and a further 20 were used as test data. Typicality

was assessed using a background model based on the remaining 57 speakers. MVKD

(§3.2.2.1) LR scores (20 SS/ 380 DS) were computed for the development and test data.

The test scores were then converted to calibrated LLRs based on calibration coefficients

generated from the development scores (§3.2.4.1).

Figure 3.10: Tippett plot of SS (solid) and DS (dashed) LLRs using quadratic (orange),

cubic (green) and quartic (purple) representations of the F1∼F3 trajectories of /aI/

Results

Figure 3.10 is a Tippett plot of the calibrated LLRs based on different polynomial

representations of the raw data. The general strength of LLRs was greatest using the

quartic model. The median SS LLR using quartic coefficients was 0.46 greater than

that using quadratic input and 0.56 greater than that using the cubic input, although

in verbal terms the medians were all equivalent to limited support for the prosecution.

The distributions of SS LLRs were similar across the quadratic and cubic systems. The
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lowest proportion of misses (5%) was recorded using cubic input, where only one of

the 20 comparisons achieved a negative value. Using the quadratic and quartic input

the miss rate was marginally higher (10%).

The differences between polynomial orders were greater for DS LLRs. The median DS

LLR using the quartic data (-5.12) was two orders of magnitude greater than with either

quadratic (-3.92) or cubic (-3.66) input. Verbally, this is equivalent to the difference

between very strong (quartic) and strong (quadratic, cubic) support for the defence. As

with SS LLRs, the distributions of quadratic and cubic DS LLRs are similar to each

other, although the LLRs were marginally weaker using cubic representations. The

proportion of misses was highest using the cubic data (6.84%), with both quadratic and

quartic input achieving a miss rate of 5.53%.

0

1

2

3

4

5

6

0.00 0.05 0.10 0.15 0.20
Log LR Cost (Cllr )

E
E

R
 (%

)

Quadratic
Cubic
Quartic

Figure 3.11: Cllr plotted against EER using quadratic (orange), cubic (green) and quartic

(purple) input

Figure 3.11 shows that there was very little difference between the systems in terms

of validity. Optimum EER or Cllr values were achieved using cubic input, reflecting

the smallest proportion misses and the lowest magnitude contrary-to-fact LLRs. The

quadratic and quartic systems achieved the same, marginally worse, EER (5.26%),

although the quadratic system produced a higher Cllr (0.48).
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Conclusions

Across LR output, the three systems performed similarly well. The EER and Cllr values

also suggest that all three representations captured a substantial amount of speaker-

specific information. Further, there was no evidence of overfitting using higher order

polynomials with the quartic system achieving lower Cllr than the quadratic system

as well as the highest magnitude LLRs. Equally, there was also no improvement in

performance through increasing polynomial order. For the purposes of the experiments

in this thesis, it is considered preferable to use the polynomial representation with the

best validity rather than the strongest LLRs. Therefore, cubic coefficients were chosen

for modelling dynamic formant data.

3.3.2 Cepstral coefficients and derivatives

ASR typically involves the analysis of coefficients and derivatives from the power

cepstrum. The cepstrum is used in ASR primarily because data extraction can be

automated across an entire speech recording and because a considerable amount of

useful, speaker discriminatory, information can be extracted efficiently. The power

cepstrum is the inverse Fourier transform of the logarithm of the short-term power

spectrum of a signal, defined in Bogert et al. (1963) as:

power cepstrum = |F−1{log(|F{f(t)}|2)}|2 (3.12)

where:

F = Fourier transform

t = Signal

In this thesis, two forms of the cepstrum were used: Mel-frequency cepstrum (MFC)

and linear prediction cepstrum (LPC). The primary difference between these is the

frequency scale onto which the powers of the spectrum are mapped during processing.

In the case of the MFC, frequency bands are spaced according to the non-linear Mel

scale, while the linear frequency scale is used for the LPC. Both forms of the cepstrum

are used extensively in ASR research.
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The primary data extracted from the cepstrum are CCs. CCs contain considerable

information about the supralaryngeal vocal tract with Rose (2002) claiming that the

cepstrum “effectively decouples the part(s) of the speech wave that were due to the

glottal excitation from those that were due to the supralaryngeal response” (p. 262).

However, Rose also claims that the cepstral-spectral envelope does reflect “aspects of

the phonatory activity of the source” (2011a: 1718). ASR performance has also been

shown to improve with the addition of derivatives (Campbell 1997). The derivatives

of CCs used in ASR are delta, or differential, coefficients (Ds)16 and delta-delta, or

acceleration, coefficients (As). Ds are based on the spectral change between CC vectors

from preceding and following frames. Since it is not possible to calculate Ds without

CCs, the number of Ds extracted must be equal to the number of CCs. The calculation

of As is based on the same principles, using change in Ds rather than CCs as input.

This section outlines the general procedures for extracting MFC and LPC coefficients

and derivatives used in Chapter 6. Specific choices relating to input data and settings

are explained in Chapter 6 itself.

3.3.2.1 Extracting cepstral coefficients and derivatives

The extraction of cepstral information consists of seven steps. These steps, with the

exception of step four, are identical for MFC and LPC analysis. This process is

visualised, for MFC analysis, in Figure 3.12.

The entire speech sample is initially divided into frames based on a window size of

x(ms), shifted across the sample at intervals of y(ms). Typically, either a rectangular

or hamming window is used for this. In this thesis a hamming window was used. A

pre-emphasis filter is then applied to the signal using the first order difference equation:

s′n = sn − ksn−1 (3.13)

from Young et al. (2006: 62)

16The abbreviations used here are the same as those used in the HTK toolkit documentation (Young et

al. 2006).
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where sn (n = 1, 2, 3 . . . n) is the signal from a given frame and k is the pre-emphasis

coefficient. The pre-emphasis filter accounts for the spectral tilt by increasing the

amplitude of lower intensity, high frequency components relative to the amplitude of

higher intensity, low frequency components.

Figure 3.12: Visual representation of extraction of cepstral (in this case MFC) informa-

tion from a speech signal (Jurafsky 2007)

At step three, the signal from each frame is converted to a power spectrum by applying

a Discrete Fourier Transform (DFT) and a filterbank is then applied. The filterbank

consists of a number of triangular filters applied across the entire frequency range. At

this stage, the processes of analysing the MFC and LPC differ slightly. For the MFC,

the filterbank is based on the Mel-frequency scale; a perceptual scale which captures the

non-linearity of the human auditory system (Johnson 2008). The relationship between

linear frequency (f ) and Mel-frequency (m) can be expressed as (Figure 3.13):

m = 2595 log10

(
1 +

f

700

)
(3.14)

from O’Shaughnessy (1987)

In the case of the MFC, the filterbank consists of filters whose width and absolute

degree of overlap increases with frequency (Figure 3.13). For the LPC, the filterbank is

applied to the linear frequency scale (i.e. with no transformation of the power spectrum),

involving filters of equal width and absolute and proportional overlap. The energy in

each filter is then summed and, in step five, the values logged. The penultimate step,

involves fitting a discrete cosine transform (DCT) to the logged filterbank energies. The

coefficients associated with the DCT are the CCs.
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Figure 3.13: Relationship between linear and Mel frequency scales

The final stage involves extracting derivatives based initially on the vectors of CCs for

adjacent frames. Deltas (Ds) are calculated by:

Dt =

N∑
n=1

n(ct+n − ct−n)

s
N∑
n=1

n2

(3.15)

where:

Dt = Delta coefficient

t = Frame

ct+n, ct−n = Static CCs from adjacent frames

from Young et al. (2006: 62)

Delta-deltas (As) are calculated by applying Equation 3.15 to the Ds rather than the

CCs.
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Figure 3.14: Graphical representation of the Mel (above) and linear frequency (below)

filterbank applied to the power spectrum from a given window, with 50% overlap

between filters (from Lei and Lopez-Gonzalo 2009: 2324)

3.4 Limitations

There are a number of general limitations with the experiments in this thesis. Firstly,

across all experiments LRs are computed using contemporaneous data from single

sample per speaker, i.e. divided in half to compute SS comparisons. This is due

to the fact that databases with non-contemporaneous samples (i.e. two recordings

per speaker separated by some period of time) generally do not contain sufficient

numbers of speakers from the narrowly defined sociolinguistically groups relevant

to the experiments in this thesis. Secondly, the ONZE, NE and PVC datasets were

collected primarily for sociolinguistic research and are therefore liable to the limitations

outlined in §2.4.2.1. For TIMIT, the level of forensic relevance is further limited by the

use of read speech (the preference for TIMIT over other ASR databases is explained

in Chapter 6). All of the samples used were also recorded directly, and most in high

quality and digitised with optimum sampling rates.

It is predicted that the use of contemporaneous, high quality samples will lead to

overly optimistic performance compared with real forensic conditions. The potential

implications of using optimal data are discussed in individual data chapters. However,
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as highlighted in §2.2.5, relatively little work has empirically tested the impact of

non-contemporaneity on the outcome of numerical LRs (with the exception of Enzinger

and Morrison 2012 and Coe 2012). Furthermore, given that little work has considered

the research questions of this thesis, it is considered preferable to test these questions

initially using optimal data. This will help to reveal the specific effects of variability

in the definition of the relevant population and sample size in LR-testing, without

the confounding issues of various sources of mismatch between suspect and offender

samples encountered in forensic casework.

In Chapters 4 and 5, a combination of intrinsic and extrinsic testing (§3.2.2.2) was used.

This may exaggerate the differences in LR output between the regionally Matched

and Mixed/Mismatched sets, since intrinsic testing predicts greater similarity between

datasets extracted from the same database. The use of auto-generated data in Chapters

4 and 8 is also a substantial limitation, since the accuracy of segmental boundaries is

reduced for forced-aligned TextGrids. Further, the procedures implemented to correct

and remove errors serve to identify clear outliers, rather than more subtle measurement

errors (although the use of parametric representations of the trajectories does help

to reduce the noise in the raw data) or errors due to incorrect segmental boundaries.

Further experiment-specific limitations are also discussed in the relevant data chapters.
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Chapter 4

Regional Background: /u:/

This chapter explores the extent to which LRs are affected by different definitions of the

relevant population with regard to regional background, using the formant trajectories

of /u:/ as input. Firstly, LRs were computed using multiple sets of regionally defined

test data and a single set of reference data, where one test set matches the reference set

for regional background. Secondly, calibrated LLRs for a single test set were computed

using multiple systems containing: (a) regionally Matched development and reference

data and (b) regionally Mixed development and reference data.

4.1 Introduction

As outlined in §2.3.1, logical relevance based on offender language and sex has been the

preferred approach for defining the relevant population in the vast majority of LR-based

research and casework. However, a substantial issue for the application of logical

relevance to FVC is the extent to which analysts’ decisions relating to these sources of

between-speaker variation affect LR output. This chapter presents the results of two

experiments which address this issue by considering different definitions of the relevant

population with regard to regional background using the formant trajectories of /u:/

(GOOSE; Wells 1982) as input.

In Experiment (1), LRs were computed using a single set of regionally homogeneous

reference data and multiple sets of regionally defined test data, where one matches the
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4. Regional Background: /u:/

reference data for dialect. This experiment reflects the practical issue in LR-based FVC

of the limited availability of databases for assessing typicality. Therefore, in the vast

majority of cases the analyst would currently need to use reference data (forensic or

non-forensic; §2.4.2) which displays some degree of mismatch with the offender in

terms of the regional background of the reference speakers. Experiment (1) compares

the effects of such mismatch on LR output relative to a set of appropriate reference

data.

Experiment (2) relates more directly to analyst decisions regarding the relevant popu-

lation. LR scores were computed for a set of regionally homogeneous test data using

systems which represent different controls over regional background. Since the defi-

nition of the relevant population in casework informs the choice of speakers used as

development and reference data, the effects on LR output are considered across both

the feature-to-score (§3.2.2) and score-to-LR (§3.2.4) stages. The systems are defined

as (a) Matched: using development and reference speakers who match the test data

for regional background, reflecting a situation where the analyst defines the regional

variety of the relevant population narrowly and correctly relative to the offender, and (b)

Mixed: using speakers from different regional varieties as development and reference

data, reflecting limited control over regional background. The Mixed condition is, to

some extent, consistent with Rose (2004) where regional background is defined broadly

as language.

4.2 Method

4.2.1 Data

A total of 134 speakers were used. The speakers were divided into five groups: a

reference set of 102 speakers, and four test sets, each comprising eight speakers. The

reference data consisted of NZE speakers, drawn from CanCor (§3.1.2). The four

test sets differed in terms of the regional background of the speakers. Three sets

contained speakers of British English (BrEng) varieties from the north of England:

Manchester (§3.1.3), Newcastle (§3.1.4), and York (§3.1.3). The York data consisted
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4. Regional Background: /u:/

of five speakers from Tagliamonte (1996-1998) and three speakers from Haddican

(2008-2013). The three sets of BrEng data are classed as Mismatched conditions. The

fourth test set contained NZE speakers and is classed as the Matched condition. Aside

from differences in regional background, the test speakers are considered well matched

for sociolinguistic factors such as age, social class, and speaking style.

4.2.2 Variation and change in /u:/

There are a number of reasons why /u:/ was considered a good choice for these exper-

iments. Firstly, /u:/ is not a vowel with a high degree of social or regional variation

(until recently it has not been the subject of extensive attention by linguists working in

the UK or NZ, for example). It is most appropriately categorised as a sociolinguistic in-

dicator (Labov 1971) in all four dialects. Indicators are features that display systematic

variation but which generally remain below the level of speaker consciousness. They

contrast with markers, which display stylistic variation, and stereotypes, which may be

the subject of overt commentary.

A further advantage of using /u:/ is that patterns of variation and on-going change are

predicted to be consistent across varieties. The apparent-time fronting of /u:/ has been

attested in NZE (Easton and Bauer 2000) and in Manchester and York (Hughes et al.

2011; Haddican et al. 2013), although evidence from Watt (2000) suggests that /u:/

may be more retracted in Newcastle English. /u:/-fronting has also been found to be

correlated with age, such that F2 values are generally higher for younger speakers. Thus

only younger speakers were included in the four test sets. Further, consistent patterns of

variation according to adjacent phonological context have been found across regional

varieties. Ash (1996) and Hall-Lew (2005) establish maximally fronted realisations

following /j/ and maximally retracted realisations preceding /l/, especially in varieties

where coda /l/ is velarised. Such internal phonological factors are important in ensuring

that within-speaker variability is controlled across test sets.

The experiments in this chapter therefore test the effects on LR output of different

definitions of the relevant population using a variable which is not expected to display

marked differences between regional varieties. In this case the use of a general set of
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4. Regional Background: /u:/

English data may, a priori, be considered adequate for LR testing.

4.2.3 Dynamic formant extraction

Time-normalised dynamic measurements (§3.3.1) of F1 and F2 were auto-generated

for 169 male speakers from CanCor using LaBB-CAT. The formant extraction script

was set to identify five formants within a range of 0 to 5 kHz, based on an expectation

for roughly one formant per kHz for adult males (Keller 2005). This approach was

used to generate a large amount of data in a short space of time, since manual formant

extraction is labour intensive. As highlighted in Zhang et al. (2012), the reliability of

auto-generated formant data is expected to be worse than human-supervised formant

extraction even with high quality recordings. However, Zhang et al. (2013) claim that

human supervised formant extraction is not necessary for FVC casework “given the

high-cost . . . and the relatively small levels of meaningful improvement it provides” (p.

808) relative to the performance of a much cheaper, generic MFCC-based system.

To remove measurement errors, heuristic thresholds were set to constrain acceptable

measurements. F1 measurements outside the range of 250-600 Hz were considered

errors and the entire token was removed. This allows for considerable F1 variation,

as NZE has a variant with a central offset /u:/ → [0@] (Hay et al. 2008: 24). An

upper limit of 600 Hz was considered sufficient to capture variation in vocal tract

length, without accepting erroneous values. Tokens with F2 values outside 800-2400

Hz were also removed. The wide threshold for F2 values was implemented to account

for the expected range of phonological variation. Univariate outliers were identified

by calculating between-speaker z-scores, such that values greater than ±3.29 standard

deviations (SDs) from the mean were removed (Tabachnick and Fiddell 2007: 73)

The NZ test set was reduced from the full cohort of 169, in order to exert more control

over speaker age. Only those speakers born in 1970 or later, who would have been

between 20 and 30 years old at the time of recording, were eligible for inclusion in the

test set. From this group, speakers with fewer than 20 tokens were removed. Based on

between-speaker z-scores, the eight speakers closest to the group mean were identified

as test speakers. To ensure a fair estimate of within-speaker variability across test sets,
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4. Regional Background: /u:/

within-speaker z-scores were calculated for each speaker and tokens ranked within

phonological grouping for each speaker. The 16 tokens with the lowest z-scores in the

four phonological conditions in Table 4.1 were used as input data.

Table 4.1: Phonological categorisation of /u:/ tokens and the maximum number of

tokens in such contexts shared by every test speaker

Phonological Context N Tokens per Speaker

j 6

j # 4

non-j 4

non-j # 2

With the removal of the eight NZ test speakers, 161 males born between 1932 and

1987 were eligible for inclusion in the reference data. Beyond the removal of pre-

/l/ tokens, it was not possible to control fully for phonological conditioning while

simultaneously ensuring that reference speakers had the same number of tokens overall.

Instead, combined z-scores were used to rank tokens according to speaker such that ten

tokens per speaker were identified on the basis of minimal between-speaker variation.

Therefore, there is some divergence between the test and reference data in the proportion

of tokens in each context (Table 4.2), but for both sets 40-50% of tokens were post-/j/.

The resultant reference data consisted of 102 speakers with 13 tokens per speaker.

Table 4.2: Percentage of tokens in each of the four phonological contexts for the NZ

test and reference sets

Phonological Context % Tokens (Test) % Tokens (Reference)

j 37.5 23.7

j # 12.5 18.0

non-j 25.0 31.5

non-j # 25.0 26.8

The dynamic formant data for Manchester, Newcastle and York were extracted manually.

Tokens were segmented using the criteria in §3.3.1.3. The Manchester audio files were

resampled at a rate of 11.025 kHz. Spectrograms from the original and resampled audio
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files were inspected visually to ensure that resampling had not significantly affected

acoustic output. Formant measurements for one token were also extracted from the

original and resampled files. Comparison reveals a mean difference of 7 Hz between the

11.025 kHz and 44.1 kHz samples at each +10% step. This difference was considered

negligible in terms of the resulting LRs.

To avoid resampling, tokens from the York and Newcastle data were extracted to a

separate sound file. Dynamic formant data were extracted by identifying between

five and six formants within a range of 0 to 5 kHz, determined on a token-by-token

basis according to visual inspection of the spectrogram. Obvious measurement errors

were hand-corrected. From the Manchester, Newcastle and York data, 16 tokens per

speaker were identified following the same methods as the NZ test data (i.e. z-scores

and phonological context). The raw F1 and F2 trajectories were then fitted with cubic

polynomial curves (§3.3.1.4) and the coefficients used for computing LRs.

4.2.4 Variability in the data

The raw data were inspected to assess the degree of regional variability across test

sets. /u:/ was not expected to display a marked degree of variation across the four

varieties. This was confirmed by the overlap in post-/j/ mid-point measurements within

the F1∼F2 plane (Figure 4.1), although some of the oldest York recordings (from

Tagliamonte’s data) produced notably back realisations. Mean values for F1 and F2

at each +10% step for all tokens from each set were also calculated. The range of

between-set variation was low, with mean F1 spread over 100 Hz and mean F2 spread

maximally over 300 Hz. Visual comparison of the raw formant trajectories also suggests

considerable overlap between tokens from all speakers in the acoustic space both in

terms of absolute frequency and dynamic implementation17.

Given the degree of overlap in the F1∼F2 plane (Figure 4.1) and the patterns of variation

predicted by the sociophonetic literature, there is no particular evidence to suggest

that these data come from four distinct regional speech communities. Of course, in a

17However, using the data in Figure 4.1, pairwise t-tests did reveal significant differences F1 differences

between the NZ set and the Manchester and Newcastle sets (p =< 0.01) and F2 differences between the

York and Manchester sets (p =< 0.01)
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4. Regional Background: /u:/

FVC case an analyst would ideally not want to evaluate BrEng suspect and offender

samples relative to population data from NZE. However, the choice of vowel here

is illustrative of possible analytic procedures where the regional background of the

offender is unknown and where potential databases for LR evaluations are limited.

Further, no set of reference data is perfect and will necessarily display some degree of

mismatch with logically relevant characteristics of the offender, of which the analyst

may or may not be aware. It is, therefore, essential to assess the effect of such mismatch

on the resulting strength of evidence.
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Figure 4.1: F1∼F2 plots of individual tokens of /u:/ (post-/j/ and in open syllables) at

the +50% step (mid-point) of formant trajectories for each of the test speakers

4.2.5 Experiments

In Experiment (1), MVKD (§3.2.2.1) scores (8 SS/ 56 DS) were computed using F1 and

F2 combined and F2-only input for each of the test sets independently. Typicality was

assessed relative to the NZ reference set consisting of 102 speakers. As is common in

LR-based research, the F2-only condition was intended to recreate forensic conditions

in which F1 may be compromised due to bandwidth restrictions imposed by telephone

transmission (Künzel 2001; Byrne and Foulkes 2004). A limitation of Experiment (1)
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is the use of multiple test sets and a single reference set, meaning that the estimation of

similarity differs across test sets. This compromises the extent to which the differences

between the sets of scores can be attributed exclusively to typicality based on regional

variation.

This limitation is, however, resolved in Experiment (2) through the use of a single set

of test data where the estimation of similarity is consistent across systems. The four

test sets from Experiment (1) were initially combined to create a single set of Mixed

English system data, and the number of tokens per speaker reduced to ten. The 32

youngest speakers from the 102 NZE speakers used as reference data in Experiment

(1) were identified to act as a set of regionally Matched system data. The youngest

speakers were used to ensure that differences in LR output were not due to age, given the

expected processes of change over time for /u:/ in these varieties. The Matched dataset

also consisted of ten tokens per speaker. From the remaining 70 NZE speakers, 40 were

identified at random to function as test data. No controls over age were implemented

over this dataset as it remained constant across the Matched and Mixed systems. F1

and F2 were used as input.

Initially, cross-validated (§3.2.2.3) MVKD scores were computed for the 32 speakers

in each of the Matched and Mixed sets (32 SS/ 992 DS). Using these scores, logistic

regression calibration (§3.2.4.1) coefficients were calculated for each system (Matched

and Mixed). Parallel sets of SS (40) and DS (1560) scores were then generated for the

40 NZ test speakers using the Matched and Mixed sets as reference data. The use of

different numbers of speakers at different stages is not considered problematic since the

size of each set was constant across systems. The test scores were converted to calibrated

LLRs using the coefficients derived from the Matched and Mixed development scores.

The results of both experiments are evaluated in terms of the distributions of LRs

(Experiment (1): scores and Experiment (2): LLRs) and system validity (EER and Cllr).
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4.3 Results

4.3.1 Experiment (1): Multiple test sets

F1 and F2

Figure 4.2 displays the Tippet plot of scores for the Matched and three Mismatched test

sets computed using NZ reference data. There were marked differences in the magni-

tudes of scores across test sets. The median SS scores were one order of magnitude

greater for the three BrEng sets, compared to the NZ set. This is equivalent to the

difference between limited and moderate support for the prosecution. The Manchester

and Newcastle sets also generated 0% misses, compared with 12.5% for the Matched

set. Further, for Manchester and Newcastle, the ranges of SS scores were narrower than

for the NZ set with almost all pairs achieving values between +1 and +2. The largest

range of SS scores, however, was found for York, minimally achieving values below +1

(limited support) and maximally values of over +3 (moderately strong support). This

reflects the high within-group variability between the York speakers due to the use of

two York corpora, separated by ten years (§3.1.3).

More complicated patterns of variation were displayed across DS results. The highest

median DS score was achieved using the York test data (-6.4; off the scale on Figure 4.2).

Given the high between-speaker variation in the York data, this finding is unsurprising

and not directly attributed to regional variation (i.e. greater dissimilarity between DS

pairs generates stronger negative scores). A concerning outcome of the DS results

was the high proportion of contrary-to-fact scores when using the Manchester and

Newcastle sets. For the Manchester set 57% of DS pairs generated positive scores,

while the proportion of false hits for the Newcastle set was 71%. Therefore, the median

strength of evidence for Manchester and Newcastle DS pairs was positive, equivalent to

limited support for the prosecution, compared with the NZ median which was equivalent

to limited support for the defence.
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Figure 4.2: Tippett plots of SS and DS scores based on F1 and F2 trajectories from /u:/

for the NZ (top left) (Matched), Manchester (top right), Newcastle (bottom left) and

York (bottom right) (Mismatched) test sets

The effects of regional mismatch were also reflected in system validity (Figure 4.3).

Consistent with the relatively good separation of SS and DS pairs in Figure 4.2, the

best EER and Cllr values were achieved using the York data. Again, this is attributed

to the high degree of between-speaker variation in this set. Validity was somewhat

worse for the NZ test set (EER > 20%, Cllr > 0.7) reflecting a large proportion of false

hits and the relatively high magnitude of one contrary-to-fact SS score. EER and Cllr

values were considerably greater for the Manchester and Newcastle sets, reflecting the

high proportion (considerably worse than chance) of DS pairs offering support for the

prosecution.
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Figure 4.3: Cllr plotted against EER (%) for each of the test sets based on F1 and F2

from /u:/

F2-only

Figure 4.4 displays the Tippett plot of SS and DS scores based on F2-only input. Across

all sets, SS scores were weaker with the removal of F1. As with F1 and F2 input, the

lowest median SS score was achieved with the Matched data. However, for the NZ

test data, two SS pairs generated contrary-to-fact support for the defence, equivalent to

limited strength of evidence, compared with one pair using F1 and F2. The effect of

the mismatch between test and reference data was considerably reduced with F2-only

information. The median SS scores for the NZ, Manchester and Newcastle sets were

all equivalent to limited support for the prosecution. As with F1 and F2, the median

score for the York test set was one order of magnitude greater than for the Matched set.

The York set also produced the widest range of scores.

The removal of F1 also reduced the overall magnitude of DS scores across all sets.

As with the SS scores, this also reduced the differences between the Matched and

Mismatched sets in terms of LR output. Although differing in terms of verbal equiv-

alent, the numerical differences between DS medians based on F2-only for the NZ

107



4. Regional Background: /u:/

(-0.04), Manchester (+0.07) and Newcastle (+0.16) sets were extremely small, with all

values located close to zero. The removal of F1 also increased the proportion of false

hits in the Matched condition (44%), and reduced the proportion of false hits in the

Manchester (55%) and Newcastle (64%) sets. The median DS score for the York set

was again considerably higher than for the Matched and other Mismatched sets, while

the proportion of contrary-to-fact scores was lower.

Figure 4.4: Tippett plots of SS and DS scores based on F2-only trajectories from /u:/

for the NZ (top left) (Matched), Manchester (top right), Newcastle (bottom left) and

York (bottom right) (Mismatched) test sets

Predictably the best validity, in terms of both EER and Cllr, was again achieved using

the York data (Figure 4.5). The Matched set produced relatively high EER (25%) and

Cllr (0.88) values. This reflects a high proportion of high magnitude contrary-to-fact

SS scores and a very high proportion of low magnitude contrary-to-fact DS scores.

Validity for the Manchester data was marginally better than the Matched set in terms

of Cllr and marginally worse in terms of EER, reflecting a higher proportion of lower

magnitude contrary-to-fact scores. The worst validity was produced by the Newcastle

test set. This shows that mismatch between test and reference data can have different

effects on validity relative to the performance based on an appropriate reference set.
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Figure 4.5: Cllr plotted against EER (%) for each of the test sets based on F2-only from

/u:/

4.3.2 Experiment (2): Multiple systems

Figure 4.6 displays the Tippett plot of calibrated LLRs based on F1 and F2 input using

Matched and Mixed data at both feature-to-score and score-to-LR stages. For both

systems the magnitudes of the LLRs generated were very low, with the majority located

between -1 and +1. There were also high proportions of false hits and misses. There are

two likely reasons for this. Firstly, the test set consisted of speakers of all ages, while

the reference data consisted of only younger speakers. Therefore, it is conceivable that

values from certain DS pairs lie so far onto the tails of the reference distribution that

they generate positive scores. Secondly, data for each of the test speakers were not as

tightly controlled as in Experiment (1), in terms of the number of tokens in different

phonological environments. This may account for very wide ranges of within- relative

to between-speaker variation.
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Figure 4.6: Tippett plot of SS and DS LLRs based on F1 and F2 from /u:/ using Matched

(red) and Mixed (green) data in both the feature-to-score and score-to-LR stages

Figure 4.6 does, however, show differences in the distributions of LLRs across systems.

The median SS LLR was marginally higher using the Mixed system (+0.58) than the

Matched system (+0.23), although in verbal terms both are equivalent to limited support

for the prosecution. More marked differences were displayed in the overall range of SS

LLRs, particularly for pairs which generated contrary-to-fact support. LLRs from the

Mixed system extended maximally from -2.33 (moderately strong support) to +0.99,

compared with a range of -0.62 (moderate support) to +1.18 using the Matched system.

Similarly, for DS LLRs, the median was marginally higher in the Mixed system (+0.13)

than in the Matched system (+0.04), although both were very close to zero. As with SS

LLRs, the overall range of DS LLRs was considerably greater using the Mixed system.

As shown in Figure 4.6, the proportions of false hits (c. 57%) and misses (c. 20%)

made by both systems were almost identical. This is reflected in almost identical EERs

in Table 4.3. Table 4.3 also displays Cllr values for the two systems. Consistent with

the differences in the ranges of LLRs (particularly into contrary-to-fact support) in

Figure 4.6, Cllr was considerably better using the Matched data than when using the
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Mixed data. This is due to the higher magnitude contrary-to-fact LLRs (in particular

for SS comparisons) produced by the Mixed system. However, EER and Cllr values for

both systems reflect bad system performance, due to both the high proportion and high

magnitude of LLRs offering contrary-to-fact support.

Table 4.3: EER and Cllr using Matched and Mixed data in both the feature-to-score and

score-to-LR stages

Matched Mixed

EER 35.51% 35.22%

Cllr 0.92 1.19

4.4 Discussion

Experiment (1) reveals a number of systematic effects of regional mismatch between

test and reference data. Given the markedly greater between-speaker variation in the

York dataset (due in part to the use of two corpora separated by ten years), patterns for

the Mismatched data are only considered in terms of the Manchester and Newcastle

data. Firstly, when using F1 and F2, SS scores for the Mismatched sets were generally

stronger by one order of magnitude compared with the Matched scores. Secondly,

the strength of DS evidence was weaker in the Mismatched conditions compared

with the DS scores for the Matched set. Thirdly, a considerably higher proportion

of DS scores achieved contrary-to-fact support (i.e. false hits) in the Mismatched

conditions. Therefore, the validity of the systems based on Manchester and Newcastle

Mismatched data was substantially worse than that for the Matched NZ condition,

especially when using F1 and F2. Importantly, the removal of F1 reduced the effect of

regional mismatch between test and reference data, making the distributions of scores

in the Manchester and Newcastle sets more like those from the NZ set. This suggests

that for this particular variable, F1 contains sufficient region-specific information to

substantially affect LR output. However, while LR output was more similar across

conditions using F2-only, the removal of F1 also generally produced lower magnitude

scores (i.e. weaker evidence) across all sets.
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An explanation for the differences in LR output between the Matched and Mismatched

test sets relates to the location of the suspect and offender data relative to the reference

distribution. For SS pairs in the Mismatched conditions, the offender data are likely to

be situated on the tails of the distribution of the reference data, meaning that p(E|Hd)

is lower than it would be in the Matched data where such values are much more

typical. This has the effect of generating higher SS scores in the Mismatched conditions

(assuming the similarity between suspects and offender is broadly the same across

sets). A second implication of this is that p(E|Hd) will be lower for DS pairs, leading

to weaker DS scores than in the Matched condition. In some cases, p(E|Hd) may be

so low that the score offers contrary-to-fact support for the prosecution, which would

account for the higher EER and Cllr values generated for the Manchester and Newcastle

sets. Further discussion of these issues based on a comparison of the results across

experiments is provided at §11.1.

The calibrated results in Experiment (2) also revealed differences between the Matched

and Mixed systems in terms of LLRs. The median SS and DS LLRs across the two

systems were within the same order of magnitude, although in numerical terms SS LLRs

were generally stronger using the Mixed system. More importantly the magnitudes

of contrary-to-fact LLRs were considerably greater using the Mixed system. This

accounts for the relatively large difference (0.28) in Cllr between the Mixed and the

better performing Matched system. However, the distributions of LLRs and validity

metrics, even using the Matched system, suggest that /u:/ is not a very good speaker

discriminatory variable for FVC. This is likely due to the high level of potential within-

speaker variation (particularly in F2) as a function of phonological context. Nonetheless,

the results of both experiments highlight that LR output may be substantially affected

by different definitions of the relevant population according to regional background

even where the variable is not expected to display marked patterns of regional or social

variation.
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4.5 Chapter summary

Experiment (1): Multiple test sets

F1 and F2

• Mismatched SS scores stronger than Matched SS scores (by the equivalent of

one order of magnitude).

• Manchester and Newcastle Mismatched DS scores weaker than Matched DS

scores.

• Higher EER and Cllr values for Manchester and Newcastle Mismatched sets

compared with Matched set.

F2-only

• Weaker LRs and worse system validity compared with F1 and F2 input across all

sets.

• Manchester and Newcastle much closer to NZ in terms of the magnitude of scores

and system validity.

Experiment (2): Multiple systems

• SS LLRs marginally stronger using Mixed system at both feature-to-score and

score-to-LR stages.

• Magnitude of contrary-to-fact LLRs much higher for the Mixed system.

• Cllr worse using the Mixed system (1.19) compared with the Matched system

(0.92).
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Chapter 5

Regional Background: /aI/

The experiments in this chapter also explore the effects on LR output of different defini-

tions of the relevant population with regard to regional background. The experiment in

§4.3.2 was replicated using the formant trajectories of F1, F2 and F3 of /aI/ as input.

The results of further experiments are also presented which consider how regional

(group) and speaker-specific (individual) information are encoded in the individual

formants of /aI/.

5.1 Introduction

The results of Chapter 4 highlighted that for a variable which is not expected to display

marked patterns of sociolinguistic variation, LR output may be substantially affected by

different definitions of the relevant population according to regional background. The

experiments in this chapter explore the same issues as in Chapter 4 using the formant

trajectories of /aI/ (PRICE; Wells 1982) as input, but improve on the methods in a

number of ways. First, all of the data were extracted from varieties of BrEng. The

results therefore have more direct implications for the collection of data for LR-based

FVC in a BrEng context.

Second, the formant dynamics of /aI/ have been the subject of considerable study in

FVC (McDougall 2004, 2006; Rose et al. 2006; Morrison 2008). This is because the

frequency of /aI/ words is very high, while lexical variety of /aI/ words is relatively low
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(Cruttenden 2001). Therefore, /aI/ tokens in comparable phonological environments

are likely to be available in most FVC cases (e.g. hi and bye). /aI/ also has “reasonably

easily measurably formants” (Rose et al. 2006: 330) which, for most varieties of

English, display considerable movement within the acoustic space (in particular on the

F1∼F2 plane) between onset and offset. Therefore, /aI/ offers considerable scope for

individual differences in dynamic implementation.

Third, as well as potentially offering useful speaker discriminatory power, /aI/ is also

expected to display more marked patterns of regional variation compared with /u:/ in

Chapter 4. Therefore, relative to the results for /u:/ it is predicted that LR differences

between Matched and Mismatched sets using F1 and F2 of /aI/ will be considerably

greater. Comparison of the results of these experiments with those in Chapter 4 will

provide insight into the potential extent to which LR output is affected by the definition

of the relevant population for different linguistic-phonetic variables.

Finally, the acoustic information analysed in this chapter is expanded to include F3. As

outlined in §3.3.1.1, there is considerable theoretical and empirical evidence to suggest

that F3 (and higher formants more generally) offers greater speaker-specific information

since it is not responsible for phonetic contrast (i.e. speech information) in the same

way as F1 and F2. Further, unlike F1 and F2, F3 is not expected to display marked

patterns of regional and social variation (although there are potentially confounding

factors which may introduce systematic differences in F3 across sociolinguistic groups;

e.g. VQ and vocal setting). Given that the differences in LR output from regionally

Matched and Mixed systems were minimised with the removal of F1 in Chapter 4, it

may be that LRs based on F3-only are relatively robust to differences in the definition

of the relevant population. This would offer the potential for using general BrEng data

(or even inappropriate data from another regional variety) in LR-testing using F3.

In this chapter three experiments are presented. Experiment (1) replicates §4.3.2

using all three formants (F1∼F3), F2 and F3 and F3-only of /aI/ as input. Results are

compared across different input to assess the sensitivity of LR output (LLRs and system

validity) to (a) Matched and (b) Mixed definitions of the relevant population with

regard to regional background. Two further experiments are also presented which test

claims about the regional/social (group) and speaker-specific (individual) information
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encoded in the individual formants (in particular F3) of /aI/. The degree of regional

information encoded in individual formants is explored in Experiment (2) (§5.3.2)

using discriminant analysis (DA; see §3.3.1.1). Experiment (3) investigates the speaker

discriminatory power of F3 relative to F1, F2 and a combination of all three formants in

a homogeneous population of speakers. The results of Experiments (2) and (3) are then

compared relative to the group-individual dichotomy (Garvin and Ladefoged 1963)

which predicts that variables that encode speaker-specific information will be less

susceptible to regional and social variation.

5.2 Method

5.2.1 Data

A total of 121 speakers from four varieties of BrEng were used. The data included the 97

DyViS Task 1 speakers from §3.3.1.4, and three datasets each containing eight speakers

from Manchester (§3.1.3), Derby and Newcastle (§3.1.4). Eight DyViS speakers were

initially extracted at random, to create a DyViS subset. These speakers were later

combined with the Manchester, Derby and Newcastle sets to form a balanced, Mixed

BrEng dataset. The speakers used for testing are considered relatively well matched

in terms of age, sex and style, although the social class of the speakers in each set is

potentially problematic. All of the DyViS speakers were students at the University of

Cambridge and can broadly be defined as middle class. The Newcastle data consists

exclusively of working class speakers, who display extensive use of localised variants

(e.g. glottal reinforcement of medial plosives and centering diphthongs for /eI/ and

/@U/: see Foulkes and Docherty 1999; Hughes et al. 2005). According to Haddican et

al. 2013, the Manchester speakers can be classified as upper working or lower middle

class. The Derby data are divided equally between working and middle class speakers,

although Foulkes (p.c.) claims that there were not large linguistic differences between

the class groups. Therefore, acoustic differences between the sets may also reflect class

variation rather than purely regional variation.
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5.2.2 Variation and change in /aI/

BrEng /aI/ is considered to be much more regionally variable than /u:/. Indeed, for many

regional varieties of BrEng, /aI/ can be considered a linguistic stereotype (Labov 1971)

owing to the degree to which speakers are aware of regional patterns. The extent of

regional variation in BrEng /aI/ is highlighted by the isoglosses in Figure 5.1.

Figure 5.1: Dialect map of the British Isles with isoglosses marking regional variants

of /aI/ (from Upton and Widdowson 2006: 32)

There are also specific predictions about patterns of variation across the four regional

sets. Cruttenden describes modern RP (SSBE) /aI/ as having an open and centralised

onset [ä] followed by an extensive glide towards [I]. The realisation of SSBE /aI/ is

also claimed to involve some degree of change in lip configuration from “a neutral to

a loosely spread position” (Cruttenden 2001: 131-132) which may introduce further

variation in F2 and F3 across the vowel (Stevens 2000). Considerably more variation is

expected for Derby. Foulkes and Docherty (1999) describe three variants of /aI/→ [aI

∼ A ∼ 6I] in the speech of young males in Derby which are stratified by class. Working

class males generally display a retracted onset position which may involve some lip
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rounding. Foulkes and Docherty (1999: 50) report that for young middle class males

around 60% of tokens in their data (the same as used here) were categorised auditorily

as [aI].

Wells (1982) suggests that, consistent with patterns across northern England, the onset

element in Manchester is typically a front open vowel [a]. Further, Wells (1982) claims

that “diphthongs with a weakened second element . . . occur widely as optional variants”

(p. 150) in Manchester, with the most typical realisation of /aI/ being [aE] (p. 358).

Hughes et al. (2005) state that /aI/ is predominantly realised as [EI] in Newcastle.

However, Tyneside also has a stereotypical [i:] variant occurring in lexically restricted,

high frequency words such as alright and tonight. According to Beal (2004), these

variants are primarily associated with working class speakers. Finally, a process of

allophonic variation in /aI/ has been reported for Newcastle English which is similar to

the Scottish Vowel Length Rule (SVLR), but which affects vowel quality rather than

length (Milroy 1995; Scobbie et al. 1999; Watt and Milroy 1999). Before voiceless

consonants, /aI/ may be realised as [EI], while [aI] occurs before voiced consonants.

However, Foulkes (p.c.) claims that there was little to no evidence of SVLR variation

in the Newcastle data analysed in this chapter.

5.2.3 Dynamic formant extraction

The process of extracting formant data from the 97 DyViS speakers is described in

§3.3.1.4. The Derby set consisted of existing dynamic data for the first three formants

of /aI/ (18-43 tokens per speaker) from Rhodes (2009; extracted using the same scripts

as in this thesis). Tokens with adjacent /r/ and /w/ were removed from this dataset

(West 1999). Due to the high frequency of like in the recordings some tokens with

onset-/l/ were included in the analysis, however coda-/l/ tokens were not included. The

data were visually inspected and tokens with obvious measurement errors removed.

Within-speaker z-scores were calculated at each +10% step and tokens with outlying

values greater than±3.29 SDs from the mean were removed. The ten tokens per speaker

with the lowest combined z-score across the three formant trajectories were used as

input data.
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/aI/ tokens were extracted from the resampled (11.025 kHz) Manchester (10-16 tokens

per speaker) audio files, while tokens from the Newcastle (15-19 tokens per speaker)

recordings were extracted to a new audio file to preserve sampling rate. Beyond the

removal of tokens with adjacent /l r w/, the availability of only a small of numbers

of tokens per speaker meant that there was no control over potential SVLR contexts.

Tokens of /aI/ realised as [i:] were not included in the analysis. Given the potential

sensitivity of /aI/ to phonological environment, it is expected that the lack of narrow

controls will introduce extraneous within-speaker variation, which may generate weaker

LRs and higher proportions of errors compared with more controlled data. Tokens were

manually segmented following the criteria in §3.3.1.3. Dynamic formant data were

then extracted with the script set to identify maximally between five and six formants

(determined by-token) between 0 and 5 kHz. Ten tokens per speaker for the Manchester

and Newcastle sets were identified based on the sum of their within-speaker z-scores.

All of the data from all sets were fitted with cubic polynomial curves and the coefficients

used as input for LR computation.

5.2.4 Variability in the data

Figure 5.2 displays mean /aI/ trajectories within the F1∼F2 plane for the four regional

sets (eight speakers), with mean mid-point values for reference vowels (FLEECE

/i:/, GOOSE /u:/, NORTH /O:/ and TRAP /a/) based on measurements from the first

20 DyViS speakers (Simpson 2008; Atkinson 2009). The raw data revealed marked

between-variety differences as predicted in §5.2.2. The DyViS data displayed con-

siderable F1 and F2 movement within the acoustic plane, with the onset situated at a

position more open and retracted from schwa [A ∼ ä]. The offset was located towards a

close-front position, although less peripheral than /i/.
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Figure 5.2: F1∼F2 plot of mean /aI/ trajectories for DyViS (red), Derby (orange),

Manchester (blue) and Newcastle (green) (eight speakers per set, ten tokens per speaker)

with mean mid-point values for FLEECE /i:/, GOOSE /u:/, NORTH /O:/ and TRAP /a/

(based on the first 20 DyViS speakers)

The mean trajectory for Derby revealed less F1 and F2 movement between onset and

offset compared with DyViS, with mean F1 values across the trajectory consistently

greater than 500 Hz. The mean trajectory for Manchester was consistent with Wells’

(1982) description of an open [a]-like onset and an open-mid or centralised offset. The

acoustic consequence of this is less F1 movement between the two targets compared

with the DyViS data. Finally, the Newcastle data conformed to expectations in §5.2.2.

The Newcastle data displayed the narrowest diphthong trajectory. The onset was

phonetically much closer (i.e. higher F1) than for the other regional sets with a mean

F1 of around 550 Hz. The offset was front (i.e. high F2), but with a relatively high

F1 (F1 movement < 100 Hz between onset and offset), compared with the close-front

offset of the DyViS set.

There was also a high degree of between-speaker variation within each group. Figure

5.3 displays mean F1∼F3 trajectories for /aI/ for each speaker grouped by regional

set. The greatest homogeneity between speakers in mean trajectories was found for

120



5. Regional Background: /aI/

Derby DyViS

Manchester Newcastle

1000

2000

1000

2000

25 50 75 25 50 75
+10% Step

Fr
eq

ue
nc

y 
(H

z)

Figure 5.3: Mean F1∼F3 trajectories for each speaker by regional set (based on ten

tokens per speaker)

DyViS, with values at any +10% step maximally spread over a range of around 300 Hz.

Within the Derby, Manchester and Newcastle sets, greater between-speaker differences

were found. The magnitude of the variation differed according to formant and regional

group, although the widest range of between-speaker within-group variation was found

in F3. However, even for F1 and F2, individual speakers in the Derby, Manchester and

Newcastle sets displayed considerable divergence from the group pattern.

5.2.5 Experiments

For Experiment (1), 40 speakers were initially extracted at random from the remaining

89 DyViS speakers to function as test data. From the remaining 49 speakers, a further 32

were identified at random to function as Matched system data (development/reference

speakers). The eight DyViS speakers extracted initially (§5.2.1) were combined with the

eight speakers from each of the northern BrEng varieties to create a set of Mixed system
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data containing 32 speakers. The same procedures as in §4.3.2 were then followed to

evaluate the two systems at both the feature-to-score and score-to-LR stages. Cross-

validated (§3.2.2.3) MVKD (§3.2.2.1) scores (32 SS/ 992 DS) were initially computed

for the Mixed and Matched sets. Based on these scores, logistic regression calibration

coefficients (§3.2.4.1) were calculated. MVKD scores were then computed for the

test data (40 SS/ 1560 DS) using the Mixed and Matched sets as reference data, and

calibrated using the coefficients generated from the appropriate development data. The

experiment was run using F1∼F3, F2 and F3, and F3-only input.

Experiment (2) examines the extent to which regional information is encoded in the

individual formants of /aI/, with a focus on F3. Linear DA (§3.3.1.1) was performed

using the four sets of eights speakers from DyViS, Manchester, Derby and Newcastle.

DA was used to assign cubic polynomial coefficients of individual formants from

individual tokens to one of the four regional groups. The procedure uses leave-one-out

cross-validation whereby the questioned token is not used to generate the four regional

models against which it is compared. DA requires the number of input elements (i.e.

features of a variable) to be less than the number of tokens per group (Tabachnick and

Fiddell 2007: 23-24). Given that tokens were pooled by regional group (80 tokens

per set; ten tokens per speaker), it was possible to include all cubic coefficients from

F1∼F3 (4 features per formant) as input.

Finally, Experiment (3) considers the LR-based speaker discriminatory performance

of individual formant trajectories of /aI/ using only the DyViS data. A homogeneous

set was used to highlight speaker-specific rather than regional patterns across formants.

The same 40 DyViS test speakers as in Experiment (1) were divided equally into

development and test sets (20 per set). The remaining 57 speakers were used as

reference data. Test scores were computed using MVKD and calibrated based on

coefficients from scores for the development set.
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5.3 Results

5.3.1 Experiment (1): Multiple systems

The distributions of LLRs are firstly considered for each combination of formants

separately. The comparative performance of the Matched and Mixed systems with

regard to validity (EER and Cllr) for the different input data is then considered.

F1, F2 and F3

Figure 5.4 displays the Tippett plot of LLRs from the Matched and Mixed systems

using F1∼F3 input. There was considerable similarity in the distributions of SS LLRs

across systems. The median SS LLR was +1.68 in the Matched condition and +1.49 in

the Mixed condition, in both cases equivalent to moderate support for the prosecution.

The two systems were also comparable in terms of the overall ranges of SS LLRs, with

values extending maximally to greater than +3. However, the Matched condition (15%)

recorded a higher proportion of misses than the Mixed condition (5%). Further, the

magnitude of the errors using the Matched system was marginally higher with values

approaching -1, although for both systems contrary-to-fact SS LLRs did not extend

beyond limited support for the defence.

Marked differences across the systems were found in terms of the DS LLRs. The

median DS LLR for the Matched system was -5.38 (very strong support), which was

four orders of magnitude greater than the median for the Mixed system (-1.44; moderate

support). There were also substantial differences in the maximum strength of support

for the defence with values for the Matched system extending beyond -44 compared

with -16 for the Mixed system. The Mixed DS LLRs also performed considerably worse

in terms of categorical validity, with 20.7% of comparisons achieving contrary-to-fact

support. For the Matched system, the false hit rate was 6.3%. Finally, the magnitude

of the errors using the Mixed system was marginally higher with values extending to

+2.88.
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Figure 5.4: Tippett plot of SS and DS LLRs based on F1∼F3 trajectories from /aI/

using Matched (red) and Mixed (green) system data

F2 and F3

The omission of F1 reduced some of the differences between the two systems (Figure

5.5). As with F1∼F3, the distributions of SS LLRs from the Matched and Mixed

systems based on F2 and F3 overlapped considerably. The median SS LLR in the

Matched condition was +1.38, compared with +1.36 in the Mixed condition. Similarly

the highest magnitude LLRs across both systems offered moderately strong support

for the prosecution. Comparison with Figure 5.4 also shows that the miss rates were

more similar with the omission of F1, with 12.5% of pairs in the Matched condition

and 10% of pairs in the Mixed condition offering contrary-to-fact support. For both

systems the magnitudes of the contrary-to-fact LLRs were greater without F1, although

across systems their magnitudes were broadly similar.

Similar patterns in the distributions of DS LLRs are displayed in Figure 5.5 as those in

Figure 5.4. DS LLRs were generally weaker when using the Mixed system, such that

the median DS LLR was -1.28 (moderate support) compared with -4.24 (very strong
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support) using the Matched system. Further, the strongest LLRs were found using the

Matched system with values extending to -40 compared with -17 for the Mixed system.

The proportion of false hits was again highest using the Mixed system (24.5%). Further,

the magnitude of contrary-to-fact DS LLRs was greatest using the Mixed data with

values extending to almost +4, compared with +2.33 for the Matched system.

Figure 5.5: Tippett plot of SS and DS LLRs based on F2 and F3 trajectories from /aI/

using Matched (red) and Mixed (green) system data

F3-only

Figure 5.6 displays the Tippett plot based on F3-only input. The removal of F2 reduced

the strength of the LLRs, offering further evidence to suggest that F1 and F2 are carriers

of speaker-specific information for this vowel in these varieties. The removal of F2 also

further minimised the effects of using Mixed system data compared with the Matched

system. The median SS LLRs based on F3-only were very similar across systems,

although in verbal terms they were equivalent to one order of magnitude weaker than

with the inclusion of F1 and F2 (difference between limited and moderate support). The
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overall ranges of SS LLRs were also broadly comparable, although the maximum LLR

for the Mixed system (+3.01) was greater than that for the Matched system (+2.05).

Contrary-to-fact SS LLRs were of a similar magnitude with no SS pairs achieving

LLRs of less than -1. Unlike with the inclusion of F1 and F2, the miss rate was lower

for the Matched system (10%) than for the Mixed (15%) system.

Figure 5.6: Tippett plot of SS and DS LLRs based on F3-only trajectories from /aI/

using Matched (red) and Mixed (green) system data

The differences between the Matched and Mixed systems were also less marked in

terms of DS LLRs when using F3-only. DS LLRs for the Mixed system were generally

weaker by only one order of magnitude compared with the Matched system (difference

between moderately strong and moderate support). In terms of the maximal support for

the defence, however, the large differences between the systems found using F1 and F2

were, to some extent, preserved using F3-only. The proportion of false hits was again

lower using the Matched system (17.2%) compared with the Mixed system (19.2%),

although performance was more similar than with the inclusion of F1 and/or F2.
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Overall performance

Overall system performance was assessed using EER (Figure 5.7) and Cllr (Figure

5.8). Across all three sets of input data, EER was worse for Mixed system than for the

Matched system. Differences between the systems based on F1∼F3 were relatively

small (ca. 1%), reflecting the fact that the Matched system produced more misses

and the Mixed system produced more false hits. The biggest EER difference between

systems, however, was found when using F3-only input. This is partly due to the

improvement in EER for the Matched system with the omission of F2 information.

Figure 5.7: EER (%) based on F1∼F3, F2 and F3, and F3-only input from /aI/ using

Matched (red) and Mixed (green) system data

The results based on Cllr were more systematic. Across both the Matched and Mixed

systems, Cllr increased as the amount of acoustic input data was reduced. As with EER,

Cllr was also consistently higher using the Mixed system than the Matched system.

Interestingly, the smallest Cllr difference between the systems was found using all

three formants as input. The difference between the systems increased as F1 was

removed, and increased again with the removal of F2. This finding is contrary to earlier
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predictions about the potential lack of regional stratification in F3, since the effect of

regional differences on Cllr was greatest when using F3-only input.

Figure 5.8: Log LR Cost (Cllr) based on F1∼F3, F2 and F3, and F3-only input from /aI/

using Matched (red) and Mixed (green) system data

5.3.2 Experiment (2): Regional patterns

In Experiment (1), the removal of F1 and F2 reduced the sensitivity of LR output

to regional differences in the definition of the relevant population. Specifically, the

distribution of SS LLRs produced by the Matched and Mixed systems converged as

F1 and F2 were removed, while DS LLRs were found to become most similar across

system using F3-only. Despite this, the largest differences between the systems in

terms of validity were found using F3-only input. This finding suggest that the regional

differences between the Matched and Mixed sets are captured, at least to some extent,

using F3 and that such differences may substantially affect LR output. This section

explores the issue of the regional stratification of the individual formants of /aI/ using

the same SSBE, Derby, Manchester and Newcastle data.
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Table 5.1 displays cross-validated classification rates based on DA for each formant.

The classification rate is the percentage of the 320 tokens (10 tokens per speaker

× 8 speakers × 4 sets) assigned correctly to the regional group of the speaker that

produced the token. Since there are four possible groups, chance is 25%. The highest

classification rate was achieved using F2 (64.7%), followed closely by F1 (63.8%). This

means, as expected, that both F1 and F2 encode a high degree of region discriminatory

information. The classification rate for F3 (40.6%) was considerably lower than for F1

and F2, but was better than chance. Therefore, as suggested by the results in Experiment

(1), there is evidence that F3 contains information which is able to discriminate between

regions. DA was re-run using individual coefficients to assess which elements of the

formant trajectories carry the most region-specific information.

Table 5.1: Cross-validated classification rates of tokens correctly assigned to regional

set based on DA using F1, F2 and F3

Formant Classification Rate

F1 63.8%

F2 64.7%

F3 40.6%

Table 5.2 displays cross-validated classification rates for individual cubic coefficients

from each formant of /aI/. In all cases, no one coefficient outperformed the combination

of coefficients. This suggests that all of the coefficients provided some region-specific

information. Interestingly, for all three formants the same general ordering of the

coefficients was found. The cubic (a4x3) and quadratic (a3x2) terms, relating to the

more phonetically fine-grained shape of the trajectory (see §3.3.1.4), generated the

lowest classification rates. For all three formants the slope (a2x) and intercept (a1)

terms generated the highest classification rates. Therefore, predictably, for all three

formants, information relating to absolute frequency and the magnitude of onset to

offset movement were the best predictors of regional background.
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Table 5.2: Cross-validated classification rates of tokens correctly assigned to regional

set based on DA using individual cubic coefficients from F1, F2 and F3

Formant Coefficient Classification Rate

F1 a4x
3 29.1%

a3x
2 32.8%

a2x 38.4%

a1 38.4%

F2 a4x
3 30.9%

a3x
2 29.7%

a2x 40.6%

a1 41.9%

F3 a4x
3 25.6%

a3x
2 25.4%

a2x 27.5%

a1 34.7%

5.3.3 Experiment (3): Speaker-specific patterns

Figure 5.9 displays LLRs based on input from the first three formants of /aI/ analysed

individually and in combination using DyViS speakers only (20 development/ 20 test/

57 reference). The SS median LLRs based on F1-only and F2-only were within the

same order of magnitude (limited support), although numerically strength of evidence

was generally better using F2-only. The ranges of SS LLRs for F1-only and F2-only

were also broadly equivalent, with values spread from marginally less than zero to

around +1. Although the median SS LLR for F3-only was also located within the zero

to +1 range, the absolute numerical value was much closer to +1. Further, the maximum

strength of SS evidence for F3-only was +2.72 (moderately strong support) indicating

that F3 in some cases outperformed F1 and F2 by up to two orders of magnitude. The

strength of SS evidence was, however, greatest when using a combination of all three

formants, with LLRs generally one order of magnitude higher compared with any

formant individually (moderate support). The proportion of misses also decreased from

maximally 15% using F1-only to 5% using all three formants.

130



5. Regional Background: /aI/

Figure 5.9: Tippett plot of SS and DS LLRs using F1-only (blue), F2-only (red), F3-only

(green) and a combination of the three formants (orange) of /aI/ from DyViS

Similar results are revealed in the distributions of DS LLRs. Numerically, the weakest

DS LLRs were achieved using F1-only, followed by F2-only. The difference in median

values was equivalent to one order of magnitude from limited (F1-only) to moderate

(F2-only) support for the defence. However, unlike the SS comparisons, F3-only input

generated generally stronger LLRs than the combination of the three formants. The

median DS LLR based on F3-only was -4.11 (very strong support), compared with -3.66

(strong support) using F1∼F3. Further, the range of DS LLRs for F3-only extended to

-35.4, compared with -19.5 for F1∼F3. However, F3-only input also generated a higher

false hit rate, as well as higher magnitude contrary-to-fact DS LLRs compared with the

combination of formants.

Figure 5.10 displays EER and Cllr values for each of the four sets of formant data.

Despite achieving somewhat weaker DS LLRs compared with F3-only, the combination

of formants produced the best performing system in terms of both EER and Cllr.

F1∼F3 outperformed F3-only by 5% in terms of EER and 0.2 in terms of Cllr. The

worst performance was found using F1-only and F2-only, which performed similarly,
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achieving EER values of around 20% and Cllr values of around 0.6. Consistent with

patterns in Experiments (1) and (2), the improved performance of the combination of

formants over F3-only in terms of the strength of SS LLRs and system validity provides

evidence that F1 and F2 do carry speaker-specific information. However, given that

F1 and F2 encode so much speech information (i.e. they are carriers of contrast), their

value as individual discriminants is relatively minimal. Clearly in terms of individual

formants, F3 dominates with regard to speaker discrimination.
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Figure 5.10: Log LR Cost (Cllr) plotted against EER (%) for different DyViS formant

input for /aI/

5.4 Discussion

The results of Experiment (1) revealed a number of effects of using regionally Matched

and Mixed BrEng data at both the feature-to-score and score-to-LR stages of system

testing using /aI/. Consistent with predictions in §5.1, the effects of using regionally

Mixed system data were considerably more severe for /aI/ than for /u:/, owing primarily

to the regional variation encoded in /aI/ in BrEng. The distributions of SS LLRs were

generally comparable in terms of the median LLR and overall range when using the
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Matched and Mixed system. However, DS LLRs were weaker by up to four orders of

magnitude in the Mixed condition (using F1∼F3). Further, consistent with the results

in §4.3.2, validity was consistently worse (by up to 7% EER and 0.15 Cllr) when using

the Mixed system compared with the Matched system.

The removal of F1 and then F2 in Experiment (1) generated lower magnitude LLRs

and generally worse system validity across both systems. This, along with the results

of Experiment (3), suggests that F1 and F2, which are primarily thought to encode

phonetic contrast and systematic regional and social variation, are capable of carrying

considerable speaker discriminatory information. Further, the removal of F1 and F2

in Experiment (1) reduced the divergence between the Matched and Mixed systems

in terms the distributions of LLRs, such that LLRs were most similar across systems

when using F3-only input. These results suggest that there may be a trade-off between

the speaker discriminatory potential that lower formants (F1 and F2) provide and the

regional sensitivity they introduce into the LR-based analysis. That is, with the removal

of F1 and F2, the strength of evidence and overall system performance may be lower,

but the effects of regional variation, at least in terms of the magnitudes of the LLRs

themselves, may be minimised.

Somewhat different patterns were revealed in terms of the Matched and Mixed validity

across the three sets of /aI/ input. The EER for the Mixed system was only marginally

higher than that of the Matched system when using all three formants and with the

removal of F1. However, the largest difference between the systems in terms of EER

was found when using F3-only (c. 7%). Similarly, the smallest difference between the

systems in terms of Cllr was found using F1∼F3, followed by F2 and F3. As with EER,

the largest Cllr difference between systems was found using F3-only (c. 0.15). This

finding runs contrary to the earlier prediction that LR output based on F3 may be most

robust to different definitions of the relevant population based on the hypothesis that

it encodes more information relating to the individual rather than regional and social

information relating to the group (Garvin and Ladefoged 1963).

In Experiment (2), the cubic coefficients of F1 and F2 were both able to correctly

assign around 64% of the 320 tokens to the regional group (four regional groups) of

the speaker, and both outperformed F3. This suggests, predictably, that F1 and F2 (and
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in particular the intercept (absolute frequency) and slope elements of the trajectory)

are primarily responsible for the differences between the four sets (as shown in Figure

5.2). F3 generated a classification rate of 40.6% which, although worse than F1 and F2,

was better than chance (25%). Further, when analysing the individual elements of the

trajectory using DA, the intercept generated the highest classification rate compared

with coefficients relating to the dynamics of the trajectory. This suggests that F3 does

encode some region-specific information primarily in the absolute frequency element

of the trajectory. This may be due to intrinsic factors (i.e. an inherent property of F3

itself) such as VQ and vocal setting (see Stevens and French 2012), as well as extrinsic

factors (i.e. extraneous) such as correlation with F2 (although no consistent correlations

between elements of F2 and F3 were found when this was tested using these data).

Formal analysis of these factors was not possible, however, due to the small number of

speakers and regional sets available.

Despite evidence of region-specific patterns of F3 variation, consistent with previous

studies, in Experiment (3) F3 outperformed F1 and F2 in terms of the magnitude of

LLRs and system validity. There was also evidence of speaker-specificity in the lower

formants, with F1∼F3 generating higher magnitude SS LLRs and better overall system

performance than any individual formants. However, the addition of F1 and F2 to F3

did generate lower magnitude DS LLRs. The combined results of Experiments (2) and

(3) suggest that for F3, Garvin and Ladefoged’s (1963) group-individual distinction is a

continuum rather than a dichotomy, since F3 was found to encode at least some regional

information along with considerable speaker discriminatory power. More importantly

when considered in terms of the results of Experiment (1), it is clear that the inevitable

regional and social information to which linguistic-phonetic variables respond may

affect different elements of LR output (e.g. magnitude of LLRs, validity) in potentially

unpredictable ways and to unpredictable extents. Potential explanations for the results

in §5.3.1 are offered in §11.1.
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5.5 Chapter summary

Experiment (1): Multiple systems

• Distributions of SS LLRs broadly similar across Matched and Mixed systems for

F1∼F3, F2 and F3 and F3-only input.

• DS LLRs weaker using Mixed system compared with Matched.

• Convergence in the distributions of LLRs as F1 and then F2 were removed.

• Largest validity differences between Matched and Mixed systems using F3-only.

Experiment (2): Regional (group) patterns

• Absolute frequency and slope elements of F1 and F2 best predictors of regional

background.

• F3 classification rate (40.6%) better than chance (25%) with intercept the strongest

carrier of regional information.

Experiment (3): Speaker (individual) patterns

• F3 outperforms F1 and F2 in LR-based speaker discrimination using a sociolin-

guistically homogeneous set of speakers.

• Evidence of group-individual continuum rather than dichotomy.
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Chapter 6

Regional Background: Cepstral

Coefficients and Derivatives

This chapter explores the sensitivity of LR output to regional variation using ASR

variables as input. Calibrated GMM-UBM (§3.2.2.1) LLRs were computed for a set of

regionally homogeneous test data using multiple systems defined as: (a) Matched: de-

velopment and reference data of the same regional background as the test set, (b) Mixed:

regionally mixed development and reference data, and (c) Mismatched: development

and reference data containing speakers of a different regional background from the test

set. Testing was performed using cepstral coefficients (CCs) and derivatives (delta (D)

coefficients and delta-delta (A) coefficients) extracted from the Mel-frequency cepstrum

(MFC) and the linear prediction cepstrum (LPC) (see §3.3.2).

6.1 Introduction

This chapter develops on the results of Chapters 4 and 5 to explore the sensitivity

of LR output to regional variation in the definition of the relevant population using

ASR variables: namely CCs and derivatives (§3.3.2) extracted holistically from across

speech samples. Cepstral input was used since it was not expected to display the same

sensitivity to sources of social and stylistic variation as linguistic-phonetic variables.

There are two reasons for this claim, relating to the internal structure of the cepstrum
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and of CCs, and the way in which such data are extracted and typically analysed in

ASR systems.

Firstly, as shown in Equation 3.12, the cepstrum is a representation of the power spec-

trum of a signal based on an inverse discrete Fourier transform (DFT) from which CCs

are extracted using discrete cosine transforms (DCTs). Therefore, the CCs themselves

are linguistically abstract in the sense that they do not have direct articulatory corre-

lates in the way that formants do (although see Clermont and Itahashi 1999, 2000;

Clermont 2013). Further, as outlined in Rose (2013a), CCs capture information about

spectral shape rather than just spectral peaks (as in formants), and therefore have the

potential to encode considerably more information about the individual useful for

speaker discrimination. Finally, as cited in Rose (2013a: 81), the cepstral smoothing

involved in extracting CCs displays “strong immunity to non-information variabilities

in the speech spectrum” (Rabiner and Juang 1993). Thus, smoothing is able to better

preserve spectral differences which can be attributed to speech and speaker (both group

and individual).

Secondly, as outlined in §1.1.4, ASR systems typically analyse CCs holistically from

frames across an entire speech sample. This introduces further abstraction into the

analysis, since the data are not extracted from linguistically meaningful units of speech

(although segmental cepstral analysis is possible; Rose 2011a). When analysed holis-

tically, a multivariate model of CCs from across a sample captures overall physical

properties of the supralaryngeal vocal tract as well as the long-term configuration of

articulators. Thus, it is predicted that CCs analysed holistically will not be as sensitive

to group variation in the realisation of individual phonemes (such as those in §4.2.2

and §5.2.2), although CCs are likely to be sensitive to regional differences in long-term

vocal setting (e.g. velarised setting in Liverpool English). Such assumptions have led to

claims that ASR systems based on cepstral input are robust to the sources of structured

variation outlined in §2.2.5, such as regional background. BATVOX, specifically, is

claimed to be “language and speech independent and thus deliver(s) results irrespective

of the language or accent used by the speaker.”18 If this is the case then it may be

possible to use a dataset of sociolinguistically heterogeneous speakers when performing

18Agnitio (2013). Solution Brief: Criminal ID. http://www.agnitio-corp.com/sites/

default/files/SOL_BRIEF_Criminal_ID.pdf (accessed: 27th January 2014).
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LR-based testing using holistic cepstral input.

However, such claims are dependent on two issues. First, regional (and social) dif-

ferences in the distributions of cepstral coefficients in the population must be shown

empirically to be small. One field in which regional variation in cepstral variables

is of central concern is the development of speech and accent recognition systems.

Huang et al. (2004) investigated the potential of using accent-dependent speech recog-

nition systems to improve speech recognition performance using Mandarin Chinese.

They developed a GMM-based (32 Gaussians) accent recognition system based on

12 MFCCs and derivatives extracted holistically, as a means of classifying speakers

into one of four accent groups, before then applying the appropriate accent-dependent

system for speech recognition. Based on training models containing 300 speakers

(males and females), between 77.5% and 98.5% of the 60 test speakers were assigned to

the correct regional group. Similar findings are presented in Yan et al. (2012), although

improved classification rates are reported in Huckvale (2004, 2007) using a metric

based on text dependent segmental cepstra (see also Brown and Wormald 2014). These

results confirm Salvi’s (2003) claim that accent variations “have proved to be important

variables in the statistical distribution of the acoustic features usually employed in ASR”

(p. 1149). Clearly, cepstral coefficients when analysed both globally, and in particular

segmentally, can encode sufficient information to achieve relatively high closed-set

classification of speakers according to regional background.

This leads to the second more specific issue: the extent to which such language and

accent information affects FVC systems. Van Leeuwen and Bouten (2004) present

the results of the NFI-TNO forensic speaker recognition evaluation based on 12 ASR

systems (similar to the NIST evaluations, but based on Dutch wire-tap recordings from

real cases). Two conditions in the evaluations considered cross-language suspect and

offender samples. EERs were up to 9% greater for cross-language conditions (EERs =

20-44%) compared with same-language comparisons (Dutch-Dutch) (EERs = 12-35%).

Similarly Przybocki et al. (2007) maintain that “performance (of ASR systems) is

clearly superior for . . . matched trials (same-language) than for the unmatched (cross-

language)” (p. 1957). However, Künzel (2013) found that by applying a normalisation

procedure (Lu et al. 2009) using 75 bilingual speakers across seven languages, EERs
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for cross-language comparisons may be equal to, or in some case better than, those

based on same-language comparisons. These studies indicate a degree of sensitivity

to language variation in cepstrum-based ASR, but do not directly test the question of

the definition of the relevant population where suspect and offender language (or more

specifically regional background) are matched.

This issue has received only a limited amount of attention. Moreno et al. (2006) consid-

ered the sensitivity of LR output using BATVOX to differences in the regional make-up

of the reference data. Using a test set of 43 Spanish speakers from Andalusia, LRs

were computed using three sets of test data (50 speakers): one matched (Andalusian)

and two mismatched (Castilian and Galician Spanish). Based on 19 MFCCs and Ds,

relatively small EER differences were found between sets, although the matched data

generally produced the best performance. When using the optimised reference data

option in BATVOX, EER was found to improve by a further 1.5%. These findings lead

Moreno et al. (2006) to conclude that “it looks like dialect influence is not a relevant

variable for (A)SR systems.” However, the study did not consider effects of mismatch

on the magnitude of LRs or on Cllr. Further, the degree of sociolinguistic homogeneity

in the data, other than regional background, was not made explicit.

Harrison and French (2012) present an exploration into the specific issue of cepstral re-

gional variation in British English (BrEng). They calculated Kullback-Leibler distances

(from BATVOX) based on MFCCs between a set of 97 DyViS (§3.1.1) speakers and a

set of 118 speakers from multiple accent backgrounds (containing Manchester, North-

ern Irish, south east and west Yorkshire speakers). For the set of mixed accent data,

recordings were taken from real police interviews. They found differences between the

DyViS and the mixed set in terms of the overall distributions of distances, as well as

differences between groups when the 118 mixed speakers were categorised separately

by accent. The differences lead Harrison and French to conclude, contra to the claims

of Moreno et al. (2006), that Batvox is “accent sensitive”, possibly as a result of the

MFCCs capturing variability in “vocal tract settings . . . across accents.” However, the

extent to which such variability affects LR output was not tested.

The studies of Moreno et al. (2006) and Harrison and French (2012) are developed in

this chapter by replicating the experiments in §4.3.2 and §5.3.1 using Mel-frequency
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(MFC) and linear prediction (LPC) cepstral input (for an overview of the differences

between MFC and LPC input see §3.3.2.1). CCs, Ds and As were extracted holistically

from the MFC and LPC and analysed in various combinations. GMM-UBM (§3.2.2.1)

LLRs were computed for a homogeneous set of test data using systems (development

and reference data) based on three regional definitions of the relevant population. As in

Chapters 4 and 5, (a) Matched and (b) Mixed systems were used. The Matched system

represents a narrow and appropriate definition of the relevant population with regard to

regional background according to that of the offender. The Mixed system represents the

current approach to defining the relevant population based on language and sex. The

test data in this chapter were also evaluated using multiple (c) Mismatched systems.

These systems represent narrowly but inappropriately defined relevant populations

relative to the regional background of the offender. The use of Mismatched systems is

intended to account for the paradox in FVC that without knowing who the offender is,

the population of which he is a member cannot be known for certain. Therefore, it is

possible that the analyst would define the regional background of the offender narrowly

but incorrectly.

6.2 Method

6.2.1 Data

The data in these experiments were extracted from the TIMIT (§3.1.5) database of

North American English (AmEng). TIMIT was chosen primarily because it contains

a large number of speakers (438 male speakers) from a large number of different

regional backgrounds (eight regional groups). This allows for large-scale testing with

multiple sets representing different definitions of the relevant population. However,

as highlighted by Campbell and Reynolds (1999), TIMIT is limited for the purposes

of evaluating the performance of speaker recognition systems. It contains only highly

controlled read speech in the form of ten (randomised) sentences per speaker, meaning

that there is relatively little available data for each speaker. Further, the samples are

high-quality wideband recordings made in a studio in a single session. In this way, they

do not reflect typical mismatch conditions in forensic casework.
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A number of other databases were considered, including Switchboard I-II and POLY-

COST (see Campbell and Reynolds 1999). Although in many respects these databases

are more forensically realistic, none of the available alternatives fulfilled the essential

requirements of a large number of speakers controlled for regional background within

a single language. Therefore, despite the limitations of TIMIT, it does allow for the

research questions in this chapter to be tested, initially under optimal experimental

conditions. The results are interpreted in light of these limitations (see §6.4).

From the entire TIMIT database, the 22 speakers from dialect region (DR) 8 (Army

Brat) (see §3.1.5) were firstly removed from the analysis. This decision was based on

the small number of available speakers, given that so many speakers were available

for the other regions. DR 3 (North Midland) was identified as the Matched set since

it contained the largest number of speakers (79). 25 speakers were first identified at

random from DR 3 to function as test data. The same test data were used throughout

this chapter. From the remaining 54 speakers, 28 were identified at random to act as a

Matched system which functioned as both development and reference sets. For each

of the other six DRs, 28 speakers were extracted at random to form six Mismatched

systems (development and reference data). Six speakers were then chosen at random

from the Matched set and each of the Mismatched sets to create a Mixed system

(development and reference data) containing 28 speakers. In this way the Mixed set

was regionally balanced. A total of 221 TIMIT speakers were used in this chapter (one

test set = 25 speakers; eight development/reference sets = 28 speakers each).

6.2.2 Preparation of samples

The TIMIT database contains individual sounds files for each sentence produced by each

speaker. Therefore, for each speaker the sound files for the ten sentences were compiled

using PRAAT to create a single sample. To ensure that cepstral data were extracted

only from the speech-active portions of the sound files, silences were removed using

Morrison’s Sound File Cutter Upper software19 in MATLAB. The software performs a

Root Mean Square (RMS) (Johnson 2008: 31-33) amplitude analysis across the speech

19Morrison, G. S. (2010). Sound file cutter upper. http://geoff-morrison.net/#CutUp

(accessed: 22nd January 2014).
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signal. The default setting in the software defines the threshold between silence and

non-silence as:(
(maxRMSamp −minRMSamp)×

1

3

)
+minRMSamp (6.1)

such that portions of the signal with amplitude greater than threshold are classed as

speech and portions with amplitude lower than threshold classed as silence. Following

Künzel (1997), a pause was defined as a period of silence greater than 100ms in duration.

This removed larger periods of silence between sentences but preserved speech-related

silences such as the hold phases of stops (Figure 6.1).

Figure 6.1: RMS amplitude analysis using the Sound File Cutter Upper software

for speaker MCEW0 007 from DR 2 with the default threshold between silence and

non-silence marked by a red line

To check the appropriateness of the default threshold in Equation 6.1, two tests were

performed. A small number of sound files were manually edited in PRAAT and the

output compared with that of the automatic approach. The software with the default

threshold setting performed very well, removing the same silences as the manual

segmentation without removing any low amplitude speech. The success of the software

in this instance is primarily due to the relatively high quality of the recordings. Different

settings for defining silence and non-silence were also tested in the software itself. A

higher amplitude threshold generally resulted in low intensity speech being classed as
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silence (such as in voiceless fricatives), while a lower threshold underestimated the true

duration of the silent portions.

The software saves the speech active portions between silences as individual sound

files. Following the same procedure as above, single sound files were created for each

speaker by compiling the individual silence-free samples using PRAAT. The resulting

samples were each around 30s in duration (c. 15s per suspect and offender sample

when divided in half). This was considered adequate given that between 13 and 15s

of net speech was used to compute LRs using the generic MFCC system in Lindh and

Morrison (2011).

Figure 6.2: Map of the major urban dialect areas of North American English as identified

through analysis of 240 participants (marked as points on the map) as part of the Telsur

project (Labov et al. 1997)

6.2.3 Linguistic differences between dialect regions

A potential issue with TIMIT for investigating issues of regional variation is the extent

to which the seven DRs represent linguistically distinct regional varieties. This is
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especially relevant given that there is expected to be less marked patterns of regional

variation for AmEng, compared with BrEng. Figure 6.2 displays the major urban dialect

areas of AmEng as identified in the Telsur project (Labov et al. 1997); data which were

subsequently used to develop the Atlas of North American English (ANAE) (Labov et

al. 2006). The data were generated through auditory analysis of the vowel systems of

240 speakers from urban areas (two speakers per area) and larger metropolises (between

four and six per area) within North America. Figure 6.2 includes the ‘three dialects’ of

AmEng (Inland North, South and West) identified in Labov (1991), the Midland area,

identified by Kurath and McDavid (1961), as well as the North Central, Philadelphia,

New York and New England regions.

Table 6.1: Number of development, test and reference speakers used in each system

within each experiment

TIMIT DR Number TIMIT DR Telsur (Labov et al. 1997)

1 New England New England

2 Northern North Central + Inland North

3 North Midland Midland (inl. North + South Midland)

4 South Midland The South

5 Southern The South

6 New York City New York City

7 Western The West

Comparison of Figures 3.2 and 6.2 shows that there is general geographical agreement

between Telsur and TIMIT, with minor differences primarily in naming conventions

(see Table 6.1). The boundary defining the West is almost exactly the same across

both TIMIT and Telsur, consisting of an area which includes California, Arizona, New

Mexico, Nevada, Utah, Colorado, Oregon, Idaho, Wyoming, Washington and Montana.

Consistent with Figure 6.2, New York and New England are also defined as individual

DRs. The large area in Figure 6.2 defined as the South almost precisely contains within

it the South Midland (4) and Southern (5) DRs of TIMIT. This suggests that it may be

preferable to consider these sets as linguistically homogeneous. Further, in Figure 6.2

the North Central and Inland North areas are classified as separate linguistic varieties,

where this is a single DR in the TIMIT data (Northern). However, evidence from ANAE
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(2006: 204) indicates that the Northern Cities Shift is also present across the North

Central area in Figure 6.2. Therefore, the TIMIT definition of a single DR encompassing

the North Central and Inland North areas may be linguistically preferable.

Having identified the North Midland (DR 3) region as the test data, it is also necessary to

assess the extent to which this constitutes a single variety of AmEng. Figure 6.3 displays

this area using the same data and boundaries as in Figure 6.2. The definition of the North

Midland area in TIMIT is clearly different to the North Midland area in Figure 6.3, but

does overlap almost completely with the Midland area. Therefore, Figure 6.3 raises

possible issues with DR 3 as a single linguistic entity. There are potential differences

between the North and South Midland areas (Figure 6.3) although such variation is

expected to be relatively subtle (Labov et al. 1997). Further, Philadelphia is identified

as a separate linguistic area within the Midland DR in Figure 6.2 and so speakers from

Philadelphia included in TIMIT DR 3 may introduce greater between-speaker variation

into this set.

Figure 6.3: Map of the North Central, Inland North, New England, New York, Midland

and South dialect areas as identified by Labov et al. (1997)

Evidence of linguistic differences between AmEng DRs make it possible to predict

which Mismatched systems should generate the most divergent LR output relative to

the Matched system, assuming the cepstral input captures linguistically salient regional
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information. Figure 6.4 displays what Labov et al. (1997) refer to as a phonological

taxonomy containing the primary vocalic differences between the major AmEng dialects.

As a means of interpreting Figure 6.4, Table 6.2 displays the symbols used by Labov et

al. (1997) (and used extensively in sociolinguistics in North America) relative to the

equivalent lexical set (Wells 1982) and IPA phonemic transcription. The IPA phoneme

symbols are used throughout this chapter for consistency.

Table 6.2: Transcription conventions used by Labov et al. (1997) with the equivalent

lexical set (Wells 1982) and IPA phonemic transcription

Labov et al. (1997) Lexical Set Phonemic Transcription

/iy/ FLEECE /i:/

/i/ KIT /I/

/ey/ FACE /eI/

/e/ DRESS /e/

/æ/ TRAP /æ/

/3/ SCHWA /@/

/æh/ START /A:/

/o/ LOT /6/

/aw/ MOUTH /aU/

/oh/ THOUGHT /O:/

/2/ STRUT /2/

/ow/ GOAT /@U/

/u/ FOOT /U/

/uw/ GOOSE /u:/

The TIMIT West (DR 7) set should display the greatest (linguistic) similarity to the

Matched Midland (DR 3) set, since it is a related strand of the general Midland region

identified by Labov et al. (1997). There should also be linguistic similarity between DR

3 and DRs 4 (South Midland) and 5 (Southern) since these three regions share laxing

of long high and mid vowels (although differ on a number of other dimensions). As

outlined earlier, Figure 6.2 suggests that, on the basis of linguistic evidence, DRs 4 and

5 should behave in similar ways. The most divergent results should be found for the

Northern (DR 2) set, due to the Northern Cities Shift and New York (DR 6), due to /r/
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vocalisation and /O:/ lowering.

Figure 6.4: Phonological taxonomy of vocalic differences between the major dialect

regions of North American English (Labov et al. 1997)

6.2.4 Feature extraction

In this chapter, elements of both the MFC and LPC were used as input (see §3.3.2 for

an overview). MFC variables were chosen primarily due to the extensive use of MFCCs

in ASR systems and ASR-based FVC research. Although less common, LPC input,

analysed both holistically and segmentally, has been used considerably in ASR-based
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FVC (Rose 2011a, 2013a; Nair et al. 2012). Further, the differences in the frequency

scales used to extract MFC and LPC data may mean that there are differences in the

sensitivity of LR output to regional variation depending on the form of the cepstrum

used.

MFC and LPC data were extracted from the silence-removed sound files for each

speaker using HTK.20 Initially, a pre-emphasis filter with a coefficient value of 0.97

was applied to the signal (Equation 3.13). The signal was then divided in a series

of frames using a 20ms Hamming window shifted at 10ms steps, resulting in 50%

overlap between adjacent frames. The power spectrum of each frame was processed by

applying Mel (MFC) and linear (LPC) filter banks consisting of 26 filters to the entire

frequency range (0-8 kHz). A DCT was fitted to the log of the filter outputs and 12

coefficients (CCs) extracted. Ds were calculated from the CCs using Equation 3.15.

The same equation was used to calculate As using the Ds as input.

6.2.5 Experiment

In this chapter, the sensitivity of LR output to different degrees of regional dialect

match in both the feature-to-score and score-to-LR stages is assessed using different

input data. Throughout testing, the same set of 25 test speakers (from DR 3) was used.

GMM-UBM (§3.2.2.1) scores were initially computed for SS (28) and DS (756) pairs

within each of the Matched (DR 3 - North Midland), Mismatched (DR 1 - New England;

DR 2 - Northern; DR 4 - South Midland; DR 5 - Southern; DR 6 - New York City; DR

7 - Western) and Mixed sets (comprising 28 speakers). The first half of the data for each

speaker was used to build a suspect GMM. The offender values from the second half of

the data for each speaker were then used to compute p(xi|λsus) (see §3.2.2.1). Due to

the computational load involved in performing cross-validation using the GMM-UBM

approach (i.e. creating a new UBM for each comparison), a single GMM background

model was built for each system using all of the data for all 28 speakers within each of

the eight sets. In this way, the background model also contained the data from each of

the suspect and offender samples being compared. While this is not ideal, it is expected

20Hidden Markov Model Toolkit (HTK) http://htk.eng.cam.ac.uk (accessed: 11th Septem-

ber 2013) (Young et al. 2006).
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to have limited effect on the overall results. The offender values were then evaluated

against the background model to compute p(xi|λbkg). The scores for each set were used

to train a logistic-calibration model for each system (§3.2.4.1).

SS (25) and DS (600) scores were then computed for the test data. GMM suspect

models were built for the suspect samples from the first half of the data for each of the

test speakers. The numerator of the score was calculated by evaluating the offender

values (i.e. the second half of the data for each speaker) relative to the suspect models.

In this way, p(xi|λsus) for the test comparisons remained constant across all eight

systems. p(xi|λbkg) was computed using the background models for each of the eight

28-speaker reference sets created when generating development scores. The calibration

coefficients from each of the eight sets of development scores were then applied to the

scores for the test data based on the dataset used to create the background model. The

experiment was run using CCs and derivatives and CCs-only from both the MFC and

the LPC.

Although ASR systems, such as BATVOX, typically model data with up to 1024

Gaussians, 32 Gaussians per variable were used here to build the GMM suspect and

reference models. This is because the suspect samples were short and so contained

a relatively small number of frames from which to extract data. Given the relative

lack of data there is a risk of overfitting by using too many Gaussians. Pre-testing

also revealed no marked differences in LR output from models generated using 32, 64

or 128 Gaussians. Therefore, the model with the lowest computational load (i.e. 32

Gaussians) was chosen to maximise efficiency. Further, 32 Gaussians have previously

been used to model the TIMIT data in Reynolds (1995).

LR output is compared across systems in terms of the distributions of calibrated LLRs

and validity (EER and Cllr). The imprecision of LLRs from individual comparisons

across the Matched, Mismatched and Mixed systems was quantified by calculating the

mean 95% CIs (§3.2.3.2) for each form of input data.
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6.3 Results

This section presents LR output from the Matched, Mismatched and Mixed systems.

Mismatched systems are referred to using their TIMIT DR number. The results based

on MFC input are considered first, followed by the results based on LPC input. The

comparative performance of MFC and LPC input is assessed in §6.4.

6.3.1 Mel Frequency cepstrum

CCs and derivatives

Figure 6.5 displays the distributions of calibrated LLRs based on CCs and derivatives

from the MFC. The median SS LLR for the Matched system was +3.25, equivalent

to strong support for the prosecution. Marginally weaker median SS LLRs were

generated using Mismatched systems 6 and 7, while marginally stronger medians were

achieved using the Mixed, Mismatched 4 and 5 sets, although in all cases these values

were within the same order of magnitude as the Matched median. However, the SS

medians using Mismatched sets 1 and 2 were stronger by one order of magnitude.

There were also considerable differences in the overall ranges of LLRs. Relative to

the Matched condition, the minimum LLR was up to two orders of magnitude stronger

using Mismatched system 2, while the maximum was up to four orders of magnitude

stronger using Mismatched system 1.

The DS median for the Matched condition was -5.57, equivalent to very strong support

for the defence. With the exception of Mismatched 2, all systems produced DS medians

within the same order of magnitude as the Matched median (between -5 and -6).

Mismatched 2, however, generated a median value one order of magnitude weaker

(-4.47) than the Matched median, although verbally both values are equivalent to very

strong support for the defence. As with SS LLRs, there were some differences in the

overall distributions of DS LLRs. The minimum DS LLR was up to four orders of

magnitude weaker using the Mixed system than when using the Matched system, while

the strongest contrary-to-fact LLRs were three orders of magnitude greater using Mixed

data. This pattern was also found using Mismatched sets 1, 2, 4 and 5.
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Figure 6.5: Boxplots (mid line = median, filled box = interquartile range (containing

middle 50% of the data), whiskers = scores outside the middle 50%, dots = outliers) of

SS (above) and DS (below) LLRs for each system using CCs and derivatives from the

MFC

Figure 6.6 displays EER and Cllr values based on CCs and derivatives from the MFC.

Despite evidence of differences in the distributions of LLRs, Figure 6.6 suggests

that there were only limited differences across systems in terms of validity. Overall

performance was generally extremely good, with values for both EER and Cllr very close

to zero across all eight systems. This primarily reflects the use of optimal, forensically
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unrealistic data. The implications of this in terms of the variation across systems

according to regional background are discussed in §6.4. Maximally, EER values were

spread across a range of 0.75%, with Mismatched systems 6 and 7 achieving the lowest

value (0%) and the Mixed system achieving the highest (0.75%). Cllr values were also

spread over an extremely narrow range (0.063). The lowest Cllr was again achieved

using the Mismatched 6 and 7 data, although the Matched Cllr was just 0.003 greater.

The highest Cllr was produced using Mismatched 1 data (0.082), although the absolute

differences between sets were extremely small.
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Figure 6.6: Cllr plotted against EER (%) for each system using CCs and derivatives

from the MFC

CCs-only

Figure 6.7 reveals marginally less variation in the distributions of LLRs across systems

using CCs-only compared with Figure 6.5. With the exception of Mismatched 2, median

SS values for all of the Mismatched and Mixed systems were within the same order of

magnitude as that for the Matched system (+3.58). The median SS LLR for Mismatched

system 2 was one order of magnitude stronger (+4.05), although in numerical terms it
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was much closer to the Matched median than with the inclusion of derivatives. Further,

there was considerably more overlap in the interquartile ranges of SS LLRs for the

Mismatched/Mixed systems and the interquartile range for the Matched system. The

strongest SS LLRs were generated using the Mixed and Mismatched 1, 2 and 4 sets,

and were maximally two orders of magnitude stronger than when using the Matched

data.
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Figure 6.7: Box plots of SS (above) and DS (below) LLRs for each system using

CCs-only from the MFC
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The median DS LLR for the Matched system was -5.58, equivalent to very strong

support for the defence. Median values for the Mixed and Mismatched 1, 2 and 4

systems were within the same order of magnitude as the Matched median. However,

DS medians were weaker by one order of magnitude for Mismatched sets 5, 6 and 7.

As with the inclusion of derivatives, the overall ranges of DS LLRs were considerably

greater for the Mixed and Mismatched 1 and 2 systems, compared with the range for

the Matched system. This was caused by stronger outlying negative values, by as much

as four orders of magnitude, and stronger contrary-to-fact support for the prosecution,

by maximally two orders of magnitude. Despite differences in the magnitudes of the

DS medians, the most similar distributions of LLRs to those produced by the Matched

system were found using Mismatched systems 6 and 7.
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Figure 6.8: Cllr plotted against EER (%) for each system using CCs-only from the MFC

Figure 6.8 reveals even less variability in validity using CCs-only compared with Figure

6.6. EER values were spread over a range of 0.5%, with optimum performance achieved

using Mismatched system 6 (0%) and the worst performance produced by the Mixed

system. EER for the Matched system was 0.17%, compared with which, the Mixed

and Mismatched 1, 2 and 4 EERs were marginally higher, and the Mismatched 6 and

7 EERs were marginally lower. The range of Cllr variability was also very narrow,
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with values spread maximally over a range of 0.03. The best performing systems were

based on the Matched and Mismatched 6 sets. For the remaining Mismatched systems,

Cllr was marginally higher than the Matched value, while the highest Cllr value was

produced by the Mixed system.

6.3.1.1 Reliability

Figure 6.9 displays Tippett plots of mean LLRs with 95% CIs across the eight systems

for each set of MFC input data (CCs and derivatives and CCs-only). For both forms

of input data, imprecision (i.e. the width of the 95% CIs) increased as the magnitude

of the LLRs increased. This applied to both SS and DS LLRs, although the widest

95% CIs occurred for the highest magnitude DS LLRs (possibly due to the fact that the

strongest DS LLRs are of considerably higher magnitude than the strongest SS LLRs).

The largest mean 95% CI was generated using CCs-only (±1.88), although the mean CI

with the inclusion of derivatives was only marginally smaller (±1.86). This indicates

that the addition of derivatives had relatively little effect on the overall sensitivity of

individual LLRs to regional variation.

Figure 6.9: Tippett plots of mean SS (light) and DS (dark) LLRs and 95% CIs across

systems using CCs and derivatives (left; red) and CCs-only (right; blue) from the MFC

155



6. Regional Background: ASR Variables

6.3.2 Linear prediction cepstrum

CCs and derivatives

Figure 6.10 reveals marked differences in the distributions of SS LLRs across systems

based on CCs and derivatives from the LPC. The median SS LLR for the Matched

system was +4.12, equivalent to very strong support for the prosecution. Although also

categorised as very strong evidence, the SS median for Mismatched 1 was one order of

magnitude higher than the Matched value. With the exception of Mismatched system

2, the medians for the remaining Mismatched systems were one order of magnitude

weaker. Despite this, as with MFC input, in terms of overall SS distributions the

Mismatched 6 and 7 sets were most similar to the Matched output. For Mismatched

systems 1 and 2, the minimum and maximum LLRs were up to two orders of magnitude

greater than those generated by the Matched system, and up to four orders of magnitude

greater using the Mixed system.

Similar differences between systems were found in the distributions of DS LLRs. The

median DS LLR was one order of magnitude weaker for Mismatched sets 1 and 6

compared with the Matched set. Median values for the Mixed and other Mismatched

systems were within the same order of magnitude as the Matched median, equivalent

to very strong support for the defence. Although there was considerable overlap of

interquartile ranges across all systems, there were marked differences in the overall

ranges of DS values. The strongest outlying negative LLR was four orders of magnitude

weaker using Mismatched system 5 compared with the Matched system. For the

majority of systems the strongest contrary-to-fact LLRs were around two orders of

magnitude greater than for the Matched system.

As with MFC input, the differences in the distributions of LLRs were not reflected

in differences in system validity (Figure 6.11). EERs were spread over a range of

0.67% with Mismatched systems 2, 5 and 7 achieving marginally better EER than the

Matched system, and the Mixed and Mismatched 6 systems performing marginally

worse. Mismatched 1 and 4 achieved EERs equal to that of the Matched system (0.5%).

Cllr values were also spread over a narrow range (0.08), with systems achieving both

marginally better and marginally worse performance relative to the Matched system.
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The best performing system overall was Mismatched 7, although the absolute difference

between systems were extremely small.

Matched Mismatched(1)Mismatched(2)Mismatched(4)Mismatched(5)Mismatched(6)Mismatched(7) Mixed

0

1

2

3

4

5

6

7

8

9

10

11

12

13

SS SS SS SS SS SS SS SS

Lo
g 1
0 

LR

Matched Mismatched(1)Mismatched(2)Mismatched(4)Mismatched(5)Mismatched(6)Mismatched(7) Mixed

-15

-10

-5
-4
-3
-2
-1
0
1
2
3
4
5

DS DS DS DS DS DS DS DS

Lo
g 1
0 

LR

Figure 6.10: Boxplots of SS (above) and DS (below) LLRs for each system using CCs

and derivatives from the LPC
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Figure 6.11: Cllr plotted against EER (%) for each system using CCs and derivatives

from the LPC

CCs-only

Figure 6.12 displays the distributions of LLRs using CCs-only from the LPC. There

was greater stability across systems in the distributions of SS LLRs compared with the

inclusion of derivatives. The median was consistently within the range of +3 to +4,

equivalent to strong support for the prosecution, other than for Mismatched 1 where the

median was one order of magnitude stronger than the Matched median. There was also

considerable overlap of the interquartile ranges of LLRs produced by all eight systems.

There were, however, some differences across systems in terms of overall range, with

the minimum LLR weaker by one order of magnitude using the Mixed and Mismatched

1, 5 and 7 systems, compared with the Matched system.

Slightly more variation was displayed in terms of DS LLRs. Relative to the Matched

system (-5.55), median DS LLRs were weaker by one order of magnitude using

Mismatched systems 1 and 5. The Mixed and remaining Mismatched systems produced

DS medians equivalent to that of the Matched system. As with SS comparisons, the
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interquartile ranges of DS LLRs displayed considerable overlap, with some variation in

overall ranges. Specifically, contrary-to-fact DS LLRs offered stronger support for the

prosecution by up to three orders of magnitude for the Mixed and Mismatched 1, 2, 4

and 5 systems compared with the Matched system.
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Figure 6.12: Boxplots of SS (above) and DS (below) LLRs for each system using

CCs-only from the LPC

Figure 6.13 displays validity metrics for the eight systems based on CCs-only. EER

values were spread over a range of 0.42%, smaller than the EER range in Figure 6.11.

Mismatched EERs were both under and overestimated relative to the EER for the

159



6. Regional Background: ASR Variables

Matched system, with the best performance achieved using Mismatched systems 5 and

6 (0.083%), and the worst performance produced using Mismatched systems 1 and 2

(0.5%). The Mixed system achieved the same EER as the Matched system (0.417%).

Similar patterns were found for Cllr. Values were spread over 0.039, a narrower range

than that with the inclusion of derivatives. Mismatched sets 6 and 7 produced the best

Cllr values. Relative to the Matched Cllr, values based on the other Mismatched and

Mixed systems were higher. However, importantly, the absolute differences in EER and

Cllr values across systems were again extremely small.
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Figure 6.13: Cllr plotted against EER (%) for each system using CCs-only from the

LPC

6.3.2.1 Reliability

Figure 6.14 displays mean LLRs and 95% CIs across the eight systems using LPC-based

CCs and derivatives and CCs-only. As in Figure 6.9, across both forms of input data,

there was an increase in the width of the 95% CIs as the magnitude of the mean LLRs

increased. Again, the widest CIs were found for the highest magnitude DS LLRs. The

greatest imprecision in individual LLRs across systems was found with the inclusion of
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the derivatives, which generated a mean 95% CI of±1.84. A marginally narrower mean

95% CI was found when using CCs-only (±1.80), although the absolute difference

was relatively small. As in §6.3.1.1, this indicates that the inclusion of derivatives had

essentially no effect on the imprecision in individual LLRs across systems.

Figure 6.14: Tippett plots of mean SS (light) and DS (dark) LLRs and 95% CIs across

systems using CCs and derivatives (left; red) and CCs-only (right; blue) from the LPC

6.4 Discussion

The results in §6.3 are to some extent consistent with Harrison and French (2012) in

that the cepstrum-based ASR systems tested in this chapter displayed some sensitivity

to regional variation. Across all forms of input data, this sensitivity was manifested in

the distributions of LLRs and the imprecision in LLRs from individual comparisons

across the eight systems. The patterns of variation were also broadly consistent with

the results in §4.3.2 and §5.3.1. Marginally stronger SS LLRs were produced using

the Mixed and certain Mismatched sets across all forms of input data, compared with

the Matched set. The overinflation of SS LLRs was evident in the magnitude of the

largest positive SS LLRs, which were up to four orders of magnitude stronger using

Mismatched and Mixed systems, compared with output from the Matched systems. DS
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LLRs were generally weaker for the Mismatched and Mixed sets. As in §4.3.2 and

§5.3.1, these patterns are attributed to the shifting of the reference distribution relative

to stable suspect models and offender values in feature-to-score conversion. A more

detailed discussion of this is provided in §11.1.

Across all forms of input data the distributions of LLRs produced by the Mixed systems

were generally closer to the distributions of the Matched LLRs than those produced

by the Mismatched systems. However, not all Mismatched systems were found to

perform in the same way. The greatest divergence from the Matched results in terms

of the distributions of LLRs was found for Mismatched sets 1 (New England) and

2 (Northern). These patterns are consistent with the expected linguistic differences

between the Mismatched New England and Northern DRs and the Matched Midland

DR (outlined in §6.2.3). According to Labov et al.’s (1997) phonological taxonomy of

AmEng (see Figure 6.4), the New England and Northern DRs differ from the Midland

DR in that they display retention of backed /u:/ and retention of initial tense long high

and mid vowels (e.g. /i:/). New England is also claimed to display /O:/ lowering and /r/

vocalisation, while the Northern area displays the Northern Cities Shift patterns.

The distributions of LLRs from Mismatched set 6 (New York City) and 7 (Western)

were found to be most similar to the distributions of LLRs from the Matched systems.

This finding is predictable for the Western DR based on the linguistic patterns in Figure

6.4. Both the Midland (3) and Western (7) DRs are claimed to display a merger in

the quality of /6/ and /O:/ (referred to as the COT∼CAUGHT merger) and fronting of

/@2/. The convergence between the Matched and Mismatched 6 (New York City) sets

in terms of the distributions of LLRs is, however, not predicted based on linguistic

similarity. In fact, Figure 6.4 suggests that there should be considerable linguistic

divergence between these DRs, with New York City sharing some of the patterns of

the New England and Northern DRs (outlined above) as well as /r/ vocalisation and

raising of /A:/ and /O:/. The patterning of the Mismatched systems suggest that the

cepstral input used in this chapter did capture some of the linguistically meaningful

variation between the DRs. However, the linguistic definition of the DRs in §6.2.3

only considered variation in segmental (and primarily vocalic) variables. There may, of

course, be regional differences in long-term vocal setting which also explain the patterns
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in the Mismatched sets, although very little work in sociolinguistics has considered

systematic regional differences in vocal settings for varieties of AmEng.

Consistent with the variation in terms of the distributions of LLRs, relatively large

mean 95% CIs were generated across all forms of input data (Table 6.3), indicating

considerable imprecision in the LLRs from individual comparisons across systems.

The largest mean 95% CI was produced using CCs and derivatives from the MFC,

although the absolute differences across all forms of input data (MFC and LPC, CCs

and derivatives and CCs-only) were extremely small. The fact that the mean CIs were

broadly similar across input suggests that the frequency scale used to represent the

cepstrum has little effect on the sensitivity of LR output to regional variation. Further,

the addition of derivatives had essentially no effect on the imprecision in individual

LLRs. Therefore, it can be inferred that the regional variation in these data was primarily

encoded in the CCs while derivatives were relatively robust to regional variation.

Table 6.3: Mean 95% CIs (±LLR) for CCs and derivatives and CCs-only from the

MFC and the LPC

Mean 95% CI

MFC LPC

CCs and derivatives 1.867 1.836

CCs-only 1.880 1.799

Despite the sensitivity of individual LLRs to the different regionally defined systems,

almost no variation was found in terms of validity. This is consistent with Moreno et

al. (2006) who found limited difference between Matched and Mismatched systems

in terms of EER when using BATVOX. Contrary to §4.3.2 and §5.3.1, no systematic

ordering patterns were found in terms of EER or Cllr across systems (i.e. the Matched

system did not always produce the best validity). Table 6.4 displays the ranges of

EER and Cllr values across the eight systems for each form of input data. The ranges

of variation were extremely small for both EER (maximally within 0.75%) and Cllr

(maximally within 0.08). Further, the ranges of variation were comparable across the

MFC and LPC results for CCs and derivatives and CCs-only. As with the 95% CIs in

Table 6.2, the results in Table 6.2 suggest that the different frequency scales (MFC and
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LPC) did not affect the overall sensitivity of the systems to different definitions of the

relevant population. Further, no greater sensitivity to regional variation was introduced

with the addition of derivatives.

Table 6.4: Ranges of EER (%) and Cllr values across all systems for CCs and derivatives

and CCs-only from the MFC and the LPC

EER (%) Cllr

MFC LPC MFC LPC

CCs and derivatives 0.75 0.67 0.06 0.08

CCs-only 0.42 0.42 0.03 0.04

There are two reasons for the narrow ranges of validity variability displayed in Table

6.4. Firstly, all of the systems appeared to reach a ceiling in terms of performance. In

all cases, both EER and Cllr values were extremely close to zero. Indeed, contrary to

Campbell (1997) the addition of derivatives did not improve the overall validity of the

systems in terms of either EER or Cllr. Similarly, no systematic validity differences

were found between MFC and LPC input. This is primarily due to the use of optimal

data, in the form of short contemporaneous samples of highly controlled read speech,

with no transmission, quality or style mismatch across suspect and offender samples.

Therefore, performance is necessarily overoptimistic relative to that based on more

forensically realistic conditions.

Secondly, the use of optimal data is confounded by the fact that the speaker discrimi-

natory power of cepstral input is generally very good (and typically much better than

individual linguistic-phonetic variables; Rose 2002, 2013a). This is reflected in the fact

that the magnitudes of the LLRs in this chapter were very high (SS LLRs generally

> +3 and DS LLRs generally < -5, across all systems). Therefore, the variability in

individual LLRs as a function of regional variation, reflected in the mean 95% CIs,

occurred so far away from the zero threshold that it had essentially no effect on the

resulting validity of the systems. For example, based on CCs-only from the MFC, one

SS speaker comparison achieved a LLR of +7.43 using the Matched system. Using

the Mixed system, the LLR was over two orders of magnitude stronger (+9.99) while

using Mismatched system 1 this value was stronger by three orders of magnitude. Such
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variability would not contribute towards differences in either EER or Cllr across these

systems. However, given the evidence of sensitivity to regional variation in the 95% CIs

there is potential for considerably greater validity variability under more forensically

realistic conditions (where LLRs are closer to zero).

6.5 Chapter summary

• Evidence of stronger (by up to four orders of magnitude) SS LLRs and weaker DS

LLRs using Mismatched and Mixed systems compared with Matched systems.

– Wide 95% CIs across all input data reflecting considerable imprecision in

LLRs from individual comparisons across systems.

– No differences in mean 95% CIs for MFC vs. LPC input, or CCs and

derivatives vs. CCs-only.

• Patterns of divergence from the Matched results to some extent consistent with

expected linguistic differences based on segmental (vocalic) variables.

• Essentially no differences across systems in terms of EER and Cllr.

– Ceiling effect for system validity due to the use of forensically unrealistic

data and the speaker discriminatory power of cepstral input.

– Imprecision in individual LLRs (95% CIs) not reflected in validity since the

variability occurred in such high magnitudes.
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Chapter 7

Socio-Economic Class and Age: /eI/

This chapter expands on previous applications of logical relevance to FVC by exploring

the definition of the relevant population in terms of socio-economic class and age. Using

cubic polynomial estimations of the F1∼F3 trajectories of New Zealand English (NZE)

/eI/, calibrated LLRs were computed for a sociolinguistically homogeneous set of test

data using (a) Matched, (b) Mixed and (c) Mismatched systems. The distributions of

calibrated LLRs and system validity are compared across systems. The imprecision in

LLRs for individual pairs based on class and age variation is compared using 95% CIs.

7.1 Introduction

As highlighted in §2.2.5, it is well known in phonetics and linguistics, particularly

sociolinguistics and sociophonetics, that speech is affected by a wide range of factors

that generate both within- and between-speaker variation (Rose 2002; French et al.

2010). Despite such inherent complexity, the potential logical relevance of socio-

indexical factors beyond sex and language is rarely considered in LR-based testing

(with the exception of Loakes 2006; Zhang et al. 2011). This chapter therefore explores

the extent to which different controls over socio-economic class and age in the definition

of the relevant population affect LR output using the F1∼F3 trajectories of /eI/ (FACE;

Wells 1982) in NZE. Class and age were chosen as illustrative of the socio-indexical

factors which may affect LR output, but which are typically overlooked.
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This chapter replicates the structure of experiments in previous chapters to evaluate

the LR output from a sociolinguistically homogeneous set of test data using three

systems, which represent different definitions of the relevant population: (a) Matched,

(b) Mixed and (c) Mismatched. Each system contains development and reference data

to test the effects of class and age variation at both the feature-to-score and score-to-LR

stages. In each experiment, the distributions of calibrated LLRs and system validity are

compared across systems. As in Chapter 6, the results for both class and age variation

are compared using 95% CIs to assess the imprecision of LLR estimates across systems.

In §7.4, the relative importance of class and age variation is compared with the patterns

for regional variation from Chapter 6.

7.2 Method

7.2.1 /eI/ in New Zealand English

The choice of /eI/ is motivated by known patterns of variation and change in NZE

and the availability of a large amount of acoustic data. There has been considerable

change in the quality of NZE diphthongs over the last century. There is clear evidence

of diphthong shift, attested as far back as 1887, in which the onset element has lowered

and backed from /e/ towards [a ∼ 5] (Ellis 1889; Adams 1904; Maclagan 1982; Gordon

et al. 2004; Sõskuthy et al. in press). Gordon et al. (2004: 149) claim that a second

phase of change involved glide weakening, reducing the amount of articulatory and

acoustic movement between onset and offset. Despite broad processes of change over

time there remains considerable variation in the phonetic realisation of /eI/ in NZE (Hay

et al. 2008).

Hay et al. (2008) distinguish between cultivated and broad varieties of NZE. Variation

in the quality of the closing diphthongs aligns with this distinction. For /eI/, phonetic

variation relates primarily to the onset, which is more open and back in broad NZE

than in cultivated NZE. In terms of the acoustic output, Figure 7.1 predicts that broad

NZE speakers will display higher F1 and lower F2 values at the initial phonetic target

than cultivated NZE speakers. Variation in the position of the onset element also causes
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differences in the amount of articulatory and acoustic movement across the duration of

the vowel within the vowel plane, since the offset position for both groups is predicted

to be in a similar position (close-mid [e]).

Figure 7.1: Schematic representation of variation in the closing diphthongs of cultivated

(above) and broad (below) NZE (adapted from Hay et al. 2008: 97)

7.2.2 Data

Data were extracted from the male speakers in CanCor (§3.1.2). The forced-aligned

phoneme-level TextGrids embedded within LaBB-CAT were inspected relative to the

waveform and spectrogram, and auditory analysis performed. Erroneous segmental

boundaries were manually hand-corrected for target /eI/ tokens. Boundaries were

determined by the criteria in §3.3.1.3. Dynamic data were extracted from the first three

formants of /eI/ using LaBB-CAT (§3.3.1.2) with the script set to find five formants
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within a 0 to 5 kHz range. Along with the raw formant values, the output from LaBB-

CAT also included speaker, year of birth, class, sex, phonological conditioning and

syntactic category. The dataset initially contained 211 male speakers with between one

and 410 tokens per speaker.

A series of heuristic procedures were implemented to correct or remove errors as in

Chapter 4. Broad accept-reject thresholds were firstly applied to all of the data to

remove obvious measurement errors (such as F2 measured as F1). A wide pass-band

for F1 of between 200 and 900 Hz was chosen based on expectations for considerable

movement on the open-close dimension between onset and offset. For F2 a range of

1100 to 2200 Hz was implemented, to capture the maximal amount of potential F2

movement assuming the onset of /eI/ can be central [5] and the offset can be front [I].

For F3, a range of 2000 to 3000 Hz was used. Tokens with values outside of these

ranges were removed.

Given the relatively small number of tokens for most speakers it was not possible to

ensure that the same number of tokens in each phonological context were included

for each speaker. Rather, all tokens with adjacent /l/ and /r/ were removed. The data

also contained multiple tokens of the indirect object a, all of which were removed

since in spontaneous speech it is predicted that these will be reduced to schwa [@].

Given the predicted patterns of class and age variation in §7.2.1, it was considered

preferable, in terms of ensuring accurate formant measurement, to then divide the data

into class-by-age sub-groups. Further heuristic error-removal procedures were then

applied to the separate sub-groups.

7.2.3 Dividing the data

Within ONZE, speakers are classified according to social class, and labelled as either

professional or non-professional based on occupation and education level (Gordon

et al. 2007: 91). A six-point version of the Elley-Irving scale was used as a metric

of occupation level (Elley and Irving 1985). A similar six-point scale adapted from

Gregersen and Pedersen (1991) was used to code for education level. Scores were added

together, with low values representing higher social class. In the ONZE data, those
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classed as professional scored on average between 4 and 4.5, while non-professionals

scored between 8.5 and 9.5. The labels assigned to speakers in the ONZE coding were

used to divide the current data.

Figure 7.2: Density plot of bimodal distribution of year of birth from the entire dataset

(solid) and from the subdivided dataset consisting of speakers born before 1950 and

after 1970 (dashed)

Information relating to age in CanCor was limited to year of birth, although it is possible

to deduce a range for age at the time of recording based on when the recordings were

made. The continuous year of birth variable was converted into a discrete variable

with two levels, older and younger. Across the entire dataset there is a wide age range

with speakers born between 1932 and 1982. The distribution of year of birth is also

bimodal, with a dip around the mean (c. 1960; see Figure 7.2). For the purposes of these

experiments, speakers born after 1970 were classed as younger, and those born before

1950 were classed as older. Speakers born between 1951 and 1969 were removed (c.

50 speakers). The decision to divide the sample in this way ensured that a cliff-edge

turning point at 1960 was avoided.
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The class-by-age classification generated four sub-groups: younger professionals,

younger non-professionals, older professionals, and older non-professionals. After

speakers had been separated into sub-groups, z-scores for each formant measurement

were calculated relative to the pooled mean across all speakers within each sub-group

to remove univariate outliers. Tokens containing a value greater than ±3.29 SDs from

the mean were removed. The sub-groups were analysed separately to preserve patterns

of sociolinguistic variation across groups whilst also removing measurement errors.

7.2.4 Parametric representations

The procedures outlined above removed the most obvious measurement errors. However,

such procedures were reductive in that tokens were removed if any single value did not

fit the criteria. Therefore, a final procedure was implemented to correct more localised

errors without removing tokens from the analysis. Each formant trajectory from each

token was fitted with a cubic polynomial curve (§3.3.1.4). Individual frequency values

with residuals of greater than 50 Hz for F1 and F2 or 100 Hz for F3 (relative to the

fitted value) were then removed (Figure 7.3). These heuristics were determined based

on expectations for the maximal extent of potential movement between adjacent points

in the formant trajectory (separated typically by less than 10 ms). A cubic polynomial

curve was then re-fitted to the remaining data.

Finally, between-speaker z-scores within each class-by-age group were calculated for

each cubic polynomial coefficient from the refitted curve. Tokens with outlying values

of greater than ±3.29 SDs from the group mean were again removed. Speakers with

fewer than eight available tokens were also removed. A minimum of eight tokens per

speaker was chosen after trial and error procedures comparing the trade-off between

number of tokens and maximal number of speakers. The final dataset consisted of

120 speakers with eight tokens per speaker: 33 younger professionals, 31 younger

non-professionals, 32 older professionals and 24 older non-professionals.
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Figure 7.3: Raw F3 values (y) for a single token fitted with a cubic polynomial (y-fit)

(red dashed curve) (above) and values with a residual greater than ±100 Hz identified

(dashed ellipsis) (below)

7.2.5 Variability in the data

The raw data were analysed to assess the extent to which systematic class and age

variation was present. Mean F1, F2 and F3 values were calculated at each +10% step

based on the raw data pooled by class and age. At each +10% step for each formant,

95% CIs were calculated. In this case, the 95% CI is a probabilistic region of a posterior

distribution, where the probability of the mean being contained within the upper and

lower bounds is 0.95. Following Albert (2009: 63), a standard noninformative prior

g(µ, σ2) ∝ 1/σ2 was used to generate the posterior density:

g(µ, σ2|y) ∝ 1

(σ2)
n
2
+1
exp

(
− 1

2σ2
(S + n(µ− ȳ)2)

)
(7.1)
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where:

n = Sample size

ȳ = Sample mean

S =
n∑
i=1

(yi − ȳ)2

A noninformative prior was used due to the lack of prior numerical information about

the distribution of values at each +10% step. Upper and lower bounds of 95% CIs at

each 10% step were calculated using the LearnBayes package in R.21

7.2.5.1 Socio-economic class

Figure 7.4 displays the sample mean and 95% CIs for the trajectories of F1, F2 and

F3 according to class. There was some consistency between the F1 patterns in Figure

7.4 and those predicted in §7.2.1. Although there was considerable overlap between

the CIs at the onset, the upper bound for the non-professional speakers was marginally

higher. This suggests that the first target of /eI/ (located at around the +20% point of the

trajectory) displays a marginally higher mean F1 for the non-professionals indicating a

more open, [A]-like onset position. However, at the second phonetic target (located at

around the +80% step) the F1 mean for the non-professionals was marginally lower

than for the professionals, with almost no overlap in terms of the 95% CIs, indicating a

closer offset position. Therefore, for the non-professionals there is no evidence of glide

weakening, as predicted by Hay et al. (2008).

There was greater separation of the CIs at the onset of F2, with the CI for the profes-

sionals covering a higher F2 range than the CI for the non-professionals. The difference

between the groups in F2 onset indicates a slightly backer realisation of the nucleus

for the non-professionals. However, the magnitude of the mean separation between

groups was relatively small. Further, there was considerable overlap between the groups

at the offset of F2, meaning that non-professionals generally displayed greater F2

movement within the vowel plane compared with professionals. The differences in

absolute frequency at the onset and in overall dynamic implementation are consistent

21Albert, J. (2014). LearnBayes: Functions for Learning Bayesian Inference (version 1.0-4) (R pack-

age). http://cran.r-project.org/web/packages/LearnBayes/index.html (ac-

cessed: 5th September 2014).
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with Hay et al. (2008: 97), suggesting that class differences are manifested not only on

the open-close dimension, but also on the front-back dimension.
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Figure 7.4: Mean F1, F2 and F3 trajectories with 95% CIs plotted by class based on

120 male speakers and eight tokens per speaker

There was considerable overlap in the F3 CIs across both groups. This indicates that

the F3 mean for the two groups was located within roughly the same interval. For

both groups, there was also very little fluctuation in the CIs across the duration of F3,

indicating that the mean F3 trajectory was typically stable between onset and offset.

7.2.5.2 Age

Figure 7.5 displays the sample mean F1, F2 and F3 trajectories with 95% CIs according

to age. Compared with Figure 7.4, the age differences were more marked than the
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class differences. For F1, there was separation of the CIs for the younger and older

groups at different points across the trajectory. The sample mean and the CI for the

older speakers covered higher F1 frequencies at the onset of /eI/ indicating a typically,

more open onset position compared with the younger speakers. However, by the onset

the separation of the CIs had reversed. This indicates that there is on average more

movement across the F1 trajectory for the older speakers than for younger speakers.
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Figure 7.5: Mean F1, F2 and F3 trajectories with 95% CIs plotted by age based on 120

male speakers and eight tokens per speaker

In terms of F2, there was complete separation of the CIs for the younger and older

groups between the onset and approximately the temporal midpoint. The CI for the older

group covered a lower F2 frequency range than that of the younger group, indicating

that the mean onset position for the older speakers had a lower F2, and therefore

possibly a more retracted tongue position. The separation between groups was greatest
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at the +30% step. Towards the offset, the F2 CIs converge, displaying almost complete

overlap between the +60% and +90% steps. As in F1, the F2 trajectories indicate

greater movement within the vowel plane for the older speakers. Finally, there was

considerable separation of the CIs and sample means across the F3 trajectory. The

F3 mean was consistently higher for the younger speakers than for the older speakers.

Further, the F3 trajectory for the younger speakers was extremely stable between onset

and offset, compared with the older speakers where there appeared to be an increase in

the mean between the two phonetic targets at the +20% and +80% steps.

These patterns offer potential evidence of apparent time change, with the formant

differences indicating the typical realisation of /eI/ as [aI] for older speakers and as

[eI] for younger speakers. However, auditory analysis of these data suggests more

subtle differences in realisations across the two groups. The variation in Figure 7.5 is

also, to some extent, consistent with the physiological effects of ageing, with higher

formant frequencies produced by the younger speaker. However, previous research

on real time age differences predicts considerable lowering of F1 and less marked

lowering of F2 and F3 as speakers become older (Wilder 1978; Linville and Rens 2001;

Reubold et al. 2010), which is not the case in these data. Given that neither change

nor physiological ageing account fully for the variation it is assumed that there is some

interaction between the age-related factors. These data do, however, highlight the

complexity and multidimensionality of age as a logically relevant grouping variable for

FVC.

7.2.5.3 Interaction between class and age

Figure 7.6 displays mean F1∼F2 trajectories within the vowel plane plotted for each

class-by-age group. There is clear evidence of differences between the groups in terms

of the onset and offset, as well as the degree of movement within the vowel plane. The

older non-professionals displayed the most open first target (at around the +20% step),

with the older professionals, younger professionals and younger non-professionals

differing primarily on the F2 dimension. Generally, /eI/ was more fronted (i.e. higher

F2) for the younger professionals, who also displayed a more open offset position,

resulting in less F1∼F2 movement across the vowel plane compared with the other
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groups. For the other three groups the offset position was very similar.
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Figure 7.6: F1∼F2 plot of mean /eI/ trajectories according to age and class for 120

speakers based on eight tokens per speaker

7.2.6 Experiment

This chapter reports the results of an experiment which considers the effects of the

definition of the relevant population according to socio-economic class and age. The

structure of this experiment replicates those in §4.3.2, §5.3.1 and §6.3. A single set

of homogeneous (with regard to class and age) test data was used across different

relevant population systems. A single set of homogeneous test data was used to recreate

FVC conditions in which the suspect and offender are typically members of the same

sociolinguistic groups. The test set consisted of 20 speakers identified at random from

the younger professional group. This group was used because it consisted of the largest

number of speakers (33) allowing for separate sets of test and development/reference

speakers. For both class and age, calibrated LLRs for the test set were computed using

three systems based on different definitions of the relevant population (Table 7.1).

The Matched system involved development and reference data consisting of 24 speak-
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ers who matched the test data for class (professional) or age (younger). The Matched

system reflects an appropriate, narrowly defined relevant population according to the

demographic background of the offender. In this case, the defence proposition may be

formulated as: the voice on the offender sample is not that of the suspect, but of another

professional/younger male speaker of New Zealand English.

Table 7.1: Number of development, test and reference speakers used in each system

within each experiment

System Test Development/Reference

Class Matched 20 Younger Profs 24 Profs

Mixed 20 Younger Profs 12 Profs + 12 Non-profs

Mismatched 20 Younger Profs 24 Non-profs

Age Matched 20 Younger Profs 24 Younger

Mixed 20 Younger Profs 12 Younger + 12 Older

Mismatched 20 Younger Profs 24 Older

The Mixed system contained 24 speakers consisting of equal numbers of professionals

and non-professionals, and younger and older speakers. As in previous chapters, the

Mixed system represents the current application of logical relevance to FVC casework,

whereby neither class nor age are controlled (although the numbers of speakers from

each group were balanced). In this case, the defence proposition may be formulated as:

the voice on the offender sample is not that of the suspect, but of another adult male

speaker of New Zealand English.

Finally, the Mismatched system used 24 non-professional or older speakers as de-

velopment and reference data. This represents a narrowly defined but inappropriate

relevant population, based on an incorrect judgement about the class or age of the

offender. In this case, the defence proposition may be formulated as: the voice on

the offender sample is not that of the suspect, but of another non-professional/older

male speaker of New Zealand English. The use of Matched, Mismatched and Mixed

development and reference data ensures that the different definitions of the relevant

population were applied during the feature-to-score stage as well as during score-to-LR

mapping. When varying the definition of class, development and reference data in all
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systems were balanced for age. That is, the Matched and Mismatched sets consisted

of equal numbers of younger (12) and older (12) speakers. Similarly, when varying

the definition of age, development and reference data were balanced for class, with

equal numbers of professionals (12) and non-professionals (12) used in the Matched

and Mismatched sets. The same Mixed data, consisting of six speakers from each

class-by-age combination, were used for both the class- and age-based experiments. In

all cases, the 24 Matched, Mismatched and Mixed speakers were identified at random

from the appropriate class-by-age sub-group.

Cross-validated (§3.2.2.3) SS (24) and DS (276) scores were initially computed for the

Matched, Mismatched and Mixed development sets based on the suspect and offender

data (four tokens each) using MVKD (§3.2.2.1). The input data consisted of four

polynomial coefficients per formant, generating a 12 dimensional density function

for the suspect and reference data. Due to the relatively small amount of available

reference data (in terms of both N speakers and N tokens) and the high dimensionality

of the input variable (12 dimensions), the experiments were also repeated using a

multivariate normal LR approach (i.e. modelling with reference data with a multivariate

normal distribution). This produced the same comparative patterns across conditions as

reported in §7.3 but generally much weaker LLRs and worse overall performance.

SS (20) and DS (190) MVKD scores for the 20 test speakers were then computed using

the Matched, Mismatched and Mixed reference sets (24 speakers) to generate three sets

of parallel scores for both the class and age conditions. The distributions of SS and

DS scores for each of the three sets of development data per condition were used to

train a logistic regression calibration model for each system (§3.2.4.1). The calibration

coefficients for each system were then applied to the appropriate set of test scores

(for each system) to convert the scores to LLRs. Results are evaluated in terms of the

distributions of LLRs and overall system validity (EER and Cllr). As in Chapter 6, the

imprecision of LLRs from the same comparisons across different systems is captured

using 95% CIs, which are compared across the class- and age-based results in §7.3.3.
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7.3 Results

7.3.1 Socio-economic class

Figure 7.7 displays the Tippett plot of LLRs according to class-based definitions of the

relevant population. The distributions of SS LLRs were similar across the three systems.

In all cases, the median SS LLR was between zero and +1 (limited support for the

prosecution), although in absolute terms the Matched median (+0.73) was marginally

stronger than that for the Mismatched (+0.50) and Mixed systems (+0.58). There

were small differences in terms of contrary-to-fact SS LLRs, with the Mixed system

producing the strongest support for the defence (as low as -0.73). The Mismatched

system produced the weakest contrary-to-fact SS LLRs (up to -0.15), as well as the

lowest proportion of contrary-to-fact SS LLRs (5%).

Figure 7.7: Tippett plot of SS and DS LLRs using the three class-based systems
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Slightly larger differences between systems were revealed for DS LLRs. The Matched

median (-1.04) was one order of magnitude stronger than the Mismatched median

(-0.21), indicating that the Matched system generally produced the strongest DS LLRs.

The Mixed median was marginally weaker (-0.93) than that of the Matched system.

For both the Mismatched and Mixed systems, the difference with the Matched system

was equivalent to the difference between limited (Mismatched/Mixed) and moderate

(Matched) support for the defence. However, in absolute terms, the numerical difference

between the Mixed and Matched medians was extremely small. The highest magnitude

contrary-to-fact values were generated by the Matched system (up to +1.55), while

the weakest contrary-to-fact LLRs were produced by the Mismatched system (as low

as +0.77). However, the Mismatched system also produced the highest proportion of

positive DS LLRs (37.4%).
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Figure 7.8: Cllr plotted against EER (%) for each of the three class-based systems

Figure 7.8 displays EER (%) and Cllr values for each of the three class-based systems.

The Matched system generated the best EER (15.13%), followed by the Mixed system

(19.21%) and finally by the Mismatched system (20%). While the performance of

the Matched system was markedly better than the Mismatched or Mixed systems, the

absolute EER difference between the Mixed and Mismatched systems was relatively
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small. The same ordering of systems was found for Cllr. The best performing system

was the Matched system with a Cllr of 0.51. The most divergent performance from the

Matched system was found for the Mismatched system, which produced the highest

Cllr value (0.66). Consistent with the distributions of LLRs in Figure 7.7, the Cllr for

the Mixed system (0.57) was much closer to that of the Matched system. Despite this,

validity was still worse using the Mixed system.

7.3.2 Age

Figure 7.9 displays the Tippett plot of LLRs for the three age-based systems. The

general patterns were similar to those in §7.3.1, although the absolute differences

between systems were smaller. SS medians across all three systems were within the

same order of magnitude, between zero and +1 (limited support for the prosecution:

Matched = +0.59; Mismatched = +0.67; Mixed = +0.58). The overall ranges of SS

LLRs were also comparable, with values extending maximally to above +1 but below

+2 (moderate support). The Mismatched system produced no contrary-to-fact SS LLRs.

While the magnitude of the contrary-to-fact LLRs in the Matched and Mixed set were

all within the range of zero and -1, the strongest contrary-to-fact SS LLRs, in absolute

terms, were generated using the Mixed system.

Similar patterns to those in §7.3.1 are revealed in the distributions of DS LLRs. Median

DS LLRs were all within the same order of magnitude, between zero and -1 (limited

support for the defence), although the absolute numerical differences were greater

than for the SS LLRs. The median was weakest using the Mismatched data (-0.11),

suggesting that LLRs based on the Mismatched system generally offered weaker support

for the defence compared with the Matched and Mixed systems. The distribution of

Mixed DS LLRs was much closer to that from the Matched system. The magnitudes

of contrary-to-fact LLRs were, however, similar across the three systems, producing

values consistently lower than +1 (limited support for the prosecution). As in §7.3.1,

the proportion of contrary-to-fact DS LLRs was greatest using the Mismatched system.
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Figure 7.9: Tippett plot of SS and DS LLRs using the three age-based systems

Finally, Figure 7.10 displays system validity for each of the three age-based systems.

The EER values pattern slightly differently from those in Figure 7.10. The best EER

performance was found for the Mixed system (19.21%), followed by the Matched

(20.79%) and Mismatched (29.47%) systems. In absolute terms the difference between

the Mixed and Matched EERs was very small, while the differences between the

Mixed/Matched and the Mismatched EERs were more considerable. The Cllr values

were, however, consistent with the patterns in §7.3.1. The best performing system was

again the Matched system (0.56), although the Mixed system produced a Cllr of almost

equal magnitude (0.57). This indicates that the overall performance of the system using

Mixed data was considerably closer to that using Matched data, compared with using

Mismatched data. The highest Cllr was again generated by the Mismatched system

(0.71).
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Figure 7.10: Cllr plotted against EER (%) for each of the three age-based systems

7.3.3 Reliability

Figure 7.11 displays Tippett plots of mean SS and DS LLRs with 95% CIs based on

the output from the Matched, Mismatched and Mixed systems for class (left) and age

(right). For both class and age, the width of the 95% CIs increased as the magnitude

of the LLRs increased. Since the DS pairs generated larger magnitude LLRs than SS

pairs, the CIs for the DS LLRs were generally wider than the CIs for the SS LLRs.

Differences between the class and age results were also found. As shown in Figure

7.11, the 95% CIs were marginally narrower (particularly for DS LLRs) for age (mean

CI = ±0.95) than for class (mean CI = ±1.12). This is consistent with the slightly

smaller differences between systems in the Tippett plots in Figures 7.7 and 7.9. The

difference in the mean 95% CIs suggests that individual comparisons were generally

more sensitive to variation in class than variation in age, although the absolute difference

in the mean CIs was relatively small.
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Figure 7.11: Tippett plots of mean SS (light) and DS (dark) LLRs and 95% CIs across

the three systems based on class (left; red) and age (right; blue)

7.3.4 Systematic patterns or random variation?

The results in §7.3.1-§7.3.3 have revealed differences in the distributions of LLRs

and system validity as a function of the class- or age-based definition of the relevant

population. However, it is not clear whether these patterns are an inherent property of

using Matched, Mismatched and Mixed data or reflect random variation as a function

of sample size. To test this issue, the experiment was re-run 20 times using speakers

sampled randomly from the appropriate class-by-age subsets. In each replication, the

speakers used as test data and Matched, Mismatched and Mixed system data changed,

although sample size remained constant (20 test speakers; 24 development/reference

speakers). The test data again contained young professionals and was the same for the

class- and age-based conditions in each replication. The results of the replications are

evaluated against the main patterns in §7.3.1-§7.3.3.

Socio-economic class

Figure 7.12 displays the distributions of median LLRs for each system based on the 20

replications. As in §7.3.1, the SS median LLRs across all systems were within the range
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of zero and +1, although in absolute terms the medians were marginally stronger for

the Matched system than for the Mismatched and Mixed systems. The results of §7.3.1

and the replications were also broadly consistent with regard to the patterns for DS

LLRs. The weakest median DS LLRs were produced by the Mismatched system. While

the Mixed and Matched medians were more similar, the Matched system generally

produced stronger DS median values across the replications. However, the differences

between the systems in terms of DS medians were smaller than suggested in Figure 7.7.
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Figure 7.12: Boxplots of median SS and DS LLRs for the three class-based systems

across the 20 replications

In §7.3.1, the Matched system produced the best EER and Cllr values, followed closely

by the Mixed system, while much worse performance was found for the Mismatched

system. The same patterns were also found in the replications (Figure 7.13). Both

EER and Cllr were generally best using the Matched system. Although the Mixed

median EER and Cllr values across the replications were similar to those from the

Matched system, the interquartile range indicates that values were generally marginally

higher using the Mixed system. As in §7.3.1, validity was generally worst using the

Mismatched data, producing the highest Cllr value in 16 of the 20 replications.
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Figure 7.13: Boxplots of the distributions EER (left) and Cllr (right) values for the three

class-based systems across the 20 replications

Age

In §7.3.2 the distributions of LLRs were found to be more stable across systems than

in §7.3.1, although somewhat weaker DS LLRs were again found for the Mismatched

system. Figure 7.14 displays the distributions of median LLRs for each age-based

system across replications. Consistent with §7.3.2, in the replications SS medians

were found to be stable across the three systems with values typically fluctuating

between +0.4 and +0.6. The patterns in §7.3.2 were also found for DS LLRs, with the

interquartile range of medians for the Mismatched system much closer to zero than

those of the Matched and Mixed systems. This suggests that DS evidence was generally

weakest using the Mismatched system. The DS medians were marginally stronger for

the Matched system than for the Mixed systems, although across all systems the DS

medians were within the range of zero and -1 (with the exception of three outlying

values).
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Figure 7.14: Boxplots of median SS and DS LLRs for the three age-based systems

across the 20 replications

In §7.3.2, the Mixed system produced the best EER. The Matched system produced

a marginally higher EER value (difference = 1.58%), while the reverse ordering was

found for Cllr. For both EER and Cllr, however, the Mismatched system produced

the worst validity. These patterns were also found across the replications (Figure

7.15). Although there was considerable overlap in the interquartile ranges of EER

values, the median EER was lowest for the Mixed system, followed by the Matched

and Mismatched systems. The distributions of Cllr values were very similar across

the Matched and Mixed systems, although the median was marginally lower for the

Matched system. The Mismatched system consistently achieved higher Cllr values.

However, the absolute differences between the three systems in terms of both EER and

Cllr were less than those found in §7.3.2.
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Figure 7.15: Boxplots of the distributions EER (left) and Cllr (right) values for the three

age-based systems across the 20 replications

7.4 Discussion

The results in §7.3.1 and §7.3.2, supported by the multiple replications in §7.3.4, reveal

a number of effects of using different definitions of the class- and age-based relevant

population on LR output. For class, the results of §7.3.1 and the replications suggest that

the distribution of SS LLRs was relatively stable across different relevant population

systems, although in numerical terms the SS LLRs may be marginally stronger using

Matched data. §7.3.1 suggests that the distribution of DS LLRs was shifted closer to

zero (i.e. weaker evidence) using Mismatched data. As shown in §7.3.1, a consequence

of this is that the Mismatched system also produced highest proportion of contrary-to-

fact DS LLRs. In the replications, a similar pattern was found whereby DS medians

were generally closer to zero using the Mismatched data. However, the magnitudes of

the differences were much smaller than in §7.3.1, with all medians within the range of

zero and -1.

For age, both §7.3.2 and the replications in §7.3.4 indicate that the distribution of

SS LLRs was relatively stable across the three systems, with the median value in the

replications fluctuating within a range of just 0.2. In terms of DS LLRs, a similar
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pattern was found for age as that found for class. The distribution of DS LLRs was

closer to zero (i.e. weaker evidence) using the Mismatched data compared with the

Matched and Mixed systems, which generated similarly strong LLRs. However, the

differences between the systems in terms of the distributions of DS LLRs were smaller

for age than for class. Potential explanations for the patterning of SS and DS LLRs in

these experiments, along with comparison of consistent patterns across this chapter and

Chapters 4, 5 and 6 are discussed at §11.1.

Despite the relatively small differences across systems in terms of the distributions of

LLRs, the 95% CIs suggest that differences in the definition of the relevant population

with regard to class or age may have a substantial effect on the magnitude of the

resulting LLR. For example, for the strongest mean DS LLR (-7.97) in §7.3.1 (class),

the 95% CI was ±2.66, while the CI for strongest mean SS LLR was ±1.04. As this

example highlights, imprecision was greater for DS pairs than for SS LLRs. This

finding is consistent with the CI results in Chapter 6. The results in §7.3.3 also reveal

that individual comparisons were marginally more sensitive to the different relevant

population systems for class-based variation (mean 95% CI =±1.12) than for age-based

variation (mean 95% CI = ±0.95). The CIs based on class and age in this chapter

were also considerably narrower than the CIs in Chapter 6, indicating that regional

variation has a more considerable effect on LR output than class or age variation.

However, this pattern is not necessarily generalisable to other FVC variables since the

relative importance of regional background, class and age is, of course, determined on

a variable-by-variable basis.

Marked differences were found between relevant population systems in terms of valid-

ity. For class, both §7.3.1 and the replications suggest that optimal EER performance

was achieved using Matched data, followed by the Mixed system, although the abso-

lute difference between these systems was rather small. For age, the Mixed system

outperformed the Matched system in terms of EER, although again the differences

were extremely small. However, for class and age the Mismatched system consistently

produced the highest EER. In terms of Cllr the same patterns were found across both

experiments in terms of the data in §7.3.1 and §7.3.2, as well as the replications in

§7.3.4. The Matched systems consistently produced the best Cllr, followed closely by
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the Mixed system. As with EER, the worst Cllr validity was consistently found using

the Mismatched data.

While these results do indicate patterns of divergence across the systems, the effects

on LR output were somewhat smaller than expected based on the predictions in §7.2.1.

There are a number of potential reasons for this. Firstly, the range of acoustic-phonetic

variation in the data was rather less marked that the descriptive literature had suggested.

Secondly, the relatively small number of tokens per speaker means that the magnitude

of the LRs will necessarily be relatively low, thus offering a narrower range of potential

variation across systems. Thirdly, the results suggest that /eI/ offers relatively weak

strength of evidence meaning that LLRs are inherently closer to zero (neutral evidence).

Again, this reduces the range of potential variation across the three systems. However,

these factors do not account for the fact that there are bigger differences between

systems in terms of the magnitude of LLRs for class than for age, despite more marked

age-based variation in the raw data (§7.2.5). This issue is discussed in §11.1.

7.5 Chapter summary

Based on systematic patterns across the results of §7.3.1-§7.3.3 and the replications at

§7.3.4:

Socio-economic class

• SS LLRs marginally strongest using the Matched system.

– Although medians consistently within the range of limited support for the

prosecution across systems.

• Marginally weaker strength of DS evidence using Mismatched data with LLRs

shifted towards zero relative to the Matched and Mixed sets.

– Although medians consistently within the range of limited support for the

defence across systems.
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• Lowest EER and Cllr values found using the Matched system, followed by the

Mixed system and then by the Mismatched system.

Age

• Distribution of SS LLRs stable across systems with medians fluctuating within a

range of 0.2 (limited support for the prosecution).

• DS LLRs weakest using the Mismatched system.

– Although medians consistently within the range of limited support for the

defence across systems.

• EER generally better for Mixed system than Matched, although absolute differ-

ences extremely small.

• Cllr generally better for Matched system than Mixed, although absolute differ-

ences extremely small.

• Across both EER and Cllr the Mismatched system produced the worst perfor-

mance.

General conclusions

• LR output from the Mixed systems generally relatively close to that of the

Matched systems.

– Output from the Mismatched systems most divergent from the Matched

systems.

• 95% CIs reveal potentially considerable variability in LLRs for individual com-

parisons across systems.

– Comparisons which generate high magnitude LLRs most affected.

– DS comparisons more affected than SS comparisons (i.e. larger mean 95%

CI).

• LR output more affected by variation in class than variation in age.
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Chapter 8

Reference Sample Size: Raw Data

This chapter explores the effects of reference sample size on LR output. Using the

formant trajectory data for /u:/ and /aI/ from Chapters 4 and 5, the results of two

experiments are presented which address the issues of (1) the number of reference

speakers and (2) the number of tokens per reference speaker in LR-based FVC. In

both experiments, scores were computed as sample size (N speakers/ tokens) was

systematically increased. At each stage, system validity (EER and Cllr) was calculated.

In §8.4, the results are compared across the two phonemes.

8.1 Introduction

As outlined in §2.5, a substantial practical issue for the application of the numerical

LR framework to FVC is the amount of data needed to generate precise estimates of

strength of evidence and to adequately test system performance. The limited amount

of previous research in this area (e.g. Ishihara and Kinoshita 2008) has focused on the

estimation of between-speaker variation in the relevant population, through analyses

of the sensitivity of LR output to the number of reference speakers. These studies

are generally consistent in their findings, suggesting that the magnitude of the LR is

misrepresented and considerably more variable when using small numbers of reference

speakers.

The issue of the number of reference speakers used in LR testing is particularly relevant
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when using MVKD (§3.2.2.1) to compute scores. This is because, as highlighted in

Equation 3.1, the value for h, the smoothing parameter for the between-speaker KD,

is “determined by a function of the number of groups (speakers) in the background”

data (Morrison 2011a: 243). More generally, as highlighted in Rose (2013a), the

degree of precision with which multivariate densities are modelled is proportional to

the number of reference speakers and the number of dimensions per variable. That is,

the more multidimensional the variable, the more reference speakers are needed for the

multivariate model to be adequately precise. Therefore, individual FVC variables are

expected to display different levels of sensitivity to the number of reference speakers

used. Highly multidimensional variables are predicted to be more sensitive to small

reference samples, meaning that stable LR output is achieved with more reference

speakers than for variables with fewer dimensions.

A second issue relating to sample size is the number of tokens per reference speaker.

This issue is of particular concern when computing LRs using speaker-dependent

methods, such as MVKD, in which the distributions of values from each reference

speaker are used to generate the model of the reference data. This can be seen in

Equation 3.1, in which within-speaker means from the reference data (x̄i) are used to

build the between-speaker KD model. Thus, a sufficient number of tokens per speaker

are required in order for the estimation of x̄i to be precise. This is an issue which has

received little attention in LR-based research. Predictions of the potential effects of the

number of tokens per speaker are the same as those for the number of speakers. LR

output is expected to be highly unstable with small numbers of tokens per speaker and

become increasingly more precise as the amount of data per speaker increases.

This chapter describes the results of two experiments. Experiment (1) investigates LR

output as a function of the number of reference speakers. However, unlike in previous

research, EER and Cllr were tested as the number of reference speakers increased.

Experiment (2) considers the effects of the number of tokens per reference speaker

on LR output. These experiments are the first to consider issues of sample size using

highly multivariate formant trajectory data: specifically cubic polynomial coefficients

from the formant trajectories of /u:/ (F1 and F2; eight dimensions) and /aI/ (F1∼F3; 12

dimensions). Further, these experiments develop on previous studies by considering the
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comparative performance of two phonemes to test the relationship between sample size

sensitivity and dimensionality.

8.2 Method

In this chapter the /u:/ data from Chapter 4 and the /aI/ data from Chapter 5 were used

as input.

8.2.1 Data

8.2.1.1 /u:/

The /u:/ data consisted of cubic polynomial coefficients from F1 and F2 trajectories

(eight dimensions). The eight NZ, eight Manchester, eight Newcastle and eight York

used as test data in §4.3.1 were combined to create a single set of test data. This

remained constant across all sample size conditions. Input data for each test speaker

were 16 tokens in the four phonological conditions in Table 4.1. The available reference

data consisted of an expanded version of the reference data used in §4.3.1, containing

120 NZE speakers with 10 tokens per speaker. In Experiment (1) (§8.3.1.1), scores

were computed for the 32 test speakers using between ten and 120 reference speakers.

In Experiment (2) (§8.3.2.1), scores were computed using the reference set of 102

speakers from §4.3.1 and up to 13 tokens per speaker.

8.2.1.2 /aI/

The /aI/ data consisted of cubic polynomial coefficients from F1∼F3 trajectories (12

dimensions). The eight speakers from each of the regional varieties (DyViS, Derby,

Newcastle and Manchester) used in Chapter 5 were combined into a single set of

test data. Data for each test speaker consisted of 10 tokens with broad controls over

phonological context (see §5.2.3). The remaining 89 DyViS speakers with 10 tokens

per speaker were used as reference data. In Experiment (1) (§8.3.1.2), scores were

computed using between ten and 89 reference speakers. In Experiment (2) (§8.3.2.2),
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scores were computed using all 89 reference speakers and between two and ten tokens

per speaker.

8.2.2 Experiments

In Experiment (1), SS (32) and DS (992) scores were computed firstly using ten random

reference speakers. The same comparisons were repeated as the number of reference

speakers increased monotonically up to the maximum number of speakers available

(/u:/ = 120, /aI/ = 89). At each stage the speaker added to the reference data was

chosen at random. In Experiment (2), scores were computed initially using the first

two tokens per reference speaker. A similar loop to that in Experiment (1) was then

run, in which scores were computed after the addition of a single token per speaker up

to the maximum number of tokens available (/u:/ = 13, /aI/ = 10). Tokens were added

according to their position in the original recordings, with those produced earlier added

first. This was intended to recreate variable sample length in FVC casework. Therefore,

no control was made for the adjacent phonological context of tokens included at each

stage.

MVKD (§3.2.2.1) was used to compute scores for both experiments. The effects of

sample size were assessed using the distributions of SS and DS scores. System validity,

in terms of EER and Cllr, was also assessed as a function of sample size. In §8.4, the

results of the two experiments are compared across the two phonemes. Given the mix

of regional dialects in each of the test sets (i.e. for both /u:/ and /aI/) and the lack of

calibration, the range of scores is expected to be relatively large even when using the

maximum available amount of reference data. Therefore, the distributions of scores

and assessments of validity are not expected to be comparable with more forensically

realistic systems based on /u:/ and /aI/ which use more sociolinguistically homogeneous

test data.
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8.3 Results

This section presents the results of Experiments (1) (§8.3.1) and (2) (§8.3.2). Following

Rose (2012), the most precise system is assumed to be that with the largest amount of

data and this is used as a baseline against which the results for other N speakers and N

tokens conditions are compared. For both experiments, the results based on /u:/ input

are assessed firstly, followed by the results for /aI/.

8.3.1 Experiment (1): Number of reference speakers

8.3.1.1 /u:/
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Figure 8.1: Boxplots (mid line = median, filled box = interquartile range (containing

middle 50% of the data), whiskers = scores outside the middle 50%, dots = outliers;

following Rose 2012) of SS scores based on /u:/ as a function of the number of reference

speakers with the y-axis scaled to between +5 and -5 (outliers with ten speakers extent

to -16)

Figure 8.1 shows the distributions of SS scores as a function of the number of reference

speakers based on /u:/ input. With ten reference speakers the median score was negative,

offering limited support for the defence. The median SS score became positive with
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more than 15 reference speakers and continued to increase as a function of the number

of speakers. The overall range of SS scores also narrowed as sample size increased.

The proportion of contrary-to-fact (negative) SS scores was considerably higher with

smaller numbers of reference speakers. However, with the inclusion of more than

30 speakers, SS scores became more robust to sample size and their distribution was

essentially equivalent to that achieved using the maximum amount of reference data.
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Figure 8.2: Boxplots of DS scores based on /u:/ as a function of the number of reference

speakers with the y-axis scaled to between +2 and -10 (for all N speakers outliers

extend to -20, with outliers using 10 speakers extending to almost -40)

Figure 8.2 displays the distributions of DS scores according to the number of reference

speakers. The DS median was more sensitive to the size of the reference data. The

median was two orders of magnitude stronger (i.e. negative) using ten reference

speakers compared with the 120-speakers system. Using the smallest amount of

reference data, the median score was equivalent to strong support of the defence. With

the inclusion of between 15 and 120 speakers there was minor fluctuation in the median

within the range of -1 to -2 (moderate support). As with SS pairs, the widest range

and highest proportion of contrary-to-fact DS scores were found using the smallest

amount of reference data. With more than 30 speakers the distributions of DS scores

appeared to stabilise, although there was still some increase in the interquartile range

and decrease in the proportion of errors after this point.
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Considering the results on a comparison-by-comparison basis, the addition of certain

individuals to the reference data clearly has a greater effect on scores than others. This

may be due to the relative lack of phonological conditioning in the reference data.

Given that certain reference speakers may have greater numbers of post-/j/ tokens, their

addition may have a more substantial effect on the overall reference distribution. This

may in turn serve to make pairs of target samples more or less typical relative to the

background data.

Figure 8.3: EER (%) based on /u:/ as a function of the number of reference speakers

The effect of the number of reference speakers on EER is shown in Figure 8.3. The

highest EER (37.6%) was achieved with the smallest number of speakers. This reflects

the high proportion of contrary-to-fact SS and DS scores using small amounts of

reference data. Between ten and 20 reference speakers, there was marked improvement

in EER followed by fluctuation within a range of around 10% (between 22% and 32%)

when using between 20 and 60 reference speakers. There was an overall trend for an

improvement in EER with the inclusion of more data, highlighted by the fact that the

lowest EER was achieved using all available reference speakers (19.1%).

Figure 8.4 shows Cllr as a function of the number of reference speakers. As with EER,

the worst performing system was that based on the smallest amount of reference data.
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With ten speakers, Cllr was considerably higher than unity (> 5) indicating very bad

system validity. This reflects the high magnitude of contrary-to-fact SS scores, which

in one outlying case was less than -16. Cllr improved markedly with the inclusion of

more speakers, such that validity appeared more stable by the inclusion of 20 reference

speakers. However, even with more than 20 reference speakers, validity continually

improved with the inclusion of more reference data (Figure 8.4; right).

Figure 8.4: Cllr based on /u:/ as a function of the number of reference speakers in all

conditions (left) and with between 20 and 120 speakers with linear trend (right)

8.3.1.2 /aI/

Figure 8.5 displays the distributions of SS scores using /aI/ as a function of the number

of reference speakers (between ten and 89). The system based on all available reference

data (89 speakers) achieved a median score of +2.84 (moderately strong support for

the prosecution). However, when using the smallest amount of available data (10

speakers), the median was considerably weaker, offering moderately strong contrary-

to-fact support for the defence (i.e. negative). With ten reference speakers a higher

proportion of contrary-to-fact SS scores was also found. Although the general patterning

in Figure 8.5 is similar to that for /u:/ (Figure 8.1), SS output for /aI/ was found to be

much more sensitive to the increase in sample size. Between 25 and 45 speakers, the
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median score continued to increase, such that with 45 speakers the median was one

order of magnitude higher (+3.56) than with 89 speakers (+2.84). This is equivalent

to the difference between moderately strong (89 speakers) and strong support (45

speakers). Only with the inclusion of 55 or more speakers did the distributions of SS

scores appear to become stable.
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Figure 8.5: Boxplots of SS scores based on /aI/ as a function of the number of reference

speakers with the y-axis scaled to between 10 and -5 (outliers with 10 speakers extent

from c. +13 to -21)

Figure 8.6 shows the distributions of DS scores for /aI/ as a function of sample size.

The DS median was seven orders of magnitude stronger with ten reference speakers

than with 89 speakers. The overall range of DS scores was also considerably wider

when using ten speakers with values ranging from +10 to -80, compared with +12 to

-55 using 89 speakers. As for the SS scores, DS output based on /aI/ was more sensitive

to sample size variation than /u:/. With the inclusion of between 15 and 50 speakers,

the median strength of evidence was up to two orders of magnitude weaker than with

89 speakers. The distribution of DS scores only stabilised with the inclusion of more

than 55 speakers. In terms of verbal equivalents, such sensitivity to sample size is

less problematic for DS scores than for SS scores, since the majority of scores were

consistently equivalent to very strong support for the defence, irrespective of absolute

numerical differences.
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Figure 8.6: Boxplots of DS scores based on /aI/ as a function of the number of reference

speakers with the y-axis scaled to between +5 and -20 (outliers with ten speakers extent

from c. +10 to -80)

The highest EER (25%) was found using the smallest number of speakers, reflecting

the high proportion of contrary-to-fact SS scores (Figure 8.7). As in Figure 8.3, EER

became relatively stable after the inclusion of 30 reference speakers, although some

random variation was found after this point within a range of around 3%. The reason for

this is that a proportion of the SS and DS scores were situated around zero (threshold)

such that small changes in the make-up of the reference data can cause positive values

to become negative and vice-versa. In numerical terms, the differences between positive

and negative scores located around zero can be extremely small, despite their relatively

large effects on categorical validity.
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Figure 8.7: EER (%) based on /aI/ as a function of the number of reference speakers

With fewer than 22 reference speakers, Cllr was considerably greater than one (Figure

8.8), consistent with the high magnitude of the contrary-to-fact SS scores when using

small numbers of reference speakers. This reflects extremely bad system validity. There

was a marked improvement in Cllr between ten and 30 speakers, consistent with the

pattern for /u:/. However, the lowest Cllr (best validity) was achieved using 34 reference

speakers (0.499), reflecting the reduced range of SS scores and therefore reduced

magnitude of contrary-to-fact scores between 25 and 35 speakers. Unlike /u:/, no linear

improvement in Cllr was found for /aI/ as the number of reference speakers increased.

Rather, there was an increase in Cllr between 34 and 42 speakers, followed by random

variation around 0.7 up to 89 speakers.
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Figure 8.8: Cllr based on /aI/ as a function of the number of reference speakers in all

conditions (left) and with between 20 and 89 speakers (right)

8.3.2 Experiment (2): Number of tokens per reference speaker

8.3.2.1 /u:/

The distributions of SS scores for /u:/ according to the number of tokens per reference

speaker are shown in Figure 8.9. The median SS score was somewhat weaker with

two tokens per reference speaker compared with 13 tokens, equivalent to the difference

between limited and moderate support for the prosecution. The range of scores in the

two-tokens condition was also considerably greater than in any other condition due to

the proportion of contrary-to-fact values. Between three and 13 tokens the median SS

score remained relatively stable, fluctuating within a range of +1 to +2. There was some

instability in the interquartile and overall ranges as the amount of data increased. Most

notably, the effects can be seen in the most negative outlying value, which increased by

three orders of magnitude (from strong to limited contrary-to-fact evidence) between

the five- and 13-tokens conditions.
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Figure 8.9: Boxplots of SS scores based on /u:/ as a function of the number of tokens

per reference speaker with the y-axis scaled to between +3 and -1 (outliers extend to c.

-10 using two tokens per reference speaker)
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Figure 8.10: Boxplots of DS scores based on /u:/ as a function of the number of tokens

per reference speaker with the y-axis scaled to between +2 and -10 (outliers across all

conditions extend to > -10, with outliers of up to -30 using two tokens per speaker)

Variation in DS scores (Figure 8.10) as a function of the number of tokens per reference

speaker was found to be more systematic. Median DS scores offered considerably
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greater support for the defence with small amounts of data per speaker. Between two

and 13 tokens, the strength of evidence decreased by the equivalent of two orders of

magnitude from strong to moderate support for the defence. The range of DS scores

was greatest when using smaller numbers of tokens per speaker, with outlying DS

scores decreasing in strength by as many as ten orders of magnitude between two and

13 tokens. However, DS scores became more stable with the inclusion of more than

eight tokens, where the distribution of scores was very similar to that using 13 tokens.

While the magnitude of the strongest contrary-to-fact score decreased as sample size

increased, the percentage of false hits increased slightly as a function of the number of

tokens.

Figure 8.11: EER (%) based on /u:/ as a function of the number of tokens per reference

speaker

EER was relatively unstable as the number of tokens per speaker increased, displaying

no systematic pattern as a function of sample size (Figure 8.11). This is consistent

with the fluctuation in the proportion of SS scores offering support for the defence

across conditions in Figure 8.9. Figure 8.12, however, displays a systematic pattern

of variation in Cllr as a function of sample size. Validity was worst with two tokens

per speaker (Cllr > 2). As the number of tokens increased, Cllr improved such that the
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best validity was achieved using all 13 tokens per speaker. The biggest improvement in

Cllr occurred between two and six tokens per speaker, with only marginal improvement

after this point.

Figure 8.12: Cllr based on /u:/ as a function of the number of tokens per reference

speaker

8.3.2.2 /aI/

Unlike in Figure 8.9, SS scores using two tokens per speaker based on /aI/ input were

considerably stronger in magnitude than when using three or more tokens (Figure 8.13).

Compared with the median SS score of +2.84 using ten tokens, the median using two

tokens was almost 20 times stronger. As the number of tokens per speaker increased,

the overall magnitude of SS scores decreased. However, at no point between three

and nine tokens per speaker was the median within the same order of magnitude as

that based on ten tokens. In terms of the overall range, the distribution of scores was

relatively stable with the inclusion of more than six tokens per speaker.
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Figure 8.13: Boxplots of SS scores based on /aI/ as a function of the number of reference

speakers with the y-axis scaled to between 10 and -5 (outliers with 10 tokens per speaker

extent from c. +13 to -21)
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Figure 8.14: Boxplots of DS scores based on /aI/ as a function of the number of

reference speakers with the y-axis scaled to between +5 and -20 (outliers with two

tokens per speaker extent from c. +167 to -136)

A different pattern from that in Figure 8.10 was found for DS scores using /aI/ (Figure

8.14). At no point across conditions was the distribution of DS scores particularly
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stable. The median DS score using two tokens per speaker was +9.875, reflecting the

fact that the majority of DS comparisons produced high magnitude contrary-to-fact

support for the prosecution. Between three and ten tokens, there was a decrease in the

median strength of evidence, although at no point between three and nine tokens was

the median within the same order of magnitude as when using ten tokens. When using

two tokens per speaker, the overall range of scores was considerably wider compared

with the ten-tokens system. Although the range decreased as sample size increased,

the strength of contrary-to-fact scores remained relatively stable across conditions

(maximally around +12).

Figure 8.15: EER (%) based on /aI/ as a function of the number of tokens per reference

speaker

Figure 8.15 shows that EER was highest (c. 25%) when using the smallest amount of

reference data (two tokens per speaker). There was a marked improvement in EER as

the number of tokens increased, although the lowest EER was found with five tokens.

However, EER can be considered stable with the inclusion of more than six tokens per

speaker. Similarly, an extremely high Cllr was found when using two tokens per speaker

(31.54) (Figure 8.16). This is consistent with the large proportion of extremely large

magnitude contrary-to-fact DS scores. There was marked improvement in Cllr as the
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number of tokens increased, with values of less than one achieved by the inclusion of

four tokens. Cllr was also found to stabilise with the inclusion of six or more tokens per

speakers, although the lowest Cllr (0.62) was achieved with seven tokens per reference

speaker. This is considered a random vagary the dataset, rather than a systematic

pattern.

Figure 8.16: Cllr based on /aI/ as a function of the number of tokens per reference

speaker

8.4 Discussion

The results presented in Experiment (1) (§8.3.1) support Ishihara and Kinoshita’s claim

that LR precision is “heavily compromised if the population data (are) limited to a small

number of speakers” (2008: 1941). For both datasets, scores were misrepresentative

and unstable with between ten and 20 reference speakers, relative to the scores using

all of the available data. In particular, SS scores were generally found to be weaker

and DS scores stronger with considerably wider ranges when using small amounts of

reference data. The magnitude of SS scores also increased, while the magnitude of DS
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scores decreased as sample size increased. The direction of these effects are consistent

with Ishihara and Kinoshita (2008: 1942).

There were, however, differences between /u:/ and /aI/ in terms of the sample size

sensitivity. As in Ishihara and Kinoshita (2008), SS and DS scores for /u:/ were found

to stabilise with the inclusion of more than 30 speakers. However, scores for /aI/ were

found to be considerably more sensitive to the number of reference speakers. With

more than 30 speakers, large differences were still found in the median SS and DS

scores and the overall range of scores relative to the 89-speakers system. For both SS

and DS pairs, stability in the distribution of scores was only achieved using more than

55 reference speakers.

In terms of validity, for both /u:/ and /aI/, EER and Cllr were markedly higher with very

small numbers of speakers. With between ten and 30 speakers, some improvement in

EER and Cllr was found. For /u:/, continued improvement in validity was also found as

the number of speakers increased between 30 and 120. This is consistent with Ishihara

and Kinoshita (2008), who also found continual EER improvement as sample size

increased. These results highlight an important issue relating to the trade-off between

the amount of reference data and system validity. Although the most valid system was

that with the largest amount of data the absolute improvement of the 120-speakers

system is marginal compared with the scores using 30 speakers. For /aI/, EER stabilised

after the inclusion of more than 30 speakers, with no evidence of a linear improvement

in performance as a function of sample size. Similarly, no linear trend was found for

Cllr. Figure 8.7 shows considerable improvement in Cllr between ten and 34 speakers,

with optimum Cllr achieved using 34 speakers. The random vagaries of this dataset

highlight that the best system performance is not necessarily achieved using the most

amount of data.

These results show that linguistic-phonetic variables behave differently with regard

to their sensitivity to sample size. This is predicted by the dimensionality of the two

variables used in these experiments. The differences between the variables are consistent

with the predicted relationship between sample size sensitivity and dimensionality. That

is, the 12 dimensional /aI/ data were more sensitive to sample size variation that the eight

dimensional /u:/ data. From a practical perspective, the results are extremely positive.
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The fact that stable distributions of scores were achieved based on an eight dimensional

variable /u:/ using 30 reference speakers means that it may be possible to achieve robust

LR output for variables with fewer dimensions (as is typical in linguistic-phonetic FVC)

using fewer than 30 speakers (see Chapter 9).

However, the differences in the results for /u:/ and /aI/ may also, in part, be due to the

regional divergence between the speakers used as test data. As shown in the results

in Chapters 4 and 5, regional differences for /aI/ are considerably greater than for /u:/.

Given such variation, data from comparisons involving the 24 regionally mismatched

(relative to the reference data) are expected to be further onto the tails of the reference

distribution than the matched data. Therefore, it is likely that smaller fluctuations in the

make-up of the reference data have a much bigger effect of the outcome of LRs for these

comparisons. To overcome the limitations of using regional mixed test data here, the

experiments in Chapters 9 and 10 are based on more sociolinguistically homogeneous

sets of development, test and reference data.

The findings of Experiment (2) are consistent with Experiment (1) in that LR output

was unstable and misrepresentative when using small numbers of tokens per speaker.

However, marked differences were found between /u:/ and /aI/. For /u:/, SS scores

were generally weakest using two tokens per speaker. As sample size increased the SS

median and proportion of misses varied randomly. DS scores for /u:/ were stronger in

magnitude using small numbers of tokens, although the distributions of scores stabilised

after the inclusion of seven tokens. For /aI/, the magnitude of SS scores was greatest

using two tokens per speaker, followed by continual decrease in median strength of

evidence as sample size increased. For DS scores, extremely high magnitude contrary-

to-fact scores were generated using two tokens per speaker, followed by a continual

decrease in the median with increased amounts of data.

Some differences were also found in system validity. EER for /u:/ fluctuated randomly

as the number of tokens increased, reflecting no systematic pattern of EER as a function

of sample size. For /aI/, EER was highest using small amounts of data and improved

with the inclusion of more data, such that stable EER was found with more than six

tokens per speaker. In terms of Cllr, the results across the two datasets were far more

comparable. Extremely high Cllr values were recorded using two tokens per speaker.
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Cllr improved markedly between two and six tokens per speaker, such that stability was

achieved, for both variables, with greater than six tokens per speaker.

These results suggest that small amounts of data per reference speaker should be avoided

when computing numerical LRs, since the models of within-speaker variability cannot

be estimated precisely. This finding raises concerns about the magnitude of the LRs

reported in research based on small amounts of data per speaker (e.g. two tokens of

five vowel in Rose 2011a). Indeed, the lack of stability in the distributions of scores

suggests that considerably more than 13 tokens may be required to precisely model

within-speaker variation, at least for these variables. Further investigation into the

issues of within-speaker sample size is therefore warranted, in order to assess the extent

to which these findings are generalisable to other variables.

8.5 Chapter summary

Experiment (1): Number of reference speakers

• Weaker SS scores, high miss rate and considerably wider range using very small

numbers of speakers (< 15 speakers).

• Stronger DS strength of evidence and considerably wider range when using small

numbers of speakers (< 15 speakers).

• Greater sensitivity to N speakers for /aI/ than for /u:/.

– /u:/ scores stable with more than 30 speakers.

– /aI/ scores stable with more than 55 speakers.

• System validity (EER and Cllr) worst with small samples (< 15 speakers).

– EER stable with more than 30 speakers.

– Continual improvement in Cllr as sample size increased for /u:/.

– Cllr for /aI/ stable with more than 42 speakers.
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Experiment (2): Number of tokens per reference speaker

• /u:/:

– Weakest SS scores with two tokens per speaker.

– Stable EER between two and 13 tokens per speaker, but considerable im-

provement in Cllr as sample size increased.

• /aI/:

– Strongest SS scores with two tokens per speaker.

– Strongest DS scores with two tokens, but no stability in the distributions of

scores as sample size increased.

– EER and Cllr highest with small samples but stability achieved with more

than six tokens per speaker.
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Chapter 9

Reference Sample Size: Univariate

Monte Carlo Simulations

This chapter explores the effects of reference sample size on LR output based on local

articulation rate (AR). Monte Carlo simulations (MCS) were performed to generate a

large set of synthetic data (1000 speakers/ 200 tokens per speaker) from a sample of

existing data. The synthetic data were used to replicate the experiments in Chapter 8 to

investigate the effects of (1) the number of reference speakers and (2) the number of

tokens per reference speaker on calibrated LLRs and system validity (EER and Cllr).

Given the availability of a large amount of (synthetic) data, these experiments develop

from Chapter 8 to assess the point at which strength of evidence and performance

become asymptotic.

9.1 Introduction

The previous chapter considered the issue of sample size (number of reference speakers

and tokens per reference speaker) in LR-based testing using two vowel phonemes as

input. Consistent with previous research, the findings of these experiments suggest that

LRs are generally unstable and misrepresentative when using small samples, although

sensitivity to sample size appears to be proportional to the dimensionality of the input

variable. This is consistent with a general principle in statistics, that the smaller the
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amount of available representative data the more imprecise the model of that (relevant)

population. However, according to the law of diminishing returns, at some point the

addition of more representative data will have minimal effect on the overall distribution,

and subsequent LR output.

With the exception of Rose (2012), no LR-based FVC research has considered such

an upper limit at which the inclusion of reference data has an asymptotic effect on

LR output. Yet, the efficiency and cost-effectiveness of the numerical LR approach

is, to some extent, dependent on knowing how much reference data is required to

produce robust LR estimates. The relative lack of research in this area is in part

due to a lack of sufficiently large amounts of raw data for testing. As highlighted

in §2.4.2, sociolinguistic corpora are generally rather small (up to 30 speakers) and

while forensically-realistic databases may be larger, it remains an empirical question

whether even these will be sufficiently large to generate precise LRs. Further, the

extraction of acoustic-phonetic data from a large number of speakers is labour intensive,

compromising the efficiency with which issues of sample size can be tested.

MCS offer a potential solution to this problem. MCS involve generating synthetic

values from known properties of the distributions of within- and between-speaker

variation of a given variable in a given population. Synthetic data can be built from

population statistics from previous research (e.g. mean and SD when the distribution

can be assumed to be normal, although the assumption of normality is not a prerequisite;

as in Rose 2012) or using an existing set of raw data. While MCS avoid the need for

extremely large amounts of raw data, there is a non-trivial a priori assumption that the

true distribution of the variable in the population is known (or can be well estimated).

This is because the distribution of the synthetic data is defined by the properties of the

input.

Initial exploration of MCS for testing issues of sample size in FVC is offered by Rose

(2012). For a more detailed overview of this paper and a discussion on its limitations

see §2.5. The experiments in this chapter use MCS based on an existing dataset of local

AR to investigate the effect of (1) the number of reference speakers and (2) the number

of tokens per reference speaker on elements of LR output. These experiments expand

on Rose (2012) by considering the performance not only of SS pairs but also DS pairs.
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This allows for testing of system validity as a function of sample size. Further, given the

availability of a considerable amount of input data, the effects of sample size on both

calibrated LLRs and uncalibrated scores are considered. Finally, unlike Rose (2012),

correlations between elements of the input variable are explicitly tested and included in

the modelling procedures when generating synthetic data using MCS.

9.2 Method

9.2.1 Data

The variable analysed in this chapter is local AR, quantified as the number of phono-

logical syllables per second within memory stretches (Jessen 2007). While previous

studies of AR (Goldman-Eisler 1998; Laver 1994) provide ranges of between-speaker

variation in the population, they rely on a global average rate (i.e. from across the entire

sample) calculated as:

Global AR (syllables/ s) =
Total number of syllables

Total time (s)
(9.1)

Local AR is based on measurements extracted from subsections of the recording. This

approach was chosen over global AR, since it is essential that multiple tokens per

speaker are available to generate a suspect model for assessing similarity. Further, local

AR is a more meaningful forensic resource since speakers vary their tempo considerably

across utterances (Miller et al. 1984).

Local AR was chosen over other FVC variables primarily because it is univariate and

can be synthesised relatively straightforwardly (i.e. without having to model multiple,

complex correlations between features of a variable). Based on the findings of Chapter

8, unidimensionality predicts that AR will be more robust to reference sample size than

/u:/ or /aI/, since fewer speakers should be required to adequately model the reference

data. However, a potential limitation of AR for testing sample size is that it has been

shown to encode relatively little speaker-specific information due to the fact that within-

speaker variability is generally higher than between-speaker variation (Gold 2014). The

implications of this are considered in analysing the results in §9.4.
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An existing dataset of local AR measurements extracted from DyViS Task 2 (§3.1.1)

recordings for all 100 speakers collected as part of Gold (2014) was used as raw

data for the experiments in this chapter. Gold (2014) identified between 26 and 32

memory stretches per speaker, defined as a period of “fluent speech containing a

number of syllables that can easily be retained in short-term memory” (Jessen 2007:

54). The decision to use memory stretches here was a pragmatic one based on the

availability of data and does not reflect a theoretical preference for quantifying AR

using memory stretches compared with any other approach. However, Gold (2014)

found no significant differences in performance compared with inter-pause stretches,

claiming that memory stretches are better for FVC as they can be extracted without

requiring precise segmentation of individual pauses.

Following Künzel (1997), “fluent speech” was defined as the absence of pauses (of

over 100ms), hesitation phenomena and repair processes. Each token was calculated

as the total number of phonological syllables divided by the duration (in seconds) of

the memory stretch. For each speaker, the first 26 tokens were used in the analysis (the

largest number of tokens shared by all speakers). Mean and SD of AR values were

calculated by-speaker and converted to z-scores to identify univariate outliers. On the

basis of an outlying SD with z > ±3.29 (p < 0.01) (Tabachnick and Fiddell 2007: 73),

one speaker (DyViS speaker 95) was removed from the analysis. Of the remaining 99

speakers, 20 were selected at random as development data and a further 20 as test data.

The remaining 59 speakers were used as reference data from which synthetic reference

speakers and tokens were generated.

9.2.2 Modelling

A univariate implementation of MVKD (§3.2.2.1) was used to compute scores. Based

on the fact that the between-speaker KD is a speaker-dependent model made up of

Gaussians from each reference speaker, a two-stage process for synthesising data was

developed. Normal distributions for each synthetic speaker were initially generated by

sampling synthetic means and SDs from the raw data. From the synthetic normal

distributions N(µ, σ), a second round of simulations were conducted to generate

synthetic tokens for each synthetic speaker. However, before conducting the simulations,
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two issues with the raw data were addressed. The first relates to the choice of distribution

from which synthetic means and SDs are sampled. Figure 9.1 displays the histograms

of raw means and SDs by-speaker fitted with normal distributions.

Figure 9.1: Histograms of AR means (left) and SDs (right) for each of the 59 raw

speakers fitted with normal distributions

Skew and kurtosis were calculated to assess how well normality models the data.

Following Tabachnick and Fidell (2007: 79), skew was analysed by dividing the

skewness (S) by the standard error (Ss), defined as Ss =
√

6
N

, where N is the number

of observations (in this case 59), to give a z-score. A z-score of ±3.29 indicates

significance at the 1% level. Skew was non-significant for both means and SDs (p >

0.4). Kurtosis was analysed by dividing the kurtosis statistic by twice the standard

error (Tabachnick and Fiddell 2007) to generate a z-score. For both the means and

SDs, kurtosis was also found to be non-significant (p > 0.24). Given the statistical

assessment of normality and visual inspection of Figure 9.1, it was considered that the

normal distribution was appropriate for modelling these data.

The second issue is whether the 59 raw speakers provide a sufficiently precise estimate

of patterns in the relevant population. To assess how well the sample of raw data

approximates the distribution of values in the relevant population, it is necessary to

know a priori the properties of that distribution. In the absence of this knowledge,
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the effects on the distributions of means and SDs were analysed as data were added.

Independent samples t-tests were calculated for means and SDs using the values for

all 59 speakers compared against values for minimally ten speakers. Values for each

speaker were then added consecutively to the smaller dataset and the t-test re-run

at each stage. Welch’s Correction (Welch 1947) was applied to account for unequal

sample size. The results are analysed with regard to the p-value where a value of one is

equivalent to the two samples having the same normal distribution.

Figure 9.2: p-values based on t-tests comparing the distributions of means (left) and

SDs (right) for the number of speakers on the x-axis against that with all 59 raw

speakers with 1% (red) and 5% (orange) significance marked

Figure 9.2 shows that there were no significant differences for AR means in the distribu-

tion of values using as few as ten speakers compared with the distribution based on 59

speakers. Despite an initial dip with small numbers of speakers, p increased towards one

with more than 25 speakers. For SDs, p was relatively low (0.1) with small numbers of

speakers, although at no point was the difference between the distributions significant.

There was considerable similarity in the distributions of SDs after the inclusion of 40

speakers. Further, the means and SD are consistent with expectations about the range

of potential variation reported in Goldman-Eisler (1998). Therefore, it was considered

that the distributions based on 59 speakers provided a sufficiently precise estimate of

the population.
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9.2.3 Monte Carlo simulations

This section details the procedures used for performing MCS to generate synthetic local

AR data.

9.2.3.1 Synthetic means

Mean local AR is denoted by x, where xi is a value for a single speaker (i is speaker

number). Based on the testing of normality in §9.2.2, the distribution of raw xi values

was converted to a normal probability density function (PDF ) with mean of zero and

SD of 1√
2
, N(0, 1

2
):

1

σ
√

2π
e−

(x−µ)2

2σ2 (9.2)

where µx is the mean of the raw means and σx is the SD, by applying the transformation:

z =
x− µx)√

2σx
(9.3)

This transforms values in the raw x-space to normalised values within the z-space.

MCS were then used to generate synthetic zi values from the preferentially scaled

PDF . This is done using the inverse of the cumulative distribution function (CDF ).

The CDF uses integration to calculate the area under the PDF between −∞ and zi

such that:

CDF (z) =

z∫
−∞

N

(
z, 0,

1

2

)
dz (9.4)

Given that the normal distribution is so widely used, a special function called the error

function (erf ) (Wang and Guo 1989: 333) has been assigned to the integral (
∫

) meaning

that it is possible to generate a CDF based on a normal PDF in the following way:
z∫

−∞

N

(
z, 0,

1

2

)
dz = CDF (z) =

1 + erf(z)

2
(9.5)

where:

erf(z) =
2√
π

z∫
0

e−t
2

dt (9.6)
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Based on Equation 9.5, normally distributed zi values can be synthesised using a

random variable Zi = ε[0, 1] (i.e. a random number between 0 and 1). Using the

inverse CDF (CDF−1(z)), a single synthetically generated zi value is defined as:

CDF (CDF−1(z)) = z =
1 + erf(CDF−1(z))

2
(9.7a)

2z − 1 = erf(CDF−1(z)) (9.7b)

CDF−1 = erf−1(2z − 1) (9.7c)

As demonstrated in Figure 9.3, using a random value for Zi and with explicit knowledge

of the inverse CDF , a synthetic zi can be generated in the following way:

CDF−1(Zi) = zi (9.8)

Figure 9.3: Example of the inverse CDF of mean local AR used to generate a synthetic

zi of 0 based on a random Zi of 0.5 (zi = 0 equates to xi = 6.044; i.e. the mean of the

raw data)
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Synthetic zi values are then transformed back into the linguistically meaningful x-space

by:

xi = (
√

2σx × zi) + µx (9.9)

and used as the mean value for the normal distribution of a single synthetic speaker.

This process was repeated over a number of simulations (n). By the law of large

numbers (Wackerly et al. 2008: 451), the distribution of z = (z1, z2 . . . zn) will

converge on N(0, 1
2
) as n→∞. Therefore, with large n the synthetically generated

values will have approximately the same normal distribution as the raw values.

9.2.3.2 Synthetic SDs

The SD of local AR is denoted by y such that yi is the SD for a single speaker. To

generate synthetic yi values, it is necessary to account for any correlation between the

means and SDs in the raw data. Figure 9.4 reveals a significant (Pearson’s rho = 0.3964;

p = 0.0019), positive correlation such that speakers with higher average AR generally

displayed greater within-speaker variability. Potentially, this is because speakers with

higher mean AR are able to exploit a wider range of variability, particularly in higher

rates. Since the mean and SD were seemingly not independent a further projection was

incorporated into the simulation of SDs. Rather than sampling from a normal PDF (as

in §9.2.3.1), N(axi + b, β) was used where the mean (axi + b) is determined by the

linear trend line (Figure 9.4) and the SD (β) is given by:

βi =

√√√√√ 1

N

N∫
i=1

(xi − x̃)2 =

√
1

59
× 1.9466 = 0.1816 (9.10)

where N is the number of speakers (59) and xi − x̃ is the distance between the trend

line and each data point (residuals). Therefore, the mean of the normal distribution

from which synthetic SD values were generated (axi + b) varied as a function of the

associated synthetic mean value (xi).
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Figure 9.4: Mean local AR plotted against SD of local AR (syllables/ s) for each of the

59 raw speakers

Following the same procedures as in §9.2.3.1, synthetic yi values were generated by

convertingN(axi+b, β) to a normal PDF for each synthetic xi. The inverseCDF was

used to transform a random variable Z∗i = ε[0, 1] into normalised z∗i values (Equation

9.8), before transforming back to the y-space (Equation 9.9). The synthetic mean and

SD values represent the normal distribution N(xi, yi) for a new synthetic speaker. From

this distribution, individual AR tokens were synthesised using the same procedures as

in §9.2.3.1. The process of generating synthetic means and SDs was performed 941

times. These synthetic speakers were pooled with the existing 59 raw speakers to create

a reference sample of up to 1000 speakers. For the synthetic speakers, up to 200 tokens

per speaker were generated. For each of the 59 raw speakers, MCS based on the mean

and SD of the 26 raw tokens per speaker were used to generate an additional 174 tokens

per speaker. The Appendix provides an example of how data for a single synthetic

speaker were generated.
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9.2.3.3 Synthetic data

The distributions of means and SDs in the raw data, synthetic data and all reference data

combined (raw and synthetic) based on 26 tokens per speaker were compared to assess

how well the MCS approximated patterns in the raw data. Table 9.1 reveals minimal

difference in the mean of the means (µx). The SD of the means in the synthetic data

was higher than that in the raw data, although the difference was negligible (0.015).

p-values were generated from a comparison of the raw data and the synthetic data,

as well as the raw data and all of the reference data, using independent t-tests. The

differences between distributions were non-significant, with p approaching 1 in both

cases (Table 9.1).

Table 9.1: Mean and SD of mean local AR (syllables/ s) for the raw data, synthetic data

and all reference data

Mean SD p-value (t-test)

Raw data (59 speakers) 6.04 0.63 -

Synthetic data (941 speakers) 6.02 0.64 0.80

Pooled data (1000 speakers) 6.02 0.64 0.81

Table 9.2: Mean and SD of SD local AR (syllables/ s) for the raw data, synthetic data

and all reference data

Mean SD p-value (t-test)

Raw data (59 speakers) 1.10 0.20 -

Synthetic data (941 speakers) 1.10 0.19 0.90

Pooled data (1000 speakers) 1.10 0.19 0.90

There were extremely small differences in the distributions of SD (y) values, with

µy just 0.0029 higher for the raw data than for the synthetic data (Table 9.2). The

differences between the sets in terms of σy were also marginal, with SD in the raw data

just 0.008 greater than in the synthetic data. Again, paired independent t-tests were

performed using the raw data and synthetic data, and the raw data and all reference

data combined. In both cases, the differences were non-significant with p-values much

closer to one than for the means.
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Finally, the means and SDs for each synthetic speaker were plotted and a linear trend

line fitted to assess the correlation structure of the synthetic data. Figure 9.5 reveals

a linear correlation between the means and SDs consistent with that in the raw data.

Beyond the linear correlation, there was again considerable variability around the line

of best fit (β). For the synthetic data (941 speakers), β is given by:

βi =

√√√√√ 1

N

N∫
i=1

(xi − x̃)2 =

√
1

941
× 29.2857 = 0.1764 (9.11)

Compared with β = 0.1816 calculated for the raw data (Equation 9.10), the SD of the

residuals in the synthetic data was only marginally lower (0.0052). These comparative

results suggest that the procedure for generating synthetic SDs (yi) was appropriate

relative to the correlation structure of the raw data. Further, the synthetic data as a

whole was considered sufficiently representative of the raw data.

Figure 9.5: Mean local AR values (syllables/ s) plotted against SD of local AR (syl-

lables/ s) for the 59 speakers from the raw data (left) and the 941 synthetic speakers

(right) with linear trend lines fitted
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9.2.4 Experiments

In this chapter, the two experiments from Chapter 8 are replicated using the local AR

data. In both experiments, the same development and test data, each containing 20

speakers with 26 tokens per speaker, were used. In Experiment (1), scores (20 SS/ 380

DS) were computed for the development and test sets as the number of speakers in

the reference data was systematically increased by one starting with ten and ending

with 1000 reference speakers (26 tokens per speaker). An upper limit of 1000 reference

speakers was used because it was considered that the reference distribution would be

effectively stable and so the addition of speakers beyond this point would be unlikely to

affect LR output.

In Experiment (2), scores (20 SS/ 380 DS) for the development and test data were

computed as a single token per speaker was added to the reference data up to a maximum

of 200 tokens, using a random reference sample of 200 reference speakers. The decision

to include 200 reference speakers in Experiment (2) was made on the basis of the

stability in the results of Experiment (1) (§9.3.1). Further, it was felt that 200 speakers

reflected a suitably large quantity of reference data for the results to be meaningful,

but not unrealistically large in terms of the number of reference speakers that may be

extracted from a real forensic database (e.g. Morrison et al. 2010-2013).

As outlined in §9.2.2, the univariate KD (§3.2.2.1) approach was used to compute

scores for the development and test data. At each stage across both experiments, test

scores were calibrated using logistic regression coefficients from the development

scores (§3.2.4.1). The distributions of calibrated LLRs, uncalibrated scores and system

validity (EER and Cllr) were analysed as a function of sample size. Following Rose

(2012), the system using the most data was assumed to be the most precise and output

from this system is referred to as the true output (e.g. true LLRs, true EER, true

Cllr). For Experiment (1), the true values were based on 1000 reference speakers with

26 tokens per speakers, while for Experiment (2) the true values were based on 200

reference speakers and 200 tokens per speaker.
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9.3 Results

9.3.1 Experiment (1): Number of reference speakers

Figure 9.6 displays the distributions of calibrated LLRs as a function of the number of

reference speakers. Figure 9.6 (above) reveals consistency in the distribution of SS LLRs

as the number of reference speakers increased. Across conditions, SS comparisons

predominantly achieved LLRs equivalent to limited support for the prosecution, with

absolute numerical values only marginally greater than zero. Of the 20 SS comparisons,

only one consistently achieved contrary-to-fact support for the defence, although this

value was never less than -0.1. The distribution of SS LLRs based on 50 reference

speakers displayed the largest divergence from the distribution of the true SS LLRs

(based on 1000 speakers). However, even in this case the differences were extremely

small (difference in medians = 0.011, difference in ranges = 0.1399).

DS LLRs (Figure 9.6, below) were also extremely robust to the effects of differences in

reference sample size. Across all conditions, the median fluctuated maximally within

a range of 0.02. The median was marginally weaker in magnitude (i.e. closer to

zero), with marginally narrower interquartile and overall ranges, with only ten speakers

compared with the true LLRs. However, given that the overall range of LLRs was

consistently between limited support for the prosecution and limited support for the

defence, it is considered that the LLRs from the ten-speakers condition adequately

captured the true distribution of DS LLRs for this dataset.

Figure 9.7 (left) displays EER as a function of the number of reference speakers, with

the true EER (based on 1000 reference speakers) plotted as a means of comparison.

The EER of the true LLRs was 35.1%. Such performance reflects the very high

proportion of DS pairs offering support for the prosecution. There was some fluctuation

in performance as the number of reference speakers increased. However, the variation

appears to be random since the true EER was achieved with as few as 17 speakers.

Indeed, the maximum extent of the fluctuation in EER performance was just 0.3%

across all conditions, suggesting that categorical validity was relatively stable across

sample sizes.
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Figure 9.6: Boxplots of SS (above) and DS (below) LLRs as a function of the number

of reference speakers

The true Cllr was 0.971 (Figure 9.7, right). As with EER, this reflects very bad system

validity for AR, providing almost no useful information in terms of speaker discrimi-

nation. Performance based on Cllr as a function of the number of reference speakers

was more systematic than for EER. Compared with the true value, Cllr was marginally

better when using fewer than 200 speakers, such that the best validity was achieved

with 57 speakers (0.963). With greater than 200 speakers performance appeared asymp-

totic. However, the overall range of Cllr across conditions was very small since the Cllr
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values from the systems with very small numbers of speakers (ten to 20) were almost

equivalent to the true Cllr (range = c. 0.03).

Figure 9.7: EER (%) (left) and Cllr (right) as a function of the number of reference

speakers with the true value (based on 1000 speakers plotted with a dashed maroon

line)

Uncalibrated scores

The uncalibrated scores are shown in Figure 9.8. The uncalibrated scores displayed

more sensitivity to the size of the reference data than the calibrated LLRs. For SS pairs,

the interquartile ranges of scores were always within the range of zero and +1 (limited

evidence). The median strength of SS evidence was weaker than the true median score

with small numbers of speakers, such that the lowest median SS score was achieved

with ten reference speakers. More significant was the effect of different numbers of

reference speakers on individual SS pairs. This was evident in the variability in the

furthest outlying contrary-to-fact score. With between ten and 50 reference speakers this

score was around -0.5, equivalent to limited support for the defence. By the inclusion

of 150 reference speakers, this score had decreased by the equivalent of one order of

magnitude (to moderate support for the defence).
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Figure 9.8: Boxplots of SS (above) and DS (below) scores as a function of the number

of reference speakers

A similar pattern was found for DS pairs, although the effects were greater. While the

DS median was relatively robust to sample size, the interquartile and overall ranges were

considerably narrower with smaller samples. There was also greater variability in the

distributions of scores when using smaller amounts of data. The most significant effects

were again found for the strongest outlying values. For the two most extreme negative

DS scores, the strength of evidence increased from greater than -2 (moderate evidence)

to less than -3 (moderately strong evidence), equivalent to a difference of two orders of
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magnitude between ten and 1000 reference speakers. For other outlying comparison,

scores also increased in terms of the support for the defence by the equivalent of one

order of magnitude as sample size increased.

9.3.2 Experiment (2): Number of tokens per reference speaker

Figure 9.9 shows the distributions of LLRs as a function of the number of tokens per

reference speaker. When using small number of tokens, the SS medians and ranges

were marginally greater than those from the distribution of true LLRs. The strongest

median value (+0.239) was reached with five tokens per speaker and the highest range

reached with six tokens. As in §9.3.1, the extent of variation as a function of the

number of tokens per speaker was very minimal with all bar one of the SS comparisons

consistently achieving a LLR within a range of zero to +0.4 (limited support). The

single contrary-to-fact SS LLR across conditions was consistently between zero and -1.

The magnitude of the calibrated SS LLRs across all conditions again reflects the fact

that AR offers relatively little speaker discriminatory power.

Similar patterns were found in terms of DS LLRs. The median remained essentially

stable across all conditions, even when using very small numbers of tokens. The

interquartile and overall ranges were marginally wider with small numbers of tokens

compared with the distribution of true LLRs. This was reflected in the decrease in

the strength of evidence for the two most extreme negative DS LLRs, although in

numerical terms these LLRs increased by less than 0.1 between the ten- and 200-tokens

conditions. In all conditions, DS LRs were maximally spread over a range of two orders

of magnitude (between limited support for prosecution and limited support for defence).

Further, the middle 50% of DS LLRs consistently offered contrary-to-fact support for

the prosecution, although their magnitude was relatively low (never greater than +0.3).
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Figure 9.9: Boxplots of SS (above) and DS (below) LLRs as a function of the number

of tokens per reference speaker

EER was relatively robust to the number of tokens per reference speaker (Figure 9.10,

left). EER based on the maximum amount of reference data was 35%. With the

inclusion of more than 96 tokens per speaker, EER was consistently equal to the true

value. There was very little variability in EER across all conditions (maximally 0.26%)

suggesting that increasing the number of tokens does not offer improve categorical

system validity for these data. Figure 9.10 (right) also displays Cllr as a function of

the number of tokens per reference speaker. Relative to the true Cllr, performance was
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marginally better when using small amounts of data. The system with the lowest Cllr

was based on just six tokens per speaker. After this point, Cllr increased marginally until

performance became asymptotic with greater than 100 tokens per speaker. However,

the range of Cllr variability was again extremely small (maximally 0.005).

Figure 9.10: EER (%) (left) and Cllr (right) as a function of the number of reference

speakers with the true value (based on 100 speakers plotted with a dashed maroon line)

Uncalibrated scores

As in Experiment (1), calibration appears to play a role in minimising the effects of small

amounts of reference data. Figure 9.11 reveals larger differences in the distributions

of scores using small samples compared with the true scores. The SS median was

weakest with fewer than 50 tokens, although it was consistently between zero and +1.

The interquartile range was narrower with smaller numbers of tokens (and narrowest

with 20 tokens). Again, the outlying contrary-to-fact values were affected to the largest

extent. Considering the outlier with the largest negative value, strength of evidence

increased by one order of magnitude from limited to moderate support for the defence

between the minimum and maximum number of tokens.
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Figure 9.11: Boxplots of SS (above) and DS (below) scores as a function of the number

of tokens per reference speaker

The effects of sample size variability were again more dramatic for DS scores. The

median decreased marginally as the number of tokens per speaker increased, such

that the median based on ten tokens was positive while the median based on 200

tokens was negative. However, in absolute terms the differences in the medians were

relatively small (0.17). The interquartile range of DS scores was narrower when using

smaller numbers of tokens per speaker, only stabilising after the inclusion of 100 tokens.

Generally, strength of evidence increased (more support for the defence) with larger
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amounts of data per reference speaker. This was reflected in the magnitude of the most

outlying negative scores. For one outlying DS score, there was an increase in strength

of evidence between the 20 and 200 tokens conditions equivalent to the difference

between moderately strong and very strong support for the defence.

9.4 Discussion

The results of §9.3.1 and §9.3.2 have revealed that calibrated LLRs for this dataset

were relatively robust to the number of reference speakers and the number of tokens

per reference speaker. A limited amount of variability was found in the distributions

of LLRs with smaller amounts of reference data. However, the medians, interquartile

ranges and overall ranges of LLRs with the smallest amounts of data were consistently

within the same order of magnitude as the distribution of true LLRs. This suggests

that precise estimates of the magnitude of calibrated LLRs can be achieved using just

ten reference speakers and two tokens per speaker using AR. Although not considered

directly here, there are also potential interactions (or trade-offs) between the number of

speakers and the number of tokens which may be relevant.

EER remained relatively stable as the number of speakers and the number of tokens

per speaker increased, although some box-like random variation was found within a

very narrow range. Such variability can be explained by the inherent lack of speaker

discriminatory power of AR. Since the calibrated LLRs were very close to zero, slight

changes in the distribution of the reference data can cause marginally positive values to

become marginally negative and vice versa. Since EER deals only in categorical accept-

reject decisions, such minor fluctuations have a direct effect on validity. This is an

inherent limitation of using EER as a measure of performance, particularly for variables

with low speaker discriminatory potential. Cllr was found to be lowest when using

smaller numbers of speakers and tokens per speaker, such that Cllr was systematically

better with small amounts of data relative to the true LLRs. However, across both

experiments, the range of Cllr variability was extremely small. The overall stability of

calibrated LR output to sample size is extremely positive for the practical application

of the LR framework to FVC involving AR, although the analysis of AR in casework
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may not be warranted (see Gold 2014) given its low speaker discriminatory value.

Cross-comparison of these results with those in Chapter 8 offers further evidence to

support the predicted relationship between the sensitivity of a variable to sample size

and its inherent dimensionality. That is, univariate AR was considerably more robust to

sample size than /u:/ or /aI/. However, it is questionable the extent to which these results

are comparable with those in Chapter 8 and the previous research (e.g. Ishihara and

Kinoshita 2008; Rose 2012) since the experiments in this chapter considered calibrated

LLRs, rather than scores. This is particularly important in this chapter since there is

evidence that calibration plays an important role in reducing the sensitivity of LRs to

small amounts of reference data. The uncalibrated results are consistent with previous

studies in that scores are misrepresentative and unstable when using small numbers of

speakers and tokens. However, while previous studies found larger magnitude scores

distributed over a wider range when using small samples, the scores in the experiments

presented in this chapter were weaker and within a narrower range with small amounts

of reference data.

The importance of calibration may be specifically related to AR. The logistic-regression

calibration procedure is configured to minimise Cllr. For both experiments, the ranges

of uncalibrated scores increased as a function of the amount of reference data resulting

in more contrary-to-fact scores of a higher magnitude when using larger amounts of

reference data compared with smaller samples. Therefore, calibration coefficients

generated for systems based on more reference data are greater than those based on

less reference data. Despite calibration improving Cllr to different degrees for different

conditions, the results here suggest that AR performance cannot be improved beyond a

ceiling with LLRs close to zero, due to its inherently poor discriminatory value. For

better speaker discriminants the role of calibration relative to the size of the reference

sample may be different.

The results in this chapter highlight three important general issues for FVC. Firstly,

there appears to be an interaction between calibration and the overall sensitivity of

LRs to sample size. Whilst calibration counteracted the effects of small sample sizes,

calibrated LLRs were spread over a narrower range and were much closer to zero

compared with the uncalibrated scores, at least for this variable. Secondly, certain pairs
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of samples are more susceptible to the effects of sample size than others. This may be

related to the magnitude of the LR itself. Thirdly, the uncalibrated results in Figures

9.8 and 9.11 suggest that scores are not well estimated when the background model

consists of small numbers of speakers or tokens, even for univariate data. Therefore, in

the absence of calibration, considerable caution should be exercised when interpreting

the absolute or relative value of scores generated using a small reference sample.

9.5 Chapter summary

Experiment (1): Number of reference speakers

• Distributions of LLRs equivalent to true LLRs even with the smallest number of

reference speakers (ten).

• Random fluctuations in EER as the number of reference speakers increased.

– Small changes to the reference population caused random categorical shifts

from positive to negative LLRs (and vice versa).

• Calibrated Cllr generally robust to the number os reference speakers.

• Greater instability according to sample size in uncalibrated scores.

Experiment (2): Number of tokens per reference speaker

• Distributions of LLRs essentially the same with two tokens per speaker as with

200.

• Random fluctuations in EER with different sized samples, caused by low magni-

tude LLRs close to zero.

• Cllr robust to the number of tokens per reference speaker.

• Much more sensitivity to sample size with uncalibrated scores.

– Scores weaker by as much as thee orders of magnitude using two tokens

compared with 200 tokens.
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General conclusions

• Considerable caution needed when making inferences based on uncalibrated

scores generated using small samples.

• Calibration counteracts the effects of small sample sizes, at least for this variable.

• Evidence to support the relationship between sample size sensitivity and the

dimensionality of the input variable.
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Chapter 10

Development, Test and Reference

Sample Size: Multivariate Monte

Carlo Simulations

This chapter expands on the experiments in Chapter 9 to explore a broader range of

sources of sample size variation in LR computation using a multidimensional variable

with greater speaker discriminatory power. Monte Carlo simulations (MCS) were used

to synthesise multiple sets of mid-point F1∼F3 data for the hesitation marker UM (erm)

from a set of raw data. The synthetic data were used to run multiple replications of

three experiments to investigate: (1) how many development speakers are required to

perform adequate calibration, (2) the number of test speakers needed to ensure that

system performance is robust, and (3) the effects of varying the number of reference

speakers.

10.1 Introduction

As highlighted in §2.5, relatively little work has considered issues of sample size for

LR computation. Further, of the previous work, none has considered the effects of

sample size on calibrated LLRs. Chapter 9 provided an initial exploration into this issue

using MCS to assess the sensitivity of LR output based on univariate AR to variation in
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reference sample size. Calibrated LLRs and system validity were found to be relatively

robust to sample size variation even with very small amounts of reference data. However,

the extent to which the stability of calibrated LLRs for AR is generalisable to other

FVC variables is questionable. There are a number of reasons for this.

First, comparison of the results in Chapters 8 and 9 provides evidence to support the

claim (outlined in §8.1) that sample size sensitivity is determined by the dimensionality

of the input variable. Across the two chapters, scores based on /aI/ (12 dimensions) were

most sensitive to sample size, followed by scores for /u:/ (eight dimensions) and finally

calibrated LLRs for AR (one dimension). However, the extent to which this pattern

will hold for calibrated LLRs remains unclear. Second, AR displays little inherent

speaker discriminatory power, producing LLRs close to zero even when using the

largest amount of available reference data. Therefore, the range of potential variation

as a function of sample size for AR was relatively small. For variables with greater

speaker discriminatory power there may be greater sensitivity to sample size since the

range of potential variation in LLRs is larger. Finally, in Chapter 9 calibration was

found to minimise the effects of small amounts of reference data for AR. The role of

calibration was tentatively attributed to the lack of speaker discriminatory power for

AR. Therefore, it is unclear whether the role of calibration in minimising the effects of

small samples for AR will be the same for other FVC variables .

To test these issues, the present chapter assesses a multidimensional variable with

far greater speaker discriminatory power than AR, namely mid-point F1∼F3 values

from the vowel portion of the hesitation marker UM. The justification for choosing

this variable is given in §10.2.1. As in Chapter 9, MCS were used to generate a large

dataset for testing (see §9.1 for an overview of the principles of MCS). The Monte

Carlo methods applied to the experiments in this chapter expand on those in Chapter 9

and particularly on Rose (2012). As outlined in detail in §2.5, Rose (2012) provides

no explicit discussion on how to model potential correlations between elements of

multivariate data, or how to deal with non-normal population distributions. These issues

are explored in the simulations in this chapter.

Previous research in this area has focused almost exclusively on the amount of reference

data used to assess typicality. As in Chapters 8 and 9, and as in previous research,
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the effects of the number of reference speakers used to assess typicality in the feature-

to-score stage of LR testing will again be evaluated here. However, this chapter also

expands on previous work to assess variability in LR output based on the number of

development and test speakers. LR output is necessarily affected by decisions made

regarding the size of the development and test sets. The development speakers are

used to determine the calibration coefficients applied to the score generated for each

comparison pair (i.e. the suspect and offender). The LLRs for the test set are then used

to determine the validity and reliability of the system. Unlike previous studies, multiple

replications of each experiment were conducted to assess the imprecision in LR output

with different sample sizes. The results are considered in terms of the effects of sample

size variation in the individual sets, as well as the potential trade-offs across sets.

10.2 Method

10.2.1 Choice of variable

For the purposes these experiments, a multidimensional variable with good speaker

discriminatory power was required. LR-based pre-testing was conducted to compare the

performance of a number of potential input variables using existing data. Importantly

for cross-comparison, the existing data had all been extracted from a single corpus,

namely DyViS Task 1 (§3.1.1). The available data (Table 10.1) consisted of mid-point

F1∼F3 values from /I E a 6 2/ collected by Simpson (2008), dynamic F1∼F3 data from

/i: O: u:/ collected by Atkinson (2009), and dynamic data from the hesitation markers UH

and UM collected by Wood (2013) using TextGrids from King (2012) (see §10.2.2). In

the case of UM, the formant data had been extracted from the vocalic portion only. Only

mid-point (+50%) values of F1∼F3 were used for all variables. Since the maximum

number of speakers shared across the datasets was 20, all tokens for the first 20 speakers

per set were used for computing LRs. Cross-validated (§3.2.2.3) scores were computed

using MVKD (§3.2.2.1). With a small number of exceptions, the same DyViS speakers

were used in all ten tests. In the absence of available development data, logistic-

regression calibration (§3.2.4.1) was applied using cross-validation. Performance was

assessed using Cllr and EER.
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Table 10.1: Number of available speakers and tokens per speaker (maximum, minimum

and mean) for each of the variable

Phoneme N Speakers Max N Tokens Min N Tokens Mean N Tokens

/E/ 25 72 27 50

/i:/ 20 14 11 12

/u:/ 20 13 8 10

/I/ 25 59 15 36

/6/ 25 47 12 28

/O:/ 20 12 7 9

/2/ 25 36 8 16

/a/ 25 34 10 19

UH 38 20 20 20

UM 34 20 20 20

As shown in Table 10.2, the best system validity was achieved using UM. The finding

that hesitation markers outperform lexical vowels is, to some extent, predictable. Since

hesitations are non-linguistic (i.e. do not encode relevant speech or group information),

they are not expected to be stratified by external sociolinguistic factors to the same extent

as lexical vowels; although there are stereotypical realisations of hesitation markers

associated with varieties of BrEng (e.g. Liverpool English [e:]). Further, occurring

primarily in isolation, hesitation markers are less susceptible to coarticulatory effects

(Foulkes et al. 2004; Wood et al. 2014). Further, Künzel claims that “individuals tend

to be quite consistent in using ‘their’ respective personal variant” (1997: 51). Empirical

evidence for this is found in Foulkes et al.’s (2004) study of vocalic hesitation markers

in Newcastle English. Therefore, on the basis of pre-testing and expectations about the

extent of within- and between-speaker variation from previous research, mid-point data

for UM were used as input in this chapter.
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Table 10.2: Cllr and EER performance for each variable

Variable Cllr EER (%)

/E/ 0.547 19.6

/i:/ 0.469 15.1

/u:/ 0.938 25.0

/I/ 0.673 20.0

/6/ 0.484 15.9

/O:/ 0.842 25.1

/2/ 0.691 19.7

/a/ 0.772 20.7

UH 0.479 15.7

UM 0.325 10.1

10.2.2 Data

Existing segmented TextGrids for the vowel portion of UM were available for the first

21 DyViS speakers (Task 1) from King (2012). Wood (2013) used the TextGrids to

extract dynamic measurements of F1∼F3 for these 21 speakers. Wood (2013) also

extracted dynamic F1∼F3 data from a further 22 DyViS speakers, to create a larger

dataset of 43 speakers. Across the combined dataset, the number of tokens per speaker

ranged from eight to 20. To ensure as precise an estimate of the population distribution

for MCS, data for a further 49 speakers were extracted. The procedures used by Wood

(2013) for segmentation and data extraction were the same as those used in this chapter.

UM tokens were identified using existing orthographic transcription TextGrids two

minutes into each sample. The onset and offset of each token were delimited using

the criteria outlined in §3.3.1.1 (see Figure 10.1). Maximally 20 tokens per speaker

were included in the analysis. Four speakers with fewer than ten tokens were removed,

leaving 88 speakers available for analysis. Tokens were saved to separate sound files to

preserve the sampling rate (44.1 kHz) and dynamic formant data were extracted using

the procedures outlined at §3.3.1.2. The script was set to find between five and six

formants within a range of 0 to 5 kHz range, determined on a token-by-token basis.
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Figure 10.1: Example of a segmented token of UM on a PRAAT TextGrid from DyViS

speaker 58

10.2.2.1 Formant correction

The raw dynamic data were inspected and obvious measurement errors (e.g. F3 mea-

sured as F2) corrected by hand. Since only the midpoint values were being used for the

MCS, missing values at the +10-40% and +60-90% steps were not corrected. Where

values were missing at the +50% step (mid-point), a value was calculated based on

the difference between the two adjacent values (+40% and +60%). Where erroneous

mid-point values for a given formant could not be resolved, the whole token was re-

moved from the analysis. For two speakers, this meant that there were insufficient data

for analysis and so these speakers were removed. The data extracted by King (2012)

and Wood (2013) had already been manually corrected using the same procedures. The

three datasets (King’s 21 speakers, Wood’s 22 and my 43) were combined to create a

dataset containing 86 speakers with between ten and 20 tokens per speaker, although

only 11 speakers had fewer than 20 tokens.

10.2.2.2 Mid-points vs. dynamics

The availability of dynamic data for all 86 DyViS speakers raises the question as

to why only the mid-point values were used. This decision was made because of the
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considerably greater degree of complexity and mathematical uncertainty introduced into

MCS when dealing with highly multivariate data such as formant dynamics. There are a

number of reasons for this. Raw values within a single formant trajectory are necessarily

highly autocorrelated (i.e. correlations between adjacent time points). That is, the

+20% value is dependent on the +10% and +30% values (plus possible correlations

with later steps in the trajectory). This means that when trying to simulate raw formant

trajectories following the procedures in Chapter 9, it would be necessary to test, and

potentially simulate, (542 − 54)/2 = 1431 correlations (2 values (mean and SD) × 9

measurements × 3 formants).

Even if simulating lower order polynomial coefficients (e.g. quadratic), there would be

153 potential correlations (2 values (mean and SD) × 3 measurements (coefficients) ×

3 formants), of which, at the very least, coefficients from the same formant are expected

to be correlated. The complexity of the correlation structure of this type of multivariate

data means that it is difficult to precisely model the population distribution. The benefit

of using mid-point data is that there are far fewer correlations to consider and since

the simulations only involve generating a single value per formant there is no a priori

expectation for any correlations between the elements of UM. Further, it is assumed

that vocalic hesitations are broadly monophthongal given their usual IPA transcription.

Therefore, the mid-point provides an appropriate representation of their quality.

10.2.3 Modelling

The general procedures for simulating UM were the same as those employed in Chapter

9, whereby means and SDs were firstly generated to created a normal distribution

for each synthetic speaker, from which individual tokens were then sampled. As in

§9.2.2, prior to simulating data it was necessary to establish the appropriate distribution

for modelling the raw means and SDs and to assess whether the raw data provided a

sufficiently precise representation of the population distribution. Firstly, means and

SDs of F1∼F3 were calculated for the 86 speakers. Figure 10.2 displays the histograms

of raw means and SDs for each formant in terms of probability density fitted with a KD

estimate. Visual inspection of Figure 10.2 suggests that the normal distribution provides

a fairly accurate model of the distributions of the means. The distributions of SDs in

246



10. Multivariate MCS

all three cases, however, appeared to be positively skewed. To test the assumption of

normality for the means and the skew in the SDs, z-scores for skew and kurtosis were

calculated following the approach in §9.2.2.

Figure 10.2: Histograms of raw means (left) and SDs (right) for F1 (red), F2 (blue) and

F3 (green) based on 86 speakers fitted with a kernel density

For the distributions of means, neither skew nor kurtosis was found to be significant

(Table 10.3). Therefore, the assumption of normality was considered valid for the

distributions of F1∼F3 means. Consistent with earlier predictions, the distributions of

SDs were all positively skewed (significant at least at the 5% level). For F2 and F3 SDs,

kurtosis was also significant at the 1% and 5% levels respectively, but not significant
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for the F1 SDs. Table 10.3 therefore suggests that an assumption of normality for the

distributions of SDs is inappropriate and that an alternative model is required.

Table 10.3: z-scores for skew and kurtosis based on the raw means and SDs for F1, F2

and F3 (with significant values highlighted in red (p < 0.01) and orange (p < 0.05))

Skew Kurtosis

F1 Means -1.8077 0.284

SDs 2.0038 -0.6518

F2 Means 0.6769 0.0973

SDs 5.9731 6.2471

F3 Means 0.4462 -0.9825

SDs 4.1423 2.7237

The raw SDs are consistent with expectations for lognormal distributions. Where the

logarithm of a random variable α is normally distributed, the distribution of α is “said

to be lognormal” (Johnson et al. 1994: 207), such that:

β = log(α) = N(µ, σ) (10.1)

α = exp(β)

where:

α > 0 (10.2)

and:

−∞ < µ >∞ (10.3)

σ > 0

In this way, the mean and SD of the normal distribution in the log space are directly

related to the mean and variance of values in the lognormal space. The properties of the

normal distribution of log(α) are defined as:

µ = log

(
m2

√
v +m2

)
(10.4a)

σ =

√
log(

v

m2
+ 1) (10.4b)

248



10. Multivariate MCS

where m is the mean and v the variance (SD2) of the lognormal values. The properties

of the lognormal distribution are:

m = exp

(
µ+

σ2

2

)
(10.5a)

v = exp(2µ+ σ2)(exp(σ2)− 1) (10.5b)

from Patel and Read (1982: 24)

Figure 10.3 displays the distributions of the natural log of the SDs plotted as a histogram

with estimated KDs. Figure 10.3 shows that the normal distribution provides a good

approximation of the logged data. Across all three formants, the distributions of

log values were relatively symmetrical, with the mean approximately at the point of

maximum density. Following the same procedure as above, skew and kurtosis were

analysed statistically to provide an objective estimate of how appropriate the normal

distribution is for the log values (Table 10.4). For all formants, neither skew nor kurtosis

were significant. This provides evidence that the lognormal distribution is appropriate

for modelling the raw SD values for these data.

Table 10.4: z-scores for skew and kurtosis based on the log SDs for F1, F2 and F3

Skew Kurtosis

F1 log(SD) -1.1962 -0.8366

F2 log(SD) 1.5692 0.4416

F3 log(SD) 0.2077 -1.0097

Having established that the lognormal distribution is appropriate for modelling the raw

data, it was important to consider whether this assumption can be extrapolated reliably

to the population distribution (i.e. if we had 1000 speakers would the distribution of

raw SDs become normal?). There are two reasons why the lognormal distribution

was considered valid for this population. Firstly, the assumption was based on a

large amount of raw data (86 speakers) allowing more robust assumptions about the

population to be made. Secondly, the lognormal distribution is justifiable on linguistic

grounds. This is because the majority of speakers are expected to display moderate

levels of within-speaker variability (c. 40-100 Hz). However, while there is inherently

a lower limit of potential within-speaker variability, there is far more potential for high

levels of variability for a small proportion of speakers.
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Figure 10.3: Histograms of the natural logarithms of raw SDs for F1 (red), F2 (blue)

and F3 (green) based on 86 speakers fitted with a kernel density

10.2.3.1 Precision of population estimate

As in §9.2.2, it was necessary to assess how precisely the raw data approximate

the patterns in the population. To do this, the mean and 95% CIs (based on the

noninformative priors in §7.2.5; Equation 7.1) of the means and the logged SDs for each

formant were calculated initially using values from two speakers, then consecutively

with a random additional speaker until all 86 speakers were included. The 95% CI is a

probabilistic region within which one can be 95% certain that the true value is located.

The CI therefore captures the imprecision in the mean of the means and SDs as the

number of speakers increases. If the means and CIs remain stable as the number of

speakers is increased it can be inferred that they would also be robust to the addition of

further speakers beyond the 86 available here.
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Figure 10.4: Means (solid) and 95% CIs (dashed) for F1 (red), F2 (blue) and F3 (green)

means (left) and logged SDs (right) based on the number of speakers included

Figure 10.4 displays the mean and 95% CIs for F1, F2 and F3 means and logged SDs by

number of speakers. For all formants, there was considerable imprecision using small

numbers of speakers. In all cases, the mean and CIs were stable by the inclusion of all

86 speakers. The point at which this occurred, however, varied. For F1, the mean of the

means and logged SDs reached stability by around 20 speakers. F2 and F3 means were

more sensitive to the number of speakers, displaying fluctuations in both means and CIs

even with relatively large amounts of raw data. However, by around 60 speakers for F2

and 65 speakers for F3 the distributions of means became stable. For F2 and F3 logged

SDs, the means and CIs were relatively well estimated after the inclusion of more than

30 speakers.
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10.2.3.2 Correlations

The correlation structure of the raw data was analysed prior to the simulations. Table

10.5 displays the partial correlation matrix for UM, based on pairwise Pearson correla-

tion tests using the raw data. Only two significant correlations were found: between F1

and F2 SDs (rho = 0.27, p = < 0.01), and F2 and F3 SDs (rho = 0.3, p = < 0.01).

Table 10.5: Partial correlation matrix based on pairwise Pearson correlation test with

rho (left) and p-values (right, italics) for F1, F2 and F3 means and SDs for UM based

on input data form 86 speakers (significant correlations in red)

F1 SD F2 Mean F2 SD F3 Mean F3 SD

F1 Mean -0.01 (0.96) -0.11 (0.31) -0.01 (0.95) 0.17 (0.12) 0.01 (0.96)

F1 SD - 0.04 (0.73) 0.26 (0.01) 0.18 (0.10) 0.08 (0.45)

F2 Mean - - 0.17 (0.11) 0.14 (0.20) 0.07 (0.51)

F2 SD - - - 0.13 (0.24) 0.30 (0.01)

F3 Mean - - - - 0.14 (0.19)

However, the correlation between F1 and F2 SDs appeared to be driven by a single

speaker with atypically high variability for F1 (121 Hz) and F2 (162 Hz) (DyViS speaker

3). Figure 10.5 displays scatterplots of the data both including (left) and excluding

(right) the outlying speaker. With the removal of this speaker, the correlation between

the SDs was no longer significant (p = 0.08). Therefore, for the purposes of simulation

the correlation was ignored, since there was insufficient evidence that the trend holds

for the population. The outlying speaker was nonetheless included in the independent

simulation of F1 and F2 SDs, since the formant measurements for this speaker were

considered accurate. As in Figure 10.5, the correlation between F2 and F3 SDs was also

inspected visually. Although the interaction was not clearly driven by a single speaker,

visual inspection of the data and the rho value of 0.30 suggested that the correlation

was relatively weak. Therefore the correlation was not considered robust enough to

infer that it would hold amongst the population at large.
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Figure 10.5: Scatterplots of F1 SDs and F2 SDs fitted with a linear trend line and using

data from all 86 speakers (left; the outlying speaker is marked with a red ellipse) and

with the outlying speaker removed (right)

10.2.4 Monte Carlo simulations

The absence of meaningful correlations in the raw data is convenient for the simulation

process, since means and SDs can be generated independently. This is beneficial, firstly,

in terms of computational efficiency. Secondly, the lack of correlation minimises the

degree of statistical uncertainty in the simulation procedure. Having established that

F1∼F3 means are normally distributed, the procedures outlined in §9.2.3.1 for sampling

from the normal distribution were also followed here to create synthetic speaker means.

In principle, the procedures used to generate synthetic SDs are the same to those used

for the normally distributed means. The difference lies in how the PDF is defined for

lognormal data. The SD of a given formant is denoted by y, where yi is the SD for

an individual speaker. The raw yi values from all 86 speakers are transformed using a

natural logarithm, and the mean (µ) and SD (σ) of the logged values calculated. These

properties of the distribution of logged values are used to define the lognormal PDF

such that:
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1

xσ
√

2π
e−

(log x−µ)2

2σ2 (10.6)

from Patel and Read (1982: 24)

Based on Equation 10.6, the lognormal distribution is normalised by applying the

transformation:

z =
(log y − µy)√

2σy
(10.7)

This conversion transforms linguistically meaningful values (in the y-space) to nor-

malised z-space values, such that the area under the normalised distribution is equal to

one.

As with normally distributed data, it is necessary to define the inverse CDF to convert

pseudo-random area values (Zi) into synthetic zi values. Having defined z for lognormal

data in Equation 10.7, the CDF of the lognormal PDF can be calculated using

Equations 9.5 and 9.6. The inverse CDF can then also be derived in the same way as

for normally distributed data, as described in Equation 9.7. With explicit knowledge of

the inverse CDF , synthetic zi values are generated using a random variable Zi = ε[0, 1]

and then converted back to the y-space by:

z
√

2σy = log(y)− µy (10.8a)

z
√

2 + µy = log(y) (10.8b)

y = e(z
√
2σy+µy) (10.8c)

Synthetic F1∼F3 means and SDs are randomly assigned to a synthetic speaker (since

they are independent of each other). Tokens for synthetic speakers can then be sampled

from the normal distributions of F1∼F3 (based on the synthetic mean and SD) following

the same process as in §9.2.3.1. Figure 10.6 provides a comparison of the CDF s of

means and SDs for the raw data and those of an example set of 1000 synthetic speakers.

The degree of overlap between the two sets of data indicates that the simulations provide

an accurate model of the distributions in the raw data.
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Figure 10.6: CDF s of F1 (red), F2 (blue) and F3 (green) means (left) and SDs (right)

based on the raw data (86 speakers) and an example set of 1000 synthetic speakers

10.2.5 Experiments

The experiments in this chapter expand on those in Chapters 8 and 9 by using multiple

replications of the same experiment to assess the sensitivity of LR output to variation in

the number of (1) development speakers, (2) test speakers, and (3) reference speakers.

The results of these studies therefore have in-built replicability testing to assess precision

for each number of speakers tested. Development, test and reference data were created

from the synthetic data only (raw data were used only for simulation). For each

experiment, only the number of speakers in the target set (i.e. development, test or

reference) was varied to remove confounding sources of sample size variability. Across

all experiments, scores for the development and test speakers were computed using

MVKD (§3.2.2.1), using the reference data to assess typicality. The test scores were
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then calibrated based on coefficients from the development scores (§3.2.4.1). As in

Chapter 9, the results of each experiment are compared with the baseline results based

on the maximum amount of available data, referred to as the true values (Rose 2012).

Experiment (1) considers how many speakers are required for adequate system calibra-

tion and how the calibration coefficients affect the performance of a large set of test

data. Initially, 100 test speakers and 100 reference speakers with 100 tokens each were

generated following the procedures in §10.2.4. The choice of the number of speakers

was considered sufficiently large as to provide robust LR estimates without compromis-

ing the efficiency of the experiment. An independent set of 1000 development speakers

with 100 tokens per speaker was then created. LR scores were computed initially using

two development speakers. Calibration coefficients were then calculated and applied to

the scores for the 100 test speakers. This process was looped, increasing the number of

development speakers by one each time.

For each N development speakers, calibration shift and scale values (see Equation

3.6) were recorded. The effects on LR output for the test set are analysed using the

median calibrated LLRs (as an indication of the overall distribution of LLRs) and Cllr.

Calibrated EER was not considered in this experiment because the logistic-regression

calibration procedure is optimised to reduce Cllr. Therefore the EER based on the

test data remained the same irrespective of the calibration coefficients applied to the

scores. The whole experiment was run with 20 different sets of development speakers

(replications), using the same sets of test and reference data across all replications.

Experiment (2) assesses the number of test speakers required to reliably estimate

system performance. LR scores were initially computed for 100 synthetic development

speakers (based on the results in §10.3.1) using 100 synthetic reference speakers (100

tokens per speaker), and calibration coefficients calculated. A set of 1000 test speakers

(100 tokens per speaker) was then created and scores computed initially for between two

and 1000 speakers, increasing by one each time. At each stage, calibration coefficients

from the development data were applied. Measures of validity (Cllr and EER), as well as

median SS and DS LRs, were calculated at each N test speakers stage. The experiment

was run over 20 replications, using the same sets of development (therefore the same

calibration coefficients) and reference data.
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Finally, Experiment (3) replicates the experiments in §8.3.1 and §9.3.1 investigating the

effects of variability in the number of reference speakers. Scores were computed for a

set of 50 development speakers and 50 test speakers, each with 50 tokens, using up to

100 reference speakers (50 tokens per speaker). The choice of 50 development and test

speakers was based on a number of factors. Firstly, Experiment (3) was conducted after

Experiments (1) and (2), and so the sizes of the development and test sets were informed

by the results of these experiments. Secondly, Chapters 8 and 9 present the results of

experiments based on very large sets of reference data. Across these experiments the

most interesting effects were found with relatively small amounts of reference data.

Thirdly, in terms of the practical application of the numerical LR to casework, it is

more insightful to explore the effects of sample size when the number of speakers is

relatively small.

Testing in Experiment (3) was performed initially with ten reference speakers. The

analysis consisted of two elements. Firstly, the effects of the number of reference

speakers on calibration coefficients from the development data were assessed. Secondly,

the distributions of calibrated LLRs and system validity based on the test data were

analysed. To compare with §9.3.1, median LRs and Cllr were calculated for the test

set before and after calibration to assess the extent to which calibration can minimise

the effects of small reference samples. EER was omitted from the analysis of scores

because the results were the same as those for the calibrated LLRs. The experiment

was run over 20 replications, using single sets of development and test data.

Across the three experiments, results are considered primarily in terms of variation in

sample size up to 50 or 100 speakers. This is intended to focus on the variability within

the range of speakers which could viably be collected in research or casework. Results

for more than 100 speakers are only presented where there was considerable fluctuation

in LR output with very large samples.
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10.3 Results

10.3.1 Experiment (1): Number of development speakers

The effects of the number of development speakers are considered firstly in terms of

the calibration coefficients generated using logistic regression. As outlined in §3.2.4,

logistic regression calibration is a means of optimising Cllr. The logistic regression

model can be described in terms of the scale (slope) and shift (intercept) coefficients of

the linear trend line in the log-odds space (see Figure 3.7). As shown in Equation 3.6,

to generate a calibrated LLR, a score (s) from the test data is multiplied by the scale

coefficient (β) and then added to the shift coefficient (α). The scale value determines

the range of the resulting LLRs and typically reduces the magnitude of extreme scores

(both consistent-with- and contrary-to-fact scores). The lower the value of the scale

coefficient the greater the reduction in the magnitude of extreme scores. The shift

coefficient determines where the logistic regression line crosses the y-axis, and shifts

all scores towards more positive values or more negative values. The larger the shift

coefficient, the greater the change in the magnitude of the scores when converted to

LLRs. Given that the logistic regression calibration procedure requires natural log input,

calibration shift and scale are analysed in terms of their natural log values.

Figure 10.7 displays the mean calibration scale values with 95% CIs (calculated using

noninformative priors as outlined in Equation 7.1) across the 20 replications as a

function of the number of development speakers. There was considerable variability in

the mean and imprecision across the replications with small amounts of development

data. The overall range of scale values was greatest when using very small numbers of

development speakers. However, scale values were found to stabilise relatively quickly,

such that the true mean scale value of 1.20 was reached by the inclusion of 20 speakers.

Between 20 and 1000 speakers the CIs also remained relatively stable.
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Figure 10.7: Mean (blue) and 95% CIs (grey) of calibration scale values as a function

of the number of development speakers (left = two to 1000 speakers, right = two to 50

speakers)

Figure 10.8 displays the mean calibration shift values with 95% CIs across the 20 repli-

cations as a function of the number of development speakers. As in Figure 10.7, there

was more variation in the mean calibration shift value with wide 95% CIs when using

very small numbers of development speakers. After the inclusion of ten speakers there

was a decrease in the mean shift value towards the true value and gradual narrowing of

the CIs, reflecting greater precision across replications. However, the distribution of

true calibration shift values was effectively reached by the inclusion of 20 development

speakers and remained relatively stable until 1000 development speakers.

The effect of the scale and shift values on the calibrated LLRs was then considered.

Figure 10.9 displays the distributions of median SS LLRs (with 95% CIs) across each

replication based on calibration coefficients from between two and 100 development

speakers. Using as few as two development speakers, SS median values were as many as

three orders of magnitude stronger than the true value (the difference between moderate

and very strong support for the prosecution). Consistent with Figures 10.7 and 10.8, the

greatest imprecision in SS medians was found using small numbers of development

speakers. The SS medians began to stabilise after the inclusion of 20 speakers. While

the overall range of medians across replications continued to narrow as the number of

259



10. Multivariate MCS

development speakers increased, the distribution of true SS medians was approximately

achieved with the inclusion of more than 30 development speakers.
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Figure 10.8: Mean (purple) and 95% CIs (grey) of calibration shift values as a function

of the number of development speakers (left = two to 1000, right = three to 50)
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Figure 10.9: Scatterplot of median SS LLRs using between two and 100 development

speakers fitted with mean (red) and 95% CIs (grey)
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Much bigger effects were revealed in the distributions of median DS LLRs (Figure

10.10). The widest range of DS LLRs across replications was found using just two

development speakers (from -90.64 to +1.94), compared with a range of -9 to -12 (three

orders of magnitude) for the distribution of true median DS LLRs. As the number

of development speakers increased the imprecision in the median values decreased.

By 35 speakers, the mean of the medians was within one order of magnitude of the

true value. Yet only with the inclusion of more than 68 speakers was the mean of the

medians within the same order of magnitude (between -10 and -11) as the true value.

However, given that after the inclusion of more than 15 speakers the median DS LLR

was never weaker than -5, in verbal terms the medians were consistently equivalent

to very strong support for the defence, irrespective of the absolute differences in their

numerical values.
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Figure 10.10: Scatterplot of median DS LLRs using between two and 100 development

speakers fitted with mean (blue) and 95% CIs (grey) (outliers extend from +1.94 to

-90.64 using two development speakers)

Finally, the effects of the number of development speakers are considered in terms of

Cllr (Figure 10.11). As with the distributions of medians, there was considerably more

variability in Cllr with fewer than ten development speakers. The range of Cllr values

across replications extended from 0.13 to maximally 2.90 when using two speakers,
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compared with a true range of between 0.106 and 0.116 (based on 1000 development

speakers). For the majority of replications, Cllr was higher when using small numbers

of development speakers compared with the true values. However, with the inclusion

of more than 20 speakers the distributions of Cllr values were essentially stable, despite

the large differences in the magnitudes of DS median LLRs in Figure 10.10. This is

probably due to the fact that UM is a good speaker discriminant which produces high

magnitude LLRs. Since the variability in DS LLRs as a function of development sample

size primarily occurred in higher magnitudes (i.e. stronger support for the defence), it

had little effect on overall system validity.
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Figure 10.11: Scatterplot of Cllr values (left; scale = 0-3) using between two and 100

development speakers fitted with mean and 95% CIs (right; scale = 0-1)

10.3.2 Experiment (2): Number of test speakers

Figure 10.12 displays the distributions of calibrated median SS LLRs across the 20

replications using between two and 50 test speakers. As in §10.3.1, the greatest

imprecision in median SS LLRs relative to the distribution of true medians was found

using the smallest number of test speakers (in this case five). Between two and ten test

speakers, medians were both weaker and stronger than the true values. This imprecision

was reflected in the width of the CIs. However, across all replications with between
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five and 1000 test speakers, the median never extended outside the range of moderate

support for Hp. With the inclusion of more than 20 test speakers the distribution of SS

medians appeared to stabilise, such that there was essentially no difference in the mean,

95% CIs and overall range of median values between 20 and 1000 test speakers.
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Figure 10.12: Scatterplot of median SS LLRs using between two and 100 test speakers

fitted with mean (red) and 95% CIs (grey)

As in Experiment (1), considerably greater variability as a function of the number of

test speakers was found for DS LLRs. Figure 10.13 displays DS medians using between

two and 1000 test speakers. Medians were both weaker and stronger than the true

medians (based on 1000 test speakers) by as many as 15 orders of magnitude when

using the smallest number of test speakers. Consistent with this, the largest range of

DS medians across replications was found using five speakers. However, Figure 10.13

suggests that there was still considerable fluctuation in the distribution of medians with

relatively large numbers of test speakers. While the central tendency stabilised with

more than 50 speakers, the interquartile range decreased markedly between 50 and 100

speakers, after which there was still some decrease in the overall range of medians.
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Figure 10.13: Boxplots of median DS LLRs as a function of the number of test speakers

Of more interest for FVC casework is the issue of validity variability as a function of

the number of test speakers. Figure 10.14 displays EER and Cllr values using between

two and 50 test speakers. EER was overly optimistic (i.e. lower than the true values)

when using small amounts of test data. In fact, when using only two test speakers,

all 20 replications produced an EER of 0%. This is unsurprising given that with two

test speakers there were only two SS and four DS comparisons. As the number of test

speakers increased between five and 30 speakers the overall range of EER values across

replications increased, reflecting greater imprecision in validity across replications.

Although the mean EER stabilised at around 3% by the inclusion of more than 25 test

speakers, there was continual narrowing of the overall range of EERs as the size of the

test sample increased. Such narrowing continued with very large sample sizes since the

range of EER values based on 50 speakers was greater (2.12%) than that of the true

EERs using 1000 test speakers (0.48%).

A similar pattern was found for Cllr. In 16 of the 20 replications, Cllr was lower using

two test speakers compared with the true Cllr values based on 1000 test speakers.

Following the initially overly optimistic Cllr performance, the bulk of Cllr values began

to stabilise and cluster within a range of around 0.05 after the inclusion of ten test

speakers. However, in terms of the CIs, there was a marked increase in imprecision as

the number of test speakers increased between two and 12 speakers. This was due to
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the Cllr values from two replications which achieved higher Cllr values relative to the

other replications. After this point, with the inclusion of more test speakers the level of

imprecision decreased. The overall range of Cllr values continued to decrease with the

inclusion of more than 50 speakers towards the distribution of the true Cllr values using

1000 speakers.
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Figure 10.14: Scatterplot of EER (left) and Cllr (right) as a function of the number of

test speakers fitted with the group mean and 95% CIs (grey)

10.3.3 Experiment (3): Number of reference speakers

This section explores the effects of the number of reference speakers firstly on calibra-

tion coefficients and calibrated LLRs, and then discusses the effects on uncalibrated

scores.

Calibrated LLRs

Figure 10.15 displays the mean calibration shift and scale values with 95% CIs (in

terms of natural log values) across replications as a function of the number of reference

speakers used in the feature-to-score stage for the development data. With the smallest

number of reference speakers the mean calibration shift was lower by 0.09 relative
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to the true mean shift value of 0.763. Despite some random fluctuation, there was a

continual increase in the mean shift value as the number of reference speakers increased.

However, this variability occurred within a very narrow range.
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Figure 10.15: Mean and 95% CIs of calibration shift (left) and scale (right) values using

between 10 and 100 reference speakers

Unlike the calibration shift values, there was no clear correlation between mean cal-

ibration scale and the number of reference speakers. There was random variation

in the mean within a very narrow range, such that the mean based on ten reference

speakers (0.132) was essentially the same as the true mean (0.102) using 100 speakers.

There was however a marginal narrowing of the 95% CIs as the number of reference

speakers increased, reflecting a slight decrease in the imprecision across replications.

Nonetheless, Figure 10.15 suggests that calibration coefficients were essentially robust

to the effects of small reference sample size for these data.
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Figure 10.16: Boxplots of median calibrated SS (above) and DS (below) LLRs as a

function of the number of reference speakers

Given the stability of the calibration shift and scale values, it is unsurprising that the

associated LLRs were also relatively robust to the number of reference speakers (Figure

10.16). There was very little difference in the distribution of SS medians based on ten

reference speakers and the true values using 100 speakers. In fact, all SS medians across

all replications were consistently within the range of +1 and +2, equivalent to moderate

support for the prosecution. There was greater variability in the distributions of DS

medians. Firstly, there was greater imprecision across replications even in terms of the
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distribution of the true medians, with values extending over two orders of magnitude

from -7.665 to -9.262. Secondly, the DS medians displayed more sensitivity to small

numbers of reference speakers. The median was generally weaker (by up to three orders

of magnitude) when using ten reference speakers compared with the true medians. The

overall range of DS medians was also largest when using ten reference speakers. By

the inclusion of 35 speakers, the distributions of DS medians became relatively stable.

As shown in Figure 10.17, EER was relatively robust to the number of reference

speakers across replications. Mean EER was consistently less than 6% with some

random variation within a range of 0.5% as the size of the reference sample varied.

Further, the upper and lower bounds of the 95% CIs were consistently within the range

of 5% and 6%, although there was evidence of a slight decrease in imprecision as

sample size increased. The EER results, therefore, indicate that categorical validity was

largely unaffected by using different groups of N reference speakers and differences in

sample size itself for these data.
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Figure 10.17: Scatterplot of EER (left) and Cllr (right) based on LLRs as a function of

the number of reference speakers fitted with the group mean and 95% CIs

More variability was found in terms of Cllr. As with the DS medians, there was some

variability across replications when considering only the true Cllr values based on all

100 reference speakers. While 18 of the 20 replications produced Cllr values of between
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0.19 and 0.21, two replications produced more extreme values approaching 0.25. This

highlights that even with large amounts of reference data, there is still potential for

quite considerable variability in system validity depending on the specific speakers used.

Across conditions, Cllr was relatively robust to reference sample size after the inclusion

of more than 30 speakers. With fewer than 30 speakers, there was considerably more

imprecision in Cllr values across replications.

Uncalibrated scores

To compare with the results in §9.3.1, the effects of reference sample size on the

distributions of uncalibrated scores and respective Cllr values were also analysed. Figure

10.18 displays the distributions of median scores as a function of the number of reference

speakers. Compared with the calibrated results in Figure 10.16, both SS and DS

median scores were considerably larger in magnitude (i.e. offered stronger evidence).

Considering just the results based on 100 reference speakers, calibration reduced the

magnitude of the SS medians by approximately three orders of magnitude and reduced

the magnitude of the DS medians by approximately 17 orders of magnitude.

In terms of sample size sensitivity, the results for the scores were similar to those

for the calibrated results in Figure 10.16. The distribution of true median SS scores

across replications ranged from +4.17 to +4.62, consistently equivalent to very strong

support for the prosecution. Only when using fewer than 15 speakers did the SS

medians extend outside the +4 to +5 range. As in all of the experiments in this chapter,

greater imprecision in the distribution of SS scores was found using smaller numbers

of reference speakers. With more than 20 speakers, the median SS scores remained

relatively stable, although the overall ranges continued to decrease as the number of

reference speakers increased. As for the calibrated LLRs, greater sensitivity to sample

size was revealed for the DS scores. The range of median DS scores (-18 to -35; range

= 17) based on ten reference speakers was considerably greater that of the true median

DS scores (range = 8). With the inclusion of more than 35 speakers, the range of DS

median scores became much more stable.
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Figure 10.18: Boxplots of median SS (above) and DS (below) scores as a function of

the number of reference speakers

Figure 10.19 displays Cllr based on scores as a function of reference sample size.

Greater imprecision in Cllr values was found across all conditions based on scores,

compared with the calibrated LLRs. However, the patterns of Cllr variability based on

the scores were similar to those based on calibrated LLRs (Figure 10.17). Imprecision

was greatest with the smallest number of reference speakers, with Cllr generally higher

compared with the true Cllr values. Further, stability in the distribution of Cllr values

was achieved with the inclusion of more than 30 reference speakers.
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Figure 10.19: Scatterplot of Cllr based on scores as a function of the number of reference

speakers fitted with the group mean and 95% CIs

10.4 Discussion

The results of Experiment (1) showed that while calibration shift values were essentially

robust to the number of development speakers, calibration scale values were more

sensitive to sample size variation. Specifically, scale values were generally higher and

displayed considerably more imprecision across replications with small amounts of

development data (i.e. fewer than 15) compared with the distribution of true scale values.

However, with the inclusion of more than 15 speakers the distribution of calibration

scale values stabilised. The effects of such variability on the resulting LLRs were also

analysed. Based on these data, minimally 20 development speakers are considered

adequate for achieving stable distributions of LLRs, at least for this variable. However,

stable Cllr values were achieved with the inclusion of more than 12 speakers.

Experiment (2) investigated the size of the test data on LR output. As in Experiment

(1), LLRs were generally weaker and displayed considerably greater imprecision across

replications with fewer than 20 test speakers compared with the distributions of true

LLRs. The wide range of variability in the distributions of median LLRs when using
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small numbers of test speakers highlights that in system testing small test samples may

provide a misleading assessment of the general strength of evidence achieved by a

given system. More importantly, both EER and Cllr were found to be overoptimistic

when using very small numbers of test speakers (i.e. fewer than five), due to the small

number of comparisons. With between five and 30 test speakers, there was considerably

greater imprecision in EER and Cllr across replications compared with the distributions

of true EER and Cllr values based on 1000 test speakers.

Experiment (3) tested the number of reference speakers on the calibration coefficients

generated through logistic regression. Both shift and scale values were found to be

extremely robust to the size of the reference data. The distributions of the resulting SS

LLRs were also found to be essentially robust to reference sample size. DS medians

were initially weaker and displayed greater imprecision using small numbers of refer-

ence speakers (i.e. fewer than 20) compared with the distribution of true medians using

100 speakers. This contrasts with the results for /u:/ (§8.3.1.1) and /aI/ (§8.3.1.2) where

stronger DS LLRs were found using ten reference speakers. Finally, Cllr in Experiment

(3) stabilised relatively quickly (by around 20 speakers), contrasting with the linear

improvement in Cllr with the addition of more speakers for /u:/ and to some extent for

/aI/.

The relative stability of calibrated LLR output across conditions in Experiment (3)

suggests that sensitivity to reference sample size is not dependent on the inherent

speaker discriminatory value of the input variable. Rather, the results of Experiment (3)

provide further evidence to support the claim that sensitivity to sample size is, at least

in part, determined by the dimensionality of the variable. Comparison across Chapters

8, 9 and 10 shows that calibrated LLRs based on UM (three dimensions) were more

sensitive to reference sample size than those based on AR (one dimension) and less

sensitive to sample size than the scores based on /u:/ and /aI/. However, it is important

to reiterate that the experiments using /u:/ and /aI/ were based on scores which may also

account for the sensitivity to sample size displayed in Chapter 8.

The uncalibrated results of Experiment (3) also offer insights into the potential role

of calibration in reducing the sensitivity of LR output to reference sample size, as

discussed in §9.4. In Experiment (3), the same effects on the distributions of LLRs
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and Cllr were found for the uncalibrated scores. The magnitude of the effects was

also broadly the same across the two sets of LR output, indicating that for UM the

uncalibrated scores were no more sensitive to variability in reference sample size than

the calibrated LLRs (although inevitably the medians are stronger and the Cllr values

worse for the uncalibrated scores). This finding contrasts with the results in Chapter 8,

where calibrated LLRs for AR were essentially stable regardless of reference sample

size, while scores were more sensitive to sample size variation. The contrasting results

between AR and UM offer support for the proposition in §9.4 that the role of calibration

in reducing the sensitivity to reference sample size may be dependent on the individual

variable and its inherent speaker discriminatory power.

The three sets of experiments also raise issues relating to the potential trade-offs

between the numbers of development, test and reference speakers used either in system

testing. Predictably, effects were found as a function of all three sources of sample size

variability. However, the relative importance of the size of each of the development,

test and reference datasets, and which, given the inevitable practical constraints in

research and casework, should contain the most amount of speakers, is dependent on

which element of the LR output the analyst is interested in. To generate meaningful

calibration coefficients the size of the development set is of primary concern, owing to

the imprecision in shift and scale values when using small amounts of development data.

Extrapolating from Experiment (3), calibration coefficients are robust to small numbers

of reference speakers provided a large amount of development data is used. Given the

large effects of small numbers of development speakers on calibration coefficients, the

magnitudes of calibrated SS and DS LLRs are also most dependent on the size of the

development set. That is, to achieve more precise calibrated LLRs it is preferable to

have a large set of development speakers and a small set of reference speakers rather

than vice versa. In the absence of calibration (i.e. where there is no development data),

a precise estimate of the distribution of SS and DS scores is dependent on both the

number of test and reference speakers, where preference should marginally be given to

the number of test speakers.

Predictably, system validity, both in terms of Cllr and EER, was most sensitive to the

number of test speakers used. This applied equally to calibrated LLRs as to uncalibrated
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scores. Importantly, the size of the test set had a range of effects on system validity.

When using fewer than five test speakers, validity was over optimistic (e.g. EER = 0%),

while with small to moderate numbers of test speakers (5-15) validity was considerably

more imprecise. On the basis of these potential trade-offs, in any form of LR-based

FVC testing, large sets of development and test data should be considered a priority.

With sufficiently large amounts of development and test data (20-30 speakers per set), a

moderate amount of reference data (15 speakers) should suffice to provide precise LR

output.

Finally, the results of the three experiments in this chapter have highlighted that even

with relatively large numbers of development, test and reference speakers there may

still be considerable imprecision in elements of LR output. In Experiment (2), the Cllr

values were spread over a range of around 0.2 even with the largest number of available

test speakers. This is a relatively large range of potential variability in terms of the

absolute value for system validity which is reported to the court. Potential means of

dealing with such inherent imprecision are considered in §11.3.

10.5 Chapter summary

Experiment (1): Number of development speakers

• Calibration shift and scale values stable with more than 15 development speakers.

• Calibrated SS LLRs stable when using more than 20 development speakers.

• Calibrated DS LLRs more sensitive to the number of development speakers,

particularly when using small amounts of development data (fewer than 30).

• Cllr robust by the inclusion of 15 or more speakers.

• Fewer than 20 speakers should be avoided when calibrating using logistic regres-

sion.
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Experiment (2): Number of test speakers

• SS median LLRs relatively stable to the number of test speakers, although greater

imprecision with fewer than 20 speakers.

• DS median LLRs more sensitive to the number of test speakers with considerably

wider overall range when using fewer than 40 speakers.

• EER and Cllr overoptimistic using very small numbers of test speakers (between

two and five) due to the small number of available comparisons.

– Greater imprecision in validity between five and 12 speakers followed by a

decrease in imprecision as the number of test speakers increased.

Experiment (3): Number of reference speakers

• Calibration coefficients largely unaffected by reference sample size.

• 20 reference speakers considered minimum for robust LLRs (but ideally should

be greater than 30 speakers).

– Increasing the number of reference speakers only improves the precision of

the LLRs themselves, rather than improving overall system performance.

• Calibration does not appear to play a role in ensuring output is robust to sample

size for UM.
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Discussion and Conclusions

This chapter addresses the research questions outlined in §2.6, in light of the empirical

results presented in Chapters 4 to 10. §11.1 provides an overview of the results based

on dimensions of regional and social variation (Chapters 4 to 7) in the definition of

the relevant population. The limitations of current approaches to defining the relevant

population are also considered and three alternative approaches are presented, namely

(i) multiple defence propositions; (ii) normalisation of variation in sub-populations;

and (iii) expert-judged speaker similarity. §11.2 provides an overview of the effects of

sample size on LR output across the experiments in Chapters 8 to 10. §11.3 considers

the wider implications of the findings for FVC, while §11.4 considers directions for

future research. Finally, a general conclusion is given at §11.5.

11.1 Defining the relevant population

Effects on the magnitudes of LLRs

The results in Chapters 4 to 7 reveal a number of systematic effects of different defi-

nitions of the relevant population when using logical relevance on the magnitude of

LRs. §4.3.1 suggests that SS scores are generally stronger (by one order of log10

magnitude for /u:/) when using Mismatched reference data compared with Matched

data. The higher magnitude of SS scores is a predictable outcome of using Mismatched

and Mixed data at the feature-to-score stage. This is because the distribution of a
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Mismatched reference dataset will be shifted relative to that of Matched reference

data, where both are expected to display similar levels of between-speaker variation.

A Mixed set, however, is expected to display greater between-speaker variation since

it contains a sociolinguistically heterogeneous group of speakers. Therefore, certain

offender values will be located onto the tails of the Mixed distribution, and further onto

the tails of the Mismatched distribution, meaning that p(E|Hd) is lower than it would

be using Matched reference data. The result is higher magnitude scores for the Mixed

and Mismatched data than for the Matched data.

Figure 11.1: Univariate example of a SS comparison (test speaker 11) from §7.3.2

(variation in age) assessing the probability of the offender value (639) at the intersection

of the normal suspect model and KD Matched, Mismatched and Mixed models

Analysis of the uncalibrated results across Chapters 4 to 7 reveals overinflation of SS

scores (albeit to different extents) when using Mismatched or Mixed data, similar to

that in §4.3.1. A univariate KD example of this based on a SS comparison from §7.3.2

(variation in speaker age) using the F1 intercept of /eI/ is displayed in Figure 11.1. In

this case, the Matched (raw) score would be approximately 2.41, compared with 2.82 in

the Mixed condition and 3.42 in the Mismatched condition. Consistent with this, the SS
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scores from §7.3.2 and the replications in §7.3.4 were weakest for the Matched system,

followed by the Mixed system, while the Mismatched system generally produced the

strongest SS scores. This is exemplified by the fact that 40% of the SS scores from

§7.3.2 were over one order of log10 magnitude stronger using the Mismatched system

compared with the Matched system.

Despite this, relatively little difference was found between the distributions of calibrated

SS LLRs across systems for any of the experiments. This may be explained by the use

of Matched, Mismatched and Mixed data throughout training as well as testing. As

outlined in §3.2.4.1, logistic regression calibration is a means of minimising Cllr based

on knowledge of how the system performs using development data. The scale (slope)

coefficient of the logistic regression model is primarily responsible for minimising the

magnitude of strong contrary-to-fact LRs, such that the smaller the scale coefficient the

greater the reduction in magnitude when converting from score-to-LR. A flatter logistic

regression model also has the effect of reducing the magnitude of strong consistent-

with-fact scores, thus reducing the overall range of the calibrated LLRs compared with

the scores. In this way, the scale coefficient affects the magnitude of most extreme SS

and DS scores.

Given that the development and reference sets in these experiments contained speakers

of the same demographic background (irrespective of the demographic background of

the test data), the logistic regression models across the three systems are roughly equiv-

alent (i.e. no overinflation of SS scores), and in particular scale coefficients are roughly

equivalent. When the calibration model is then applied to the test scores, the magnitudes

of the overinflated scores produced by using Mismatched/Mixed reference data are

reduced. Calibration therefore appears to scale the distributions of Mismatched/Mixed

SS scores towards the distribution of the Matched scores, meaning that the distributions

of the resulting calibrated LLRs across systems are more similar to each other. These

experiments are the first to report on the role of calibration in quasi-normalising LR

output from different definitions of the relevant population.

The role of calibration is of particular interest in terms of the results in Chapter 7.

Despite the fact that there was less class-based variation in the raw data (§7.2.5) than

age-based variation, bigger differences were found in the SS LLRs across the Matched,
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Mismatched and Mixed systems when varying class rather than age. When considering

the uncalibrated results, however, overinflation of SS scores from the Mismatched

and Mixed systems was considerably greater for age than for class (consistent with

differences in the raw data). Calibration therefore reduced the magnitude of these

overinflated scores, ameliorating the effects of using Mismatched and Mixed data, to

the extent that differences across systems in SS LLRs for age were smaller than those

based on class.

The shifting of the reference distribution when using Mismatched and Mixed data

also affects DS scores. Given the differences in the location of the distributions for

each system, certain offender values will again be situated further onto the tails of the

Mismatched or Mixed distribution, meaning that p(E|Hd) will be lower than in the

Matched condition. In such cases, the resulting scores will be lower in magnitude when

using Mismatched or Mixed reference data. For example, based on the suspect and

background models in Figure 11.1, a DS offender value of 765 from speaker 19 would

produce the highest magnitude score using the Matched system, followed by the Mixed

system and finally the Mismatched system would produce the weakest score.

The differences in the uncalibrated DS scores across systems were also found in

the resulting calibrated LLRs albeit to a lesser extent. LLRs were generally weaker

using Mixed systems and weakest using the Mismatched systems, compared with the

distributions of DS LLRs produced by the Matched systems. Since LLRs were shifted

closer to zero using the Mismatched and Mixed systems, there was also generally a

higher proportion of contrary-to-fact DS LLRs compared with the Matched systems.

Comparison of the uncalibrated and calibrated LRs suggests that calibration is able to

reduce the effects of using Mismatched and Mixed system data for DS comparisons,

but not to the same extent as for SS pairs, since the systematic patterns found in the

feature-to-score stage were also found in the calibrated DS LLRs.

It is important to emphasise that, irrespective of the general patterns, LLRs from indi-

vidual comparisons are affected by the use of Matched, Mismatched and Mixed systems

to different extents. In particular, pairs which produced higher magnitude support

generally displayed greater variability in LLRs across systems. This is highlighted by

the fact that the width of the 95% CIs in Figures 6.9, 6.14 and 7.11 increased as the
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strength of the mean SS and DS LLRs increased. Magnitude may also explain why

the differences in the distributions of DS LLRs across systems were generally much

bigger than those for SS LLRs. As stated by Rose et al. (2006), “two samples (from the

same speaker) cannot get more similar for a feature than identical” (p. 334), whereas

for different speaker pairs the range of potential dissimilarity is considerably greater.

Further, the fact that cepstral input (Chapter 6) generated the strongest LLRs explains

why it also produced greater variability in individual LLRs (i.e. highest mean 95% CI)

than linguistic-phonetic input.

Effects on system validity

With the exception of Chapter 6, systematic effects were also found in terms of system

validity. Consistent with the empirical demonstration in Morrison et al. (2012), validity

was generally better using data selected based on an appropriate assumption about the

relevant population (i.e. Matched), rather than using Mixed data. Considerably larger

differences in terms of EER and Cllr were found between the Matched and Mismatched

systems, where the Matched systems almost consistently produced the best performance

and the Mismatched systems consistently produced the worst performance. In Chapter 6,

essentially no difference was found across the Matched, Mismatched or Mixed systems

in terms of EER or Cllr, despite considerable variability in LLRs from individual

comparisons. There are two reasons for this. First, the use of forensically unrealistic

data involving read speech and high quality recordings means that performance is

essentially at ceiling (EER and Cllr are extremely close to zero). Secondly, since the

variability in the individual LLRs occurs so far away from the zero threshold, it has

little effect on validity.

Individual variables and sociolinguistic factors

The extent of the differences in LR output across different definitions of the relevant

population depends, of course, on the variable under analysis and the source of between-

speaker variation. In general terms the degree of sensitivity to the definition of the

relevant population was predictably dependent on the amount of group information

(Garvin and Ladefoged 1963) encoded in the variable. Consistent with the high level
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of regional variation in BrEng predicted in §5.2.2, considerably greater variation in

LR output across systems was found for /aI/ (Chapter 5) than for general English /u:/

(Chapter 4) or AmEng cepstral input (Chapter 6). Similarly, the level of social (class

and age) variation encoded in NZE /eI/ was not predicted to be as great at the regional

variation in /aI/. This was again confirmed by the fact that variation in LR output across

systems for /aI/ based on regional groups was more severe than that for /eI/ based on

class or age. Further, in Chapters 4 and 5, the removal of F1 and F2, variables which

encode speech information and speaker information relating to the group (i.e. primarily

responsible for the perceptual cues which account for phonetic contrast and regional

and social patterns; see §3.3.1.1), reduced the differences between the Matched and

Mixed systems in terms of the distributions of the resulting LLRs.

However, a number of exceptions to this pattern were also found which are problematic

for predicting the effects of different definitions of the logically relevant population.

First, in Chapter 5, the EER and Cllr differences between the Matched and Mixed

systems were greatest using F3-only from /aI/ compared with F1∼F3 or F2 and F3,

despite the fact that F3 was shown empirically to encode more speaker-specific (§5.3.3)

than region-specific information (§5.3.2). The validity results may be explained by the

fact that the addition of F1 and F2 in §5.3.3 increased the magnitude of SS and DS LLRs,

compared with any individual formant. Therefore, when using F3-only LLRs were

generally closer to zero, meaning that the smaller differences in the magnitudes of LLRs

between the Matched and Mixed systems had much bigger effects on validity. Secondly,

the opposite pattern was found using cepstral input in Chapter 6. Cesptral input was

expected to display less regional variation that linguistic-phonetic input; however, very

large differences were found across the LLRs from individual comparisons, especially

those of a very high magnitude. As outlined above, the range within which this

variability was found meant that it did not affect validity.

Finally, age-based differences found in the raw data in Chapter 7 were larger than class-

based differences. However, the variation in terms of the distributions of LLRs and

the variability in LLRs from individual comparisons across systems were greater when

varying the definition of class. This is primarily attributed to the effects of calibration

(see above). These exceptions suggest that predictions about the effects of different
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definitions of the relevant population are also dependent on the element of LR output

the analyst is interested in. A concerning issue with these exceptions is that they affect

the precision of individual LLRs and system validity; the two elements of LR output

that are of primary importance in FVC casework.

Therefore, in defining the logically relevant population, the analyst must consider the

important regional and social forces which determine between-speaker variation for the

variable(s) under analysis. This allows the expert to determine which factors should be

controlled when defining the relevant population and, in particular, when collecting data

for LR testing based on their potential effects on LR output. Such predictions may be

made based on experience and expertise, as well as with reference to published research

in sociolinguistics and sociophonetics. Further, the analyst must also be aware of the

potential method-internal effects (e.g. LLR magnitude, the speaker discriminatory

potential of the variable and calibration) of such variation on different elements of LR

output.

Issues with logical relevance

Even with increased awareness of the complexity of between-speaker variation and

the potential effects of different definitions of the relevant population, there remain

a number of difficulties with the application of logical relevance to FVC. Firstly, the

results of Chapters 4 to 7 suggest that, where possible, a narrow definition of the relevant

population in terms of regional background, class and age is preferable for LR testing.

However, as outlined in §2.3.1.1, the clear paradox in FVC casework is that since the

identity of the offender is unknown it is not possible to know, for certain, the population

of which he is a member. It may be possible for the sociolinguistically aware analyst

to make judgements about regional background, sex, age etc. based on the offender

sample, but the analyst cannot know whether such judgements are correct. Secondly,

the experiments in this thesis have considered the effects of a single sociolinguistic

factor on the outcome of LRs from a single variable. However, as outlined in §2.2.5,

there are numerous potentially relevant factors which may need to be controlled. It may

be possible to account for the complexity of the competing forces of sociolinguistic

variation and their potential effects on the OLR using a small number of variables.
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However, in a fully componential auditory-acoustic phonetic FVC analysis (§1.1.3) it

is likely to be much more difficult to predict the effects of different definitions of the

relevant populations on the OLR.

Thirdly, while the results in these experiments have focused on issues with using general

(Mixed) or inappropriate (Mismatched) data in LR testing, the use of a narrowly defined

relevant population may also be problematic. This is because there is an interaction

between the definition of the relevant population according to grouping factors such

as regional background, class and age, and the prior odds. Rose (2013b) highlights

that in a given legal case the defence team may propose a narrowly defined alternative

proposition which “may well increase the LR denominator and thus decrease the LR” (p.

285), thus reducing the evidential support for the prosecution. However, Rose (2013b)

also states that such a strategy “will also change the prior odds in an unwanted direction”

(p. 285), which in turn will affect the posterior probability of the propositions given the

evidence.

For example, the population of Britain in July 2014 was estimated at 63,742,977, of

whom approximately 23,969,294 are males over the age of 20.22 Therefore, for the

sake of exposition, the approximate prior odds based on the definition the relevant

population as BrEng speaking males (following Rose 2004) is 1 in 23,969,294 (although

this, of course, does not constitute anything like a linguistically homogeneous group

due to complexities of defining language, outlined in §2.3.1.1) Assuming that by

using this general definition of the relevant population an overinflated (by one order

of magnitude) SS LR of 100 is generated, consistent with the patterns in §4.3.1. The

posterior probability is therefore:

(
1
N

)(
N−1
N

) × LR =

(
1

23,969,294

)
(

23,969,294−1
23,969,294

) × 100 = 4.17× 10−6 (11.1)

Now, assume that the relevant population is defined more narrowly as young (15-24

years) males from Manchester and the prior odds become 1 in 145,487.23 Assuming a

22http://www.indexmundi.com/united_kingdom/demographics_profile.

html (accessed: 30th September 2014).
23http://www.indexmundi.com/united_kingdom/demographics_profile.

html (accessed: 30th September 2014).
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more conservative LR of 10 based on Matched data, the posterior probability is:

(
1
N

)(
N−1
N

) × LR =

(
1

145,487

)
(

145,487−1
145,487

) × 100 = 6.87× 10−5 (11.2)

In this example, the posterior probability based on a specific defence proposition

(Equation 11.2) is approximately 16 times stronger in favour of the prosecution than

the posterior probability based on a general defence proposition (Equation 11.1). Thus,

all else being equal, the evidence is likely to contribute more towards a guilty verdict,

despite the defence apparently using a specific alternative proposition to reduce the

evidential support for the prosecution. If, as in Chapter 5, there are essentially no

differences in the calibrated SS LR using a general or specific relevant population, then

the differences between the posterior probabilities will be even greater. Assuming the

same priors as above and having generated a LR of 10 for both definitions of the relevant

population, the posterior probability using the specific defence proposition would be

approximately 165 times stronger than that using the general defence proposition. It

important for the analyst to be aware of the implications of the definition of the relevant

population on posterior probability. However, Rose (2013b) highlights that such issues

are unlikely to be considered by the trier-of-fact.

Clearly, the application of logical relevance to speech remains problematic. The only

alternative thus far proposed is lay listener-judged speaker similarity (Morrison et al.

2012). However, as outlined in detail in §2.3.2.1, there are several reasons to reject

this proposal. The underlying logic is limited since the initial judgement to submit

recordings for expert analysis is likely made based on other evidence in the case. The

replicability of the data it generates, and the transparency of the decisions made by

the lay listeners are questionable, due to the way in which lay listeners are expected

to judge similarity. Further, this approach shifts the decision making away from the

expert and onto the untrained lay listener. Given the limitations of logical relevance and

lay listener-judged speaker similarity, the following sections present three alternative

approaches for defining the relevant population. These alternatives emulate current

practices in forensic DNA analysis and ASR.
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11.1.1 Emulating DNA

11.1.1.1 Multiple defence propositions

Logical relevance may be applied to forensic DNA analysis by presenting multiple

LRs based on different assumptions about the offender (Kaye 2004). Since it is not

possible to infer offender race from a sample of questioned DNA, in the UK the suspect

and offender samples may be compared relative to each of the three available racially

defined UK databases to generate three LRs (Gill and Clayton 2009: 34; see §2.3.1).

Applied to speech, this approach would involve offering multiple OLRs for different

definitions of the relevant population based on multiple individual LRs from each of

the variables analysed. The use of multiple defence propositions resolves the paradox

described above, since it captures the inherent uncertainty involved in judging the

demographic background of the offender. Further, it allows the analyst to use specific

alternative propositions which have been shown to generally outperform Mixed data in

this thesis.

However, the practicality of implementing this approach is considerably more difficult

for speech than for DNA analysis. As explained in §2.4.2, the number of available

corpora suitable for use in FVC casework is extremely small. Given that there are so

many potentially relevant factors which may be controlled in a multiple Hd approach, it

would likely not be possible to compute numerical LRs for certain defence propositions

using existing data. In this case, it may be possible to collect case-by-case data (§2.4.1);

however given the time and cost expected for computing a single LR based on a single

variable, the inefficiency of this approach will mean that it is not practically viable.

An alternative, of course, is to estimate typicality based on different definitions of the

relevant population using experience and published research. However, as with the use

of a single logically relevant defence proposition, multiple propositions account only

for the factors which are controlled by the analyst. That is, any uncontrolled sources of

mismatch between the evidential and system data may still affect LR output.
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11.1.1.2 Correction factor (F )

As outlined in §2.3.1, in forensic DNA analysis a number of studies have investigated

genetic differences in sub-populations (such as geographical locations) within racial

groups (Foreman and Evett 2001; Gill and Evett 1995). The primary focus has been on

genetic correlations (Balding et al. 1996) due to potential shared ancestry (coancestry)

between the suspect and other potential offenders, since the use of a general database

may produce an overoptimistic LR for populations which are highly inbred. Due to the

fact that levels of shared ancestry have generally been found to be low in cosmopolitan

populations (Gill and Clayton 2009: 34), genetic correlations are often ignored in DNA

analyses. However, such variation can be accounted for by including a coancestry

coefficient (FST ) into the LR computation (Balding and Nichols 1994; see also Balding

and Nichols 1995 and Balding and Donnelly 1995 for other correction factors).

It may be possible to apply such a correction factor (F ) to variation in sub-populations in

speech. F is a value between zero and one which reflects whether there is less variation

for a given variable (allele frequencies in the case of DNA analysis) in sub-populations

than in the population at large. F increases towards one as the diversity within the

sub-population for the given variable decreases (Barnshad et al. 2004). Following the

DNA approach, it would be necessary to have large established databases controlled for

gross between-speaker differences (e.g. regional background and sex), from which LRs

could be computed with a value for F applied. In the case of speech, an overall value

for F would need to comprise multiple correction factors to account for the multitude

of potential sources of between-speaker variation considered relevant in the database

(e.g. class, ethnicity, age). The benefit of such an approach is that general databases

could be used, while also accounting for the sociolinguistic dimensions of variation

which have been shown to affect LR estimates.

The first limitation of this approach is the availability of a large general database

containing sufficient, representative variation in sub-populations to provide meaningful

values for F . Further, in the collection of such a database a priori decisions regarding

the most important sources of between-speaker variation would need to be defined.

Perhaps most significantly, the complexity of variation in speech (§2.2.5) means that it

would be extremely difficult to calculate a value for F , even if a suitable database were
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available. This is because, where FST accounts for a single source of variation in allele

frequency, an overall value for F in FVC would need to incorporate potentially multiple

sources of between-speaker variation, accounting for the necessary interrelatedness of

these factors. The multidimensionality of between-speaker variation would therefore

introduce considerable statistical uncertainty into the calculation of F , which may

generate meaningless LRs. Further, unlike in DNA analysis, any overall correction

factor in FVC would need to account for within-speaker variability as well as between-

speaker variation.

11.1.2 Emulating ASR

Although the alternative approaches suggested in §11.1.1.1 and §11.1.1.2 resolve some

of the limitations of logical relevance, their limitations mean that it would be difficult

to implement them practically in FVC. Given that these approaches were developed

for DNA analysis, their limitations derive primarily from the attempt to apply them to

more complex patterns of variation in speech. Therefore, it is considered preferable to

develop a default definition of the relevant population which specifically accounts for

the complexity of speech evidence.

11.1.2.1 Expert-judged speaker similarity

This section proposes such an alternative which derives from current approaches in ASR

systems. As in Morrison et al. (2012), it is considered logically appropriate that the

relevant population should consist of speakers who are similar sounding to the offender.

This is also proposed by Rose (2002: 57-58) who states that the defence proposition can

generally be assumed to be that the suspect and offender samples contain the voices of

different but similar sounding speakers. Inherently, any judgement about the similarity

of two speakers is a subjective one. However, it is considered preferable that such

judgements are made by the expert where decisions are more defensible and explainable

to the court, rather than by lay listeners. Following this approach, and in the absence of

a more specific alternative, the defence proposition may be expressed as:
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The voice on the offender sample does not belong to the suspect, but to

another similar sounding speaker as judged by an expert (or more specifi-

cally, the voice on the offender sample does not belong to the suspect, but

to another sufficiently similar sounding speaker such that an expert would

consider the recordings for FVC analysis).

There are a number of logical and practical reasons why the decision relating to similar-

ity should be made by the expert. Firstly, this approach captures the fact that in most

cases the decision to proceed with expert analysis is made by the expert themselves

based on similarity rather than by the police officer potentially on the basis of other evi-

dence from the case. Secondly, the decisions about similarity will be more linguistically

principled, meaning that the set of resulting data should be more homogeneous with

regard to sociolinguistic factors than that based on lay listener judgements. Therefore,

this approach can, to some extent, capture the relevant sources of between-speaker vari-

ation without the expert having to be explicit about the offender’s regional background,

age, class etc. as in logical relevance.

It is, of course, possible to judge speakers as sounding similar without them being in

any sense from the same demographic backgrounds. For example, in cases where the

offender’s sex is unclear (French et al. 2010: 145; Foulkes and French 2012: 569),

the data could consist of both males and females, since there are linguistic reasons

for potentially judging males and females as sounding similar to the offender (e.g.

f0, VQ). However, unlike lay listener-judged speaker similarity, this approach would

still mean that the relevant population consists of “those persons who could have been

involved (in the crime)” (Coleman and Walls 1974: 276). Thirdly, this approach is

arguably more replicable and the decisions more transparent for the trier-of-fact than

lay listener-judged speaker similarity.

There are a number of ways in which expert-judged speaker similarity could be assessed.

Two potential alternatives are tentatively proposed here, although considerably more

research would be needed to investigate the validity and reliability of such procedures.

In both cases a large, general corpus of forensically realistic recordings from a wide

range of speakers would be needed. One approach would be for the expert to assign

similarity scores to each pairwise comparison of each speaker in a corpus and the
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offender. Such a score may be based on auditory analysis, but could also include

acoustic analysis if necessary. The reference data would then consist of the N speakers

from the database judged most similar sounding to the offender. Although preferable

in one sense, this method also has a number of limitations. Firstly, the replicability

of the data would be dependent on high inter-analyst agreement. Secondly, as with

the Morrison et al. (2012) approach, potentially problematic cliff-edge distinctions

between the inclusion/exclusion of speakers would need to be made. Finally, it would

be likely be prohibitively expensive and time-consuming for an expert to conduct what

are essentially multiple voice comparisons to generate a set of data for LR testing data

in each FVC case.

A second, more viable, approach would be to use continuous acoustic measures to calcu-

late distances within the multidimensional acoustic space between the offender and all

other speakers in the database. The resulting data would then consist of the N speakers

closest to the offender in the acoustic space. The most efficient way to do this would be

to use CCs extracted holistically from across each sample (equivalent to the approach

used in the empirical demonstration of lay listener-judged similarity in Morrison et al.

2012), although it would also be possible to use continuous acoustic-phonetic variables.

This approach is equivalent to the in-built reference population selection algorithm in

commercially available ASR software such as BATVOX. BATVOX chooses speakers

for testing based on Kullback-Leibler distances between the speakers in the database

and the suspect using holistic MFCC analysis.

The primary difference between BATVOX and the approach outlined above is that

expert-judged speaker similarity is based on distances between the speakers in the

database and the offender, since the defence proposition should be defined by the

offender rather than the suspect. Of course, the extent to which this approach is in any

way objective and replicable is again dependent on the decisions made by the analyst in

terms of how the acoustic data are extracted (see Harrison 2013 for issues with formant

measurements) and then modelled statistically. However, the approach does allow for

data based on a principled assumption about the relevant population to be assembled

relatively quickly and efficiently, improving the viability of the numerical LR approach

for FVC.
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11.2 Collecting development, test and reference data

The results of Chapters 8, 9 and 10 have revealed a number of effects of sample size

on LR output. Consistent with the results of Ishihara and Kinoshita (2008) and Rose

(2012), LR output was found to be imprecise and misrepresentative with small numbers

of reference speakers. Specifically, the smallest (ten speakers) numbers of reference

speakers generated the widest ranges of SS and DS LRs, and validity was generally

considerably worse compared with the true LRs computed using the maximum number

of available reference speakers. However, the point at which stable LRs and system

validity were achieved differed across input variables.

Using univariate AR data in Chapter 9, calibrated LLRs appeared relatively stable to

variation in reference sample size, even with as few as ten reference speakers. Similarly,

aside from minor fluctuations, EER and Cllr were generally robust to reference sample

size using AR. In Chapter 10, LLRs and system validity based on mid-point F1∼F3

values for UM were somewhat more sensitive to sample size, with imprecision across

replications stabilising with the inclusion of between around 20 reference speakers. The

comparison of formant trajectory input for /u:/ and /aI/ in Chapter 8 revealed greater

sensitivity to sample size. The distributions of scores were found to stabilise for /u:/

only with more than 30 reference speakers (as in Ishihara and Kinoshita 2008), although

there was a linear trend for an improvement in Cllr as sample size increased up to the

maximum number of speakers (120). For /aI/, stable LR output was only achieved with

more than around 50 speakers (Cllr was stable with more than 42 speakers).

These results highlight a number of important issues for LR-based FVC. First, there

is considerable evidence to support the predicted relationship between sample size

sensitivity and the dimensionality of the input variable (Rose 2013a; outlined in §8.1).

The most stable LR output was achieved using univariate AR data (one dimension),

while the least stable LR output was generated using the multivariate /aI/ trajectory data

(12 dimensions). As outlined in Rose (2013a), this is because more data are required to

precisely model high dimensional density functions. Secondly, there is some evidence

that calibration may reduce the sensitivity of LR output to variation in sample size.

In §9.3.1, sample size effects present in the uncalibrated scores were absent from the

resulting calibrated LLRs. In §10.3.3, although calibration did not affect the point at
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which stable LR output was achieved (around 30 speakers), it did reduce the magnitude

of the effects of sample size when the number of speakers was small.

Thirdly, the inherent speaker discriminatory power of the variable appears to play a

role in sample size sensitivity. For variables which produce low magnitude LLRs,

there is a narrower range of potential variation. This may account for the stability

in the distributions of LLRs for AR, since inherently AR offers very limited speaker

discriminatory power (optimally Cllr approaching 1 and EER of around 35%). As

outlined in §9.4, speaker discriminatory power may also explain the different effects

of calibration in reducing the sensitivity of LR output to sample size for AR and UM.

Finally, sample size affects LLRs from individual comparisons in different ways. The

results in this thesis suggest that the effects on individual LLRs are, to some extent,

dependent on magnitude. For comparisons which generate high magnitude LLRs, there

is considerably greater variability as a function of sample size. This is highlighted by

the variation in values generated by the comparisons which produce the most outlying

LRs across Chapters 8, 9 and 10. This is because changes to the reference distribution

as speakers are added have a much more substantial effect on the LRs for offender

values on the tails of the reference distribution. This also explains why DS LLRs are

generally more sensitive to sample size than SS LLRs.

The results of Chapter 10 also have important implications for FVC. The use of multiple

replications highlights that even with an extremely large number of speakers there is

potentially a large amount of variability across systems with datasets of the same size

but containing different speakers. Such inherent uncertainty in the absolute value of

the LR should be acknowledged and explained to the court in LR-based FVC. Chapter

10 also revealed trade-offs between the number of development, test and reference

speakers according to different elements of LR output. Calibration coefficients were

almost entirely dependent on the size of the development set, and with a sufficiently

large development set (15+ speakers) were stable even when using very small amounts

of reference data (e.g. ten speakers). Validity metrics (EER and Cllr) were, predictably,

dependent on the number of test speakers, displaying a considerably wider range of

variability and overly optimistic performance with the smallest number of test speakers

(two).
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Finally, Chapters 8 and 9 presented the first investigation into the effects of the number

of tokens per reference speaker on LR output. As with the number of speakers, LR

output was severely compromised when using very small numbers of tokens (two).

Different patterns were again found for the different input variables. For /u:/ and /aI/,

there is some evidence of stable SS scores and validity metrics with more than six

tokens. However, for /aI/ no stability in the distribution of DS scores was found. For

AR, LR output was consistently stable even when using the smallest amount of data per

speaker (two tokens). As with the number of speakers, these patterns may be explained

by the dimensionality of the input variables. Similarly, there is also evidence that the

speaker discriminatory power of the variable and the magnitude of individual LLRs

again contribute towards sample size sensitivity.

11.3 Practical implications

The results of the experiments in this thesis have a number of practical implications for

FVC casework. Given the range of sources of systematic between-speaker variation

in speech, across all forms of FVC analysis it is important to consider the appropriate

population against which to assess typicality (as suggested by Morrison et al. 2012;

Morrison and Stoel 2014). For LR-based FVC using logical relevance, this is all the

more important given the potential effects (due to both between-speaker variation and

method-internal factors) of different definitions of the relevant population on numerical

LR output. On the basis of the findings in this thesis, a narrowly defined relevant

population should be preferred where there is no dispute over given sociolinguistic

factors (which may be determined by the court). In cases where elements of the

offender’s demographic background are uncertain, the analyst should prefer a general

definition of the relevant population. However, from a practical perspective expert-

judged speaker similarity (§11.1.2.1) may be a more viable means of accounting for

the complexity of between-speaker variation and generating robust LRs than logical

relevance.

The results of sample size testing suggest that, predictably, more data in the development,

test and reference sets is better for LR testing. For all of the variables tested, stable LR
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output (in terms of the magnitudes of LRs and system validity) was achieved using 50 or

more reference speakers, although it may be possible to use far fewer if the variable has

a relatively small number of dimensions (fewer than nine). For variables with more than

12 dimensions it may be necessary to use far more than 50 reference speakers. However,

the trade-offs explored in Chapter 10 suggest that for a relatively low dimensional

variable (three dimensions), if the number of available speakers is small preference

should be given to the size of the development and test sets. In Chapter 10, stable

calibrated LLR output was achieved using minimally 20-30 development speakers,

20-30 test speakers and as few as 15 reference speakers, although this depended on

which element of LR output was analysed.

Given that sample size sensitivity has been shown to differ for individual variables, it

may be necessary in casework to perform pre-testing to establish the point at which LR

output becomes stable and assess the overall degree of precision in LR estimates as a

function of sample size (similar to that in Rose 2012). In the absence of suitably large

available databases, MCS have provided a valuable resource for investigating these

issues in this thesis and could be used as part of system pre-testing (as in Rose 2013b).

In practical terms, MCS are easy to implement and can be used to generate a large

amount of data quickly and efficiently. Crucially, however, MCS are dependent on the

assumption that the underlying distribution of within- and between-speaker variation in

the relevant population is known, either through previous research or raw data. Further,

complexity and uncertainty is introduced into the MCS procedures when simulating

multiple correlations between elements of a variable. Therefore, caution is advised

when implementing MCS procedures using already small sets of raw data or highly

multivariate variables.

Across all experiments, differences have been found between uncalibrated scores and

calibrated LLRs, with results suggesting that calibration is able to help reduce some

of the effects of inappropriate or general definitions of the relevant population and

some of the effects of small samples in LR testing. Therefore, caution is advised when

interpreting the strength of evidence or system performance based on uncalibrated

scores, especially where the amount of data for testing is small or the definition of

the relevant population is general. The role of calibration in determining sample size
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sensitivity has not been reported previously in terms of the number of speakers used in

LR testing, but is suggested in Ishihara and Kinoshita’s (2012) study of the number of

tokens per test speaker (see §2.5 for an overview).

Finally, given the inherent uncertainty in LR estimates due to variation in the definition

of the relevant population and due to sample size, it may be preferable to express

the strength of evidence as a range rather as a single LR value. This is currently

done using the 95% CI to account for the imprecision in LR estimates across multiple

non-contemporaneous samples. However, this should be expanded to incorporate the

imprecision across the many subjective decisions made by the analyst in building and

testing a FVC system. Alternatively, the numerical LR may be expressed in the form

of a verbal equivalent. In Chapter 6, despite the large differences in the magnitude of

individual DS LLRs across systems based on cepstral input, following Champod and

Evett’s (2000; see Table 3.3) scale, almost all values would be classified verbally as

offering very strong support for the defence. Similarly, for the DS results based on /u:/

in Chapter 8, much of the substantial sample size variation would be normalised by

classifying all values of less than -4 as very strong support. The use of verbal scales may

also, to some extent, resolve the courts concerns about the interpretability of LR-based

evidence raised in R v Doheny and Adams [1996] (see further §2.1.4.1). Although the

court in R v T [2010] expressed reservations over the use of verbal equivalents, such

scales have subsequently been received by the courts in R v South [2011].

However, the verbal LR is not capable of resolving all of the issues relating to the

relevant population and sample size. Firstly, the introduction of cliff-edge effects could

result in small numerical differences between systems being exaggerated (e.g. 1.99

vs. 2.01 = moderate vs. moderately strong support). This is particularly problematic

for SS LLRs since they are generally situated within the region of verbal differences

(i.e. between zero and +4). Secondly, and perhaps more importantly, verbal LRs do

not resolve differences in system validity. In light of these limitations, it would appear

best to present the results of an LR-based analysis in terms of both a numerical interval

which accounts for the imprecision across analyst decisions, an estimate of the validity

of the system within a given interval which also accounts for the subjectivity in analyst

decisions, and a verbal expression of the strength of evidence (with obvious caveats
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regarding potential cliff-edge effects). Indeed, Robertson and Vignaux (1995b: 57)

argue that a combined numerical and verbal LR is the best way to ensure that the

probabilistic detail of the analysis is maintained, but that the strength of evidence is

also interpreted correctly.

11.4 Future work

The findings and implications of the experiments in this thesis offer considerable scope

for future research into the definition of the relevant population and the collection

of data for LR testing. It would be useful to replicate the experiments in Chapters 4

to 7 using non-contemporaneous, forensically realistic data. In particular, given the

limitations of TIMIT in Chapter 6, more research is warranted to explore the social

stratification of ASR variables using more forensically realistic speech samples. It

would also be interesting to evaluate the sensitivity of cepstral input to regional variation

for varieties with known differences in vocal settings. The sensitivity of semi-automatic

variables such as LTFDs to systematic sources of between-speaker variation is also a

potentially interesting avenue for future research. Moreover, building on Harrison and

French (2012), it is necessary to test the sensitivity of commercially available ASR

software to different definitions of the relevant population. Thus, it may be possible to

apply sociolinguistic knowledge to further improve ASR systems.

Considerably more work is required to empirically test different approaches to defining

the relevant population. In particular, more research is needed to develop different

versions of lay listener- and expert-judged speaker similarity and evaluate what sim-

ilarity means in different contexts. Specifically, future research should consider the

level of agreement between lay listeners, experts and fully numerical acoustic mea-

sures in determining how similar pairs of speakers are. These results will contribute

towards evaluating lay listener- (Morrison et al. 2012) and expert-judged (§11.1.2.1)

speaker similarity approaches in LR-based FVC. The results of such studies will also

contribute towards better understanding the linguistic information to which lay listeners

are sensitive in making judgements of similarity (see McDougall 2013; Nolan et al.

2013).
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Beyond between-speaker variation, further research is required to investigate how the

numerous sources of systematic within-speaker variability (see §2.2.5) affect LR output.

It would also be interesting to compare the direction and magnitude of the effects

on LRs of such sources of within-speaker variability relative to the effects of using

contemporaneous and non-contemporaneous samples (Enzinger and Morrison 2012).

Through such work, it will be possible to assess which are the most important sources

of forensically relevant variability to control in FVC research and casework. Further,

despite the mass of literature in sociolinguistics and sociophonetics into the effects of

stylistic factors on linguistic-phonetic variables, very little work has considered the

potential extent of within-speaker variability in ASR variables such as CCs.

Although the issue of the number of speakers in the development, test and reference

data has been investigated extensively in Chapters 8 to 10, there a number of avenues for

future research with regard to sample size. As above, it would be preferable to replicate

the experiments in this thesis using non-contemporaneous, more forensically realistic

samples. Further, given the differences in the results across individual variables, it

would be useful to replicate these studies using highly multivariate ASR-type variables.

Future work should also build on the relatively small-scale studies in this thesis and

on the results of Ishihara and Kinoshita (2012) to investigate more systematically the

extent to which LR output is compromised by the amount of data per development, test

and reference speaker.

This thesis has also highlighted the inadequacies of currently available corpora for LR-

based FVC. Across the experiments, a range of corpora collected for different purposes

have been used, all of which reflect some degree of compromise in order to address the

research questions. Therefore, it is considered essential that a large set of forensically

realistic data is collected for use in FVC research and casework, which incorporates the

best elements of currently available sociolinguistic, ASR and forensic corpora. As in

sociolinguistic research, such a corpus would need to contain a diverse set of speakers

controlled for a number of social dimensions and with multiple recordings per speaker

reflecting different stylistic conditions. As in ASR research, such a corpus would need

to be extremely large with multiple mismatched samples with regard to technical effects

(e.g. telephone transmission). Finally, as in FVC research, such a corpus would need
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to include samples of speakers involved in forensically realistic tasks such as those in

DyViS (§3.1.1). Potential procedures for collecting such a database are outlined in

Morrison, Rose and Zhang (2012).

Beyond the specific issues addressed in this thesis, there remain a number of barriers

to the widespread application of the fully numerical LR approach in FVC casework.

On a micro level, as highlighted in Gold and Hughes (2014), Gold (2014) and §2.2.5,

there remain a number of method-internal issues to resolve. In particular, it is important

that the field of FSS, in collaboration with forensic statisticians, develops models to

account for all of the variables that may be analysed in a given case (see Aitken and

Gold 2013; Foulkes et al. 2013-2015). LR formulae are needed to compute numerical

LRs for the many discrete and binary variables analysed in FVC, in particular for VQ

given that experts consider this to be one of the most speaker discriminatory variables

in FVC (Gold and French 2011). Further work is also required to appropriately account

for the complex correlation structure of speech evidence when combining LRs from

individual variables into an overall estimate of the strength of evidence (Gold and

Hughes 2013-2014).

On a macro level, the interpretability of a fully numerical LR-based analysis and the

resulting expression of the strength of the evidence by the trier-of-fact is problematic.

Relatively little work (with the exception of Cudmore 2011; Martire et al. 2014) has

considered how well (or rather how badly) lay people understand expert evidence

expressed in the form of a LR. However, as outlined in R v Turner [1975] the role of

the expert is to “furnish the court with . . . information which is likely to be outside

the experience and knowledge of a judge or jury.” An essential part of this role is to

ensure that the expression of the strength of evidence is correctly interpreted. This is

highlighted by the FRE 702 requirement (reaffirmed in Daubert) that expert evidence

“will assist the trier-of-fact to understand the evidence.” However, as highlighted by

Berger (2010), “a logically incorrect conclusion that is ‘understood’ is no alternative to a

logically correct conclusion which needs explanation” (p. 784). Therefore, considerably

more work is needed to ensure that the expert’s conclusion is based on logically and

legally correct reasoning and that such reasoning is well understood by the trier-of-fact.

As argued by Ledward (2004) and Fenton and Neil (2012), such progress is dependent
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on interdisciplinary collaboration between statisticians, forensic scientists, lawyers and

the courts.

11.5 Conclusion

The overarching aim of this thesis has been to consider the dimensions of potential

variability in analyst decisions involved in data-driven LR-based FVC. Specifically, the

issues of the definition of the relevant population and the collection of data for system

testing have been considered in view of the complexity and multidimensionality of

speech as a form of evidence. The results have shown that LR output is heavily depen-

dent on which sources of systematic between-speaker variation the analyst controls

when defining the relevant population. More specific definitions based on a range of

sociolinguistic factors (regional background, class and age) have largely been shown to

produce more valid systems than the use of a general definition such as Rose (2004).

The use of small samples has been shown to compromise the validity and reliability of

LRs produced by a given system. The level of sensitivity to sample size is determined

largely by the dimensionality and speaker-specificity of the variable under analysis.

Further, in cases where the amount of available data is small, there may be trade-offs in

the size of the development, test and reference sets to generate reliable LR output.

It is hoped that the results of this thesis will contribute towards to improving the

viability of the numerical LR approach for FVC casework and help to improve the

extent to which LR methods account for the linguistic-phonetic complexity of speech.

By accounting for this complexity in future work to address other issues with using the

LR for analysing speech, the quality of FVC evidence will necessarily improve and the

acceptance of the LR as a practical tool will also hopefully increase within the field of

FSS.
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Appendix

Generating a synthetic speaker distribution: an example

using univariate data

This section provides a worked example of how synthetic means and SDs were generated

using MCS based on a set of raw univariate AR data from 59 speakers. The means and

SDs were used in Chapter 9 to function as Gaussian distributions for each synthetic

speaker, from which individual tokens of local AR were extracted.

The distribution of mean local AR values (x) from the raw data is firstly converted to a

normal PDF through a process of normalisation to the z-space using the mean of the

means (µx = 6.044) and the SD of the means (σx = 0.627):

z =

(
x− µx√

2σx

)
=

(
x− 6.044√
2× 0.627

)
.

A random area value for f(z) = Zi = 0.4478 is output by the rand function in Matlab,

which generates a pseudo-random value between 0 and 1 from a normal distribution

N(0.5, 0.341). The inverse CDF of Zi is therefore equal to zi (Equation 9.7 such that:

zi = CDF−1(0.4478) = −0.1312.

zi is then transformed to the linguistically meaningful x-space by:

xi = (
√

2σx × zi) + µx = (0.8867×−0.1312) + 6.044 = 5.9277.

The synthetic mean local AR value for this speaker is therefore 5.9277.

The synthetic SD (yi) can then be generated from N(axi + b, βi) based on the linear

correlation, and variability around the trend line, between the means and SDs in the
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raw data where a = 0.1262, b = 0.3359 and xi = 5.9277 is the synthetic mean that has

just been created. In this case, axi + b = (0.1262× 5.9277) + 0.3359 = 1.084. The βi

element (based on N = 59 speakers) is calculated as:

βi =

√√√√ 1

N

n∑
i=1

(xi − x̄)2 =

√
1

59
× 1.9466 =

√
0.033 = 0.1816,

such that the SD (yi) associated with the mean (xi) of 5.9277 is sampled from a

distribution N(1.084, 0.1816). This distribution is converted to a PDF where:

z =

(
x− 1.084√
2× 0.1816

)
.

A pseudo-random f(z) = Zi = 0.3733 is generated using rand and again zi is calcu-

lated by CDF−1(0.3733) = −0.3231. This is transformed back to the linguistically

meaningful y-space such that:

yi = (
√

2σx × zi) + µx = (0.2884×−0.3231) + 1.084 = 1.001.

The normal distribution of local AR values for this new synthetic speaker has a mean

of 5.9277 syllables per second and a SD of 1.001 phonological syllables per second.

Individual tokens of local AR are then sampled from this Gaussian distribution following

the same procedure as outlined above for generating synthetic means.
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List of Abbreviations

| given

A Delta-delta (accelaration) coefficient

AmEng (North) American English

AR Articulation rate

ASR Automatic speaker recognition

AusEng Australian English

BrEng British English

CanCor Canterbury Corpus

CC Cepstral coefficient

CDF Cumulative distribution function

Cllr Log likelihood ratio cost function

CI Credible interval

D Delta (differential) coefficient

DA Discriminant analysis

DCT Discrete cosine transformation

DFT Discrete Fourier transform

DR Dialect region

DS Different speaker

DyViS Dynamic Variability in Speech (database)

E Evidence

EER Equal error rate

erf Error function

f0 Fundamental frequency
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F(1-3) Formant (1st-3rd)

FSS Forensic Speech Science

F Correction factor

FST Coancestry coefficient

FVC Forensic voice comparison

GMM-UBM Gaussian mixture model - universal background model

Hd Defence proposition/hypothesis

Hp Prosecution proposition/hypothesis

HTK Hidden Markov Model Toolkit

Hz Hertz (frequency)

KD Kernel density

kHz Kilohertz (frequency)

LLR Log likelihood ratio (base 10 unless otherwise stated)

LPC Linear prediction cepstrum

LPCC Linear prediction cepstral coefficient

LR Likelihood ratio

MCS Monte Carlo simulations

MFC Mel frequency cepstrum

MFCC Mel frequency cepstral coefficient

MVKD Multivariate kernel density

N(µ, σ) Normal distribution with mean µ and standard deviation σ

NE Northern Englishes (corpus)

NIST National Institute of Standards and Technology

NZE New Zealand English

OLR Overall likelihood ratio

ONZE Origins of New Zealand English (corpus)

p Probability

PDF Probability density function

PVC Phonological Variation and Change (corpus)

RMS Root mean square

RoI Roots of Identity (corpus)

SD Standard deviation
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SS Same speaker

SSBE Standard Southern British English

TIMIT Texas Instruments (TI), Massachusetts Institute of Technology (MIT)

(database)

UKPS UK Position Statement

VQ Voice quality
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Legal Cases

Daubert v Merrell Dow Pharmaceuticals [1993] 509 US 579.

Frye v United States [1923] 293 F. 1013 D.C. Cir.

George v R [2007] EWCA Crim 2722.

R v Robb [1991] 93 Cr App R 161.

R v Adams [1996] 2 Cr App R 467.

R v Deen [1993] (EWCA (Criminal Division)) (reported: Times, January 10, 1994).

R v Doheny and Adams [1996] EWCA Crim 728.

R v O’Doherty [2002] NICB 3173.

R v Flynn [2008] EWCA Crim 970.

R v Sally Clark [2003] EWCA Crim 1020.

R v South [2011] EWCA Crim 754.

R v T [2010] EWCA Crim 2439.

R v Turner [1975] QB 834.

United States v Robert N Angleton [2003] 269 F Supp 2nd 892 S D TX.
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