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Abstract 

In forensic voice comparison, there is increasing focus on the 

integration of automatic and phonetic methods to improve the 

validity and reliability of voice evidence to the courts. In line 

with this, we present a comparison of long-term measures of the 

speech signal to assess the extent to which they capture 

complementary speaker-specific information. Likelihood ratio-

based testing was conducted using MFCCs and (linear and Mel-

weighted) long-term formant distributions (LTFDs). Fusing 

automatic and semi-automatic systems yielded limited 

improvement in performance over the baseline MFCC system, 

indicating that these measures capture essentially the same 

speaker-specific information. The output from the best 

performing system was used to evaluate the contribution of 

auditory-based analysis of supralaryngeal (filter) and laryngeal 

(source) voice quality in system testing. Results suggest that the 

problematic speakers for the (semi-)automatic system are, to 

some extent, predictable from their supralaryngeal voice quality 

profiles, with the least distinctive speakers producing the 

weakest evidence and most misclassifications. However, the 

misclassified pairs were still easily differentiated via auditory 

analysis. Laryngeal voice quality may thus be useful in 

resolving problematic pairs for (semi-)automatic systems, 

potentially improving their overall performance. 

Index Terms: forensic voice comparison, MFCCs, LTFDs, 
auditory analysis, voice quality, system validity 

1. Introduction 

1.1. Forensic voice comparison 

Forensic voice comparison (FVC) involves the analysis of the 

speech patterns of an unknown offender (e.g. covert recordings 

of drugs deals) and those of a known suspect (e.g. a police 

interview). The expert’s role is to evaluate the strength of the 

voice evidence under the competing propositions of the 

prosecution (‘the suspect and offender are the same person’) 

and the defence (‘the suspect and offender are different 
people’). The decision on guilt lies with the trier of fact.  

Different approaches to FVC are used by experts, which can 

broadly be divided into automatic, semi-automatic, and 

phonetic methods. Automatic and phonetic approaches have 

largely developed in isolation from each other [1,2,3]. They 

differ primarily in terms of the features analysed and their 

conceptual treatment of the speech signal. Automatic methods 

typically treat the signal holistically, extracting and modelling 

spectral features to generate a probabilistic outcome, based on 

long-term resonance properties of the vocal tract. Phonetic 

analysis is grounded in a componential approach which 

decomposes the signal into linguistically relevant units, such as 

vowel and consonant phonemes, and applies standard acoustic 

and auditory methods to capture their properties. These 

analyses are combined to generate an overall conclusion. Semi-
automatic methods represent a hybrid of these approaches. 

1.2. Current practice 

Around the world, FVC casework is predominantly conducted 

using only phonetic analysis [4,5], for various reasons. First, 

while the performance of automatic speaker recognition (ASR) 

systems has improved considerably (with error rates for state-

of-the-art systems less than 1% under certain conditions), much 

of the research in ASR has not considered the complexities of 

FVC casework [6]. Secondly, there is a longer history of courts 

admitting phonetic evidence. In England and Wales and in 

Northern Ireland this is enshrined in legal precedent (R v Robb 
1991; R v O’Docherty 2002; R v Flynn & St John 2008). 

There are also more fundamental issues with the use and 

acceptance of ASR systems in FVC casework. ASR systems are 

often perceived as being ‘black boxes’ (i.e. the internal 

mechanisms and algorithms are opaque, either due to lack of 

accessibility and/or lack of understanding) both by experts 

outside of speech technology and particularly by lawyers and 

the courts. This is primarily because the short-window spectral 

features extracted by ASR systems are “difficult to directly 

relate (to) the physiological traits of an individual” [7]. This 

makes the findings difficult to explain, in contrast to phonetic 

features which can be described to the court in non-technical 

terms, and demonstrated by the expert or by playing samples. 

The uncertainty about ASR systems is reflected in the Court of 

Appeal ruling in R v Slade & Ors [2015] which essentially 

rejected ASR-based evidence. There were various issues with 

the ASR evidence, including whether it constituted new 

evidence over and above that provided by the phonetic analysis 

at the original trial. The court also displayed fundamental 

misunderstandings about how ASR systems work, further 

propagating the ‘black box’ myth. The ruling is binding on 

lower courts and will set back the use of ASR systems in 
casework by some years in the UK. 

1.3. Integration of phonetic and automatic methods 

As noted, the performance of ASR systems is extremely good, 

and their potential value in the forensic context is clear. As 

such, the use of ASR in casework is increasing, with Germany 

and Sweden now admitting ASR evidence in combination with 

phonetic analysis. Given these developments there has been 



increasing focus on the integration of the best elements of the 

different methods to improve FVC evidence [8,9]. Fundamental 

to this development is an understanding of the methods’ 

strengths and weaknesses. This involves examining how 

different methods capture speaker-specific information, the 

relationships between methods, the underlying source of any 

difference in the speaker-specific information captured, and the 

extent to which the combination of approaches might improve 
the overall performance of FVC systems.  

However, few studies have attempted to address such issues 

([10,11] are exceptions). Notably, [12] evaluated the falsely 

accepted pairs (different-speaker classified as the same speaker) 

by an i-vector ASR system using auditory and acoustic phonetic 

analyses. Although the differences between pairs resulted from 

a range of features, voice quality (VQ) was considered of 

“fundamental importance” for distinguishing voices. However, 

while the phonetic analysis highlighted the ‘back-end’ value of 

VQ in separating speakers, it did not address how this 

information might be useful for front-end prediction of 
problematic speakers for the automatic system [11]. 

1.4. This study 

This study evaluates the complementarity of the speaker-

specific information captured by long-term automatic 

(MFCCs), semi-automatic (LTFDs), and phonetic measures 

(VQ). These features were selected because they are commonly 

used in each of the three main approaches, encode considerable 

speaker-specific information, and model long-term vocal 

output. In this sense, the analyses are directly comparable. 

1.4.1. Features 

Mel frequency cepstral coefficients (MFCCs; automatic) are 

used extensively in automatic systems. They are a rich 

representation of the Mel-weighted power spectrum capturing 

information about the supralaryngeal vocal tract by, in 

principle, decoupling it from laryngeal information. MFCC-

based systems are often used as a baseline against which to 
assess the potential value of additional features [10,11].  

Long term formant distributions (LTFDs; semi-automatic 

features) model vowel formant values extracted across an entire 

speech sample. The analysis requires information about vowel 

boundaries, but is not segmental in that all vowels are modelled 

together. LTFDs capture information about the maximal extents 

of the acoustic vowel space and, by inference, the geometry of 

the supralaryngeal vocal tract. The use of vowel formants is 

ubiquitous in FVC casework [1,13]. LTFDs have also received 

some attention in FVC [14,15] and have been shown to provide 

useful speaker-specific information. However, only a limited 

amount of previous work has examined the complementarity of 

LTFDs and MFCCs using empirical system testing [16]. We 

also examined Mel-weighted LTFDs ((M)LTFDs), as they are 
predicted to be more closely correlated with MFCCs.  

Voice quality (VQ; phonetic features) refers to long term, 

quasi-permanent vocal ‘settings’ [17], also referred to as 

‘timbre’. VQ is defined separately in terms of supralaryngeal 

settings (e.g. nasality, back/front tongue orientation) and 

laryngeal settings (e.g. creaky phonation). Most experts 

examine VQ regularly in casework [4] with some using a 

recognised framework such as the Vocal Profile Analysis 

(VPA) scheme [18]. Those surveyed in [4] also considered VQ 

the most useful phonetic speaker discriminant in FVC cases 

(more than segmental features; e.g. vowel formants). For the 

present study, we analysed VQ using a version of the VPA 

modified for FVC [19] with 25 supralaryngeal and 7 laryngeal 

dimensions. For each feature, there are four possible scalar 

points, with 0 representing ‘neutral’ and 1-3 representing 

increasing degrees of ‘non-neutral’ features (labelled ‘slight’, 
‘marked’, or ‘extreme’). 

1.4.2. Analysis and hypotheses 

Likelihood ratio-based (LR) system testing was conducted 

using the automatic and semi-automatic features. These 

features were also combined (using score-level fusion) to assess 

the potential improvement in automatic system performance 

with the addition of semi-automatic features. Following [12], 

the best performing system was used to identify falsely 

classified pairs which were then analysed systematically in 

terms of VQ. The typicality of features was assessed relative to 

a larger set of VQ profiles for a representative population 

sample. As measures of long-term vocal tract (filter) output, the 

MFCCs, LTFDs, and supralaryngeal VQ features should, in 

principle, capture similar speaker-specific information. 

However, the link between the acoustic features and the VQ 

features is likely to be weakened by the fact that VQ is 

processed via the human auditory system. Given the 

fundamental principles of source-filter theory, the laryngeal VQ 

features are predicted to encode complementary speaker-
specific information to the vocal tract output measures. 

2. Method 

2.1. Materials 

Recordings were taken from the DyViS corpus (100 men, aged 

18-25, Standard Southern British English) [20]. It was collected 

for forensic phonetic research and contains multiple tasks 

relating to a mock crime. We used high-quality recordings from 

Tasks 1 and 2 (44.1 kHz, 16-bit, 9-30 min. duration). Task 1 

was a mock police interview. Task 2 was a spontaneous near-

end, telephone conversation about the crime between the 

participant and an ‘accomplice’. Samples were recorded on the 
same day, but with some time separation between sessions. 

2.2. Pre-processing 

The audio files were edited to remove overlapping speech, 

background noise, and long silences. The edited intervals were 

concatenated, the audio resampled at 10 kHz, and time stamps 

for utterance boundaries extracted. A Praat script automatically 

identified sections containing signal overload (‘clipping’). 

Voice activity detection was performed in MATLAB using the 

vadsohn function from the VOICEBOX toolbox [21]. Silence was 

defined as a series of adjacent non-speech frames over 100ms 

[22]. The output of the VAD analysis was also checked 

manually for a subset of the recordings to confirm that the 

default threshold was able to categorise voice and non-voice. 

Finally, the edited audio was segmented into consonants (C) 

and vowels (V) using StkCV [23], and time stamps for the onset 

and offset of strings of V intervals were extracted. 

2.3. MFCC and LTFD extraction 

The edited audio files were divided into 20ms frames shifted at 

10ms intervals (i.e. with 50% overlap between frames) using a 

Hamming window. From each frame, time-aligned MFCC, 

LTFD, and (M)LTFD feature vectors were extracted. The 

MFCC feature vector consisted of 12 mean- and variance-

normalised MFCCs, 12 delta (Δ) coefficients, and 12 delta-delta 



(ΔΔ) coefficients. Cepstral analysis was performed using the 

rastamat toolbox [24] in MATLAB. The LTFD feature vector 

consisted of F1 to F4 frequencies, bandwidths (BWs), and Δs 

extracted using the Snack Sound toolkit [25]. LTFD frequencies 

and BWs were Mel-weighted to generate the (M)LTFD feature 

vector, to which Δs were appended. 

2.4. Voice quality analysis  

The edited recordings for Task 2 were analysed by authors PFo, 

PFr, and ESS independently the version of the VPA described 

in [19]. A cross-coder calibration process produced agreed 

profiles for each speaker. A subset of profiles, identified as 

those speakers falsely classified by the best performing 

automatic system (see 3.4), was then analysed by ESS for Task 

1. Data for all 100 speakers were used to assess the typicality of 

VPA features. 

2.5. Post-processing  

Feature vectors within three frames of utterance boundaries 

were removed, as well as frames with clipping or silence [26]. 

From the remaining frames, those within sections defined as 

vowels by the StkCV script were extracted for analysis. 

Samples were then reduced to 60 secs of net speech (6000 

frames). Speakers with fewer than 60 secs were removed, 
leaving 94 speakers. 

2.6. System testing and evaluation  

The speaker-discriminatory value of MFCCs, LTFDs, and 

(M)LTFDs was examined using likelihood ratio (LR)-based 

testing [27,28]. The 94 speakers were randomly divided in sets 

of training (31 speakers), test (31), and reference data (32). 

Although the number of speakers is relatively small compared 

to large-scale testing of automatic systems, such samples are 

common in FVC research [29]. Same- (SS) and different-

speaker (DS) scores were computed for the training and test 

data using the GMM-UBM approach [30] implemented using 

the MSR toolbox [31]. The reference data were used to create a 

UBM against which to assess typicality. Suspect GMMs were 

created using maximum a posteriori (MAP) adaptation in which 

the means, variances, and weights of the UBM were adapted 

towards the suspect data. Separate sets of scores were computed 

for each form of input data. Based on pre-testing, GMMs for 

the LTFDs and (M)LTFDs used 32 Gaussians, while the MFCC 

GMMs used 1024 Gaussians.  

The scores for the training data were used to train logistic 

regression models [32], and the coefficients applied to the 

scores for the test data to generate calibrated log10 LRs (LLRs) 

for each system. The same approach was used to fuse each of 

the LTFD and (M)LTFD systems with each of the MFCC 

systems, but with coefficients derived from multivariate logistic 

regression models (i.e. score-level fusion). In total, parallel sets 

of 31 SS and 465 independent DS LLRs were produced for 11 

individual systems (4 LTFD, 4 (M)LTFD, and 3 MFCC) and 24 

fused systems (4 LTFD x 3 MFCC, and 4 (M)LTFD x 3 

MFCC). System performance (validity) was evaluated using 
equal error rate (EER) and the log LR cost function (Cllr) [33]. 

3. Results 

3.1. MFCC systems 

The worst performing automatic system used only MFCCs as 

input (6.45% EER, 0.267 Cllr). Consistent with [34], the 

addition of derivatives produced a marked improvement. The 

best performing MFCC system used both Δs and ΔΔs, 

producing an EER of 3.23% and a Cllr of 0.146.  

3.2. LTFD and (M)LTFD systems 

The best performing LTFD system (shaded in Table 1) included 

BWs but not Δs (6.45% EER, 0.255 Cllr), although the 

improvement over the LTFD-only system was marginal. The 

(M)LTFD systems all performed considerably worse than the 

LTFD systems. The addition of BWs and Δs worsened 

performance, with the (M)LTFD-only system producing the 

best validity (shaded). All LTFD and (M)LTFD systems 

performed worse than the best performing MFCC system. 

Table 1: Validity (EER and Cllr) of each of the LTFD 

and (M)LTFD systems, best systems shaded.  

System  EER (%) Cllr 

LTFDs 6.67 0.284 

LTFDs+BWs 6.45 0.255 

LTFDs+ Δs 6.99 0.311 

LTFDs+BWs+Δs 6.67 0.259 

(M)LTFDs 8.29 0.290 

(M)LTFDs+BWs 9.68 0.462 

(M)LTFDs+Δs 9.57 0.325 

(M)LTFDs+BWs+Δs 9.68 0.507 

3.3. Fused systems 

The fused systems were evaluated in terms of raw and 

percentage improvements in EER and Cllr over the associated 

baseline MFCC system (Figure 1). 

 

Figure 1: Distributions of raw EER (L) and Cllr (R) 

differences between the fused systems using 

(M)LTFDs and LTFDs and baseline MFCC system. 

Across all fused systems, the addition of LTFD and (M)LTFD 

information had relatively little effect on EER. For eight 

systems, the addition of formant information reduced EER by 

maximally 0.53% in terms of the raw value. For nine systems, 

the fused EER was identical to the MFCC system, while for 

seven systems the addition of formant information produced 

higher EERs. Fusion also had relatively little effect on Cllr. On 

average the difference between the fused and baseline systems 

was 0.02, equivalent to an 8.8% improvement in Cllr. For just 

four of the 24 fused systems the decrease in Cllr was more than 

0.01. For two systems, the addition of LTFDs worsened Cllr. For 

the (M)LTFD-fused systems, the average difference from the 
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baseline was just 0.006, equivalent to 2.4% improvement over 

the baseline, while half of the fused (M)LTFD systems 

produced higher Cllr than the baseline. Despite the limited effect 

of formant information, the best system overall was a fused 
system using MFCCs+Δs+ΔΔs and LTFDs.  

3.4. Voice quality 

In this section, we evaluate the output of the best performing 

fused system in terms of speakers’ VQ profiles. The contrary-

to-fact LRs produced by this system (3.3) were analysed to 

evaluate the potential complementarity of VQ and (semi-

)automatic analyses. These errors consisted of one false 

rejection (SS comparison producing DS evidence) and 13 false 

acceptances (DS comparison producing SS evidence) – this is 

equivalent to the numbers of trials in [9] and [12]. In this study, 

supralaryngeal and laryngeal VQ features were evaluated 

separately, due to the underlying differences in what 

information they capture, in principle (see 1.4.2.). 

3.4.1. Supralaryngeal features 

Of the 13 falsely accepted DS pairs, nine involved speakers 

#067 and #072. Both had unremarkable supralaryngeal VQ 

profiles relative to the group of 100 DyViS speakers and were 

non-neutral only for very common features: slight advanced 

tongue tip/blade (shared by 32% of speakers), slight fronted 

tongue body (67%), and slight nasality (63%). These features 

are so common as to be considered accent features for this 

population [18]. This indicates that speakers with highly typical 

supralaryngeal VQ profiles may be those that the automatic 

system has difficulty separating from other speakers. To test 

this more robustly, a Euclidean distance was calculated between 

each test speaker’s VQ profile and the average (mode) VQ 

profile for all speakers in the corpus. These distances were 

correlated with the mean LLRs across all DS comparisons 
involving each test speaker produced by the best fused system.    

A weak negative correlation (Pearon’s R = -0.283) was 

found between mean DS LLRs for each speaker and the 

typicality of their supralaryngeal VQ profile. That is, speakers 

with typical (common) supralaryngeal VPA profiles were, to a 

limited extent, more likely to produce weak LLRs or system 

errors. However, of the falsely accepted pairs there were also 

some which were very different, and thus easily separable, in 

terms of their supralaryngeal profiles. Speaker #066 was non-

neutral for lip spreading and close jaw, while speaker #037 was 

neutral for these features. These differences are marked given 

that these features were shared by just 5% and 1%, respectively, 
of the speakers in this data set. 

3.4.2. Laryngeal features 

The misclassifications were easily resolved using laryngeal VQ 

information. In eight of the 13 false acceptances, differences of 

between two and three scalar degrees occurred for at least one 

laryngeal setting. Interestingly, in these cases one speaker was 

typically neutral and the other was non-neutral (i.e. the setting 

was absent vs. present). The falsely classified pairs were also 

given to two practicing forensic voice experts for blind analysis. 

Both experts correctly separated all of the misclassified pairs 

and commented that phonation was the primary feature that 

underpinned their judgements. 

4. Discussion 

The results of LR-based testing revealed a number of important 

patterns for automatic and semi-automatic FVC. Firstly, linear 

LTFDs consistently outperformed Mel-weighted LTFDs. This 

may be due to the Mel scale’s lower resolution representation 

of higher frequencies compared with linear Hz values. Thus, the 

Mel weighting may fail to capture the considerable speaker-

specific information encoded in higher frequency formants. 

Secondly, when fused with MFCCs, the formant information 

provided little or no improvement over the baseline systems. 

This suggests that LTFDs do not provide independent speaker-

discriminatory information to MFCCs. 

Supralaryngeal VQ features appear to capture at least some 

of the information encoded by the MFCCs and LTFDs. The 

results in 3.4.1 provide some evidence that speakers with 

inherently unremarkable supralaryngeal VQ profiles are more 

likely to be the ones that produce weak LRs and errors. This 

relationship may be useful in making front-end predictions 

about which speakers will be problematic for automatic 

systems. This is also consistent with the predicted underlying 

relationship between supralaryngeal VQ features and MFCCs/ 

LTFDs (1.4.2). However, within the errors produced by the best 

performing automatic system, there were still pairs of speakers 

who were separable based on their supralaryngeal VPA 

profiles. The issue may then be one of resolution. That is, VPA 

may be a lower resolution representation of supralaryngeal 

vocal tract output than LTFDs or MFCCs. However, given the 

inherent differences in methodology for the extraction of the 

phonetic measures, it may be that the issue is one of weighting 

rather than resolution. It is likely that there are properties of the 

voice that are perceptually salient and in isolation may suffice 

for speaker separation, but which are not captured by holistic 

acoustic measures. Similarly, there may be features weighted 

very strongly for the acoustic measures that are less marked to 
the human auditory system.  

The laryngeal VQ profiles and blind auditory analysis 

revealed that, on this limited set of comparison, it is possible to 

resolve pairs misclassified by the automatic system using 

phonation features (as in [12]). This indicates that important, 

and indeed complementary, speaker-specific information is 

encoded in laryngeal features relative to both auditory and 

acoustic supralaryngeal vocal tract output. Thus, it may be 

possible to improve the performance of automatic systems by 
incorporating laryngeal information [35]. 

5. Conclusions 

We investigated the complementarity of automatic, semi-

automatic, and phonetic measures of vocal output for FVC. 

Results showed strong relationships between MFCCs, LTFDs 

and (M)LTFDs in terms of the speaker-specific information 

they encode. Importantly, there appears to be some relationship 

between these measures and supralaryngeal VQ. This may 

allow us to better explain to the courts what information 

automatic systems capture and to identify potentially 

problematic cases. The apparent independence of laryngeal 

features suggests that this information might help improve 
automatic systems. 
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