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Abstract 

The Hepatitis B surface antigen (HBsAg) is the hallmark of HBV infection. Detection of 

antibodies to HBs and the core (i.e. HBsAg and HBcAb) are primary serological algorithms in 

the laboratory diagnosis of HBV. Detection of HBsAg DNA is an important supplement to 

serological diagnosis especially in clinical cases. Simultaneous amplification of internal 

cellular controls is a good indicator of sample quality. Human P-globin is a well characterised 

housekeeping gene (HKG) that is often applied as internal controls (IC) in molecular 

diagnosis. In this study, individual plasmid clones of the human P-globin and HBs genes were 

constructed. These plasmid constructs have been applied to characterise a multiplex PCR 

assays for HBs and P-globin genes. The findings suggest detection limits of less than 10 

genome copies of either template In vitro using conventional and multiplex PCR conditions. 

Under the multiplex conditions, co-amplification of P-globin and HBsAg DNA had a resultant 

effect on assay sensitivity. This study further highlights the importance of molecular diagnosis 

in HBV infectious individuals. If fully optimised, this assay could provide a possible 

diagnostic complement to serological detection in developing countries. 

Keywords: Hepatitis B, HBs gene, Multiplex Polymerase Chain Reaction, Housekeeping 

Genes, Molecular diagnosis, Sensitivity
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Introduction 

Hepatitis B Virus (HBV) infection is a common cause of chronic hepatitis, liver cirrhosis, 

and hepatocellular carcinoma which may lead to death [1, 2]. Annually, approximately 4.5 

million new cases occur worldwide, 25% of which progress to chronic liver disease. 

Approximately 5% of the world’s populations are chronic carriers with an estimated 620,000 

annual deaths as a result of acute and chronic HBV. Although two main vaccines against 

HBV have been in use for over three decades, HBV infections still remain highly endemic in 

sub-Saharan Africa and East Asia with dire public health concerns [3, 4]. 

HBV is an enveloped DNA virus of the family Hepadnaviridae. It has a relaxed-circular 3.2 

kb genome, which is partially double-stranded (rcDNA). The HBV genome is replicated by 

reverse transcription of an RNA intermediate. It encodes four overlapping open reading 

frames that are translated into the viral core protein (C-gene), a highly conserved surface 

protein (S-gene), the viral polymerase (P-gene), and the X protein (X-gene) [5]. In part, due 

to the poor fidelity of the viral reverse transcriptase there is broad sequence-variability of the 

HBV genome with eight main genotypes (A-H) distributed worldwide [5-7]. In addition to 

other possible human genotypes [8, 9], HBV has also been reported in non-human primates 

including chimpanzees, woolly monkeys, orangutans and gorillas [10-12], while non-human 

HBV-like viruses have been reported in rodents and birds [13-15]. 

Serological and genetic markers are employed as primary algorithms for the screening and 

diagnosis of various stages and genotypes of HBV infections. The choice diagnostic 

specimen for HBV infection is the blood and the most significant targets are the viral 

envelope and capsid [16, 17]. Repeated isolation of the S-antigen (HBsAg) from the blood of 

infected persons for over 6 months is a diagnostic marker for chronicity, while ongoing 

infections are diagnosed by the presence of the e-antigen (HBeAg) in the blood [17]. HBV 

genome quantification in serum or plasma samples is an effective means of measuring viral 
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load over time and remains most informative in diagnosing a carrier state [18]. This has been 

demonstrated by PCR, which is able to detect less than 10 HBV genome copies/mL of serum 

or plasma in chronic cases [17]. Despite the high sensitivity of PCR, sensitivity or specificity 

could be adversely affected by a variety of factors such as poor sample quality or genomic 

extraction procedures; therefore the application of HKGs as ICs in molecular biology is vital. 

HKGs are indigenous genes expressed in each cell of an organism under any condition and 

typically play important roles in many basic cellular functions. There are numerous human 

HKGs, many of which have been characterised and are often applied as ICs in experimental 

studies as a result of their consistent levels of expression and high conservation despite 

infection or other factors [19, 20]. In laboratory and clinical diagnosis, the diagnostic ability 

of a test is expressed as percentages of real cases that are accurately diagnosed as positive 

and percentages of non-existent cases that are accurately diagnosed as negative i.e. sensitivity 

and specificity of the test. The occurrence of false negative (Type I error) and/ or false 

positive (Type II errors) test results largely determine how effectively an assay could 

diagnose a condition [21, 22]. 

In many developing economies, HBV diagnosis is predominantly serological [23, 24] despite 

alarming levels of prevalence reported even among blood donors [25-28], which suggests 

possibilities of misdiagnosed cases. The ideal molecular diagnostic procedure should be 

highly sensitive and reliable as well as relatively cheap and cost-effective. PCR was first 

reported by Karry Mulis in 1985 for the amplification of individual target DNA segments in a 

genome [29, 30]. In 1988, a multiplex PCR that combined several primer pairs in the same 

reaction to amplify different specific amplicons was reported [31]. The use of multiplex PCR 

is applicable to the detection of multiple amplicons, thus saving resources and substantially 

reducing turnaround time [32]. In this study a multiplex PCR assay for the detection of HBs 

gene and human P-globin is characterised as a molecular diagnostic model with ICs. Findings 
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are discussed. 
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Materials and Methods 

Cell culture 

The human lung epithelial cell line A549 and hepatoma cell line Huh7 were a generous gift 

from Professor Mark Harris (University of Leeds, UK). Human embryonic kidney epithelial 

HEK293T and cervical epithelial HeLa cell lines were a generous gift from Professor Nicola 

Stonehouse (University of Leeds, UK). Cells were maintained as monolayers in DMEM 

supplemented with 10% foetal bovine serum (FBS), 100 U/ml penicillin and 100 U/ml 

streptomycin. All cells were incubated at 37°C with 5% CO2 and passaged upon confluence 

according to standard methods [33]. 

DNA extraction 

Cells were harvested at 80% confluency by trypsinisation with Trypsin EDTA. Total genomic 

DNA was extracted using TRIZOL (phenol-chloroform method) following standard protocols 

[34]. 

Plasmid clones 

The HBsAg open reading frame flanked with Notl restriction sites and 6 base pairs (bp) 

linkers was synthesised commercially (Invitrogen, UK). The synthesised HBsAg gene was 

ligated into a ^twI-linearized pCR-Blunt vector plasmid. The ligated plasmid was transformed 

into chemically competent E.coli DH5a cells and colonies screened by digestion with Notl. 

Nucleotide BLAST of all four cell line extracts matched NCBI reference human P-globin 

(NC_018922.2) [35]. 

The human P-globin gene from A549 cells was amplified by PCR, purified by gel extraction 

and ligated into linearized pGEM T-easy plasmid vector (Life Technologies), following 

manufacturer’s instructions. Plasmid vectors were then transformed into chemically 

competent E.coli DH5a cells and colonies screened by digestion with EcoRI.  
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For quantitative analyses, plasmid copy number (PCN) was determined by standard methods 

[36]. 

PCR reagents, primers and thermocycling conditions 

All PCR reactions were carried out using QIAGEN fast cycling PCR kit, following 

manufacturer’s protocol. HBs gene was amplified using forward primer HBsAgF (5' 

GTAGTAGCCGGCCGCATGGAAGGCAT) with reverse primer HBsAgR (5' 

TACATTTAGCGGCCGCGTGTA). Human P-globin was amplified using modified GH20 

upstream (5' GTAGTAGCGGCCGCGAAGAGCCAAGGACAGGTAC) and PC04 

downstream (5' TACTACGCGGCCGCCCAACTTCATCCACGTTCACC) primers [37]. 

PCR reactions were cycled as follows; one-cycle initial denaturation at 95°C for 1 minute; 40 

cycles of 5 second denaturation at 96°C, 5 seconds annealing at 55°C (for HBV template) or 

68oC (for Human P-globin template), and extension at 68°C for a duration of 1 second per 10 

base pairs. This was immediately followed by one cycle of final extension at 72°C for 1 

minute. 

Conventional PCR 

Respective template PCN was determined as previously described. A set each of upstream 

and downstream HBs gene or P-globin primers was maintained at 0.5 pM, for respective 

templates, in a 20 pl reaction. Thermocycling conditions were maintained as previously 

described. 

Mixed primer competition PCR 

Template PCN was determined as previously described. Reactions were setup using 

increasing copies of P-globin or HBs gene templates. A set each of upstream and downstream 

HBs gene and P-globin primers was applied to final concentrations of 0.25 pM for each 

primer in a 20 pl reaction. Thermocycling conditions were maintained as previously 

described.  
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Multiplex PCR 

Template PCN was determined as previously described. Multiplex PCR was set up with 

increasing copies of P-globin and HBs gene plasmid templates (Table 1). Reactions were 

setup using upstream and downstream HBs gene and P-globin primers as previously 

described at a final concentration of 0.25 pM for each primer in a 20 pl reaction. 

Thermocycling conditions included one-cycle initial denaturation at 95°C for 1 minute; 40 

cycles of 5 second denaturation at 96°C, 5 seconds annealing at 55°C (i.e. to cover lower 

annealing temperature), and extension at 68°C for a duration of 75 minutes (i.e. to cover 

larger target size). This was immediately followed by one cycle of final extension at 72°C for 

1 minute.
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Results 

Generating control materials for PCR. 

The laboratory diagnose of clinical infections is more frequently employing molecular 

diagnostic techniques such as PCR. The use of IC in such techniques is essential for validating 

specimen quality and quantity, reducing the likelihood of false negative results. Targets 

typically used as ICs including HKG such as of P-globin, the abundance of which in 

mammalian cells is well characterised (10, 11). 

In order to isolate the human P-globin gene to use as an IC in the molecular diagnosis of HBV 

in human samples, the total genomes were extracted from four human cell lines; Huh7, A549, 

HEK293T and HeLa. The human P-globin gene was amplified from each cell extract, using 

target-specific modified PCR primers GH20 and PC04. The PCR amplicon from each cell line 

was gel-purified and sequenced. The nucleotide BLAST against known sequences showed a 

match (100 %) of all cell lines with the human chromosome 11 (from region 5226978 to 

5227216), alternate assembly CHM1_1.1 (NCBI sequence ID: re^NC_018922.2) [38]. The 

purified PCR amplicon from cells was subsequently introduced into the cloning vector pGEM 

T-easy (Figure 1A) to be employed in the downstream assays. The known sequence of the 

HBs gene was commercially synthesised as a blunt-ended DNA fragment and cloned into a 

^twI-linearized pCR-Blunt vector plasmid (Figure 1B) for downstream assays. Relative 

sensitivity of p-globin and HBs gene PCR. 

Stable plasmid clones containing the human P-globin or HBs gene allowed us to establish a 

controlled PCR for the detection of P-globin and HBs gene. In order to define the detection 

limits of these assays, respective PCR reactions were set up with a 10-fold serial dilution of 

HBs gene and human P-globin plasmid copies. PCR amplicons were separated through 2% 

agarose gel and product band intensities determined by densitometry (Figure 2). 
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For the human P-globin PCR, product was clearly detected with 102 to 1011 genomes copies 

per reaction, with a linear range of 102 to 106 genome copies per reaction. In comparison, the 

PCR for HBs gene demonstrated a reduced linear range of 101 to 105 genome copies per 

reaction. These results may suggest a 10-fold greater sensitivity for HBs gene amplification 

under these PCR conditions compared to human P-globin, albeit with a reduced overall linear 

range. 

Mixed primers competition assays. 

Multiplex PCR employs multiple primer sets for the simultaneous amplification of multiple 

amplicons. However, the use of multiple primer sets in a single reaction can result in reduced 

specificity and sensitivity in comparison to single target PCR, partly due to the reduced 

primer concentration as well as primer dimerization, which can significantly reduce template-

binding [39]. In order to address this, assays were designed to establish whether multiplex 

PCR conditions reduced the relative sensitivity of P-globin and HBs gene amplification. 

Individual reactions were setup to amplify P-globin or HBs gene using multiplex PCR 

conditions and amplicons bands quantified by densitometry (Figure 3). For both the P-globin 

and HBs gene multiplex PCR, products were detected with greater than 2.8 x 102 genome 

copies per reaction. This result would suggest that the multiplex reaction conditions reduced 

the sensitivity of HBs gene PCR approximately 10-fold, even in the absence of any P-globin 

or other competitive templates. 

Multiplex PCR. 

In the application of HKG as ICs it is possible their consistent availability, which could be in 

greater amounts than target pathogens, can change the relative sensitivity of the PCR. In order 

to assess how an excess of host-specific P-globin [19, 20, 40, 41] could change the sensitivity 

of the multiplex assay, increasing copy numbers of human P-globin and HBs gene were co-

amplified in multiplex PCR reactions. Both amplicons were co-analysed by gel 
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electrophoresis and intensities of the HBs gene (0.75 kb) and human P-globin (0.26 kb) DNA 

bands measured by densitometry (Figure 4). 

A linear relationship between input multi-template genome copy number and amplified 

product within a multiplex PCR environment was observed. Like before, for the HBs gene 

under multiplex conditions in the absence of competing P-globin DNA (i.e. 0 P-globin gene 

copy), products were only detected with greater than 2.8 x 102 genome copies per reaction. 

Upon addition of an increasing amount of competing P-globin DNA, a stepwise increase in 

product was observed even with below-detectable levels of HBs gene targets. This is 

indicative of non-specific amplification under multiplex PCR conditions when both target 

templates are present. Despite such, non-specific amplification, a linear increase in product 

was observed with greater that 2.8 x 102 HBs genome copies up to 2.8 x 104 copies per 

reaction. Therefore, after accounting for the non-specific amplification, the multiplex PCR 

can still be specifically detected above 2.8 x 102 HBs genome copies per reaction. 

Similar results were observed for the detection of P-globin target under multiplex conditions, 

with an addition of increasing amount of competing DNA resulting in a stepwise increase in 

product observed with below-detectable levels of HBs of P-globin target gene. Again, such 

observations would be suggestive of non-specific amplification. However, an increase in PCR 

product was observed with greater than 2.8 x 102 of P-globin gene copies per reaction. Thus, 

the multiplex PCR can detect greater than 2.8 x 102 copies of P-globin DNA even under 

greater quantity of competing DNA. Therefore the multiplex PCR conditions can specifically 

detect both HBs and P-globin at greater than 2.8 x 102 DNA copies per reaction.



12 
 

Discussion 

The data suggests that PCR-amplification of HBs gene may be a highly sensitive and 

reliable means of diagnosing hepatitis. Serological detection of HBV infection is often 

applied to screening, diagnosis, and immuno-surveillance [16] as an affordable option 

with a quick turnaround time, [42-44] however, it does not detect career status, levels 

of viremia or chronicity. The supplementary detection of the HBVs gene may be more 

robust for diagnosis; to determine viral load, HBV genotype; to screen for anti-viral 

resistance, drug/therapeutic efficacy [43], etc. Under conditions of conventional PCR, 

target genes are primed from single templates by a set of forward- and reverse-oriented 

gene-specific oligoes, and amplified by a DNA polymerase in the presence of dNTPs. 

With these assays, 10 genomic copies of HBs gene were detectable with a single set of 

primers from a single template in a conventional PCR. Thus, as would be anticipated, 

amplification of parts or all of the HBV genome by conventional PCR is very specific 

with low detection limits [43]. 

The large difference in size between HBs gene and P-globin amplicons allowed for 

easy differentiation of both PCR products with these assays at varied primer 

concentrations. The ability to co-amplify templates within a single PCR reaction could 

significantly reduce diagnostic turnaround time especially in clinical settings. HKGs 

are indigenous and host- specific [20]. They are ideal quality indicators in medical 

diagnostics. The multiplex PCR conditions reduced PCR sensitivity approximately 10-

fold compared to conventional PCR, limiting the dynamic range from 2.8 x 102 up to 

2.8 x 104 gene copies per reaction. This reduced dynamic range could suggest that a 

limited serial dilution of sample may be required for semi-quantitative diagnostic 

purposes. Under conditions where both PCR targets are present, the sensitivity of the 

multiplex PCR did not appear to change significantly. However, the specificity of the 
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multiplex PCR was reduced with some non-specific amplification observed in the 

presence of high concentration of non-target DNA.  
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The multiplex assays suggest that, at optimal priming conditions, co-amplifying P-

globin together with the gene of interest (e.g. HBs DNA) integrates a standard 

qualitative sample- based positive control, as an alternative to multiple PCR reactions, 

thereby avoiding risks of contamination. However these advantages come at the cost of 

a slightly reduced sensitivity, and importantly reduced specificity. This latter limitation 

could however be potentially accounted for by performing a small limiting dilution 

alongside standardised dilution series of P-globin and HBs target DNA clones. 

Furthermore, a dilution series of P-globin could be used to generate an ideal standard 

curve to quantitatively assess abundance of template in the sample. 

In the laboratory diagnosis of HBV, PCR has been shown to have very high sensitivity 

and specificity [16]. In this study, the sensitivity [22], of conventional PCR was 

observed to be higher than the multiplex PCR assays and multi-primer competition 

PCR. This strengthens the submission that PCR efficiency is dependent on amounts of 

available primers and if they are in excess [45]. It further suggests that assay multiplex 

PCR assay could be ideal for multiple template amplification within a single reaction. 

Conclusion 

These findings suggest detection limits of less than 10 genome copies of either template 

in conventional and multiplex PCR conditions. With the use of multi-primer sets for the 

amplification of single and multi-template samples, these findings show that not only 

are ICs good indicators of quality assurance of sample processing, co-amplification of 

IC with gene of interest (HBs) may have a resultant effect on the viability of the chosen 

assay. If fully optimised, this assay would provide a diagnostic complement to 

serological diagnosis and/ or screening of HBV thus providing a semi-quantitative 

measurement of viral load. Such assays have been applied to diagnose multiple of 

organisms [46] or conditions from limited clinical samples within a single reaction. 
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Figure 1. Plasmid constructs. (A) Total genomic DNA was extracted from A549,    

HEK293T, Huh7 and HeLa cell lines. The ȕ-globin gene was amplified by PCR using a    

modification of upstream (PC04) and downstream (GH20) ȕ-globin primers [37, 47, 48].    

PCR amplicons were gel-purified and sequenced. Alignment of human ȕ-globin gene extract    

against known human ȕ-globin sequence are shown. The ȕ-globin extract was ligated into an    

EcoRI-linearised pGEM T-easy vector plasmid. Plasmid map shows HBs gene (blue),    

restriction sites (red), and selection markers (black). Plasmid was transformed into    

chemically competent E. coli DH5Į cells. Colonies were picked randomly, screened for 

inserts by digestion with EcoRI. (B) The HBV s-fragment gene was commercially    

synthesised with upstream and downstream NotI restriction sites (red letters) and ligated into    

a pCRBlunt vectors. Plasmid map shows HBs gene (blue), restriction sites (red), and    

selection markers (black). Plasmid was transformed into chemically competent (E. coli)    

DH5Į cells. Twelve colonies were picked randomly, screened for inserts by restriction    

enzyme digest using NotI. 
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Figure 2. Input copy numbers assay showing densitometric plots of P-globin and HBs genes. 

In order to determine the linear ranges of conventional PCR for (A) P-globin and (B) HBs 

gene, the respective genes were amplified by PCR from a serial dilution of cloned targets 

with logarithmic increments in genome number. PCR amplicon was run through 2% agarose 

gel and DNA bands quantified by densitometry (n = 2 ± S.E.M). 
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on PCR efficiency either (A) human P-globin or (B) HBsAg was amplified in a multiplex 

reaction containing equal concentrations of P-globin and HBsAg -specific primers. PCR 

products were analysed by agarose gel electrophoresis and DNA bands quantified by 

densitometry (n = 2 ± S.E.M).
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Figure 1. Multiplex PCR of P-globin and HBsAg with increasing genome copies. (A) 

Multiplex PCR of HBVsAg with increasing input copy number of P-globin. (B) Multiplex PCR of P-

globin with increasing input copy number of HBVsAg. Both PCR amplicons were analysed by gel 

electrophoresis and DNA bands quantified by densitometry. A positive PCR was determined as 

having a relative density of above 0.05, based upon the data from the mixed primer competition 

assays. For clarity the area of the graph below 0.05 is shaded grey. (n = 2 ± S.E.M). 




