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ABSTRACT  

Studies of the palaeobiology of titanosaur eggs are significantly more common than studies of 

titanosaur-egg-bearing strata. Nevertheless, the latter provide significant insight into 

palaeoenvironmental conditions associated with the egg-laying behaviour. This study examines 

titanosaur-egg-bearing strata of the Upper Cretaceous Los Llanos Formation (La Rioja, Argentina) 

and relates them to the laying and preservation of titanosaur egg clutches. Los Llanos Formation is a 

predominantly sandstone succession throughout represented by palaeosol profiles. Five titanosaur 

egg clutches were recovered from the Bw horizon of an Inceptisol profile. This palaeosol type, named 
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Tama pedotype, constitutes 69% of the entire succession, by thickness. Rare planar, and undulating 

lamination and cross stratification, quartz-grain surface microtextures and ventifacts are indicative of 

the interaction of fluvial-aeolian processes of sedimentation during accumulation of the parent 

material on the distal part of a coalescent alluvial fan system (bajada). Highly abundant root traces, 

reddish colour, clay coatings and calcium carbonate nodules testify that the Tama pedotype had 

abundant vegetation cover, and was developed in well-drained conditions under the influence of a 

semiarid climate regime. Palaeosol horizons with exaggerated thickness and diffuse boundaries 

indicate a cumulative pedotype, whereby the soil developed in response to continuous accretion via 

on-going sedimentary processes. 

Morphological features of eggshells suggest that titanosaurs dug holes in the topographic surface to 

lay eggs. Thus, palaeosols seem to have been putative areas for the laying of titanosaur eggs. 

Actually, it is uncommon for palaeosols to constitute sites for the preservation of eggs, since soils 

typically develop in response to long episodes of weathering. However, cumulative palaeosols can 

provide ideal conditions for egg burial and preservation. In cumulative soils, the residence time of an 

object within the weatherable thickness of a soil is reduced to less than 103 years, thereby 

significantly increasing the long-term preservation potential of eggs. 

 

Key words: Titanosaur egg clutches; Cumulative palaeosols; Semiarid palaeoenvironment; Late 

Cretaceous; Los Llanos Formation; La Rioja - Argentina. 

 

1. INTRODUCTION  

Studies providing details of the taxonomy, palaeobiology and palaeoecology of titanosaur eggs and 

nesting sites are numerous (e.g., Carpenter et al., 1994; Hirsch, 2001; Chiappe et al., 2004; 2005; 

Grellet-Tinner et al., 2006; Salgado et al., 2009; Grigorescu et al., 2010; Vila et al., 2010; Fiorelli et 
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al., 2012; García et al., 2015; Hechenleitner et al., 2015, 2016). By contrast, studies focused on 

palaeoenvironmental aspects of titanosaur egg-bearing strata are not common (for a synthesis see 

Paik et al., 2012). These studies indicate that egg-bearing strata are dominantly represented by 

fluvial floodplain, distal alluvial-fan, coastal and inland interdune palaeoenvironments (Tandon et al., 

1995; López-Martínez et al., 2000; Chiappe et al., 2004; Díaz-Molina et al., 2007; Saneyoshi et al., 

2008; Kim et al., 2009; Liang et al., 2009; Paik et al. 2012; García et al., 2015; Hechenleitner et al., 

2016). In some sedimentary successions where in situ eggs have been found, some described 

aspects of the egg-bearing strata are indicative of palaeosols: the concentration of calcareous 

nodules, the presence of mottles, rhizoliths, bioturbation, a red-brown colour, and the general 

absence of primary sedimentary structures (Tandon et al., 1995; López-Martínez et al., 2000; Kim et 

al., 2009; Hechenleitner et al., 2016). Actually, some articles describe titanosaur eggs preserved in 

palaeosols (Sander et al., 1998; Van Itterbeek et al., 2004; 2005; Paik et al., 2004; Bojar et al., 2005), 

though very few articles consider the aspects of such palaeosols in detail (Cojan et al., 2003). In 

other cases, where palaeosol profiles contain titanosaur eggs, authors have asserted that the eggs 

were buried by sedimentary processes and that the pedogenesis occurred later (Liang et al., 2009; 

Grigorescu et al., 2010).  

This article seeks to resolve four general research questions: (i) Are titanosaur-egg-bearing strata 

commonly associated with palaeosols? (ii) Was the pedogenesis later than or contemporaneous to 

the egg laying? (iii) What conditions allowed the laying and the preservation of eggs of titanosaurs in 

palaeosols? (iv) What palaeosol types are most likely associated to the preservation of eggs of 

titanosaurs? 

Los Llanos Formation, which is exposed near the locality of Tama (La Rioja, Argentina) (Fig. 1), is an 

Upper Cretaceous sandstone unit where palaeosol profiles occur throughout the succession. In situ 

egg clutches of titanosaurs were found in this formation (Fig. 2) for which it is possible study and 
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reconstruct the paleoenvironmental conditions that allowed the laying of the eggs and their 

preservation into the sedimentary record.  

With the goal of contributing to the understanding of titanosaur nesting palaeontological sites, this 

study (i) interprets the palaeoenvironmental conditions that enable the generation of the palaeosols 

that contain the titanosaur eggs, and (ii) examines the circumstances that permitted the preservation 

of egg clutches within the palaeosols. Results help to clarify the preferred palaeoenvironmental 

conditions that titanosaurs selected to lay eggs, and which influenced their preservation into the 

geological record.  

 

2. GEOLOGICAL AND STRATIGRAPHIC SETTING  

Los Llanos Formation is exposed in small outcrops (2-20 km2) in the central-east region of La Rioja 

province, Western Argentina (Fig. 1). However, seismic and drilling data indicate a larger spatial 

extent beneath Quaternary deposits and a thickness up to 290 m (Fisher et al., 2002; Vujovich et al., 

2007). The study area is located southwest of the small town of Tama (Fig. 1). Here, Los Llanos 

Formation crops out as a c. 70 m-thick succession (Fig. 2). The base of this unit is characterised by a 

near-flat but erosional surface. Along a 3 km-long, north-south oriented transect this basal surface 

caps two stratigraphic units: (i) a cross-stratified and planar-laminated sandstone (the Carboniferous-

to-Permian Patquía Formation); (ii) an Ordovician leucogranite. In this area Los Llanos Formation 

dips 3º towards the WNW and is unconformably overlain by a horizontally bedded, Neogene or 

Quaternary coarse-grained sandstone and conglomerate (Fig. 2). Los Llanos Formation contains 

freshwater ostracods and charophytes (Carignano et al., 2013), articulated remains of the three 

dinosaur clades (ornithischians, sauropods and theropods) (Hechenleitner et al., 2014), turtles, 

notosuchian crocodyliforms (Fiorelli et al., 2016) and titanosaur eggs preserved in situ (Hechenleitner 

et al., 2016). Collectively, the palaeontological record indicates an Upper Cretaceous age for this unit.  
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At the studied locality, deposits of Los Llanos Formation are characterised dominantly (79% of 

succession) by pale reddish orange, moderately sorted, medium- and fine-grained sandstone with 

less than 2% granule and small pebble clasts (Fig. 2). Additionally, pebbly sandstone and muddy 

sandstone also occur (14 and 7% of succession, respectively). Beds with high calcium carbonate 

content are particularly common in the lower part of the succession. Primary sedimentary structures 

are near absent: only in few places are sets of faint traces of medium-scale cross-stratification and 

planar lamination observed. Within the structureless sandstone deposits, rhizoliths, carbonate 

nodules and mottles are all abundant (Fig. 2); these features indicate the presence of numerous 

vertically stacked palaeosol profiles. Previous detailed sedimentological and stratigraphic studies of 

Los Llanos Formation interpreted this sedimentary succession to be of braided alluvial origin, 

characterised by intense pedogenesis (Ezpeleta et al., 2006).  

 

3. METHODS  

We measured a stratigraphic log of all the exposed section of Los Llanos Formation in an area of 12 

km2 to the southwest of the town of Tama (Figs 1 and 2). Palaeosol profiles dominate throughout the 

entire sedimentary succession; few primary sedimentary structures are preserved. Exposure 

conditions permitted detail examination of c. 65% of the succession. In the field, palaeosols were 

distinguished according to the following characteristics: presence and distribution of root traces, 

colour, abundance and size of calcareous nodules, style of mottle development and type of horizon 

development. Field estimations of abundance of calcium carbonate and boundary distinctness, and 

topography of the palaeosol horizons were made using the recommendations of Retallack (2001) and 

Schoeneberger et al. (2012). The deposits were differentiated based on the presence of sedimentary 

structures. Twenty-seven palaeosol profiles were examined and recorded in the detailed logs. These 

were divided into two pedotypes (Retallack, 1994): Tama and Colozacán pedotypes. The Tama 
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pedotype is the one that contains the egg clutches and is therefore described in more detail herein 

than the Colozacán pedotype. Compositional features of clasts more than 20 mm across were 

determined in the field on 1 m2 exposed surfaces of three pebbly sandstone beds. Thirty-two fresh 

sandstone samples of palaeosol profiles were collected from different portions of the succession (see 

Fig. 2) for laboratory geochemical and micromorphological analyses. Major oxides and trace 

elements of fused beads and pressed pellets, respectively, were determined in 21 samples by X-ray 

fluorescence spectrometer (Philips, PW2404). Thirty-two thin sections of palaeosol were made for 

micromorphological analyses. Textural and petrographic features of sandstone were defined in 12 

thin sections by counting more than 300 points in each. Classification schemes of the USDA (Soil 

Survey Staff, 1999) and Mack et al. (1993) were used to classify the palaeosols. 

Fifteen quartz grains in the size range of 600 to 1100 m were randomly picked after washing and 

sieving from two samples of palaeosols (cf. Vos et al., 2014): one collected at the site of the egg 

clutch discoveries and the latter in a typical Tama pedotype located at the 25 m level of the measured 

section (Fig. 2). Using a scanning electron microscope (SEM - mod. LEO 430) in secondary electron 

imaging mode, we described the surface microtextures for each grain to define the mechanisms of 

transport and sedimentation of the parent material. Name and microtexture definitions have been 

adopted by Mahaney (2002) and Vos et al. (2014). 

 

 

4. DEPOSITS AND DEPOSITIONAL PALAEOENVIRONMENT 

Based on analysis of textural features, three lithofacies are distinguished in the studied succession of 

Los Llanos Formation: sandstone, pebbly sandstone and muddy sandstone.  

4.1. Sandstone 
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Medium- and fine-grained sandstone (Fig. 3A and Tab. 1) represents 79% of the thickness of the 

measured succession. This sandstone is classified as a feldspathic litharenite (Pettijohn et al., 1987) 

(Fig. 3B and Tab. 1). In general, sedimentary structures and original bounding surfaces of the beds 

are absent. Only in a small number of cases (<2% of the total succession) are weakly preserved 

planar, undulating and parallel laminations evident in beds up to 0.2 m thick (Fig. 3C and Tab. 1).  

The frequency distribution of 20 specific quartz grain microtextures of two samples from the site of 

the egg clutch discovery and at the 25 m level of the measured section (Fig. 2) is shown in Fig. 4. 

The main microtextures observed, in decreasing order of frequency distribution, are: low relief, 

upturned plates, rounded grain outlines, adhering particles, bulbous edges and edge rounding, v-

shaped percussion cracks and conchoidal fractures. Most of the quartz grains have low relief, i.e. a 

smooth surface that lacks significant local irregularity (Fig. 5A and C). Upturned plates are one of the 

most representative microtextures of the quartz grains (Margolis and Krinsley, 1971) (Fig. 5B, D, E 

and F). Rounded outlines are a characteristic of 67-80% of the quartz grains (Fig. 5A and C); the 

remaining ones are subrounded. Adhering particles, consisting of micrometric silica fragments, occur 

scattered on grain surfaces (Fig. 5A, B and E). Bulbous edges and edge rounding (Fig. 5A and C) are 

two common and related features (Mahaney, 2002). Bulbous edges are commonly associated with 

elongated or equidimensional depressions (Fig. 5A). V-shaped percussion cracks, although not 

numerous on the surfaces of individual grains, are present on more than 50% of clasts (Fig. 5B, D 

and E). Conchoidal fractures are also present (Fig. 5C and F). Some quartz grains show overprinted 

generations of different microtextures (Fig. 5B, D, E and F); for example in figure 5F, a conchoidal 

fracture is covered and altered by smaller upturned plates. Less representative microtextures are: 

arcuate and straight steps (Fig. 5F), graded arcs,  and solution pits (Fig. 5D).  

Interpretation. The limited thickness, the absence of any evident internal grain-size trend, the 

absence of a pronounced grain-size differentiation and of sets separated by distinct bounding 
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surfaces suggest that the planar, undulating and parallel laminations  have a subaqueous origin, 

developed in upper flow regime conditions (Harms et al., 1975; Cheel and Middleton, 1986; Fielding, 

2006). 

The diagram of frequency distribution (Fig. 4) shows that most of the microtextures – and in particular 

those with frequency distribution >50% – have very similar values in the two samples, indicating that 

the quartz grains were subjected to similar transport processes. Microtextures of quartz grains can be 

interpreted as follows. Low relief is a peculiar feature of grains transported by aeolian processes (Vos 

et al., 2014; see their Tab.2). Upturned plates are very typical of grains of aeolian origin (Vos et al., 

2014) formed from ballistic collisions that cause the shattering of the cleavage planes of the quartz 

(Margolis and Krinsley, 1974; Krinsley et al., 1976). Pronounced rounding of quartz grains occurs 

readily during aeolian grain saltation. However, rounded and subrounded grains can also form in 

upper flow regime in subaqueous flows of fluvial environments (Madhavaraju et al., 2009). Silica 

adhering particles may be associated with abrasion fatigue of grain surfaces in an aeolian 

environment that favours the attachment of small fragments to grain surfaces (Mahaney, 2002). The 

rounding and prominent shape of bulbous edges is attributed to the rotation of grains during saltation 

arising from aeolian transport (Costa et al., 2013). Edge rounding commonly occurs in wind-blown 

grains (Mahaney, 2002). V-shaped percussion cracks correspond to the effect of casual collision 

between grains and are typical of highly energetic fluvial transport (Margolis and Krinsley, 1974). 

Conchoidal fractures are formed as consequence of powerful impact on grain surface. These 

microtextures, with dimension >50 m, as in these samples, are common in subaqueous flows where 

pebbles hit smaller grains (Vos et al., 2014); they are larger than those typically developed in 

response to aeolian grain saltation. Arcuate and straight steps, which are associated with conchoidal 

fractures, have the same origin. Graded arcs are produced by impact with other grains in aeolian and 
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subaqueous environments. Solution pits are due to the dissolution of the silica during pedogenesis or 

diagenesis (Vos et al., 2014). 

 

4.2. Pebbly sandstone  

Pebbly sandstone represents 14% of the thickness of the measured succession (Tab. 1). Beds of this 

lithofacies are common in the lower part of the succession. This lithofacies is characterised by poorly 

sorted, medium to coarse-grained sand with granule to boulder clasts. Several of the examined 

clasts, from small pebble- to boulder-size, possess notable pyramidal shapes, characterised by 

flattened facets and well-developed crests (Fig. 6A) in a form that is common to ventifacts (Laity, 

1994). This lithofacies is represented by tabular beds with erosive bottom and poorly preserved 

trough cross-stratified sets (Fig. 6B); trough axes reveal a palaeotransport direction towards the 

WNW (Fig. 6C). 

Interpretation. The generally coarse grain-size, the trough cross-bedding and the erosive bases of the 

pebbly sandstone beds demonstrates hydraulic transport and deposition (Bridge, 2003). The large 

ratio of width-to-thickness of these beds, and the great extent of the tabular bodies indicates 

sediment transport and deposition in non- or poorly channelised subaqueous flows, probably 

characterised by a high and ephemeral hydraulic regime, as supported by the poorly sorted 

sediments (Nichols and Fisher, 2007; Banham and Mountney, 2014). Palaeocurrent data reveal flows 

from the ESE. 

 

4.3. Muddy sandstone  

Muddy sandstone represents 7% of the thickness of the measured succession. This lithofacies is 

characterised by  structureless, muddy sand (Fig. 6D and Tab.1). Only two lenticular beds up to 4 m 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 

thick and with sharp boundaries were observed (Fig. 2). In this lithofacies, Carignano et al. (2013) 

found an association of ostracods and charophytes. 

Interpretation. The relatively fine grain size could indicate subaqueous processes of sedimentation 

arising from settling through a stationary water column. This interpretation is supported by the 

presence of the ostracod and charophyte fossils.  

 

4.4. Reconstruction of the depositional palaeoenvironment  

The paucity of preserved sedimentary structures makes the reconstruction of the depositional 

processes of Los Llanos Formation problematic. Extensive beds of pebbly sandstone that represent 

elements with erosive bases and that are characterised internally by wide and shallow troughs 

suggests deposition from unconfined flows, probably distributed by numerous, small and shallow 

channels directed to the WNW. Laminated sandstone beds with planar and laterally extensive 

contacts are also a common deposit from the upper regime flow in unconfined flows (Banham and 

Mountney, 2014). Tunbridge (1984) described Devonian parallel laminated sandstone formed by 

unconfined flows in distal and medial portion of fluvial distributive systems; similar lithofacies were 

reported by Nichols (2005), Nichols and Fisher (2007), Jordan and Mountney (2010) and Basilici et 

al. (2016) for sheet-like deposits in alluvial plain palaeoenvironments developed in semiarid climatic 

settings. Fielding (2006) demonstrated that alluvial-plain deposits with these structures can be 

produced in climate conditions characterised by a marked seasonality with precipitation concentrated 

over short durations in each year.  

Medium- and fine-grained sandstone and pebbly sandstone have analogous compositional features, 

which are indicative of source provenance from felsic magmatic and clastic sedimentary rocks. 

Considering the poorly rounded conglomerate clasts and the paleodirection of the depositional flows, 

it is likely that the sediment source of the parent material was mainly derived from the reworking of 
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local lower Palaeozoic migmatitic and granitic complexes, which are exposed less than 2 km towards 

east (Fig. 1).  

Quartz-grain microtextures of the coarse portion of the groundmass of the parent material of 

palaeosols can be a useful tool to understand previous transport mechanisms of sand grains (cf. 

Stoops et al., 2010). Two main transport processes for quartz grains were identified: aeolian and 

high-energy unidirectional subaqueous flows. Microtextures that indicate aeolian transport (low relief, 

upturned plates, rounded grain edges, silica adhering particles, bulbous edges and edge rounding) 

are very common, whereas microtextures associated with high-energy unidirectional subaqueous 

flows (v-shaped percussions cracks and conchoidal fractures) are less represented. Moreover, the 

microtextures suggest that the two mechanisms interacted in the transport and deposition of the 

sandstone. Figure 5F portrays aeolian generated microtextures (upturned plates), which overlap with 

subaqueous microtextures (conchoidal fractures with arcuate steps). This observation suggests that 

the sand was introduced into the area by high-energy, unconfined or poorly channelised subaqueous 

flows, and later reworked by wind action, as is common in semiarid environments (Almasrahy and 

Mountney, 2015; Cain and Mountney, 2009, 2011). Abundant pebble- to boulder-size clasts with 

ventifact morphology confirm long-lived wind action. 

Muddy sandstone likely represents sediment accumulation via suspension settling in small lakes or 

ponds. Ostracod and charophyte fossils support a lake interpretation (Carignano et al., 2013).  

The depositional areas were most likely represented by the distal part of a drainage system, possibly 

as a system of coalescent alluvial fans (bajadas) developed at the basin margin under the influence 

of a semiarid climate regime. Intermittent and largely unconfined subaqueous flows punctuated long 

episodes of aridity during which sand was reworked by aeolian processes (Fig. 6E). Small lakes were 

likely present in the distal parts of this system. 
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5. PALAEOSOLS AND PEDOGENIC PALAEOENVIRONMENT  

The sedimentary succession of Los Llanos Formation exposed in Tama shows two pedotypes: Tama 

and Colozacán pedotypes.  

5.1. Tama pedotype: description  

This pedotype comprises 69% of the thickness of the measured succession (Fig. 2) and it is formed 

by palaeosol profiles characterised by A-Bw-Bk-C(k) horizons (Fig. 7). Most of the palaeosol profiles 

studied are characterised by alternations of Bw-Bk horizons (Fig. 8A). The thickness of the pedotype 

example is 0.4 to 2.5 m. Parent material is composed of poorly to moderately sorted, fine to medium-

grained sandstone, with less than 5% granules and pebbles.  

The A horizon is pale reddish orange (2.5YR7/3), no more than 0.15 m thick (Fig. 7 and 8B); this 

horizon is rarely preserved and it has been identified in only a two cases, based on high 

concentration of root traces (cf. Retallack, 1991).  

The Bw horizon is 0.2 to 2.3 m thick, pale reddish orange (2.5YR7/3 or 7/4) in colour (Fig. 7 and 8A). 

This horizon displays root traces, mottles, abundant weatherable minerals, high thickness, absence 

of pedogenic structures and of macroscopic evidence of clay illuviation. Light grey (5Y8/1 or 10Y8/1) 

mottles, less than 20% in abundance, are present in some cases (Fig. 8C). Four types of root traces 

have been recognised: small, medium chalcedony, medium carbonate and large. Small root traces 

are the most abundant; they consist of thin (0.5-1 mm in diameter) and short (up to 10 mm long), 

contorted cylinders of white calcium carbonate, commonly bifurcated at acute angles and internally 

empty (Fig. 8D). Medium chalcedony type is formed of a vertical or subvertical cylinder, more than 

0.2 m long, with circular section 3-15 mm in diameter, and with downward branching and tapering 

(Fig. 8E). The chalcedony fills the molds left by roots; sometimes, small vugs reveal an incomplete 

filling. Medium carbonate type is characterised by vertical cylinders of floating sandstone grains in 

microcrystalline calcite. Cylinders are 0.1-0.5 m long, with circular section 7-25 mm in diameter. 
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Large type root traces are represented by column-like forms, more than 4 m long, circular or elliptical 

in section (long axis 0.32-0.65 m). These column-like forms  possess a calcium carbonate 

cemented sandstone ring, up to 40 mm thick, and an internal filling composed of material derived 

from overlying horizons (Fig. 8F).  

The microfabric of Bw horizon is characterised by poorly sorted sandstone with brownish yellow 

(10YR6/6) micromass at plane polarised light (Fig. 9A). The related distribution pattern (coarse 

versus fine – c/f) is close or single-spaced gefuric to chitonic (Fig. 9A). Rarely, granostriated b-fabric 

is present, but in general not all grains display clay coatings and any clay coatings present do not 

typically completely surround the grains (Fig. 3B and 9B). The microstructure is apedal; pellicular 

grain structure is observed in some cases. Textural pedofeatures consist of clay coatings (<20 m in 

thickness) that irregularly and patchily cover the sand grains (Fig. 3B and 9B). Crystalline 

pedofeatures are coatings composed of chalcedony (5-100 m thick), that continuously cover the 

rims of a void (Fig. 9B). 

The Bk horizon is 0.08-0.83 m thick and more than 300 m in lateral extension; this is pale reddish 

orange (2.5YR7/3 or 7/4) in colour, in some cases with light grey (5Y8/1 or 10Y8/1) mottles (Fig. 7). 

Calcium carbonate accumulation is typical of this horizon and highlighted by the cementation by 

micritic calcite and notable abundance of carbonate nodules. Calcareous nodules are isolated or, 

less commonly, coalescent with undifferentiated or concentric internal fabric. Overall, the nodules are 

subspherical, ellipsoidal or ameboid, 3-120 mm across, 1-30% in abundance, with very abrupt outer 

boundaries. Some of these nodules show septarian structures, constituted by chalcedony (Fig. 9C). 

The microfabric of Bk horizon is composed of poorly sorted fine-grained sandstone with calcite 

micromass ranging in size 2-10 m and light olive brown (2.5Y5/4) in colour. The crystallitic b-fabric 

is typical of this horizon (Fig. 9D). The related distribution pattern of c/f is single to double spaced 
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porphyric (Fig. 9E). The prevalent microstructure is apedal. Crystallitic b-fabric is characteristic of this 

horizon. Sometimes subhedral calcite crystals (hypidiotopic) are present as coatings around sand 

grains. Chalcedony pedofeatures are present. 

The C(k) horizon has been rarely identified with the presence of relic primary (i.e. original) 

sedimentary structures (Fig. 7). This horizon is pale reddish orange (2.5YR7/3 or 7/4) and 0.2-0.4 m 

thick. Root traces are present, but are less common than in Bw horizons. The microfabric is 

composed of poorly sorted sandstone and the related distribution pattern (c/f) is monic. 

In the Tama pedotype, silica is present (but not abundant), like fibrous cryptocrystalline (chalcedony), 

micro- and macrocrystalline (druse-like quartz crystals) forms. Crypto- and microcrystalline quartz fills 

the intergranular porosity or substitute calcite (Figs 9B and D). Druse-like quartz macrocrystals occur 

in larger vugs, where they occupy the central portion (Fig. 9F).  

Fossil vertebrate skeletal remains of turtles, notosuchian crocodiliforms, sauropods, and theropods 

remains - isolated or articulated - are common in the Tama pedotype (Hechenleitner et al. 2014; 

Fiorelli et al., 2016). Fossil bones are in general well-preserved; typically, they do not display cracks 

or desquamated surfaces.  

Molecular Weathering Ratios (MWR) were used to define weathering of the palaeosol profiles, clay 

and carbonate accumulation, and characteristics of the parent material. Table 3 shows the 

geochemical values of the examined samples; table 4 and figure 10 display the vertical distribution in 

palaeosol profiles of the Molecular Weathering Ratios (MWR) used in this study. The Ba/Sr molecular 

ratio may be used as weathering proxy (Sheldon and Tabor, 2009). Sr is more soluble than Ba, which 

is a relatively immobile element in environments subject to low or moderate rates of weathering. In 

the studied palaeosol profiles, values of Ba/Sr are low, varying from 0.42 to 2.35, and show the same 

trend in the same palaeosol profile. Bases/Al2O3 gives information on the accumulation of insoluble 

products (such as clay, represented by alumina) in respect to soluble compounds (Ca2+, Mg2+, Na+, 
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K+) released by the hydrolytic alteration (hydrolysis). The palaeosol profiles of the Tama pedotype 

show hydrolysis values from 0.9 to 30. The values of Al2O3/SiO2 (accumulation of clay or clayeyness) 

vary from 0.02 to 0.03, being virtually uniform in all the examined palaeosol profiles. Carbonate 

accumulation (calcification) is defined by the ratio of (CaO+MgO)/Al2O3, which varies from 0.3 to 

25.6. The ratio of TiO2/Al2O3 ratio was used to define the provenance and the homogeneity along the 

profile of the parent material. The results display homogeneous values from 0.04 to 0.05. 

 

5.2. Tama pedotype: interpretation 

The Tama pedotype displays evidence that can be attributed to weak pedogenic maturity. Macro- and 

microstructures (peds) are absent. Clay coatings cover sand grains in the Bw horizon, testifying to 

clay illuviation. However, as  (i) the clay covering is patchy and irregular on grain surfaces, (ii) not all 

the grains display clay coatings and (iii) the coatings are not laminated or compound small amount of 

the clay was transported to B horizon. Clayeyness (Al2O3/SiO2), which provides evidence relating to 

the mechanisms of clay formation and its illuviation, display extremely low (0.02 to 0.04) and uniform 

values in the Tama pedotype, suggesting poor formation and accumulation of clay in the soil profile. 

Thus, it was not possible to identify an argillic horizon (Bt). Carbonate accumulation in the Bk horizon 

is compared with the Stage II of Gile et al. (1966) and Machette (1985), which – although many 

factors influence the concentration of CaCO3 into the soil – corresponds to development times 

between 104 to 2x105 years (Machette, 1985). Ba/Sr ratio increases with residence time and drainage 

conditions of the soil from 2 to 10 in weathered, well-drained and well-developed soils (Retallack, 

1997). In the Tama pedotype, Ba/Sr values, which are equal or less than 2.35 and similar to those 

recorded in C horizons (interpreted to have geochemical signature close to the parent material), 

indicate low leaching of this pedotype (cf. Retallack and German-Heins, 1994). It should be noted 

that the lowest values of Ba/Sr are associated with high CaCO3 content in the horizons, and are due 
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to substitution in carbonates of Ca by Sr (Buggle et al., 2011). ȈBases/Al2O3 allows determination of 

the degree of weathering for hydrolysis. The values of ȈBases/Al2O3 in Bw horizons are between 0.9 

and 10.4, and are similar to the C horizons; higher values are due to CaO accumulation in Bk 

horizons. Given that weathered soils show, in general, ȈBases/Al2O3 values less than 0.5 (Sheldon 

and Tabor, 2009) and considering that the Bw horizons have values equivalent with C horizons, the 

Tama pedotype indicates low conditions of weathering for hydrolysis. Petrographic analyses confirm 

these aspects, displaying fresh weatherable minerals (Fig. 3B).  

The TiO2/Al2O3 ratio (Sheldon and Tabor, 2009) and the petrographic analyses suggest that the 

parent material was derived from weathering of felsic magmatic and secondary clastic sedimentary 

rocks. Moreover, homogeneous values of TiO2/Al2O3 along the palaeosol profiles demonstrate the 

invariability of the parent material (Sheldon, 2006). 

Two main horizons have been recognised: Bw and Bk. The first is defined as a cambic horizon 

because – although displaying some pedogenic features (root traces, absence of sedimentary 

structures, clay coatings, hydrolysis effects, mottles) – it does not show characteristics typical of other 

well-defined subsurface horizons. The Bk horizon (pedogenic calcrete) is recognised based on 

macroscopic, micromorphological and chemical concentrations of carbonates. Revealing low 

maturity, but greater than in Entisols, common alternation of Bw and Bk horizons and the absence of 

aspects that associate it to other orders enable classification of the Tama pedotype as an Inceptisol 

(Foss et al. 1983; Soil Survey Staff, 1999; Buol et al., 2011). According to the classification of Mack 

et al. (1993), the Tama pedotype can alternatively be classified as Calcic Protosol. 

Silica (microcrystalline quartz or chalcedony) is homogenously distributed throughout the studied 

sedimentary succession, occupying the porous spaces or substituting calcium carbonate. Silica is 

post pedogenic and probably formed in response to groundwater flow (cf. Nash and Ullyott, 2007).  
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5.3. Colozacán pedotype: description 

This pedotype constitutes 22% of the thickness of the measured section. It occurs in the lower portion 

of the succession (Fig. 2). This pedotype is 1-2 m thick, with Bt, Bk and Ck horizons (Fig. 11). The 

parent material is slightly coarser than that of the Tama pedotype, but with similar petrographic 

composition. The Bt horizon is 0.25-0.8 m thick, pale reddish orange (2.5YR7/3), and shows small 

ameboid light gray mottles (2.5GY8/1) (Fig. 12A). Chalcedony root traces or rhizotubules are present 

(Fig. 12B). The calcium carbonate content is slight. Granostriated b-fabric is present and abundant: 

sand-sized grains are completely surrounded by clay coatings up to 50 m thick. (Fig. 12C). The Bk 

horizon is 0.15-1.2 m thick, light grey (7.5YR8/1) or white (10YR9/1), and it is characterised by a high 

concentration of calcium carbonate, highlighted by coalescent nodules or by a structureless calcic 

horizon (Fig. 12D). Sand-sized clasts floating in the micritic mass reach 40-50% in abundance. The 

Ck horizon is 0.3-0.75 m thick, light grey (7.5YR8/1) or white (10YR9/1) and preserves relic primary 

sedimentary structures (Fig. 11). Calcium carbonate content is represented by microcrystalline calcite 

cement and nodules.  

 

5.4. Colozacán pedotype: interpretation 

Abundant clay coatings on sand-sized grains allow recognition of argillic horizon (Bt), whereas the 

absence of calcium carbonate indicates leaching of this component from the Bt to the underlying Bk 

horizon. The high calcium carbonate accumulation in the Bk horizon of this palaeosol is of pedogenic 

origin because: (i) it is associated with ordered sets of palaeosol horizons, (ii) it is characterised by 

sharp top and a clear to gradual lower boundary distinctness, (iii) it is associated with drained and 

oxidized environmental conditions, as testified by pale reddish orange (2.5YR7/3) colour and clay 

coatings, and (iv) it is less than 2 m thick (Pimentel et al., 1996). The Bk horizon is comparable with 
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Stage III, and perhaps IV, of calcium carbonate morphology of Gile et al. (1966) and Machette 

(1985); thus it represents a relatively well-developed palaeosol.  

This pedotype can be attributed to the order of Aridisols and suborder Calcids for the following 

reasons: (i) it is characterised by a Bt and well-developed Bk horizons and (ii) it does not contain 

organic matter. Following the classification of Mack et al. (1993), this palaeosol is Calcisol.  

 

5.5. Pedogenic palaeoenvironment and interaction with the depositional processes 

The Tama pedotype is interpreted as an Inceptisol, a type of soil that presently develops at all 

latitudes and in various moisture conditions with the exception of aridic (Foss et al. 1983; Buol et al., 

2011). Although this order of soil does not indicate specific environmental conditions, several aspects 

of the Tama pedotype yield information on its pedogenic palaeoenvironment. Clay coatings and 

carbonate accumulation testify that, in general, this pedotype formed above the water table in well-

drained conditions (Retallack, 2001; Ashley et al., 2014). Local and temporary conditions of water 

stagnation probably after precipitation and/or fluctuation of the water table are, however, suggested 

by light-grey mottles that are, in some cases, observed in Bw horizons. Root traces indicate relatively 

abundant vegetation. Small root traces can be interpreted as rhizocretions formed by calcite 

precipitation around small living roots; the hole at the centre of the cylinder arises due to the later rot 

of the root (Retallack, 2001; Kraus and Hasiotis, 2006). They can represent the roots of small 

herbaceous and seasonal plants (Retallack, 2001). Medium dimension chalcedony root traces are 

interpreted as holes left after death and rot of roots, and then filled by precipitation from silica-

enriched ground waters. Medium carbonate root traces – rhizotubules of Kraus and Hasiotis (2006) – 

are the product of precipitation of micritic cement within the parent material located around the 

rhizosphere, probably during the life of the root. Large root traces correspond to long tap roots that 

formed a cemented rind around the rhizosphere during the life of the plant. At the death of the plant 
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and consequent rot of the root the hole was filled by material derived from overlying horizons. These 

structures are similar to the palaeorhizosphere of Genise et al. (2011). Large- and medium-dimension 

root traces are evidence of perennial plants; in particular, large roots, more than 4 m depth (tap 

roots), indicate plants that took advantage of the deep water table during the drier season, 

suggesting well-drained conditions of the soil (Retallack, 2001; Hembree and Hasiotis, 2007). The 

association of small and medium/large roots may indicate the presence of two types of vegetation: 

herbaceous seasonal plants and perennial plants, which may be associated with a climate regime 

characterised by marked seasonal distribution of the precipitation (Retallack, 1983, 1991, 2001).  

Overall, calcium carbonate accumulation in soils (Bk horizons) means environmental conditions with 

water deficit. Goudie (1983) affirmed that calcium carbonate accumulation currently develops 

preferentially in areas with mean annual precipitation between 400-600 mm. Proposed formulae with 

which to reconstruct MAP (mean annual precipitation) based on CIA-K or Bases/Al2O3 (Sheldon et 

al., 2002) are not applicable, because the values of CIA-K and Bases/Al2O3 of Bw horizons are very 

similar to the C horizons (Sheldon and Tabor, 2009). Likewise, formulae reliant on establishment of 

the depth of Bk horizons (Retallack, 2005) are not applicable, due to the progressive variation of 

thickness of the horizons during the coeval pedogenesis and accumulation of parent material (see 

discussion below). 

Overall, the Tama pedotype formed in well-drained conditions, in a semiarid palaeoenvironment 

characterised by water deficit, but with sufficient precipitation to sustain some diversified vegetation. 

Inceptisols are soils characterised by weak maturity because they form on young topographic 

surfaces or in environmental conditions that inhibit well-developed soil development (Foss et al., 

1983; Buol et al. 2011). Two main features suggest that the poor maturity of the Tama pedotype is 

due to continuous input of parent material that kept pace with the pedogenesis: (i) this pedotype has 
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over-thickened profiles (mean 1.2 m; maximum 2.5 m) and Bw horizons (mean 0.7 m; maximum 2.3 

m); (ii) the boundaries between the palaeosol profiles are gradual or diffuse; compound palaeosol 

profiles (Morrison, 1978), characterised by interbedded deposits with preserved sedimentary 

structures and/or abrupt boundaries between the palaeosol profiles, are essentially absent. The large 

thickness of profiles and horizons, and the gradual or diffuse boundaries between the palaeosol 

profiles can be ascribed to a relatively slow but steady rate of sedimentation due to aeolian and/or 

subaqueous depositional processes. Slow sediment input permitted the incorporation of material into 

the soil without interruption of the pedogenic processes (cf. Kraus and Alsan, 1993; Kraus, 1999; 

Ashley et al., 2014). Inceptisols are typical of areas subject to high sedimentation rate (Hartley et al., 

2012). 

Thus, the Tama pedotype can be interpreted as a cumulative palaeosol profile. Cumulative (or 

accretionary) palaeosol profiles form on topographic surfaces subjected to steady accretion via 

sedimentary on-going processes. Such a condition develops when the sedimentation rate is near-

continuous but slow enough to not impede the pedogenesis of the deposited material (McDonald and 

Busacca, 1990; Marriott and Wright, 1993; Kraus, 1999). In fluvial floodplains developed in semiarid 

settings, Daniels (2003) calculated that the rate of sedimentation, below which the pedogenesis 

keeps pace with the sedimentation, is 5 mm/year. Kraus (1999) asserted that cumulative soils form in 

overbank areas with deposition rates up to 10 mm/year. This suggests that, for sedimentation rates 

less than 5-10 mm/year, depending on the environmental conditions, new sediment is incorporated 

into the soil and cumulative soil profiles form. A semiarid climate likely slows down or inhibits some 

pedogenic processes, thus favouring the poor development of the palaeosols and formation of 

Inceptisols (Foss et al., 1983). However, the short residence time of the particles in the zone of active 

soil formation was the main controlling factor of the pedogenesis (cf. Marriott and Wright, 1993).  
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The Colozacán pedotype displays greater illuviation of clay in the Bt horizon and greater 

concentration of calcium carbonate in the Bk horizon compared to the Tama pedotype. Clay 

illuviation and carbonate concentration indicate well-drained palaeoenvironmental conditions with a 

net water deficit, similar to the Tama pedotype. However, the greater clay and calcium carbonate 

content suggest greater development time of Colozacán pedotype. It is therefore likely that the 

sedimentation rate in the lower part of Los Llanos Formation was slower, permitting development of 

soils of greater maturity. 

 

6. THE TITANOSAUR EGG CLUTCHES 

The egg clutches were found at a level 60 m above the base of the studied Los Llanos Formation 

succession (Fig. 2), close to the present topographic surface. During the excavation for the recovery 

of the eggs, a stratigraphic section 1.2 m thick was measured, analysed and sampled. The 

succession containing the egg clutches comprises three palaeosol horizons: Bw-Bk-Bw (Fig. 13A). 

The upper Bw horizon is c. 0.90 m thick (but the top is eroded by the present topographic surface). It 

is formed of pale reddish orange (2.5YR7/3 or 7/4), poorly sorted, fine- to medium-grained 

sandstone, with some light-grey (5Y8/1 or 10Y8/1) mottles in the lower portion (Fig. 13A and B). 

Calcareous rhizocretions and rhizotubules, and chalcedony root casts similar to those already 

described are common. Micromorphological analyses display related distribution pattern (coarse 

versus fine - c/f) gefuric to chitonic, occasional granostriated b-fabric are observable (Fig. 13C) and 

peds are absent. The transition to the lower Bk horizon is gradual. This latter is c. 0.2 m thick, pale 

reddish orange (2.5YR7/3 or 7/4) and can be distinguished in the field by the presence of very coarse 

calcareous nodules, 5-90 mm in diameter. Micromorphological features show crystallitic b-fabric and 

absence of peds. This horizon overlays, via a gradual transition, a lower Bw horizon, whose 

characteristics are similar to the upper Bw. Molecular weathering ratios (leaching, hydrolysis, 
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clayeyness, calcification, provenance) of the entire interval display values and vertical trends similar 

to those described for the Tama pedotype (Fig. 10). Surface microtextures of the quartz sand grains 

have already been discussed above; they show similarity with the parent material of the Tama 

pedotype (Figs 4 and 5). Thus, all these aspects demonstrate that the egg-bearing strata belong to 

the Tama pedotype.  

Five egg clutches, which collectively contained 21 complete eggs and several eggshell fragments, 

have been recovered from this Bw horizon between the levels 0.1-0.4 m (Fig. 13A). In plan view, the 

largest clutch shows elliptical-elongated shape with superposed eggs (Fig. 13D). Overall, the eggs 

were found in close association with each other, 20-80 mm apart. The eggs are filled with the same 

surrounding sandstone material, and have an oblate ellipsoid form: the short vertical axis is 119 mm 

high, the horizontal axes are each 210 mm long (Fig. 13D). Morphological features and taxonomic 

identity are described in detail by Hechenleitner et al. (2016). Based on their analyses, these authors 

concluded the following: (i) the eggs belong to Titanosauria; (ii) they are preserved in situ; (iii) the 

eggs were incubated with environmental source heat in burial conditions; and (iv) the occurrence of 

multiple clutches in the same Bw horizons means that this represented a colonial nesting area.  

 

7. PRESERVATION OF EGG CLUTCHES 

The eggs were found within a Bw horizon of a poorly developed palaeosol, classified an Inceptisol, 

whose parent material has been interpreted as deposited by non-confined subaqueous flows, 

deposits of which were reworked by aeolian processes, on the distal part of an alluvial-fan bajada, at 

the margin of a developing basin (Fig 6E). Egg-clutch geometrical arrangement is not compatible with 

subaqueous transport: the eggs are intact, were located in the same horizon in close proximity, which 

collectively demonstrates that they are preserved in situ (Hechenleitner et al., 2016).  
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An important question is whether the titanosaurs laid the eggs on the surface in an "open nest" or 

within the soil. According to palaeoecological aspects of the titanosaur eggs, it is improbable that the 

egg-laying site was on the soil surface (Hechenleitner et al., 2016). Indeed, the high porosity of the 

titanosaur eggshells and the necessity of the embryo to maintain internal moisture in order to develop 

in a semiarid environment support the hypothesis of burrow-nesting in dug-out holes (Seymour, 1979; 

Deeming, 2006; Grigorescu et al., 2010; Vila et al., 2010; Hechenleitner et al., 2016).  

In general, the preservation potential of fossil eggs and clutches in palaeosols is very low. Most 

palaeosols form in correspondence to a stable topographic surface, which is exposed to biological, 

chemical and physical alterations, each of which decrease the likelihood of long-term preservation of 

eggs. Moreover, excavation by other sauropods seeking to lay eggs, or by other animals for any 

other biogenic activities, trampling, root growth, chemical and physical weathering of the soil would 

not usually allow the preservation of whole eggs in life position. Thus, an important question arises: 

what kind of conditions permitted the preservation of the titanosaur egg-clutches within the Tama 

pedotype? 

The sedimentary interval, within which the egg clutches are contained, has been interpreted as a 

cumulative palaeosol profile, i.e. a type of soil characterised by a steady accumulation of the 

topographic surface with indicative values below 2 to 10 mm/year (Wright and Marriott, 1996; Kraus, 

1999; Daniels, 2003). In these conditions, whatever is placed on or within a cumulative soil will be 

quickly isolated by pedogenic weathering. The term "quickly" is relative to residence time, i.e. time in 

which a given object (e.g. eggs) is subject to conditions of pedogenic weathering (Marriott and 

Wright, 1993). The residence time depends on both the sedimentation rate and the depth within the 

soil to which weathering operates, which is typically ~2 m (Wright and Marriott, 1996), but could be 

less in semiarid environments (Nettleton and Peterson, 1983). This means that, for a sedimentation 

rate of 2 mm/year and for soil profile weathering to a depth of 2 m, an object placed on the soil 
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surface is subject to pedogenic alteration for 103 years. The residence time decreases when the 

object is placed (buried) within the soil and also when the soil develops in a semiarid environment. 

Thus, objects placed within cumulative soils in semiarid settings have high preservation potential. 

Thus, assuming that the eggs were laid at several centimetres from the top soil, the progressive 

growth of the topographic surface should have quickly isolated them from pedogenic modifications, 

which could otherwise have caused partial or complete destruction (Fig. 14). This reasoning is 

consistent with the occurrence of relatively well-preserved fossil bones, most of which do not show 

weathered surfaces and in some cases have been found articulated (Beherensmeyer, 1991; Fiorelli 

et al., 2016).  

Are the accumulations of titanosaur eggs at Tama nests or clutches? In general, an accumulation of 

intact and closely associated dinosaur eggs is defined in literature as a fossil nest or clutch. Many 

authors used either or both of these terms to refer to an egg accumulation (e.g., Tandon et al., 1995; 

Cojan et al., 2003; Van Itterbeeck et al., 2004; Díaz-Molina et al., 2007; Grigorescu et al., 2010; Paik 

et al., 2012). However, other authors (Chiappe et al., 2004; Salgado et al., 2007; Vila et al., 2010) 

restricted the fossil nest definition to cases where there is clear evidence that an organism has laid 

eggs in a site suitable to ensure successful egg incubation and hatching. Chiappe et al. (2004) 

defined sedimentological criteria for the recognition of nests in the geological record. According to 

these authors a nest is the structure where (i) multiple intact eggs are preserved in close proximity to 

each other, (ii) a voluntary excavation that cuts previous sedimentary structures is observed, (iii) a 

ridge of dug material is preserved at the borders of the excavation, and (iv) the filling of the 

excavation is different from the dug material (Fig. 15A). May these criteria to be considered 

necessary conditions to recognise a fossil nest in egg-bearing palaeosol of Tama? Probably not. The 

egg-bearing succession of Tama does not show any sedimentological or palaeopedological 

characteristic that permits a nest to be distinguished from a clutch. In the Tama pedotype, a nest (i.e., 
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a voluntary excavation in cumulative and immature sandy soil, filled after oviposition with the same 

excavated material) would have the same sedimentological features as a clutch (i.e., an 

accumulation of eggs on a non-voluntary excavation of the soil surface) (Fig. 15B). As such, only the 

first criterion of Chiappe et al. (2004) is followed (multiple intact eggs preserved in close proximity to 

each other). The boundaries of an excavation cannot be recognised, because cumulative and 

immature palaeosols do not exhibit well-defined and differentiated horizons or sedimentary 

structures, and any filling material would have the same composition and texture as the dug material. 

In conclusion, we think that the sedimentological criteria of Chiappe et al. (2004) to define a fossil 

nest are inapplicable to the Tama site, probably because they are too restrictive to be applied as 

general rules to recognise fossil nests in cumulative palaeosols. Moreover, Grellet-Tinner et al. 

(2012) and Hechenleitner et al. (2015, 2016) disagree with the criteria of Chiappe et al. (2004) from 

the palaeobiologic standpoint. These authors sustain that a titanosaur nest is “any recognizable 

structure or modification of environment that is voluntarily made by the parents to oviposit their eggs” 

(Hechenleitner et al., 2015) and, de facto, the criteria of Chiappe et al. (2004) do not match with this 

definition.  

 

8. CONCLUSIONS 

Los Llanos Formation, exposed close to the locality of Tama, is a >70 m-thick sedimentary 

succession composed almost entirely of palaeosols. Two pedotypes are recognised: Tama and 

Colozacán pedotypes. The Tama pedotype represents 69% of the measured part of the formation, 

contains titanosaur egg clutches preserved in a poorly developed palaeosol (Inceptisol). The 

Colozacán pedotype is 22% of the measured succession and represent a more mature palaeosol that 

took longer to develop, though in similar palaeoenvironmental conditions of Tama pedotype. 
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Preserved sedimentary structures, quartz grain surface microtexture analysis on parent material of 

the palaeosol, and presence of ventifacts have enabled an interpretation of the depositional 

environment as the distal part of coalescent alluvial fans (bajadas), where fluvial and aeolian 

processes interacted. 

The Tama pedotype sustained diversified vegetation (as testified by varied and abundant root traces) 

in drained conditions and a semiarid climate (as suggested by reddish colour of the horizons, clay 

coatings and calcium carbonate concentration). Low maturity, gradual to diffuse boundaries of the 

horizons and exaggerated thickness of the Tama pedotype, reaching 2.5 m, suggest a cumulative 

aspect of this palaeosol: a soil characterised by accretion of the topographic surface during coeval 

pedogenesis due to slow, but continuous, sedimentary processes.  

Due to relatively abundant vegetation and drained soils, titanosaurs chose this area as a nesting site. 

The high porosity of the eggshell suggests that titanosaurs probably laid their eggs in burrowsso as to 

maintain the embryo with sufficient humidity in an environment subject to a semiarid climate. Drained 

soils are not generally suitable sites for the preservation of fossil remains such as eggs. Indeed, 

chemical alterations and translocations, physical contraction and expansion, animal trampling and 

digging, and root growth mean that any preservation of eggs in palaeosols is outstanding. However, 

cumulative soils do create suitable conditions for egg preservation. In cumulative soils, the 

continuous accretion of the topographic surface decreases the residence time of eggs within the soil, 

thereby reducing the time over which they are subject to weathering conditions and so enhancing the 

potential for them to be incorporated into the geological record, where they become preserved. 

A question still remains open: are the other sites, where egg-bearing strata are associated with 

pedogenic features, characterised by cumulative palaeosols? 
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CAPTIONS 

Figure 1. Location of the study area and distribution of the main geological units. Granitoid complexes 

cropping out to the east of exposures of Los Llanos Formation are the possible source of the 

sandstone of this unit. Data simplified from geological map of Limarino and Poma (2008). 

 

Figure 2. Simplified stratigraphic log of the measured section of Los Llanos Formation exposed near 

the town of Tama. The palaeosol profiles in the section are indicative; the single bed and the 

palaeosol horizon thickness are not to scale. 

 

Figure 3.  (A) Poorly sorted, fine to medium-grained sandstone with subangular to rounded grains. 

PPL. (B) Photomicrography of feldspathic litharenite with monocrystalline quartz (a), lithic fragments 

(b) and feldspars (c). Thin and discontinuous clay coatings (d) cover some sand grains in Bw horizon. 

XPL. (C) Planar and undulated laminations are very uncommon in the studied sedimentary 

succession. They are interpreted as deposited by subaqueous flows in upper flow regime. Coin: 23 

mm diameter. 

 

Figure 4. Frequency distribution of quartz grains occurring with specific microtextures of the samples 

at 25 m and 60 m position of the stratigraphic section. The latter is the site of recovery of the egg 

clutches. See text for explanation. 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 

 

Figure 5. Photomicrography of quartz grains. (A) Grain from egg clutches site. Rounded grain outline, 

with low relief, bulbous edges (a) and elongated depression (b). (B) Enlargement of yellow square of 

figure 5A, where upturned plates (a), v-shaped percussion cracks (b) and adhering particles (c) are 

visible. (C) Grain from 25 m level of the sedimentary succession (Fig. 2). Rounded grain outline, with 

low relief, edge rounding, bulbous edges (a) and conchoidal fracture (b) surface microtextures. (D) 

Enlargement of yellow square of figure 5C showing upturned plates (a), v-shaped percussion cracks 

(b), solution pits (c) and graded arc (d) surface microtextures. (E) Grain from the site of the egg 

clutches showing upturned plates (a), adhering particle (b) and probably v-shaped percussion cracks 

(c). (F) Grain from the 25 m level of the sedimentary succession (Fig. 2). Upturned plates (a) cover a 

conchoidal fracture (b) with arcuate steps (c). See the text for detail. 

 

Figure 6. (A) Boulder ventifact found in pebbly sandstone. Hammer: 0.28 m. (B) Trough cross-

stratified pebbly sandstone is located in Ck palaeosol horizon at the base of Los Llanos Formation. 

The Jacob's staff subdivisions are 0.1 m. (C) Circular histogram of palaeodirection data from trough 

cross-stratifications of pebbly sandstone. Palaeocurrents and petrographic data indicate provenance 

from local granitoid substratum. (D) The muddy very fine-grained sand intervals, containing 

ostracods, charophytes suggests subaqueous deposition in small lakes or ponds. (E) Reconstruction 

of the depositional system of Los Llanos Formation in Tama area. See text for explanation. 

 

Figure 7. Tama pedotype profile. This pedotype is interpreted as a cumulative, poorly developed 

palaeosol (Inceptisol or calcic Protosol). 
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Figure 8. (A) Picture showing a vertical succession of Bw and Bk horizons. Cemented horizons are 

easily recognizable since they show appreciable relief on natural exposures. Note the gradual to 

diffuse transition between the horizons. The Jacob's staff subdivisions are 0.1 m. (B) The high 

concentration of root casts, chalcedony filled, likely identifies an A horizon. (C) Light-grey (5Y8/1 or 

10Y8/1) mottles sometimes occur in Bw horizon. They suggest local and temporary water stagnation. 

Pencil: 142 mm. (D) Small cylindrical tubes of sparitic calcite (arrow), interpreted as rhizocretions, 

probably represent roots of small seasonal plants. Coin: 23 mm. (E) Medium chalcedony root traces 

(see arrow). The chalcedony filling occurred after pedogenesis due to precipitation of the silica in the 

hole left after the death of the root. Coin: 18.2 mm. (F) Large root traces, interpreted as tap roots of 

trees or large shrubs. They are largely diffused in Los Llanos Formation and can entry, as in the 

displayed case, within the weathered granitoid bedrock. Hammer (circled): 0.28 m length. 

 

Figure 9. Tama pedotype. (A) Chitonic related distribution pattern of Bw horizon, PPL. (B) Bw 

horizon. Granostriated b-fabric (a) constituted of few clay coatings around the sand grains. 

Chalcedony constitutes coatings (b) and fills the packing voids (c). XPL. (C) Bk horizon. Isolated 

calcium carbonate nodules. In this case, the nodules display septarian structures, in which radial 

fractures are filled by chalcedony (see arrows). Pencil: 142 mm. (D) Bk horizon. Crystallitic b-fabric 

formed by different mosaics of calcite crystals with chalcedony (a) replacing the calcite, XPL. (E) Bk 

horizon. Rounded or subrounded clasts with porphyric related distribution, XPL. (F) Large vugs, up to 

0.1 m, display chalcedony crystallization at the wall and druse-like macroquartz at the centre. Coin: 

18.2 mm diameter. 

 

Figure 10. Molecular Weathering Ratios (MWR) of Tama pedotype. Leaching: Ba/Sr; hydrolysis: 

(CaO+MgO+Na2O+K2O)/Al2O3; clayeyness: Al2O3/SiO2; calcification: (CaO+MgO)/Al2O3; provenance: 
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TiO2/Al2O3.The position in the general stratigraphic section of the three intervals of palaeosol profiles 

is indicated in figure 2. 

 

Figure 11. Colozacán pedotype. This pedotype is interpreted as a well-developed palaeosol in 

semiarid and drained conditions (Aridisol or Calcisol). 

 

Figure 12. Colozacán pedotype. (A)  Pale reddish orange (2.5YR7/3) Bt horizon with light-grey 

(2.5GY8/1) mottles. The Jacob's staff subdivisions are 0.1 m. (B) Rhizotubules in Bt horizon. (C)  

Relatively abundant clay illuviation is indicated by granostriated b-fabric showing thick clay coating 

around the sand grains (see arrow), XPL. (D) Bk horizon constituted by structureless calcic horizon 

The Jacob's staff subdivisions are 0.1 m. 

 

Figure 13. (A) Section of the cumulative poorly developed palaeosol (Tama pedotype) where the egg 

clutches were recovered. MWR from geochemical data of this palaeosol profile are shown in figure 

10. (B) Various eggshell fragments (see arrows) in the pale reddish orange (2.5YR7/3 or 7/4), poorly 

sorted sandstone of the Bw horizon. Pencil: 142 mm. (C) Microphotograph of Bw horizon. 

Unweathered perthite (a) and quartz (b) grains are in places covered by clay coatings (see arrows). 

(D) Eggs of titanosaurs in one of the recovered clutches. The eggs lie close to each other suggesting 

that they are in their original position. The egg on the left is barely exposed because it is located at a 

lower position relative to the other egg on the right. 

 

Figure 14. Model of laying and preservation of titanosaur egg clutches in Tama pedotype. See text for 

explanation. 
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Figure 15. (A) Model of events that lead to the preservation of titanosaur nests according to Chiappe 

et al. (2004), modified from the same authors. I: Excavation and laying of the eggs; II: flood; III: 

deposition and burying of the eggs. (B) Model of events that lead to the preservation of a titanosaur 

nests in the Tama pedotype. I: Selection of the laying area; II: excavation, laying and covering of the 

eggs; III: new deposition. Note that, in this model, most of the features that Chiappe et al. (2004) 

indicated as prerogative of the identification of a nest are not evident. 

 

Table 1. 

Summary of the features and interpretation of deposits of Los Llanos Formation.  

 

Table 2. 

Summary of the features and interpretation of palaeosols of Los Llanos Formation.  

 

Table 3.  

Weight percentage of the major oxides and ppm of trace elements within the Tama pedotype profiles 

of figure 10. 

 

Table 4.  

Values of the Molecular Weathering Ratios used in this study. These values are shown in graphic of 

figure 10. 
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Table 1 

Deposits  Description Interpretation Figures 
Sandstone  Textural features. Subangular to well-rounded, 

poorly to moderately sorted, medium- and fine-
grained sand grains with sparse granules and 
small pebbles; clastic fraction finer than coarse 
silt is less than 20%.  
Petrographic composition of the sand grains. 
Monocrystalline quartz (46.1-76.8% in 
abundance), feldspars (4.7-20.4%) and lithic 
fragments (11.1-37.8%). 
Sedimentary structures and bed geometry. Very 
rare planar, undulating and parallel laminations, 
no more than 0.2 m thick and more than 5 m 
laterally extended. Such beds always occur 
directly above the top of palaeosol profiles. The 
laminations are revealed by alternations of fine-
grained sandstone (1 to 4 mm thick) and medium-
grained sandstone (<1 mm thick), with no 
evidence of grain-size grading. 
 

Sheet flow deposits formed by 
subaqueous processes reworked by 
aeolian processes. These deposits 
probably formed on the distal portion of 
coalescent alluvial fans. 

Figs. 3, 6E 

Pebbly 
sandstone 
(conglomerate)  

Textural features. Poorly sorted, medium to 
coarse-grained sand with granule to boulder 
clasts. Pebble and larger clasts are very angular 
to subrounded. Ventifacts occur. 
Composition of the granule to boulder clasts. Vein 
quartz (82% in abundance), feldspars (7%) and 
very fine-grained sandstone (5%); clasts of 
rhyolite, quartzite and granite comprise the 
remaining 6%. The sandstone component has 
analogous petrographic characteristics sandstone 
lithofacies described above. 
Sedimentary structures and bed geometry. This 
lithofacies is formed of tabular beds, 1 to 2.1 m 
thick and more than 2 km laterally extended. The 
bottom surfaces are erosive and characterised by 
scours up to 2 m wide and 0.5 m deep. Poorly 
preserved primary sedimentary structures take 
the form of trough cross-stratified sets, each 0.3-
0.5 m thick.  

Deposition by non- or poorly channelised 
subaqueous flows, probably characterised 
by a high and ephemeral hydraulic regime, 
coming from ESE. The deposition 
probably occurred on the intermediate or 
distal portion of coalescent alluvial fans. 

Figs. 6A, 6B, 
6C and 6E 

 
Muddy 
sandstone 
 

 
Textural features. Unconsolidated, dull orange 
(2.5YR6/3), muddy sand. The sand is very fine in 
grain-size, moderately sorted and structureless.  
Bed geometry. This lithofacies forms two 
lenticular beds, each up to 4 m thick and up to 
200 m in lateral extent. These beds possess 
sharp lower and upper boundaries. 

 
Deposition in calm water of temporary 
small lake or ponds, probably formed on 
the distal portion of coalescent alluvial 
fans. 

 
Figs. 2 and 

6D, 6E  
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Table 2 

Palaeosols Description Interpretation Figures 
Tama 

pedotype 
Parent material: poorly to moderately sorted, fine to medium-grained sandstone, 
with less than 5% granules and pebbles 
A horizon: pale reddish orange (2.5YR7/3), less than 0.15 m thick. Abundant 
root traces. 
Bw horizon: pale reddish orange (2.5YR7/3 or 7/4), 0.2 to 2.3 m thick. The 
distinctness of this horizon boundary is gradual to diffuse; the topography 
smooth to wavy. Roots, light grey (5Y8/1 or 10Y8/1) mottles, with boundary 
distinctness clear or gradational. Abundant weatherable minerals, high 
thickness. Absence of pedogenic structures. In a few cases, the Bw horizon is 
light grey in colour and shows pale reddish orange (2.5YR7/3 or 7/4) mottles 
that themselves represent 30-40% of the horizon. Close or single-spaced 
gefuric to chitonic related distribution pattern; rare granostriated b-fabric; apedal 
microstructure. Complex packing voids (20- -10% of the objective 
field) are partially or completely filled with chalcedony. 
Bk horizon: pale reddish orange (2.5YR7/3 or 7/4) 0.08-0.83 m thick. The 
distinctness of this horizon boundary with Bw or C horizons is gradual or diffuse, 
and the topography is smooth, locally wavy. Calcium carbonate accumulation is 
represented by micritic cement and nodules, with undifferentiated or concentric 
internal fabric. Nodules with undifferentiated internal fabric are subspherical, 
ellipsoidal or ameboid, 3-120 mm across, 1-30% in abundance, on average 7%, 
with very abrupt outer boundaries. Internally these nodules are composed of 
microcrystalline calcite with sparse floating siliciclastic sandy grains, less than 
15% in abundance. Nodules with concentric internal fabric are less abundant; 
they have subspherical or ellipsoidal form, locally are coalescent, 10-60 mm 
across, and in section they are composed of concentric rings, 1-5 mm thick, of 
microcrystalline calcite with floating siliciclastic sand grains, and of sparry 
calcite, less than 2 mm thick. Single to double spaced porphyric related 
distribution pattern. Crystallitic b-fabric. Apedal microstructure. Typic crystalline 
calcitic pedofeature. Rarely, and at the transition with the horizon Bw, striated b-
fabric (in particular, discontinuous granostriated) is present. The size of the 
calcite varies from micrite to microsparite, with equigranular and xenotopic 
crystals. Subhedral calcite crystals (hypidiotopic) are locally present as coatings 
around sand grains. Chalcedony pedofeatures comprise 3 to 25% of the 
objective field. They have irregular margins and appear to replace calcite 
crystals. 
C(k) horizon: pale reddish orange (2.5YR7/3 or 7/4) and 0.2-0.4 m thick. The 
distinctness of the upper horizon boundary with Bw or Bk horizons is gradual to 
diffuse, whereas distinctness of the lower boundary with the Bw horizon is sharp 
or very sharp. The topography of the horizon boundaries is smooth or wavy. 
Primary sedimentary structures occur: planar or undulating laminations or cross 
stratifications. Monic related distribution pattern. 
 

Cumulative poor 
developed Inceptisol 
formed in semiarid 
and drained 
paleoenvironmental 
conditions. 
 

Figs. 2, 
7, 8 and 
9 

Colozacán 
pedotype) 

Parent material: poorly  
Bt horizon: pale reddish orange (2.5YR7/3), 0.25-1.8 m thick. The distinctness 
and topography of the lower boundary with Bk horizon are sharp and smooth, 
respectively, whereas the distinctness and topography of the upper boundary 
with Bk horizon are clear to gradual and smooth to wavy, respectively. Upper 
boundary is with Ck horizon is sharp and wavy. Calcium carbonate content 
absent or low (<5% in abundance). No pedogenic structures. Light gray mottles 
(2.5GY8/1), up to 20% in abundance. Rhizotubules and chalcedony root traces 
are present. Abundant granostriated b-fabric; apedal microstructure. 
Bk horizon: light gray (7.5YR8/1) or white, 0.15-1.2 m thick. Lower boundary 
with Ck horizon is diffuse and smooth. High calcium carbonate content: 50% in 
abundance or more. Crystallitic b-fabric is typical. 
Ck horizon: light gray (7.5YR8/1) or white, 0.3-0.75 m thick. Calcium carbonate 
micritic cement and nodules occur. Relics of trough cross-beddings are present. 
Monic related distribution pattern. 

Well-developed 
palaeosol formed in 
semiarid and drained 
paleoenvironmental 
conditions. Aridisol. 
 

Figs. 2, 
11 and 
12  
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Table 3 

Major oxides (weight percentage) 

Sample Horizon Depth 
m 

SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 LOI Total 

LL6 Bw 0.1 89.19 0.192 4.83 1.01 0.017 0.48 0.59 0.75 1.31 0.03 1.41 99.8 

LL7 Bw 0.8 89.06 0.182 5.13 1.01 0.019 0.49 0.63 0.89 1.43 0.03 1.28 100.2 

LL8 Bk 1.05 42.08 0.085 2.29 0.5 0.019 0.38 29.35 0.43 0.55 0.03 24.2 99.9 

LL9 Bw 1.5 61 0.124 3.27 0.7 0.016 0.42 17.78 0.51 0.91 0.03 15 99.7 

LL10 Bw 1.95 71.5 0.135 3.9 0.94 0.017 0.46 11.39 0.58 1.08 0.03 9.72 99.8 

LL11 Bw 2.35 63.57 0.119 3.5 0.86 0.025 0.44 16.17 0.48 0.97 0.03 13.7 99.9 

LL12 Bk 2.8 37.64 0.074 2.02 0.51 0.037 0.36 32.14 0.31 0.49 0.03 26.3 99.9 

LL13 Bwg 3.55 81.5 0.113 3.31 0.64 0.019 0.33 6.6 0.55 0.95 0.03 5.84 99.9 

               

LL14 Bw 0.85 90.1 0.159 4.31 0.94 0.018 0.42 0.55 0.66 1.2 0.03 1.36 99.8 

LL15 C 1.9 90.12 0.178 4.38 0.94 0.02 0.41 0.55 0.67 1.19 0.04 1.27 99.8 

LL16 Bkg 2.9 41.66 0.081 2.14 0.48 0.037 0.39 29.64 0.41 0.53 0.03 24.5 99.9 

LL17 Bw 3.1 90.48 0.151 4.08 0.78 0.018 0.38 0.33 1 1.13 0.03 1.23 99.6 

LL18 Bw 3.3 90.02 0.165 4.53 0.8 0.016 0.4 0.5 0.7 1.25 0.03 1.18 99.6 

LL19 Bk 3.6 42.12 0.086 2.21 0.46 0.033 0.34 29.49 0.4 0.57 0.03 24.2 99.9 

LL20 Bw 3.75 89.7 0.163 4.46 0.93 0.019 0.41 0.59 0.69 1.28 0.03 1.18 99.5 

LL22 Bk 4.3 61.67 0.113 3.31 0.7 0.021 0.36 17.51 0.55 0.95 0.037 14.1 99.3 

LL23 Ck 4.85 48.41 0.081 2.58 0.57 0.027 0.36 24.53 0.54 0.66 0.037 20.8 98.6 

               

LLE1 Bw 0.2 89.14 0.19 4.77 1.01 0.016 0.44 0.51 0.76 1.21 0.03 1.37 99.4 

LLE2 Bw 0.6 90.02 0.178 4.38 0.91 0.02 0.41 0.48 0.7 1.17 0.04 1.24 99.5 

LLE3 Bk 1.05 62.49 0.091 2.76 0.58 0.021 0.32 17.54 0.48 0.79 0.059 14.1 99.2 

LLE4 Bw 1.2 76.96 0.109 3.18 0.61 0.012 0.31 9.13 0.54 0.91 0.041 7.83 99.6 

 

Trace elements (ppm) 

Sample Horizon Depth 
m 

Ba Ce Cr Cu Ga La Nb Nd Ni Pb Rb Sc Sr Th V Y  

Zn 

 

Zr 

LL6 Bw 0.1 166 <13 27.2 6.1 4.5 <13 4.3 <10 2.9 8.9 44 <3 51 5.6 41 10.8 15.7 128 

LL7 Bw 0.8 175 15 15.6 6 5.1 <13 4.5 <10 <2 11.5 48 4 58 4.4 47 11.8 17.4 137 

LL8 Bk 1.05 380 <13 8.9 <1.5 4.3 13.7 2.6 12 2.3 10.4 6.7 4 186 2.2 16.5 11.5 8.6 59 

LL9 Bw 1.5 166 <13 4.3 2 4.7 15.1 3.1 <10 3.2 8.2 20 4 142 3.3 25.9 12.5 11.5 83 

LL10 Bw 1.95 161 <13 51 2.4 4.2 <13 3.9 11 2.3 8.7 27 4 84 3.3 34 10.8 14 85 

LL11 Bw 2.35 152 <13 5.7 2.2 4.1 <13 3.4 14 3.8 9 21.8 4 111 4.5 26.6 11.2 13.5 81 

LL12 Bk 2.8 133 <13 11 <1.5 4.6 <13 2.5 <10 3.9 10.2 5.1 4 198 4.3 17.6 10.7 9.3 48 

LL13 Bwg 3.55 198 <13 5.3 2.8 3.7 <13 3.1 <10 <2 6.9 28 4 55 3.1 36 9.5 9.9 94 

                     

LL14 Bw 0.85 151 <13 19.1 6.4 4.7 <13 3.9 <10 2.2 9.1 42 3 45 4.3 37 11.3 14.1 129 

LL15 C 1.9 150 <13 10.1 6.4 4.2 <13 4.1 <10 2.4 9.1 43 <3 45 5 36 12.5 13.1 124 

LL16 Bkg 2.9 131 <13 17 <1.5 4 19.6 2.7 <10 3 10.9 6.2 5 139 2.4 16.1 12.7 9.4 61 

LL17 Bw 3.1 135 <13 8.6 5.9 4.2 <13 3.8 11 3.2 9.5 41 <3 39 5.9 42 10.4 12.8 125 

LL18 Bw 3.3 151 15 25 6.5 4.7 <13 4.1 <10 3 11 45 <3 45 5.3 37 11.7 13.2 137 

LL19 Bk 3.6 129 <13 13.4 <1.5 4.9 <13 2.9 31 2.8 10.5 6.9 4 124 2.7 16.5 13.8 8.8 57 

LL20 Bw 3.75 170 15 18 5.6 4.3 <13 4.1 12 <2 11.5 44 <3 46 5.6 37 11.5 14.1 131 

LL22 Bk 4.3 228 20 6.2 <1 4.3 <13 3 14 2.2 14.6 27.7 5 80 3.9 22 11.2 11.4 92 

LL23 Ck 4.85 407 <13 9.7 <1 3.3 14 3.3 26 3.1 14 19.5 6 97 3.8 16.4 10.7 10.7 70 

                     

LLE1 Bw 0.2 164 <13 24.5 6.1 4.2 <13 4.1 <10 2.4 8.9 42 <3 50 5.6 39 10.9 15.2 124 

LLE2 Bw 0.6 149 <13 12.1 6.2 4.2 <13 3.9 <10 2.6 9.6 44 <3 45 5.1 36 12.2 13.2 120 

LLE3 Bk 1.05 157 <13 4.2 <1 4.6 <13 2.7 <11 2.4 11.2 22 7 85 4.8 17.5 10.8 9.7 74 

LLE4 Bw 1.2 177 <13 8.6 1.2 4.1 <13 2.9 19 <2 11.7 28.5 4 66 4.5 25.5 9.1 11.2 82 
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Table 4 

Sample Horizon Depth 
m 

Leaching 

Ba/Sr 
Hydrolysis Clayeyness  Calcification Provenience 

TiO2/Al2O3 

LL6 Bw 0.1 2,076689 1,022401 0,031916 0,473395143 0,050748 

LL7 Bw 0.8 1,925057 1,05193 0,033947 0,464816943 0,045291 

LL8 Bk 1.05 1,30348 24,29054 0,032072 23,72168811 0,047386 

LL9 Bw 1.5 0,745853 10,76824 0,031593 10,21045968 0,04841 

LL10 Bw 1.95 1,22287 6,152483 0,032146 5,608099098 0,044191 

LL11 Bw 2.35 0,873684 9,243183 0,032448 8,717602922 0,043405 

LL12 Bk 2.8 0,428568 29,89355 0,031628 29,37853304 0,046767 

LL13 Bwg 3.55 2,296868 4,46136 0,023936 3,877361356 0,043583 

        

LL14 Bw 0.85 2,140908 1,031701 0,028192 0,478433334 0,047096 

LL15 C 1.9 2,12673 1,010724 0,028643 0,465013692 0,051881 

LL16 Bkg 2.9 0,601298 26,22586 0,030274 25,64262028 0,048321 

LL17 Bw 3.1 2,208527 1,08555 0,026575 0,38257626 0,047248 

LL18 Bw 3.3 2,140908 0,976837 0,029657 0,423966098 0,046499 

LL19 Bk 3.6 0,663746 25,22671 0,030923 24,649797 0,049679 

LL20 Bw 3.75 2,357896 1,038119 0,029303 0,472978621 0,046657 

LL22 Bk 4.3 1,818354 10,47692 0,031632 9,892926099 0,043583 

LL23 Ck 4.85 2,677049 18,26026 0,031409 17,63905681 0,04008 

        
LLE1 Bw 0.2 2,092702 0,96432101 0,031537 0,427652 0,05085079 

LLE2 Bw 0.6 2,112552 0,9879924 0,028675 0,435957 0,051881 

LLE3 Bk 1.05 1,178459 12,443362 0,02603 11,84746 0,04209154 

LLE4 Bw 1.2 1,711051 6,05553956 0,024352 5,466455 0,04375844 
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HIGHLIGHTS 

 Cumulative palaeosol is optimal site to accumulate and preserve titanosaur clutches. 

 This contribution helps to clarify the sites that titanosaurs selected to lay eggs.  

 This study can contribute to the reconstruction of the palaeohabitat of titanosaurs.  

 This study contributes to the study of nesting strategy of titanosaurs.  

ACCEPTED MANUSCRIPT


