
This is a repository copy of ReDeCheck: An Automatic Layout Failure Checking Tool for
Responsively Designed Web Pages.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/116991/

Version: Accepted Version

Proceedings Paper:
Walsh, T., Kapfhammer, G.A. and McMinn, P.S. orcid.org/0000-0001-9137-7433 (2017)
ReDeCheck: An Automatic Layout Failure Checking Tool for Responsively Designed Web
Pages. In: ISSTA 2017 Proceedings of the 26th ACM SIGSOFT International Symposium
on Software Testing and Analysis. International Symposium on Software Testing and
Analysis (ISSTA 2017), 10-14 July 2017, Santa Barbara, California. ACM , pp. 360-363.
ISBN 978-1-4503-5076-1

https://doi.org/10.1145/3092703.3098221

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

ReDeCheck: An Automatic Layout Failure Checking Tool for
Responsively Designed Web Pages

�omas A. Walsh
University of She�eld, UK

Gregory M. Kap�ammer
Allegheny College, USA

Phil McMinn
University of She�eld, UK

ABSTRACT

Since people frequently access websites with a wide variety of de-

vices (e.g., mobile phones, laptops, and desktops), developers need

frameworks and tools for creating layouts that are useful at many

viewport widths. While responsive web design (RWD) principles

and frameworks facilitate the development of such sites, there is

a lack of tools supporting the detection of failures in their layout.

Since the quality assurance process for responsively designed web-

sites is o�en manual, time-consuming, and error-prone, this paper

presents ReDeCheck, an automated layout checking tool that alerts

developers to both potential unintended regressions in responsive

layout and common types of layout failure. In addition to sum-

marizing ReDeCheck’s bene�ts, this paper explores two di�erent

usage scenarios for this tool that is publicly available on GitHub.

CCS CONCEPTS

•So�ware and its engineering→ So�ware defect analysis;

KEYWORDS

Responsive web design, presentation failures, layout failures.

ACM Reference format:

�omas A. Walsh, Gregory M. Kap�ammer, and Phil McMinn. 2017. Re-

DeCheck: An Automatic Layout Failure Checking Tool for Responsively

Designed Web Pages. In Proceedings of International Symposium on So�ware

Testing and Analysis, California, USA, July 10–14, 2017 (ISSTA 2017), 5 pages.

DOI: 10.1145/3092703.3098221

1 INTRODUCTION

While a recent study by the Pew Research Center found that 95% of

Americans currently own a cellphone of some kind, the same report

also revealed that 80% of US adults use a desktop or a laptop and

50% have a tablet [1]. Results like these, which mirror those of

several other regions of the world [15], mean that web developers

must designwebsites that have aesthetically pleasing and functional

layouts on a wide variety of devices. Providing a quality experience

to end users can lead to increased revenue [7] and brand loyalty [4],

along with enhanced search engine rankings [5]. Conversely, a poor

page layout could lead to negative user experiences, particularly

on mobile devices, causing the majority of users to simply leave

the page [7], leading to the potential for lost revenue [9].

Envisioned Users. Aiming to capitalize on the numerous bene�ts

a�ributed to supporting users on a wide variety of devices, many

web developers have adopted responsive web design (RWD). �is

helps them in creating web pages that give an enhanced user ex-

perience regardless of the device being used to view the page [11].

Properly designed RWD-based sites achieve this by “responding” to

ISSTA 2017, California, USA

2017. 978-1-4503-5076-1/17/07. . .$15.00
DOI: 10.1145/3092703.3098221

the user’s device, resizing and rearranging the content to best �t the

screen according to three core concepts: �uid grids, �exible media,

and media queries [11]. Fluid grids and �exible media use relative

sizing to scale web elements to the particular device, thus ensuring

that they are rendered within their containers. Media queries allow

developers to apply di�erent styling rules depending on the char-

acteristics of the current device — most commonly the width of the

device or browser, known as the viewport width. Many front-end

frameworks, such as Bootstrap [14] and Foundation [13], provide

RWD features, thereby giving developers the building blocks with

which they can create web pages that are responsive.

ChallengesAddressed.Given the complex interplay betweenweb

elements and layout rules evident in responsive web pages, imple-

menting them can be di�cult, leading to developers introducing

undesirable visual e�ects into their pages. Figure 1 presents an

example of a responsive layout failure (RLF) in a production web

page: at wide viewport widths (i.e., parts (a) and (c)) the carousel of

language options �ts easily within the page, whereas at narrower

widths (i.e., parts (b) and (d)) it protrudes outside of the viewport,

making the right scroll arrow unclickable and negatively impacting

the page’s functionality. Since RLFs o�en occur intermi�ently at

unpredictable and occasionally small ranges of viewport widths,

detecting them is challenging. Moreover, this detection process is

o�en a manual one in which a developer “spotchecks” a web page at

certain viewport widths (e.g., 320 pixels for an iPhone, 768 pixels

for tablets, and 1024 pixels for laptops), an undertaking that is labor

intensive and error prone as certain RLFs can be easy to overlook.

Since it is challenging to spotcheck a page at every viewport width,

developers may miss layout failures that go on to production.

�e Tool. �e ReDeCheck tool (Responsive Design Checker, pro-

nounced “Ready Check”), presented in this paper, helps web de-

velopers implement responsively designed web pages that exhibit

correct layout at di�erent viewport widths. ReDeCheck features

two distinct modes for automatically checking a responsive web

page’s layout: regression checking and common failure detection.

Regression checking compares the responsive layout of the latest

and previous versions of a web page and reports to the user a list of

potential regression layout issues [19]. Common failure detection

analyzes the layout of the latest version of a web page and checks

for a number of common types of RLF [18]. ReDeCheck is well doc-

umented and currently available on GitHub, under an open-source

license, for evaluation and extension [20]. It is platform indepen-

dent and compatible with a range of frequently used web browsers.

Evaluation Results. We have conducted experiments to evaluate

both of ReDeCheck’s modes. �e results show that the tool can

accurately detect the majority of potential layout issues between

di�erent versions of a page when in regression checking mode [19].

When targeting speci�c layout failure types, the tool detected fail-

ures in popular websites such as Duolingo and Consumer Reports —

ISSTA 2017, July 10–14, 2017, California, USA Thomas A. Walsh, Gregory M. Kapfhammer, and Phil McMinn

(a) 1298 pixels 3 (b) 983 pixels 7

(c) 1298 pixels (zoomed) 3

(d) 983 pixels (zoomed) 7

(e) ReDeCheck failure report

Figure 1: Screenshots of Duolingo, where a carousel of lan-

guages is correctly centered and with arrows on each side

(parts (a) and (c)), before the carousel protrudes outside the

viewport as the width narrows, obscuring the right-hand ar-

row (parts (b) and (d)). Finally, part (e) shows a report, pro-

duced by the ReDeCheck tool, that highlights the failure, us-

ing the dashed and solid red boxes, to the developer.

in addition to outperforming tool-supported manual spotchecking

methods. �e tool is also fast, running in less than two minutes on

most of the studied pages, making it feasible for developers to inte-

grate it into their responsive web design toolbox [18]. Finally, this

paper’s case studies show how a developer can use ReDeCheck’s

failure reports, like the excerpted one in Figure 1(e), to diagnose

and repair mistakes in a web page’s responsive layout.

2 THE REDECHECK TOOL

ReDeCheck is an automated layout checking tool, providing two

di�erent forms of developer support. In regression checking mode it

compares the responsive layouts of two versions of a web page (i.e.,

before and a�er a developer’s code modi�cation), reporting a list of

layout di�erences that are potential issues of which the developer

may be unaware [19]. �e common failure detection mode takes the

latest version of a web page as input and analyzes its responsive

layout, checking for di�erent types of common layout failures

that stem from the improper application of RWD principles and

were identi�ed through analysis of RWD in practice [18]. �ese

types are, namely, element collision (two elements overlapping),

element protrusion and viewport protrusion (elements over�owing

their container or the viewport, respectively), small-range layouts

(layouts only applied for a very small number of viewport widths)

and incorrectly wrapping elements (elements forced onto a new row

due to a lack of horizontal space). Figure 2 shows ReDeCheck’s

structure: to the le� of the dashed vertical line, the modules support

regression checking, to the right, common failure checking.

At the core of the ReDeCheck tool is a representation of the

dynamic layout of a web page called the responsive layout graph

(RLG), which models both the changing visibility and alignment

Regression Checking Common Failure Checking

W W ′ W

Model Extractor

Model Comparator Common Failure Detector

Report Generator

RLG RLG′ RLG

Freg Fcom

Report Report SSS

Figure 2: �e high-level structure of the ReDeCheck tool. To

the le� of the dashed vertical line, the modules support re-

gression checking, to the right, common failure checking.

of HTML elements as the viewport expands and contracts. For

example, two elements could be rendered one above the other

at narrow viewport widths, but side by side on wider viewports

with increased horizontal space. Furthermore, some elements may

only be visible at certain viewport widths. �e model extractor

module is responsible for extracting the RLG of a speci�ed web

page, rendering it in a browser and inspecting its layout at a series

of viewport widths via the document object model (DOM).

ReDeCheck picks sample widths by applying uniform sampling

(e.g., at 60 pixel intervals) and boundary sampling, which involves

searching the page’s stylesheet for the breakpoints at which the

layout is intended to change. �is two-part combined approach

thereby obtains as representative a sample as possible. �e layouts

at the chosen widths are then analyzed sequentially to model the re-

sponsive layout. If di�erence(s) are found between two consecutive

layouts, the tool conducts a binary search to �nd the exact viewport

width at which the layout changes, repeating the process until all

layouts are analyzed. ReDeCheck uses Selenium [2] to drive a

browser and render the page; Selenium’s support of many browsers

enables ReDeCheck to integrate into a developer’s environment.

In regression checking mode with input web pagesW andW ′,

ReDeCheck begins by extracting RLGs for both to produce RLG and

RLG′. �emodel comparator module then compares RLG and RLG′

using a pairwise matching approach to produce a set of di�erences

that could be regression failures, Freg . Before outpu�ing a report,

the report generator module analyses Freg to determine the nature

of the failures and the viewport widths at which they are visible.

When detecting common layout failures in a single web pageW ,

only one model, RLG, is extracted and analysed by the common

failure detector module to check for the presence of the di�erent

types of responsive layout failures. �e report generator then pro-

duces a textual report describing the detected failures, Fcom (i.e., the

type of failure, the elements involved, and the range of viewport

widths at which the failure manifests) accompanied by a set of

screenshots, S , showing each detected failure with the o�ending

HTML elements highlighted. A developer can then inspect each of

the individual failure reports. If the report shows an evident RLF

ReDeCheck: An Automatic Layout Failure Checking Tool for Responsively Designed . . . ISSTA 2017, July 10–14, 2017, California, USA

Table 1: Empirical evaluation results for ReDeCheck.

(a) Regression Checking

TP TN FP FN Recall

Total 80 12 0 8 90.9%

(b) Common Failure Checking

TP FP NOI Viewports RLFs

Total 196 48 83 137 33

(i.e., a true positive (TP)) then the developer can debug and �x the

issue. If no failure is visible (i.e., a false positive (FP)) then no action

is required. Finally, if there is no visual failure but — at the level

of DOM coordinates — the elements are, for example, overlapping,

the developer may want to investigate further as these could be evi-

dence of an underlying structural defect that may manifest visually

in the future. We refer to these as non-observable issues (NOIs).

ReDeCheck is publicly available as an open-source tool on

GitHub [20]; there is extensive documentation on how to install and

run the tool and interpret its results. Each of the tool’s modules are

documented, allowing researchers and developers to understand its

design and implementation in Java. �e tool also contains a suite

of JUnit tests. Finally, ReDeCheck is extensible, supporting the

addition of new failure checkers in the common failure detector.

3 APPLYING THE TOOL

Using a variety of pages that were in production use, both of Re-

DeCheck’s modes have been subjected to empirical study to evalu-

ate their e�ectiveness. �is section summarises the methodology

and �ndings of these studies, additionally presenting two case stud-

ies showing how ReDeCheck detects and reports layout failures.

3.1 Experimental Studies

Table 1a furnishes the results from the evaluation of ReDeCheck’s

regression checking mode. Using simple code modi�cation oper-

ators that change, for instance, the width, margin or padding of

elements, we used a tool to create 20 incrementally modi�ed ver-

sions of �ve responsive pages, for a total of 100 modi�ed web pages.

�is empirical study revealed that ReDeCheck was capable of de-

tecting a majority of such layout changes, achieving 91% recall [19].

While 15 false negatives were observed, the relevant code modi-

�cations minimally changed the web page in a way that did not

in�uence the RLG created by ReDeCheck. As such, it is unlikely

that these changes represented failures, limiting any shortcomings

of ReDeCheck. Overall, these results indicate that the tool can

detect subtle variations in web page layout and notify developers of

potential layout issues. For more details, please read reference [19].

To investigate the prevalence of the �ve common types of RLFs

in real-world web pages and evaluate ReDeCheck’s ability to de-

tect them, we ran the tool on a corpus of 26 randomly collected

web pages of varying complexity and domain. ReDeCheck found

RLFs of all �ve common types. Well over half of the web pages,

including well-known ones such as Duolingo and Consumer Reports,

contained RLFs [18]. Since these pages were all in production use

and, we surmise, already subject to extensive testing, this result em-

phasises the importance and real-world relevance of the presented

tool, further underscoring the bene�ts of using ReDeCheck’s au-

tomated layout checkers. �is empirical study also revealed that

ReDeCheck outperformed several spotchecking approaches. For

instance, a manual spotcheck missed Duolingo’s layout failure, as

highlighted in Figure 1, illustrating the error-prone nature of cur-

rent industrial quality assurance practices for responsive pages.

Differing bounds for /NAV/UL/LI[1] - /NAV/UL/LI[2] (leftOf, topAlign, bottomAlign):

Original : 768 -> 1300

Modified : 766 -> 1300

Figure 3: �e original version of getbootstrap.com (top-le�),

the incrementally modi�ed version (top-right), and a snip-

pet of the report produced by ReDeCheck (bottom).

While the majority of the generated reports were true positives,

Table 1b reveals that ReDeCheck produced some FP and NOI re-

ports. For instance, when the tool incorrectly classi�ed three ele-

ments in one page as a “row”, it identi�ed alignment shi�s in these

elements as a wrapping failure when they were not. ReDeCheck re-

ported NOIs when it detected signi�cant changes in the DOM that

were not visible in the page’s layout. For example, the tool reported

a layout failure for elements that protruded invisibly out of their

container. While NOIs are not failures per-se, it is appropriate for

ReDeCheck to report them as they may manifest as layout failures

in future versions of the web page. Moreover, instead of studying

each of the generated reports, a developer using ReDeCheck could

visit every distinct viewport range highlighted by the tool. Since

Table 1b shows that the tool reported 137 di�erent viewport ranges

for the 33 distinct RLFs, a developer would only have to study, on av-

erage, 4.2 viewport widths to �nd each distinct RLF. Full evaluation

details and further RLF examples can be found in reference [18].

3.2 Case Studies

Regression checking. Figure 3 presents an example from one of

the web pages in our �rst empirical study, getbootstrap.com. In the

original version shown on the top-le�, the navigation links are

rendered in a vertical dropdown list at narrow viewport widths

before being displayed as a horizontal navigation bar at viewport

widths of 768 pixels and wider. However, following a small change

to the style rules of the web page, for a couple of viewport widths

(i.e., 766–767 pixels) the web page renders the navigation links in

a row rather than a column, defeating the point of implementing

a drop-down navigation list and producing a far less professional

aesthetic, as shown in the top-right screenshot of this �gure.

Since the failure is only observable at a couple of viewport widths,

it could lie dormant. For example, if developers only checked the

layout at 768 pixels — as many do since this width is advocated by

numerous RWD tools (e.g., [8, 21]) — they would be unaware that

the web page now contained this failure. �e report snippet shown

at the bo�om of this �gure inducates that ReDeCheck detects

this potential issue and alerts the developer to its presence. It also

provides useful diagnostic information, such as the viewport widths

at which the page’s layout has changed and the elements involved,

allowing the developer to ascertain if a failure is actually evident.

In the case of the web page in Figure 3, the textual report would

alert the developer to a change in the alignment constraint between

ISSTA 2017, July 10–14, 2017, California, USA Thomas A. Walsh, Gregory M. Kapfhammer, and Phil McMinn

LI[1] and LI[2] (i.e., the “Ge�ing Started” and “CSS” links in the

header): LI[1] is aligned to the le� of LI[2] and they are both top

and bo�om aligned for a di�erent range of viewport widths. Origi-

nally, the layout is evident for viewport widths of 768 pixels and

higher (denoted by “768 -> 1300”). Following the code modi�cation,

the layout instead begins at 766 pixels, motivating a developer to

change the page’s style rules to ensure that the navigation links are

correctly rendered in a single column as was intended, restoring a

professional look and feel to the web site. Since the current failure

reports include DOM references, and therefore may be hard to in-

terpret, further engineering is required to make them more useful

for developers, which we plan to undertake as part of future work.

Common failure detection. Figure 1(e) gives a failure report

screenshot of Duolingo produced by ReDeCheck during our sec-

ond evaluation of the tool. �e solid red box highlights the faulty

carousel as it protrudes outside of the viewport window (denoted

by a dashed red line), making the carousel di�cult to use as the

right-hand arrow is obscured from view. �is is an example of a

web page providing a good browsing experience on smartphones

and laptops, but neglecting devices with viewport widths in be-

tween, such as tablets. Violating a core principle of RWD — that a

page should provide a suitable experience regardless of the viewport

width at which it is viewed — this failure reduces functionality.

By detecting this issue and highlighting the o�ending elements

with coloured boxes, ReDeCheck clearly alerts the developer to

both the presence and nature of the problem. In this instance, the

developer would investigate the carousel’s style rules, modifying

them so that this element scales down its width in accordance with

the viewport, thereby ensuring the arrow is not obscured at the

highlighted width. Without ReDeCheck’s assistance a developer

would not only have to inspect the web page at one of the faulty

viewport widths, but also manually check the layout with su�cient

care so as to notice the failure — neither of which is guaranteed.

4 RELATED WORK

To the best of our knowledge, ReDeCheck is the �rst tool that

automatically checks a responsive web page; previous research

prototypes for web testing have targeted orthogonal problems. X-

Pert [16] and gwali [3] used the same concept of relative layout

to detect cross-browser inconsistencies (XBIs) and international-

ization presentation failures (IPFs), respectively. WebSee [10] and

Wraith [12] adopt a di�erent approach, using image compari-

son to report presentation failures to the user. Cornipickle [6]

supports user-de�ned layout constraints describing how the web

page should look, alerting the user if any of the constraints are not

met. Yet, none of these tools speci�cally address the challenges

associated with automated responsive web page checking. Unlike

ReDeCheck’s failure checking mode, they also require an oracle.

Developers also have access to many tools for testing respon-

sively designed web pages. Most modern browsers come with a

“responsive mode” that renders the current page at the developer’s

chosen resolution. Multi-screenshot tools (e.g., [8]) give developers

a simple overview of a page’s responsive behaviour by rendering

it at a series of common viewport widths, while others (e.g., [21])

provide the option to tune the display to a speci�c resolution, en-

abling �ne-grained checking. While these tools are useful, they still

require the developer to study the page at each resolution. Finally,

Galen [17] is a responsive layout testing framework with which

a developer describes the intended layout of a page, verifying it

at chosen viewport resolution(s). Unlike ReDeCheck, this tool

requires the developer to write tests with one or more oracles.

5 CONCLUSIONS AND FUTUREWORK

�e paper presents ReDeCheck, a tool that uses automatic lay-

out checking to improve the quality assurance process for respon-

sively designed web pages. Supporting two checking modes, Re-

DeCheck can detect both potential unintended regressions in lay-

out and a set of common layout failures o�en observed in responsive

pages. In addition to summarizing recent experimental studies of

ReDeCheck, the paper presents case studies that illustrate how

the automatically constructed failure reports help developers un-

derstand and repair layout problems. Platform independent and

compatible with a range of web browsers (e.g., Chrome, Firefox,

Safari, and PhantomJS), ReDeCheck is well documented and cur-

rently available on GitHub under an open-source license [20], thus

supporting use by practitioners and further study by researchers.

In future work, we plan to improve the report generation module

so that it outputs an interactive and easy-to-interpret report in

which the most “important” RLFs are presented �rst. We also intend

to enable ReDeCheck to handle dynamic pages that use JavaScript

and to check the layout of entire sites, rather than just individual

pages. We will also extend the regression checking mode so that it

allows developers to check a page’s layout in two di�erent browsers,

thereby enabling the detection of responsive XBIs. Finally, to ensure

that developers adopt and integrate our tool into their development

suites, we plan to create browser plugins for ReDeCheck.

REFERENCES
[1] Pew research center: Mobile fact sheet. h�p://www.pewinternet.org/fact-

sheet/mobile/.
[2] Selenium: Web browser automation h�p://www.seleniumhq.org/.
[3] A. Alameer, S. Mahajan, and W. G. Halfond. Detecting and localizing interna-

tionalization presentation failures in web applications. In Proc. of 9th ICST.
[4] D. Cyr, M. Head, and A. Ivanov. Design aesthetics leading to m-loyalty in mobile

commerce. Inf. Manag., 43(8), 2006.
[5] C. Dougherty. Google adds ‘mobile friendliness’ to its search criteria. �e New

York Times, 2015.
[6] S. Hallé, N. Bergeron, F. Guerin, G. L. Breton, and O. Beroual. Declarative layout

constraints for testing web applications. J. Log. Algebr. Meth. Program., 85, 2016.
[7] R. Hof. Google research: No mobile site = lost customers. Forbes, 2012.
[8] M. Kersley. Responsive design testing h�p://ma�kersley.com/responsive/.
[9] W. Li, M. J. Harrold, and C. Görg. Detecting user-visible failures in AJAX web

applications by analyzing users’ interaction behaviors. In Proc. of 25th ASE, 2010.
[10] S. Mahajan andW. G. Halfond. WebSee: A tool for debugging HTML presentation

failures. In Proc. of the 8th ICST, 2015.
[11] E. Marco�e. Responsive Web Design. A Book Apart, 2014.
[12] BBC News. Wraith h�ps://github.com/bbc-news/wraith/.
[13] ZURB Corporation. Foundation h�p://foundation.zurb.com/.
[14] M. O�o and J. �ornton. Bootstrap: Mobile-�rst and responsive front-end

framework h�p://getbootstrap.com/.
[15] J. Poushter. Smartphone ownership and Internet usage continues to climb in

emerging economies. In Pew Research Cener – Global A�itudes and Trends, 2016.
[16] S. Roy Choudhary, M. R. Prasad, and A. Orso. X-PERT: Accurate identi�cation

of cross-browser issues in web applications. In Proc. of the 35th ICSE, 2013.
[17] I. Shubin. Galen framework h�p://galenframework.com/.
[18] T. A. Walsh, G. M. Kap�ammer, and P. McMinn. Automated layout detection

for responsive web pages without an explicit oracle. In Proc. of ISSTA, 2017.
[19] T. A. Walsh, P. McMinn, and G. M. Kap�ammer. Automatic detection of potential

layout faults following changes to responsive web pages. In Proc. of 30th ASE.
[20] T. A. Walsh, P. McMinn, and G. M. Kap�ammer. ReDeCheck.

h�ps://github.com/redecheck/redecheck/.
[21] M. Wassermann. Viewport resizer h�p://lab.maltewassermann.com/viewport-

resizer/.

	Abstract
	1 Introduction
	2 The ReDeCheck Tool
	3 Applying The Tool
	3.1 Experimental Studies
	3.2 Case Studies

	4 Related Work
	5 Conclusions and Future Work
	References

