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A B S T R A C T

High resolution topographic surveys such as those provided by Structure-from-Motion (SfM) contain a wealth of
information that is not always exploited in the generation of Digital Elevation Models (DEMs). In particular,
several authors have related sub-metre scale topographic variability (or ‘surface roughness’) to sediment grain
size by deriving empirical relationships between the two. In fluvial applications, such relationships permit rapid
analysis of the spatial distribution of grain size over entire river reaches, providing improved data to drive three-
dimensional hydraulic models, allowing rapid geomorphic monitoring of sub-reach river restoration projects,
and enabling more robust characterisation of riverbed habitats. However, comparison of previously published
roughness-grain-size relationships shows substantial variability between field sites. Using a combination of over
300 laboratory and field-based SfM surveys, we demonstrate the influence of inherent survey error, irregularity
of natural gravels, particle shape, grain packing structure, sorting, and form roughness on roughness-grain-size
relationships. Roughness analysis from SfM datasets can accurately predict the diameter of smooth hemispheres,
though natural, irregular gravels result in a higher roughness value for a given diameter and different grain
shapes yield different relationships. A suite of empirical relationships is presented as a decision tree which
improves predictions of grain size. By accounting for differences in patch facies, large improvements in D50

prediction are possible. SfM is capable of providing accurate grain size estimates, although further refinement is
needed for poorly sorted gravel patches, for which c-axis percentiles are better predicted than b-axis percentiles.

1. Introduction

The interaction of river channel morphology and hydraulics at the
sediment-water interface influences both water and sediment fluxes
through fluvial systems as well as in-stream ecological processes by
providing habitat (Rice et al., 2010). As such, understanding and
manipulating these interactions are often the focus of river restoration
activities (Palmer et al., 2014). Bed material size represents one of the
smallest scales of topographic variability within river channels. Ana-
lyses of grain size variability can yield information on flow history,
sediment origins and patterns of previous transport and deposition
(e.g., Folk and Ward, 1957; Friedman, 1979; Bui et al., 1989).
Information on bed material size is essential for hydraulic modelling
(Smart et al., 2004) and is required to predict boundary shear stress and
sediment transport (e.g., Wilcock and Crowe, 2003) in morphodynamic
models (e.g., Langendoen et al., 2016). Bed material size is also an
influential determinant of the availability of suitable spawning habitat
for fish and habitat for macroinvertebrates (Armstrong et al., 2003;
Fryirs, 2015).

Gravel bed rivers exhibit marked reach-scale variability in grain size
distributions (e.g., Church and Kellerhals, 1978; Nelson et al., 2014),
which necessitates sampling over large areas to represent accurately the
heterogeneity of grain sizes (Church et al., 1998). Conventional and
well-established methods of grain size analysis (e.g., Wolman, 1954),
although relatively reliable (despite known biases; Hey and Thorne,
1983; Bunte and Abt, 2001), are limited in their ability to provide high
resolution information of grain size variability owing to the time-
consuming nature of physical sampling. Both Wolman pebble counts
and even more laborious areal sampling methods are destructive
techniques which limits the potential for repeated surveys and disrupts
the habitat they are intended to quantify. To address the clear need for
a fast, accurate and reproducible grain size measurement technique
(Woodget and Austrums, 2017), recent studies have developed new
methods of obtaining grain size information from remotely sensed data.

Summary values of local grain size (e.g., D84 or D50, the size at
which 84% or 50% of measured b-axes are finer) have been estimated
from photographs (so-called ‘photosieving’ methods) using semivario-
grams of image texture (e.g., Carbonneau et al., 2004; Verdú et al.,
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2005), the autocorrelation of image intensity (e.g., Rubin, 2004;
Barnard et al., 2007; Warrick et al., 2009) or other statistical properties
of images (see Buscombe and Masselink, 2009; Buscombe and Rubin,
2012). Others have sought to identify and measure individual grains
within an image (e.g., Graham et al., 2005; Detert and Weitbrecht,
2012), allowing the full grain size distribution to be estimated. While
photosieving methods focus on the planimetric dimensions of grains,
parallel developments have utilized the increased availability of high
resolution Digital Elevation Models (DEMs) and other topographic data
products to estimate the vertical scale of topographic variability
attributable to grain size. Survey methods such as Airborne Laser
Scanning (ALS) and Terrestrial Laser Scanning (TLS) can provide
decimetre and millimetre scale 3D survey point accuracies, respectively
(Gallay, 2013; Smith, 2015). In particular, TLS has been used at scales
from individual grains and small patches of 100–101 m2 (e.g., Hodge
et al., 2009a), to fluvial landforms of 102–103 m2 (e.g., Leyland et al.,
2015), and even to reaches of 106–107 m2 (e.g., Williams et al., 2014).
More recently, Structure-from-Motion with Multi-View-Stereo (SfM-
MVS) methods have arisen as a flexible, low-cost alternative to TLS
(Smith et al., 2015; Eltner et al., 2016; Carrivick et al., 2016) and have
gained considerable traction in fluvial applications (e.g., Javernick
et al., 2014; Smith et al., 2015; Woodget et al., 2015; Marteau et al.,
2016).

The focus of many fluvial geomorphic surveys is the broad-scale
topography and quantification of surface changes (e.g., Milan et al.,
2011). However, the high spatial resolution of TLS and SfM-MVS data
has enabled sub-grid scale surface roughness to be investigated as a
proxy for grain size (i.e., topographic scales smaller than the resolution
of Digital Elevation Models which are typically decimetre-metre scale in
fluvial studies) (Smith, 2014). The development of an empirical
relationship between surface roughness and grain size essentially
reverses the established practice of using measured grain size percen-
tiles to estimate roughness height for use in flow resistance equations
(e.g., Strickler, 1923; Clifford et al., 1992; Wilcock, 1996; Powell,
2014). These relationships, however, have been confounded by the
range of particle sizes, shapes and packing-structures (e.g., imbrication)
observed in natural alluvial channels (Furbish, 1987; Powell, 2014;
Vázquez-Tarrío et al., 2017). Moreover, the presence of bedforms and
multiple scales of topographic variability limits the usefulness of
particle axes measurements to estimate flow resistance (Robert, 1990;
Gomez, 1993; Smart et al., 2004). To some extent, the same confound-
ing factors will hinder attempts to estimate grain size from surface
roughness.

The complex geometry of fluvially-formed surfaces cannot be
described fully by a finite number of parameters (Smith et al., 2011)
and as such no single property or parameter can be defined uniquely as
surface roughness (Smith, 2014). Nevertheless, a single roughness
metric has dominated the geomorphological literature for several years:
the standard deviation of elevations (σz) (e.g., Grohmann et al., 2011;
Brasington et al., 2012). Studies that relate sub-grid surface roughness
to grain size (typically D50) also preferentially use σz, often detrended at
the grid-scale (Smart et al., 2004; Aberle and Nikora, 2006; Hodge
et al., 2009b; Brasington et al., 2012; Schneider et al., 2015; Westoby
et al., 2015; Bertin and Friedrich, 2016) resulting in a single roughness
value. However, estimates of grain size from surface roughness have not
been subject to the same rigorous evaluation as photosieving ap-
proaches (e.g., Graham et al., 2010). Fig. 1A summarises the scatter
observed across all these previously published studies; with all data
combined an R2 of 0.49 is observed (n = 97; p < 0.001) though the
95% confidence intervals of the gradient (from 1.19 to 1.81) are
sufficiently wide to preclude accurate prediction across a range of
facies types. Table 1 provides details of each of these studies; while
fluvial gravels dominate the literature, glacial moraines have also been
sampled (e.g., Westoby et al., 2015) reflecting the fact that grain size
classification is of benefit in a wide range of process environments
beyond fluvial gravels. TLS data have dominated such studies, though

the most recent studies have used SfM. Direct comparison of these
results is complicated further by the different grain size measurement
methods employed (which may require correction factors; Bunte and
Abt, 2001; Graham et al., 2012), the different patch sizes (and hence
different detrending scales) and the differences in methods used to
extract roughness data.

At individual study sites, linear relationships between D50 and σz are
observed (typically R2 ~0.9; Table 1). Brasington et al. (2012) observed
a strong linear relationship between σz and D50 for cobble-sized
material at the River Feshie in Scotland (R2 = 0.92) that improved
(R2 = 0.95) when additional data from Wales (beach sediment) and
New Zealand (braided river) were added, though the parameters of the
regression equation were different (Table 1). Conversely, on poorly
sorted glacial sediment, Westoby et al. (2015) observed no significant
relationship between σz and D50.

Table 1 also describes studies that used two alternative roughness
metrics for grain size prediction. Heritage and Milan (2009) avoided
detrending patches over large scales by summarising the localised
standard deviation of elevations within a moving window, equivalent in
size to the largest clast (0.15 m in this case) and multiplied the result by
two to generate the effective roughness equivalent (a convention
maintained herein). Comparison of percentiles of the resulting rough-
ness metric (given the notation 2σloc herein) with grain size percentiles
yielded strong relationships in eight individual patches. To facilitate
comparison with other studies, the median value of 2σloc for each patch
has been plotted in Fig. 1B and a relationship between that and D50

summarised in Table 1. Baewert et al. (2014) used a similar approach
(on c-axis data) with a smaller window size (~50 mm) while Vázquez-
Tarrío et al. (2017) used a grid size of 1 m. Comparison of these D50-
2σloc relations shows that they plot as expected with larger window
sizes yielding higher roughness values; indeed Baewert et al. (2014)
demonstrated this directly. Finally, Woodget et al. (2016) and Vázquez-
Tarrío et al. (2017) outlined a third roughness metric (rh) which
summarises the deviation from a fitted plane of all points within a
given radius (the former study used the mean value within 0.2 m, the
latter study used the median value within 0.5 m). In a comparison of all
three roughness metrics, Vázquez-Tarrío et al. (2017) found rh to
provide the best prediction of D50. While Woodget et al. (2015) plotted
rh against D84 (for which there was the strongest linear relationship)
rather than D50, this relationship remains very different from the rh-D84

relationship reported in Vázquez-Tarrío et al. (2017) (though note the
calculation differences reported above). Although there are some
differences between roughness metrics, they are fundamentally very
similar; each presents a summary of local variability in elevations while
filtering out larger wavelength topographic variability. For better
comparison with the existing literature, herein we focus on σz as the
main roughness metric used for grain size prediction; the other metrics
are compared briefly for field patches in Section 3.7.

Comparison of the relationships in Fig. 1A with that of Westoby
et al. (2015), obtained over sediment of very different character,
highlights that properties of sediment facies other than grain size
influence surface roughness (see also the comparison in Fig. 15 of
Vázquez-Tarrío et al., 2017). It is not surprising, therefore, that each
study represented in Fig. 1 obtained a different empirical relationship.
At a minimum, site-specific calibration of any σz-D50 relationship is
required. However, a more generalizable approach would be to identify
the individual factors that have caused these differences and present a
suite of σz-D50 relationships, each one of which is appropriate for a
different fluvial sediment facies. Such factors include:

(1) Survey error: low precision survey observations would increase σz
and the sources of such error in SfM surveys (e.g., image network
geometry, tie point quality, control measurement; see James et al.,
2017) are very different from those in TLS surveys (e.g., registration
errors, beam divergence and mixed pixels, range errors; see Smith,
2015);
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(2) Particle irregularity: natural deviations of gravels from abstract
shapes (e.g., spheres, prolates) would increase σz;

(3) Particle shape: sphere and prolate-shaped particles normally pro-
trude above the bed more in comparison to oblates with the same a-
and b- axes measurements;

(4) Grain packing structure: imbrication would affect grain orientation
and protrusion (Buffington and Montgomery, 1999) and influence
σz as particles do not lie flat, but are layered in the direction of the
flow with one end elevated above the general surface level;

(5) Sorting: a well-sorted patch would exhibit a smaller σz compared to
an otherwise identical poorly sorted patch as grains at the upper
range of grain sizes would increase σz (Hodge et al., 2009a);

(6) Bedforms and form roughness: grain scale topographic variation
may be superimposed upon longer scale topographic variability
that is not filtered out by linear detrending (particularly at larger
grid sizes) which would inflate σz for a given grain size.

The aim of this study is to advance the use of using surface
roughness as a proxy for grain size in high resolution topographic
surveys by disentangling the confounding effects of survey error,
particle shape, sorting, grain packing structure, and bedforms on
empirical relationships. Through a mixture of> 300 laboratory and
field SfM-MVS surveys, we: (i) isolate the effect of each influencing
factor; (ii) identify limits of application for σz-D50 relationships; and
(iii) produce a suite of empirical σz-D50 relationships for use with
distinct fluvial sedimentary facies.

2. Methods and study site

A combination of laboratory and field-based SfM-MVS and grain
size surveys were undertaken. Laboratory surveys were performed on
artificial spheres and grains sampled from the field that had been
prepared deliberately to isolate the effects listed above. Field surveys
were then undertaken to investigate the influence of bedforms on the
relationships observed.

2.1. Study sites

Field surveys were undertaken at two contrasting locations (Fig. 2).
The River Cover is a moderate gradient river (slope = 0.025) that runs
through the Coverdale catchment in the Yorkshire Dales. The River
Cover is a tributary of the River Ure which eventually flows into the
Yorkshire Ouse. The study reach was c. 900 m long and c. 1.5 km from
the headwaters with a channel width of 5–10 m and an upstream

catchment area of approximately 15 km2. The reach is characterised by
a combination of gentle meanders with associated point bars and
historically straightened sections with a gravel bed, where sediment
sizes range from fine gravels (2 mm diameter) to boulders (> 256 mm
diameter). The River Ure study area is 15 km downstream of the River
Cover study site, and 2 km from the confluence of the Cover and Ure
rivers. The River Ure study area has a larger upstream catchment area
(~500 km2), wider channel (20–30 m) and lower channel gradient
(0.003). The study area was focused on a large gravel bar, with an area
of 5000 m2. The bar was characterised by a less diverse size range of
sediments than the River Cover, with cobbles (< 256 mm) representing
the largest sediments found. The sediments were well sorted towards
the vegetated field, and less well sorted adjacent to the water edge.

2.2. Sediment sampling

Field survey patches were established on exposed gravel bars
throughout the study reaches. Thirty-one patches of 1 m2 were chosen.
Immediately following SfM-MVS surveys, a manual areal sample of the
a-, b- and c-axes of all pebbles represented on the surface of the patch
was conducted. Grain b-axis sizes ranged from 9–300 mm (aside from a
single grain at 5 mm) and all particles were rounded. To provide grains
for laboratory surveys, a further 2000 rounded, fluvial particles were
collected randomly from a 150 m2 area and each axis measured (with b-
axis sizes from 9–111 mm). Wentworth's (1922) size classification
based on particle b-axes was used to separate grains into size categories.
All sediment was fluvial in origin. Pebbles were further divided into
shape categories based on the classification of Sneed and Folk (1958)
which uses three ratios of particle a- b- and c–axes to classify shape into
three categories: spheres, oblates (disc-like) and prolates (rod-like).
These ratios measure a particle's relative equancy (c/a), elongation (b/
a) and ‘disc versus rod-like aspect’ (a−b/a−c).

2.3. Structure-from-Motion with Multi-View-Stereo (SfM-MVS)
photogrammetric surveys

SfM-MVS surveys followed standard workflows, which are well-
described in the geomorphological literature (e.g., Micheletti et al.,
2015; Smith et al., 2015). The same survey methods were used in both
field and laboratory settings. Each gravel patch was surrounded by a
number of Ground Control Points (GCPs). These consisted of either
yellow survey targets or crosshairs on bright red backgrounds. Each
target was surveyed using a reflectorless total station (Leica TS15) in a
local coordinate system. For the laboratory patches, all surveys were

Fig. 1. (A) Variability of D50 with σz, compiling data from previous studies (Table 1) with linear relationship and 95% confidence intervals shown; (B) Variability of D50 (and D84) with
other roughness metrics reported in the literature. Where values were not stated in the text or supplementary information, values were obtained through digitizing figures.
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undertaken within an immobile array of GCPs that were surveyed prior
to the photogrammetric surveys. The 3D co-ordinates of each GCP were
recorded as an average over 10 distance measurements, with a 3D
accuracy of 0.003 m.

An average of 40 ground-based hand-held oblique photos were
taken for laboratory patches and an average of 25 ground-based photos
were taken for field patches. The survey range was typically ~2 m. The
same camera was used as much as possible; however, changes in
equipment were required due to camera failure. The majority of surveys
were completed using a Canon PowerShot ISO200 (10 MP, 6 mm focal
length). Several patches were surveyed using both FujiFilm FinePix
J350 (16 MP, 5 mm focal length) and AV200 (14 MP, 5.7 mm focal
length) models. Both cameras malfunctioned; while no direct compar-
isons were made between cameras on the same patch, previous studies
suggest this would have minimal influence on the results (Thoeni et al.,
2014; Eltner and Schneider, 2015; Micheletti et al., 2015; Prosdocimi
et al., 2015; Mosbrucker et al., 2017).

Photogrammetric surveys were processed using Agisoft PhotoScan
Professional 1.2.6. Following bundle adjustment, three GCPs were
located in the imagery for lab patches and five GCPs for field patches
and the point cloud was scaled and oriented. Georeferencing errors
were typically 0.79 mm for lab patches and 1.21 mm for field patches.
MVS image matching algorithms were performed to produce final dense
point clouds which were cropped to the measured gravels. For
laboratory patches, this method resulted in edge effects as the sides
of peripheral particles (i.e., particles located at the edge of the survey
area) were visible in the point cloud. Thus, to better reproduce field
conditions, further cropping was undertaken to remove peripheral
pebbles. Using this method, sub-millimetre data resolution was ob-
tained on all patches. All patches were linearly detrended prior to
calculation of σz, yielding a single roughness value for each patch (as

per Hodge et al. (2009b), Brasington et al. (2012), Westoby et al.
(2015) and others).The median value was used to calculate rh as per
Vázquez-Tarrío et al. (2017).

2.4. Experimental design

The overall experimental design is outlined in Fig. 2. The patch
surveys were undertaken on a range of grain sizes for different types of
patch to isolate the six factors under investigation. Within the experi-
mental design, each of the laboratory patches were surveyed three
times to provide replication, and the average of these three values was
used in linear regressions.

2.4.1. Factor 1: precision limitations of SfM-MVS
While the majority of studies in Table 1 used TLS data to evaluate

σz, SfM-MVS is increasingly being applied as an alternative to TLS (e.g.,
Marteau et al., 2016) and was thus used in this study. In any case, given
the small magnitude of errors for both techniques at this scale (typically
~2 mm; Smith and Vericat, 2015), the specific survey method is
unlikely to have a large effect. Nevertheless, the performance of SfM-
MVS was evaluated using regular arrays of uniform spheres of known
diameter. The standard deviation of points distributed uniformly over a
perfect hemisphere can be calculated theoretically because the surface
area of a sphere is constant at any given elevation. With a large number
of equally spaced points over that surface, σz will equal 1/√12 the
particle radius. Thus, a linear relationship between hemisphere dia-
meter D and σz is expected such that:

D σ σ= 2 12 = 6.928z z (1)

For comparison with Eq. (1), 11 sets of polystyrene balls of
diameters between 0.02 m and 0.12 m were painted to represent

Fig. 2. Summary of experimental design. Six factors influencing σz were investigated. The number in upper-left of each patch image indicates the number of SfM surveys conducted. Field
site locations are also indicated.
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natural sediment colours (Fig. 2). Balls of the same diameter were
arranged into a tightly packed patch in a levelled tray. Surveys were
evaluated both before (‘Full hemispheres’) and after cropping the
peripheral particles (as detailed in Section 2.2), as the non-cropped
surveys provide a better comparison with theoretical calculations,
while cropped surveys better simulate field conditions.

2.4.2. Factor 2: irregularity of natural gravel particles
To assess the effect of naturally occurring particle roughness, the

collected particles classified as spherical in shape were used to
manually create patches of different sizes. The σz-D50 relationship
was then compared with the patches of smooth hemispheres.

2.4.3. Factor 3: particle shape effects
Patches based on each particle shape (sphere/oblate/prolate) were

made for each particle size class for which a sufficient number of
particles were available to create a patch. Relationships between σz and
D50 for oblates and prolates were compared with the relationship for
spheres. Ratios of c:b axes were in the range of 0.53–1.0 (spheres),
0.18–0.69 (oblates), and 0.30–1.0 (prolates).

2.4.4. Factor 4: imbrication effects
Imbrication is characterised by particles leaning on each other on a

contact surface, with particles consistently dipping upstream, typically
at an angle of approximately 36° (Laronne and Carson, 1976), although
a range of dip angles has been observed in fluvial sediments. This
analysis was undertaken on oblate- and prolate-shaped particles only as
spherical particles, by definition, cannot be imbricated. Patches were
arranged per size class, and pebbles were manipulated to re-create signs
of imbrication on a row by row basis, with measured dip angles
between 36° and 38°. Regression equations for imbricated oblates and
prolates were compared with their non-imbricated counterparts.

2.4.5. Factor 5: sorting effects
Sorting was highlighted by Brasington et al. (2012) as a key issue

when using high resolution topographic data to derive grain size
estimates. Many upland rivers are of glacial origin (Howard and
Macklin, 2003), resulting in a large range of sizes, with the largest
boulders being well above entrainment thresholds for their associated
channels. Although laboratory analysis was undertaken on relatively
small particles (with the largest particle having a b-axis measurement of
136 mm), the effect of sorting was evaluated. The sphere patches used
in Factor (2) were well sorted due to their separation into size classes. A
further 20 laboratory patches were created to evaluate the effect of
sorting with particles of different sizes mixed throughout the patch (i.e.,
no clustering of small and large particles). To signify poor (-moderately
poor) sorting, the inclusive graphic standard deviation, σI (Folk, 1968)
of b-axes of each patch had to be> 0.8 (range 0.8–1.1).

Field patches consisted on average of 53% oblate, 24% prolate and
23% sphere shaped particles. Particles measured ranged in b-axis size
from 5–311 mm. The within patch range in b-axis size varied from a
minimum of 74 mm to a maximum of 288 mm. Visual assessment of
each patch revealed that patches were not imbricated, despite being of
fluvial origin. Inclusive graphic standard deviation was again calculated
per patch, ranging from 0.698–0.983. To test the effect of sorting on
these patches, the data set was split in half, consisting of 16 moderately
well-sorted patches (σI < 0.76), and 15 moderately sorted patches
(σI > 0.76).

2.4.6. Factor 6: form roughness
Unlike the patches created manually in the laboratory, naturally

occurring patches were assumed not to be on an underlying flat surface.
To assess the effect of form roughness on σz, three methods of removing
form roughness were compared to σz values calculated from a linearly
detrended surface. CloudCompare (Girardeau-Montaut, 2016) was used
to detrend the patch surface using:

(i) a 2.5D quadric curved surface fitted to the point cloud;
(ii) a coarse DEM at 100 mm grid size; and
(iii) a coarse DEM at 75 mm grid size.

For (ii) and (iii), care was taken not to reduce the resolution so
much that genuine grain-scale variability was removed during the
process. In each case, the fitted surface was subtracted from the original
point cloud and σz recalculated. Finally, alternative roughness metrics
(2σloc and rh) were computed for field patches as described previously
using a 0.2 m kernel/window size to reflect the maximum grain size.

2.5. Statistical analysis

Linear regressions were performed in Stata to identify σz-D50

relationships and to provide comparison with the theoretical linear
relationship of Eq. (1). Normality of residuals was evaluated using
Shapiro-Wilk and skewness-kurtosis tests (D'Agostino et al., 1990);
heteroscedasticity was evaluated using the tests of Breusch and Pagan
(1979) and Cook and Weisberg (1983). The relationships for oblate and
imbricated oblate particles showed non-normality of residuals; how-
ever, these were only minor and in the case of oblates arises from a
single data point. For clear comparison with other relationships, linear
regressions were retained for these patches. The relationship for the
oblate patch was also recalculated without the outlier.

3. Results

3.1. Precision limitations of SfM-MVS

A direct comparison of the σz-D50 relationship for ‘Full hemispheres’
with Eq. (1) showed a very close correspondence (Fig. 3). The gradient
of the relationship was slightly lower, but overall differences are
negligible with a significant relationship observed (R2 = 0.995;
p < 0.001) (Table 2). However, when peripheral hemispheres were
cropped (i.e., better reflecting a field situation as no particle sides are
visible in the point cloud), systematically lower σz values were observed
(Fig. 3), though there was a small increase in the R2 (0.997,
p < 0.001). For comparison with field conditions, the data sets
presented in subsequent sections have had the peripheral particles
cropped.

3.2. Irregularity of natural gravel particles

Gravels are more irregular in shape than the hemispheres used

Fig. 3. Measured σz-D50 relationships for smooth hemispheres (full and cropped models)
and spherical gravels compared with the theoretical relationship of Eq. (1). In this and
subsequent figures, each point represents a plot and range bars indicate± 1 standard
deviation. Linear models and R2 values are indicated on the figure and compared in
Table 2.

E. Pearson et al. Geomorphology 293 (2017) 143–155

148



above (Fig. 2 and Fig. 3), resulting in a higher σz for a given D50.
Nevertheless, a strong relationship is observed (R2 = 0.974;
p < 0.001) with no intercept term and a gradient that is similar to
Eq. (1).

3.3. Particle shape effects

Patches of prolate-shaped (‘rod-like’) gravels behaved similar to
spherical gravels with a slightly higher σz for a given D50 (Fig. 4). A
similarly significant relationship was observed (R2 = 0.988;
p < 0.001). However, oblate-shaped (‘disc-like’) gravels exhibited a
much lower σz and considerable scatter in the σz-D50 relationship for
larger grains (though with R2 = 0.776; p < 0.001). This result is a
consequence of oblate-shaped gravels having minimal vertical expres-
sion. Removing the clear outlier for oblates in Fig. 4 improved the
relationship (R2 = 0.936; p < 0.001) and lowered the gradient term
(8.47).

3.4. Imbrication effects

Imbricated prolate patches resulted in a higher σz than predicted
theoretically for hemispheres (Eq. (1)) and for otherwise identical non-
imbricated prolate patches (Fig. 5). However, overall, there was little
difference observed between imbricated and non-imbricated prolates,
and a strongly significant relationship was again observed (R2 = 0.949;
p < 0.001). Imbrication exhibited a larger effect on oblates resulting
in an inflation of the σz as the now inclined disc-shaped particles have
greater expression of the b-axis in the vertical dimension (and indeed a

greater vertical expression in general). Consequently, the model fit
improved (R2 = 0.966; p < 0.001).

3.5. Sorting effects

When compared with well-sorted spherical gravels, poorly sorted
laboratory patches exhibited a much larger σz for any given D50

(Fig. 6A) and no σz-D50 relationship was observed. This difference
results from small particles being obscured by surrounding larger
particles and are thus not represented in the point cloud such that
roughness no longer reflects D50. The same situation is observed in field
patches (Fig. 6B), though σz values are even higher than poorly sorted
laboratory patches, reflecting the additional factor of form roughness
(see Section 3.6 below). For moderately well-sorted field patches, a
significant linear relationship was observed, though with a lower R2

than all well-sorted patches described above (R2 = 0.710; p < 0.001).
Different grain size percentiles (D50 and D84) and particle axes (b-

and c-axes), were examined for relationships among the patches
exhibiting a range of grain sizes both in the laboratory and in the field.
Table 3 identifies significant relationships between σz and the 84th
percentile of c-axis measurements for all such patches (Fig. 7). This
relationship is most notable for the poorly-sorted laboratory patches for
which all other grain size metrics showed no significant relationship;
however, two outliers account for the poor relationship with D84 in this
case (when removed R2 = 0.63, p < 0.001).

Table 2
Linear regression models between D50 and σz for different patch types.

Data set n Equation R2 P-value

Theoretical D50 = 6.928σz – –
Full hemispheres 11 D50 = 6.44σz + 0.005 0.995 < 0.001
Hemispheres 10 D50 = 8.29σz + 0.002 0.997 < 0.001
Spherical gravels 11 D50 = 6.42σz 0.974 < 0.001
Prolates 11 D50 = 5.85σz − 0.001 0.988 < 0.001
Oblates 13 D50 = 9.63σz 0.776 < 0.001
Imbricated prolates 6 D50 = 6.51σz − 0.007 0.949 < 0.001
Imbricated oblates 8 D50 = 8.94σz − 0.005 0.966 < 0.001
Poorly sorted spheres (Lab) 20 D50 = 3.11σz − 0.011 0.012 0.132
Poorly sorted (Field) 15 D50 = –0.12σz + 0.049 0.027 0.559
Moderately well sorted

(Field)
16 D50 = 0.77σz + 0.026 0.710 < 0.001

As above, 2.5D quadric
detrended

16 D50 = 0.82σz + 0.026 0.701 < 0.001

100 mm DEM detrended 16 D50 = 1.31σz + 0.020 −0.742 < 0.001
75 mm DEM detrended 16 D50 = 1.61σz + 0.018 0.736 < 0.001

Fig. 4. The effect of particle shape on measured σz-D50 relationships.

Fig. 5. The effect of imbrication on measured σz-D50 relationships.

Table 3
Linear regression models between grain size percentiles for both b- and c-axes and σz for
patches with a range of sorting both in the laboratory and the field.

Grain size value n Equation R2 P-value

Poorly sorted (Lab)
b-Axis D50 20 D50 = 3.11σz − 0.011 0.012 0.132
b-Axis D84 20 D84 = 1.08σz + 0.058 0.098 0.178
c-Axis D50 20 D50 = 1.85σz − 0.003 0.098 0.178
c-Axis D84 20 D84 = 2.51σz − 0.017 0.692 < 0.001

Poorly sorted (Field)
b-Axis D50 15 D50 = –0.12σz + 0.049 0.027 0.559
b-Axis D84 15 D84 = 0.38σz + 0.072 0.137 0.174
c-Axis D50 15 D50 = –0.02σz + 0.025 0.004 0.831
c-Axis D84 15 D84 = 0.37σz − 0.034 0.299 0.035

Moderately well sorted (Field)
b-Axis D50 16 D50 = 0.77σz + 0.026 0.710 < 0.001
b-Axis D84 16 D84 = 1.54σz + 0.037 0.788 < 0.001
c-Axis D50 16 D50 = 0.34σz + 0.017 0.615 < 0.001
c-Axis D84 16 D84 = 0.67σz + 0.026 0.683 < 0.001
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3.6. Form roughness

Fig. 6 shows σz and D50 values for field patches that had only been
detrended linearly (i.e., within-patch form roughness had not been
removed). There was no overlap in σz between the laboratory and field
patches with field patches having much larger σz values. This difference
suggests that larger scale undulations at the patch scale (1 m2) were
inflating σz, as the patches otherwise were identical. When a 2.5D
quadric curved surface was fitted, the relationship between D50 and σz
did not improve (R2 = 0.701; p < 0.001) (Fig. 8A). However, minor
improvements were noticed when a coarse DEM was subtracted from
the point cloud (Fig. 8B). DEMs with a resolution of 100 mm and
75 mm resulted in an R2 of 0.742 and 0.736, respectively. The σz values
were reduced to a level similar to (but still slightly higher than) the
poorly sorted laboratory patches, suggesting that the higher σz values of
field patches were associated with form roughness.

For the poorly sorted field patches, no relationships between D50

and σz were observed for any type of detrending. While the quadric
detrending further improved the relationship between σz and the 84th
percentile of c-axis (R2 = 0.351; p < 0.020), no improvement was
observed for the DEM-detrending methods.

3.7. Alternative roughness metrics

For comparison with previous studies relating roughness and grain
size, Table 4 shows the performance of 2σloc and rh on the field patches
(Fig. 9). Very few differences were observed and the three roughness

metrics were highly correlated (Spearman's rs > 0.87 for each pair of
metrics).

4. Discussion

Extracting grain size data from surface roughness metrics is
increasingly popular in geomorphology as high resolution survey
techniques have become more readily available. A number of empirical
relationships have emerged in the literature, but there has been little
synthesis of these findings and no attempt has been made to explain the
very different relationships observed (Fig. 1; Table 1). This study
demonstrated that while grain size information can be obtained
accurately from SfM data (compare the ‘Full Hemispheres’ relationship
with the theoretical line in Fig. 3), sediment facies type has a

Fig. 6. The effect of sorting on measured σz-D50 relationships for both laboratory and field-based patches.

Fig. 7. Relationships between σz and the 84th percentile of c-axis measurements for patches exhibiting a range of sorting, both in the laboratory and the field.

Table 4
Comparison of roughness metrics used to predict D50 for field patches.

Metric n Equation R2 P-value

Poorly sorted (Field)
σz 15 D50 = –0.12σz + 0.049 0.027 0.559
2σloc 15 D50 = –0.15σz + 0.052 0.031 0.530
rh 15 D50 = –0.29σz + 0.050 0.020 0.612

Moderately well-sorted (Field)
σz 16 D50 = 0.77σz + 0.026 0.710 < 0.001
2σloc 16 D50 = 0.84σz + 0.019 0.686 < 0.001
rh 16 D50 = 1.85σz + 0.022 0.685 < 0.001
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pronounced effect on the results obtained. This finding builds on
previous work that indicated similar differences for a much smaller
number of gravel patches (e.g., Heritage and Milan, 2009). The
approach is most challenging with oblate-shaped gravels and on poorly
sorted sediments, where c-axis percentiles are better represented by
roughness (Fig. 7). For the first time, we have isolated several factors
influencing σz-D50 relationships to provide plausible explanations for
variability in the existing literature.

Differences between theoretical and observed σz-D50 relationships
are not simply a function of survey method (Fig. 3); when standardised
hemispherical shapes were surveyed using SfM-MVS, only a very minor
deviation from theoretical values was observed. Inherent SfM precision
is not a limiting factor and any inaccuracies encountered would also
occur when using TLS data. The differences between the observed
relationships for different facies are much larger than the precision
limitations of either method at the plot scale. This finding is encoura-
ging and demonstrates that the use of surface roughness as a proxy for
grain size is technically possible. However, the lower σz observed for
the hemispheres with peripheral particles removed indicates that high

resolution surveys do not fully capture the interstitial surfaces. This
inherent underestimation of σz may have been obscured from previous
studies, as Fig. 3 shows that it is counterbalanced by the inflation of σz
caused by particle irregularities.

Particle shape affected σz primarily for oblate-shaped gravels, which
displayed lower σz for a given D50 compared to both the theoretical
calculation and other shapes. Oblate-shaped particles are relatively flat,
plate-like surfaces that exhibit a reduced vertical expression relative to
spheres or prolate-shaped particles with the same b-axis length. This
result adds support to previous suggestions that roughness is more
closely related to the c-axis than the b-axis, as fluvially transported
grains typically come to rest with their c-axis orientated vertically
(Gomez, 1993; Heritage and Milan, 2009). However, despite this effect,
particle shape is not the major influence on σz-D50 relationships, as
Brasington et al. (2012) examined a range of shapes including platy
fluvial gravels and rounded beach sediment.

Imbrication caused an increase in σz for oblate-shaped gravels
because the individual particles support each other and thus reach
higher local elevations for a given grain size. Such an increase was not
observed for prolates, as the increased elevation at the top was balanced
by the obscuring of the lower end of the particle and thus reducing the
topographic variability within the patch. None of the previous studies
explicitly mentioned that their patches were imbricated. Although with
all but Westoby et al. (2015) examining water-worked sediments, some
degree of imbrication would have been likely. All σz values observed in
the laboratory patches were smaller than the values obtained from a
literature meta-analysis (Fig. 10). This higher σz indicates that other
factors such as particle sorting and form roughness are inflating the σz
of previously reported field studies.

All the previous studies showed higher σz for a given D50 than the
laboratory-based analysis and the theoretical calculation (Fig. 10). The
data presented here identifies particle sorting as the major problem
when using surface roughness to estimate grain size. Poor sorting of
gravels caused a large increase in σz for a given D50 as a result of a much
wider range of grain sizes and a subsequent breakdown in the relation-
ship for poorly sorted gravels. In this case, smaller particles lower the
D50 of the patch but are not proportionally represented in the point
cloud. While no fines or sand were included in this study, the same issue
of poor representation in point clouds is even more pronounced where
they are present. The presence of large grains within a patch strongly

Fig. 8. The effect of form roughness on measured σz-D50 relationships for moderately well sorted field patches.

Fig. 9. Comparison of three roughness metrics for grain size prediction on moderately
well sorted field patches.
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affects σz and suggests a consistent methodological bias towards larger
particles in poorly sorted facies. Larger particles take up a larger surface
area within the patch and hence comprise a higher proportion of the
points in the point cloud. While several studies report strong relation-
ships between roughness and higher grain percentiles, specifically D84

(Aberle and Nikora, 2006; Baewert et al., 2014; Schneider et al., 2015;
Woodget et al., 2016; Vázquez-Tarrío et al., 2017), in this study
roughness metrics could not predict D84 in poorly sorted patches.
However, more significant relationships were obtained when particle c-
axis data (c-axis D84) were predicted in poorly sorted oblate field
patches.

Particle sorting also had similar and pronounced effects on the
relationship between σz and D50 in the literature. Brasington et al.
(2012) examined relatively well-sorted patches compared to the work
of Westoby et al. (2015) on glacial moraine that was poorly sorted. Of
interest is the significant σz-D50 relationship observed by Schneider
et al. (2015) in glacial streams (R2 = 0.91; taking only directly
measured values) which was surprising because glacial material is
often very poorly sorted despite having some fluvial influence
(Carrivick et al., 2013). The line-by-number grain size sampling method
used by Schneider et al. (2015) may explain this difference, as this
sampling method may lead to bias towards larger grain sizes (Bunte and
Abt, 2001). In the one location where Schneider et al. (2015) used grid-
by-number sediment sampling, they observed a lower D50. Likewise,
Smart et al. (2004) observed very different relationships when different
grain sampling methods were used (Table 1). We undertook areal
sampling of all surface particles by hand which yields very different
results from the Wolman method (Bunte and Abt, 2001) but does
provide an accurate representation of grains present on the surface and
was best-suited for comparison with laboratory patches. The closest
comparisons are the work of Westoby et al. (2015) and Bertin and
Friedrich (2016) which used photo-sieving methods to represent all
grains in the patches. Certainly, grain size sampling technique requires
some standardisation, as different methods yield different D50 values
(see Graham et al., 2012).

4.1. Limitations and further work

The presence of methodological problems in sediment reporting
must be addressed before standardised methods can be adopted. For
example, naturally occurring patches are not one particle deep; there-
fore the degree of burial would also have an effect on the σz of a patch
and needs further consideration. Likewise, some particles may be
buried in the presence of sand and fines. Analysis of surface roughness
variability alongside hiding functions may yield further insight. Second,
interactions between the different factors examined herein also require

further analysis. Third, the effect of SfM survey range requires
examination. Data from UAVs (e.g., Woodget et al., 2016; Vázquez-
Tarrío et al., 2017) will exhibit lower precision and resolution (Smith
and Vericat, 2015) than that presented here. Differences seen in Fig. 1
will arise from a combination of facies variability and survey factors
(e.g., point precision and density, image blur, georeferencing errors).
Precision limitations will set a minimum grain size for which these
methods can be applied reliably; for ground-based surveys this should
encompass the full size range of gravels. Fourth, where the b-axis is not
orientated vertically, a roughness-only approach would be challenging.
The most robust method of grain size estimation might be to combine a
surface roughness approach with photosieving approaches that could
be performed on orthophotographs produced using SfM. In combina-
tion, these methods might be able to represent all three dimensions of
variability of gravel particles, thereby yielding a more robust grain size
estimate (see also Steer et al. (2016) for an alternative approach
involving 3D geometrical fitting algorithms to obtain grain size and
shape).

While three different roughness metrics have been used in the
literature, all three are highly correlated and all represent a related
metric of local elevation variability subject to different detrending
methods. The findings here support those of Baewert et al. (2014), who
observed a large change in roughness value for different detrending
lengths. Removal of sub-grid topographic variability improved regres-
sions slightly, but came at the expense of potentially filtering out large
grains. As expected, the reduction in σz values achieved through these
detrending methods brought field values close to the σz observed for
poorly sorted lab patches (for a given D50).

The various relationships identified in Table 2 indicate that the
nature of gravel facies has some influence on measured σz for a given
grain size. More accurate grain size estimates could therefore be
obtained if a suite of empirical relationships were used to represent
different gravel facies. However, use of surface roughness as a proxy for
D50 is inappropriate in poorly sorted gravels; this is a substantial
limitation of the approach presented here. That said, stronger relation-
ships with σz were observed for higher grain size percentiles (D84) in
poorly sorted gravels, both for the c-axis and b-axis (if two extreme
values were removed) and thus subsequent SfM-derived grain size
estimates may still be of value for use in flow resistance formulae, for
example. Based on the empirical research in this study, Fig. 11 presents
a new decision tree that can be utilised by practitioners to identify
which empirical equation is most suited to characterising river bed D50

from SfM surveys along river reaches or for specific landforms. This
process could potentially be automated, with gravel facies type (e.g.,
particle shape, degree of sorting) identified automatically. To achieve
this level of automation, a much wider variety of roughness metrics
would need to be applied to point clouds than is conventionally
performed (Smith, 2014). For example, eigenvalue ratios identify
clustering of normal vector orientations (Woodcock, 1977; McKean
and Roering, 2004) and the inclination index of Qin et al. (2012) may
potentially discriminate imbricated patches. Such automation is worthy
of further investigation.

Prior to such automation, further work is needed to validate
empirical relationships in Table 2 and expand the suite of equations
in Fig. 11 by incorporating several other factors such as particle
angularity, degree of surface armouring, packing density and burial.
Indeed, Aberle and Nikora (2006) found σz increased with successive
armour development. The idealized end-member patches used herein
are unlikely to be replicated in reality; Fig. 11 is intended as a
demonstration of a potential approach. As with other such studies, it
is unlikely that these relationships could be reliably extrapolated to
consider rivers exhibiting much larger grain sizes. Most importantly,
sorting effects need to be better understood as poorly sorted sediments
are common in many environments. For such a method to be of use to
practitioners, a set of sampling and reporting protocols would be
needed to ensure consistent patch sizes and sedimentological reporting

Fig. 10. Comparison of σz-D50 relationships observed in this study with those presented in
Table 1. See Table 1 for methodological details of each study (e.g., grid size used).
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(e.g., degree of imbrication, sorting, angularity). Nevertheless, the gains
of such a suite of equations could be considerable (Fig. 11).

5. Conclusions

High resolution topographic surveys of gravel facies can be inter-
rogated to extract grain size information. Previous studies have
identified site-specific empirical relationships; however, there is a large
variation in such relationships in the published literature. This research
has investigated the reasons for differences between published datasets
and evaluated the impacts of several factors on σz-D50 relationships.
Through a series of laboratory and field SfM surveys, sources of
variability in surface roughness have been identified for the first time.
Results indicated that the survey technique itself is capable of providing
accurate grain size estimates. A suite of empirical equations was
developed, reflecting the importance of gravel facies-type in the
expression of grain size in surface roughness. Further refinement will
be needed to improve the method for application to poorly sorted
gravel patches and to validate σz-D50 relationships on other facies types.

The extraction of grain size information from SfM-MVS surveys
would be of great benefit to river restoration practitioners. Estimating
grain size using patch scale roughness could be used to aid ecological

surveys where species have preferences towards certain grain sizes
(e.g., Williams and Mundie, 1978; Kondolf and Wolman, 1993), or
provide a detailed baseline survey of the sedimentological nature of an
area prior to river restoration (Kondolf et al., 1996; Merz et al., 2006).
Using SfM-MVS methods to measure patch scale roughness and conse-
quently estimate grain size is a less expensive and comparatively simple
method of obtaining results that are of the same quality as TLS outputs
and have thus begun to increase in popularity (e.g., Westoby et al.,
2015; Woodget et al., 2015). This can substantially decrease the time
and financial cost of thorough post-restoration geomorphic monitoring
(Marteau et al., 2016). A combination of surface roughness and
photosieving methods, both of which can be extracted from SfM-MVS
surveys, may ultimately provide the most reliable grain size estimates
over the largest range of gravel facies.
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