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Abstract 

The aim of this study is to determine methods to reduce traffic noise levels and to enlarge quiet areas in 

the rural residential areas in China by controlling relative locations and urban morphological parameters. 

Six urban morphological parameters, including complete aspect ratio (CAR), landscape shape index of 

buildings (LSI_B), patch density (PD), road length fraction (RLF), road intersections fraction (RIF), and 

landscape shape index of roads (LSI_R), are selected and developed. The relationships of the urban 

morphological parameters to the spatial noise level attenuation and the size of noisy areas were 

subsequently determined. The effects of motorway horizontal distances and orientations are considered 

based on spatial traffic noise attenuation. The results indicate that the effect of distance on traffic noise 

level attenuation is significant and varies widely among the 60 sites studied. A distance of more than 600 

m can make the acoustic environment suitable as residential areas. Changing the orientation relationship 

between the village and the motorway is not always effective for increasing the traffic noise resistance 

of villages. The results highlight the importance of using urban morphology to improve the traffic noise 

resistance of rural residential areas; LSI_B and LSI_ R are the most important parameters that correlate 

to the traffic noise attenuation of motorways.  
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Introduction 

A growing body of literature indicates that continued exposure to road traffic noise is detrimental to 

human health and well-being, including increased risk of ischaemic heart disease, sleep disturbance, 

cognitive impairment among children, annoyance, stress-related mental health risks, and tinnitus [Brink, 

2011; Di, Liu, Lin, Zheng, & He, 2012; Fyhri & Aasvang, 2010; WHO, 2011]. Studies also indicate that 

the significance of quietness and quiet areas benefit human health [Booi & van den Berg, 2012; 

Shepherd, Welch, Dirks, & McBride, 2013]. For many urban residents, a major source of environmental 
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noise is road traffic noise. The main populations seriously affected by this noise are the residents of 

areas close to highways and large arterial roads. 

To reduce the nuisance of traffic noise and to enlarge quiet areas in cities, solutions have been suggested, 

including improving/optimising roadway traffic loads, number of lines, road surface types and vehicle 

speed [Avsar & Gonullu, 2005]; designing noise barriers for propagation outdoors [Renterghem et al., 

2015], and designing buildings with higher noise reduction capabilities, such as building facades and 

balcony improvements [Kim & Kim, 2007; Lee, Yong, Jin, & Song, 2007]; and designing buildings and 

courtyards with green plants [Gidlöf-Gunnarson & Prhström, 2010; Kim, Yang, & Kang, 2014; 

Renterghem & Botteldooren, 2009; Veisten et al., 2012; Wong, Tan, Tan, Chiang, & Wong, 2010; Yang, 

Kang, & Choi, 2012]. Soundscape studies have recently focused on ecologically improving soundscapes 

as a method to reduce urban noises and enlarge quiet areas [Jeon, Lee, You, & Kang, 2010].  

The effect of urban morphology on traffic noise propagation has been studied in terms of spatial 

structure (e.g., building layout) and certain urban morphological parameters (e.g., building density) to 

verify the method of simplifying noise mapping by examining the effects of building gaps. Kang 

compared the attenuation of broadband sound among different street patterns with particular reference 

to three building configurations, simulating the typical UK housing types of detached, semidetached and 

terraced houses [Kang, 2007]. The spatial distribution of traffic noise in a city is related to traffic volume, 

building density, shape of the building blocks and general urban form has been determined using 

numerical calculations of the data from Amsterdam and Rotterdam, for various idealized urban designs 

[Salomons & Pont, 2012], and from Greater Manchester in the UK and Wuhan in China, which have low 

and high average urban densities, respectively, for a number of typical urban areas [Wang & Kang, 

2011]. Three examples of studies focusing on how urban morphology influences the sound environment 

in low-density residential areas are the studies by Hao and Kang, who examined whether and how urban 

morphology influences the capability of attenuating traffic noise levels [Hao, Kang, Krijnders, & 

Wörtche, 2015], the influence of urban morphology on spatial noise level attenuation of flyover aircrafts 

[Hao & Kang, 2014], and how to increase birdsong loudness and the visibility of green areas by 

controlling urban morphological parameters [Hao, Kang, & Krijnders, 2015]. In a wider context, urban 
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morphology, which pertains to the spatial structure and characteristics of a metropolitan area, city, town, 

or village, has been widely studied regarding urban settings, particularly the characteristics of 

atmospheric environment (e.g., air quality and wind environment) [Borrego et al., 2006; Edussuriya, 

Chan & Ye, 2011; Golany, 1996; Ng, Yuan, Chen, Ren, & Fung, 2011; Oke, 1988; Soulhac, Mejean, & 

Perkins, 2001], renewable energy (solar energy) [Compagnon, 2004; Robinson, 2006; Sarralde, Quinn, 

Wiesmann, & Steemers, 2015], and the urban heat island effect [Brian, 2004; Brian & Michael, 2001; 

Touchaei & Wang, 2015]. Other factors extensively examined using a series of quantitative urban 

morphological parameters include those on street layout and coverage as well as landscaping 

[Geoghegan, Wainger & Bockstael, 1997; Liu, Kang, Behm & Luo, 2014; Stephen, 2004; Val, Atauri & 

Lucio, 2006]. 

However, despite these research efforts, noise reduction in rural residential areas is still primarily 

achieved using noise barriers. The relationship between road traffic noise and the characteristics of 

village form planning still needs to be analysed in detail. Few studies have considered how to improve 

the traffic noise resistance of villages by systematically controlling a set of urban morphological 

parameters, especially considering the rural residential areas in less developed regions such as those in 

China. At the end of 2014, the Chinese expressway with a total mileage of 112000 kilometres opened to 

traffic, becoming the world's largest motorway system. Moreover, China has a large rural population 

with high density; thus, many villages are located on or near a well-travelled motorway.  These villages 

are no longer quiet places, and new villages have expanded in locations adjacent to the motorway 

for economic or other reasons.  

Therefore, this study aims to examine the influence of different effects of location, such as distance and 

orientation between a village and the motorway, and to explore methods to integrate the effects of urban 

morphological parameters to improve the traffic noise resistance of rural residential areas in China. To 

analyse these parameters, a series of noise mapping was performed for selected typical villages. 

2. Methodology 

2.1. Case study sites 
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Since the "Eleventh Five-year" Plan for Developing Socialism New Rural Areas was proposed, village 

development has received unprecedented attention in China. Over the past several decades, the living 

standards of villages have improved rapidly. It is important to note that the village classifications in this 

study refer to homes for living and various productions of the villagers according to the ―Environmental 

Quality Standard for Noise‖ (GB3096-2008). 

The village sites in this study were chosen in Heilongjiang because it is the major grain-producing area 

in the flat terrain with a planting area that accounts for 83.5% of the province‘s total and a rural 

population that accounts for 43.1% of the province's total, according to the Heilongjiang Statistical 

Yearbook (2014). Heilongjiang has a transportation network composed of a motorway and hierarchical 

traffic roads throughout the province, as shown in Fig. 1, which generate widespread traffic noise.  

 

Figure. 1. Locations of the study sites. 

Due to the cold climate and lagging economic situation in the villages of Heilongjiang, there are very 

diverse village forms with low-rise and low-density residential zoning plans. Therefore, 60 villages sites 

located along the Harbin-Tongjiang section of the G1011 motorway in Heilongjiang were chosen for 

site samplings as typical villages in the cold region of China. These sample villages that were each 

located along one kilometre of G1011 from Harbin, Jiamusi and Shuangyashan were numbered H1-H30, 

J1-J16, and S1-S14, respectively. The conditions of the building façades and of the ground were 

javascript:void(0);
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obtained from in situ investigations and Google Maps. CAD software was used to describe the spatial 

morphology of the villages and their relationship with the surrounding G1011motorway, as shown in 

Fig. 2.  

 

Figure. 2. CAD of the village sites based on Google Maps. Scale 1:1000. 

2.2. Selection and calculation of urban morphological parameters 

To obtain a comprehensive description of the village form in cold regions, this study used 18 

quantitative morphological parameters from previous studies that explored, developed, and studied 

diverse urban morphology. The parameters include all of the factors that are likely related to traffic noise 

resistance based on the potential effects of urban morphology on outdoor sound propagation, such as 

distance from the source to the receiver, ground effects, the barrier effect, and the canyon effect [ISO 

9613-2; Kang, 2007]. The 18 quantitative parameters include the following: Landscape shape index of 

roads (LSI_R), Building Plan Area Fraction (BPAF), Road length Fraction (RLF), Road Area Fraction 

(RAF), Road intersections fraction (RIF), and Distance of First-row Building to Road (DFBR). These 

six parameters chiefly concern geometrical divergence and ground effects. Landscape shape index of 

buildings (LSI_B), Complete Aspect Ratio (CAR), Building Surface Area to Plan Area Ratio 
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(BSAPAR), Patch density (PD), Height-to-Width Ratio which vertical to the road direction (HWR_V) 

and Height-to-Width Ratio which parallel to the road direction (HWP_P) concern barrier attenuation, 

screening, and reflection. The final six parameters chiefly concern the village planning forms: 

Landscape shape index of villages (LSI_V), Landscape shape index of street blocks (LSI_S), 

Edge Density (ED), Largest patch index (LPI), Cell Ratio (CR), and T-ratio (TR). The definitions and 

calculations of these parameters are shown in Table 1. In a study by Salomons and Pont (2012), the 

Spacematrix, a three-dimensional representation of urban density, was used, and multiple dimensional 

representations of building and road were used, such as for building density (i.e. CAR, BPAF, BSAPAR, 

ED and PD) and for road density (i.e. RLF and RAF). In Hao et al., study 2015b, it was noted that the 

height-to-width ratio (i.e., the street aspect ratio) is calculated by assuming an ideal situation; sites with 

multiple buildings utilize an average height-to-width ratio calculated by the average building height 

divided by the average width between buildings. In this study, the width dimensions between rural 

buildings were decomposed into vertical and parallel aspects based on the direction of the motorway.  

Table 1. Formula for the calculations of the 18 urban morphological parameters. 

Parameter Definition Formula Notes Range 

LSI_V Landscape shape index of villages 

 

LSI= 0.25E

A
 

 

E is the total circumference boundary of interest. 
A is the total plan area of the region of interest. 
LSI reflects the shape complexity of the whole 
landscape. 

 

 

0.984-1.870 

LSI_B Landscape shape index of buildings 5.824-24.103 

LSI_S Landscape shape index of street blocks 0.000-2.117 

LSI_R Landscape shape index of roads 6.688-25.420 

BPAF 

 

The ratio of the plan area of buildings to  
the total surface area of the study region 
 

BPAF=Ap/AT 

Ap is the plan area of buildings at ground level,  
and AT is the total plan area of the region of 
interest. (Burian et al., 2005) 

.  

0.069-0.224 

CAR 

The summed area of buildings and 
exposed ground divided by the total 
surface area of the study region .(Voogt & 
Oke,1997) 

CAR=AC/AT 

= w r G

T

A A A

A

    

AC is the combined surface area of the buildings 
and exposed ground, 

 
AW is the wall surface area, Ar is the roof area, 

 
 AG is the area of the exposed ground 

 
(Burian et al., 2005). CAR>1. 

1.113-1.253 
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Parameter Definition Formula Notes Range 

BSAPA
R 

The sum of building surface area divided  
by the total surface area of the study region 

 

BSAPAR 

= r w

T

A A

A

  

Ar is the plan area of rooftops,  
AW is the total area of non-horizontal roughness 
element surfaces (e.g., walls). (Burian et al., 
2005) 

 

0.182-0.467 

ED 
The ratio of total length of all patch 
boundaries to the total patch areá  

ED=106 E

A
 

ED≥0, non-capped 

 

0.193-0.391 

PD Patch density PD=106 N

A
 

Patch density has the same basic utility as 
number of patches as anindex but facilitates 
comparisons among landscapes of varying size. 
It is used as a measure of landscape 
fragmentation. 

 

0.039-0.143 

LPI Largest patch index LPI = S

T

A

A
 

Largest patch index quantifies the percentage of 
total landscape area (plan area of the region of 
interest) composed of the largest patch (street 
block). AS is the largest street block area. 

 

0.000-0.403 

RLF Road length  fraction RLF= R

T

L

A
 

LR is the length of the roads at ground level 

 

0.007-0.023 

RAF Road area fraction RAF= R

T

A

A
 

AR is the plan area of roads at ground level 

 

0.030-0.128 

CR 
Cell Ratio 
(Stephen,2004) 

CR 
= CE

CE CU

N

N N
 

NCE is total number of cells. NCU is the total  
number of cul-de-sacs. 

 

0.000-1.000 

TR 
T-ratio 
(Stephen,2004) 

TR= T

I

N

N
 

NT is the total number of T-junctions. 
NI is the total number of junctions. 

 

0.000-1.000 

RIF Road intersections fraction RIF= I

T

N

A
 

NI is the total number of road intersections. 
AT is the total plan area of the region of interest. 

 

0.125-1.506 

DFBR 
The mean of the distances from the front  
façades of the first row of buildings to the 
road 
 

1

1
d

n

i
i

DFBR
n 

 
 

n is the total number of first-row buildings, and 
di is the distance from the first-row buildings to 
the road. 

 

9.604-42.393 

HWR_V 
The average of the building heights(Havg) 
is divided by the average of the horizontal 
distances between two adjacent buildings 

HWR(し)= avg

avg

H

S
 

し is the direction vertical to the road direction. 

 

0.053-0.162 

HWR_P 

し is  the road direction 

 

0.055-0.256 

Considering the possible inherent relationships among the 18 parameters, a bivariate analysis was 

conducted to determine their independence, as shown in Table 2. The results indicate that there is a 
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broad and complex connection between the 18 parameters. The relevant parameters were extracted and 

further analysed using principal component analysis (PCA) and sensitivity analysis to ultimately select 

six parameters: CAR, LSI_B, PD, RLF, RIF, and LSI_R.  

Table 2. Relationships between the urban morphological parameters in terms of R2 values of 
second-order polynomial regression, where * indicates the p<0.05 level (2-tailed) and ** indicates the 
p<0.01 level (2-tailed) in the Spearman's rho correlation. 

 LSI_V BPAF CAR BSAPAR LSI_B PD ED LPI LSI_S RLF RAF RGUF TRIR RIF LSI_R DFBR HWR_P HWR_V 

LSI_V 1 
                 

BPAF .198 1 
                

CAR -.131 .602** 1 
               

BSAPAR .028 .877** .877** 1 
              

LSI_B .176 -.014 .097 .012 1 
             

PD -.265* .323* .840**  .655**  .133 1 
            

ED -.307* -.709**  .028 -.360**  .121 .299* 1 
           

LPI -.133 .012 .101 .081 -.117 .230 .135 1 
          

LSI_S -.055 -.046 -.042 -.044 .224 .091 -.026 .451**  1 
         

RLF -.390**  -.196 .168 -.008 -.022 .337**  .323* .295* .317* 1 
        

RAF -.289* -.147 .180 .040 .048 .354**  .297* .333**  .273* .903**  1 
       

RGUF -.262* -.081 .112 .043 .183 .209 .199 .546**  .467**  .573**  .515**  1 
      

TRIR .135 .295* -.066 .135 -.326* -.180 -.371**  .069 -.012 -.276* -.237 -.015 1 
     

RIF -.392**  -.073 .232 .107 .030 .309* .210 .255* .253 .804**  .737**  .599**  -.112 1 
    

LSI_R -.012 -.218 -.091 -.214 .842**  .024 .139 -.101 .356**  .297* .265* .337**  -.403**  .248 1 
   

DFBR .071 -.196 -.297* -.307* .004 -.388**  -.065 .004 .210 -.160 -.255* -.090 -.106 -.192 .046 1 
  

HWR_P .085 .143 .386**  .287* -.406**  .246 .117 -.024 -.307* -.010 -.024 -.089 .310* .040 -.451**  -.196 1 
 

HWR_V -.182 .622**  .768**  .790**  -.248 .601**  -.133 .136 -.226 .121 .164 .020 .124 .145 -.392**  -.411**  .446**  1 

2.3. Noise mapping  

To simulate the spatial traffic noise distribution in the sites, noise maps were calculated using a 

commonly used noise-mapping package, Cadna/A [DataKustik, 2006]. The accuracy of the calculation 

was validated by the measurements in the village of northeast China. Although calculation errors were 

relatively higher at few measuring points which are far away from the sound source, the average 

calculation error is less than 2 dBA [Mei, 2014; Meng, 2014]. The low-density of the village is the main 

reason for the 2 dBA error, as there are mostly direct sounds emitted by the highway traffic noise and 

few reflections on the sites. The noise maps were generated with the building information of the sampled 

grids, using the grid calculation 10 m x 10 m, and then the calculated grids data were exported to Excel 

for further analysis. In this study, Ln (Lmax, Lavg, Lmin, L10-L90) are not based on the conventional 

time domain, but on the spatial domain. Ln are obtained from all the spatial noise level values for each 

site which are arranged in a descending order. For example, Lmax, Lavg and Lmin denotes the highest 
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value, the mean value and the lowest value of all the spatial noise levels of a given site, respectively, 

where n in Ln specifies one certain sound level value at the position of n% in all of the descending values. 

For example, L90 is the value located at the top 90% in the rankings of all the spatial noise level values 

[Wang & Kang, 2011; Hao et al., 2015b].To investigate the significance of the number of reflections in 

a village environment, three villages were chosen from the 60 sites for analysis, considering the 

maximum, the median, and the minimum of Patch density (PD) by the number of 0.098, 0.074 and 0.052, 

respectively, and it is noted that the Floor Area Ratios of the three sampled sites are 0.124, 0.098 and 

0.069, respectively. Hence these three villages may be considered as typical, low-density village in 

northeast China. With the change of the reflection numbers for simulation analysis, Lavg in villages had 

little increase (0.39-0.78dBA) with increasing reflection order from 1 to 6. The validity of less 

reflections is mainly because the distances between buildings are generally great and the height of 

buildings is general low, so the diffraction of sound occurs around the buildings is not that important. 

Comparing the calculation time with various reflection orders, it was shown that the increase in 

calculation time with increasing reflection order is approximately exponential. Considering both 

accuracy and efficiency, this paper used a reflection order of 2.  

According to the investigation of the countryside, almost all of the rural buildings are 

one-story buildings with a pitched roof in Heilongjiang, indicating a typical, low-rise residential rural 

morphology. Kang suggested that an additional height of ∆ = 0.7 m above the eave height is a good 

approximation for simplifying pitched roofs to reduce the time for model construction and calculation 

[Kang, 2007]. Therefore, in this study, 4.5 m was established as a generic height for this type of 

morphology, which increased the calculation speed for this study [Meng, 2014]. The traffic volume 

dates of the motorway and rural road conform to the ―Design Specification for Highway Alignment‖ 

(JTG D20-2006). This study just considers the motorway outside the villages to examine the influence 

of different relative locations, such as distance and orientation between a village and the motorway. It is 

assumed that the traffic volume of a motorway is 30000 cars per day. In the study 20 orientation 

relationships between village and motorway were considered by rotating the motorway clockwise, with 

the north-south motorway on the west side of the village as a starting rotation orientation of 0°. 
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To determine the situation of traffic noise at the village sites along the motorway, the traffic volume 

data of the motorway were set to 15000 cars per day; the single-lane and two-lane rural routes were set 

to 400 cars per day and 1000 cars per day, respectively. The results show that the noise environments 

differ widely among village sites. Based on the results of the noise maps, the open areas were 

categorised into three groups in terms of the noise level ranges: SPL (LAeq) ≤50 dBA (quiet area), 50-60 

dBA (less noisy area), and SPL (LAeq) >60 dBA (noisy area). In Meng‘s (2014) study̍ based on field 

measurements and questionnaire surveys about road traffic noise with 13 typical villages in the 

northeast of China, it was found that the village residents would feel uncomfortable when the average 

sound pressure level of main road traffic noise is too high (≥60 dBA) or too low (˘50 dBA). 

Consequently, in the present study the value of 50 dBA is used to characterise the quiet areas for the 

villages in terms of noise from the outside motorway. The use of 50dBA is also in line with the current 

noise evaluation criteria for night time in class-2 standard (―Environmental Quality Standard for 

Noise‖GB3096-2008). However, because quiet areas are defined in qualitative rather than quantitative 

terms, the concept of a ―quiet area‖ in this study only presents a relative rather than absolute definition 

of a quiet area, namely, relatively low transport related levels (daytime) even though 50dB is still high 

when it concerns night time noise levels. As the traffic volume was at a minimised level, namely 15000 

cars per day, the mean percentages of the categories of the 60 study sites were 3.8% (quiet area), 42.9% 

(less noisy area), and 53.3% (noisy area). The mean Lavg of the 60 villages was 60.5 dBA, and the 

background noise L90 was 53.8 dBA–61.8 dBA.  

3. Results 

3. 1. Effect of distance between village and motorway  

To examine the influence  of  the distance between the village and motorway on noise attenuation, the 

traffic noise attenuation of the 60 sites was compared among seven distances to site, i.e., 0 m, 30 m, 60 m, 

100 m, 300 m, 600 m, and 1000 m, in terms of L10. As expected, increasing the distance can be effective 

for reducing the traffic noise, however, it is interesting to note that the distances have 

tremendously different effects on traffic noise attenuation among the 60 sites. When the distance was 

javascript:void(0);
javascript:void(0);
javascript:void(0);
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increased from 0 to 30 m, 60 m, 100 m, and 300 m, the largest decrease in L10 was for village H16, 

which was reduced by 6.8 dBA, 8.4 dBA, 10.2 dBA, and 15.2 dBA, respectively; the smallest decrease 

was for village H3, which was reduced by 0.7 dBA, 1.4 dBA, 2.3 dBA, and 5.9 dBA, respectively. When 

the distance was increased to 600 and 1000 m, village H2 decreased the most, with a reduction of 20.8 

dBA and 26.2 dBA, respectively; village J8 decreased the least, with a reduction of 9.8 dBA and 14.1 

dBA, respectively. This result is feasible because the differences in the village forms affect the traffic 

noise attenuation due to increasing the distance. Improving the acoustic environment of the rural 

residential areas near the motorway requires not only increasing the distance between the villages and 

the motorway but also considering the impact of the village form. 

Table 3 shows the relationships between the mean traffic noise level variances among the 60 sites and 

the horizontal distance between the site and the motorway. When the distance is smaller than 100 m, for 

each additional 30 m increase, ―noisy areas‖ decrease by approximately 5%; when the distance is at 

least 300 m, the ―noisy areas‖ in village sites are 0%; and when the distance is greater than 1000 m, Lmax

˘50 dBA and ―quiet areas‖ reach 100%. In the 60 village sites, 20 sites are located less than 100 m 

from the motorway and 33 sites are located less than 300 m from the motorway, causing the acoustic 

environment to fail to meet the class-2 standard in China. Only 15 villages are located more than 600 m 

from the motorway, making the acoustic environment to meet the class-1 standard, which shows the 

seriousness of the traffic noise problem in the villages of China. 

Table 3. Variances of the mean traffic noise level among the 60 sites, with horizontal distances between 
the site and motorway of 0 m, 30 m, 60 m, 100 m, 300 m, 600 m, and 1000 m.  

Distance
˄m˅ Noise area categories (%) 

 
Spatial noise level indices ln(dBA) 

 

Quiet 
area 

Less Noise 
Area 

Noisy 
Area  Lmax L10 L20 L30 L40 L50 L60 L70 L80 L90 Lmin 

0 6.67 67.42 25.92  83.44 64.71 61.13 59.02 57.56 56.39 55.42 54.54 53.59 52.15 37.27 

30 7.73 70.03 21.24  70.58 62.92 59.93 58.12 56.79 55.73 54.86 54.01 53.08 51.60 36.68 

60 9.34 74.42 16.24  67.26 61.56 58.84 57.24 56.07 55.10 54.28 53.46 52.54 51.03 36.02 

100 11.85 77.78 10.37  64.76 59.95 57.58 56.22 55.18 54.32 53.57 52.77 51.85 50.31 35.25 

300 31.00 68.97 0.00  57.59 55.11 53.71 52.79 52.04 51.37 50.72 50.01 49.13 47.45 32.29 

600 81.86 18.14 0.00  52.31 50.67 49.69 48.98 48.37 47.80 47.24 46.63 45.78 44.04 28.96 

1000 100.00 0.00 0.00  47.29 46.05 45.31 44.75 44.24 43.75 43.27 42.73 41.98 40.26 25.52 

3.2. Effect of orientation between village and motorway 
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 To explore the influence of the orientation between the motorway and village on the traffic noise 

resistance of the sites, the spatial noise level (Lavg) and the noise area categories (―noisy area‖, ―quiet 

area‖) of 20 orientations in 10 typical villages are presented in Fig. 3a-c. It is important to note that 

manual selection was used to choose the typical sites by eliminating the 60 sites with similar 

morphologies to the others. The exclusion was performed to obtain the representative residential 

morphology characteristics of the northeast villages in China. Ten villages were chosen from the 60 sites 

for analysis, which contain the maximum, the minimum, and the median of each of the 18 urban 

morphological parameters;  

  

(a) Spatial noise level indices Lavg (b) Noisy areas 

 

(c) Quiet areas 

Figure 3. Variances of spatial traffic noise attenuation Lavg and the sizes of the ―noisy areas‖ and ―quiet 
areas‖ with changing orientation relationships between the sites and the motorway. 



Wenluo Yu & Jian Kang: Landscape and Urban Planning                            [DOI:10.1016/j.landurbplan.2017.02.016] 

Landscape and Urban Planning, Volume 163 , July 2017, Pages 44–55  Page13 

 

In Figs. 3a-c, it can be seen that the villages were divided into isotropic and anisotropic types in terms of 

Lavg, ―noisy area‖, and ―quiet area‖. The isotropic villages are only slightly affected by the changing 

orientation relationship between the motorway and village. For example, as shown in Fig. 3a, H29 is the 

village with the least variation (2.7 dBA) in terms of Lavg among the isotropic villages, i.e., J1, S5, S12, 

H2, H22, H29, and J15, all of which have variations of less than 5 dBA. In Fig. 3b, village H5 

changed in only 3% of the 20 orientation relationships in terms of ―noisy areas‖; from Fig. 3c., it can be 

seen that in terms of ―quiet areas‖, village H22 has the least variation (2.3%) among the isotropic 

villages i.e., H22, S5, H2, and S12, all of which have variations of less than 10%. 

To investigate significance of the orientation effect on an anisotropic village, as in Fig. 3a, radar maps 

show the differences among 20 orientations in each of the 10 villages. The anisotropic villages are 

strongly affected by the changing orientation relationship between the motorway and the village. For 

example, villages H5, H6, and H30 present a distinct oval pattern, with orientations of 90°, 105°, and 

75°, Lavg that varied by 8.8 dBA, 7.1 dBA, and 6.4 dBA, respectively. Fig. 3b shows that except for 

village H5, nine anisotropic villages changed with more than 10% of the 20 orientation relationships in 

terms of ―noisy areas‖. H30 is the village with the largest decrease of 32.8% by turning from 75° to 135°, 

followed by H2, H22, J15, and S5 with decreases of 21.7%, 29.0%, 23.6%, and 22% of ―noisy areas‖ 

for orientations of 60°, 150°, 45°, and 45°, respectively. Villages H6, H29, J1, and S12 changed by 

11.8%, 12.5%, 10.8%, and 18.1% for orientations of 30°, 45°, 135°, and 135°, respectively. Therefore, 

the orientation relationship between the motorway and the village significantly affected the ―noisy 

areas‖. From Fig. 3c, it can be seen that villages H5, J1, H6, H30, J15, and H29 changed the ―quiet 

areas‖ by more than 10%; for example, H5 had the largest increase of 54.6% by turning from 300° 

to 210°, followed by H6, H30, and J1 with increases of 37.8%, 20.2%, and 31.2% in ―quiet areas‖ 

for orientations of 60°, 90°, and 125°, respectively. Villages H9 and J15 had 13.8% and 14.9% increases 

in the ―quiet areas‖ for orientations of 90° and 105°, respectively. Therefore, only some of the villages 

were significantly affected by the changing orientation relationships. 

Furthermore, using "1" to represent less than or equal to the mean value and "2" to represent greater than 

the mean value of the acoustic variable among the 20 orientation relationships of the 10 typical villages, 
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the frequency value of "1" in terms of Lavg and ―noisy areas‖ and "2" in terms of ―quiet areas‖ can be 

used to determine the best and the worst orientation relationships, where higher values indicate better 

acoustic environments and lower values indicate worse acoustic environments. As shown in Fig. 4, there 

were alternately better and worse orientation relationships. The better regions were much fewer than the 

worse regions. Adopting orientations of 30°, 120°–135°, and 315° may create better acoustic 

environments, while orientations of 75°–90°, 180°, 255°–270°, and 345° may worsen the acoustic 

environments. The reason for this finding might be that the barrier effects of buildings and the sound 

propagation through the roads are strongly influenced by the orientation relationship between the 

motorway and village. 

 

Figure 4. Variances of traffic noise resistance of the 20 orientation relationships in the 10 typical 
villages, comparing the frequency value of ―1‖ in terms of Lavg and ―noisy area‖ and of ―2‖ in terms of 
―quiet area‖. 

3. 3. Relationships between ―noisy areas‖ in villages and urban morphological parameters 

Six urban morphological parameters and two noise area categories were selected (see Sections 2.2 and 

2.3, respectively) to examine possible relationships between village form and spatial traffic noise 

attenuation. A correlation analysis (Spearman‘s rho) was performed (see Table 4). It is important to note 

that LSI_B and LSI_R have significant correlations with the noise area categories indices (p̆ 0.01, 2 

tailed) under the conditions of varying distance between the sites and the motorway. The statistical data 

of RLF and RIF, however, have no correlation with any of the indices, suggesting that road length and 
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the number of road intersections have limited influence on traffic noise level under any conditions of 

varying distance between the site and the motorway. 

Table 4. Spearman‘s rho correlations between the noise area category indices in the villages and the 
urban morphological parameters (2-tailed). Significant correlations are marked with * (p˘0.05) and ** 
(p˘0.01).  

Distance˄m  ˅ Indices Urban Morphological Parameters 

 
˄%˅ CAR LSI_B PD RLF RIF LSI_R 

0 Quiet area -.085 .751** -.103 -.201 -.093 .682** 

Noise area .181 -.756** .145 .135 .063 -.719** 

30 Quiet area -.053 .667** -.095 -.064 -.015 .652** 

Noise area .209 -.568** .205 .083 .051 -.590** 

60 Quiet area -.056 .657** -.109 -.076 -.019 .644** 

Noise area .235 -.528** .232 .107 .070 -.542** 

100 Quiet area .014 .641** -.054 -.075 -.015 .624** 

Noise area .276* -.485** .264* .125 .120 -.496** 

300 Quiet area .016 .593** -.077 -.012 .064 .605** 

600 Quiet area -.152 .477** -.242 -.156 -.058 .482** 

The tendencies of ―noisy areas‖ with varying LSI_B and LSI_R are further illustrated in Fig. 5, which 

shows the distance of 0 m because these variances are higher than those of 30 m, 60 m, and 100 m. It can 

be seen in Fig. 5 that when either LSI_B or LSI_R increases, the size of the noisy area in the village 

decreases. Specifically, in Fig. 5a, the inverse regression analysis results show that when LSI_B 

increases, the ―noisy area‖ sharply decreases by 39% and then slightly decreases by 9%; the reason for 

this result might be that the increased building complexity in the rural residential area induces more 

sound reflections between buildings, further reducing the barrier effect of the buildings. By comparing 

the forms of 60 sites with different LSI_B values, the tiny and neat villages may have poor noise 

resistance, while large, hybrid, or combination layouts of the rural residential areas with multi-layer 

pluralistic forms of courtyard space may be beneficial to reducing noisy areas. 

Fig. 5b shows the results of a linear regression analysis: a greater value of LSI_R indicates smaller noisy 

areas of the village. This relationship could be because the increased complexity of the road system in 

the rural residential area causes less sound propagation through streets along the roads. Because the 

value of R2 is less than 0.5, a stepwise multiple regression analysis was performed between two noise 

area categories and other urban morphological parameters that are potentially related to ―noisy areas‖. 
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The results show that there are two variables related to ―noisy areas‖ with R2=0.570. The most effective 

variable was LSI_R, (-0.817), and the other was RAF (0.331), which has a positive relationship; this 

result could be linked to less dense roads areas of the rural residential area causing less sound 

propagation through the road. ―Noisy area‖ has a negative relationship with LSI_R and has a positive 

relationship with RAF, which suggests its relationship with smaller road widths and lower numbers of 

roads running straight through the village. 

  

(a) (b) 

Figure 5. The respective relationships between noisy areas in the villages and the landscape shape index 
of buildings (LSI_B) and the landscape shape index of roads (LSI_R) with a distance of 0 m. 

3.4. Relationships between ―quiet areas‖ in village and urban morphological parameters 

The respective relationships between quiet areas in the village and LSI_B and LSI_R were examined 

with a distance of 300 m, where due to complicated features of the various influencing factors on sound 

attenuation, the variances at this distance are higher than those of 0 m, 30 m, 60 m, 100 m, and 600 m 

(see Fig. 6). The linear regression analysis results show that a larger LSI_B and LSI_R indicate larger 

quiet areas in the village; LSI_B and LSI_R can increase the quiet areas by 49% and 42%, respectively. 

Because the values of R2 are both less than 0.5, a stepwise multiple regressions analysis was performed. 

The results show that ED was the other variable associated with ―quiet areas‖ in addition to LSI_B, with 

R2=0.518. LSI_B is the most effective variable (0.680), followed by ED (-0.288). However, 

due to the differences between urban and rural environments, the canyon effect hardly plays any role in 
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noise attenuation in villages with low-rise buildings all around. The two parameters related to screening 

of buildings and geometrical divergence significantly reduce the traffic noise. The percentage of the 

―quiet area‖ increases with increasing building complexity (LSI_B), and a lower ED means a smaller 

total length of all building patches. Assuming that all families in a village remain equal, having some 

buildings connected as a row or as varied group forms may improve the barrier effect of buildings and 

lower the effect of diffraction. LSI_R and RAF were the other two explanatory variables for ―quiet 

areas‖, with R2= 0.523. The most effective variable was the landscape shape index of the road (LSI_R, 

0.777), and the other was the RAF (-0.389). It is important to note that RLF has little influence on the 

traffic noise level under any conditions of varying distance between the site and the motorway (see 

Section 3.3); therefore, the reason for this finding could be the increased complexity and the smaller 

road width of the system causing less sound propagation through the streets along the roads.  

  

˄a˅                                                                         ˄b˅                                                          

Figure 6. The respective relationships between the quiet areas in the villages and the landscape shape 
index of buildings (LSI_B) and the landscape shape index of roads (LSI_R) with a distance of 300 m. 

3.5 Relationships between spatial traffic noise levels in the village and urban morphological parameters 

To investigate how the spatial traffic noise levels in villages are related to urban morphological 

parameters, as shown in Table 5, a correlation analysis was conducted between six urban morphological 

parameters (see Section 2.2) and two spatial traffic noise levels, L10 and L80, which were selected as the 

most sensitive indices with the highest variances caused by urban morphology. By convention, L10, L50, 
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and L90 are used to give approximate indications of the intrusive, median, and background sound levels, 

respectively (Kang, 2007). However, the focus of this study is the entire process of spatial sound 

attenuation in the context of different urban morphologies of villages. Accordingly, sets of indices that 

represent the entire attenuation process are investigated to explore the most sensitive indices with the 

highest variances caused by urban morphology. As shown in Fig. 7, when the distance is less than 100 m, 

among the 60 sites, the maximum difference in noise occurs at L10, which varies by more than 12 dBA 

with the mean of the difference between the maximum and minimum values. When the distance is 

100–1000 m, the maximum difference in noise occurs at L80, which varies by more than 6 dBA with the 

mean of the difference between the maximum and minimum values. Therefore, these results indicate 

that L10 (0–100 m) and L80 (100–1000 m) can be used and that each are more sensitive to urban 

morphology than are the other indices.  

Table 5. Correlations between spatial traffic noise levels in the villages and the urban morphological 
parameters (2-tailed). Significant correlations are marked with * (p˘0.05) and ** (p̆ 0.01).  

Distance( m) Indices   Urban Morphological Parameters 

 
˄dBA˅ CAR LSI_B PD RLF RIF LSI_R 

0 L10 .287* -.635** .250 .218 .165 -.566** 

30 L10 .238 -.622** .217 .198 .146 -.558** 

60 L10 .225 -.632** .206 .181 .133 -.571** 

100 L10 .211 -.631** .190 .148 .125 -.580** 

300 L80 -.022 -.694** .065 .131 .010 -.617** 

600 L80 -.042 -.651** .065 .120 -.027 -.557** 

1000 L80 -.026 -.610** .091 .124 -.014 -.522** 

It can be seen in Table 5 that LSI_B and LSI_R have significant negative correlations with L10 for 

distances less than 100 m (Rs˚0.5, p̆ 0.01); these parameters also have significant negative 

correlations with L80 for distances of 300–1000 m (Rs̊ 0.5, p̆ 0.01), which suggests that greater 

building and road complexity create less noisy outdoor spaces in terms of L10 and L80. It is important to 

note that while CAR has a positive relationship with L10 at 0 m (p̆ 0.05), PD, RLF, and RIF have no 
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correlation with any of the indices at seven distances. These findings suggest that the number of building 

patches and road intersections and the total road length do not necessarily affect L10 and L80. 

 

Figure 7. Spatial noise level indices of the 60 sites with the mean difference of the maximum minus the 
minimum values shown for each index. The different coloured lines represent distances between the 

site and the motorway of 0 m, 30 m, 60 m, 100 m, 300 m, 600 m, and 1000 m. 

  

(a)                                                                         (b) 

Figure 8. The respective relationships between the spatial noise level indices L10 in the villages and the 
landscape shape index of buildings (LSI_B) and the landscape shape index of roads (LSI_R) with a 
distance of 0 m. 

Fig. 8a and b further show that increasing LSI_B and LSI_R decreases the noise of villages by 10 dBA 

and 8.5 dBA at 0 m, respectively. Because the values of R2 are both less than 0.5, a stepwise multiple 

regressions analysis was performed. The results show that CAR was the other variable associated with 

L10 in addition to LSI_B, with R2=0.568. The most effective variable was the landscape shape index of 
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the building (LSI_B, -0.671), followed by CAR (0.427). Therefore, the results suggest that greater total 

building coverage, ground surface area and façade area would improve sound absorption, improve the 

barrier effect of buildings, and lower the effect of diffraction. LSI_R, RAF, and BSAPAR were the other 

three explanatory variables for L10, with R2= 0.554. The most effective variable was the landscape shape 

index of the road (LSI_R, -0.691), and the other two were RAF (0.441), for a reason similar to the ―noisy 

areas‖ (see Section 3.3), and BSAPAR (0.267), for a reason similar to CAR in this section. These 

findings suggest that a site with more complexity, smaller road widths, and with either less total building 

coverage or ground surface area would result in a quieter environment in terms of L10. 

The relationships between L80 and the dependent morphological parameters were examined with a 

distance of 300 m because the variances at this distance are higher than those of 0 m, 30 m, 60 m, 100 m, 

and 600 m. Fig. 9 further illustrates that L80 may decrease by 9.2 dBA and 4 dBA with increasing LSI_B 

and LSI_R, respectively. Therefore, controlling the value of LSI_B is a very effective method to reduce 

the background noise of the village, possibly because the sound propagation through the road is much 

less than the barrier effect of the buildings and village layout. In Fig 9 b, the results of stepwise multiple 

regressions show that LSI_R and RAF are the other two variables related to L80, with R2= 0.520. The 

most effective variable was the landscape shape index of the road (LSI_R, -0.768), followed by RAF 

(0.427), for reasons similar to those discussed in Section 3.4.  

  

(a)                                                                                (b) 

Figure 9. The respective relationships between the spatial noise level indices L80 in the villages and the 
landscape shape index of buildings (LSI_B) and the landscape shape index of roads (LSI_R) with a 
distance of 300 m. 
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4. Conclusions  

In view of the seriousness of the traffic noise problem in villages located on or near well-travelled 

motorways in northeast China, this paper discusses how to improve the traffic noise resistance of rural 

residential areas through design and planning.  

Increasing the distance between the village and the motorway can be effective for reducing the traffic 

noise, but there are tremendously different effects on traffic noise attenuation when increasing the 

distance to various village forms. When the distance is increased from 0 to 300 m, the largest and the 

smallest decreases in L10 vary by 6 dBA among various villages, which is different from that from 600 to 

1000 m, by over 11 dBA. Comparing the seven distances, it was found that within 100 m, ―noisy areas‖ 

decreased gradually, by approximately 5% for each additional 30 m of distance, and when the distance 

is greater than 1000 m, there are no ―noisy areas‖ in village. Considering the present situation of the 60 

sites, 55% of the sites would not meet the class-2 standard with which the acoustic environment is 

suitable as residential areas. 

With regard to the orientation relationships, there are two types of village, isotropic and anisotropic. 

Anisotropic villages are more suitable for improving the traffic noise resistance of the rural residential 

areas by changing the orientation relationships. Most villages were anisotropic villages, for which the 

―noisy area‖ is much more affected by the orientation relationship than are Lavg and the ―quiet area‖. 

There were alternately better and worse orientation relationships which can be found by comparing the 

acoustic variables among different orientation relationships, and the better regions were much fewer 

than the worse regions. For example, in northeast China, 30°, 120°, 135°, and 315° could be adopted to 

improve the acoustic environments, and 75°–90°, 255°–270°, 180°, and 345° should be avoided.  

Controlling the urban morphological parameters is an efficient measure to decrease spatial traffic noise 

levels and enlarge quiet areas in villages. A series of urban morphological parameters was found to have 

significant relationships with spatial traffic noise levels (R2˚0.5) in villages of northeast China, which 

can be generalised as follows: ―noisy area‖ has a negative relationship with LSI_B and two other 

variables regarding roads, LSI_R, and RAF; ―quiet area‖ has a positive relationship with LSI_B and ED 



Wenluo Yu & Jian Kang: Landscape and Urban Planning                            [DOI:10.1016/j.landurbplan.2017.02.016] 

Landscape and Urban Planning, Volume 163 , July 2017, Pages 44–55  Page22 

 

and is also related to LSI_R and RAF. In terms of the spatial noise level indices, LSI_B and CAR are the 

two variables associated with L10which is also associated with LSI_R, RAF, and BSAPAR. LSI_B can 

more effectively reduce L80 than LSI_R. RAF is the other parameter combined with LSI_R that is 

significantly related to L80. 
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