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Abstract 

Histopathology-based staging of colorectal cancer (CRC) has utility in assessing the 

prognosis of patient subtypes, but as yet cannot accurately predict individual patient’s 

treatment response. Transcriptomics approaches, using array based or next generation 

sequencing (NGS) platforms, of formalin fixed paraffin embedded tissue can be harnessed to 

develop multi-gene biomarkers for predicting both prognosis and treatment response, leading 

to stratification of treatment.  While transcriptomics can shape future biomarker 

development, currently <1% of published biomarkers become clinically validated tests, often 

due to poor study design or lack of independent validation.  In this review of a large number 

of CRC transcriptional studies, we identify recurrent sources of technical variability that 

encompass collection, preservation and storage of malignant tissue, nucleic acid extraction, 

methods to quantitate RNA transcripts and data analysis pipelines.  We propose a series of 

defined steps for removal of these confounding issues, to ultimately aid in the development of 

more robust clinical biomarkers.     

 

Keywords: Microarray, RNA profiling, NGS, transcriptome, FFPE, biomarker 

 

Abbreviations: CRC, colorectal cancer; AJCC, American Joint Committee on Cancer; TNM, 

Tumour Node Metastasis; GEP, Gene expression profile; CRCSC, CRC Subtyping 

Consortium; CMS, consensus molecular subgroups; MSI, microsatellite instability; FFPE, 

formalin fixed paraffin embedding; S:CORT, Stratification in COloRecTal cancer; PAC, 

probably approximately correct; SOP, standard operating procedures; FF, fresh frozen; IVT, 

in vitro transcription; RIN, RNA integrity number; BBRB, Biorepositories and Biospecimen 

Research Branch; CDP, Cancer Diagnosis Program; TCGA, The Cancer Genome Atlas; 
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ERCC, External RNA Controls Consortium; LDT, laboratory developed test; CLIA, Clinical 

Laboratory Improvement Amendments. 

Variability in colorectal cancer transcriptomic studies 

Colorectal cancer (CRC) is the United Kingdom’s second most common cause of cancer 

deaths 1.  Diagnostic staging of CRC relies on the American Joint Committee on Cancer 

(AJCC) Tumour Node Metastasis (TNM) staging system 2. Classification into AJCC staging 

groups is based on extent of local tumour invasion, regional lymph node involvement and 

evidence of distant metastasis. While this staging system has intrinsic prognostic value, this 

initial categorisation is insufficient for predicting outcome following treatment 3.  Several 

clinical and histopathological markers have been reported to be ‘prognosis predictors’ for 

Stage II patients, by indicating benefit from adjuvant chemotherapy. These include 

extramural vascular invasion, grade 3/poor differentiation, serum carcinoembryonic antigen 

levels, T4 stage/perforation, perineural invasion, CDX2, obstructive tumours, mucinous 

tumours, tumour budding and microenvironmental factors such as immune cell infiltration 1,3-

9.  

 

Biomarker development aimed at guiding clinical decision-making for adjuvant therapy has 

been undermined by a lack of translation to clinical applicability, leading to a high attrition 

rate in effective cancer biomarkers.  This is due in part to confounding issues such as 

inadequate study design, poorly selected clinical cohorts, technically inadequate assays, 

invalidated technology, inappropriate statistical analysis or lack of clinical relevance 10. Thus, 

additional molecular-based biomarkers, informed by underlying CRC biology and the 

contributing role of the microenvironment, are required to stratify patients for biology-

informed treatment.  
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Comparison of single and multi-gene diagnostic testing: The EGFR paradigm  

Molecular DNA-based biomarker testing, traditionally involving analysis of a single 

gene/mutation, have made important contributions in modern therapeutic decision-making in 

CRC, but may also have certain limitations. An example of the limitations associated with 

low throughput-gene testing is evident from the patient stratification approach used for 

cetuximab and panitumumab, monoclonal antibodies which target non-identical epitopes on 

the extracellular domain of EGFR 11.  Screening for mutations in KRAS exon 2 (codon 12/13) 

was initially employed to predict lack of response to anti-EGFR therapeutics, but recently 

studies postulate potential greater clinical utility in assessing additional mutations in KRAS 

exon 2, 3, and 4 and NRAS exons 2, 3, and 4, PIK3CA and BRAF mutations and HER2 

amplification 12-14.  Multi-gene assays, which encompass screening of at least NRAS, KRAS, 

PIK3CA and BRAF mutations, could enable better characterisation and ultimately more 

precise targeting of several druggable EGFR pathway components using therapeutic 

combinations to circumvent chemoresistance 15.  Transcriptional outlier analysis can be used 

to identify high expression of mRNA transcripts in individual samples, in comparison to the 

remainder of the cohort, which encode proteins that can be therapeutically targeted enabling 

individualised treatment options.  Transcriptional outlier analysis of cetuximab resistant CRC 

cell lines, which were wild-type for KRAS, NRAS and BRAF has enabled the identification 

of tyrosine kinase that can be therapeutically targeted to overcome cetuximab resistance 16. 

 

Requirement for a common approach to transcriptomic analysis of clinical specimens 

In recent years, numerous efforts to precisely define the molecular landscape of CRC using 

transcriptional array-based studies have enabled classification of patients into 3-6 subgroups 

based on their underlying gene expression 17-22.  Recently, a CRC Subtyping Consortium 

(CRCSC) established a consensus molecular CRC classification comprising four subgroups 
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(CMS1-CMS4) based on gene expression profiling (GEP) data from six key molecular 

taxonomy papers 23. The CRCSC classifier demonstrated a robust performance across GEP 

platforms and sample collections, although the clinical value of prospective patient 

classification according to CMS subgroup for treatment selection remains to be tested.  

Importantly, while each study has identified prognostic biology associated with their 

identified subtypes, with the exception of the microsatellite instability (MSI) subtype (CMS1) 

and another subtype defined by high expression of mesenchymal genes (CMS4) 23 there are 

very few similarities between biological characteristics of the biomarker-driven classifiers 

that select these subgroups. On detailed examination, of the six classification signatures used 

in the CRCSC study, we identified only one gene, Quinolinate phosphoribosyltransferase 

(QPRT), present in all signatures 24 (Figure 1).  The protein encoded by the QPRT gene is 

involved in de novo NAD biosynthesis using quinolinic acid 25.  The lack of common genes 

in different molecular, predictive or prognostic classifiers is often due to a combination of (i) 

small training sets, (ii) cohorts being limited to one institution or (iii) samples from patients 

with differing percentages of AJCC stages being used in signature generation, resulting in 

low reproducibility in independent datasets 26,27.   
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Figure 1. Lack of commonality between molecular taxonomy classification signatures. A 

Venn diagram, using InteractiVenn, was created, incorporating six published molecular 

taxonomy classification signatures used to create the CMS classification system 24.  Only one 

gene, highlighted by the black arrow, encoding Quinolinate Phosphoribosyltransferase was 

shown to be common among all six signatures. 

 

The lack of commonality that we have highlighted between gene expression signatures may 

potentially be one of the reasons why multi-gene biomarker development rarely translates to 

a validated clinical test.  Therefore, there is a requirement to examine the multi-gene 

biomarker development pathway to identify study design issues or technical variability that 

compromise robust gene expression signatures development for stratification of patients by 

prognosis or response to treatment.  The multi-step biomarker validation pathway involves 
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assessment of; (1) availability and quality of clinical specimens, (2) transcriptomic assay 

performance characteristics, (3) data pre-processing algorithms, (4) mathematical predictor 

model development (5) and assessment of its performance, (6) clinical interpretation of the 

test result, (7) clinical trial design, (8) ethical, legal, and regulatory issues 28.   

 

In this review, we focus on the early steps of this biomarker validation pathway and examine 

in detail the level of scrutiny an investigator, looking to initiate a transcriptomic profiling 

study, should achieve to negate the introduction of study and/or technical variability.  To help 

the reader understand the complexity involved in transcriptome profiling studies, we have 

highlighted the different methods published by independent CRC transcriptome profiling 

studies29-63.  In the online supplementary table 1, we provide a summary of 57 transcriptome 

profiling studies and detail relevant information regarding the study cohorts such as small 

cohort sizes, different proportions of patients with stages 1-4 and number of study sites.  We 

also highlighted that groups have differences in the level of tumour content they found 

acceptable for the study and the way in which the tissue was preserved.  There are two 

common tissue preservation methods currently used for GEP studies; fresh frozen (FF) and 

formalin fixed paraffin embedding (FFPE), with FFPE almost universally used, due to 

retention of morphological features. FFPE is a well-established preservation method for 

histopathological assessment but results in extensive RNA fragmentation and cross-linking, 

impacting on high quality GEP.  It is advantageous if GEP studies can address the RNA 

fragmentation and cross-linking issues, thus enabling FFPE samples to be utilised, as it is 

estimated that a billion FFPE samples are archived in hospitals and tissue banks, often with 

substantial clinical follow up 64.   
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Aside from variables related to collection, preservation and storage of the tissue we noted that 

investigators often used different clinical endpoints to define good and poor prognosis which 

could potentially confound validating gene expression signatures on independent cohorts.  To 

complicate matters, investigators have employed different RNA extraction protocols and 

microarray platforms from a number of different vendors (Affymetrix, Illumina, Agilent, 

Almac) to perform the quantitation of the RNA transcripts and the probe sets utilised by 

different array manufacturers can differ in size and also the target region they anneal to.  

Therefore, it is not uncommon to find in some validation studies that expression data derived 

from specific probe sets is often omitted when comparing a gene signature established using 

one microarray platform with gene expression data derived from a different vendor’s 

platform.  Of note, published studies utilised different pre-processing algorithms such as 

RMA, MAS 5.0, iterPLIER and other vendor specific packages which can affect the outcome 

of whether a gene is included or excluded in a multi-gene biomarker.  We also detail the 

number of studies which do not conduct an independent validation of their developed gene 

expression signature.  In Table 1A-C, we provide a synopsis of the online supplementary data 

to highlight the technical variability that occurs within multi-gene signature based biomarker 

CRC studies aimed at defining molecular taxonomy 17-22, patient prognosis 6,13,65-73 or 

treatment response 74-78.  Standardisation of these studies was commonly confounded by an 

incomplete control of pre-analytical variables, variable performance on different high-

throughput technologies, use of an assortment of bioinformatics curation approaches. 

Additionally, the resulting multi-gene signatures were often not subjected to validation on an 

independent cohort of patient samples.  While the studies detailed in Tables 1A-C primarily 

focus on array-based studies, several reports in the last 3-4 years have begun to describe the 

quantitation of RNA transcripts using a next generation sequencing approach, (RNA-seq), on 

FF resected tissue from CRC patients 79-82. 
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This review identifies sources of technical variability in the GEP array-based biomarker 

development pipeline using FFPE CRC tumours.  We categorise pre-analytical and analytical 

variables into nine distinct sections which can confound development and validation of 

published molecular signatures, to aid in the standardisation of the pipeline.  This 

standardised approach is currently being implemented in the transcriptional profiling of 2000 

CRC FFPE samples within the Medical Research Council and Cancer Research UK funded 

Stratification in COloRecTal cancer (S:CORT) consortium 83. We also detail how eight of the 

nine categories of technical variability that we identify, also have application to quantitation 

of RNA transcripts using a NGS RNA-seq approach. 
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Multiple 
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Molecular 
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Agilent 

(4x44K 

Microarrays) 
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Feature 

Extraction 

Software 
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Yes 
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ND 

ND 

ND 
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Table 1.  Summary of CRC GEP studies.  Variables which can impact on the success of 

gene signature development were detailed and for the purposes of the table, grouped into 5 

overarching categories:  patient cohort information; sample details; RNA profiling objectives; 

array platform and methodology used to derive multi-gene signatures; and validation group 

within original paper.  Data were recorded for a select number of studies relating to (A) 

molecular taxonomy/classification studies (B) predictive signatures and (C) prognostic 

signatures.  Abbreviations used in table are as follows; specimen collections sites (coll sites), 

treatment naïve (treat naïve), molecular classification (mol class), accuracy (acc), sensitivity 

(sens), specificity (spec), non-malignant tissue (NM), malignant tissue (T), robust multiarray 

analysis (RMA), frozen RMA (fRMA),  Affymetrix (affy) and information not provided 

(INP). The full list of publications reviewed for this study can be found in Supplementary 

table 1. 

 

Variable 1 – Quality and quantity of samples 

Prior to commencing array-based or RNA-seq studies, it is important to determine if 

sufficient samples (with adequate malignant tissue percentages) are available for analysis. As 

discussed earlier, gene lists developed for classification, prediction or prognosis or treatment 

response exhibit little commonality between studies and often are heavily dependent on the 

training group selected from the overall cohort.  From reviewing supplementary table 1 there 

is a marked difference in the number of genes included within a gene signature with some 

signatures having less than 10 genes whereas one publication used 1042 genes to perform 

molecular classification.  Some papers suggest to have a small number of genes within a gene 

signature to enable the test to be transferred to other platforms such as quantitative PCR27.  

One group has used a mathematical model called the “probably approximately correct” 

learning technique to predict the number of patients required within a randomly assigned 
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training cohort to enable a 50% overlap between 70-gene signatures generated from the 

randomly assigned training cohorts27.  This study indicated that 2000-3000 samples are 

required in order to generate a robust 70-gene signature, yet of the 57 publications we 

identified from PubMed searches, only one study had over 2000 samples in the training 

cohort27. Two studies used only cell lines and 33 studies had fewer than 100 patients in the 

training cohort, providing a potential explanation as to why many signatures fail to 

demonstrate clinical value during validation on independent cohorts.   

 

Transcriptomic-based biomarker development must conform to appropriate ethical approval, 

attention to clinical and pathological characteristics, inclusion/exclusion study criteria and 

consultation with clinicians and statisticians.  We noted a large disparity in tumour staging 

and tumour content, preservation method, treatment status and metastatic status in studies 

reviewed in Table 1.  In addition, some studies were performed on a single site whereas 

others were across multiple sites, with little evidence of standard operating procedures 

(SOPs) being applied across study centres. Introduction of sampling bias must be considered 

as tissue blocks selected based on availability of tissue may be biased towards more bulky 

tumour subtypes. Defining sample type, method of preservation/storage, transportation, tissue 

area to macrodissect and volume of malignant tissue required by the transcriptomic facility is 

essential in order to account for all these variables at the analytic stage 84.  Determining the 

projected attrition rates throughout the analytical pipeline, by firstly performing a pilot study, 

will allow an informed assessment of minimum tissue requirements and a better estimation of 

whether sufficient samples exist 85.  Before study commencement, SOPs should be developed 

to describe tissue procurement, processing, storage, purification and quantitation of nucleic 

acids and microarray protocols employed.   
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Variable 2 - Tissue Resection 

During surgical resection, the type of drugs employed (including anaesthetics) and the 

duration of exposure in patients, can have substantial effects on subsequent RNA profiles 86.  

In surgery, reducing warm (disruption of blood supply while removing the tissue) and cold 

(time between tumour removal and formalin fixation) ischemia times can improve RNA 

integrity. Some studies indicate CRC tissue shows little variation in GEP with changes in 

warm or cold ischaemia times whereas other studies have demonstrated a tissue-specific 

degradation of RNA with extended ischaemia times 87-90. Regulator of G-protein signalling 1 

(RGS1) and eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) have been identified 

as potential markers of primary colorectal carcinoma tissue quality and post-operative tissue 

quality respectively 91.  Therefore warm/cold ischaemia duration, type of drugs administered 

during surgery, along with type and location of resected tissue should be recorded as potential 

confounding variables for array-based or RNA-seq studies of tissue derived from different 

organs.   

 

Variable 3 - Formalin fixation and paraffin embedding effect on mRNA 

AJCC staging requires histopathological examination of resected tumours. Only six of the 57 

(11%) studies that we reviewed were exclusively performed on FFPE tissue, while two 

studies (4%) used both FF and FFPE material from different cohorts, with the remainder of 

studies being FF or the information was not provided. A FF tissue GEP signature may also 

require validation with FFPE material to ensure probesets are not adversely affected by 

formalin fixation 17. Formalin fixation alternatives do exist (Z7, RCL2®, PAXgene®, 

Allprotect® and RNAlater®), although formalin fixation is considered the standard 

processing method in clinical practice, and the reference approach for routine diagnostics 

validations 92,93. 
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Increasing tumour size leads to increased time for the formalin to penetrate the inner core, 

resulting in potential tissue autolysis 94.  Therefore, potential differences in gene expression 

profiles observed between small biopsy material and large resection material may simply 

arise from differences in formalin penetration and fixation times that are dependent on 

tumour size. FFPE recommendations for nucleic acid studies include ensuring pre-fixation 

time is minimised, use of cold (4oC) 10% neutral buffered formalin and limiting the duration 

of fixation (3 to 6 hours) 94.  RNA integrity from FFPE tissue is poorer in comparison to snap 

frozen, although some studies indicate that having a quick, uniform FFPE method can lead to 

comparable results 95. However, working with FF samples also has its difficulties in routine 

practice, and a degree of attrition is equally expected with this type of sample.  

 

While SOPs should be implemented in transcriptomic studies, investigators need to be wary, 

particularly in retrospective studies where clinical material is being received from multiple 

sites, that processes such as tissue fixation are often not standardised and can lead to variation 

in resulting molecular studies96,97.   Therefore, variations in tumour blocks from different 

hospital sites, surgical resection of the tumour, pre-fixation times and methods should be 

recorded, and the effects of these variables on subsequent array-based or RNA-seq derived 

molecular signatures examined.   

 

Variable 4 - FFPE Tumour Block Storage 

Following FFPE processing, initial guidelines recommended blocks are stored without 

protection from light or air, provided the uppermost section is discarded for RNA 

preparations and extractions are performed within a year 98.  Improvements in RNA 

extraction, in vitro transcription (IVT) and microarray platforms have led an increasing 
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number of studies utilising FFPE blocks which have been stored for longer than a year, with a 

successful RNA profiling outcome 99. The S:CORT programme has performed RNA profiling 

on FFPE tumour blocks from randomised control trials which have been stored at room 

temperature for up to 21 years. Figure 2 illustrates that we did not identify a correlation 

between tumour block age and the following parameters; total RNA 260/280 and 260/230 

ratios, total RNA yield, cRNA yield, QC metrics such as 3'/5' ratio of actin or the overall 

success rate for transcriptional profiling of the sample using the FFPE-optimised Almac Xcel 

Array. On the Xcel array, probes which have been shown to be stable or having comparable 

longitudinal stability during formalin fixation or subsequent storage were included.  For 

arrays containing probes which have not been optimised for FFPE material, we recommend 

recording FFPE tumour block storage duration and using material for RNA extraction within 

2 weeks of sectioning from the block to ensure storage-dependent RNA degradation does not 

further compromise any array-based or RNA-seq study derived signature.   

 

Figure 2. Assessment of the effect of tumour block age on RNA and cRNA parameters 

and success in generating a CEL file.  RNA extraction was performed using the Roche 

High Pure RNA Paraffin Kit and the resulting 260/280, 260/230 and total RNA yield for each 

sample was recorded. During the Affymetrix 3' IVT PLUS Reagent Kit stage, 260/280, 

260/230 and total yields for cRNA and double stranded cDNA were recorded.  Following 
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hybridisation, washing and scanning, the CEL files were normalised using Robust Multi-

array Average (RMA) and QC metrics, including actin 3'/5' ratio, were examined using 

Affymetrix Expression Console Software. Dot plots examining the relationship between 

tumour block year and total RNA 260/280 (A), total RNA 260/230 (B), total RNA yield (C), 

cRNA yield (D), actin 3’/5’ ratio (E) and whether the sample was subsequently hybridised to 

an array (F). 

 

Variable 5 – Tissue macrodissection 

Prior to commencing the study, the minimum quantity of RNA that can be analysed using the 

laboratory’s standard RNA profiling protocol and selected GEP platform, without 

confounding the resulting RNA profile, needs to be determined.  This will enable 

investigators to estimate tissue quantity requirements and therefore determine how many 

sections, of a specified thickness, need to be prepared from each tumour block.  In our current 

S:CORT transcriptome profiling study, when using biopsy material, the annotated tumour 

region can be very small (surface area < 20 mm2 per section) and therefore require a larger 

number of sections to be prepared in comparison to the number of sections prepared from 

resection blocks.  This is particularly relevant if the study involves limited biopsy material, or 

if a multi-omics approach is required from the same tissue block.  

 

An additional section is prepared for H&E staining to enable a pathologist to mark areas of 

tumour presence and assess tumour content.  Tumour cell isolation from FFPE sections 

requires macrodissection of pathologist-annotated tumour regions, which is prone to 

individual subjectivity 100.  As tumours are not uniform in shape throughout the tissue block, 

many investigators prepare consecutive sections, placed onto numbered slides corresponding 

with the order that they were sectioned in, with the top, intermediate and bottom sections 
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being used for H&E staining 101.  Table 1 highlights that the tumour content percentage 

acceptable for the published studies is not reported in over half the studies, or large variations 

in acceptable tumour content (mean 68% with a range of 30-90%) are reported.  A high 

degree of variation exists between different pathologists’ assessment of tumour content in 

defined samples, which could ultimately diminish the prognostic/predictive power of any 

resultant GEP signature 102.  In collaboration with an industrial partner, our laboratory has 

developed a digital pathology platform for automated tumour annotation and percentage 

tumour nuclei measurement, which correlates well with benchmark tumour cell counts 100.   

 

Studies assessing the impact of lower tumour content (cellularity) highlight that pathological 

factors such as the presence of invasive cells and budding at the tumour margin can impact on 

the expression profile and be predictive of survival 103. The tumour content threshold and the 

number and type of cells present in the non-tumour areas can have a major impact on the 

expression level of specific genes.  Inaccurate assessment of tumour content may impact on 

GEP-based clinical diagnostics and GEP-based methods to evaluate tumour content may need 

to be developed to complement the pathologist assessment 104.  In CRC, two of the four 

consensus CMS groups are based on relative changes in the stromal content, namely 

increasing fibroblasts (CMS4) or immune cell infiltration (CMS1) in the tumour 

microenvironment, with the type and location of immune cells having a well-defined impact 

on clinical outcome 105.  Microarray profiling of multiple regions within individual CRC 

FFPE samples by our group has highlighted that the region of tumour used for GEP can 

confound patient CMS classification, further confirming how CRC classification signatures 

are fundamentally affected by intratumoural stromal heterogeneity as well as the underlying 

tumour biology 84.  A further complication is the differences in the GEP from primary tumour 

and metastatic sites, arising from the differing tumour microenvironment, underlying 
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biological factors such as clonality in the primary tumour, or metastatic cells having 

undergone an epithelial mesenchymal transition 84.  Creating an electronic repository of the 

pathologist annotated H&E images will enable researchers to review images to validate array-

based or RNA-seq derived multi-gene signatures, which may be indicative of immune or 

fibroblast cell infiltration.   

 

Variable 6 - RNA Extraction 

Developments in commercial total RNA extraction kits have led to more FFPE tumours 

becoming suitable for analysis.  Although there are protocol variations between kits, they 

typically involve tissue dewaxing by a solvent such as xylene and sequential ethanol 

hydration steps.  Recent non-toxic approaches have been reported, such as elevated heat, 

sonication or proprietary buffers to remove the paraffin.  This is followed by macrodissection 

prior to enzymatic proteolysis of the tissue by a proteinase K incubation. It is reported that 

proteinase K can reverse mono-methyl nucleotide modifications and break the RNA–protein 

cross-links formed during formalin fixation 95,106.  A DNase step is often included to remove 

genomic DNA contamination from downstream applications, while some report additional 

steps to reverse RNA cross-linking which occurs during formalin fixation.  RNA purification 

is commonly performed using spin column-based technology, utilising glass fibres or suitable 

matrices.  Contaminants and/or carry-over of nucleic acid based carriers during RNA 

purification can inhibit downstream enzymatic applications and therefore compatibility with 

downstream array based technologies needs to be assessed.   

 

Recent research also suggests other RNA populations, such as microRNA (miRNA), may be 

more stable in samples with heavily degraded mRNA, particularly from FFPE tissue 107. 

Investigators may therefore require either array-based or RNA-seq platforms to quantitate 
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levels of small RNA populations such as miRNA.  For both array-based and RNA-seq 

studies, it is currently not possible to measure mRNA and miRNA transcripts simultaneously.  

RNA-Seq of mRNA and miRNA require different chemistries used for ligation of RNA-Seq 

adaptors during library preparation protocols and array based platforms use different 

chemistries for ligation of the biotin signalling molecule to miRNA or templates derived from 

mRNA.  Therefore, separate protocols for analysis are required and the financial feasibility of 

running both mRNA and miRNA expression studies in tandem needs to be considered.  For 

investigators looking to quantitate miRNA using either an array-based or RNA-seq approach, 

ensuring the RNA extraction protocol will retain small RNAs (<200 nucleotides) is essential, 

as it has been reported that commercial RNA extraction kits exhibit variable success in 

retaining small non-coding RNAs 108.    

 

Variable 7 - Quantitation and Assessment of RNA Quality 

The FFPE process leads to extensive RNA fragmentation and cross-linking, impacting on 

RNA profiling success. A combination of RNA quantitation and integrity/quality assessments 

are warranted.  There are a number of spectrophotometric (Nanodrop) and fluorescence based 

(Qubit and Quant-iT) methods for RNA quantitation. Spectrophotometric methods require 

little preparation time and function by measuring absorbance at 260nm to determine nucleic 

acid quantity, with measurements at 230nm and 280nm indicative of solvent and protein 

contamination respectively 109. Unfortunately, spectrophotometric methods can report 

artificially high concentrations, due to simultaneous measurement of both RNA and DNA 

readings within the sample.  Fluorescence-based methods have suitable levels of sensitivity 

for RNA, although the dynamic measurement range is smaller than for spectrophotometric 

methods, with a frequent requirement for sample dilution, resulting in longer assay times 110.  

Due to FFPE-dependent fragmentation of RNA, a separate method to examine RNA integrity 
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is often reported, using the Agilent 2100 Bioanalyser along with a proprietary algorithm to 

establish a RNA integrity number (RIN). There is no consensus threshold RIN value for 

downstream applications and we noted large variations in this threshold value between 

studies 40,53,54,63,111.  From our microarray experience, we have generated RNA profiling data, 

deemed successful by assessment of QC metrics such as 3'-5' ratio of housekeeping genes, 

from samples with RIN values as low as 1.3. FFPE also results in chemical modification of 

nucleic acids and crosslinking with proteins, which would not be detected by the Agilent 

2100 Bioanalyser 98.  Performing a PCR-based screen to assess RNA sample quality prior to 

proceeding to analysis on a comparatively expensive array is recommended 112.   

 

Variable 8 - RNA Profiling Platform 

The Biorepositories and Biospecimen Research Branch (BBRB) of the Cancer Diagnosis 

Program (CDP) at the National Cancer Institute advises the use of validated assays, 

standardized training of technical staff in the performance of the assay, lot uniformity of 

reagents, inclusion of appropriate type and number of quality control samples, randomisation 

when possible and standardised methods for documenting and interpreting testing results 113.  

If a GEP signature is to be developed that can harness the power of large archived clinically 

annotated cohorts of FFPE tumour blocks, then inclusion of samples with moderate to severe 

RNA degradation will need to be accommodated, impacting on array platform selection.  

Studies have demonstrated specific mRNA transcripts are more susceptible to degradation, 

due to FFPE block processing or storage 61,114. The 5' end of the mRNA transcript is more 

sensitive to FFPE-dependent RNA degradation, resulting in development of arrays with probe 

designs focused on the extreme 3' of mRNA (Affymetrix Human X3P Array & Almac Xcel 

Array) as these regions are more stable in FFPE tissue. The use of IVT reagents specifically 

designed for FFPE-extracted RNA which include both oligo-dT primers (bind to polyA tail 
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and specific for mRNA) and random hexamers (anneal throughout the target molecule) for 

first strand cDNA synthesis.  This enables amplification at the 3' end and throughout the 

whole transcript, which is more applicable to partially degraded mRNA.  In GEP studies, 

recording the type of IVT, labelling and hybridisation kits and associated lot numbers, 

performance at intermediate steps (such as cRNA and cDNA quantity), dates of 

IVT/hybridisation/scanning, hybridisation time, chip lot number and operator ID is advised 

(Table 2).   

 

Category Recorded Variables 

Tumour Block 

Hospital Site 
Anaesthetic Used 
Warm & Cold Ischaemia Times 
Sample Type (Biopsy / Resection) 
Tumour Block Age 
Tumour Block ID 

Macrodissection 

Macrodissection Date 
Pathologist Responsible for Annotation 
Electronic repository location of annotated images 
Section Thickness (µM) 
No. of Sections Macrodissected 

RNA Extraction 
RNA Extraction Kit Manufacturer 
RNA Extraction Kit Catalogue No. 
RNA Extraction Kit Lot No. 
RNA Extraction Date 

RNA Quantitation / Integrity 

Assessment 

RNA Quantitation Method 
RNA Concentration (ng/µl) 
RNA 260/280 ratio 
RNA 260/230 ratio 
RNA Quantitation Date 
RNA Integrity Measurement Date 
RIN Value 

Microarray Dates 
IVT Date 
Technician Performing IVT Process 
Hybridisation Date 
Scanning Date 

IVT Information 

IVT Starting Amount of RNA (ng) 
cRNA Concentration (ng/µl) 
cRNA 260/280 ratio 
cRNA 260/230 ratio 
ds-cDNA Concentration (ng/µl) 
ds-cDNA 260/280 ratio 
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ds-cDNA 260/230 ratio 

Hybridisation 

Array Type 
Array Catalogue No. 
Array Lot No. 
Hybridisation Start Time 
Hybridisation Finish Time 
Hybridisation Total Time 

Scanning Information DAT Image 
Electronic Location of CEL File 

 

Table 2.  Pre-analytical and analytical variables.  Suggested pre-analytical variables which 

can be recorded to help determine/minimise technical variable-dependent artefacts occurring 

during gene signature development. Analytical variables can be detailed to monitor 

performance of samples through RNA profiling and to enable development of 

exclusion/inclusion sample quality criteria. 

 

Variable 9 - Quality Control (QC) Pipeline 

Development of a QC pipeline for array-based or RNA-seq platforms, integrated into the 

SOP, enables monitoring of the successful preparation of a sample through pre-analytical and 

analytical steps.  From a pre-analytical perspective, samples are blinded by assigning unique 

codes so operators are unaware of related clinical information.  In large microarray studies, 

controlling batch effects is required to minimise artefacts occurring in transcriptomic 

signatures due to non-biological sample variation. Batch effects result from changes in room 

temperature, ozone level, sample degradation over time, changes in reagent lot numbers, 

different technical staff or equipment performance variation 115. The Cancer Genome Atlas 

(TCGA) data has been generated from different platforms, laboratories and over different 

time periods, resulting in batch effects which has been problematic 115,116.  This led to TCGA 

developing statistical batch effect identification tools, enabling implementation of additional 

statistics to account for batch effects in downstream analyses 115. 
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From an analytical perspective, a positive control is run alongside all batches, which can be 

sourced from the manufacturer or a third party.  Alternatively, other investigators replicate 

the sample type being analysed in the study, which for the purposes of this review would be a 

FFPE treated CRC cell line.  Employing a quality control chart such as a Levey-Jennings 

plot, to monitor the GEP performance of the RNA control over a period of time, highlights 

sample runs outside an operator defined number of standard deviations.  Controls for the IVT 

and hybridisation stages are also advised to be included and more detail has been provided on 

the online supplementary files117-122. 

 

Examination of post-analytical variables commences with the initial QC following scanning 

by visually image inspection to identify abnormalities including dimness, uneven signal 

intensity, haze bands, crop circles, scratches, bubbles and areas of poor hybridisation (Figure 

3).   
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Figure 3: Assessment of the scanned Affymetrix Genechip array image for 

abnormalities.  The images were accessed using the Affymetrix AGCC viewer function 

which are generated from the DAT file, which contains the pixel intensity values measured 

during scanning.  Red arrows indicate areas of abnormality in the images from four CRC 

samples hybridised to the Almac Xcel array. 

 

It is important that dry lab analytical processing methods have a similar degree of validation, 

maintenance, document-control and quality assurance as wet lab procedures123.  

Subsequently, data pre-processing is performed using commercial or open source analytical 

platforms to perform a three step process comprising (a) background adjustment, (b) 

normalisation and (c) summarisation. To ensure hybridisation differences between arrays are 

accounted for, measurements from different arrays undergo normalisation to ensure array 
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results are comparable124. Normalisation algorithms (MAS5, RMA, GCRMA etc) are 

different normalisation methods which will lead to different final expression values and 

therefore the normalisation method should be reported124-128. For IVT QC, an assessment 

takes three different approaches (i) positive control performance assessment, (ii) assessing 

endogenous RNA integrity through RNA degradation plots or examination of 3' to 5' ratios of 

housekeeping genes such as GAPDH, (iii) assessing the signal intensity from spike-in polyA 

or ERCC controls. For hybridisation QC, assessing the signal intensity from the four 

hybridisation control transcripts ensures consistent hybridisation within batches.  Additional 

QC metrics related to signal distribution and array comparison can be performed to ensure all 

samples in a batch are within established thresholds.  In the absence of an external quality 

assessment/proficiency scheme we, similar to other RNA profiling studies, have examined 

concordance in gene expression profiles from 42 samples measured both at our department 

and an independent transcriptome profiling centre (Figure 4) 129,130.   
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Figure 4: Concordance assessed using a published gene expression score, between RNA 

profiles measured at our laboratory and an independent transcriptome profiling facility 

using FFPE CRC samples.  Consecutive sections from the same 42 FFPE tumour blocks 

were sent to two different RNA profiling facilities.  RNA extraction was performed using the 

Roche High Pure RNA Paraffin Kit, 3' IVT target preparation and labelling was performed 

using the Affymetrix 3' IVT PLUS Reagent Kit and GeneChip Hybridization, Wash, and 

Stain Kit (Site 1) or the NuGEN Ovation FFPE WTA System and Encore Biotin Module 

(Site2).  Hybridisation, scanning and CEL file generation was performed in an identical 

manner using the Almac Xcel array. 

 

A QC metrics report, including thresholds, accompanied by justification for inclusion or 

exclusion of samples from analysis should be included in publications [Table 3].  

Furthermore, in the development of RNA profiling-based clinical diagnostic biomarker(s), 
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QC data may provide invaluable information for the creation of inclusion/exclusion sample 

quality criteria.  Tables 2 and 3 detail pre-analytical and analytical variables we record within 

the S:CORT programme to enable us to identify factors which may impact on GEP success 

[Table 2]. 

 

Category Recorded Variables 

Data Image File Bubbles, Scratches, Uneven brightness 
Intensity of Image Brightness 

QC Array Metrics (IVT Process) 

Positive Control (Commercial RNA or FFPE) Cell 
3’/5’ for GAPDH and Actin 

RNA Degradation Plot 

lys Average Signal Intensity 

phe Average Signal Intensity 

tyr Average Signal Intensity 

dap Average Signal Intensity 

QC Array Metrics (Hybridisation) 

bioB Average Signal Intensity 
bioC Average Signal Intensity 

bioD Average Signal Intensity 

Cre Average Signal Intensity 

QC Signal Quality/Distribution 

Scale Factor 
Signal Histogram 

Feature Intensity Box Plot 

Signal Box Plot 

QC Array Comparison 
PCA Analysis 
Pearsons or Spearmans Correlation Plots 

Hierarchical Clustering 

 

Table 3.  Quality control metrics.  A list of quality control metrics which can be examined 

to ensure robust high quality data is included during downstream analysis. Lys, phe, tyr and 

dap are bacterially expressed RNA transcripts which have been modified to include a poly-A 

tail.  Four transcripts encoded from E.coli genes bioB, bioC, bioD and the bacteriophage P1 

recombinase gene, Cre, are utilised for hybridisation controls.  PCA, principal component 

analysis. 
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Prior to commercialisation of any multi-gene prognostic test, the gene expression signature 

will need to be validated on independent clinical cohorts.  As shown in Tables 1A-C, and also 

in the full table accessible through the online supplementary data, we detail the limited 

number of published studies which perform an independent validation.  Aside from validation 

of the relevance of the genes involved in the biomarker signature and ensuring the sensitivity 

and specificity of the test, additional work is necessary to validate the assay performance 

prior to commercialisation.  Intra- and inter-assay precision, accuracy, linearity and 

sensitivity are required to be investigated for the specific assay.  While sensitivity assessment 

of an immunoassay for a protein or hormone is relatively simple to conduct, RNA profiling 

from a tissue biopsy has additional complications such as ascertaining the tissue limitations 

that may limit the generation of sufficient RNA.  Factors such as macrodissected area of the 

biopsy FFPE section, tumour cellularity and the impact of infiltration from fibroblasts and 

immune cells will also impact on gene express this threshold will be of use.      

 

Commercialisation of transcriptomic based biomarkers 

Several commercial multi-gene CRC prognostic tests have been developed from 

transcriptomic studies and the commercial product names are listed in the Prognostic / 

Predictive column in supplementary table 1. Commercial and research-based GEP signatures 

often result in a gene score, which is a continuous variable, with an assigned threshold to 

dichotomise samples 131-134.  When technical variability, as detailed in the nine variables 

above, occurs during transcriptomic analysis, this can lead to misclassification of GEP-

derived risk scores close to the assigned threshold 128,130.  Manufacturers suggest requesting 

an additional sample from a different area of the tumour/body to repeat RNA profiling or to 

consider the GEP risk score alongside clinical parameters of prognostic/predictive value 

before reaching a final decision that may impact on therapy 62,128.  Given the complexity and 
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inherent variability of the technology, GEP companies adopt a centralised lab approach and 

perform the test as a laboratory developed test (LDT) 135.  The centralised lab operating the 

LDT is subject to Clinical Laboratory Improvement Amendments (CLIA) laboratory testing 

processes (the ability to perform laboratory testing in an accurate and reliable manner).  The 

LDT currently falls outside of FDA scrutiny for both the analytical (specificity, sensitivity, 

accuracy and precision) and clinical validity of in vitro diagnostic tests 136.  Therefore, LDT 

manufacturers can avoid clinical validation costs and are not subject to the same stringent 

pre-market review or post market surveillance as an FDA approved in vitro diagnostic would 

be required to undergo 137.   

 

Conclusion 

In precision medicine, there are continued discussions on what are the most optimal 

actionable biomarkers (i.e. biomarkers that will indicate particular therapeutic intervention).  

DNA-based biomarker assays are robust, but the number of actionable mutations is modest, 

resulting in clinical benefit for a limited number of patients.  Protein expression by 

immunohistochemistry is widely available and relatively affordable, but there are limited 

informative markers and QA/QC technique concerns 138. Delineating the transcriptional 

landscape has the potential to identify robust signatures that may inform stratification of 

patients for different treatment options.  Future molecular transcriptomic approaches, 

undertaken by international consortiums with large cohort sizes, will require high-throughput 

standardised methodologies. 

 

From published CRC GEP studies, we report pre-analytical, analytical and post analytical 

variables within a GEP study, where adoption of a more robust and standardised process, 

within a transcriptomics laboratory, would lead to a GEP based signature which would be 
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more likely to pass future independent validation studies (Figure 5).  The technical variables 

should be considered as part of a comprehensive approach to RNA profiling studies requiring 

input from a multidisciplinary team (clinicians, statisticians, bioinformaticians, research 

scientists, health economists) both in the planning, execution and clinical impact assessment. 

  

Figure 5: Flow diagram of the RNA profiling technical variables. This diagram depicts 

the nine different categories of technical variables that can affect results derived from high 

throughput RNA profiling technologies, such as microarray and RNA-Seq.  It is 

recommended that investigators review the nine different categories and identify specific 

variables which are relevant to their particular RNA profiling studies. 

 

Future development of in vitro diagnostic RNA profiling tests requires significant investment 

in technical and clinical validation by manufacturers, alongside development of an external 

quality assessment scheme.  Economically, this investment needs to be balanced with 

considerations from the clinical diagnostics laboratory in purchasing and maintaining a RNA 

profiling platform, upskilling technical staff and considering RNA profiling test expenses 
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which may limit the broad adoption of the test.  Alternatively, RNA profiling, performed with 

consideration for the technical variables, could be used for GEP signature discovery before 

transferring to a more accessible technology such as a qPCR platform or miniarray for 

independent validation, test development and its commercialisation 62. Irrespective of the 

approach, having a comprehensive understanding of RNA profiling technical variables, 

leading to consensus guidelines on how to identify and mitigate against them, will result in a 

more robust GEP signature suitable for clinical validation. 
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