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Abstract

Background

Visceral leishmaniasis (VL or kala azar) is the most serious form of human leishmaniasis,

responsible for over 20,000 deaths annually, and post kala azar dermal leishmaniasis

(PKDL) is a stigmatizing skin condition that often occurs in patients after successful treat-

ment for VL. Lack of effective or appropriately targeted cell mediated immunity, including

CD8+ T cell responses, underlies the progression of VL and progression to PKDL, and can

limit the therapeutic efficacy of anti-leishmanial drugs. Hence, in addition to the need for pro-

phylactic vaccines against leishmaniasis, the development of therapeutic vaccines for use

alone or in combined immuno-chemotherapy has been identified as an unmet clinical need.

Here, we report the first clinical trial of a third-generation leishmaniasis vaccine, developed

intentionally to induce Leishmania-specific CD8+ T cells.

Methods

We conducted a first-in-human dose escalation Phase I trial in 20 healthy volunteers to

assess the safety, tolerability and immunogenicity of a prime-only adenoviral vaccine for

human VL and PKDL. ChAd63-KH is a replication defective simian adenovirus expressing

a novel synthetic gene (KH) encoding two Leishmania proteins KMP-11 and HASPB.

Uniquely, the latter was engineered to reflect repeat domain polymorphisms and arrange-

ments identified from clinical isolates. We monitored innate immune responses by whole

blood RNA-Seq and antigen specific CD8+ T cell responses by IFNγ ELISPOT and intracel-

lular flow cytometry.
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Findings

ChAd63-KH was safe at intramuscular doses of 1x1010 and 7.5x1010 vp. Whole blood tran-

scriptomic profiling indicated that ChAd63-KH induced innate immune responses character-

ized by an interferon signature and the presence of activated dendritic cells. Broad and

quantitatively robust CD8+ T cell responses were induced by vaccination in 100% (20/20) of

vaccinated subjects.

Conclusion

The results of this study support the further development of ChAd63-KH as a novel third

generation vaccine for VL and PKDL.

Trial registration

This clinical trial (LEISH1) was registered at EudraCT (2012-005596-14) and ISRCTN

(07766359).

Author summary

Leishmaniasis is a neglected disease of poverty with global public health impact. Caused

by species of the Leishmania parasite, it may manifest itself as slow to heal skin ulcers,

metastatic disease affecting the mouth and nose or systemic disease affecting internal

organs (kala azar or visceral leishmaniasis). In common with other poverty-related

neglected diseases, there have been few incentives for pharma to develop new drugs and

vaccines. The few drugs currently available may cause serious side effects and/or only

work well in some settings. No vaccines are available for prevention (prophylactic vac-

cines) or treatment (therapeutic vaccines). The clinical development of vaccines requires a

series of clinical trials (Phases I–IV). Phase I studies assess primarily safety and are con-

ducted in healthy volunteers. Later phase trials then involve either more healthy subjects

(for prophylactic vaccines) or patients (for therapeutic vaccines) and provide additional

safety data as well as preliminary data on efficacy. Here, we describe the results from a

Phase I first-in-human trial of a new vaccine for leishmaniasis. Our vaccine is novel com-

pared to those previously tested in that it is designed to target induction of a specific type

of immune response (CD8+ T cells). We show here that the vaccine is safe in healthy vol-

unteers and induces robust CD8+ T cell responses. The study represents an important

step towards the development of a leishmaniasis vaccine.

Introduction

The leishmaniases represent a group of heterogeneous diseases caused by intracellular proto-

zoan parasites of the genus Leishmania. Transmitted by phlebotomine flies, approximately 1.5

million new cases occur each year, across 98 countries worldwide, with 20,000–40,000 deaths

[1]. Clinical, epidemiological and experimental evidence suggests that these should be vaccine-

preventable diseases: healing of cutaneous leishmaniasis (CL) results in resistance to reinfec-

tion; sub clinical infection is common, due to effective cellular immunity; ‘leishmanisation’

was highly successful in protecting against CL; and prior history of CL provides cross protec-

tion against visceral leishmaniasis (VL) [2–4]. Furthermore, experimental and clinical data
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support the development of immuno-chemotherapy and therapeutic vaccination as a future

therapeutic option [5–14]. Nevertheless, no vaccines are currently approved for human use.

Although prophylactic vaccines for leishmanaisis represent an ultimate goal and are likely to

have the widest impact on health, the development path for such vaccines is complex. In the

absence of human challenge models or established correlates of protection, a demonstration of

protective efficacy necessitates large sample sizes and protracted time scales. Furthermore, the

induction of memory T cell responses often requires complex prime-boost schedules. In con-

trast, a therapeutic vaccine for use in VL or PKDL patients, as a tool to limit VL progression to

PKDL and /or to reduce infectiousness of PKDL patients and asymptomatic carriers would

have significant benefits both for individuals and communities. The clinical path for develop-

ment of therapeutic vaccines is considerably more straightforward, with shortened time frames

and sample sizes to demonstrate efficacy and a lesser need to establish memory responses [12].

To combat established infection, therapeutic vaccines must overcome parasite survival

strategies that subvert either intrinsic macrophage function [15] or extrinsic immune regula-

tory circuits, such as Th1:Th2 bias, Treg activation, manipulation of checkpoint inhibition and

altered host cellular metabolism [9, 16–19]. CD8+ T cells play a significant role in all forms of

leishmaniasis. As is the case for CD4+ T cells, CD8+ T cells are mostly host protective but may

also drive pathology, depending on the form of leishmaniasis and disease staging [20, 21]. In

VL and PKDL, the weight of evidence suggests a host protective role for CD8+ T cells, includ-

ing: studies of adoptive CD8+ T cell immunotherapy [22]; the correlation of vaccine-induced

immunity with CD8+ T cell effector function [12, 23–28]; and the identification of CD8+ T cell

anergy and / or exhaustion in PKDL patients [29, 30]. Importantly, the therapeutic benefit of

overcoming CD8+ T cell anergy in pre-clinical models of VL has also been demonstrated [18].

To date, first and second generation vaccines for leishmaniasis have been developed to

induce primarily CD4+ T cell responses [31, 32]. Here, we report on a first-in-human clinical

trial of a novel adenoviral-based vaccine for VL / PKDL, specifically designed to elicit CD8+ T

cell responses. The vaccine employs a well-tested simian adenovirus, ChAd63 [33–36], encod-

ing a synthetic gene for the co-expression of two Leishmania antigens with demonstrated vac-

cine efficacy in pre-clinical models (KMP-11 and HASPB). Representing a novel approach, a

synthetic haspb gene was designed to reflect repeat diversity and repeat domain structure of

the gene product as known from clinical isolates of L. donovani from India and East Africa

[12]. We show that this vaccine is safe and induces cytokine-producing CD8+ T cells in high

number and with broad epitope coverage, reflective of an innate immune response involving

activated dendritic cells. These data pave the way for evaluating this vaccine for potential thera-

peutic benefit in PKDL patients, for the prevention of PKDL and in asymptomatic carriers of

L. donovani infection.

Materials andmethods

Subjects

There was one study group consisting of twenty healthy male and female volunteers aged 18 to

50 years who were willing and able to adhere to the conditions of the trial and to give written

informed consent, and who fulfilled the entry criteria. All subjects were negative for rk39.

Ethical and regulatory approval

The study, designated as LEISH1 (EudraCT 2012-005596-14; ISRCTN 07766359), was

approved by the UK National Health Service Research Ethics Committee (North East -York;

13/NE/0071), and the University of York Department of Biology Ethics Committee. LEISH1
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was co-sponsored by the University of York and the York Teaching Hospital NHS Foundation

Trust (YOR-A01161).

Study design

LEISH1 was an open label phase I study to assess the safety and immunogenicity of a candidate

Leishmania vaccine in healthy volunteers. There was no blinding or randomisation or control

arm. Subjects were allocated to receive either low dose (1x1010 vp; n = 5, 4F and 1M) or high

dose (7.5x1010 vp; n = 15, 9F and 6M) of ChAd63-KH as a single intramuscular injection. The

dose selection for this study was based on existing safety and immunogenicity data for other

ChAd-vectored vaccines that indicate a similar safety profile between 109−1010 vp, but with

increasing immunogenicity [33, 35, 37, 38]. 7.5x1010 was selected as the high dose for this

study, as increased reactogenicity of ChAd vaccines has been observed above this dose and this

was also the maximal dose achievable in a 1ml injection with the vaccine lot produced at GMP.

Vaccinations were performed in a step-wise manner, with safety reviews 24h after the first sub-

ject received low dose vaccination, after all low dose subjects had attended their day 14 follow

up and 24h after the first high dose subject was vaccinated. No more than two subjects were

vaccinated on any given day and no subjects were vaccinated simultaneously.

Vaccine

The ChAd63-KH vaccine is a replication defective simian adenoviral vector expressing KH, a

self-cleaving polyprotein comprising L. donovani KMP-11 and HASPB [12]. The vaccine is

presented in glass vials, each vial containing a concentration of 7.5x1010 vp / mL (6.5x108 ifu/

ml) formulated in buffer A438 (10mMHistidine, 7.5% sucrose, 35mMNaCl, 1mMMgCl2,

0.1% PS80, 0.1mM EDTA Disodium, 0.5% ethanol, pH 6.6). Manufacture and labeling of the

drug product were carried out in accordance with the requirements of GMP by Advent Srl.,

Italy.

Clinical follow up

Subjects were followed up at days 1, 14, 28, 56 and 90 post-vaccination. Adverse events were

collected through diary cards, direct questioning, physical examination, and laboratory safety

tests.

Immunogenicity assays

Ex vivo (18h stimulation) assays of frozen and fresh PBMC were performed using Multiscreen

IP ELISPOT plates (Millipore), human IFNγ SA-APL antibody kits (Mabtech) and BCIP

NBT-plus chromogenic substrate (Moss Inc). Cells were cultured in RPMI (Sigma) containing

10% heat-inactivated, sterile-filtered calf serum (Labtech International). Antigens were tested

in duplicate with 250,000 PBMC added to each well of the ex vivo ELISPOT plate. 444 KH

peptide sets (each pepset containing an 11mer with its truncated 10mer, 9mer and 8mer, and

with each 11mer overlapping by 10 amino acids) were assayed in six pools comprising 105

(pool p1), 57 (pool p2), 81(pool p3.1), 81(pool p3.2), 82 (pool p3.3) and 38 (pool p4) pepsets at

10 μg/ml. A second set of KH peptides of 15 amino acids in length, overlapping by 11 amino

acids was also used in three pools of 36 (pool pA), 36 (pool pB) and 38 (pool pC) at 10 μg/ml.

Responses were averaged across duplicates, responses in unstimulated (negative control)

wells were subtracted and responses in individual pools were summed across the KH antigen,

as indicated. Staphylococcal enzyme B (Sigma) at 0.04 μg/ml was used as a positive control.

Plates were counted using an AID automated ELISPOT counter (AID Diagnostika, GmbH,
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algorithm C), using identical settings for all plates. Responses to negative controls were always

<50 SFC per million PBMC. Responses of>50 SFC per million for single peptide pools after

subtraction of background (negative control) were considered positive. Subjects were consid-

ered as responders when pooled sum responses were>200 spots per million PBMC. All results

presented were derived from batched assays conducted with previously frozen PBMC for

greater consistency.

For flow cytometry, responses were assessed by a 7-colour staining panel. Aliquots of

1x106 cells were plated in 96-well plates in 200 μl of medium and stimulated with either no

antigen, peptide pools spanning the KH antigen (pools 1–4; 1 μg/ml) or with Staphylococcal

enterotoxin B (Sigma, 1 ug/ml) for 18 h. Brefeldin A (Sigma; 1 μg/ml) was added for the last

16 h. Cells were incubated with a live-dead discriminating dye (Viability dye e780, 1/1000

eBioscience), and then surface—stained with anti-CD3 eFluor 450 (1/50, eBiosciences), anti-

CD4 FITC (1/20, eBioscience) and anti-CD8 Percp-Cy5 (1/50, eBioscience). After permeabili-

sation, intracellular staining was performed with anti-IFNγ PE-Cy7 (1/50), anti-TNF APC

(1/50) and anti-IL-2 PE (1/50, all eBioscience) and fixed in 4% paraformaldehyde. Acquisition

was performed on the day of staining on a CyAn ADP (Beckman Coulter) and at least 500,000

events were collected per sample. Data were prepared and analysis performed using FlowJo

7.6.5 (Treestar Inc.). Cells were gated on lymphocytes, singlets, live CD3+, CD8+, and then

cytokines combinations (IFNγ, TNF and IL-2). Responses to peptide were determined after

subtraction of the response in the unstimulated control for each sample. Subjects were classed

as responders to individual peptide pools when response exceeded 0.05% of CD8+ T cells.

Anti-KH IgG ELISAs were performed in Nunc-Immuno Maxisorp 96-well plates (Thermo

Scientific) coated with 1 μg/ml of KH protein in carbonate-bicarbonate coating buffer (Sigma)

overnight at 4 oC. Plates were washed with PBS Tween and blocked with 1% BSA. Sera were

diluted at starting concentration of 1:100, added in duplicate and then serially diluted. Plates

were incubated for 2 h at room temperature and then washed as before. Goat anti-human

whole IgG conjugated alkaline phosphatase (Sigma) was added for 1 h at room temperature.

After a final wash, plates were developed by adding p-nitrophenylphosphate at 1 mg/ml in

diethanolamine buffer (Peirce). Optical density (OD) was read at 405 nm on an ELx800 micro-

plate reader and data are shown after subtraction of day zero readings. Subjects were consid-

ered responders with an OD>0.1 on at least one time point.

Whole blood transcriptomics

Whole blood samples pre and post vaccination were collected into PAXGene tubes and frozen

at -80. Data generation and analysis were carried out by the Centre for Genomic Research,

based at the University of Liverpool to provide DE gene lists (see S1 Text for further details).

The reference genome used for alignment was the human reference genome assembly

GRCh37/hg19. R1/R2 read pairs were mapped to the reference sequence using TopHat2 ver-

sion 2.0.10 which calls the mapper Bowtie2 version 2.1.0. Paired-end mapping was carried out

using default parameters except for the option to report a maximum of 1 alignment to the ref-

erence for each read, instead choosing the alignment with the best alignment score (or ran-

domly choosing among equally high scoring alignments) (option “-g 1”). Read counts per gene

were calculated using HTSeq-count (http://wwwhuber.embl.de/users/anders/HTSeq/doc/

count.html). Differential gene expression (DGE) analysis was applied to the read count data

for reads mapped to the human genome.

The analysis was conducted in the R environment using edgeR. For subsequent deconvolu-

tion of the data and identification of major leucocyte subsets, we inputted FPKM values into

CIBERSORT [39]. Data were further explored using Ingenuity Pathway Analysis (Qiagen,
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redwood City, CA, USA) and gene set enrichment analysis (GSEA) using tools developed at

the Broad Institute (MIT, Boston, USA).

Results

Study population

32 individuals were screened for eligibility (Fig 1) and 20 subjects with the demographic char-

acteristics shown in Table 1 were enrolled, vaccinated and followed up. All subjects completed

the study to day 90 post vaccination.

Safety

Local and systemic AEs were limited to Grades 1 and 2, and none were categorized as serious.

There were no SUSARs or SAEs reported in this trial. Three of five (60%) subjects had at least

one local AE in the low dose group, compared to 11 of 15 (73%) in the high dose group (Fig

2A). In total, 35 local adverse events (median = 1 event per patient) were reported across all

subjects. These were largely injection site reactions. Twenty-five events (71%) were related to

the vaccinated arm, and only these events were defined as at least possibly related to vaccina-

tion. In addition, 4 of 5 (80%) subjects had at least one systemic AE in the low dose group,

Fig 1. CONSORT diagram for LEISH1 first-in-human clinical trial.

https://doi.org/10.1371/journal.pntd.0005527.g001
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compared to 13 of 15 (87%) in the high dose subjects (Fig 2A). In total, 64 systemic adverse

events (median = 2 events per subject with low dose and 3 events per subject with high dose)

were reported, 28 of which (44%) were defined as at least possibly related to vaccination (Fig

2B). Overall, AEs were not significantly different between the two doses and were similar to

those reported for other ChAd63 vaccines [33–36]. A transient lymphopenia, as expected [33,

37, 38, 40–43], was observed in 15/15 high dose-vaccinated subjects (p<0.001) and 0/5 low

dose-vaccinated subjects (p = 0.18; Fig 2C). Overall, these data indicate that vaccination with

ChAd63-KH is safe.

Whole blood transcriptional response to ChAd63-KH vaccine

We used RNA-Seq to profile the whole blood transcriptome at 24h post vaccination, allowing

comparison of the innate response induced by ChAD63-KH with other human and murine

studies [44–46]. Analysis of high dose subjects revealed 4799 transcripts that were differentially

represented (denoted as differentially expressed, DE) in whole blood (FDR 0.05; 2542 UP;

2257 DOWN; Fig 3A and S1 Table), with a clear distinction between pre- and post-vaccina-

tion samples (Fig 3B). In contrast, analysis of the five low dose subjects identified only 122 DE

transcripts (107 UP, 15 DOWN) (S2 Table), of which 103/122 (84.4%) were also DE in high

dose subjects.

Given the lymphopenia observed in high dose subjects, we used CIBERSORT ([39] to com-

putationally resolve cell subset composition from the transcriptomic data. In low dose subjects,

no significant changes were observed between pre- and post-vaccination samples for any of

the leucocyte subsets evaluated. High dose vaccination, however, resulted in a significant re-

duction in the frequency of naïve and resting memory CD4+ T cells, with respective increases

in the frequency of monocytes and activated DCs (Fig 3C and S1 Fig). We next scored the fre-

quency of transcripts that were significantly changed in high dose subjects for the 28 immune-

related modules described by Chaussabel et al [47] (Fig 3D). Transcripts contained within

modules that related to myeloid cells (M1.5, M2.6), to interferon inducible genes (M3.1) and

that were associated with inflammation (M3.2, M3.3) were over-expressed in post vaccination

samples. In contrast, modules related to T cells (M2.1, M2.8) and ribosomal protein genes

(M1.7, M2.4) were under-expressed. Finally, we conducted a gene set enrichment analysis

Table 1. Study population.

Characteristic* Low dose (n = 5) High dose (n = 15)

Gender

Male (%) 1 (20%) 6 (40%)

Female (%) 4 (80%) 9 (60%)

Age

N (%) 5 (100%) 15 (100%)

Mean (SD) 35.8 (10.57) 28.7 (8.28)

Median (min, max) 41 (20, 45) 31 (19, 44)

IQR [25%, 75%] [30, 43] [20, 36]

BMI

N (%) 5 (100%) 15 (100%)

Mean (SD) 25.0 (2.00) 24.3 (3.43)

Median (min, max) 24 (23, 28) 23 (19, 30)

IQR [25%, 75%] [24, 26] [21, 27]

*HLA typing data is provided in S5 Table.

https://doi.org/10.1371/journal.pntd.0005527.t001
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Fig 2. Summary of local and systemic adverse events in LEISH1. A. Percentage of subjects vaccinated
with low or high dose ChAd63-KHwith at least one grade 1 (open bar) or grade 2 (grey bar) adverse events.
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using the modules described by Li et al [48]. Post vaccination samples were significantly

enriched for modules related to viral sensing and monocyte / DC activation, whereas pre- vac-

cination samples were enriched predominantly for modules defining T cells (S3 Table). Col-

lectively, these data point to a lymphopenia predominantly affecting CD4+ T cells, and provide

evidence of DC activation as an early consequence of innate immune activation.

Next, we analyzed DE genes using Ingenuity Pathway Analysis, identifying positively scor-

ing canonical pathways associated with phagocyte and APC function and negatively scoring

pathways associated with T cell activation (S2A Fig). Key regulators upstream of myeloid cell

differentiation and function included CORT, FANCA, LGR4, PLA2G2D, PLA2G10, DEPTOR

and RNASE2 (S2B Fig). 100/103 (97%) of the commonly DE transcripts showed a greater fold

change in high dose subjects than in low dose subjects (Fig 4A), likely reflecting the effects of

both monocyte/DC enrichment and vaccine dose response. An interferon signature was prom-

inent in both high and low dose subjects (Fig 4B and 4C), with IFNG, IRF7, IFNL1, IFNA2,

STAT1 and IRF3 amongst the most highly IPA-predicted upstream regulators (S4 Table).

Finally, Quinn et al recently reported that antigen expression by recombinant viruses was

negatively correlated with their ability to trigger activation of selected immune response genes

(Module C2; [44]). We found that with few exceptions (ATF3, SOCS1), the response to immu-

nization of humans with 7.5 x 1010 vp of ChAd63-KH was broadly similar to that seen in mice

immunized with ChAd vectors. However, few Module C2 genes were DE following low dose

immunization (Fig 4D).

CD8+ T cell responses induced by vaccination

To assess immunogenicity, we focused primarily on the induction of effector CD8+ T cell

responses, determined by direct IFNγ ELISPOT using a pools of pepsets, each containing 8–11

amino acid peptides [12] that span the KH vaccine antigen (Fig 5A). All results presented here

were obtained from assays conducted with previously frozen PBMC for greater inter-assay

consistency. Analysis of the response across all peptide pools on an individual basis (Fig 5B)

and collectively (S3 Fig) indicated that: i) there was an overall response rate of 17/20 (85%),

with 5/5 (100%) responders in the low dose vaccine group (subjects 1, 3, 4, 6, and 10) and

12/15 (80%) responders in the high dose group (using a non-responder cut off of<200 spots);

ii) for most subjects, the response showed the characteristic expansion and contraction phases

of a peripheral T cell immune response; iii) in 8/20 (40%) subjects, peak summed responses

across all pools were greater than 1200 spots per million PBMC (low dose: mean 1537, 95%

CI 447, 2627; high dose: mean 866, 95% CI 308, 1424; p = 0.08); and iv) time to peak response

varied from 14–56 days, but with some responders showing a relatively flat kinetic. The me-

dian number of pools recognized by low dose subjects was six, greater than that recognized

by high dose subjects which was three (p = 0.043; Fig 5D) and there was a significant cor-

relation between number of pools recognized and total IFNγ response (Fig 5E; R2 = 0.3437,

p = 0.0134). However, we found no significant correlations between the summed peak ELI-

SPOT response to peptide pools p1-4 in high dose subjects and: i) the extent of lymphopenia;

ii) the respective changes in whole blood leucocyte subset frequency; or iii) the relative enrich-

ment for different gene expression modules.

B.Number of local and systemic adverse effects in subjects vaccinated i.m. with 1x1010 vp (open bar) or
7.5x1010 vp (grey bar). Data are shown as median ± interquartile range.C. Individual peripheral blood
lymphocyte counts in low dose (open circles) and high dose (black circles) subjects pre- vaccination and at
24h and 14 days post-vaccination. Significant lymphopenia was defined as >25% reduction in lymphocyte
count.

https://doi.org/10.1371/journal.pntd.0005527.g002
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Fig 3. Innate immune response to ChAd63-KH vaccination.Whole blood from high dose subjects was collected before vaccination and
at 24h post vaccination and processed for RNA-Seq.A. Volcano plot showing Log2FC in gene expression (y axis) against signal intensity
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We next analyzed cytokine production by CD8+ T cells using intracellular cytokine staining

(ICS), limiting our analysis to cells obtained at d28 post vaccination, a time-point when most

subjects responded by ELISPOT. CD8+ T cells readily produced IFNγ, TNF and IL-2 in re-

sponse to peptide stimulation (Fig 6A). Analysis of co-expression of IFNγ, TNF and IL-2

across all subjects indicated that responses primed with ChAd63-KH in naïve individuals were

dominated by single cytokine producing CD8+ T cells (Fig 6B). Dual cytokine-producing cells

were observed in all combinations, but triple cytokine-producing cells were rarely detected

(Fig 6A and 6C). Analysis by individual peptide pool and subject revealed a cytokine response

to at least one peptide pool in 5/5 of low dose subjects and 15/15 of high dose subjects, with no

evidence of immune-dominance or cytokine selectivity associated with any of the peptide

pools (Fig 6C). Of note, the three high dose subjects previously scored as non-responders by

IFNγ ELISPOT (subjects 18, 19 and 28) made cytokine responses when assayed by ICS (S4

Fig), indicating an overall CD8+ T cell response rate following vaccination of 100%.

CD4+ T cell and antibody response to vaccination

To include potential CD4+ T cells responses (as well as CD8+ T cell responses), we restimu-

lated PBMC using an alternate set of 15mer peptides (pools A, B and C) (Fig 5A). The overall

responder frequency was 70% (14/20; Fig 7A), possibly reflecting less efficient antigen process-

ing. Nevertheless, responses to these peptide pools were also robust (Fig 7B), again with a

suggestion of greater peak summed responses in low dose subjects (low dose: mean 1668, 95%

CI 19, 3317; high dose: mean 413, 95% CI 153, 673; p = 0.015). One subject (number 28)

responded to these pools but not to the shorter truncated peptide sets used to specifically mea-

sure CD8+ responses.

Measurement of IgG responses by ELISA against recombinant KH protein demonstrated

that ChAd63-KH induced a modest antibody response, measurable on at least one time point,

in 3/5 of low dose subjects and 10/15 of high dose subjects (Fig 7C). A correlation between

antibody response and IFNγ response to pools ABC was only observed at day 90 post vaccina-

tion (p = 0.0356; R2 = 0.2973). We did not find any significant correlations between antibody

responder versus non-responder status with any of the variables (lymphopenia, subset compo-

sition or module response) measured at 24h post vaccination.

Discussion

The development of vaccines for the prevention and treatment of leishmaniasis represents a

significant unmet medical need, and although it is well recognised that leishmaniasis provides

a good target for vaccination [2], progress towards this goal has been frustratingly slow. Here,

we report on the safety and immunogenicity of a novel vaccine designed for induction of

CD8+ T cells. Although the design of the vaccine is compatible with both prophylactic and

therapeutic use, our initial clinical development plan for ChAd63-KH is focused on use of this

vaccine as a single dose therapeutic agent. We show that single dose immunization of healthy

adults with this simian adenoviral-vectored vaccine, ChAd63-KH, was safe and induced potent

CD8+ T cell responses to a wide range of epitopes.

(Log2CPM).B. Principle component analysis showing clustering of pre- (black, by subject number) and post- (red, by subject number)
vaccination samples.C. Frequency of naïve and resting memory CD4+ T cells, monocytes and activated DCs pre and post vaccination, as
determined by CIBERSORT analysis.D. Module level analysis comparing gene representation pre and post vaccination. Colour code
represents proportion of genes significantly changed (over-represented, red; under-represented, blue) for each of the 28 modules described
by Chaussabel et al [47].

https://doi.org/10.1371/journal.pntd.0005527.g003
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Fig 4. Interferon signatures associated with ChAd63-KH vaccination. A. Scatter plot showing magnitude
of differential expression for the 103 genes commonly regulated in low and high dose subjects.B and C.DE
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First generation prophylactic vaccines for leishmaniasis were shown to be ineffective, in

spite of their ability to induce reasonable Th1 type cytokine responses [31]. Nevertheless some

of these vaccines have been shown to have promise in a therapeutic setting [5–7]. The range of

second-generation recombinant protein-based vaccines investigated in pre-clinical animal

models, including mice, hamsters and primates, is constantly growing but few have been pur-

sued through to clinical trial (reviewed in [2, 4]). Recent clinical activity has been largely

focused on the improvement of adjuvants for use in combination with recombinant poly-pro-

tein vaccines [32, 49–53]. However, until now, no clinical trials have been conducted with

leishmaniasis vaccines where delivery route has been specifically selected to induce CD8+ T

cells, namely third generation DNA and viral vaccines.

The induction of CD8+ T cells has been the mainstay of vaccine development for other

intracellular pathogens [35, 40, 54, 55], and there is ample evidence to support a role for CD8+

T cells in immune mediated protection against leishmaniasis [18, 20, 21, 23, 56–58][26]. Nota-

bly, HuAd5-KH demonstrated therapeutic benefit after a single vaccination in an experimental

model of chronic L. donovani infection [12] and HuAd5-A2 (expressing the Leishmania A2

antigen) was shown to have prophylactic benefit in a primate model of infection, albeit requir-

ing a recombinant A2 protein / rIL-12 boost [28]. For clinical use, simian adenoviruses are

now widely regarded as one of the most effective means to induce CD8+ T cell responses, and

ChAd-based vaccines against malaria, TB, HCV, HIV, Ebola, and Rift Valley fever are in clini-

cal development [33, 37, 40, 42, 59]. ChAd63-KH appears to have a similar safety profile to

these vaccines, suggesting that from a safety perspective, ChAd63-KH is suitable for further

clinical development.

ChAd63-KH has many novel features not previously adopted in the leishmaniasis vaccine

development pipeline. First, we co-translationally expressed two leishmanial antigens in the

same vector using a viral 2A sequence, saving costs compared to the generation of modular

vaccines [26], and obviating the potential of fused polyprotein vaccines to create neo-epitopes

and/or alter immunogenicity [60]. 2A sequences have been used in gene therapy applications

[61, 62] in experimental vaccines [12, 63], and in an RSV vaccine clinical trial [64], but this is

the first time such a strategy has been used in a leishmaniasis vaccine. Second, we engineered

the repeat sequences of the haspb gene to take account of the sequence diversity and repeat

structure found in field isolates of L. donovani in India and East Africa, the principal Old

World endemic settings for VL and PKDL. This is the first time that parasite strain diversity

has been taken into account in this way in a leishmaniasis vaccine. It is noteworthy that the

repeat regions of HASPB appear well recognized in vaccinated humans, in keeping with their

presumptive role in vaccine-induced efficacy in animal models [23, 24].

Although there was considerable heterogeneity of response at the individual level, across all

subjects studied, we were not able to assign any significant immuno-dominance to either anti-

gen or to any specific region of HASPB. KMP-11 is non-polymorphic and in vitro mapping of

immunogenic peptides of KMP-11 had suggested that this molecule contained a plethora of

epitopes available for recognition by multiple class I loci [57]. This was borne out by the high

response rate of ChAd63-KH vaccinated subjects to peptide pool 1 (60% by IFNγ ELISPOT;
100% for any cytokine by ICS). Furthermore, in addition to responses targeted to the repeat

regions of HASPB, the high level of response to the conserved HASPB N and C termini

genes associated with the IPA canonical IFN pathway in low dose (B) and high dose (C) subjects. Degree of
fold change is shown in red scaling.D. Radar plot showing fold change in gene expression for genes identified
by Quinn et al as related to antigen presentation (module C2; [44]). Data are shown for low dose (red) and
high dose (blue) subjects, as well as for mice immunized with ChAd3 (yellow) and ChAd63 (green). Mouse
data originated fromQuinn et al [44].

https://doi.org/10.1371/journal.pntd.0005527.g004
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Fig 5. CD8+ T cell responses to ChAd63-KH vaccination. A. Schematic to illustrate coverage of the KH antigen by the CD8
selective peptide pools (Pools 1, 2, 3.1, 3.2, 3.3 and 4) and CD4/8 15mer peptide pools (Pools A, B and C) used in this study.B.
ELISpot response to ChAd63-KH vaccination over time by individual low dose (Don 1, 3, 4, 6, 10; open symbols) and high dose
(closed symbols) subjects. Data represent sum of response to all peptide pools at each time indicated. Average responses for low and
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supports the use of this antigen as a potential vaccine candidate for strains of L. donovani

where there may be additional repeat diversity beyond that captured in our synthetic gene,

and for species where similar conserved regions are present in HASP proteins (e.g. L.major

and L.mexicana). Hence, our initial immunogenicity data in vaccinated subjects suggests that

the KH antigen fulfills the criteria for a pan-leishmaniasis vaccine candidate. Although the

combination of KMP-11 and HASPB gives excellent broad epitope recognition in naïve sub-

jects (combined responses rates of 85% for IFNγ ELISPOT; 100% for any cytokine), qualitative

or quantitative improvement on this response might still be possible, through alternate immu-

nization schedules (e.g. prime-boost) or the introduction of additional vaccine antigens. The

cost of developing vaccines at GMP precludes the separate evaluation of ChAd63-KMP-11 and

ChAd63-HASPB as vaccine candidates in humans.

The CD8+ T cell response elicited by a single dose vaccination with ChAd63-KH appears

dominated by IFNγ, TNF or IL-2-producing cells, with minimal evidence of poly-functional-

ity. This may not be wholly surprising, given that previous clinical studies have shown that

poly-functionality becomes more manifest following prime-boost vaccination [42]. Although

there is considerable evidence that poly-functionality of the CD4+ T cell response correlates

with vaccine-induced protection in mouse models of cutaneous leishmaniasis [65, 66], similar

data are unavailable from human leishmaniasis vaccine studies, where cytokine profiling has

been confined to culture supernatants [53]. Likewise, although we have shown poly-functional

responses following therapeutic vaccination with HuAd5-KH in mice [12], direct evidence of

their superiority to single cytokine producing T cells in any therapeutic setting is lacking. Of

note, single cytokine producing CD8+ T cells have been correlated with protection against

influenza virus infection [67]. Given the diversity of human leishmaniasis and the variable set-

tings for which a leishmaniasis vaccine may be deployed, correlating cytokine responses at the

single cell level with clinical vaccine efficacy data will be required to identify a dominant pro-

tective role for polyfunctional T cells.

For the first time in the context of a leishmaniasis vaccine trial, we conducted whole blood

transcriptomic profiling of the innate immune response. Not surprisingly, we observed a re-

sponse at 24h post vaccination dominated by an interferon signature, as noted in similar

analyses of other vaccines [44, 48, 68–70]. Transcriptomic analysis using whole blood was

confounded by an observed lymphopenia in recipients of high doses of ChAd63-KH, leading

to an apparent increase in myeloid cell frequencies and consequently an artificial enrichment

of related cell-specific transcripts. Since this is a common confounder, we used leucocyte sub-

set deconvolution to confirm that monocyte and DC activation resulted from vaccination.

Although the current study was not designed to detect significant differences in immunogenic-

ity between low and high dose subjects, low dose subjects showed a trend towards generating

broader responses. Previous transcriptomic analysis of the murine response to various ChAd

vectors identified a module of interferon-stimulated genes (Module C2) that was indicative of

heightened innate immunity at the expense of: i) vector-driven antigen expression in dendritic

cells; and ii) subsequent CD8+ T cells response [44]. Although we could not directly measure

antigen expression in this study, it is noteworthy that most Module C2 genes changed in their

expression following high dose vaccination with ChAd63-KH, whereas few were changed fol-

lowing low dose vaccination. Hence, it is tempting to speculate that the lower innate response

high dose subjects are shown in S3 Fig.C. Peak response to each peptide pool for low (open circles) and high (black circles) dose
subjects. Median responses for high (solid line) and low (dotted line) dose subjects are also shown.D. Breadth of response, reflecting
number of peptide pools recognized by each subject group. E. Correlation between breadth of response and sum of total response (R2

= 0.3437, p = 0.0134).

https://doi.org/10.1371/journal.pntd.0005527.g005
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Fig 6. Intracellular cytokine production by CD8+ T cells. A. IFNγ, TNF and IL-2 responses at day 28 post vaccination
to individual peptide pools. Box and whisker plots showing frequency of cytokine producing cells as % of total CD8+ T
cells. Data are pooled for all low and high dose subjects (n = 20).B.Cytokine producing CD8+ T cells producing one, two
or three cytokines are shown by individual donor for each peptide pool. Low dose (open circles) and high dose (closed
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circles) subjects are shown separately.C.Heat map to show frequency of low dose (left; n = 5) and high dose (right;
n = 15) subjects responding (at a cut-off of 0.05%) with single, dual or triple cytokine production after stimulation with each
peptide pool.

https://doi.org/10.1371/journal.pntd.0005527.g006

Fig 7. Antibody and CD4+/CD8+ T cell responses to ChAd63-KH vaccination. A. ELISPOT response to ChAd63-KH vaccination
over time for individual low dose (Don 1, 3,4,6,10, open symbols) and high dose (closed symbols) subjects. Data represent sum of
response to peptide pools A, B and C at each time indicated.B. Peak response to each peptide pool for low (open circles) and high
(black circles) dose subjects. Median responses for high (solid line) and low (dotted line) dose subjects are also shown.C. Antibodies
specific for the rKH protein were assayed by ELISA. Data are shown for all subjects at the indicated times post vaccination.

https://doi.org/10.1371/journal.pntd.0005527.g007
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provoked by low dose vaccination may support a broader CD8+T cell response by allowing for

heightened antigen expression. Should this be borne out in further studies in patients (see

below), low dose vaccination schedules may provide considerable cost savings.

Although we are proposing clinical development of ChAd63-KH first in a therapeutic con-

text, we are aware of potential challenges ahead. For example, therapeutic vaccination with

ChAd3-NSmut/MVA-NSmut was unable to overcome the immune dysregulation associated

with chronic Hepatitis C Virus (HCV) infection and vaccine-induced T cell responses were

impaired compared to that seen in healthy vaccine recipients [71]. Although qualitatively simi-

lar immune dysregulation is observed in active VL and to a lesser extent in PKDL [19, 72],

experimental data in models of established VL suggest that therapeutic vaccination with viral

vectors can nevertheless lead to functional T cell activation and reduced parasite burden [12,

18]. Whether this can be recapitulated in humans with PKDL (for which there is no animal

model) or in asymptomatic VL patients (where immune dysregulation may be less evident)

remains to be tested in the clinic. New options for boosting the efficacy of therapeutic vaccines

are also being developed. For example, recent studies in SIV-infected rhesus monkeys indicate

that combining therapeutic vaccination with Ad26/MVA in conjunction with TLR7 stimula-

tion can lead to T cell responses capable of inducing viral clearance [73]. Similar approaches

could be tested in leishmaniasis once ChAd63-KH has been shown to be safe through dose

escalation and age de-escalation safety studies in patients.

A therapeutic vaccine for VL / PKDL could have major health impacts: preventing PKDL

development after treatment for VL; increasing cure rate in PKDL patients (with or without

drug therapy); and protecting communities against ongoing VL transmission. Although exten-

sive economic modeling studies to show the cost-benefit of therapeutic vaccines in PKDL has

not been performed to date, similar studies for VL vaccines suggest that a prophylactic vaccine

would be highly cost effective even at a cost of $100 [74]. In addition to our safety and immu-

nogenicity data, the absence of a requirement for long lasting memory cell induction, the rela-

tively short time scales and small sample sizes involved in assessing therapeutic efficacy and an

alignment to established drug target product profiles provide a compelling case for further

clinical evaluation of this new treatment strategy.
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