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ABSTRACT

We define Recurrent Gaussian Processes (RGP) models, a general family of
Bayesian nonparametric models with recurrent GP priors which are able to learn
dynamical patterns from sequential data. Similar to Recurrent Neural Networks
(RNNs), RGPs can have different formulations for their internal states, distinct
inference methods and be extended with deep structures. In such context, we
propose a novel deep RGP model whose autoregressive states are latent, thereby
performing representation and dynamical learning simultaneously. To fully ex-
ploit the Bayesian nature of the RGP model we develop the Recurrent Variational
Bayes (REVARB) framework, which enables efficient inference and strong reg-
ularization through coherent propagation of uncertainty across the RGP layers
and states. We also introduce a RGP extension where variational parameters are
greatly reduced by being reparametrized through RNN-based sequential recogni-
tion models. We apply our model to the tasks of nonlinear system identification
and human motion modeling. The promising obtained results indicate that our
RGP model maintains its highly flexibility while being able to avoid overfitting
and being applicable even when larger datasets are not available.

1 INTRODUCTION

The task of learning patterns from sequences is an ongoing challenge for the machine learning com-
munity. Recurrent models are able to learn temporal patterns by creating internal memory represen-
tations of the data dynamics. A general recurrent model, comprised of external inputs ui, observed
outputs yi and hidden states xi, is given by

xi = f(xi−1,ui−1) + εxi , (1)

yi = g(xi) + εyi , (2)
where i is the instant of observation, f(·) and g(·) are unknown nonlinear functions respectively
called transition and observation functions, εxi ∼ N (εxi |0, σ2

xI) and εyi ∼ N (εyi |0, σ2
yI) are re-

spectively Gaussian transition and observation noises, and I is the identity matrix. The recurrent
nature of the model is expressed by the state variables xi, which are dependent on their past values,
allowing past patterns to have influence in future outputs.

In recurrent parametric models, such as Recurrent Neural Networks (RNN), both the transition and
observation functions are modeled with weight matrices W , U , V and nonlinear element-wise
activation functions φf (·) and φg(·):

xi = φf (W>xi−1,U
>ui−1), (3)

yi = φg(V >xi). (4)

As argued by Pascanu et al. (2013), the basic recurrent structure in Eq. 3 can be made deep, for
example by adding multiple hidden layers comprised of multiple transition functions, where the
output of each layer is used as the input of the next one.
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The difficulties related to learning dynamical structures from data (Bengio et al., 1994) have moti-
vated the proposal of several RNN architectures in the literature, such as time-delay neural networks
(Lang et al., 1990), hierarchical RNNs (El Hihi & Bengio, 1996), nonlinear autoregressive with
exogenous inputs (NARX) neural networks (Lin et al., 1996), long short-term memory networks
(Hochreiter & Schmidhuber, 1997), deep RNNs (Pascanu et al., 2013) and the RNN encoder-decoder
(Cho et al., 2014). The usefulness of RNNs has been demonstrated in interesting applications, such
as music generation (Boulanger-lewandowski et al., 2012), handwriting synthesis, (Graves, 2013)
speech recognition (Graves et al., 2013), and machine translation (Cho et al., 2014).

However, one well known limitation of parametric models, such as RNNs, is that they usually require
large training datasets to avoid overfitting and generalization degradation. In contrast Bayesian
nonparametric methods, such as Gaussian Processes (GP) models, often perform well with smaller
datasets. In particular GP-based models are able to propagate uncertainty through their different
structural components, something which ensures that when data is not present in a particular region
of input space the predictions do not become over confident.

The general recurrent Eqs. 1 and 2 have been widely studied in the control and dynamical sys-
tem identification community as either non-linear auto-regressive models with exogenous inputs
(NARX) models or state-space models (SSM). Here we are particularly interested in the Bayesian
approach to those models (Peterka, 1981). In this context, several GP-NARX models have been pro-
posed in the literature (Murray-Smith et al., 1999; Solak et al., 2003; Kocijan et al., 2005). However,
these models do not propagate the past states’ uncertainty through the transition function during the
training or prediction phase. Girard et al. (2003); Damianou & Lawrence (2015) rectify this prob-
lem. Nevertheless, in all of the above standard NARX approaches the autoregressive structure is
performed directly with the observed outputs, which are noisy.

A more general alternative to standard NARX models is the use of SSMs. Such structures have
been explored recently by the GP community. Frigola et al. (2014) proposed a variational GP-SSM
where both the transition and observation functions can have GP priors. Although they present
results exclusively for the case where only the transition is modeled by a GP, while the observation
has a parametric form. Conversely, Moreover, the inference required an additional smoothing step
with, for example, a sequential Monte Carlo algorithm. Svensson et al. (2015) also consider a GP-
SSM, but with a reduced-rank structure, and perform inference following a fully Bayesian approach,
using a particle MCMC algorithm.

All the aforementioned dynamic GP models contain recurrent structures. Each model makes a par-
ticular choice for the definition of the states xi and the algorithm used to perform inference. Because
all these GP models incorporate recurrent structures we refer to this general class of models as the
Recurrent GP (RGP) family of methods. These are models such as in Eqs (1) and (2) which in-
corporate GP priors for the transition and/or observation functions. Inspired by developments in
the RNN community we propose a novel RGP model which introduces latent autoregression and is
embedded in a new variational inference procedure named Recurrent Variational Bayes (REVARB).
Our formulation aims to tackle some issues of past RGP structures. Our algorithm allows the RGP
class of models to easily be extended to have deep structures, similar to deep RNNs. Furthermore,
we develop an extension which combines the RGP and RNN technologies by reparameterizing the
means of REVARB’s variational distributions through a new RNN-based recognition model. This
idea results in simpler optimization and faster inference in larger datasets.

Recently, Sohl-Dickstein & Kingma (2015) have detailed interesting similarities between the log-
likelihood training of RNNs and the variational Bayes training objective in the context of generative
models. In the present work we also follow a variational approach with the proposed REVARB
framework, but with respect to RGP models.

The rest of the paper is structured as follows. In Section 2 we briefly summarize the standard GP
for regression. In Section 3 we define the structure of our proposed RGP model. In Section 4 we
describe the REVARB inference method. In Section 5 we present some experiments with REVARB
in some challenging applications. We conclude the paper with hints to further work in Section 6.
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2 STANDARD GP MODEL FOR REGRESSION

In the GP framework, a multiple input single output nonlinear function f(·) applied to a collection
of N examples of D-dimensional inputsX ∈ RN×D is given a multivariate Gaussian prior:

f = f(X) ∼ N (f |0,K), (5)

where a zero mean vector was considered, f ∈ RN and K ∈ RN×N ,Kij = k(xi,xj), is the
covariance matrix, obtained with a covariance (or kernel) function k(·, ·), which must generate a
semidefinite positive matrixK, for example the exponentiated quadratic kernel:

k(xi,xj) = σ2
f exp

[
−1

2

D∑
d=1

w2
d(xid − xjd)2

]
, (6)

where the vector θ = [σ2
f , w

2
1, . . . , w

2
D]> is comprised of the hyperparameters which characterize

the covariance of the model.

If we consider a Gaussian likelihood p(y|f) = N (y|f , σ2
yI) relating the observations y and the

unknown values f , inference for a new output f∗, given a new input x∗, is calculated by:

p(f∗|y,X,x∗) = N
(
f∗|k∗N (K + σ2

yI)−1y, k∗∗ − k∗N (K + σ2
yI)−1kN∗

)
, (7)

where k∗N = [k(x∗,x1), · · · , k(x∗,xN )], kN∗ = k>∗N and k∗∗ = k(x∗,x∗). The predictive
distribution of y∗ is similar to the one in Eq. (7), but the variance is added by σ2

y .

The vector of hyperparameters θ can be extended to include the noise variance σ2
y and be determined

with the maximization of the marginal log-likelihood log p(y|X,θ) of the observed data, the so-
called evidence of the model. The optimization is guided by the gradients of the evidence with
respect to each component of the vector θ. It is worth mentioning that such optimization can be seen
as the model selection step of obtaining a plausible GP model from the training data.

3 OUR RECURRENT GP MODEL

We follow an alternative SSM approach where the states have an autoregressive structure. Differ-
ently from standard NARX models, the autoregression in our model is performed with latent (non-
observed) variables. Thus, given L lag steps and introducing the notation x̄i = [xi, · · · , xi−L+1]>

we have

xi = f(x̄i−1, ūi−1) + εxi , (8)

yi = g(x̄i) + εyi , (9)

where ūi−1 = [ui−1, · · · , ui−Lu ]> and Lu is the number of past inputs used. Even if the output of
the transition function in Eq. 8 is chosen to be 1-dimensional, it should be noticed that the actual
hidden state x̄i ∈ RL is multidimensional for L > 1.

If we have H transition functions, each one comprising a hidden layer, it naturally gives rise to the
deep structure

x
(h)
i = f (h)

(
x̂
(h)
i

)
+ ε

(h)
i , f (h) ∼ N

(
0,K

(h)
f

)
, 1 ≤ h ≤ H (10)

yi = f (H+1)
(
x̂
(H+1)
i

)
+ ε

(H+1)
i , f (H+1) ∼ N

(
0,K

(H+1)
f

)
(11)

where we put GP priors with zero mean and covariance matrix K(h)
f on the unknown functions

f(·)(h), the noise in each layer is defined as ε(h)i ∼ N (0, σ2
h) and the upper index differentiates

variables and functions from distinct layers. We also introduce the notation

x̂
(h)
i =



[
x̄
(1)
i−1, ūi−1

]>
=
[[
x
(1)
i−1, · · · , x

(1)
i−L

]
, [ui−1, · · · , ui−Lu ]

]>
, if h = 1,[

x̄
(h)
i−1, x̄

(h−1)
i

]>
=
[[
x
(h)
i−1, · · · , x

(h)
i−L

]
,
[
x
(h−1)
i , · · · , x(h−1)i−L+1

]]>
, if 1 < h ≤ H,

x̄
(H)
i =

[
x
(H)
i , · · · , x(H)

i−L+1

]>
, if h = H + 1.

(12)
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The graphical model for the RGP is presented in Fig. 1, where we kept the general states x̄(h) to
make the recurrent connections more clear. It should be noted that the standard GP-NARX and
GP-SSM are also RGPs, but with different states structure.

yx̄(H)· · ·x̄(2)x̄(1)u

Figure 1: RGP graphical model with H hidden layers.

Our RGP model, as defined by Eqs. 10 and 11, can be seen as a special case of the Deep GP
framework (Damianou & Lawrence, 2013; Damianou, 2015) where the priors of the latent variables
in each hidden layer follow the autoregressive structure of Eq. 12.

We emphasize that our model preserves the non-observed states of standard SSMs but avoids the
ambiguities of generic multidimensional states by imposing a latent autoregressive structure. In the
next section, we explain how this novel RGP model can be trained using the REVARB framework.

4 RECURRENT VARIATIONAL BAYES (REVARB)

Inference is intractable in our RGP model because we are not able to get analytical forms for the
posterior of f (h) or the marginal likelihood of y. In order to tackle such intractabilities, we apply a
novel variational approximation scheme named REVARB.

REVARB is based on the variational sparse framework proposed by Titsias (2009), thus, we start
by including to each layer h a number of M inducing points z(h) ∈ RM evaluated in M pseudo-
inputs ζ(h) ∈ RD such as that z(h) are extra samples of the GP that models f (h)(·) and p

(
z(h)

)
=

N
(
z(h)

∣∣∣0,K(h)
z

)
, where K(h)

z is the covariance matrix obtained from ζ(h). Considering a model
with H hidden layers and 1-dimensional outputs, the joint distribution of all the variables is given
by:

p
(
y,f (H+1), z(H+1),

{
x(h),f (h), z(h)

}∣∣∣Hh=1

)
=(

N∏
i=L+1

p
(
yi

∣∣∣f (H+1)
i

)
p
(
f
(H+1)
i

∣∣∣z(H+1), x̂
(H)
i

) H∏
h=1

p
(
x
(h)
i

∣∣∣f (h)i

)
p
(
f
(h)
i

∣∣∣z(h), x̂(h)
i

))
(

H+1∏
h=1

p
(
z(h)

))( L∏
i=1

H∏
h=1

p
(
x
(h)
i

))
.

(13)

By applying Jensen’s inequality, similar to the standard variational approach, we can obtain a lower
bound to the log-marginal likelihood log p(y) (Bishop, 2006):

log p(y) ≥
∫
f ,x,z

Q log

[
p
(
y,f (H+1), z(H+1),

{
x(h),f (h), z(h)

}∣∣H
h=1

)
Q

]
, (14)

where Q is the variational distribution. We choose the following factorized expression:

Q =

(
H∏

h=1

q
(
x(h)

))(H+1∏
h=1

q
(
z(h)

))( N∏
i=L+1

H+1∏
h=1

p
(
f
(h)
i

∣∣∣z(h), x̂(h)
i

))
. (15)
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Considering a mean-field approximation, each term is given by

q
(
x(h)

)
=

N∏
i=1

N
(
x
(h)
i

∣∣∣µ(h)
i , λ

(h)
i

)
, (16)

q
(
z(h)

)
= N

(
z(h)

∣∣∣m(h),Σ(h)
)
, (17)

p
(
f
(h)
i

∣∣∣z(h), x̂(h)
i

)
= N

(
f
(h)
i

∣∣∣[a(h)
f

]
i
,
[
Σ

(h)
f

]
ii

)
, (18)

where a(h)
f = K

(h)
fz

(
K(h)

z

)−1
z(h) and Σ

(h)
f = K

(h)
f −K(h)

fz

(
K(h)

z

)−1 (
K

(h)
fz

)>
.

In the above, µ(h)
i , λ(h)i , m(h) and Σ(h) are variational parameters, K(h)

f is the standard kernel

matrix obtained from x̂(h),K(h)
z is the sparse kernel matrix calculated from the pseudo-inputs ζ(h)

andK(h)
fz = k(x̂(h), ζ(h)) ∈ RN×M .

The variational distribution in Eq. 16 indicates that the latent variables x(h) are related to 2N
variational parameters. In standard variational GP-SSM, such as in Frigola et al. (2014) we would
have a total of 2ND parameters, for D-dimensional states, even for a diagonal covariance matrix
in the posterior. Such reduction of parameters in the mean-field approximation was enabled by the
latent autoregressive structure of our model.

Replacing the variational distribution in the Eq. 14 and working the expressions we are able to
optimally eliminate the variational parametersm(h) and Σ(h), obtaining the final form of the lower
bound, presented in the included appendix. We have to compute some statistics that come up in the
full bound:

Ψ
(h)
0 = Tr

(〈
K

(h)
f

〉
q(·)(h)

)
Ψ

(h)
1 =

〈
K

(h)
fz

〉
q(·)(h)

Ψ
(h)
2 =

〈(
K

(h)
fz

)>
K

(h)
fz

〉
q(·)(h)

⇒ q(·)(h) =


q
(
x(1)

)
, if h = 1,

q
(
x(h)

)
q
(
x(h−1)) , if 1 < h ≤ H,

q
(
x(H)

)
, if h = H + 1,

(19)

where 〈·〉q(x(h)) means expectation with respect to the distribution q
(
x(h)

)
, which itself depends

only on the variational parameters µ(h)
i and λ(h)i . All the expectations are tractable for our choice

of the exponentiated quadratic covariance function and follow the same expressions presented by
?. The bound can be optimized with the help of analytical gradients with respect to the kernel and
variational hyperparameters.

The REVARB framework allows for a natural way to approximately propagate the uncertainty dur-
ing both training and prediction. For testing, given a new sequence of external inputs, we can
calculate the moments of the predictive distribution of each layer by recursively applying the results
introduced in Girard et al. (2003), with predictive equations presented in the included appendix.

4.1 SEQUENTIAL RNN-BASED RECOGNITION MODEL

From Eq. (16) it is obvious that the number of variational parameters in REVARB grows linearly
with the number of output samples. This renders optimization challenging in large N scenarios.
To alleviate this problem we propose to constrain the variational means

{
µ
(h)
i

}
,∀h, i using RNNs.

More specifically, we have:

µ
(h)
i = g(h)

(
x̂
(h)
i−1

)
,where g(x) = V >LN

φLN
(WLN−1φLN−1(· · ·W2φ1(U1x))), (20)

W ,U and V are parameter matrices, φ(·) denotes the hyperbolic tangent activation function and
LN denotes the depth of the neural network. We refer to this RNN-based constraint as the sequen-
tial recognition model. Such model directly captures the transition between the latent representation
across time. This provides a constraint over the variational posterior distribution of the RGP that
emphasizes free simulation. The recognition model’s influence is combined with that of the analytic
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lower bound in the same objective optimization function. In this way, we no longer need to optimize
the variational means but, instead, only the set of RNN weights, whose number does not increase
linearly with N . Importantly, this framework also allows us to kick-off optimization by random
initialization of the RNN weights, as opposed to more elaborate initialization schemes. The recog-
nition model idea relates to the work of (Kingma & Welling, 2013; Rezende et al., 2014). In our
case, however, the recognition model is sequential to agree with the latent structure and its purpose is
distinct, because it acts as a constraint in an already analytic variational lower bound. Furthermore,
our sequential recognition model acts upon a nonparametric Bayesian model.

5 EXPERIMENTS

In this section we evaluate the performance of our RGP model in the tasks of nonlinear system
identification and human motion modeling.

5.1 NONLINEAR SYSTEM IDENTIFICATION

We use one artificial benchmark, presented by Narendra & Li (1996), and two real datasets. The
first real dataset, named Actuator and described by Sjöberg et al. (1995) 1, consists of a hydraulic
actuator that controls a robot arm, where the input is the size of the actuator’s valve opening and the
output is its oil pressure. The second dataset, named Drives and introduced by Wigren (2010), is
comprised by a system with two electric motors that drive a pulley using a flexible belt. The input is
the sum of voltages applied to the motors and the output is the speed of the belt.

In the case of the artificial dataset we choose L = Lu = 5 and generate 300 samples for training
and 300 samples for testing, using the same inputs described by Narendra & Li (1996). For the real
datasets we use L = Lu = 10 and apply the first half of the data for training and the second one
for testing. The evaluation is done by calculating the root mean squared error (RMSE) of the free
simulation on the test data. We emphasize that the predictions are made based only on the test inputs
and past predictions.

We compare our RGP model with 2 hidden layers, REVARB inference and 100 inducing inputs with
two models commonly applied to system identification tasks: standard GP-NARX and MLP-NARX.
We use the MLP implementation from the MATLAB Neural Network Toolbox with 1 hidden layer.
We also include experiments with the LSTM network, although the task itself probably does not re-
quire long term dependences. The original LSTM architecture by Hochreiter & Schmidhuber (1997)
was chosen, with a network depth of 1 to 3 layers and the number of cells at each layer selected to
be up to 2048. LSTM memory length was unlimited, and sequence length was chosen initially to
be a multiple of the longest duration memory present in the data generative process, and reduced
gradually. During experiments with varying LSTM network configurations, it became clear that it
was possible in most cases to obtain convergence on the training sets, using a carefully chosen net-
work model size and hyperparameters. Training was organized around batches, and achieved using
a learning rate selected to fall slightly below loop instability, and it was incrementally reduced when
instability re-appeared. A batch in this context is the concatenation of fixed length sub-sequences of
the temporal data set. Neither gradient limits nor momentum were used.

The results are summarized in Tab. 1 and the obtained simulations are illustrated in Fig. 2. The
REVARB model was superior in all cases, with large improvements over GP-NARX. Although
worse than REVARB, the MLP-NARX model presented good results, specially for the Actuator
dataset. The higher RMSE values obtained by the LSTM model is possibly related to the difficulties
we have encountered when trying to optimize its architecture for this given task.

Table 1: Summary of RMSE values for the free simulation results on system identification test data.

MLP-NARX LSTM GP-NARX REVARB
Artificial 1.6334 2.2438 1.9245 0.4513
Drive 0.4403 0.4329 0.4128 0.2491
Actuator 0.4621 0.5170 1.5488 0.3680

1Available in the DaISy repository at http://www.iau.dtu.dk/nnbook/systems.html.

6
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(a) MLP-NARX - Artificial dataset. (b) MLP-NARX - Drives dataset. (c) MLP-NARX - Actuator dataset.

(d) LSTM - Artificial dataset. (e) LSTM - Drives dataset. (f) LSTM - Actuator dataset.

(g) GP-NARX - Artificial dataset. (h) GP-NARX - Drives dataset. (i) GP-NARX - Actuator dataset.

(j) REVARB - Artificial dataset. (k) REVARB - Drives dataset. (l) REVARB - Actuator dataset.

Figure 2: Free simulation on system identification test data.

5.2 HUMAN MOTION MODELING

The motion capture data from the CMU database2 was used to model walking and running motions.
Training was performed with the trajectories 1 to 4 (walking) and 17 to 20 (running) from subject
35. The test set is comprised by the trajectories 5 to 8 (walking) and 21 to 24 (running) from the

2Available at http://mocap.cs.cmu.edu/.

7
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Figure 3: The generated motion with a step function signal, starting with walking (blue), switching
to running (red) and switching back to walking (blue).

same subject. The original dataset contains 59 outputs, but 2 are constant, so we remove those and
use the remaining 57.

In order to perform free simulation in the test set, we include a control input given by the y coordinate
of the left toes. Following the previous system identification experiments, predictions are made
based only on such control input and previous predictions. We normalize the inputs and outputs
with zero mean and unitary standard deviation.

We evaluate a 2 hidden layer REVARB with 200 inducing inputs, the standard GP-NARX model and
a 1 hidden layer MLP with 1000 hidden units. The orders are fixed at L = Lu = 20. Note that the
data related to both walking and running is used in the same training step. The latent autoregressive
structure of REVARB allow us to train a single model for all outputs. In the case of GP-NARX, we
had to train separate models for each output, since training a single model with 57×20+20 = 1160
dimensional regressor vector was not feasible.

The mean of the test RMSE values are summarized in Tab. 2. The REVARB model obtained better
results than both the other models. We emphasize that REVARB has an additional advantage over
GP-NARX because its latent autoregressive structure allows the training of a single mode for all the
outputs.

Table 2: Summary of RMSE values for the free simulation results on human motion test data.

MLP-NARX GP-NARX REVARB
1.2141 0.8987 0.8600

5.3 AVATAR CONTROL

We demonstrate the capability of RGP by applying it to synthesize human motions with simple
control signals such as the velocity. Such system ideally can be used to generate realistic human
motion according to human instruction in virtual environment such as video games. We use the
5 walking and 5 running sequences from CMU motion database and take the average velocity as
the control signal. We train a 1 hidden layer REVARB model with the RNN sequential recognition
model (two hidden layer 500-200 units). After training, we use the model to synthesize motions
with unseen control signals. Figure 3 shows the frames of the generated motion with a step function
signal (the training sequences do not contain any switch of motions). The video of this and some
more motions are available at https://youtu.be/FuF-uZ83VMw, https://youtu.be/
FR-oeGxV6yY, https://youtu.be/AT0HMtoPgjc.

6 DISCUSSION AND FURTHER WORK

We defined the broad family of Recurrent Gaussian Processes models, which, similarly to RNNs,
are able to learn, possibly deep, temporal representations from data. We also proposed a novel RGP
model with a latent autoregressive structure where the intractabilities brought by the recurrent GP
priors are tackled with a variational approximation approach, resulting in the REVARB framework.

8
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Furthermore, we extended REVARB with a sequential RNN-based recognition model that simplifies
the optimization.

We applied REVARB to the tasks of nonlinear system identification and human motion modeling.
The good results obtained by our model indicate that the latent autoregressive structure and our
variational approach were able to better capture the dynamical behavior of the data.

In the work Turner & Sahani (2008), the authors present some concerns with respect to the use of
mean-field approximations within a time-series context, suggesting that such approximation has a
hard time propagating uncertainty through time. However, we observed in practice that our proposed
REVARB framework is able to better account for uncertainty in the latent space with its autoregres-
sive deep structure. This may be because the next layer is able to ‘compensate’ the mean-field
assumption of the previous layer, accounting for additional (temporal) correlations. Since each la-
tent variable xi and, thus, its associated variational parameters, is present in two layers (see Eq. 12),
this effect is enabled for all latent variables of the model. A similar observation is made for regular
deep GPs by Damianou (2015).

The flexibility of GP modeling along with expressive recurrent structures is a theme for further
theoretical investigations and practical applications. For instance, we intend to verify if some of the
recommendations for deep modeling described by Duvenaud et al. (2014) would be helpful for our
RGP model. Finally, we hope that our paper opens up new directions in the study of the parallels
between RGPs and RNNs. To this end, we intend to explore the REVARB approach within longer
term memory tasks and extend it with non-Gaussian likelihood distributions.

Acknowledgements. The authors thank the financial support of CAPES, FUNCAP, NUTEC, CNPq
(Maresia, grant 309451/2015-9, and Amalia, grant 407185/2013-5), RADIANT (EU FP7-HEALTH
Project Ref 305626) and WYSIWYD (EU FP7-ICT Project Ref 612139).

REFERENCES

Bengio, Yoshua, Simard, Patrice, and Frasconi, Paolo. Learning long-term dependencies with gradient descent
is difficult. Neural Networks, IEEE Transactions on, 5(2):157–166, 1994.

Bishop, Christopher M. Pattern recognition and machine learning. Springer, 2006.

Boulanger-lewandowski, Nicolas, Bengio, Yoshua, and Vincent, Pascal. Modeling temporal dependencies in
high-dimensional sequences: Application to polyphonic music generation and transcription. In Proceedings
of the 29th International Conference on Machine Learning (ICML-12), pp. 1159–1166, 2012.
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Sjöberg, Jonas, Zhang, Qinghua, Ljung, Lennart, Benveniste, Albert, Delyon, Bernard, Glorennec, Pierre-Yves,
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APPENDIX

REVARB LOWER BOUND

Replacing the definition of the joint distribution (Eq. 13) and the factorized variational distribution
Q (Eq. 15) in the Jensen’s inequality of Eq. 14, we are able to cancel the terms p

(
f
(h)
i

∣∣∣z(h), x̂(h)
i

)
inside the log:

log p(y) ≥
N∑

i=L+1

∫
f ,x,z

q
(
x(H)

)
q
(
z(H+1)

)
p
(
f
(H+1)
i

∣∣∣z(H+1), x̂
(H)
i

)
log p

(
yi

∣∣∣f (H+1)
i

)

+

N∑
i=L+1

H∑
h=1

∫
f ,x,z

(
H∏

h′=1

q
(
x(h′)

))
q
(
z(h)

)
p
(
f
(h)
i

∣∣∣z(h), x̂(h)
i

)
log p

(
x
(h)
i

∣∣∣f (h)i

)

−
H+1∑
h=1

∫
z

q
(
z(h)

)
log q

(
z(h)

)
+

H+1∑
h=1

∫
z

q
(
z(h)

)
log p

(
z(h)

)
−

N∑
i=L+1

H∑
h=1

∫
x

q
(
x
(h)
i

)
log q

(
x
(h)
i

)
+

L∑
i=1

H∑
h=1

∫
x

q
(
x
(h)
i

)
log p

(
x
(h)
i

)
,

(21)

where the integrals are tractable, since all the distributions are Gaussians. The expectations with
respect to x(h)

i give rise to the statistics Ψ
(h)
0 , Ψ

(h)
1 and Ψ

(h)
2 , defined in Eq. 19.

Following similar argument of King & Lawrence (2006), we are able to optimally eliminate the
variational parameters associated with the inducing points, m(h) and Σ(h) and get to the final form
of the REVARB lower bound:

log p(y) ≥ −N − L
2

H+1∑
h=1

log 2πσ2
h −

1

2σ2
H+1

(
y>y + Ψ

(H+1)
0 − Tr

((
K(H+1)

z

)−1
Ψ

(H+1)
2

))
+

1

2
log
∣∣∣K(H+1)

z

∣∣∣− log
1

2

∣∣∣∣K(H+1)
z +

1

σ2
H+1

Ψ
(H+1)
2

∣∣∣∣
+

1

2(σ2
H+1)2

y>Ψ
(H+1)
1

(
K(H+1)

z +
1

σ2
H+1

Ψ
(H+1)
2

)−1 (
Ψ

(H+1)
1

)>
y

+

H∑
h=1

{
− 1

2σ2
h

(
N∑

i=L+1

λ
(h)
i +

(
µ(h)

)>
µ(h) + Ψ

(h)
0 − Tr

((
K(h)

z

)−1
Ψ

(h)
2

))

+
1

2
log
∣∣∣K(h)

z

∣∣∣− 1

2
log

∣∣∣∣K(h)
z +

1

σ2
h

Ψ
(h)
2

∣∣∣∣
+

1

2(σ2
h)2

(
µ(h)

)>
Ψ

(h)
1

(
K(h)

z +
1

σ2
h

Ψ
(h)
2

)−1 (
Ψ

(h)
1

)>
µ(h)

−
N∑

i=L+1

∫
x
(h)
i

q
(
x
(h)
i

)
log q

(
x
(h)
i

)
+

L∑
i=1

∫
x
(h)
i

q
(
x
(h)
i

)
log p

(
x
(h)
i

)}
.

(22)

Note that the parameters of the Gaussian priors p
(
x
(h)
i

)
= N

(
x
(h)
i

∣∣∣µ(h)
0i , λ

(h)
0i

)
of the initial latent

variables x(h)i |Li=1 can be optimized along with the variational parameters and kernel hyperparame-
ters.
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REVARB PREDICTIVE EQUATIONS

Predictions in the REVARB framework are done iteratively, with approximate uncertainty propaga-
tion between each layer:

µ
(h)
∗ = E

{
p
(
f
(h)
∗

∣∣∣x̂(h)
∗

)}
=
(
B(h)

)> (
Ψ

(h)
1∗

)>
, (23)

λ
(h)
∗ = V

{
p
(
f
(h)
∗

∣∣∣x̂(h)
∗

)}
=
(
B(h)

)>(
Ψ

(h)
2∗ −

(
Ψ

(h)
1∗

)>
Ψ

(h)
1∗

)
B(h) + Ψ

(h)
0∗

− Tr

(((
K(h)

z

)−1
−
(
K(h)

z + σ−2h Ψ
(h)
2

)−1)
Ψ

(h)
2∗

)
,

(24)

where x̂(h)
∗ is defined similar to the Eq. 12, B(h) = σ−2h

(
K

(h)
z + σ−2h Ψ

(h)
2

)−1 (
Ψ

(h)
1

)>
µ(h),

for 1 ≤ h ≤ H , and B(H+1) = σ−2H+1

(
K

(H+1)
z + σ−2H+1Ψ

(H+1)
2

)−1 (
Ψ

(H+1)
1

)>
y. The terms

Ψ
(h)
0∗ , Ψ

(h)
1∗ and Ψ

(h)
2∗ are computed as in the Eq. 19, but instead of the distributions q

(
x
(h)
i

)
we

use the new Gaussian approximation q
(
x
(h)
∗

)
= N

(
x
(h)
∗

∣∣∣µ(h)
∗ , λ

(h)
∗

)
and replace K(h)

f and K(h)
fz

respectively byK(h)
∗ = k

(
x̂
(h)
∗ , x̂

(h)
∗

)
andK(h)

∗z = k
(
x̂
(h)
∗ , ζ(h)

)
.
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