
This is a repository copy of Comparative Analysis of Statistical Model Checking Tools.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/116497/

Version: Accepted Version

Proceedings Paper:
Bakir, M.E. orcid.org/0000-0002-3012-8713, Gheorghe, M., Konur, S. et al. (1 more author)
(2017) Comparative Analysis of Statistical Model Checking Tools. In: Membrane
Computing: 17th International Conference, CMC 2016, Milan, Italy, July 25-29, 2016,
Revised Selected Papers. 17th International Conference on Membrane Computing
(CMC17), 25/07/2016-29/07/2016, Milan, Italy. Lecture Notes in Computer Science, 10105
. Springer Verlag . ISBN 978-3-319-54071-9

https://doi.org/10.1007/978-3-319-54072-6_8

The final publication is available at Springer via http://dx.doi.org/
10.1007/978-3-319-54072-6_8.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Comparative Analysis of Statistical Model

Checking Tools

Mehmet Emin Bakir1, Marian Gheorghe2, Savas Konur2, and Mike Stannett1

1 Department of Computer Science, The University of Sheffield
Regent Court, 211 Portobello, Sheffield, S1 4DP, UK

mebakir1@sheffield.ac.uk, m.stannett@sheffield.ac.uk
2 School of Electrical Engineering and Computer Science, University of Bradford

West Yorkshire, Bradford, BD7 1DP, UK
m.gheorghe@bradford.ac.uk, s.konur@bradford.ac.uk

Abstract. Statistical model checking is a powerful and flexible approach
for formal verification of computational models, e.g. P systems, which can
have very large search spaces. Various statistical model checking tools
have been developed, but choosing the most efficient and appropriate
tool requires a significant degree of experience, not only because differ-
ent tools have different modelling and property specification languages,
but also because they may be designed to support only a certain subset of
property types. Furthermore, their performance can vary depending on
the property types and membrane systems being verified. In this paper,
we evaluate the performance of various common statistical model check-
ers based on a pool of biological models. Our aim is to help users select
the most suitable SMC tools from among the available options, by com-
paring their modelling and property specification languages, capabilities
and performances.

Keywords: membrane computing, P systems, statistical model check-
ing, biological models, performance benchmarking

1 Introduction

In order to understand the structure and functionality of biological systems,
we need methods which can highlight the spatial and time-dependent evolution
of systems. To this end, researchers have started to utilize the computational
power of machine-executable models, including implementations of membrane
system models, to get a better and deeper understanding of the spatial and
temporal features of biological systems [21]. In particular, the executable nature
of computational models enables scientists to conduct experiments, in silico, in
a fast and cheap manner.

The vast majority of models used for describing biological systems are based
on ordinary differential equations (ODEs) [10], but researchers have recently
started to use computational models as an alternative to mathematical mod-
elling. The basis of such models is state machines, which can be used to model

numerous variables and relate different system states (configurations) to one an-
other [21]. There have been various attempts to model biological systems from
a computational point of view, including the use of Boolean networks [31], Petri
nets [45], the π-calculus [39], interacting state machines [25], L-systems [38] and
variants of P systems (membrane systems) [5, 17, 23, 29, 33, 42]. These techniques
are useful for investigating the qualitative features, as are their stochastic coun-
terparts (e.g., stochastic Petri Nets [26] and stochastic P systems [8, 43]) are
useful for investigating the quantitative features of computation models. More
updated details regarding the use of membrane systems in modelling systems
and synthetic biology applications can be found in [22].

Having built a model, the goal is typically to analyse it, so as to determine
the underlying system’s properties. Various approaches have been devised for
analysing computational models. One widely used method, for example, based
on generating the execution traces of a model, is simulation. Although the sim-
ulation approach is widely applicable, the large number of potential execution
paths in models of realistic systems means that we can often exercise only a
fraction of the complete trace set using current techniques. Especially for non-
deterministic and stochastic systems each state may have more than one possible
successor, which means that different runs of the same basic model may produce
different outcomes [6]. Consequently, some computational paths may never be
exercised, and their conformance to requirements never assessed.

Model checking is another widely recognized approach for analysis and verifi-
cation of models, which has been successfully applied both to computer systems
and biological system models. This technique involves representing each (de-
sired or actual) property as a temporal logic formula, which is then verified
against a model. It formally demonstrates the correctness of a system by means
of strategically investigating the whole of the model’s state space, considering
all paths and guaranteeing their correctness [4, 15, 28]. Model checking has ad-
vantages over conventional approaches like simulation and testing, because it
checks all computational paths and if the specified property is not satisfied it
provides useful feedback by generating a counter-example (i.e. execution path)
that demonstrates how the failure can occur [28].

Initially, model checking was employed for analysing transition systems used
for describing discrete systems. A transition system regards time as discrete, and
describes a set of states and the possible transitions between them, where each
state represents some instantaneous configuration of the system. More recently,
model checking has been extended by adding probabilities to state transitions
(probabilistic model checking); in practice, such systems include discrete-time
Markov chains (DTMC), continuous-time Markov chains (CTMC), and Markov
decision processes (MDP). Probabilistic models are useful for verifying quanti-
tative features of systems.

Typically, the model checking process comprises the following steps [4, 28]:

1. Describing the system model in a high-level modelling language, so as to
provide an unambiguous representation of the input system.

2. Specifying the desired properties (using a property specification language)
as a set of logical statements, e.g., temporal logic formulas.

3. Verifying whether each property is valid on the model. For non-probabilistic
models the response is either ‘yes’ or ‘no’. For probabilistic systems the
response may instead be some estimate of the ‘probability of correctness’.

“Exact” model checking considers whole state spaces while verifying a prop-
erty, but if the model is relatively large, the verification process can be pro-
hibitively resource intensive and time consuming which is known as ‘state-space
explosion’ problem, so this approach can only be applied to a small number of
biological models. Nonetheless, the intrinsic power of the approach has gained a
good deal of attention from researchers, and model checking has been applied to
various biological phenomena, including, for example, gene regulator networks
(GRNs) and signal-transduction pathways [8, 13] (see [20] for a recent survey of
the use of model checking in systems biology).

To overcome the state-space explosion problem, the statistical model checking
(SMC) approach does not analyse the entire state space, but instead generates a
number of independent simulation traces and uses statistical (e.g., Monte Carlo)
methods to generate an approximate measure of system correctness. This ap-
proach does not guarantee the absolute correctness of the system, but it allows
much larger models be verified (within specified confidence limits) in a faster
manner [12, 37, 49, 51]. This approach allows verifying much larger models with
significantly improved performance.

The number of tools using statistical model checking has been increasing
steadily, as has their application to biological systems [14, 53]. Although the va-
riety of SMC tools gives a certain amount of flexibility and control to users, each
model checker has its own specific pros and cons. One tool may support a large
set of property operators but perform property verifications slowly, while another
may be more efficient at analysing small models, and yet another may excel at
handling larger models. In such cases, the user may need to cover all of their
options by using more than one model checker, but unfortunately the different
SMCs generally use different modelling and property specification languages.
Formulating properties using even a single SMC modelling language can be a
cumbersome, error-prone, and time wasting experience for non-experts in com-
putational verification (including many biologists), and the difficulties multiply
considerably when more than one SMC needs to be used.

In order to facilitate the modelling and analysis tasks, several software suites
have been proposed, such as Infobiotics Workbench [9] (based on stochastic P
systems [10]) and kPWorkbench framework (based on kernel P systems [17]) [17,
34]. As part of the computational analysis, these tools employ more than one
model checker. Currently, they allow only a manual selection of the tools, relying
on the user expertise for the selection mechanism. These systems automatically
translate the model and queries into the target model checker’s specification
language. While this simplifies the checking process considerably, one still has
to know which target model checker best suits ones needs, and this requires a
significant degree of experience. It is desirable, therefore, to introduce another

processing layer, so as to reduce human intervention by automatically selecting
the best model checker for any given combination of P system and property
query.

As part of this wider project (Infobiotics Workbench) to provide machine
assistance to users, by automatically identifying the best model checker, we
evaluate the performance of various statistical model checkers against a pool of
biological models. The results reported here can be used to help select the most
suitable SMC tools from the available options, by comparing their modelling and
property specification languages, capabilities and performances (see also [7]).

Paper structure. We begin in Section 2 by describing some of the most com-
monly used SMC tools, together with their modelling and property-specification
languages. Section 3 compares the usability of these tools in terms of express-
ibility of their property specification languages. In Section 4 we benchmark the
performance of these tools when verifying biological models, and describe the
relevant experiment settings. We conclude in Section 5 with a summary of our
findings, and highlight open problems that warrant further investigation.

2 A Brief Survey of Current Statistical Model Checkers

In this section, we review some of the most popular and well-maintained statis-
tical model checking tools, together with their modelling and property specifi-
cation languages.

2.1 Tools

PRISM. PRISM (Probabilistic and Symbolic Model Checker) is a widely-used,
powerful probabilistic model checker tool [27, 35]. It has been used for analysing
a range of systems including biological systems, communication, multimedia and
security protocols and many others [46]. It allows building and analysing several
types of probabilistic systems including discrete-time Markov chains (DTMCs)
and continuous-time Markov chains (CTMCs) with their ‘reward’ extension.
PRISM can carry out both probabilistic model checking based on numerical tech-
niques with exhaustive traversal of model, and statistical model checking with
a discrete-event simulation engine [36, 46]. The associated modelling language,
the PRISM language (a high-level state-based language), is the probabilistic
variant of Reactive Modules [1, 35] (for a full description of PRISMs modelling
language, see [46]), which subsumes several property specification languages,
including PCTL, PCTL*, CSL, probabilistic LTL. However, statistical model
checking can only be applied to a limited subset of properties; for example, it
does not support steady-state and LTL-style path properties.

PRISM can be run via both a Graphical User Interface (GUI) or directly from
the command line. Both options facilitate model checking process by allowing
to modify a large set of parameters. The command line option is particularly
useful when users need to run a large number of models. PRISM is open source
software and is available for Windows, Linux and Mac OS X platforms.

PLASMA-Lab. PLASMA-Lab is a software platform for statistical model
checking of stochastic systems. It provides a flexible plug-in mechanism which
allows users to personalise their own simulator, and it also facilitates distributed
simulations [11]. The tool has been applied to a range of problems, such as
systems biology, rare events, motion planning and systems of systems [44].

The platform supports four modelling languages: Reactive Module Language
(RML) implementation of the PRISM tool language, with two other variants of
RML (see Table 1), and Biological Language [11, 44]. In addition, it provides a
few simulator plug-ins which enable external simulators to be integrated with
PLASMA-Lab, e.g., MATLAB/Simulink. The associated property specification
language is based on Bounded Linear Temporal Logic (B-LTL) which bounds
the number of states by number of steps or time units.

PLASMA-Lab can be run from a GUI or command line with plug-in system,
and while it is not open source it can be embedded within other software pro-
grams as a library. It has been developed using the Java programming language,
which provides compatibility with different operating systems.

Ymer. Ymer is a statistical model checking tool for verifying continuous-time
Markov chains (CTMCs) and generalized semi-Markov processes (GSMPs). The
tool supports parallel generation of simulation traces, which makes Ymer a fast
SMC tool [50].

Ymer uses the PRISM language grammar for its modelling and property
specification language. It employs the CSL formalism for property specification
[48].

Ymer can be invoked via a command line interface only. It has been developed
using the C/C++ programming language, and the source code is open to the
public.

MRMC. MRMC is a tool for numerical and statistical model checking of prob-
abilistic systems. It supports DTMC, CTMC, and using the reward extension of
DTMC and CTMC [30].

The tool does not employ a high-level modelling language, but instead re-
quires a sparse matrix representation of probabilities or rates as input. Describing
systems in transition matrix format is very hard, especially for large systems,
and external tools should be used to automatically generate the required in-
puts. Both PRISM and Performance Evaluation Process Algebra (PEPA) have
extensions which can generate inputs for the MRMC tool [52]. The matrix repre-
sentation also requires that state labels with atomic propositions be provided in
another structure. Properties can be expressed with PCTL and CSL, and with
their reward extensions.

MRMC is a command line tool. It has been developed using the C program-
ming language, and the source code is publicly available. Binary distributions
for Windows, Linux and Mac OS X are also available [41].

MC2. The MC2 tool enables statistical model checking of simulation traces,
and can perform model checking in parallel.

MC2 does not need a modelling language, instead it imports simulation traces
generated by external tools for stochastic and deterministic models. The tool uses
probabilistic LTL with numerical constraints (PLTLc) for its property specifi-
cation language, which enables defining numerical constraints on free variables
[16].

MC2 can be executed only through its command line interface. The tool was
developed using the Java programming interfaces and is distributed as a .jar

file, therefore the source code is not available to public. The tool is bundled with
a Gillespie simulator, called Gillespie2. As will be explained in the following
section, it is possible to use Gillespie2 to generate simulation traces for the MC2
tool.

2.2 Modelling Languages

As part of the model checking process the system needs to be described in the
target SMC modelling language. If the SMC tool relies on external tools, as
in the case of MRMC and MC2, users will also have to learn the usage and
modelling language of these external tools as well. For example, if users want
to use the MRMC tool, they also have to learn how to use PRISM and how to
model in the PRISM language.

Table 1 summarises the modelling languages associated with each SMC tool.
The PLASMA and Ymer tools provide fair support for the PRISM language.
MRMC expects a transition matrix input, but in practice, for large models, it
is not possible to generate the transition matrix manually, so an external tool
should be used for generating the matrix. MC2 also relies on external tools,
because it does not employ a modelling language, instead it expects externally
generated simulation traces. If users want to use the MC2 tool, they first have
to learn a modelling language and usage of an appropriate simulation tool. For
example, in order to use the Gillespie2 simulator as an external tool for MC2, the
user should be able to describe their model using the Systems Biology Markup
Language (SBML).

3 Usability

Model checking uses temporal logics as property specification languages. In order
to query probabilistic features, probabilistic temporal logics should be used.
Several probabilistic property specification languages exist, such as Probabilistic
Linear Temporal Logic (PLTL) [4], probabilistic LTL with numerical constraints
(PLTLc) [16] and Continuous Stochastic Logic (CSL) [2, 3, 36].

In order to ease the property specification process, frequently used proper-
ties, called patterns, have been identified by previous studies [18, 24]. Patterns
represent recurring properties (e.g., something is always the case, something is

Table 1. Modelling languages and external dependency of SMC tools.

SMCs Modelling Language(s)
Needs an
External Tool?

External Tool
Modelling Language

PRISM PRISM language NO N/A

PLASMA-Lab

RML of PRISM,
Adaptive RML
(extension of RML
for adaptive systems),
RML with importance sampling,
Biological Language

NO N/A

Ymer PRISM language NO N/A

MRMC Transition matrix
YES,
e.g., PRISM

PRISM language

MC2 N/A
YES,
e.g., Gillespie2

Systems Biology
Markup Language (SBML)

possibly the case), and are generally represented by natural language-like key-
words. An increasing number of studies have been conducted to identify ap-
propriate pattern systems for biological models [23, 32, 40]. Table 2 lists various
popular patterns [24], giving a short description and explaining how they can be
represented using existing temporal logic operators.

Table 2. Property patterns

Patterns Description Temporal Logic

Existence φ1 will eventually hold, within the ⊲⊳ p bounds.
P⊲⊳p[F φ1] or
P⊲⊳p[true U φ1]

Until
φ1 will hold continuously until φ2 eventually holds,
within the ⊲⊳ p bounds.

P⊲⊳p[φ1 U φ2]

Response If φ1 holds, then φ2 must hold within the ⊲⊳ p bounds. P≥1[G (φ1 → (P⊲⊳p[F φ2]))]

Steady-State
(Long-run)

In the long-run φ1 must hold, within the ⊲⊳ p bounds.
S⊲⊳p[φ1] or
P⊲⊳p[FG (φ1)]

Universality φ1 continuously holds, within the ⊲⊳ p bounds.
P⊲⊳p[G φ1] or
P⊲⊳(1−p)[(F (¬φ1)]

Key. φ1, and φ2 are state formulas; ⊲⊳ is one of the relations in {<,>,≤,≥}; p ∈ [0, 1] is a probability

with rational bounds; and ⊲⊳ is negation of inequality operators. P⊲⊳p is the qualitative operator

which enables users to query qualitative features, those whose result is either ‘yes’ or ‘no’. In order

to query quantitative properties, P=? (quantitative operator) can be used to returns a numeric value

which is the probability that the specified property is true.

The SMCs investigated here employ different grammar syntaxes for property
specification, which makes it harder to use other tools at the same time. Although
Ymer uses the same grammar as PRISM, it excludes some operators, such as the
Always (G) operator. In addition, different SMCs tools may support different sets
of probabilistic temporal logics. In the following, we compare the expressibility of
their specification languages, by checking if the properties can be defined using
just one temporal logic operator (directly supported (DS)), which will be easier

for practitioners to express; or as a combination of multiple operators (indirectly
supported (IS)); or not supported at all (not supported (NS)). Qualitative and
quantitative operators, with five property patterns which are identified as widely
used by [24], are listed in Table 3.

Table 3. Specifying various key patterns using different SMC tools.

SMCs
Qualitative
Operator

Quantitative
Operator
(P=?)

Existence Until Response
Steady
-State

Universality

PRISM DS DS DS DS NS NS DS

PLASMA-Lab NS NS DS DS IS IS DS

Ymer DS DS DS DS NS NS IS

MRMC DS NS DS DS IS DS DS

MC2 DS DS DS DS IS IS DS

Key. DS = Directly Supported; IS = Indirectly Supported; NS = Not Supported.

The PRISM, Ymer and MC2 tools directly support both Qualitative and
Quantitative operators, but MRMC supports only the Qualitative operator. While
PLASMA-Lab does not allow these operators to be expressed directly with B-
LTL, the verification outputs contain information about the probability of the
property, hence users can interpret the results. Existence, Until and Universality

properties are directly supported by all SMCs, except that Ymer does not employ
an operator for Universality patterns (it needs to be interpreted using the Not

(!) and Eventually (F) operators, i.e. it is indirectly supported). There is no
single operator to represent the Response pattern directly, but it is indirectly
supported by PLASMA-Lab, MRMC and MC2. The Steady-State pattern can
be either represented by one operator, S, or two operators, F and G. Only
the MRMC tool employs the S operator to allow Steady-State to be expressed
directly, while PLASMA-Lab and MC2 allow it to be expressed indirectly.

4 Experimental Findings

The wide variety of SMC tools gives a certain flexibility and control to users,
but practitioners need to know which of the tools is the most suitable for their
particular models and queries. The expressive power of the associated modelling
and specification languages is not the only criterion, because SMC performance
may also depend on the nature of the models and property specifications. We
have therefore conducted a series of experiments to determine the capabilities
and performances of the most commonly used tools [7]. The experiments are
conducted on an Intel i7-2600 CPU @ 3.40GHz 8 cores, with 16GB RAM running
on Ubuntu 14.04.

We tested each of the five tools against a representative selection of 465
biological models (in SBML format) taken from the BioModels database [19] (as
modified in [47] to fix the stochastic rate constants of all reactions to 1). The

models tested ranged in size from 2 species and 1 reaction, to 2631 species and
2824 reactions. Figure 1 shows the distribution of models size, we take “size” to
be the product of species count and reaction count. X-axis (log scale) indicates
the model size and Y-axis represents the frequency of models with their sizes
represented on the X-axis.

Fig. 1. The distribution of models size in the logarithmic scale.

Each tool/model pair was tested against five different property specification
patterns [24], namely Existence, Until, Response, Steady-State and Universality.
We have developed a tool for translating SBML models to SMC modelling lan-
guages, and translating property patterns to the corresponding SMC specifica-
tion languages. For each SMC, the number of simulation traces was set to 500,
and the depth of each trace was set to 5000.

The time required for each run is taken to be the combined time required
for model parsing, simulation and verification. Each SMC/model/pattern com-
bination was tested three times, and the figures reported here give the average
total time required. When an SMC depends on external tools, we also added the
external tool execution time into the total execution time. In particular, there-
fore, the total times reported for verifying models with MRMC and MC2 tools
are not their execution times only, but include the time consumed for generating
transition matrices and simulation traces, respectively. We used the PRISM tool
for generating transition matrices requested by MRMC, and the Gillespie2 for
generating simulation traces utilised by MC2. When the external tool failed to
generate the necessary input for its corresponding SMC, we have recorded the
SMC as being incapable of verifying the model. In order to keep the experiment
tractable, when an SMC required more than 1 hour to complete the run, we
halted the process and again recorded the model as unverifiable.

Table 4 shows the experiment results. The SMCs and the property patterns
are represented in the first column and row, respectively. The Verified columns
under each pattern show the number of models that could be verified by the
corresponding SMC. The Fastest column shows the number of models for which
the corresponding SMC was the fastest tool.

Table 4. The number of model/pattern combinations verified by each SMC tool.

Existence Until Response
Steady
-State

Universality

Verified Fastest Verified Fastest Verified Fastest Verified Fastest Verified Fastest

PRISM 337 15 435 84 NS NS NS NS 370 57

PLASMA
-Lab

465 143 465 54 465 390 465 392 465 80

Ymer 439 304 439 324 NS NS NS NS 439 325

MRMC 75 0 72 0 75 17 57 11 77 0

MC2 458 3 458 3 458 58 458 62 458 3

Key. NS = Not Supported.

The results show that SMC tool capabilities vary depending on the queried
properties. For example, PRISM was only able to verify 337 models against
Existence, and 435 and 370 models against Until and Universality, respectively.
The main reason PRISM failed to verify all of the models is that it expects user
to increase the depth of the simulation traces, otherwise it cannot verify the
unbounded properties with a reliable approximation. In contrast, PLASMA-Lab
was able to verify all of the models within 1 hour. Ymer could verify 439 models
for those patterns it supports, thus failing to complete 26 models in the time
available. MRMC was able to verify relatively few models, because it relied on
the PRISM model checker to construct the model and export the associated
transition matrices. Especially for relatively large models PRISM crashed while
generating these matrices (we believe this is related to its CU Decision Diagram
(CUDD) library). MC2 was able to verify 458 models against all of the patterns
tested, and only failed for 7 of them.

The second column of the patterns shows the number of models which were
verified by the corresponding model checker tools. The distribution of models size
across the fastest model checkers for different patterns are shown in the following
set of violin plots (Figures 2 – 6). Each of the inner swarm points represents a
model. X-axis represents the logarithmic scale of models size. For the models in
the white background region, we can uniquely identify the fastest SMC tool for
their verification, whereas for the models in grey background region the fastest
model checker is not clear.

Ymer was the fastest for most model/pattern pairs (where those patterns
were supported). However, it is the fastest tool only for verification of relatively
small size models. Ymer was the fastest for verifying 304 models against Existence
pattern, the minimum model size verified by Ymer was 2, maximum 2128, mean
256.8 and median 137.5. It was the fastest tool for larger number of models, 324

Fig. 2. The distribution of models size across fastest SMC tools for Existence pattern
verification.

Fig. 3. The distribution of models size across fastest SMC tools for Until pattern veri-
fication.

(min = 2, max = 2128, mean = 312.9, median = 144), against Until pattern
verification, and 325 models (min = 2, max = 2346, mean = 335, median = 144)
against Universality pattern verification. PLASMA-Lab is the fastest tool for
relatively large size models. It was the fastest tool for verifying 143 models (min
= 380, max = 7429944, mean =464498.9, median = 11875) against Existence

pattern, 54 models (min = 1224, max = 7429944, mean = 837193.5, median =
288162) against Until pattern, and 80 models (min = 575, max = 7429944, mean
= 773247.5, median = 43143) against Universality pattern verification. It did

Fig. 4. The distribution of models size across fastest SMC tools for Response pattern
verification.

Fig. 5. The distribution of models size across fastest SMC tools for Steady-State pattern
verification.

particularly well against Response (390 models (min = 12, max = 7429944, mean
= 170734.5, median = 604.5)) and Steady-State patterns (392 models (min = 9,
max = 7429944, mean = 169862.1, median = 600), where it was only competing
with MRMC and MC2. PRISM is generally the fastest tool for medium to large
size models. It was the fastest only for 15 models (min = 1023, max = 39770,
mean = 5860.9, median = 2304) against Existence pattern verification, but it was
able to verify larger number of models, 84 (min = 1665, max = 2928904, mean =
253327.3, median = 7395), against Until pattern verification and 57 models (min

Fig. 6. The distribution of models size across fastest SMC tools for Universality pattern
verification.

= 960, max = 1633632, mean = 92998.4, median = 3364) against Universality

pattern verification. MC2 (with Gillespie2) is the fastest for relatively small size
models. It could verify only 3 models (min = 722, max = 1892, mean = 1138,
median = 800) against Existence, Until and Universality patterns, although it
did better with 58 models (min = 2, max = 1892, mean = 103.2, median =
30) against Response pattern, and 62 models (min = 2, max = 1892, mean =
105.9, median = 36) against Steady-State patterns. Finally, MRMC (with PRISM
dependency) was slower than other tools for Existence, Until and Universality

patterns verification, but did better handling Response (fastest for 17 models
(min = 6, max = 42, mean = 18.5, median = 20)) and Steady-State (fastest for
11 models (min = 6, max = 42, mean = 22.3, median = 20)).

As we stated previously, the background color of Figures 2 – 6 gives an
indication of whether the fastest model checker can be identified for the models
within a region of the graph, that is, for models in the white background region,
the fastest SMC tool can be identified, but the models in grey background region
it is less clear-cut. For verification of Existence pattern, we can uniquely identify
the fastest SMC tool for both the 232 smallest models (size ranging from 2
to 380), and the 55 largest models (size = 39984 to 7429944), namely Ymer
and PLASMA-Lab respectively, but for remaining 178 medium-sized models
(size = 380 to 39770), there is no obvious ‘winner’. Similarly, for Until pattern
verification, the smallest 283 models (size ranging from 2 to 714), and only for
the 5 largest models (size = 3605380 to 7429944) we can identify the fastest
SMC tool (Ymer and PLASMA-Lab respectively), but there are more than one
candidates for remaining 177 medium-sized models (size = 722 to 2928904).
Despite, we have only three SMC tools, namely PLASMA-Lab, MRMC and
MC2, which support the verification of Response and Steady-State patterns, their
performance on small and medium size models are close to each other, which

makes harder to identify the fastest tool. Therefore, only for the smallest 4
models (size = 2 to 6) and for the largest 128 models (size= 1927 to 7429944)
the fastest tool (MC2 and PLASMA-Lab respectively) can be identified. Lastly,
for Universality pattern verification, the fastest SMC tool for both smallest 262
models (size=2 to 572) and largest 17 models (size =1823582 to 7429944), Ymer
and PLASMA-Lab respectively, can be identified, for the remained 186 medium
size models we cannot assign a unique model checker tool.

5 Conclusion

The experimental results clearly show that certain SMC tools are best for certain
tasks, but there are also situations where the best choice of SMC is far less clear-
cut, and it is not surprising that users may struggle to select and use the most
suitable SMC tool for their needs. Users need to consider the modelling language
of tools and the external tools they may rely on, and need detailed knowledge
as to which property specification operators are supported, and how to specify
them. Even then, the tool may still fail to complete the verification within a
reasonable time, whereas another tool might be able to run it successfully.

These factors make it extremely difficult for users to know which model
checker to choose, and point to a clear need for automation of the SMC-selection
process. We are currently working to identify novel methods and algorithms to
automate the selection of best SMC tool for a given computational model (more
specifically for P system models) and property patterns. We aim to enable the
integration of our methods within larger software platforms, e.g., IBW and kP-
Workbench, and while this is undoubtedly a challenging task, we are encouraged
by recent developments in related areas, e.g., the automatic selection of stochas-
tic simulation algorithms [47].

References

1. Alur, R., Henzinger, T.A.: Reactive modules. Form. Methods Syst. Des. 15, 7–48
(Jul 1999), http://dx.doi.org/10.1023/A:1008739929481

2. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous-time
Markov chains. ACM Trans. Comput. Logic 1(1), 162–170 (Jul 2000), http://
doi.acm.org/10.1145/343369.343402

3. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-checking algorithms
for continuous-time Markov chains. IEEE Transactions on Software Engineering
29(6), 524–541 (June 2003)

4. Baier, C., Katoen, J.P.: Principles of model checking. The MIT Press (2008)
5. Bakir, M.E., Ipate, F., Konur, S., Mierla, L., Niculescu, I.: Extended simulation

and verification platform for kernel P systems. In: Gheorghe, M., Rozenberg, G.,
Salomaa, A., Sośık, P., Zandron, C. (eds.) Membrane Computing, pp. 158–178.
Lecture Notes in Computer Science, Springer International Publishing (2014),
http://dx.doi.org/10.1007/978-3-319-14370-5_10

6. Bakir, M.E., Konur, S., Gheorghe, M., Niculescu, I., Ipate, F.: High performance
simulations of kernel P systems. 2014 IEEE 16th International Conference on High
Performance Computing and Communications (HPCC) (2014)

7. Bakir, M.E., Stannett, M.: Selection criteria for statistical model checking. In:
UCNC’16 Workshop on Membrane Computing (WMC ’16) (2016), submitted

8. Bernardini, F., Gheorghe, M., Romero-Campero, F.J., Walkinshaw, N.: A hybrid
approach to modeling biological systems. In: Eleftherakis, G., Kefalas, P., Păun,
G., Rozenberg, G., Salomaa, A. (eds.) Membrane Computing, Lecture Notes in
Computer Science, vol. 4860, pp. 138–159. Springer Berlin Heidelberg (2007), http:
//dx.doi.org/10.1007/978-3-540-77312-2_9

9. Blakes, J., Twycross, J., Romero-Campero, F.J., Krasnogor, N.: The Infobiotics
Workbench: An integrated in silico modelling platform for systems and synthetic
biology. Bioinformatics 27(23), 3323–3324 (Dec 2011)

10. Blakes, J., Twycross, J., Konur, S., Romero-Campero, F.J., Krasnogor, N., Gheo-
rghe, M.: Infobiotics Workbench: A P systems based tool for systems and synthetic
biology. In: Frisco, P., Gheorghe, M., Pérez-Jiménez, M.J. (eds.) Applications of
Membrane Computing in Systems and Synthetic Biology, Emergence, Complex-
ity and Computation, vol. 7, pp. 1–41. Springer International Publishing (2014),
http://dx.doi.org/10.1007/978-3-319-03191-0_1

11. Boyer, B., Corre, K., Legay, A., Sedwards, S.: Plasma-lab: A flexible, distributable
statistical model checking library. In: Proceedings of Quantitative Evaluation of
Systems - 10th International Conference, QEST 2013, Buenos Aires, Argentina,
August 27-30, 2013. pp. 160–164 (2013)

12. Buchholz, P.: A new approach combining simulation and randomization for the
analysis of large continuous time Markov chains. ACM Trans. Model. Comput.
Simul. 8(2), 194–222 (Apr 1998), http://doi.acm.org/10.1145/280265.280274

13. Carrillo, M., Góngora, P.A., Rosenblueth, D.A.: An overview of existing model-
ing tools making use of model checking in the analysis of biochemical networks.
Frontiers in Plant Science 3(155), 1–13 (2012)

14. Cavaliere, M., Mazza, T., Sedwards, S.: Statistical model checking of membrane
systems with peripheral proteins: Quantifying the role of estrogen in cellular mi-
tosis and DNA damage. In: Applications of Membrane Computing in Systems
and Synthetic Biology, Emergence, Complexity and Computation, vol. 7, pp.
43–63. Springer International Publishing (2014), http://dx.doi.org/10.1007/

978-3-319-03191-0_2

15. Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT Press (1999)
16. Donaldson, R.;Gilbert, D.: A Monte Carlo model checker for Probabilistic LTL with

numerical constraints. Tech. rep., University of Glasgow, Department of Comput-
ing Science (2008)

17. Dragomir, C., Ipate, F., Konur, S., Lefticaru, R., Mierla, L.: Model checking kernel
P systems. In: Membrane Computing, Lecture Notes in Computer Science, vol.
8340, pp. 151–172. Springer Berlin Heidelberg (2014), http://dx.doi.org/10.

1007/978-3-642-54239-8_12

18. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of the 21st International Conference on
Software Engineering. pp. 411–420. ICSE ’99, ACM, New York, NY, USA (1999),
http://doi.acm.org/10.1145/302405.302672

19. The European Bioinformatics Institute. http://www.ebi.ac.uk/, [Online; ac-
cessed 08/01/15]

20. Fisher, J., Piterman, N.: Model checking in biology, pp. 255–279. Springer Verlag
(2014)

21. Fisher, J., Henzinger, T.A.: Executable cell biology. Nat Biotech 25(11), 1239–1249
(2007)

22. Frisco, P., Gheorghe, M., Pérez-Jiménez, M.J. (eds.): Emergence, Complexity and
Computation, vol. 7. Springer International Publishing (2014)

23. Gheorghe, M., Konur, S., Ipate, F., Mierla, L., Bakir, M.E., Stannett, M.: An
integrated model checking toolset for kernel P systems. In: Rozenberg, G., Salomaa,
A., Sempere, M.J., Zandron, C. (eds.) Membrane Computing: 16th International
Conference, CMC 2015, Valencia, Spain, August 17-21, 2015, Revised Selected
Papers. pp. 153–170. Springer International Publishing, Cham (2015), http://dx.
doi.org/10.1007/978-3-319-28475-0_11

24. Grunske, L.: Specification patterns for probabilistic quality properties. In: Proceed-
ings of the 30th International Conference on Software Engineering. pp. 31–40. ICSE
’08, ACM, NY, USA (2008), http://doi.acm.org/10.1145/1368088.1368094

25. Harel, D.: Statecharts: a visual formalism for complex systems. Science of Com-
puter Programming 8(3), 231 – 274 (1987), http://www.sciencedirect.com/

science/article/pii/0167642387900359
26. Heiner, M., Gilbert, D., Donaldson, R.: Petri nets for systems and synthetic biology.

In: Proceedings of the Formal Methods for the Design of Computer, Communica-
tion, and Software Systems 8th International Conference on Formal Methods for
Computational Systems Biology. pp. 215–264. SFM’08, Springer-Verlag, Berlin,
Heidelberg (2008), http://dl.acm.org/citation.cfm?id=1786698.1786706

27. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for auto-
matic verification of probabilistic systems. In: Tools and Algorithms for the Con-
struction and Analysis of Systems, pp. 441–444. Springer Berlin Heidelberg (2006)

28. Huth, M., Ryan, M.: Logic in computer science: Modelling and reasoning about
systems. Cambridge University Press (2004), http://books.google.co.uk/books?
id=eUggAwAAQBAJ

29. Ibarra, O.H., Păun, G.: Membrane computing: A general view. Ann Eur Acad Sci.
EAS Publishing House, Liege pp. 83–101 (2006)

30. Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and
outs of the probabilistic model checker MRMC. In: Quantitative Evaluation of
Systems (QEST). pp. 167–176. IEEE Computer Society (2009)

31. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic
nets. Journal of Theoretical Biology 22, 437–467 (1969)

32. Konur, S., Gheorghe, M.: A property-driven methodology for formal analysis of
synthetic biology systems. IEEE/ACM Transactions on Computational Biology
and Bioinformatics 12(2), 360–371 (March 2015)

33. Konur, S., Gheorghe, M., Dragomir, C., Mierla, L., Ipate, F., Krasnogor, N.: Qual-
itative and quantitative analysis of systems and synthetic biology constructs using
P systems. ACS Synthetic Biology 4(1), 83–92 (2015), http://dx.doi.org/10.
1021/sb500134w, pMID: 25090609

34. kPWorkbench. http://kpworkbench.org/, [Online; accessed 08/01/15]
35. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic symbolic model

checker. In: Computer performance evaluation: modelling techniques and tools, pp.
200–204. Springer Berlin Heidelberg (2002)

36. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In: Pro-
ceedings of the 7th International Conference on Formal Methods for Performance
Evaluation. pp. 220–270. SFM’07, Springer-Verlag, Berlin, Heidelberg (2007),
http://dl.acm.org/citation.cfm?id=1768017.1768023

37. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: An overview. In:
Proceedings of Runtime Verification: First International Conference, RV 2010, St.
Julians, Malta, November 1-4. pp. 122–135. Springer, Berlin, Heidelberg (2010),
http://dx.doi.org/10.1007/978-3-642-16612-9_11

38. Lindenmayer, A., Jürgensen, H.: Grammars of development: Discrete-state models
for growth, differentiation, and gene expression in modular organisms. In: Lin-
denmayer Systems: Impacts on Theoretical Computer Science, Computer Graph-
ics, and Developmental Biology, pp. 3–21. Springer, Berlin, Heidelberg (1992),
http://dx.doi.org/10.1007/978-3-642-58117-5_1

39. Milner, R.: Communicating and mobile systems: The Pi-calculus. Cambridge Uni-
versity Press, New York, NY, USA (1999)

40. Monteiro, P.T., Ropers, D., Mateescu, R., Freitas, A.T., de Jong, H.: Tem-
poral logic patterns for querying dynamic models of cellular interaction net-
works. Bioinformatics 24(16), i227–i233 (Aug 2008), http://dx.doi.org/10.

1093/bioinformatics/btn275

41. Markow Reward Model Checker (MRMC). http://www.mrmc-tool.org/, [Online;
accessed 18/02/15]

42. Păun, G.: Introduction to membrane computing. In: Ciobanu, G., Păun, G., Pérez-
Jiménez, M. (eds.) Applications of Membrane Computing, pp. 1–42. Natural Com-
puting Series, Springer Berlin Heidelberg (2006), http://dx.doi.org/10.1007/
3-540-29937-8_1

43. Pérez-Jiménez, M.J., Romero-Campero, F.J.: P systems, a new computational
modelling tool for systems biology. In: Priami, C., Plotkin, G. (eds.) Transactions
on Computational Systems Biology VI, pp. 176–197. Springer, Berlin, Heidelberg
(2006), http://dx.doi.org/10.1007/11880646_8

44. Plasma-Lab. https://project.inria.fr/plasma-lab/, [Online; accessed
18/02/15]

45. Reisig, W.: The basic concepts. In: Understanding Petri Nets, pp. 13–24. Springer
Berlin Heidelberg (2013), http://dx.doi.org/10.1007/978-3-642-33278-4_2

46. Probabilistic and Symbolic Model Checker (PRISM). http://www.

prismmodelchecker.org/, [Online; accessed 08/01/15]
47. Sanassy, D., Widera, P., Krasnogor, N.: Meta-stochastic simulation of biochemi-

cal models for systems and synthetic biology. ACS Synthetic Biology 4(1), 39–47
(2015), http://dx.doi.org/10.1021/sb5001406, pMID: 25152014

48. Ymer website. http://www.tempastic.org/ymer/, [Online; accessed 25/8/15]
49. Younes, H., Kwiatkowska, M., Norman, G., Parker, D.: Numerical vs. statistical

probabilistic model checking. International Journal on Software Tools for Technol-
ogy Transfer (STTT) 8(3), 216–228 (2006)

50. Younes, H.L.S.: Ymer: A statistical model checker. In: Proceedings of the
17th International Conference on Computer Aided Verification. pp. 429–433.
CAV’05, Springer-Verlag, Berlin, Heidelberg (2005), http://dx.doi.org/10.

1007/11513988_43

51. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event sys-
tems using acceptance sampling. In: Proceedings of Computer Aided Verification:
14th International Conference, CAV 2002 Copenhagen, Denmark, July 27–31,
pp. 223–235. Springer, Berlin, Heidelberg (2002), http://dx.doi.org/10.1007/
3-540-45657-0_17

52. Zapreev, I.S., Jansen, C.: Markov reward model checker manual, http://www.

mrmc-tool.org/downloads/MRMC/Specs/MRMC_Manual.pdf

53. Zuliani, P.: Statistical model checking for biological applications. International
Journal on Software Tools for Technology Transfer 17(4), 527–536 (2014), http:
//dx.doi.org/10.1007/s10009-014-0343-0

