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Fuel Optimization in Multiple Diesel Driven Generator Power Plants*

Jesper Knudsen1, Student Member, IEEE, Jan Bendtsen2, Member, IEEE, Palle Andersen2, Member, IEEE,

Kjeld Madsen3, Claes Sterregaard3, and Anthony Rossiter4, Member, IEEE

Abstract— This paper presents two fuel optimization ap-
proaches for independent power producer (IPP) power plants
consisting of multiple diesel driven generator sets (DGs). The
optimization approaches utilize assumed information about the
fuel consumption characteristics of each individual DG in
an effort to demonstrate the potential benefits of acquiring
such information. Reasonable variations in fuel consumption
characteristics are based on measurements of a DG during
restricted air filter flow operation. The two approaches are (i) a
gradient search approach capable of finding the optimal power
generation for each DG in a fixed selection of DGs accommodat-
ing a given plant power reference and (ii) a genetic algorithm
approach further capable of determining the optimal selection
of DGs to operate in an IPP power plant. Both approaches show
notable potential benefits, in terms of fuel savings, compared
to current market-leading solution approaches.

I. INTRODUCTION

Independent power producers (IPPs), supplying electric

power under power purchase agreements (PPAs), have be-

come integral parts of electric infrastructures worldwide

due to ongoing deregulation. Whether providing temporary

supply during, e.g., musical festivals or sporting events,

adding additional capacity in periodically overloaded grids,

known as peak shaving, or establishing the main supply in

an area without grid connection, IPP power plants must be

highly reliable and provide a stable supply. Consequently,

diesel driven generator sets (DGs) are widely used as the

source of electric power generation by IPPs, providing the

necessary overall plant capacity through a number of DGs

[1], [2], [3], [4].

Under a PPA, an IPP has direct financial interest in

maximizing the efficiency of its power plants as the payments

relate to the delivered electric power. Therefore, successful

IPPs maintain timely service of their DGs during plant

operation. However, several elements affecting the efficiency

of each individual DG are not handled by strict atten-

tion to service intervals. Such elements include ambient

temperature, which may vary significantly across the area

occupied by an entire power plant due to, e.g., shade, wind
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direction or adjacent DGs. Besides influencing the quality

of the combustion through the intake air temperature, power

is also consumed by the cooling system of DGs. Cooling

systems for IPP power plant DGs often use electrically

driven cooling fans as they offer higher flexibility in system

design than belt driven fans. Effectively reducing the DG

efficiency, electronic cooling systems often use around two

to three percent of the rated power output [5], [6], [7].

If the cooling systems run constantly at maximum capac-

ity, any efficiency optimization in that regard is inherently

meaningless, whereas regulated cooling systems will allow

for further efficiency optimization given ambient temperature

differences across the plant.

Another element potentially affecting the efficiency of

individual DGs across an IPP power plant is the condition

of air filters. Dust in the air caught by the filter builds up,

eventually, clogging the filter which limits the air intake,

causing decreased fuel efficiency of the diesel engine. This

effect is confirmed in Section III by an experimental demon-

stration. Air filters are replaced or cleaned during service

according to the pressure drop across the filter. However,

unless continuously monitored, clogging of air filters may

occur suddenly, and unnoticed, due to, e.g., a wind gust

blowing sand on a group of DGs in one area of the plant.

Knowledge of such conditions could be used to optimize the

efficiency by automatically redistributing the power demands

for the DGs in the plant, until the filters can be physically

replaced by a service engineer.

Current market-leading plant controller solutions have

a user-specified power generation level for optimum fuel

efficiency [8]. Assuming this specified level is valid, its

usefulness is limited as it contains no information regarding

the actual efficiency at that, or any other, power level. Thus,

use of this value is rare. Instead, the number of operational

DGs in an IPP power plant is most often determined in

order to guarantee a minimum of spinning reserve, to be

able to cope with sudden unexpected load changes. In an IPP

power plant, the DGs are for practical reasons most often of

the same make, type, and rating which in turn implies that

the user-specified power level for optimum fuel efficiency

will be identical for all DGs in the plant. Therefore, each

DG is indistinguishable from the next in a fuel optimization

context. In other words, more information would be needed

for plant-wide fuel optimization. Uncovering the potential

benefit of such additional information would allow IPPs

or DG manufacturers to perform a cost-benefit analysis of

the investment associated with the acquisition of additional

information, e.g., installing additional sensors or developing



identification methods.

Previous work on the area of DG plant optimization is

remarkably limited; however, similarities can be found in

the area of wind farm control, see for example [9]. Within

wind farm control many control approaches as well as

modeling methods which could prove relevant for DG plant

optimization have been investigated, demonstrated briefly by

the following few examples. In [10], authors present a fault

tolerant wind farm controller whereas the authors of [11],

[12], [13], [14] present various generation control approaches

based on interior point, game theoretic, Bayesian ascent, and

model predictive control methods, respectively.

In this paper, we propose two fuel optimization approaches

for IPP power plants based on an assumed knowledge of

individual efficiency characteristics of each DG. The first

approach uses simple gradient search to determine the mo-

mentary optimal power distribution between a fixed selection

of DGs for a given plant power reference. The second ap-

proach is a genetic algorithm (GA) further able to determine

the optimal choice of DGs to utilize in situations where the

plant conditions, including the plant power reference, do not

dictate a fixed selection of DGs in the plant.

The remainder of the paper is organized as follows.

Section II briefly introduces the structure of IPP power plants

and a sufficient, simple representation of individual DG fuel

characteristics. In Section III, experiments are conducted to

acquire actual information regarding fuel efficiency changes

caused by critical air filter conditions. Section IV presents the

two fuel optimization approaches, while Section V provides

concluding remarks.

II. IPP POWER PLANTS

Introducing the general structure of an IPP power plant,

this section presents plant-wide efficiency considerations

suggesting a rather simple efficiency representation for each

individual DG in a plant.

A. Power Plant Structure

Generally, IPP power plants are structured such that DGs

are arranged in so-called feeders, connecting through circuit

breakers and a power transformer to the grid. As illustrated

in Fig. 1, with a four-feeder example, power transformers

are also present in the feeders, either at each DG or for a

group of DGs, to increase the voltage and, thereby, reduce

cable losses due to the lowered current level.

For a specific power plant, the use of power transformers

will typically be identical in each feeder. Further, for prac-

tical reasons, the feeder power transformers will most often

also be of the same make, type, and rating. Depending on

the application of the power plant, there might be more than

one connection to the grid, or none at all. The power plant

might simply supply the load directly, or in combination with

delivering power to the grid.

B. Efficiency Representation

Looking at the fuel efficiency of each DG in an IPP power

plant, a few reasonable assumptions allow a rather simple

individual DG fuel efficiency representation.
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Fig. 1. Structural diagram of an IPP power plant with four feeders utilizing
different feeder constructions, in terms of transformer placement [1].

Any loss inside the power plant is a direct financial cost

to the IPP, hence, measures are taken to minimize those

losses. Such measures include connecting DGs to nearby

power transformers and using cable of sufficient capacity

and quality. Consequently, cable losses inside the power plant

are very small and the difference in losses from one DG to

another is negligible. Further, since all power transformers

in the feeders are in principle identical, the transformer

efficiencies can be neglected in the context of plant-wide

fuel optimization.

Following the above assumptions, each DG in the power

plant can be represented simply by its individual fuel effi-

ciency characteristics. A DG consists of a diesel engine and

a synchronous generator. The efficiency of a generator is, for

the purpose of this work, constant when avoiding operation

at very low loads [15], leaving the engine as the dominant

element in representation of efficiency characteristics.

Data sheets for DG engines provide sparse information

about fuel consumption, typically, at three or four different

load levels, e.g., 25, 50, 75, and 100 % of rated load. Fig.

2 presents data sheet fuel consumption information of four

differently rated DG engines [16], [17], [5], [18]. Addition-

ally, for each engine a least-square fit 2nd degree polyno-

mial obtained with the MATLAB® function polyfit() is

shown. The 2nd degree polynomials inherently match the data

sheet information with only three values perfectly, whereas

for data sheet information with four values small deviations

between the polynomial and the values occur. However, in

this work, 2nd degree polynomials are considered sufficient

fits to represent fuel consumption of each DG in a plant.

III. EFFICIENCY VARIATIONS

In an effort to demonstrate the potential efficiency varia-

tions on individual DGs in an IPP power plant and validate

the use of least square fit 2nd degree polynomial representa-

tions, this section presents measurement results obtained by

limiting the flow through the air filter on a DG.

A. Experimental Setup

The output of a Titan OG1-SSS-SSQ-B oval gear flowme-

ter, mounted in the fuel supply path, as shown in Fig. 3,
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Fig. 2. DG engine [16] (blue), [17] (red), [5] (yellow), and [18] (purple)
data sheet fuel consumption values as crosses, with dotted lines showing
corresponding least-square fit 2nd degree polynomials.
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Flowmeter

Fuel Pump

Fuel Tank

Fig. 3. Diesel driven generator set utilized during air filter experiments.
The air filter is inside the air intake (blue), the burned fuel is pumped from
the fuel tank (purple) by the fuel pump (yellow) and measured by the Titan
OG1-SSS-SSQ-B oval gear flowmeter (red).

is sampled at 1 kHz by a HIOKI Memory HiCorder 8861

using a High Resolution Unit 8957 input module to collect

information about the fuel consumption during experiments.

The DG consists of a Deutz BF4M2012 diesel engine

driving a 60 kVA/48 kW Leroy-Somer LSA 42.3 L9 C6/4

synchronous generator. During experiments, the DG supplies

a controllable load consisting of resistive JEVI heating

elements mounted in a 10 m3 water tank. With a 400 V

phase-to-phase RMS voltage each heating element constitute

a 10 kW load. Multiple heating elements are coupled in

parallel for increased load levels.

B. Experimental Procedure

The experiment is conducted as a two-part process. The

conditions of the DG are, to the best of our ability, kept

constant during both parts, except for the state of the air

filter. Each part of the experiment is performed after an

identical warm-up period of the DG from a cold starting

point, i.e., both the DG and the ventilated room in which it

is contained. Consumption measurements are then collected

at various levels of constant load. These applied load levels

are 20, 30, 40, and 50 kW.

A brand new air filter is fitted for one part of the

experiment. For the other part of the experiment, a used air

filter is covered in duct tape, to a state where the air pressure

drop across the filter at 50 kW load reach service level.

C. Experimental Results

The presented measurements all represent average con-

sumption values over 10-minute steady-state periods. Fig.

4 provides the results for both air filter conditions along

with corresponding 2nd degree polynomial least-square fits

obtained with the MATLAB® function polyfit().

Tables I and II present the fuel consumption results along

with the corresponding air filter pressure drops. The pressure

drops were observed using a Testo 435 multifunction meter.

The indicated service level pressure drop for the utilized DG

setup is 50 mbar.

We remind the reader that the absolute values of these

experimental results should be analyzed with caution, both as

a consequence of unavoidable measurement tolerances and

the simplicity of the utilized experimental setup. That is,

manufacturers conducting similar experiments take measures

to ensure the repeatability of the experiments which were not

possible here, e.g., strict control of ambient air temperature

and humidity and engine temperatures, oil pressure, etc.

However, these experimental results do indeed confirm the

influence of air filter conditions on the fuel consumption of

a DG throughout its operating range and the suitability of

2nd degree polynomial representations.

IV. FUEL OPTIMIZATION

Utilizing assumed knowledge of individual DG fuel con-

sumption characteristics as 2nd degree polynomials, this

section presents two fuel optimization approaches to demon-

strate the potential benefit of obtaining such information.

The optimization problem is to minimize the total fuel

consumption, given a power reference for an IPP power

plant consisting of identically rated DGs. The fuel con-

sumption curves in liters per kilowatt-hour are multiplied

by the generated kilowatt to yield the consumption in liters

per hour, which when summed over all the DGs is the

subject of minimization. The fuel consumption curves in

liters per hour are, inherently, strictly monotonic increasing

3rd degree polynomials. The inflection point of the 3rd degree

polynomials lie around 50 % of rated power generation.

Hence, the polynomials are strictly convex functions for

power generation above that point, which coincides with the

region of highest efficiency. For a plant power reference r,

that allows n DGs with identical fuel consumption curves f

to operate in the strictly convex region of f , Proposition 1

shows that each DGs should take an equal share of the plant

power reference, i.e., r
n

.

Proposition 1: For any strictly convex function

h(x1, . . . , xn) = f(x1) + · · · + f(xn), where the function
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Fig. 4. Measured fuel consumption with new (blue) and taped (red) air
filter. Crosses are 10-minute steady-state averages, while the dotted lines
are corresponding least-square fit 2nd degree polynomials.

TABLE I

EXPERIMENTAL DATA WITH NEW AIR FILTER.

Load Fuel Consumption Air Filter Pressure Drop

20 kW 0.3206 l/kWh 4 mbar
30 kW 0.2886 l/kWh 5 mbar
40 kW 0.2792 l/kWh 5 mbar
50 kW 0.2750 l/kWh 6 mbar

TABLE II

EXPERIMENTAL DATA WITH TAPED AIR FILTER.

Load Fuel Consumption Air Filter Pressure Drop

20 kW 0.3277 l/kWh 33 mbar
30 kW 0.2963 l/kWh 39 mbar
40 kW 0.2855 l/kWh 44 mbar
50 kW 0.2831 l/kWh 51 mbar

f : R → R is strictly convex, if dom h is constrained by

x1 + · · · + xn = r, the minimum of h(x1, . . . , xn) is at

(x1, . . . , xn) = ( r
n
, . . . , r

n
).

Proof: By construction, the strictly convex level sets of

h(x1, . . . , xn) are symmetric around the n-dimensional line

x1 = · · · = xn and the unconstrained (global) minimum is

on this n-dimensional line. If dom h is constrained by the

surface x1+ · · ·+xn = r, the function h(x1, . . . , xn) attains

a constrained minimum where the surface x1+ · · ·+xn = r

intersects the n-dimensional line x1 = · · · = xn which is at

(x1, . . . , xn) = ( r
n
, . . . , r

n
).

Presenting the proposition in a simple manner, Fig. 5

provides a sketch of the proof for n = 2.

Following the argumentation in the Introduction and the

confirming results shown in Section III, we assume differ-

ences in fuel efficiency characteristics of the DGs in the

plant. For simplicity, let each DG in the plant belong to one

of five groups where the groups are distinguishable by their

fuel efficiency characteristics only. Based on the combined

information from data sheets and the results shown in Section

III, Fig. 6 presents five different fuel consumption curves

which relate to DGs belonging to the corresponding group.

x1

x2

r
n

r
n

x1 + x2 = r

x1 = x2

h(x1, x2) = c5 < c6
h(x1, x2) = c6

Fig. 5. Sketch of the constrained minimum (x1, x2) = ( r

n
, r

n
) for the

strictly convex h(x1, x2) = f(x1) + f(x2) where dom h is constrained
by x1 + x2 = r.

A. Gradient Search Approach

For a given power reference to an IPP power plant, the

optimum power distribution between a fixed selection of DGs

with assumed 3rd degree polynomial fuel consumption char-

acteristics can be found using a gradient search approach,

if the selection of DGs meet one straightforward condition.

Remember, the 3rd degree polynomial fuel consumption

curves in liters per hour are strictly convex functions above

their inflection points and the sum of convex functions is a

convex function. The condition on the selection of DGs is

therefore, that the selection must be one which allows every

DG to operate in the convex region of fuel consumption

while collectively accommodating the plant power reference.

The fuel optimization problem, for a selection of n DGs

and a plant power reference r, is given by

min
x

n∑

i=1

fi(xi) (1a)

s.t.

0 ≤ xi ≤ x̄i ∀i (1b)
n∑

i=1

xi = r (1c)

where xi is the power generation of DG i, fi(xi) is the

fuel consumption of DG i with power generation xi in liters

per hour, and x̄i is the power generation rating of DG i,

which for the typical IPP power plant is identical for all DGs.

We find the solution to the minimization problem (1) with

the MATLAB® toolbox YALMIP [19], utilizing the interior-

point method of the fmincon solver.

With a selection of 30 DGs in total, consisting of six DGs

belonging to each of the five groups, characterized by the fuel

consumption shown in Fig. 6, we demonstrate the potential

benefit of fuel optimization for a plant power reference of

55 MW when the rating of each DG is 2 MW.

Note, Proposition 1 extends to groups of identical fuel

consumptions curves, that is, all six DGs of a group will

generate the same amount of power in the optimal solution,

whereas DGs of different groups will operate at different

power generation levels.



Percentage of Rated Generation (%)
0 10 20 30 40 50 60 70 80 90 100

F
ue

l C
on

su
m

pt
io

n 
(l/

kW
h)

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

Fig. 6. Assumed fuel consumption curves of DGs in group 1 (blue), group 2
(red), group 3 (yellow), group 4 (purple), and group 5 (green), respectively.

Table III presents the power generation and fuel consump-

tion results for the case described above. The optimal solu-

tion requires least power from DGs of group 5, which is in

accordance with the fuel consumption curves in Fig. 6, where

the green curve is the highest in the region of utilization

for this specific plant power reference. Table IV presents the

power generation and fuel consumption results for a solution

where the plant power reference is distributed evenly among

the 30 DGs, as current market-leading solutions do due to

lack of individual fuel characteristic information.

In comparison to the even distribution approach, the

gradient search approach reduces the fuel consumption by

approximately 15 liters per hour due to the simple redistri-

bution of power generation among the DGs.

B. Genetic Algorithm Approach

If the selection of DGs operated to accommodate the plant

power reference is not predetermined, the gradient search

approach losses its convexity property, which complicates the

search for the solution. As an alternative, a genetic algorithm

approach is proposed, which is able to find the optimal

selection of DGs to operate in an IPP power plant, when

accommodating the plant power reference requires less than

all the available DGs to optimize the total fuel consumption.

Generally, the structure of a GA is as shown in Fig. 7 [20],

[21]. The prerequisite for formulating a GA is the ability

to find the fitness of any individual in the population, i.e.,

calculate the worth of any possible solution. In our particular

case, this is the calculation of total fuel consumption of any

possible power generation distribution, among the DGs in

the plant, which accommodates the plant power reference.

With the assumed 3rd degree polynomial fuel consumption

information, that calculation is straightforward. GAs handle

many possible solutions simultaneously and the collection

of all these possible solution are denoted a population. The

number of solutions in the population is a design parameter

of the GA, referred to as the population size.

TABLE III

FUEL OPTIMIZATION RESULTS UTILIZING THE GRADIENT SEARCH

APPROACH FOR A FIXED SELECTION OF 30 DGS.

Group DGs† Power Generation‡ Fuel Consumption‡

1 6 1.8341 MW 427.68 l/h
2 6 1.8371 MW 422.00 l/h
3 6 1.9376 MW 447.95 l/h
4 6 1.8339 MW 429.31 l/h
5 6 1.7239 MW 401.59 l/h

Total 30 55 MW 12771.18 l/h

†operational in Group, ‡per DG in Group

TABLE IV

RESULTS OF AN EVEN DISTRIBUTION APPROACH FOR A FIXED

SELECTION OF 30 DGS.

Group DGs† Power Generation‡ Fuel Consumption‡

1 6 1.8333 MW 427.46 l/h
2 6 1.8333 MW 420.98 l/h
3 6 1.8333 MW 420.76 l/h
4 6 1.8333 MW 429.14 l/h
5 6 1.8333 MW 432.71 l/h

Total 30 55 MW 12786.35 l/h

†operational in Group, ‡per DG in Group

1) Initialize Population: The first element in the GA is to

form an initial population, i.e., come up with a collection of

possible solutions. In our GA, the initial population is formed

by randomly assigning power to DGs in the plant. Until the

total assigned power in a solution goes above the plant power

reference r, the power of randomly chosen DGs is selected

uniformly in the range from the minimum allowable power

to the DG rating. The minimum allowable power is defined

as the average power needed from the remaining DGs during

the forming of a solution to accommodate the plant power

reference. Once the total assigned power goes above the

plant power reference, that excess power is removed from

the assigned power of the latest randomly chosen DG. The

DGs without assigned power at this point, if any, will be part

of the solution with zero power generation.

2) Evaluate Fitness: Each solution in the population can

be evaluated by finding its total fuel consumption, utilizing

the 3rd degree polynomials.

3) Stop?: The stopping condition of a GA depends highly

on the nature of the specific problem. Each successive

repetition of evaluation, selection, crossover, and mutation

is referred to as a generation. In problems where the optimal

fitness value is unknown a priori, the stopping condition can

be based on the number of generations, which is the case

in our GA. For other problems, e.g., reaching a certain level

of fitness or a certain level of change in fitness between

generations can be the stopping condition [20], [21].

4) Selection: At this point, the population is repopulated

by systematic selection of solutions in the existing population

to eliminate some of the solutions with the worst fitness. We

utilize so-called tournament selection with replacement in

which two solutions from the existing population are picked

at random and the one with the best fitness is placed in the

new population [20], [21]. This process is repeated until the

new population is of the same size as the old population.
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Fig. 7. General structure of a genetic algorithm [20], [21].

Referred to as elitism [20], [21], a number of the most

fit solutions are carried straight to the new population to

guarantee survival of the fittest. In general, no guarantee is

given that the most fit nor the least fit solutions will be picked

during the tournament selection with replacement process.

5) Crossover: Also known as mating, crossover is the

process of mixing solutions in the population in hope of dis-

covering solution with better fitness [20], [21]. The crossover

in our GA takes its inspiration from the so-called single-point

crossover [20], [21]. First, we pick two random solutions α

and β from the population. With each solution containing the

power generation of n DGs, we randomly choose a number

c between 1 and n − 1. As a fifty-fifty chance, we choose

whether to manipulate DGs 1 to c or DGs c + 1 to n and

denote the chosen set of DGs m. If the total power generation

of the m DGs is zero in solution α or β, we choose a

new random c until this sum is non-zero in both α and β.

Equations (2) show this, in an example where the set m

contains DGs 1 to c.

α =
[
xα1 · · · xαc
︸ ︷︷ ︸

αm

· · · xαn

]
,

c∑

i=1

xαi 6= 0 (2a)

β =
[
xβ1 · · · xβc
︸ ︷︷ ︸

βm

· · · xβn

]
,

c∑

i=1

xβi 6= 0 (2b)

We then calculate the power distribution of the m DGs

for both α and β. Finally, we apply the power distribution

of the m DGs in solution α to the m DGs in solution β

while maintaining the total power generation of the m DGs

in β, and vice versa, yielding two new solutions which both

accommodate the plant power reference. However, some of

the m DGs in the two new solutions might violate DG

ratings due to the new combination of power distribution and

total power generation. To prevent potential rating violations,

the excess power of any such DG is removed and then

added randomly to another of the m DGs until no violations

occur in both of the two new solutions. A design parameter,

referred to as the crossover probability pc, is utilized after

picking two random solutions α and β from the population.

With the probability of 1− pc, α and β will go through the

crossover process without manipulation whereas α and β has

pc probability of going through the entire crossover process,

as described above, to form two new solutions. Random

solutions are picked successively for crossover until a new

population of the same size as before the crossover process

began has been produced.

6) Mutation: To increase the diversity of the population,

each solution in the population has pm probability of mu-

tation [20], [21]. If a solution is subject to mutation, the

power generation of a randomly picked DG in that solution

is set to zero. The power removed by that mutation is added

to the power generation of another randomly picked DG in

the same solution. If this yields DG rating violations, the

excess power is added randomly to another DG until no

rating violations occur.

For a 50 DG power plant, consisting of ten DGs belonging

to each of the five groups, characterized by the fuel consump-

tion shown in Fig. 6, we demonstrate the potential benefit

of selecting the optimal DGs to operate for a 55 MW plant

power reference when the rating of each DG is 2 MW.

Table V presents the power generation and fuel consump-

tion results using the GA with a population size of 1000,

a crossover probability of 0.75, a mutation probability of

0.9, a stopping condition of 7500 generations, and carrying

10 solutions straight to the new population in accordance

with the elitism principle. Table VI and VII present the

power generation and fuel consumption results for two

solutions resembling current market-leading solutions with

lack of individual fuel characteristic information. These two

solutions determine the necessary number of operational DGs

through a requirement for spinning reserve, set to 2 MW in

this case. A spinning reserve matching the rating of one DG

is rather common for IPP power plants. For the case of a

55 MW plant power reference and 2 MW spinning reserve,

a total capacity of 57 MW requires 29 operational 2 MW

rated DGs. The two solutions differ by representing the most

fortunate and most unfortunate selection of 29 DGs possible

with respect to the fuel characteristics, which are unknown

in current market-leading solutions.

The GA approach achieves a spinning reserve of 13 MW

which for an IPP power plant with a scheduled plant power

reference might seem rather high. Five additional DGs are

operated by the GA approach, in comparison with the even

distribution approach, to achieve higher fuel efficiency. For

the most fortunate choice of DGs the even distribution ap-

proach uses 161 liters per hour more than the GA approach,

while the most unfortunate choice uses 394 liters per hour

more than the GA approach.

V. CONCLUSIONS

In this paper, two fuel optimization approaches for IPP

power plants consisting of a collection of DGs have been

presented. The optimization approaches utilize assumed in-

formation regarding individual DG fuel characteristics to



TABLE V

FUEL OPTIMIZATION RESULTS UTILIZING THE GENETIC ALGORITHM

APPROACH FOR AN IPP POWER PLANT OF 50 DGS.

Group DGs† Power Generation‡ Fuel Consumption‡

1 5 1.6035 MW 370.17 l/h
2 10 1.6277 MW 369.76 l/h
3 10 1.7026 MW 389.36 l/h
4 0 0 MW 0 l/h
5 9 1.5200 MW 350.74 l/h

Total 34 55 MW 12598.58 l/h

†operational in Group, ‡per DG in Group

TABLE VI

FORTUNATE EVEN DISTRIBUTION APPROACH RESULTS WITH 2 MW

SPINNING RESERVE FOR A 50 DG IPP POWER PLANT.

Group DGs† Power Generation‡ Fuel Consumption‡

1 9 1.8966 MW 445.01 l/h
2 10 1.8966 MW 438.52 l/h
3 10 1.8966 MW 437.00 l/h
4 0 0 MW 0 l/h
5 0 0 MW 0 l/h

Total 29 55 MW 12760.29 l/h

†operational in Group, ‡per DG in Group

TABLE VII

UNFORTUNATE EVEN DISTRIBUTION APPROACH RESULTS WITH 2 MW

SPINNING RESERVE FOR A 50 DG IPP POWER PLANT.

Group DGs† Power Generation‡ Fuel Consumption‡

1 9 1.8966 MW 445.01 l/h
2 0 0 MW 0 l/h
3 0 0 MW 0 l/h
4 10 1.8966 MW 446.69 l/h
5 10 1.8966 MW 452.13 l/h

Total 29 55 MW 12993.29 l/h

†operational in Group, ‡per DG in Group

demonstrate the potential fuel savings achievable by acquir-

ing such information. Realistic variations in fuel character-

istics have been found by measuring on a DG subject to

critical air filter conditions, confirming the air filter influence

and the suitability of least square fit 2nd degree polynomial

fuel efficiency characteristic representations.

A gradient search approach demonstrates potential fuel

savings in comparison to the current market-leading ap-

proach for a fixed selection of DGs. Additionally, a GA

approach demonstrates potential fuel savings for IPP power

plants where the selection of DGs operated to accommodate

the plant power reference is not predetermined.

Genetic algorithms are well-established as an approach for

finding solutions to non-convex problems; however, many

different GA strategies exist, and there are no common meth-

ods that work well for all problems. The methods utilized in

the selection, crossover, mutation, and for establishing the

initial population all impact the usefulness of the designed

GA and there is no guarantee that the optimal solution is

found. The presented GA solves the investigated case in

around eight minutes on a standard modern 2 GHz Intel®

Core™ i5 laptop; in comparison, the simple gradient search

approach solves its case in around three seconds. While

the presented GA is rather consistent in terms of total fuel

consumption of the best solution, the power generation for

individual DGs vary in tens of kW between consecutive

GA runs. For the investigated case, we utilize Proposition

1 and assign the DGs of each group equal power generation,

totaling the group power generation found by the GA. How-

ever, if each DG had unique fuel consumption characteristics

either designing alternative selection, crossover, or mutation

methods, or combining the strengths of the GA with the

gradient search approach could be a better approach. The

GA is capable of finding the optimal selection of DGs

for a specific plant power reference and individual DG

fuel consumption characteristics. Once the selection of DGs

is determined, the gradient search approach is capable of

quickly finding the exact optimal power generation for each

of those DGs.
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