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Classification of Familiarity Based on Cross-Correlation Features

Between EEG and Music

Yuiko Kumagai 1, Mahnaz Arvaneh 2, Haruki Okawa 1, Tomoya Wada 1, and Toshihisa Tanaka 1,3

Abstract— An approach to recognize the familiarity of a
listener with music using both the electroencephalogram (EEG)
signals and the music signal is proposed in this paper. Eight
participants listened to melodies produced by piano sounds as
simple natural stimuli. We classified the familiarity of each
participant using cross-correlation values between EEG and the
envelope of the music signal as features of the support vector
machine (SVM) or neural network used. Here, we report that
the maximum classification accuracy was 100% obtained by
the SVM. These results suggest that the familiarity of music
can be classified by cross-correlation values. The proposed
approach can be used to recognize high-level brain states such
as familiarity, preference, and emotion.

I. INTRODUCTION

Brain–computer interfaces (BCIs) are emerging interfaces

that have a lot of potential as an application of signal

processing and machine learning techniques. BCIs are not

only used to control a computer or a device but also

for music therapy and recommendations [1], [2], [3], [4].

For this purpose, some researchers have investigated neural

responses to detect high-level brain states such as emotion

and preference. Daly et al. [5] predicted music-induced

emotion using electroencephalogram (EEG) as well as the

properties of music. Hadjidimitriou et al. [6] classified music

preferences under the parameter of familiarity using a time-

frequency analysis of EEG. However, it has not investigated

to recognize whether music is familiar or unfamiliar to a

listener.

To investigate brain responses to sound, many researchers

have measured event-related potentials (ERPs), such as mis-

match negativity (MMN), in numerous contexts. MMN is a

change-specific component of ERPs that has a peak at 150–

250 ms after the onset of a deviant stimulus [7]. It has been

shown that MMNs are elicited by deviant sounds in rhythmic

sequences [8] and melodies [9]. Another approach is to mea-

sure an auditory steady-state response (ASSR), which can be

elicited by periodically repeated sounds [10]. Recent studies

have demonstrated that the cortical entrainment to periodic

tones [11] and rhythms of music [12]. However, these MMN

and ASSR approaches are not suitable to continuous stimuli

such as natural music.
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Recent works on auditory perception have focused on

cortical entrainment [13], [14], [15], [16], [17], [18], [19],

[20], [21]. Cortical entrainment to the envelope of speech

has been used in several studies [14], [15], [16]. It has been

demonstrated that attended speech can be decoded by low-

frequency neural oscillation and speech envelopes [17], [18].

Moreover, cortical entrainment to the envelope of speech

can be seen even at the single-trial level [19], [20]. Cortical

entrainment to the music has also been demonstrated in terms

of music perception [21], [22].

In this paper, we present our findings on estimating the

familiarity with music from EEG and music signals with

a focus on entrainment. As features, we calculated cross-

correlation function between the EEG while a participant is

listening to music and the envelope of the music. The features

were classified by a support vector machine (SVM) or deep

neural network (DNN).

This paper is organized as follows: Section II describes

the dataset we used, the preprocessing of the data, and

feature extraction. In Section III, we present the results and

discussion. In Section IV, conclusions are drawn.

II. MATERIALS AND METHODS

A. Dataset

The EEG data used in this study were collected in our

previous work [22]. In order to classify familiarity, we used

a subset of the data, that is, the trials labeled familiar and

unfamiliar. A brief description of the dataset follows.

1) Participants: Eight males in their 20s participated in

this experiment. All participants were healthy and had normal

hearing. They each signed an informed consent form. The

study was approved by the Human Research Ethics Commit-

tee of the Tokyo University of Agriculture and Technology.

2) EEG data acquisition: We used the Ag/AgCl

active electrodes from Guger Technologies (g.tec)

named g.LADYbird, g.LADYbirdGND (for GND), and

g.GAMMAearclip (for reference) for the EEG. These

were driven by a power supply unit named g.GAMMAbox

(g.tec). Thirty-two electrodes were placed over the scalp in

accordance with the international 10–10 system, as shown

in Fig. 1. The electrodes for GND and the reference were

placed at AFz and A1, respectively. The EEG signals were

amplified using MEG-6116 (Nihon Kohden), which applied

low and high-pass analog filters for each channel. The

cut-off frequencies of the low and the high-pass filters were

set to 100 and 0.08 Hz, respectively. The EEG signals

were sampled by A/D converter (AIO-163202FX–USB,

Contec) with a sampling rate of 1,024 Hz. The signals were
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Fig. 1: Electrode positions. The numbers indicate indices.

TABLE I: Pieces of music used in the experiment. For each

music in this table, we created a piece consisting of melodies

produced by piano sounds.

Composer Title

Popular English lullaby Twinkle Twinkle Little Star
A. L. Vivaldi The Four Seasons, Spring
P. I. Tchaikovsky The Nutcracker, March
P. I. Tchaikovsky Swan Lake, Scene
A. Dvorak Symphony No. 9 ”From The New World”
T. Hakase Jounetsu Tairiku
A. Khachaturyan Masquerade
J. Pachelbel Canon
L. v. Beethoven Ode to Joy
W. A. Mozart Eine Kleine Nachtmusik
I. Albeniz Piano Sonate Op.82
F. Kuhla Sonatine Op.55–1
A. Diabelli Sonatine Op.151–2
A. Diabelli Sonatine Op.168–2
P. I. Tchaikovsky Six Pieces Op.51–1
G. Faure Dolly Suite, Kitty–Valse
L. v. Beethoven Piano Sonate Op.14–1
L. v. Beethoven The Creatures of Prometheus, Introduction
F. Mendelssohn Lieder Ohne Worte Op.19–1
W. A. Mozart Piano Sonate KV309

recorded with the Data Acquisition Toolbox by MATLAB

(MathWorks).

3) Musical pieces: We extracted 20 musical pieces, using

the music computation and notation software Sibelius (Avid

Technology, USA). Each piece consisted of melodies pro-

duced by piano sounds, as shown in Table I. The length of

each musical piece was 32 seconds with the tempo set to

150 beats per minute (bpm) (i.e., the frequency of a quarter

of a note was 2.5 Hz). The sampling frequency was set to

44,100 Hz and resampled to 32,768 Hz for analysis.

4) Tasks: In the experiment, the participants listened to

the musical pieces while visually fixating on a stationary

position. The experiment consisted of two sessions where

each session included 20 musical pieces. After listening to

each musical pieces, the participants were asked whether

they were familiar with the presented piece. The EEG

recordings with respect to all the pieces were assessed to

detect certain qualities, such as large-amplitude spikes. Each

EEG recording was visually inspected during the experiment.

If the EEG was contaminated with a large amount of artifacts,

the same musical piece was replayed to record the EEG.

After listening to each musical piece, we labeled the piece

as familiar or unfamiliar according to the answers of the

participants. If participants’ answer are not consistent across

the sessions, they were excluded from the datasets. The

number of data for each participant is summarized in Table

II.

B. Feature Extraction

Our previous work [22] showed that the cross-correlation

function averaged across trials, channels, and participants,

showed a pronounced peak. At the peak, the cross-correlation

magnitudes while participants listening to unfamiliar and

scrambled music were significantly larger than they were

while listening to familiar music [22]. In this paper, we

considered the cross-correlation values between EEG and

music envelope for each channel as potential features for

classification.

1) Preprocessing: Thirty-second epochs of the EEG and

music recordings were used, excluding the first second after

the onset of the musical pieces and the last second before the

end of them to remove filtering edge effects. For the recorded

music, a zero-phase digital high-pass Butterworth filter (1

Hz) was applied to the recorded musical pieces. Then,

the envelope of the filtered musical pieces was calculated

using the Hilbert transform. Moreover, a zero-phase digital

bandpass Butterworth filter between 1 and 40 Hz was applied

to the recorded EEG and the envelopes. The filtered EEG

and envelopes were down sampled to 256 Hz. Finally, the

z-scores were calculated.

2) Cross-correlation function: First, the cross-correlations

between the envelope of the music signals and the EEG

signals were computed for time lags between −0.6 and 0.6
seconds, as follows:

C(n, τ) =
∑

t

x(t)y(n, t+ τ), (1)

where x(t) and y(t) denote the filtered standardized (z-

scored) envelope of a sound stimulus and the corresponding

filtered standardized (z-scored) EEG response at time t and

channel n, respectively. In addition, τ denotes the time

lag between the envelope and the EEG signal. Second, we

calculated the standard deviation of the cross-correlation

function across the electrodes. Then, the peak was defined

as the maximum value of the standard deviation in the time

lag with the largest peak. This peak was used as a feature.

C. Classification

To determine the familiarity with music, feature classifica-

tion was achieved using three different methods, Radial Basis

Function based SVM (RBF–SVM), linear SVM (LSVM),

and DNN. Since the number of electrodes was 31, the

feature vector consisted of 31 cross-correlation features. The
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Fig. 2: Architecture of the neural network. ReLU [24] was

used as the activation function, and the final layer was a

softmax classifier. The size of the hidden layer was 4, and

the number of neuron elements was 50.
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Fig. 3: Weight of the linear support vector machine for

Participant 1 (s1m). The horizontal axis indicates the channel

index corresponding to Fig. 1.

classification analysis was performed individually for each

participant. We used leave–one–out (LOO) cross-validation.

1) SVM: As for RBF–SVM, parameter C was set to 1,

and parameter γ was set to 100. The LSVM’s parameter

C was set to 10. RBF–SVM and LSVM were utilized as

implemented in the open-source machine learning library

scikit-learn [23].

2) Deep neural network: The neural network architecture

that we used is shown in Fig. 2. The DNN was trained

using batch training with momentum. We used ReLU as the

activation function [24], and the final layer was a softmax

classifier [25], [26]. The number of hidden layers was 4, and

the number of neuron elements was 50. The learning rate was

0.01.

III. RESULTS AND DISCUSSION

The classification accuracy for each participant and each

classification method are shown in Table II. RBF–SVM

showed the best performance with an accuracy of 100%. All
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Participant 2 (s2m). The horizontal axis indicates the channel

index corresponding to Fig. 1.
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Fig. 5: The weight of each electrode averaged across partic-

ipants.

classifiers’ accuracies were over 50% (i.e., above the chance

level).

In order to discuss which channel of the EEG is important

for classification, we plotted the magnitude of the weight

of the LSVM by each LOO cross-validation. Figs. 3 and 4

show the weights of participants 1 (s1m) and 2 (s2m). The

horizontal axis indicates the channel index corresponding to

Fig. 1, and the vertical axis indicates the test index of LOO

cross-validation. As shown in Figs. 3 and 4, the weights were

consistent across the LOO tests. Fig. 5 shows the weight of

the LSVM averaged across LOO tests and participants as a

topographical map.

According to Figs. 3–5, the weight coefficient of the

classifier is larger in the frontal area than in the occipital

area. These results suggest that the frontal area is important

to classify brain states. Meltzer et al. [12] showed that the

EEG responses to the beat of the music were larger in the



TABLE II: Classification accuracy for each participant-specific model. We used RBF–SVM, LSVM, and DNN. The best

performance was 100% with RBF–SVM. The bracket below the participant’s index indicates the number of data for each

participant.

Accuracy [%]
s1m s2m s3m s4m s5m s6m s7m s8m

Model (40) (40) (38) (34) (36) (40) (36) (36) Mean ± Standard deviation

Radial Basis Function based support vector machine 93 100 63 68 69 63 81 58 74± 15

Linear support vector machine 95 98 53 53 54 58 81 56 68± 19

Deep neural network 93 98 61 62 64 65 81 53 72± 16

frontal, fronto-parietal, and central areas. Kong et al. [27]

reported that the central area was activated strongly while

listening to speech. The above-mentioned result is supportive

of the findings of previous studies [12], [27].

IV. CONCLUSION

We proposed an approach to evaluate the familiarity with

music using EEG. The cross-correlation values between the

EEG and the envelope of the music signals were used in the

RBF–SVM, LSVM, and DNN. The best participant achieved

a classification rate of 100% using RBF–SVM. These results

suggest that cross-correlation values can be used to recognize

high-level brain states such as familiarity, preference, and

emotion. Further, the proposed feature can be adapted for

BCIs using natural music.
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