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Power sharing of parallel operated DC-DC converters using
current-limiting droop control

A.-C. Braitor, G. C. Konstantopoulos and V. Kadirkamanathan

Abstract— In this paper, a nonlinear current-limiting droop
controller is proposed to achieve accurate power sharing among
parallel operated DC-DC boost converters in a DC micro-
grid application. In particular, the recently developed robust
droop controller is adopted and implemented as a dynamic
virtual resistance in series with the inductance of each DC-DC
boost converter. Opposed to the traditional approaches that
use small-signal modeling, the proposed control design takes
into account the accurate nonlinear dynamic model of each
converter and it is analytically proven that accurate power
sharing can be accomplished with an inherent current limitation
for each converter independently using input-to-state stability
theory. When the load requests more power that exceeds the
capacity of the converters, the current-limiting capability of the
proposed control method protects the devices by limiting the
inductor current of each converter below a given maximum
value. Extensive simulation results of two paralleled DC-DC
boost converters are presented to verify the power sharing and
current-limiting properties of the proposed controller under
several changes of the load.

I. I NTRODUCTION

The rapid advancement of the smart grid and renewable
energy generation units has increased the need for enhanced
efficiency and quality in the power supply [1], [2]. In contrast
with the AC networks, DC micro-grids can viably enhance
the power quality, diminish energy conversion steps, decrease
power losses and running expenses, and boost the value and
benefits of distributed energy. In the interim, due to the DC
nature of the power, synchronisation and instability issues
can also be avoided [3]. Therefore, DC power distribution
represents a promising technology that has been widely ap-
plied in large-scale data centres, shipboard systems, electric
vehicles [4], [5], etc.

Nevertheless, the stability of a DC micro-grid continues to
remain a main concern during its design, due to the operation
of the power electronic converters, which represent the basic
units for achieving the integration between distributed gener-
ations and loads. These power converters can suitably adjust
the voltage levels required by each device in the network.
In islanded DC micro-grids without communication among
the units, the system often operates in a distributed control
scheme where each unit has a controller whose decision
is based on the available local variables. In this case, the
stability needs to be guaranteed by the sources that operatein
parallel and control the bus voltage cooperatively. A common
practice to accomplish this task without overloading some
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sources is to introduce virtual resistances in the output ofthe
power converters, a technique also known as droop control
[6], [7], [8].

The droop control is mostly used in parallel operated
converters to achieve power sharing and increase the reli-
ability of the system. In fact, the droop control is a type of
distributed control method that can realise the power sharing
by the located electrical variables. Its main drawback is rep-
resented by the poor voltage regulation. To this end, several
improvements for droop methods have been developed in [9],
[10], [11], [12], [13], trying to restore the voltage to the rated
value. However, another critical issue is that traditionaldroop
control results in inaccurate power sharing when the output
or line impedances of the paralleled converters are different.
To improve the power sharing and increase the reliability of
a system, droop control techniques that are mainly based on
virtual impedances have been proposed in the literature [14],
[15]. One of the techniques to achieve accurate power sharing
is based on the concept of the robust droop controller, which
acts independently from the line impedances, focusing only
on the output parameter to be regulated, i.e. the load voltage
[16], [17].

However, the stability analysis of droop controlled-
converters in DC micro-grids has not been adequately ad-
dressed. Most of the existing approaches rely on the small-
signal model of the power converters and on linearization
methods, ignoring the nonlinear dynamics of the devices
[18], [19]. In addition, another critical issue that is related
to the stability of the micro-grid and corresponds to the
technical requirements of each distributed generation unit
is the current-limiting capability of the converters. Current
limitation as described in [20], [21], protects the equipment
without violating certain boundaries, as imposed by the
technical limits of the converters. Hence, except from the
theoretical proof of stability, which should be based on
the accurate nonlinear dynamic model of the dc/dc power
converters, the devices must be protected at all times and
must satisfy some technical limitations. This is a crucial
matter especially during transients, faults and unrealistic
power demands. Although the converter is often protected
using additional fuses, circuit breakers and relays, thereis an
increased interest in designing control methods that can guar-
antee an inherent current limitation [22]. Traditional current-
limiting control strategies suitably change the original control
structure to the current-limiting control structure [23].How-
ever, closed loop stability cannot be analytically guaranteed
and the original controller can suffer from integrator windup
and latch-up issues that may lead to instability [23]. Hence,
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Fig. 1: Typical topology in a DC micro-grid system

the design of a droop control structure for power converters
in a DC micro-grid to achieve accurate power sharing and
guarantee closed-loop system stability with a given current
limitation is of significance.

To this end, in this paper, a nonlinear controller equipped
with the robust droop control structure is developed for par-
allel operated DC/DC boost converters to guarantee accurate
power sharing among the paralleled units in proportion to
their power ratings. Based on the nonlinear dynamics of
the converters and using input-to-state stability theory,it
is proven that the proposed controller imposes an inher-
ent current-limiting strategy for each converter. Hence, the
current drawn from each source does not violate certain
boundaries specified by the technical limits of each power
electronic device, and therefore accurate power sharing is
accomplished while ensuring the full protection of DC micro-
grid. Extensive simulation results of two parallel operated
DC/DC boost converters are provided to demonstrate the
effectiveness of the proposed approach.

The remainder of the paper contains a brief description in
Section II regarding the conventional droop control method
and the main challenges that exist in a DC micro-grid. In
Section III, the DC power system under consideration is
introduced and analysed. Using nonlinear theory, it is shown
that both power converters introduce the desired current
limitation. Simulation results are provided in Section V,
while the conclusions are pointed out in Section VI.

II. PROBLEM DESCRIPTION AND OBJECTIVES

In Fig. 1, a typical islanded DC micro-grid is depicted
consisting of various DC/DC or AC/DC power converters
connected in parallel to a common DC bus and feeding
a load. Power sharing without the need of communication
among the different converters is often achieved via droop
control [24], [11]. In the conventional droop control strat-
egy, each one of them parallel-operated power converters
introduces an output voltageVi of the form:

Vi = Vref − niii, (1)

where ii is the output current of each converter,ni is the
droop coefficient andi ∈ {1, 2, . . . ,m}. However, conven-

tional droop control suffers from poor voltage regulation and
cannot achieve accurate power sharing when each converter
introduces a different output impedance [16], [17]. One of
the recently developed methods to address these issues is
based on a robust droop strategy, which achieves accurate
power sharing and tight voltage regulation [16], [17]. The
robust droop controller takes the form

V̇i = ke(Vref − Vo)− niii, (2)

whereVo is the load voltage andke is a constant gain. At
the steady-state, there is

n1i1 = n2i2 = . . . = nmim.

By multiplying this expression with the load voltageVo in
each part of the equation, it yields

n1P1 = n2P2 = . . . = nmPm,

wherePi = Voii is the power injected to the load by the
i-th converter. This guarantees the power sharing in the DC
micro-grid.
Although accurate power sharing is achieved independently
from the power requested by the load, the technical limita-
tions of each converter are not taken into account. Given the
power ratingPn of a converter and the rated output voltage
Vref , a limitation for the output current (and consequently
the input current) of each converter is introduced. To ensure
protection to the generating circuit or the transmission system
from harmful effects in cases of significant changes in the
load demand, a current-limiting property is required. Hence,
imposing an upper limit for the current that may be delivered
to a load and making sure that certain boundaries are not
violated represents another major challenge in a DC micro-
grid operation.

III. N ONLINEAR MODEL OF TWO PARALLEL DC/DC
BOOST CONVERTERS

Fig. 2 shows the configuration of a DC micro-grid con-
sisting of two DC/DC boost converters connected in parallel
and feeding a common load, which is assumed as resistive.
Although for simplicity, the investigation is restricted in two
paralleled converters, it can be easily expanded to the cases
of m boost converters in a DC micro-grid. Using Kirchhoff
laws and average analysis [25], the dynamic model of the
entire system including the nonlinear behaviour of the boost
converter becomes

Lin1i̇in1 = U1 − rin1iin1 − (1− u1)V1 (3)

C1V̇1 = (1 − u1)iin1 − i1 (4)

L1i̇1 = V1 − (i1 + i2)R−R1i1 (5)

Lin2i̇in2 = U2 − rin2iin2 − (1− u2)V2 (6)

C2V̇2 = (1 − u2)iin2 − i2 (7)

L2i̇2 = V2 − (i1 + i2)R−R2i2. (8)

Here Lin1, Lin2 are the boost converter inductances with
parasitic resistancesrin1 andrin2, respectively, andC1, C2

represent the output capacitors the converters. The output
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Fig. 2: Proposed network configuration for parallel operation

impedances or line impedances of the converters are intro-
duced by the inductancesL1, L2 and the resistancesR1,
R2, while R is the common load. The state vector of the
system consists of the inductor currentsiin1, iin2 in the
input of every converter, the output voltagesV1, V2 and
the line currentsi1, i2. The control input vector consists of
the duty-ratio inputs of each converteru1 andu2, which by
definition should remain bounded in the set[0, 1]. The DC
input voltages of the converters are given asU1 andU2, and
represent constant inputs for the system (uncontrollable), as
shown in Fig. 2.
It can be observed, that system (3)-(8) is nonlinear, since
the control inputsu1 andu2 are multiplied with the system
states. In addition, in the case whereu1 = 1 or u2 = 1, at
the steady-state, the inductor currentsiin1 and iin2 take the
valuesiin1 = U1

rin1

and iin2 = U2

rin2

, respectively. Sincerin1
and rin2 are parasitic resistances and therefore very small,
then the two input currents reach very high values that can
cause damage to the boost converter devices. Hence, there
is a clear challenge to achieve the desired operation of the
DC micro-grid system, i.e. accurate power sharing, while
maintaining the currents below the converters’ rated values.
Such a controller that can achieve these tasks is investigated
in the sequel.

IV. PROPOSED CURRENT-LIMITING DROOP CONTROLLER

A. Controller design and analysis

In order to achieve the desired power sharing and voltage
regulation, while maintaining a limited current for each boost
converter, the robust droop control concept given in (2)
is implemented as a dynamic virtual resistance for each
converter, opposed to the original design which is applied
directly to the voltage. Hence, the duty-ratio input of each
boost converter takes the form

ui = 1−
wi

vi
ii, (9)

where i = {1, 2} indicates the converter number andwi

represents a virtual resistance fori-th converter. In order

to incorporate the robust droop control concept, the virtual

resistance is proposed to follow the nonlinear dynamics:

ẇi = −ciw
2
qi [ke(Vref − Vo)− niii] (10)

ẇqi = ci [ke(Vref − Vo)− niii]
(wi − wmi)wqi

∆wmi

− kqi

(

(wi − wmi)
2

△wmi

+ w2
qi − 1

)

wqi, (11)

with ci, kqi, ke, wmi, △wmi being positive constants. It is

highlighted that a second controller statewqi is introduced

to define the dynamic structure of the virtual resistance and

to maintain a given bound forwi. To further explain this, the

nonlinear controller dynamicswi andwqi are investigated.

Considering the following Lyapunov function candidate for

system (10)-(11):

Wi =
(wi − wmi)

2

△w2
mi

+ w2
qi, (12)

then by calculating its time derivative and using the controller
equations (10)-(11), it yields:

Ẇi =
2 (wi − wmi) ẇi

△w2
mi

+ 2wqiẇqi

= −2ciw
2
qi

wi − wmi

△w2
mi

[ke(Vref − Vo)− niii]

+2ciw
2
qi

wi − wmi

△w2
mi

[ke(Vref − Vo)− niii]

−2kqi

(

(wi − wmi)
2

△wmi

+ w2
qi − 1

)

w2
qi

= −2kqi

(

(wi − wmi)
2

△w2
mi

+ w2
qi − 1

)

w2
qi. (13)

From the expression (13), one can notice thatẆi becomes
zero on the ellipse

Wi0 =

{

wi, wqi ∈ R :
(wi − wmi)

2

△w2
mi

+ w2
qi = 1

}

, (14)

or at the horizontal axiswqi = 0 on thewi − wqi plane
(Fig. 3). This indicates that if the initial conditions of the
controller stateswi0 andwqi0 are chosen on the ellipseWi0,
i.e. they satisfy

(wi0 − wmi)
2

△w2
mi

+ w2
qi0 = 1

then from (13) there is

Ẇi(t) = 0, ∀t ≥ 0,

which results in

Wi(t) = Wi(0) = 1, ∀t ≥ 0,

leading to the result thatwi andwqi will start and remain on
the ellipseWi0 for all t ≥ 0, as shown in Fig. 3. Hence, a
typical choice for the initial conditions iswi0 = wmi, wqi0 =
1.
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Since the controller states operation is restricted on the el-
lipseWi0, thenwi ∈ [wmin

i , wmax
i ] = [wmi−∆wmi, wmi+

∆wmi] andwqi ∈ [0, 1] for all t ≥ 0. If the positive constants
wmi and∆wmi are chosen to guarantee

wmi > ∆wmi

then wmin
i > 0, which means that the ellipseWi0 is

located on the right-half plane ofwi − wqi and therefore
wi ∈ [wmin

i , wmax
i ] > 0, ∀t ≥ 0, introducing a positive

virtual resistance. Using the transformation

wi − wmi = ∆wmi sinφ

wqi = cosφ

inside the controller dynamics (10)-(11), after a few calcu-
lations it results in

φ̇i =
ciw

2
qi

∆wmi

[ke(Vref − Vo)− niii] (15)

which proves that the controller state trajectory on thewi −
wqi plane will move on the ellipseWi0 with an angular
velocity φ̇i given by (15). It is highlighted that the angular
velocity becomes zero when: i)ke(Vref − Vo) − niii = 0,
which guarantees the accurate power sharing and the desired
tight voltage regulation, or ii)wqi = 0, which leads towi =
wmin

i or wi = wmax
i , corresponding to the current-limiting

capability as explained in the sequel.

B. Current limitation

By substituting the expression of the proposed controller (9)
into the inductor current equations (3) and (6), the closed-
loop dynamics of the inductor current become for each
converter:

Li̇ini = − (wi + rini) iini + Ui. (16)

By introducing the following Lyapunov function candidate

Vi =
1

2
Lii

2
ini (17)

and computing its time derivative, after using (16), the
expression ofV̇ becomes

V̇i = Liiini · i̇ini = − (wi + rini) i
2
ini + Uiiini (18)

Taking into account thatwi ∈ [wmin
i , wmax

i ] > 0, ∀t ≥ 0,

as proven in the previous subsection then

V̇i ≤ −
(

wmin
i + rini

)

i2ini + Uiiini

≤ −
(

wmin
i + rini

)

|iini|
2
+ |Ui| |iini| (19)

Thus
V̇i < 0, ∀|iini| >

Ui

wmin
i + rini

(20)

which means that system (16) is input-to-state stable with
respect to the uncontrollable constant and positive inputUi.
Therefore, if initially |iini(0)| ≤ Ui

wmin

i
+rini

, then

|iini(t)| ≤
Ui

wmin
i + rini

, ∀t ≥ 0. (21)

By selectingwmin
i as

wmin
i =

Ui

imax
ini

(22)

whereimax
ini represents the maximum input current allowed to

flow through the converter according to the converter ratings,
then by substituting (22) into (21), it yields

|iini(t)|≤
Ui

Ui

imax

ini

+ rini
=

1

1 + rini
imax

ini

Ui

imax
ini <imax

ini , ∀t≥0

(23)
which guarantees the desired current-limiting capabilityof
each boost converter separately.
It is highlighted that the current-limiting property of each
converter is accomplished independently from the power
sharing functionke(Vref − Vo) − niii than needs to be
regulated to zero. This means that each converter has as
the first priority to protect itself from high currents that can
damage the device. When the current is below the maximum
value, then power sharing can be achieved. This will be
illustrated in the simulation results that follows.

V. SIMULATION RESULTS

A DC micro-grid with two parallel DC/DC boost convert-
ers, similar to the one presented in Fig. 2, is simulated using
Simpower Systems toolbox of Matlab/Simulink to evaluate
the proposed control strategy. A switching frequency of
100kHz was used for the pulse-width-modulation of both
converters. The system and controller are displayed in Table
I. The main task is to achieve accurate power sharing among
the paralleled converters and regulation of the common load
voltage to the rated valueVref = 300V , while maintaining
the inductor currents below their maximum values inde-
pendently from the load changes. Here it is assumed that
Pn2 = 2Pn1 and hence the load should be shared in a 2:1
ratio.
Each converter is equipped with the proposed controller and
both controllers are initialized at0.3s. The initial transient
is caused by the uncharged dc capacitorsC1 andC2. At first
the load isR = 300Ω. As it can be seen in Fig. 4b, accurate
power sharing is achieved since at the steady state the output
currentsi1 andi2 satisfyi2 = 2i1. Fig. 4c illustrates that the
load voltage is regulated very close to the rated valueVref =
300V , while the line voltagesV1 andV2 are also regulated



TABLE I: Controller and system parameters

Parameters Values

L1 0.2mH

R1 2Ω
Lin1, Lin2 2.2mH

rin1, rin2 0.5Ω
R 300Ω
n1 1
n2 2
Pn1 0.5kW
Pn2 1kW
c1 1.6 · 105

c2 3.1 · 105

wm1 106

Parameters Values

L2 0.21mH

R2 1.5Ω
U1 200V
U2 100V

C1, C2 560µF
kq1, kq2 1000

ke 10
ts 0.05s

imin
1 , imin

2 100µA
imax
in1 2.5A
imax
in2 10A
wm2 5 · 105

close to the rated value to achieve the desired power sharing.
Fig. 4a depicts the inductor currentsiin1 andiin2 which stay
below the limit imposed by the system’s parameters.

At t = 14s, a load change is applied and the resistive
load changes to150Ω. It can be observed in Fig. 4d, after
a small transient, the line voltages slightly increase and the
load voltageVo remains close to the300V value as desired
(Fig. 4c). The inductor currents and the line currents increase
due to the increase of the power demand but the accurate
power sharing is maintained, sincei1 = 0.67 and i2 = 1.33
at the steady state, i.e.i2 = 2i1, as shown in Fig. 4b. The
inductor currents still remain below their maximum values
(Fig. 4a).

Finally, at t = 28s a second load change occurs and
the resistive load becomes85Ω. In this case, the power
demand further increases requesting higher currents from
each converter. As it is seen in Fig. 4a, the inductor current
of converter 1 reaches the limitimax

in1 = 2.5A based on the
proposed current-limiting strategy, while the inductor current
of the second converter still stays below its maximum value.
Therefore, power sharing is sacrificed to protect the first
power converter from damages, as it is shown in Fig. 4b.
Nevertheless, the load voltage is still regulated close to the
rated value as required (Fig. 4c).

The transient response of the virtual resistances is dis-
played in Fig. 5a. It is observed that as the load decreases
and consequently the power demand increases, both virtual
resistances decrease to allow a higher current flow. At the
final change of the load,w1 reaches its minimum value
wmin

1 = U1

imax

1

= 80Ω which limits the inductor current
iin1 below its given maximum value. The response of the
additional controller stateswq1 andwq2 is provided in Fig.
5b. By combining the values ofwi andwqi given in Fig. 5a

and Fig. 5b, it is verified that(wi−wmi)
2

△w2

mi

+ w2
qi = 1 holds

true, which validates the theoretical development.

VI. CONCLUSIONS

A current-limiting droop controller for achieving power
sharing among two parallel operated DC-DC boost convert-
ers in a DC micro-grid application, was proposed. Based
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Fig. 4: Simulation results of the system states of two par-
allel operated DC/DC boost converters under the proposed
controller

on the nonlinear dynamic model of the converters, it was
proven that the proposed controller can guarantee accurate
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Fig. 5: Simulation results of the controller states of two
parallel operated DC/DC boost converters under the proposed
controller

power sharing when the inductor currents of both converters
remain below their maximum values. A detailed guidance
for selecting the controller parameters was provided for
a complete controller design. Extensive simulations were
carried out and presented to validate the proposed control
approach under several changes of the load demand.

REFERENCES

[1] M. E. Baran and N. R. Mahajan, “Dc distribution for industrial
systems: opportunities and challenges,”IEEE Transactions on Industry
Applications, vol. 39, no. 6, pp. 1596–1601, Nov 2003.

[2] A. Sannino, G. Postiglione, and M. H. J. Bollen, “Feasibility of a
dc network for commercial facilities,”IEEE Transactions on Industry
Applications, vol. 39, no. 5, pp. 1499–1507, Sept 2003.

[3] D. Salomonsson and A. Sannino, “Low-voltage dc distribution system
for commercial power systems with sensitive electronic loads,” IEEE
Transactions on Power Delivery, vol. 22, no. 3, pp. 1620–1627, July
2007.

[4] P. Cairoli and R. A. Dougal, “New horizons in dc shipboardpower
systems: New fault protection strategies are essential to the adoption
of dc power systems.”IEEE Electrification Magazine, vol. 1, no. 2,
pp. 38–45, Dec 2013.

[5] D. Bosich, G. Giadrossi, G. Sulligoi, S. Grillo, and E. Tironi, “More
electric vehicles dc power systems: A large signal stability analysis
in presence of cpls fed by floating supply voltage,” in2014 IEEE
International Electric Vehicle Conference (IEVC), Dec 2014, pp. 1–6.

[6] S. Anand, B. G. Fernandes, and J. Guerrero, “Distributedcontrol to
ensure proportional load sharing and improve voltage regulation in
low-voltage dc microgrids,”IEEE Transactions on Power Electronics,
vol. 28, no. 4, pp. 1900–1913, April 2013.

[7] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna, and
M. Castilla, “Hierarchical control of droop-controlled acand dc
microgrids 2014;a general approach toward standardization,” IEEE
Transactions on Industrial Electronics, vol. 58, no. 1, pp. 158–172,
Jan 2011.

[8] P. Karlsson and J. Svensson, “Dc bus voltage control for adistributed
power system,”IEEE Transactions on Power Electronics, vol. 18,
no. 6, pp. 1405–1412, Nov 2003.

[9] Y. Xia, Y. Peng, H. Hu, Y. Wang, and W. Wei, “Advanced unified de-
centralised control method with voltage restoration for dcmicrogrids,”
IET Renewable Power Generation, vol. 10, no. 6, pp. 861–871, 2016.

[10] P. Wang, X. Lu, X. Yang, W. Wang, and D. Xu, “An improved
distributed secondary control method for dc microgrids with enhanced
dynamic current sharing performance,”IEEE Transactions on Power
Electronics, vol. 31, no. 9, pp. 6658–6673, Sept 2016.

[11] P. H. Huang, P. C. Liu, W. Xiao, and M. S. E. Moursi, “A novel droop-
based average voltage sharing control strategy for dc microgrids,”
IEEE Transactions on Smart Grid, vol. 6, no. 3, pp. 1096–1106, May
2015.

[12] X. Lu, J. M. Guerrero, K. Sun, and J. C. Vasquez, “An improved
droop control method for dc microgrids based on low bandwidth
communication with dc bus voltage restoration and enhancedcurrent
sharing accuracy,”IEEE Transactions on Power Electronics, vol. 29,
no. 4, pp. 1800–1812, April 2014.

[13] X. Lu, K. Sun, J. M. Guerrero, J. C. Vasquez, and L. Huang,“Double-
quadrant state-of-charge-based droop control method for distributed
energy storage systems in autonomous dc microgrids,”IEEE Transac-
tions on Smart Grid, vol. 6, no. 1, pp. 147–157, Jan 2015.

[14] J. Schonbergerschonberger, R. Duke, and S. D. Round, “Dc-bus sig-
naling: A distributed control strategy for a hybrid renewable nanogrid,”
IEEE Transactions on Industrial Electronics, vol. 53, no. 5, pp. 1453–
1460, Oct 2006.

[15] M. Mahmoodi, G. B. Gharehpetian, M. Abedi, and R. Noroozian,
“Control systems for independent operation of parallel dg units in dc
distribution systems,” in2006 IEEE International Power and Energy
Conference, Nov 2006, pp. 220–224.

[16] Z. Shuai, D. He, J. Fang, Z. J. Shen, C. Tu, and J. Wang, “Robust
droop control of dc distribution networks,”IET Renewable Power
Generation, vol. 10, no. 6, pp. 807–814, 2016.

[17] Q.-C. Zhong, “Robust droop controller for accurate proportional
load sharing among inverters operated in parallel,”IEEE Trans. Ind.
Electron., vol. 60, no. 4, pp. 1281–1290, April 2013.

[18] T. V. Vu, S. Paran, F. Diaz-Franco, T. El-Mezyani, and C.S. Edrington,
“An alternative distributed control architecture for improvement in the
transient response of dc microgrids,”IEEE Transactions on Industrial
Electronics, vol. 64, no. 1, pp. 574–584, Jan 2017.

[19] X. Lu, K. Sun, J. M. Guerrero, J. C. Vasquez, L. Huang, andJ. Wang,
“Stability enhancement based on virtual impedance for dc microgrids
with constant power loads,”IEEE Transactions on Smart Grid, vol. 6,
no. 6, pp. 2770–2783, Nov 2015.

[20] Q. C. Zhong and G. C. Konstantopoulos, “Current-limiting droop
control of grid-connected inverters,”IEEE Transactions on Industrial
Electronics, vol. PP, no. 99, pp. 1–1, 2016.

[21] G. C. Konstantopoulos and Q. C. Zhong, “Nonlinear control of dc/dc
power converters with inherent current and power limitation,” in 2016
24th Mediterranean Conference on Control and Automation (MED),
June 2016, pp. 949–954.

[22] Y. Xue and J. M. Guerrero, “Smart inverters for utility and industry
applications,” in Proceedings of PCIM Europe 2015; International
Exhibition and Conference for Power Electronics, Intelligent Motion,
Renewable Energy and Energy Management, May 2015, pp. 1–8.

[23] N. Bottrell and T. C. Green, “Comparison of current-limiting strategies
during fault ride-through of inverters to prevent latch-upand wind-up,”
IEEE Trans. Power Electron., vol. 29, no. 7, pp. 3786–3797, 2014.

[24] M. Mahmoodi, G. B. Gharehpetian, M. Abedi, and R. Noroozian,
“A suitable control strategy for source converters and a novel load-
generation voltage control scheme for dc voltage determination in dc
distribution systems,” in2006 IEEE International Power and Energy
Conference, Nov 2006, pp. 363–367.

[25] R. Ortega, A. Loria, P. J. Nicklasson, and H. Sira-Ramirez, Passivity-
based Control of Euler-Lagrange Systems, Mechanical, Electrical
and Electromechanical Applications. Springer-Verlag. Great Britain,
1998.


	I Introduction
	II Problem description and objectives
	III Nonlinear Model of two parallel DC/DC boost converters
	IV Proposed current-limiting droop controller
	IV-A Controller design and analysis 
	IV-B Current limitation

	V Simulation results
	VI Conclusions
	References

