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Abstract 

The bounded number-line task has been used extensively to assess the numerical 

competence of both children and adults.  One consistent finding is that young 

children display a logarithmic response function, whereas older children and adults 

display a more linear response function.  Traditionally, these log-linear functions 

have been interpreted as providing a transparent window onto the nature of the 

participants’ psychological representation of quantity (termed here a direct response 

strategy). Here we show that the direct response strategy produces the log-linear 

response function regardless of whether the psychological representation of quantity 

is compressive or expansive. Simply put, the log-linear response function results 

from task constraints rather than the psychological representation of quantities.  We 

also demonstrate that a proportion/subtraction response strategy produces response 

patterns that almost perfectly correlate with the psychological representation of 

quantity.  We therefore urge researchers not to interpret the log-linear response 

pattern in terms of numerical representation.  
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The log-linear response function of the bounded number-line task is unrelated to the 

psychological representation of quantity 

 

According to the National Council of Teachers of Mathematics (NCTM) 

Principles and Standards document (“Common Core Standards”, 2010), the link 

between numerical symbols and one’s psychological representation of quantity 

(termed number sense) is a crucial component in K-12 students’ ability to understand 

symbolic numbers, learn new systems of number representations, understand 

relationships among numbers and number systems, and make reasonable 

estimates. The bounded number-line task is one of the principal tools for teaching 

and measuring number sense in children (see e.g., “Common Core Standards”, 

2010; Berteletti, Lucangeli, Piazza, Dehaene, & Zorzi, 2010; Dehaene, Izard, Spelke, 

& Pica, 2008; Laski & Siegler, 2007; Thompson & Opfer, 2008). Much of the 

evidence supporting the use of the bounded number-line task to measure number 

sense comes from papers making conclusions about the underlying psychological 

quantity representations from the logarithmic and linear response patterns of children 

and adults (e.g., Geary, Hoard, Nugent, & Byrd-Craven, 2008; Laski & Siegler, 2007; 

Opfer & Siegler, 2007; Siegler & Booth, 2004; Siegler & Opfer, 2003). In contrast to 

this well-established view, here we demonstrate that the logarithmic and linear 

response patterns in the bounded number-line task provide no information about the 

form of the underlying psychological representation of quantity. 

The bounded number line task is very simple. A participant is presented with a 

number together with a horizontal line. The line designates a range of values, with 

the minimum value situated at the left-most edge of the line and the maximum value 

situated at the right-most edge. The participant is asked to indicate where on the line 

the corresponding quantity, conveyed by the number, would be located given the 

bounded range of values. Of central importance is the shape of the function 

(henceforth the response function) relating participants’ quantity estimates to actual 
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target values. Various cognitive strategies have been put forward to explain 

performance. Traditionally, researchers have assumed that a participant’s response 

function to the bounded number-line task provides a direct window on their 

psychological understanding of quantities (Booth & Siegler, 2006; Opfer & Siegler, 

2012; Opfer, Thompson, & Kim, 2016; Siegler & Booth, 2004; we term this a direct 

response strategy).  Researchers who accept the direct response strategy have 

interpreted the bounded number-line data as indicating that children’s psychological 

understanding of quantities is logarithmic, whereas older children and adults 

psychological understanding of quantities is linear (Booth & Siegler, 2006; Laski & 

Siegler, 2007; Opfer & Siegler, 2005, 2012; Siegler & Opfer, 2003, Siegler & Booth, 

2004; Siegler & Ramani, 2006; Siegler, Thompson & Opfer, 2009).  

More recently, researchers have extended these ideas by fitting a log-linear 

function to the data. By introducing systematic changes to the parameters of this 

function, it can mimic a log function, a linear function, and a mixture of the two 

(Anobile, Cicchini, & Burr, 2012; Opfer, Thompson, & Kim, 2016). Despite this 

apparently promising approach, here we show that constraints of the bounded 

number-line task force a log-linear response pattern when the participant uses a 

direct response strategy regardless of the underlying numerical representation of 

quantity. We conclude, therefore, that researchers cannot draw any conclusions 

about participants’ representation of quantity based on a log-linear (and thus a 

logarithmic) response pattern.    

There is general agreement in the literature that the psychological 

understanding of a quantity, say a “5”, depends on a representation captured by a 

distribution on a continuum of quantities (often described as a “mental number-line”). 

Different assumptions that have been made about the nature of these quantity 

distributions and their spacing on the line. Two important theoretical alternatives are 

(i) the linear model with scalar variability, and, (ii) the logarithmic model with fixed 

variability.  The linear model with scalar variability assumes that the means of the 

distributions that represent one’s psychological understanding of successive integers 
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(e.g., 1, 2, 3, etc.) are equidistant from one another, but the standard deviations 

(SDs) of those distributions increases proportionally with the quantity they represent.  

The logarithmic model with fixed variability assumes that the means of the 

distributions that represent the psychological understanding of successive integers 

are logarithmically spaced, but the SDs of those distributions remain constant.   

The fact that young children produce a logarithmic response pattern in the 

bounded number-line task sits comfortably with the logarithmic model (Opfer & 

Siegler, 2005, 2012; Thompson & Opfer, 2008).  In addition, the fact that older 

children and adults produce a near linear response pattern on the bounded number-

line task sits comfortably with the linear model (Booth & Siegler, 2006; Siegler & 

Booth, 2004).  This age-related pattern has led to the hypothesis that there is a 

development change such that an initial logarithmic representational system is 

replaced by a linear representational system as a person ages. Such a view is 

captured by the log-linear shift hypothesis (Siegler & Ramani, 2006; Siegler, et al., 

2009).	

The log-linear shift hypothesis is based on the assumption that the bounded 

number-line task provides a transparent window on the nature of the mental 

representation of quantities.  It is assumed that a participant’s response function will 

mirror his or her underlying representation of quantity. According to Siegler and 

Booth (2004), “Several groups of investigators have hypothesized that children’s 

estimation reflects their internal representation of numbers” (p. 429). Furthermore, 

Opfer et. al (2016) made the argument that the bounded number-line provides an 

ideal template for directly measuring the underlying quantity representations, in the 

following way, “Because line length itself is not psychophysically compressive or 

expansive (Lu & Dosher, 2013), the task provides a relatively straightforward method 

for assessing compression in numerical magnitude representations.” (p. 12).    

Recently, an alternate view has emerged that focuses on the role that 

strategies play in the bounded number-line task (see e.g., Barth & Paladino, 2011; 

Barth, Slusser, Cohen, & Paladino, 2011; Chesney & Matthews, 2013; Cohen & 
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Blanc-Goldhammer, 2011; Cohen & Sarnecka, 2014; Friso-van den Bos, 

Kroesbergen, Van Luit, Xenidou-Dervou, Jonkman, Van der Schoot, et al., 2015; 

Hurst & Cordes, 2015; Hurst, Relander, & Cordes, 2016; Slusser, Santiago, & Barth, 

2013).  The counter argument is that (i) that successful completion of the bounded 

number-line task depends on the deployment of an appropriate cognitive strategy, 

and, (ii) only when these strategies are modelled, can a meaningful estimate of the 

participant’s underlying quantity representation be obtained.  For example, Cohen 

and Blanc-Goldhammer (2011) presented evidence that adults used a 

proportion/subtraction strategy to estimate the position of the target value on the 

bounded number-line.  The strategy was put forward by Hollands and Dyre (2000) in 

their work on how observers make proportion estimates. According to Hollands and 

Dyre (2000), observers estimate the position of the target value from the left-hand 

boundary as well as from the right-hand boundary (e.g., upper bound – target value).  

This provides a means by which the observer scales the line to the quantities. This 

strategy is modelled by the Cyclic Power Model (CPM, see Hollands & Dyre, 2000). 

Cohen and Blanc-Goldhammer (2011) found that the CPM provided a superior fit to 

adult’s bounded number-line data than either the linear or logarithmic functions.  

These results were replicated in older children (Barth & Paladino, 2011; Cohen & 

Sarnecka, 2014; Slusser et al., 2013). 

To date, researchers have assumed that the direct response strategy and the 

proportion/subtraction strategy give rise to response functions that correlate with the 

underlying quantity representations.  Perhaps surprisingly, this assumption has 

never been tested.  As a consequence, we report on a number of computer 

simulations that test this critical assumption.  The key issue is whether reasonably 

accurate estimates of underlying quantity representations can be made from the data 

produced from the direct response hypothesis and, separately, the 

proportion/subtraction hypothesis.   
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Methods 

We ran computer simulations of the direct response hypothesis and the 

proportion/subtraction hypothesis.   

Quantity representation 

For all simulations, we first simulated an underlying quantity representation for 

the integers contained within the upper and lower boundaries of the number-line.  

Here, we only consider a number-line ranging from 0-50, but the results generalize to 

any range.  For each integer, Θi we generated a quantity distribution such that the 

psychological representation of that integer was set to  ψi = Θβ

i + ei, where β denotes 

the numerical bias and e denotes the error around the mean.  For the simulation, we 

varied β from 0.6 (negatively accelerating, similar to the log) to 1.4 (positively 

accelerating, similar to exponential), in 0.2 intervals.  When β =	1, there is no bias.  

We simulated a variety of error distributions: that is, normal distributions with fixed 

and scalar variance, and the gamma distribution. We focus on the simulations with a 

gamma distribution (shape parameter = log(target)+1).  The gamma distribution 

produces similar data to the normal distribution with scalar variance, but has the 

advantage of never producing a value below zero. Any variation in the outcomes was 

mostly attributable to the chosen standard deviation. 

 

Task completion 

Direct response strategy 

 For each target value, we sampled an estimate from the corresponding 

quantity distribution.  Because the direct response strategy does not specify a means 

by which an observer maps the length of the line to quantity, the response estimate 

equaled the sampled estimate multiplied by a unit length.  We varied unit lengths 

from 0.5-3.0 in 0.5 intervals. A unit length of 1.0 indicates an accurate mapping of 

line length to quantity.  The response estimate was valid if fell between the lower and 

upper limits of the bounded number-line and invalid if it fell outside these limits. We 
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repeated the sampling and calculation process until we obtained a valid estimate.  If 

we failed to calculate a valid response estimate in 1000 attempts, we assigned the 

response estimate the value of the boundary it was closest to.  We repeated this 

process 20 times for each target value.   

Proportion/subtraction strategy 

 For each target value, we sampled an estimate from its corresponding 

quantity distribution and one from the quantity distribution corresponding to the 

distance from the right boundary (upper boundary – target).  We then calculated a 

response estimate from either the one-cycle or two-cycle CPM from those values. 

We repeated the sampling and calculation process until we obtained a valid 

estimate.  If we failed to obtain a valid estimate in 1000 attempts, we assigned the 

response estimate the value of the boundary it was closest to.  We repeated this 

process 20 times for each target value.  

Results 

For each strategy (direct response, one-cycle proportion/subtraction, and two-cycle 

proportion/subtraction) we fit the log-linear function developed by Anobile et. al, 

(2012; see also Cicchini, Anobile, & Burr, 2014). The log-linear function has two free 

parameters: (i) p(log) which identifies the proportion of log fit (vs. linear fit) and, (ii) a 

a scaling parameter. For the one-cycle proportion/subtraction, and two-cycle 

proportion/subtraction, we also fit the one- and two-cycle CPM.  The CPM functions 

have one free parameter: β which is the estimate of numerical bias.  We present the 

fit statistics in Tables 1 and 2.  We present figures of the fits for a subset of the 

simulations assuming gamma distributions in Figures 1 and 2. 

As seen in Table 1 and Figure 1, the log-linear function fit all direct response 

simulations well, regardless of the bias of the underlying quantity representation.  In 

fact, when the bias of the underlying quantity representation is negatively 

accelerating (similar to a log function) the log-linear function fit least well (β = 0.6 

condition).  More concerning is the fact that the log-linear function fit extremely well 

(mean r2 = 0.89) for all conditions in which the underlying quantity representation is 
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positively accelerating (expansive, rather than compressive).  In addition, p(log) 

increases with the positively accelerating biases.  These findings result from the fact 

that observers cannot respond outside the bounds of the bounded number line.  As 

such, the bounds of the number-line truncate the distributions of the larger numbers, 

thus forcing a negatively accelerating response function.  We therefore conclude that 

the direct response strategy in the bounded number-line task manifests as a log-

linear response pattern regardless of the underlying psychological representation of 

quantity.  The clear implication is that the log-linear pattern observed in behavioural 

data arise because of the constraints of the bounded number-line task, rather than 

the participant’s psychological understanding of numbers. 

As seen in Table 2 and Figure 2, the one and two-cycle functions fit all 

proportion/subtraction response simulations well (mean r2 = 0.986), regardless of the 

bias of the underlying quantity representation.  Importantly, the estimated β from 

both the one and two-cycle CPM functions are almost perfectly correlated with the 

simulated β of the quantity representations (r > 0.99), though with a small, but 

consistent, underestimation.  Finally, Figure 2 shows the typical “M” shaped error 

pattern that results in the bounded number task emerges when participants use the 

half way mark as a reference point. One can conclude from these data that the 

proportion/subtraction response strategy in the bounded number-line task manifests 

as a CPM response pattern that reflects the response bias regardless of the 

underlying psychological representation of quantity.   

Finally, we also note that the log-linear function fit all proportion/subtraction 

response simulations well (mean r2 > 0.98), despite the fact that they were generated 

using the proportion/subtraction response strategy.  This is because the 

proportion/subtraction response strategy produces relatively linear response patterns 

with slight curves that the log-linear function can mimic.  This simulation underscores 

Hollands and Dyre (2000) caution that one must take extreme care not to confuse 

the linear (or log-linear) function for the CPM.   
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Discussion 

The results of the simulations are very clear: log-linear (and thus logarithmic) 

response patterns in the bounded number-line task provide no information about the 

underlying quantity representation of the observer.  Log-linear (and thus logarithmic) 

response functions result from the constraints of the task itself: the bounds of the 

number-line truncate the distributions of the larger numbers.  In contrast, if 

participants are able to carry-out the proportion/subtraction strategy, the resulting 

response functions, when modelled correctly, are near perfectly correlated with the 

numerical bias of the underlying quantity representation.   

These findings raise the possibility that the log-linear pattern displayed by 

young children is the result of a naïve direct response strategy.  That is, very young 

children may not have the mensuration skills to equate a line length with quantity in 

the bounded number-line task (see Cohen & Sarnecka, 2014). Nevertheless, these 

young children may still understand the ordinal and interval properties of numbers.  

In this instance, the children may arbitrarily choose a certain length to correspond to 

a single unit.  The young child may then use this line length to complete the task as 

we describe in the direct response strategy.  In this scenario, the children’s 

responses would necessarily result in a log-linear response function regardless of 

the children’s underlying psychological representation of quantity.   

It is, of course, possible to generate a specific quantity representation or 

participant strategy in which our conclusions do not hold1.  For example, a quantity 

representation that is both noise free and somehow scaled to the dimensions of the 

number-line will be mirrored in a participant’s responses with a version of the direct 

response strategy. The ability to generate such an example, however, does not 

weaken our conclusions as they currently stand.  The strength of a scientific model is 

typically gauged relative to the number of alternative hypotheses that can also 

explain the data.  Here, we demonstrate that when the log-linear function fits well 

with the number-line data, this result alone is consistent with innumerable alternative 

models that explain that fit (e.g., different underlying quantity representations and 



Limitations of the bounded number-line task 11 

strategies).  As a result, the log-linear fit provides no substantive evidence about the 

underlying psychological representation of quantities. This result reflects a fatal flaw 

in the many previous studies that have used such fits to support particular theoretical 

accounts of numerical competency. In contrast, when the CPM function fits the 

number-line data, currently the only model that explains this fit is the 

proportion/subtraction strategy applied on a specific underlying quantity 

representation.  Until researchers propose viable alternative models that predict the 

CPM fits as well as the proportion/subtraction strategy model, the most plausible 

conclusion is that the CPM provides important information about the underlying 

psychological representation of the quantity. 

In sum, we assert, on the basis of our computer simulations, that the bounded 

number-line task does not provide a transparent window on the mental 

representation of quantities. The constraints of the task will produce a log-linear 

response function when the direct response strategy is applied regardless of the 

underlying psychological representation of quantity. We therefore urge that 

researchers stop offering psychological accounts of the log-linear response functions 

(and hence the logarithmic, linear, or mixture of the two response functions) in the 

bounded number-line task that are based on particular assumptions about mental 

representations of quantities. We temper this negative conclusion with a more 

positive encouragement: if the proportion/subtraction strategy is deployed by the 

participant and modelled by the researcher, then one can recover useful information 

about the participant’s quantity representation. Furthermore, researchers may also 

consider using the unbounded number line task (see Cohen & Blanc-Goldhammer, 

2011). This avoids the problems we have described and, critically, the associated 

data are uncontaminated by the effects of truncation that are evident in those from 

the bounded number line task.      
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Table 1. 

Fit statistics for the log-linear model to data simulated using the direct estimate 

strategy with underlying quantity representations having numerical biases ranging 

from 0.6 (negatively accelerating) to 1.4 (positively accelerating) and varying 

estimated unit sizes 

 

Underlying Psychological Representation Distributed Gamma  

 Numerical Bias 
 0.6 0.8 1 1.2 1.4 
Unit Size      
0.5      

p(log) 0.52 0.25 0.28 0.61 0.87 
r2 0.83 0.93 0.95 0.92 0.91 

1      

p(log) 0.46 0.21 0.22 0.60 0.95 
r2 0.87 0.94 0.95 0.90 0.91 

2      
p(log) 0.41 0.29 0.20 0.59 0.91 

r2 0.89 0.94 0.96 0.91 0.91 
3      

p(log) 0.55 0.24 0.25 0.57 0.91 
r2 0.88 0.96 0.94 0.92 0.91 

Underlying Psychological Representation Distributed Normal with Scalar Variability 

 Numerical Bias 
 0.6 0.8 1 1.2 1.4 

Unit Size      
0.5      

p(log) 0.44 0.19 0.02 0.0 0.43 
r2 0.98 0.98 0.99 0.98 0.88 

1      
p(log) 0.46 0.21 0.12 0.61 0.97 

r2 0.98 0.98 0.99 0.89 0.88 
2      

p(log) 0.49 0.27 0.81 1.0 1.0 
r2 0.98 0.99 0.90 0.88 0.88 

3      
p(log) 0.47 0.7 1.0 1.0 1.0 

r2 0.98 0.93 0.84 0.84 0.80 

Underlying Psychological Representation Distributed Normal with Fixed Variability 

 Numerical Bias 
 0.6 0.8 1 1.2 1.4 

Unit Size      
0.5      

p(log) 0.47 0.20 0.02 0.0 0.32 
r2 0.99 0.99 0.99 0.99 0.93 

1      
p(log) 0.49 0.21 0.02 0.45 0.86 

r2 0.99 0.99 0.99 0.93 0.92 
2      
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p(log) 0.48 0.19 0.60 1.0 1.0 
r2 0.99 0.99 0.93 0.92 0.75 

3      
p(log) 0.47 0.51 1.0 1.0 1.0 

r2 0.99 0.96 0.92 0.88 0.76 
 

	

	
   

  



Limitations of the bounded number-line task 18 

Table 2 

Fit statistics for the log-linear model, one-cycle, and two-cycle CPM model to data 

simulated using the proportion/subtraction strategy with underlying quantity 

representations having numerical biases ranging from 0.6 (negatively accelerating) 

to 1.4 (positively accelerating) 

Underlying Psychological Representation Distributed Gamma 

 Numerical Bias 
 0.6 0.8 1 1.2 1.4 
Model      
Log-Linear      

p(log) 0.41 0.21 0.02 0.0 0.0 
r2 0.95 0.98 0.99 .99 0.98 

1-Cycle CPM      

Estimated Bias 0.57 0.73 0.96 1.11 1.32 
r2 0.96 0.98 0.99 0.99 0.99 

2-Cycle CPM      
Estimated Bias 0.54 0.73 0.87 1.10 1.32 

r2 .99 .99 .99 .99 .99 

Underlying Psychological Representation Distributed Normal with Scalar Variability 

 Numerical Bias 
 0.6 0.8 1 1.2 1.4 

Model      
Log-Linear      

p(log) 0.36 0.14 0.02 0.0 0.0 
r2 0.98 0.99 0.99 0.99 0.98 

1-Cycle CPM      
Estimated Bias 0.60 0.80 0.98 1.18 1.35 

r2 0.99 0.99 0.99 0.99 0.99 
2-Cycle CPM      

Estimated Bias 0.57 0.77 0.98 0.16 1.37 
r2 0.99 0.99 0.99 0.99 0.99 

Underlying Psychological Representation Distributed Normal with Fixed Variability 

 Numerical Bias 
 0.6 0.8 1 1.2 1.4 

Model      
Log-Linear      

p(log) 0.35 0.15 0.01 0.0 0.0 
r2 0.98 0.99 0.99 0.99 0.98 

1-Cycle CPM      
Estimated Bias 0.61 0.80 1.00 1.19 1.37 

r2 0.99 0.99 0.99 0.99 0.99 
2-Cycle CPM      

Estimated Bias 0.61 0.81 1.00 1.20 1.31 
r2 0.99 0.99 0.99 0.99 0.99 

 
  



Limitations of the bounded number-line task 19 

 
 

	 Numerical	Bias	
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1.5	
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1.0	

0.5	

	
 

Figure 1.  The simulated underlying gamma quantity representations, their resulting 

response estimates, and the log-linear fit to the simulated data for the direct 

response strategy in the bounded number-line task.  Columns represent changes in 

numerical bias (ranging from 0.8-1.4 in 0.2 intervals) and the rows represent 

changes in the estimated length line corresponding to a single unit: Unit size = 1 is 

an accurate estimate, Unit size < 1 is an underestimate, Unit size > 1 is an 

overestimate.   
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Figure 2.  The simulated underlying gamma quantity representations, their resulting 

response estimates and SDs, and the one and two-cycle fit to the simulated data for 

the proportion/subtraction strategy in the bounded number-line task.  Columns 

represent changes in numerical bias (ranging from 0.8-1.4 in 0.2 intervals) 
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Footnotes 
 

1 One may question our simulation of negatively accelerating quantity 

representations using power functions, rather than a log function. Here, we 

demonstrate that the log-linear function fits the responses derived from all quantity 

representations, regardless of their form (positively and negatively accelerating).  

Demonstrating that the log-linear function also fits the responses manifesting from a 

true logarithmic quantity representation is unnecessary.   

																																																								


