The

University

yo, Of
Sheffield.

This is a repository copy of Ligand-based virtual screening using a genetic algorithm with
data fusion.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/116212/

Version: Published Version

Article:

Holliday, J., Sani, N. and Willett, P. orcid.org/0000-0003-4591-7173 (2018) Ligand-based
virtual screening using a genetic algorithm with data fusion. Match: Communications in
Mathematical and in Computer Chemistry, 80 (3). ISSN 0340-6253

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

MATCH MATCH Commun. Math. Comput. Chem. 80 (2018) 623-638

Communications in Mathematical
and in Computer Chemistry ISSN 0340 - 6253

Ligand—Based Virtual Screening Using a
Genetic Algorithm with Data Fusion
John D. Holliday?, Nor Sani*?, Peter Willett!

Hinformation School, University of Sheffield, 211 Portobello,
Sheffield S1 4DP, United Kingdom
2Faculty of Information Science and Technology, National University of Malaysia,
43600 UKM Bangi, Malaysia

(Received November 22, 2016)

Abstract

Substructural analysis provides a simple and effectiweaf@anking the 2D fingerprints representing
the molecules in a database upon the basis of welgiitdenote a substructural fragment’s contribution
to the overall activity or inactivity of a moleculé substructural analysis method has been described
recently that is based on the use of a genetic dtgoi(GA), with the resulting sets of weights proving
to be more effective for ligand-based virtual screenirantexisting approaches. However, the
inherently non-deterministic nature of a GA means thi&rent runs are likely to result in different
sets of weights and hence in variations in the effentise of screening. This paper describes the use
of data fusion to combine the rankings generated irtipfelGA runs, and demonstrates that the
resulting fused rankings are markedly superior to GA runawerage, and in some cases can even
exceed the performance of the very best individual GA run.

Introduction

Virtual screening methods play an important role in the discovery of bimaetive molecules,
such as pharmaceuticals or agrochemicals, and involve the use of computatiomgues to
score the molecules in a database in descending order of probabiktyilmfieg the desired
activity. High-ranked molecules can then undergo high-throughpaivéro biological testing
to ascertain whether they are, in fact, active. Here, wedmrigjand-based virtual screening
(LBVS) methods, where the only information available for the disgopeocess are sets of

(cc This work is licensed under a Creative Commons Attribution 4.0 International License.
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molecules that have been tested previously and that are hence tmbereither active or
inactive. Specifically, we focus on substructural analysis, whichpiceeeered by Crameat
al. in the early 1970s [1, 2] and subsequently developed by Hodég3, 4]: it was probably
the first LBVS method to be used on a large scale, formingnaortant component of a
National Institutes of Health programme to develop novel anticancer age6is [

A molecule in a chemical database is often described by agingera bit-string in
which bits are set to on (or off) depending upon whether a substrueanate is present (or
absent) in that molecule. In substructural analysis, a weigtssiociated with each bit that is
computed on the basis of how frequently the corresponding substructattakfeccurs, or
does not occur, in sets of molecules that have been tested previowsdtividy. The weight
hence describes the probability that a molecule with that geatillrprove to be active, and a
score is computed for a molecule by combining the weights for & obnstituent features.
The resulting scores are used to rank a database in descerdéngwith those at the top of
the ranking then being considered for biological screening since thagsammed to have the
greatesta priori probabilities of activity. Substructural analysis hence embodesgtbku-
mption that a given substructure can influence the activity of aculeleregardless of the
environment in which the feature occurs: this is clearly anmigecrude assumption but the
approach has been found to be of value for screening in drug-discovery programmes [7, 8].

A variety of weighting schemes have been described for use in subsitanalysis,
as reviewed by Ormercet al [9]. In their comparison, the most generally useful was found
to be one that was originally developed by Robertson and Spark Jones [LBE for text
searching (where the aim is to rank a database of documentieiroddecreasing probability
of relevance to a query, as against decreasing probability oftyatia biological screen in
the present context) and that is analogous to LBVS systems based@Bagsian classifier
weights such as that used in the Pipeline Pilot software [11-13fheRthan the detailed
probabilistic models that underlie these approaches to substrumtadgisis, Hollidayet al
have recently described an approach to weighting that is based oa tifegenetic algorithm
(or GA) [14]. The approach proved to be highly effective in operatiort tuats noted that the
inherently non-deterministic nature of GAs meant that diffenems could result in different
database rankings. This brief communication seeks to addre$imttdtion of the previous
work. The GA is described in the next section, together with thefusga fusion\(ide infra)

to combine multiple runs of the algorithm. We then report detailedriexpets using three
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large datasets for which bioactivity data are available; angamnthe effectiveness of the

basic GA with the results obtained using a range of different data fusion rules.

Combining GA runs using data fusion

A GA provides a non-deterministic way of tackling computational probleimaracterised by
solution spaces that are too large for exploration using conventional, detecraiigistithms.
The approach has been very extensively employed, not least in applications i
chemoinformatics and drug discovery [15]. In the present context, the isphat of all the
possible weights that could be assigned to each of the bits comgphie 2D fingerprint used
to describe each of the molecules in a database. The chromwstimeGA is a vector in
which thei-th element contains the weight associated with the substruietatate denoted by
thei-th bit in the fingerprint. In the experiments reported here, tigeefprint encoded the 166
MDL structural key definitions in the widely used PipelineoPisoftware, so that the
chromosome contained 166 real values, each corresponding to one of thihkeifénigerprint.
The score for a particular molecule was then the sum of tlghtsdor those features that it
contained (as denoted by the bits that were set to on), and a datssasnked in order of
decreasing sums of scores to identify those molecules with theegr@robability of activity.
A training-set that contains molecules of known activity and iviaictis used to derive the
final sets of weights, with the fithess of an individual chromuescac, being assessed by
identifying the number of active molecules at the top of the rankiethigaset when it is ranked
using the set of weights encodedcin Specifically, the fithess function was the enrichment
factor based on the top-1% of the ranked training-gele (infra): by using conventional
crossover and mutation operators, the fitness function hence evbhloesosomes (i.e., sets
of weights) that are able to maximise the enrichment factorhasdhe effectiveness of LBVS
when those weights are subsequently applied to test-set moleculdsdbractivity data are
unavailable.

The design and implementation of the GA are described in dgtdllolliday et al,
who found that it provided consistently better enrichments in stedilaBVS experiments
than did the Robertson-Spark Jones and Pipeline Pilot weights mentiemdiply [14]. That
said, the non-deterministic nature of the GA means that diffexens may converge on
different solutions: this can be problematic if these solutionsiarkedly different in character
since there will be little or no basis for deciding which of dailable solutions should be

accepted as the final output from a series of runs. In the presetsixt, this means that
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different runs will result in different sets of weights anctaadingly, different rankings and
different levels of enrichment when these weights are appliggst-set molecules. Holliday
et al noted that this was an inherent limitation of the GA approach aodiee experiments
demonstrating that such variations did indeed occur in practice. x&mpée, in one series of
ten runs using the cyclooxygenase inhibitors in the MDDR database, timecomalation
coefficient between the sets of weights, when averaged over ak#ictpairs of runs, was
only 0.79 [14]. That said, it is important to note that the prin@pgdut from a substructural
analysis is not the set of weights themselves (although these cowiliipraluable information
for, e.g., suggesting a possible topological pharmacophore); insteathettep-ranked test-
set molecules that are identified using the weights, sinsdliese compounds that are being
highlighted for further investigation.

In the absence of any obvious means of identifying the best from amaetgo& s
rankings, an alternative is to consider ways of combining them arttereedraw upon the
concept of data fusion, which is a method for combining the informatiaedyfrom different
sensors to achieve an effective or improved decision when compahed &zhievable when
only a single sensor is available [16]. Data fusion has been msedny different problem
domains [17], including chemoinformatics, where it has been shown ton@ntthe
effectiveness of similarity searching [18] and used to combineptauttins of ligand-protein
docking programs and multiple clusterings of a given dataset [19, 20]. Wtefuden is
used for similarity searching, the sensors that are combined ammitiegs of the molecules
in a database that result when different similarity measanesised to conduct a similarity
search, e.g., a search might be conducted using different fingerpridiffeoent similarity
coefficients. The individual rankings are then combined using arfusie {ide infrg to
obtain a single, combined ranking of the molecules in the databdsephesents the final
output of the search. The obvious advantage of data fusion is thatstimereeed to choose
from amongst different rankings of the same set of compounds; bt ahe two further
advantages that have become apparent as the approach has become dojutely for
similarity searching [18]. First, use of fusion offers a much mmesistent level of
performance (as evaluated using a measure such as the enriduot@ittian when individual
rankings are used; second, the fused level of performance is noroljos to the average
individual similarity search, and may occasionally be superior to #werbest individual
search. This is because, as noted by Sheridan and Kearsleyistimeresingle similarity

measure that can be expected to give the best possible resliii®ssdle circumstances [21].
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Similarity searching generates a ranking of the moleculeslatadbase that is entirely
comparable to that resulting from a substructural analysis study, @ntiéhce possible to
consider applying the fusion rules used in similarity searchiniget@ankings resulting from
multiple runs of the GA described above. Hence, rather thanagemgre.g., ten different sets
of GA-based weights and the ten consequent rankings of the molecoipgsing a test-set,
and then having to choose one of these as a basis for deciding whiclileskwuld go
forward for biological screening, the ten rankings are here fusgidequst a single ranking
to provide the input to the screening process. Our implementatibis cbmbined GA/fusion

procedure is described in the next section.

Experimental details and results

Our approach has been evaluated in simulated LBVS experiments uskegcthmmon
databases that contain both structural and bioactivity informatietMDL Drug Data Report
database (MDDR); the World Of Molecular Bioactivity databd®VOMBAT); and the
European Bioinformatics Institute’s ChEMBL database. The MRB&RWOMBAT datasets
used here are described in detail by Gardateal [22]: the MDDR dataset contains eleven
activity classes and 102,514 molecules, and the WOMBAT dataset caiantvity classes
and 138,127 molecules. A total of 15 activity classes were obtainedtifi® much larger
ChEMBL database by choosing activities that matched one of tbgeslin the MDDR and
WOMBAT datasets; and then each of the 1,352,681 molecules in versiortti8dHtabase
was recorded as being active in a specific class if there was a mea&ib@dqlthat activity
of > 5.0 and if there was an associated confidence score of 9; allnothecules were then
assumed to be inactive for that class. The molecules in tredhtasets were characterised
using MDL fingerprints, which encode 166 important substructurghfeants and which were
generated using Pipeline Pilot software. The training-set fartécular activity class was
generated by randomly selecting 10% of the actives and 10% of thévésaavith the
remaining 90% of the database providing the test-set for which hMadueening was carried
out. The GA was run on the training-set, weights determinedafdr ef the 166 fragments
comprising a fingerprint, and then these weights used to rank the mslecthe test-set. For
example, there are 982 molecules noted as being renin inhibititrs ®hEMBL dataset, so
the training-set contained 98 of these active molecules and 135,170r@heve molecules,

with the resulting weights being used to score the remaining 1,217,413 test-set molecule
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In their original paper, Hollidagt al. reported parameterization experiments that were
undertaken to optimize the effectiveness of the GA, and suggestddlltveng settings:
roulette-wheel selection; one-point crossover with a crossoespfrt95; real-value mutation
with a mutation rate of 0.01; a population of 200 chromosomes; and 50Mitsrafithe GA
[14]. These parameters were used to obtain all of the rankisgesded here, with the
effectiveness of a ranking of the test-set molecules beinguneekissing the enrichment factor
as follows. Assume that a database contAiastive molecules, so that selecting 1% of the
molecules at random would yield 0Mactives, and that the top-1% of the ranking resulting
from some virtual screening method (such as the GA considerepyieldsa actives. Then
the enrichment factor ig/0.01A, with a value greater than unity meaning that the virtual
screening method has resulted in an increase in the numbewetagtien compared with the
number obtained by random selection.

The GA was run ten times on each activity class in eachedatas the ten resulting
rankings in each case were then combined into a single ranking usiof theefusion rules
listed in Table 1, wher& (m) denotes the score for thjeth molecule in thé-th of then GA
rankings. To illustrate the operation of a fusion rule, the Sunsimlgly aggregates all of the
n scores, and then ranks the test-set molecules in decreasingfaittese sums of scores; in
like vein, the Med, Max and Min rules rank the test-set moleautethe basis of the median,
maximum or minimum scores. These four rules can also beedppthe scoresS (m), are
converted to the corresponding ranRs(my). Thus, if we take the Sum formulation there are
two fusion rules: SumS and SumR for fusing the scores and the rasgectively; and
similarly so for Med, Max and Min. However, the final rule in [Eafh, the RKP (from
reciprocal rani rule, which was first developed to rank the outputs of text searatesr{g3],
is applicable only to the ranks. Assume that a threshold — here thétefs applied to each
of the ten rankings and that a moleculeappears ip of these: then the molecule is scored by
adding the reciprocal of its rank positions in thpsankings. There was thus a total of nine
different fusion rules that could be used to combine the sets oftear®ings for each activity
class. Itis worth noting in passing that the Sum (when appliedke)rand RKP rules involve
mathematical operations on ordinal data: this is mathematicelfypropriate but has been
found to be effective in operation in both chemical and textual applisafi8, 23] and these
rules have hence been included in the present study.
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Table 1.Fusion rules

Fusion Rule Formula
10
Sum Z Sl( mj)
i=1
Max max{Sl(mj), Si(mj), Sw(mj)}
Med med{Sl(m}-), Si(mj), Slo(mj)}
Min min {51(m}-), Si(m]-), 510(7";')1}
< 1
RKP z
Ri(m;)

i=1

The results that were obtained for the 15 ChEMBL activity ekaase shown in Table

2. For each of the 15 activity classes, we list first thenneesichment factor when averaged

over the ten GA runs that were carried out for this agtiglass, with each of the nine

subsequent columns listing the enrichment factor obtained when the fukbdisted at the

top of the column was used to fuse the ten GA rankings. The compsette results for the

much smaller MDDR and WOMBAT datasets are shown in Tables 3 and 4, respectivel



Table 2. Enrichment factor of actives when using nine diffefasion rules on the ChEMBL activity classes

Activity Class GA RKP MaxR MedR SumR MinR MedS SumS MaxS MinS
5HT1A agonists 39.7 402 405 40.5 40.7 40.2 395 405 406 405
5HT3 antagonists 55.1 59.4 56.3 57.8 58.3 53.7 53.1 57.3 56.3 55.7
5HT reuptake inhibitors 345 351 35.4 334 34.5 35.1 33.0 34.7 358 339
Acetylcholinesterase inhibitors 36.8 37.1 40.9 33.8 35.8 41.5 41.2 38.2 358 311
AT1 antagonists 814 842 84.2 85.3 85.3 81.1 82.1 84.2 85.3 842
Cyclooxygenase inhibitors 38.3 40.0 39.2 40.0 39.2 37.6 39.2 37.6 39.2 35.2
D2 antagonists 318 325 334 315 33.0 340 317 33.1 30.7 306
Factor Xa inhibitors 474 50.0 49.6 47.0 48.5 47.9 476 491 50.0 473
HIV protease inhibitors 64.9 68.4 67.5 65.9 67.3 66.8 63.8 67.7 66.6 65.0
Matrixmetalloprotease inhibitors 68.8 69.7 69.4 68.0 69.4 69.1 68.0 69.1 69.9 67.1
Phosphodiesterase inhibitors 40.; 415 445 39.3 415 424 393 4238 406 459
Protein kinase C inhibitors 58.6 60.0 58.4 58.4 58.4 59.5 57.4 58.4 59.0 59.0
Renin inhibitors 56.6 58.7 59.4 56.5 58.3 584  56.1 58.9 56.9 56.3
Substance P antagonists 70. 73.0 73.2 70.5 71.8 72.4 71.4 71.7 72.8 70.5
Thermolysin inhibitors 46.8 48.3 48.7 48.3 48.4 48.0 47.5 48.8 48.3 454

-0€9-



Table 3.Enrichment factor of actives when using nine diffefaston rules on the MDDR activity classes

Activity Class GA RKP MaxR MedR SumR MinR MedS SumS MaxS MinS
5HT1A agonists 19.2 20.2 19.8 19.1 19.9 194 19.6 19.9 196 19.6
5HT3 antagonists 412 43.6 4343 418 42.8 42.5 42.7 43.3 42.7 41.7
5HT reuptake inhibitors 179 189 18.6 18.3 19.2 19.2 195 18.9 189 18.0
AT1 antagonists 48.0 49.0 49.0 495 48.9 48.8 485 489 494 479
Cyclooxygenase inhibitors 29.3 30.2 30.6 30.8 30.8 29.6 29.0 30.2 30.8 309
D2 antagonists 17.4 18.3 18.0 14.3 17.1 19.4 19.7 17.4 19.4 14.0
HIV protease inhibitors 47.0 49.0 49.0 47.7 48.7 47.7 45.3 48.9 495 479
Protein kinase C inhibitors 29.0 31.1 30.9 28.4 29.4 30.4 29.7 30.6 314 26.7
Renin inhibitors 704 722 72.5 71.8 72.0 71.3 71.9 71.8 72.3 693
Substance P antagonists 29. 30.9 304 28.9 30.2 30.0 28.9 30.5 30.5 28.9
Thermolysin inhibitors 48.3 495 49.8 49.0 49.9 49.1 47.6 49.9 49.0 488

-T€9-



Table 4.Enrichment factor of actives when using nine diffefaston rules on the WOMBAT activity classes

Activity Class GA RKP MaxR MedR SumR MinR MedS SumS MaxS MinS
5HT1A agonists 55.7 58.7 57.6 58.5 57.4 57.0 53.10 574 56.5 55.7
5HT3 antagonists 435 444 44.4 43.4 44.4 439 4343 444 46.5 43.4
Acetylcholinesterase inhibitors 51.1 514 52.1 50.3 51.9 51.0 5320 51.2 499 543
AT1 antagonists 80.7 83.0 83.0 83.7 83.4 83.13 8252 83.0 82.4 836
Cyclooxygenase inhibitors 67.4 67.6 67.6 67.4 67.4 67.43 66.9 67.6 67.6 67.8
D2 antagonists 40.8 419 41.0 42.7 41.8 40.90 42.0 41.4 414 413
Factor Xa inhibitors 457 47.8 45.0 41.2 43.0 4789 433 44.6 40.4 45.7
HIV protease inhibitors 53.6 57.3 57.1 51.3 54.7 55.47 555 55.7 56.4 542
Matrixmetalloprotease inhibitors 63.4 64.6 65.0 64.6 64.6 63.68 63.8 64.6 65.0 62.6
Phosphodiesterase inhibitors 49.. 51.9 52.1 49.8 51.7 51.68 49.8 51.9 52.8 483
Protein kinase C inhibitors 740 727 73.4 71.9 71.9 7188 727 71.9 75.0 71.1
Renin inhibitors 78.8 80.6 80.6 80.6 80.8 80.33 775 81.0 81.0 817
Substance P antagonists 49. 51.6 52.6 49.8 52.8 50.80 50.8 52.2 51.0 514
Thermolysin inhibitors 56.1 58.8 58.6 55.2 57.8 58.58 58.8 57.8 58.1 55.2

-C€9-
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Discussion and conclusions

Two factors are immediately obvious from inspection of the resulfable 2. First, the mean
values for the ten GA runs are normally slightly less than thel fesares. With nine fusion
rules and 15 activity classes the mean GA run value can be cahwititea fusion value 135
times: of these comparisons, the enrichment factor for the fuseexceeded the mean-GA
factor 99 times. Second, while the differences between the véugias rules are quite small
(as illustrated for the MDDR activity classes in Figure Eye¢hare variations in performance
between the rules, and it is hence reasonable to consider whiemimst generally effective.

Enrichment factors for MDDR activity classes
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Figure 1. Variations in enrichment factor for the eleven actidlgsses in the MDDR dataset. For
each class (as denoted by the initial characters afadlse name listed in the left-hand column
of Table 3) the three columns denote first the meantkensgat factor for the GA, and then
the largest and the smallest enrichment factors forctaas over the complete set of fusion
rules.

The variations were analyzed using the Kendall Coefficient of Concordahediich
provides a means of quantifying the degree of association bekndiffarent rankings ofi
different objects [24]. In the present contextl5 andn=10 since each of the 15 activity
classes enables us to rank the 9 fusion rules and the GA irasiegr@rder of enrichment

factor. The value of W lies between zero and unity, and its significarcbe checked using
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the 52 test of statistical significance, singé= k(n-1)W with n-1 degrees of freedom. In the
case of the ChEMBL results shown in Table 2, the computed valu# fer0.38, with an
associated value fofof 51.30 that is significanip£0.01). If a significant value is obtained
then an overall ranking of theobjects is given by their mean ranks when averaged ovér the
rankings as described by Siegel and Castellan [24]. Allocatingsadr9 (for the highest
enrichment factor for a particular activity class) down to 0t{fe lowest such factor) then the
mean scores for the ten approaches are listed in the column headdBICinETable 5, this
corresponding to the following ordering of fusion rules

RKP > MaxR > SumS, MaxS > SumR > MinR > MedR > MinS > Mean GA > MedS,
i.e., the RKP rule gave the best overall level of performaccesa the 15 activity class
rankings.

Table 2 detailed the enrichment factors for the ChEMBL datidmeekargest of the three
considered here. Very similar pictures of behavior were observitdtihé MDDR and
WOMBAT datasets as shown in Tables 3 and 4, with statisticidjgificant levels of
agreement being obtained for the comparison of the various fusion ruleshicasass: the
resulting mean ranks are included in the appropriate columns of TableHind@l column of
this table gives the mean score for each of the ten types of ranking when taken adness all t
datasets, where it will be seen that the RKP rule ghebést overall results and that the mean
GA results are inferior to those resulting from every one of the fusion rules.

Table 5. Kendall W analysis using nine fusion rules and m@anscores for the MDDR, WOMBAT
and ChEMBL databases

Fusion Database Mean
Rule MDDR  WOMBAT ChEMBL Score
RKP 7.C 6.5 6.7 6.7
MaxR 6.4 6.2 6.€ 6.4
MaxS 6.6 5.3 5.7 5.9
Sums 5.7 5.3 5.7 5.6
SumR 5.6 5.C 5.€ 5.4
MinR 4. 3.8 4.7 4.2
MedR 3.C 3.4 3.2 3.2
MedS 3.5 3.5 1.6 3.0
MinS 2.C 3.¢ 2.E 2.8

Mean GA 1.2 2.1 2.4 1.9
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The finding that RKP is the most effective fusion rule heiia ifne with a previous
study that found it was also the best for fusing the outputs of muliiplesty searches [25].
In fact, this fusion rule gives results that are sometimes aaolgsto those obtained with the
very best individual GA run (rather than the mean-GA results deresd thus far). Of the 15
ChEMBL activity classes, the best GA enrichment factoeeded the RKP factor for seven
classes while the converse applied for another seven clasdebdgee was one class - the AT1
antagonists - where the factors were the same). The resulesa striking for the other two
datasets: for MDDR, the best GA factor exceeded the RKP fimtseven classes while the
converse applied for four classes; and for WOMBAT, the correspgfiidiures were nine and
three (with two classes where the factors were the same)

In our previous paper [14], we demonstrated that a GA was able to prddtaset
rankings that were noticeably superior in terms of enrichmenhdaset resulting from
established weighting schemes for substructural analysis. Howtewas also demonstrated

that the GA’s non-deterministic nature meant that there wae segree of variation in the
weights generated in multiple runs and, consequently, in thetieéfieess of screening that
could be expected if the approach was to be used in practidhis Ishort paper, we have
suggested the use of data fusion as a way of combining the ranlsn@i;igefrom multiple
runs of the GA. The resulting, fused rankings are consistenttgrbisian the average
effectiveness of screening (as measured by the enrichment fantbin some cases are
comparable with the maximum GA effectiveness. The simplicity and thetieéfieess of this
joint procedure hence suggest itself as a useful addition to existing metho@y/®r L

That said, there are two inherent limitations to the usetaffdaion. The first is the
need to specify the nature of the fusion rule that is used to corhkirarious rankings of the

molecules comprising a database. The second is the identificatoitaifle weights and their
assignment to each ranking as a means of specifying the relativeamymoor effectiveness
of each individual measure. It is, however, common to assign eashim¢he same weight,
as was the case in the work reported here. This uniform wegghpiproach can be enhanced

by the use of machine learning techniques but these require exttmasiieg data that is
unlikely to be available during the early stages of a drug discovery programmé_BY8 is

most valuable [18]. An alternative approach that does not sudfartfrese limitations involves
the use of partial ordering methods, as exemplified by the Hassamiagdrhis provides a
simple way of ordering objects where multiple criteria can be w#gedut the need to specify
a fusion rule or to assign weights to the rankings that are beingiroedn and has already

found some application in chemoinformatics [26-28]. There is, howevegrrdbiem that they
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are only suitable for use where small numbers of objects arev@tjalhereas applications of
the sort considered here involve databases containing hundreds of thousamiltlens of
molecules. The development of efficient algorithms for the géorraf Hasse diagrams

could hence enhance still further the attractiveness of the GA approac® LB
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