
This is a repository copy of Extraction of Indirectly Captured Information for Use in a 
Comparison of Offline pH Measurement Technologies.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/116056/

Version: Accepted Version

Article:

Ritchie, EK, Martin, EB, Racher, A et al. (1 more author) (2017) Extraction of Indirectly 
Captured Information for Use in a Comparison of Offline pH Measurement Technologies. 
Journal of Biotechnology, 251. pp. 160-165. ISSN 0168-1656 

https://doi.org/10.1016/j.jbiotec.2017.04.025

© 2017 Elsevier B.V. This manuscript version is made available under the CC-BY-NC-ND 
4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by White Rose Research Online

https://core.ac.uk/display/83941096?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Accepted Manuscript

Title: Extraction of Indirectly Captured Information for Use in

a Comparison of Ofßine pH Measurement Technologies

Authors: Elspeth K. Ritchie, Elaine B. Martin, Andy Racher,

Colin Jaques

PII: S0168-1656(17)30188-8

DOI: http://dx.doi.org/doi:10.1016/j.jbiotec.2017.04.025

Reference: BIOTEC 7868

To appear in: Journal of Biotechnology

Received date: 23-11-2016

Revised date: 31-3-2017

Accepted date: 21-4-2017

Please cite this article as: Ritchie, Elspeth K., Martin, Elaine B., Racher,

Andy, Jaques, Colin, Extraction of Indirectly Captured Information for Use in a

Comparison of Ofßine pH Measurement Technologies.Journal of Biotechnology

http://dx.doi.org/10.1016/j.jbiotec.2017.04.025

This is a PDF Þle of an unedited manuscript that has been accepted for publication.

As a service to our customers we are providing this early version of the manuscript.

The manuscript will undergo copyediting, typesetting, and review of the resulting proof

before it is published in its Þnal form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that

apply to the journal pertain.

http://dx.doi.org/doi:10.1016/j.jbiotec.2017.04.025
http://dx.doi.org/10.1016/j.jbiotec.2017.04.025


 

1 

 

 

Extraction of Indirectly Captured Information for Use in a Comparison of Offline pH Measurement 

Technologies 

 

Elspeth K. Ritchieϭ͕ϮΏ, Elaine B. Martin1,3, Andy Racher4, Colin Jaques4, 
1 Biopharmaceutical Bioprocessing Technology Centre, Newcastle University, Newcastle upon Tyne, 

NE1 7RU, UK 

2 Unilever, 100VE, 100 Victoria Embankment, London, EC4Y 0DY, UK 
3 School of Process, Environmental and Material Engineering, University of Leeds, Leeds, LS2 9DT, UK 
4 Lonza plc., 224-230 Bath Road, Slough, SL1 4DX, UK 

ΏCŽƌƌĞƐƉŽŶĚŝŶŐ ĂƵƚŚŽƌ 

Highlights: 

1. Measurements of pH were observed to vary by measurement technology. 

2. A method for extracting indirectly captured information is demonstrated. 

3. Causes of discrepancies are identified from indirectly and directly captured data. 
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Abstract 

Understanding the causes of discrepancies in pH readings of a sample can allow more robust pH 

control strategies to be implemented. It was found that 59.4% of differences between two offline pH 

measurement technologies for an historical dataset lay outside an expected instrument error range 

of ± 0.02 pH. A new variable, OsmoRes, was created using multiple linear regression (MLR) to extract 

information indirectly captured in the recorded measurements for osmolality. Principal component 

analysis and time series analysis were used to validate the expansion of the historical dataset with 

the new variable OsmoRes. MLR was used to identify variables strongly correlated (p<0.05) with 

differences in pH readings by the two offline pH measurement technologies. These included 

concentrations of specific chemicals (e.g. glucose) and OsmoRes, indicating culture medium and bolus 

feed additions as possible causes of discrepancies between the offline pH measurement 

technologies. Temperature was also identified as statistically significant. It is suggested that this was 

a result of differences in pH-temperature compensations employed by the pH measurement 

technologies. In summary, a method for extracting indirectly captured information has been 

demonstrated, and it has been shown that competing pH measurement technologies were not 

necessarily interchangeable at the desired level of control (± 0.02 pH).  
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1 Introduction 

In the biologics industry, mammalian (Chusainow et al., 2009), bacterial (Shiloach and Fass, 2005), 

and fungal cells (Durocher et al., 2002) are used to produce products such as antibodies, antibiotics, 

and vaccines. In 2014, these biotechnology products contributed USD 289 billion (Deloitte Touche 

Tohmatsu Limited, 2015) ƚŽ ƚŚĞ ŐůŽďĂů ƉŚĂƌŵĂĐĞƵƚŝĐĂů ŝŶĚƵƐƚƌǇ͛Ɛ U“D ϭ ƚƌŝůůŝŽŶ ƌĞǀĞŶƵĞ (Statista, 

2016). Regardless of cell choice, understanding of the cell culture at the heart of a bioprocess is 

fundamental for ensuring production is safe, fit for purpose products and consistent. Reactor design 

(Varley and Birch, 1999), media formulation (Weuster-Botz, 2000; Zhang and Robinson, 2005), and 

processing strategies (Horvath et al., 2010; Senger and Karim, 2007) continue to be researched to 

increase cell culture knowledge. These efforts are increasingly supported by multivariate data 

analysis (MVDA).  

MVDA techniques such as principal component analysis (PCA) and partial least squares or projection 

to latent structures (PLS) have aided scientists and engineers in reactor scale-up (Kirdar et al., 2007) 

and fault diagnosis (Gunther et al., 2007).  One key use of MVDA is the retrospective interrogation of 

historic datasets from the routine monitoring of cell cultures through technologies including pH 

probes, osmometers, cell counters, and multi-metabolite bioanalysers. 

1.1 pH Measurement 

A fundamental controlled parameter in cell cultures is pH. It affects cell growth and metabolism 

(Schmid et al., 1990), production rates (Ozturk and Palsson, 1991), and product quality (Zanghi et al., 

1999). Control of culture output could be improved by improved pH understanding and control 

(Trummer et al., 2006). To effectively apply a pH strategy, measurement technologies must give 

reliable and accurate readings. 

Consistency between pH measurement technologies is frequently taken for granted. Between 

manufacturing sites and even within the same lab, individual scientists may use different 

technologies. If technology A is a Nova Bioprofile 400 with accuracy ±0.01% of the measured pH for a 

pH range 5.00 to 8.00 (Nova Biomedical, 2011) and technology B a Radiometer Analytical PHM220 

with Metler-Toledo probe with accuracy ±0.01 for pH range 3.00 to 8.00 (Radiometer Analytical SAS, 

2003), it would be assumed that the maximum expected difference due to pure instrument error is 

± 0.02 pH units for a well-mixed sample. In this study, we found that for one cell culture robustness 

study, nearly 60% of differences in pH reading by two different offline technologies fell outside the 

allowable error band (Figure 1). 

pH is neither constant nor directly proportional with respect to temperature (Barron et al., 2006; 

Mettler-Toledo AG, 2015; Radiometer Analytical SAS, 2007) and the relationship varies based on 

component concentrations (Rosenthal, 1948; Yoshimura, 1935). pH measurement technologies use 

built-in temperature compensation to prevent incorrect readings and incorrect corrective actions, 

however different measurement technologies apply different temperature compensation. If two 

technologies employ different pH-temperature compensations, they may give different readings for 

the same sample. The extent of this differencĞ ǁŝůů ďĞ ĂĨĨĞĐƚĞĚ ďǇ ƚŚĞ ƐĂŵƉůĞ͛Ɛ ĐŚĞŵŝĐĂů 
composition. 

In the presented study, MVDA techniques were used to identify if the observed differences in 

readings were influenced by sample composition or temperature. Effects from sample handling 

(Evans and Larson, 2006), pH probe sterilization (Saucedo et al., 2011), probe age, or variations 

specific to individual probes are acknowledged as potential confounding variables, however these 
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were excluded as explicit variables for three reasons. First, these variables were not captured in daily 

monitoring datasheets. Secondly, as data were collected in a CMO study across 48 cell cultures, 

these variables were assumed to have a consistent effect across the activity of each cell culture from 

inoculation to harvest. Finally, an appropriate and statistically sound method for capturing and 

integrate such data for analysis is required for further exploration. 

2 Materials and Method 

Data were taken from a robustness study of a proprietary Chinese hamster ovary (CHO) cell line 

transfected with a vector containing a dihydrofolate-reductase (DHFR) selectable marker (Urlaub 

and Chasin, 1980) and the DNA sequence for a monoclonal antibody. Cells were grown using a 

proprietary chemically-defined medium in 15L glass stir tank reactors (STR) (Applikon Biotechnology) 

with a 10L working volume. Applikon i-Control controllers were used to monitor and control gas 

flows (Applikon Biotechnology, UK). Applikon i-Control controllers were also used for online 

monitoring and control of pH, dissolved oxygen (DO%), and temperature. Online pH was measured 

by a Mettler-Toledo pH probe connected to the controller. pH was controlled by CO2 sparging and 

addition of sodium bicarbonate. 

Nine control bioreactor cultures were initially maintained at pH 7.0 and 36°C. When a specified 

minimum viable cell concentration (determined by daily offline sampling) was reached, the pH and 

temperature setpoints were altered according to an experimental plan. Three bolus additions were 

made to each bioreactor culture. Bolus A was added when the pH and temperature setpoints were 

adjusted. Bolus B was added on Day 4 of the culture. Bolus C was added on Day 7 of the culture. 

Eleven experimental bioreactor cultures operated with deliberate deviations from standard 

operation. These included deviations directly captured in daily monitoring data, e.g. increased 

operating temperature, decreased operating temperature, omission of the shifts in pH and 

temperature setpoints. Other deviations were not directly captured in daily monitoring data and 

were collected as meta-data, e.g. use of expired medium or alterations to feeding strategy. 

The cultures were monitored through daily offline samples. An offline pH reading was taken using 

the first pH measurement technology, a Radiometer Analytical PHM220 pH meter and a 

Mettler-Toledo pH probe coupled to a temperature probe. The Radiometer Analytical PHM220 was 

calibrated daily using standards of knoǁŶ ƉH͖ ƚŚĞ ƐƚĂŶĚĂƌĚƐ͛ ƚĞŵƉĞƌĂƚƵƌĞƐ ǁĞƌĞ ƵƐĞĚ ƚŽ ĐƌĞĂƚĞ Ă 
pH-ƚĞŵƉĞƌĂƚƵƌĞ ĐŽŵƉĞŶƐĂƚŝŽŶ͘ WŚĞŶ ĂŶ ŽĨĨůŝŶĞ ŵĞĂƐƵƌĞŵĞŶƚ ǁĂƐ ŵĂĚĞ͕ ƚŚĞ ƐĂŵƉůĞ͛Ɛ ƚĞŵƉĞƌĂƚƵƌĞ 
was also recorded and the compensation applied. 

A second offline pH measurement was made using a NOVA Bioprofile 400. Here, the sample 

temperature (T) was entered at the user interface, and the unit heated the sample to 37 °C. The pH 

of the heated sample was measured, and then pH-temperature compensation was applied using a 

set equation (Eq. 1). ܪ݌௖௢௥௥௘௖௧௘ௗ ൌ ܪ݌ ൅ ሾെͲǤͲͳͶ͹ ൅ ͲǤͲͲ͸ͷ כ ሺ͹ǤͶͲͲ െ ሻሿܪ݌ כ ሺܶ െ ͵͹ሻ 

Eq (1) 

The NOVA Bioprofile 400 was also used to measure partial pressures of dissolved O2 and CO2 gases 

and the concentrations of lactate, glucose, glutamate, glutamine, Na+, K+, and NH4
+. Total cell 

concentration and viable cell concentration were determined using a Vi-CELL XR (Beckman Coulter 

Inc., UK). From these values, an osmoalilty estimate was calculated using the in-built component 

calculator (Eq 2). ܱݕݐ݈݈݅ܽ݋݉ݏ ൌ  ͳǤͺ͸ሺሾܰܽାሿ ൅  ሾܭାሿ ൅ ሾܰܪସାሿሻ ൅ ሾݑ݈ܩሿͲǤͳͺ ൅ ሾܿܽܮሿͲǤͲͻ ൅  ݐ݊ܽݐݏ݊݋ܿ

Eq. (2) 
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Finally, sample osmolarity was then measured directly using freezing point osmometry (FPO) with an 

OSMOMAT Auto (Gonotec GmbH, Germany). 

2.1 Statistical Method 

Multiple linear regression (MLR) is a widely applied regression tool. Given X, an ݊ ൈ ሺ݌ ൅  ͳሻ dataset 

containing n samples with p inputs, and Y, an ݊ ൈ ͳ response vector, the relationship between X and 

Y can be modelled as: ܇ ൌ ߚ܆ ൅  ߝ

Eq(2) 

with regression parameters ߚ ൌ ൭ߚ଴ߚڭ௞൱ and errors ߝ ൌ ൭ߝଵߝڭ௡൱, where ߝ is normally distributed with a 

mean of zero and constant variance ߪଶ (Upton and Cook, 2011). This model can then be applied to 

data to give: ܇෡ ൌ  ߚ܆

Eq(3) 

where ܇෡ is the vector of fitted (predicted) values. A limitation of MLR is that that noisy or co-

correlated variables reduce model efficiency. A potential solution is iterative significance testing until 

all variables retained in the model have a p-value below a chosen threshold (here 0.05) (Streiner, 

2003). 

Principal component analysis (PCA) is a statistical tool suitable for the analysis of a large dataset X 

composing n samples and p variables (Wold et al., 1987). PCA captures the main source of variability 

in the dataset by creating new variables termed principal components (PC). Each PC is a linear 

combination of the original variables and orthogonal to the other PCs. A fewer number of PCs than 

original variables are required to be retained as the process is not operating in p-dimensions. In 

summary the data matrix, X, is decomposed: ࢄ ൌ ࢀࡼࢀ ൅ ࡱ ൌ ෍ ௜௞݌௜ݐ
௜ୀଵ ൅ ෍ ௜௣݌௜ݐ

௜ୀ௞ାଵ  

Eq (4) 

where X is the original nxp data matrix, k is the number of PCs retained, T the nxk scores matrix, PT 

the kxp loadings matrix, and E is the nxp model residuals matrix (Wold et al., 1987). When the 

loadings for PCs are plotted in 2-dimensional space, positively correlated variables will cluster 

together. Negatively correlated variables will be diametrically opposed across the origin. 

3 Calculation 

A total of 785 sets of 12 daily sampling measurements were collected, covering 48 fed-batch cultures 

running for an average of 15 days under a range of conditions. Data were collated into a single 

785x12 matrix. The dataset was analyzed using a three-step method (3.1 through 3.4 below). 

Minitab® Statistical Software was used for multiple linear regression (MLR) and principal component 

analysis (PCA). Additional figures were generated using Matlab®2010a from Mathworks®. 

3.1 Extraction of Indirectly Captured Information 

Osmolality is the concentration of solutes in a sample measured in osmoles of solute per kilogram of 

solvent (Osm/kg) (Advanced Instruments, Inc. 2011), however the measurement does not identify or 

specify quantities of individual components present in the sample. It was hypohesized that 

information concerning sample components not directly monitored in the dataset could be 

extracted from the FPO measurement by removing contributions from directly monitored variables. 
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A dataset-specific component calculator was created through MLR and iterative significance testing 

(Eq. 5). ܱ݋݉ݏெ ൌ ʹ͵͸ െ ͲǤʹͻͺܱ݌ଶሺ݉݉݃ܪሻ ൅ ͲǤʹͶ͵ܱܥ݌ଶሺ݉݉݃ܪሻ ൅ ͹ͶǤͶ݈݊ܩሺ݃ Τܮ ሻ െ ͳͶǤ͸ܿݑ݈ܩሺ݃ Τܮ ሻ൅ ʹͷͶܰܪସାሺ݃ Τܮ ሻ ൅ ͲǤʹ͸͵ܰܽାሺ݈݉݉݋ Τܮ ሻ ൅ ͶǤʹ͹ܭାሺ݈݉݉݋ Τܮ ሻ൅ ͹ǤͻͷܶܥܥሺͳͲ଺݈݈ܿ݁ݏ Τܮ݉ ሻ 

Eq. (5) 

where OsmoM is the predicted osmolality and TCC is the total cell count for a sample. The model 

accounted for 83.6% of the variation in osmolality in the dataset. The indirectly captured data is in 

ƚŚĞ ĨŽƌŵ ŽĨ ƚŚĞ ŵŽĚĞů͛Ɛ ƌĞƐŝĚƵĂů ŝŶĨŽƌŵĂƚŝŽŶ ;ĞƌƌŽƌƐͿ͕ OsmoRes (Eq. 6). ܱ݋݉ݏோ௘௦ ൌ ݋݉ݏܱ െ  ெ݋݉ݏܱ

Eq. (6) 

The historical dataset was expanded by treating the residual information OsmoRes as a new variable. 

Note that this residual information should not be confused with a surrogate variable where a 

difficult to measure variable X is replaced by a closely correlated and more easily measured variable 

Y (Upton and Cook, 2011).  

3.2 Validation of Extracted Information Approach 

PCA was performed using all recorded variables and either osmolality or OsmoRes. The PCA model 

including osmolality captured 63% of cumulative X variance at the PC2 level. The PCA model 

including OsmoRes captured 57% of cumulative X variance at the PC2 level. The difference of 6% in 

cumulative X variance captured indicated a slightly more complex data structure for the OsmoRes 

model. The difference in cumulative X variance captured reduced with increasing model complexity, 

e.g. from 6% at PC2 to 2.5% at PC5. 

The loadings for these models are displayed in Figure 2. In Figure 2A, osmolality is located between 

two clusters of variables. This is due to correlation with both groups of variables. In Figure 2B, the 

correlations between all variables, excepting OsmoRe, are effectively unchanged. The variable 

representing indirectly captured information in this system, OsmoRe, is now located in a postition 

indicating that, at the PC1 and PC2 level, OsmoRes contains information not as strongly correlated 

with other factors as in the original variable osmolality. OsmoRes is also closer to the origin indicating 

that the previously unextracted information has a lessened impact on the variance of the input 

dataset as a whole. 

It was possible to identify patterns related to metabolism and culture processes when plotting 

OsmoRes against elapsed time (Figure 3 and Figure 4). During the first three days, OsmoRes decreased 

as expected from consumption of media compounds during the exponential growth phase. These 

media components were not directly measured; as they could not be accounted for explicitly the 

osmolality model, these components contribute to the osmolality model residuals. 

For the reactors undergoing a change in operating temperature on Day 3, there is a further decrease 

after the addition of bolus A, then an increase following the addition of bolus B. This dip is not noted 

in the data for reactors undergoing the temperature change on Day 4, where bolus A and B were 

aĚĚĞĚ Ăƚ ƚŚĞ ƐĂŵĞ ƚŝŵĞ͘ TŚŝƐ ŝŶĚŝĐĂƚĞƐ ƚŚĂƚ ƚŚĞ ďŽůƵƐĞƐ͛ ĞĨĨĞĐƚƐ ĐĂŶĐĞů ŽƵƚ ƚŽ ƐŽŵĞ ĞǆƚĞŶƚ͘  A ůĂƌŐĞ 
increase occurs following the addition of bolus C; this is followed by a general reduction in the 

osmolality residuals, indicating consumption of components contributing to the osmolality model 

residuals. 

3.3 Comparison of Offline pH Measurement Technologies 

The variable osmolality in the daily monitoring dataset was replaced with OsmoRes. The dataset was 

then subdivided based on when sampling took place relative to the pH and temperature setpoint 
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shifts as these datasets reflect two different process conditions: Before Shift (BS) and After Shift 

(AS). For data taken after the setpoint change was made (AS), cultures where experimental changes 

were not directly captured in the daily monitoring measurements were excluded, e.g. cultures run at 

high DOT were included whereas cultures testing modified feed strategies were rejected. MLR was 

used to model the differences between measurements by the Radiometer Analytical PHM220 and 

the NOVA Bioprofile 400 (B-N) for the BS dataset, AS dataset, and full dataset. Models were refined 

using statistical significance testing until all factors were p<0.05. 

4 Results and Discussion 

Factors identified as statistically significant (p < 0.05) in predicting differences in pH reading by the 

pH measurement technologies are indicated in Table I. Model R2 are also indicated in Table I. These 

models indicate that sample composition and condition can affect agreement in pH readings by two 

pH measurement technologies. 

OsmoRes was found to be statistically significant across all three models, indicating that certain 

components not directly monitored had a statistically significant impact on the differences in pH 

measurements. 

A second key variable identified as statistically significant was temperature. Before the change in 

temperature and pH operating setpoints, temperature did not have a statistically significant impact 

on differences in pH readings. After the reactor operating temperature was reduced, the effect of 

temperature was statistically significant. 

One possible explanation for this result is the different temperature compensations used by the 

technologies. The NOVA Bioprofile 400 used a set formula for pH-temperature compensation 

whereas the Radiometer Analytical PHM220 pH-temperature compensation was recalibrated daily. 

Furthermore, the NOVA Bioprofile 400 heated samples before measuring pH whereas the 

Radiometer Analytical PHM220 measured sample temperature and pH as is. The equipment were 

effectively applying compensations in opposite directions, which may also contribute to differences 

ŝŶ Ă ƐĂŵƉůĞ͛Ɛ ƌĞĐŽƌĚĞĚ ƉH͘ TŚĞ ƐƚƌĞŶŐƚŚ ŽĨ ƚŚŝƐ ĞĨĨĞĐƚ ǁŽƵůĚ ŝŶĐƌĞĂƐĞ ƉƌŽƉŽƌƚŝŽŶĂů ƚŽ ȴT͘ 
4.1 Limitations of Extracted Information 

An issue with the original osmolality measurement was that it could not identify which components 

contributed to the measurement. OsmoRes was a similarly indiscriminate factor as it captured a 

variety of components including bolus ingredients, culture medium, and by-products of cell 

metabolism. As the relative concentrations of these components were not constant through culture 

lifetimes or between cultures, OsmoRes may not have had a consistent impact on the discrepancies in 

pH readings, e.g. the effect of 40 mOsm/kg H2O residual caused by bolus A may not have affected 

readings to the same extent as a 40 mOsm/kg H2O residual caused by bolus B. 

Additionally, use of the final model was restricted to consideration of the dataset from which the 

model was created. Hence the model was neither a generic nor predictive model for osmolality. 

Adaptations to allow predictive use and/or the creation of models tailored to specific formulations, 

cell lines, or products could result in a strong tool to increase cell culture knowledge from indirectly 

captured information. This includes both historic datasets and processes where more 

comprehensive measurement technologies (e.g. NIR) are not currently implemented. 

5 Conclusions 

Osmolality is a non-specific measurement of components; an osmolality reading of 100 mOsm/kg 

does not specify if it is 100 mOsm/kg of component A, B, C, or a mixture of all three. Information 

indirectly captured in a historic dataset was extracted by separating contributions to osmolality by 

directly monitored components from contributions to osmolality by components not directly 
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monitored. The new variable OsmoRes was a similarly non-specific factor, capturing a variety of 

components including bolus feed ingredients, culture medium components, and by-products of cell 

metabolism. The new variable OsmoRes was used to expand an historical dataset in a comparison of 

offline pH measurement technologies. 

The demonstrated method for the calculation and verification of OsmoRes is recommended as a 

means to generating additional knowledge for a specific combination of cell line, product, and 

process platform. In addition to retrospective analyses, the method could be applied during Design 

of Experiment or process limit evaluation studies during process transfer with OsmoRes calculated as 

part of daily monitoring activities (Figure 5). 

While much of what causes the discrepancies between the competing pH measurement 

technologies is still not understood, it was shown that the pH measurement technologies compared 

were not interchangeable at the desired level of agreement. These disagreements in pH readings 

could be attributed in part with sample composition and physical condition. From this it is 

recommended that offline and online monitoring technologies should be of the same design to 

prevent errors caused by differences in design. If two different designs must be used, it should be 

demonstrated that the technologies agree across a variety of conditions within the culture design 

space including temperature. Furthermore, the make and type of pH equipment used in a project 

should be recorded to ensure the similar equipment is used at all scales of reactor throughout a 

project (i.e. initial lab testing to full scale production) (Figure 5). In doing so, potential negative 

effects on product quality or titre are reduced and differences of technology eliminated from any 

subsequent gap analysis. 
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Table I. Results of MLR and Significance Testing 

X indicates variables identified as significant (p < 0.05) when modelling the difference in pH reading 

by two offline technologies for three datasets: All, Before Shift, After Shift. R2 values for each model 

are also displayed. 

Figure 1. Histogram of Differences in Offline pH Readings by Two Offline Technologies 

Dotted lines indicate boundaries for differences due to instrument error (±0.02 pH units). 

Figure 2. PCA Loading Plots 

A. PC1 and PC2 Loadings for Data when including osmolality. Osmolality (circled) was located 

ďĞƚǁĞĞŶ ƚǁŽ ĐůƵƐƚĞƌƐ ŽĨ ǀĂƌŝĂďůĞƐ ;භͿ͕ ŝŶĚŝĐĂƚŝŶŐ ĐŽƌƌĞůĂƚŝŽŶ ǁŝƚŚ ďŽƚŚ ĐůƵƐƚĞƌƐ͘ 
B. PC1 and PC2 Loadings for Data when using OsmoRes. “ƉĂƚŝĂů ƌĞůĂƚŝŽŶƐŚŝƉƐ ďĞƚǁĞĞŶ ǀĂƌŝĂďůĞƐ ;භͿ 
are relatively unchanged compared to Figure 2A. OsmoRes (circled) was not located between two 

clusters of variables. PC2 loadings were multiplied by -1 to improve comparative visual analysis, due 

to inversion of the PC2 vector in the second PCA model produced. 

Variable Numbers: [1] Temperature [2] Glucose [3] pO2 [4] DOT [5] Lactate [6] K+ [7] Glutamine [8] 

Glutamate [9] Na+ [10] VCC [11] TCC [12] NH4
+ [13] pCO2 [14] Day [15] Osmolality [16] OsmoRes 

Figure 3. Boxplot of OsmoRes for Bioreactors Undergoing Change in pH and Temperature Setpoint on 

Day 3. 

BŽǆƉůŽƚ ŽĨ ŵŽĚĞů ƌĞƐŝĚƵĂůƐ ĂƌƌĂŶŐĞĚ ďǇ ĚĂǇ ŽĨ ƐĂŵƉůŝŶŐ ǁŝƚŚ ƚƌĞŶĚůŝŶĞ ŽǀĞƌůĂǇ͘ DĂŝůǇ ŵĞĂŶ ;ȴͿ͕ 
outliers  (*), and bolus additions (A, B, C) indicated. 
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Figure 4. Boxplot of OsmoRes for Bioreactors Undergoing Change in pH and Temperature Setpoint on 

Day 4. 

BŽǆƉůŽƚ ŽĨ ŵŽĚĞů ƌĞƐŝĚƵĂůƐ ĂƌƌĂŶŐĞĚ ďǇ ĚĂǇ ŽĨ ƐĂŵƉůŝŶŐ ǁŝƚŚ ƚƌĞŶĚůŝŶĞ ŽǀĞƌůĂǇ͘ DĂŝůǇ ŵĞĂŶ ;ѕͿ͕ 
outliers  (*), and bolus additions (A, B, C) indicated. 

Figure 5. Dataflow System for Improved pH and Culture Monitoring. 

In the system, equipment maintenance records, equipment IDs, and offline monitoring data are 

captured in a single source (electronic laboratory notebook). Data are then used to create and 

maintain an osmolality model. The osmolality model residuals and other data feed into a apH 

monitoring model (1) and a culture growth model (2). 
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Table I: Results of MLR and Significance Testing 

 Dataset Used 

Variable All Before Shift After Shift 

Constant X X X 

Time (h) Ͷ X X 

Temperature (°C) X Ͷ X 

DOT (%) Ͷ Ͷ Ͷ 

pO2 (mmHg) X Ͷ X 

pCO2 (mmHg) X Ͷ X 

Gln (g/L) Ͷ X X 

Glu (g/L) Ͷ Ͷ Ͷ 

Gluc (g/L) X Ͷ Ͷ 

Lac (g/L) X Ͷ Ͷ 

Na+ (mmol) X X X 

K+ (mmol) X X Ͷ 

Total Cell Concentration (106 cells/L) X X Ͷ 

OsmoRes (mOsm/kg) X X X 

Model R2 0.389 0.458 0.465 

Model p-Value 0.00 0.00 0.00 

 

 


