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Abstract A simple island model with λ islands and migration occurring after every τ

iterations is studied on the dynamic fitness functionMaze. This model is equivalent to
a (1+λ)EA if τ = 1, i. e.,migration occurs during every iteration. It is proved that even
for an increased offspring population size up to λ = O(n1−ε), the (1 + λ) EA is still
not able to track the optimum of Maze. If the migration interval is chosen carefully,
the algorithm is able to track the optimum even for logarithmic λ. The relationship of
τ, λ, and the ability of the island model to track the optimum is then investigated more
closely. Finally, experiments are performed to supplement the asymptotic results, and
investigate the impact of the migration topology.

Keywords Evolutionary algorithms · Island models · Dynamic problems ·
Populations · Runtime analysis

1 Introduction

Evolutionary algorithms (EAs) are a class of nature-inspired algorithms which can be
applied to solve a wide variety of optimization problems. Rigorous runtime analysis
of nature-inspired algorithms, building on mathematical methods from the analysis of
classical algorithms, has advanced considerably in recent years [3,22]. While most of

A preliminary version of this work previously appeared in the Proceedings of the 2015 Conference on
Genetic and Evolutionary Computation [17].

B Andrei Lissovoi
a.lissovoi@sheffield.ac.uk

1 Department of Computer Science, University of Sheffield, Sheffield, UK

2 DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-016-0262-4&domain=pdf


642 Algorithmica (2017) 78:641–659

these studies focus on so-called static optimization problems, whose set of optima is
fixed, there has been increasing interest in the analysis of evolutionary and other nature-
inspired algorithms on so-called dynamic problems. Many real-world optimization
problems are subject to dynamics in that the optimal solution may change as the
problem conditions change over time, and the algorithms therefore need to be able to
not only find or approximate the optimum at some point of time, but also to track the
optimal solution over time as the problem changes.

Application of EAs to dynamic optimization problems is the subject of study in
the Evolutionary Dynamic Optimization field, which in recent years has attracted
much activity. Many applications of evolutionary algorithms on dynamic problems
are considered in the literature [2,23], and there are already a number of runtime
analyses of evolutionary algorithms for dynamic problems [4,8,10,11,13,25]. In par-
ticular, the proper use of mechanisms to maintain diversity can be crucial in dynamic
optimization [24].

Despite the increasing interest in the area, it has not been well understood what
mechanisms allow EAs or related nature-inspired algorithms to efficiently track the
optimum of a dynamic problem. In [14], Kötzing and Molter introduced a dynamic
pseudo-boolean function called Maze that separates simple evolutionary algorithms
and ant colony optimization. More precisely, the paper shows that while a Max-Min
AntSystem (MMAS) is able to track the changes occurring in theMazefitness function
and finds the optimumwithin polynomial time, a (1+1) EA loses track of the optimum
and requires with high probability an exponential amount of time to find the optimum.
Very recently, we have built upon this study [19], extending the Maze function to
finite alphabets, and proving that with an appropriately-chosen ancestor population
sizeμ, a (μ+1) evolutionary algorithm is able to track the optimumwhen a genotype
diversity mechanism is used. Additionally, a simple MMAS is proved insensitive with
respect to the parameter as it is able to track the optimum without any modifications
for a wide range of values for μ.

In this work, we consider a different mechanism and analyze its behavior and
limitations in tracking the optimum of the Maze benchmark function. We focus on
parallel nature-inspired algorithms, which are heavily employed in practice due the
rapid development of parallel computer architectures. The survey by Alba, Luque
and Nesmachnow [1] describes important applications and theoretical studies in this
area. In particular, it refers to experiments with parallel nature-inspired algorithms in
dynamic optimization, including a study of a parallel swarm algorithm for dynamic
vehicle routing problems [12]. It is therefore interesting to determine the theoretical
properties of parallel nature-inspired algorithms that allow them to track the opti-
mum of a dynamic problem, or cause them to fail to do so. Both the number of
so-called islands (independent subpopulations) and the communication between them
seem influential. From a more general perspective, [23] emphasizes the usefulness of
memory and diversity-maintaining operators in EAs for dynamic optimization.

In theoretical runtime analysis, there is already a body on results on parallel evolu-
tionary algorithms. This field was pioneered by Lässig and Sudholt [15], who proved
that the proper use of island models with a dense topology and regular migration
can reduce the runtime by exponential factors compared to independent EAs. They
also give examples where improper choices of parameters such as the migration inter-
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vals can lead to poor performance of the island model and investigate the role of
sparse communication topologies. Moreover, general results on the speedup achiev-
able through different topologies are available [16]. It is also known that islandmodels
can support the effect of crossover [21] and yield exponential speedups on specific
examples. Still, to the best of our knowledge, runtime analyses of parallel EAs on
dynamic optimization problems have not been available so far.

Our contribution is represented by a runtime analysis of a parallel EA for the
dynamic Maze problem. We define a simple parallel EA using an island model with
communication occurring within regular intervals, the above-mentioned migration
intervals, in the style of [15]. The impact of two parameters is studied, namely the
number of islands λ and length of the migration intervals τ . We observe that the
choice of migration interval has a similar effect to what is proved in [15] for static
optimization, though with respect to a completely different function. In a nutshell,
our results are as follows. In the extreme case that τ = 1, i. e., migration occurs in
every generation, the model boils down to a (1 + λ) EA. It is shown that offspring
population sizes, i. e., number of islands, of up to λ = O(n1−ε), where n is the
problem size and ε an arbitrarily small positive constant, do not allow this algorithm
to track the Maze efficiently. In contrast, if τ is chosen appropriately, ensuring that
migration does not occur too frequently, already λ = Ω(log n) islands allow efficient
tracking of the optimum of the Maze. Moreover, more general conditions on the
choice of τ are worked out, resulting in either efficient tracking or, if the migration
schedule is not chosen carefully, losing track of the optimum. To the best of our
knowledge, our contribution represents the first runtime analysis of parallel EAs in
dynamic optimization. The results indicate that carefully choosing themigration policy
and thereby the communication strategy of an island model can be more advantageous
than a mere increase of offspring population size.

This paper is structured as follows. In Sect. 2, we introduce the parallel EA and
the dynamic optimization problem Maze studied throughout the paper, and define
important tools used in the analysis. Section3 is concerned with the negative result
for the parallel EA with τ = 1, i. e., the (1+ λ) EA. The case of appropriately chosen
τ , leading to efficient tracking with a small number of islands, is analyzed in Sect. 4.
Moreover, the section elaborates on the impact of the choice of τ on efficient tracking
in a more general sense, demonstrating that the approach loses track of the optimum if
the parameters of the island model and migration policy are chosen in an unfortunate
manner. Section5 validates the theoretical results of previous sections by presenting
experimental results. We finish with some conclusions.

2 Preliminaries

The Maze fitness function, proposed in [14], and defined formally below, consists of
n + 1 phases of t0 = kn3 log n iterations each. This phase length was used in [14]
to allow the Max-Min Ant System (MMAS) algorithm time to adjust the pheromone
values during each phase, and is preserved here for mostly historical reasons. For
convenience, we will assume that k is chosen such that t0 is a multiple of 3.
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During the first phase of the Maze, which we will for convenience refer to as
phase 0, the function is equivalent toOneMax: the fitness of an n-bit string is equal to
the number of 1-bits in the string. In the next n phases, higher fitness values n+ 1 and
n + 2 are assigned to two bit strings determined by the phase in an oscillating pattern:
every two iterations out of three, OPTp = 0p1n−p is assigned the fitness value n + 2,
while ALTp = 0p−11n−p+1 is assigned the fitness value n+1, and during every third
iteration, these assignments are reversed; all other bit strings retain their OneMax
values. Notably, for 0 ≤ p < n, OPTp is equal to ALTp+1. Past the last oscillating
phase (“phase n”),Maze behaves in a fashion similar to Trap: all individuals except
0n are assigned OneMax values, while 0n is the global optimum, being assigned the
highest fitness value. [14] proves that a (1+1) EA loses track of the optimum of this
Maze function, reverting to optimizingOneMax, and is therefore not able to construct
the final OPTn = 0n optimum in a polynomial number of iterations.

Maze(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

n + 2 if t > (n + 1) · t0 ∧ x = 0n

n + 2 if t > t0 ∧ x = OPT(t)
n + 1 if t > t0 ∧ x = ALT(t)
OneMax(x) otherwise

OPT(t) =
{
OPT�t/t0� if t �= 0 mod 3
ALT�t/t0� otherwise

ALT(t) =
{
ALT�t/t0� if t �= 0 mod 3
OPT�t/t0� otherwise

OPTp = 0p1n−p for p ≤ n

ALTp = 0p−11n−p+1 for p ≤ n

ALLp = {ALTp,OPTp}

The fitness difference between the oscillating optimum (and the eventual global
optimum at 0n) and the OneMax optimum (at 1n) could be made arbitrarily large
without affecting the presented results. Our results do depend on the presence of the
oscillation between OPT and ALT optima within a phase, as well as the equivalence of
theOPTp andALTp+1 individuals.While theMaze is an artificial construction, similar
effects may occur in real-world problems: oscillation can be thought to model noisy
fitness functions providing uncertain information about which of two good solutions is
better, andphase progressionmightmodel gradually changing environment conditions.

The clock t is considered external to theMaze function, allowing the fitness value
of multiple solutions to be evaluated in each clock value t . For the (1 + λ) EA, and
the λ island model, this corresponds to having hardware available to evaluate many
solutions in parallel, or having the problem changes occur at fixed intervals regardless
of the number of parallel evaluations.

We consider the behavior of the (1 + λ) EA, shown as Algorithm 1, and that of
a simple island model running λ (1+1) EAs in parallel with various choices for the
frequency ofmigration, shown as Algorithm 2, on theMaze function. Both algorithms
use the standard bit mutation operator, formalized in Definition 1.
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For our purposes, Algorithm2, ifmigration is set to occur in every iteration, behaves
equivalently to the (1+λ)EAonMaze: the algorithms differ only in their initialization
of x∗ and the first offspring population, which is insignificant as both are able to find
the OneMax optimum within the initial phase with high probability. The order of
mutation and migration in Algorithm 2 has been selected to allow for this similarity,
essentially allowing an ALT individual constructed during an ALT-favoring iteration
of theMaze to migrate to all islands, similar to how it would be assigned to x∗ in the
(1 + λ) EA.

Algorithm 1 (1 + λ) EA
Select x∗ uniformly at random from {0, 1}n .
for t ← 1, 2, . . . do

for i ← 1, . . . , λ do
xi ← mutate(x∗)

m ← argmaxi f (xi , t)
if f (xm , t) ≥ f (x∗, t) then

x∗ ← xm

Algorithm 2 Island model with λ islands running (1+1) EAs in parallel.
for i ← 1, . . . , λ do

Select x∗
i uniformly at random from {0, 1}n .

for t ← 1, 2, . . . do
for i ← 1, . . . , λ in parallel do

xi ← mutate(x∗
i )

if f (xi , t) ≥ f (x∗
i , t) then

x∗
i ← xi

if migration occurs during iteration t then
Let m = argmaxi f (x∗

i , t)
x∗
i ← xm for all i ∈ {1, . . . , λ}

Definition 1 (Standard Bit Mutation) The mutation operator mutate(x) creates an
image y ∈ {0, 1}n from x ∈ {0, 1}n by independently replacing each bit xi of x
(1 ≤ i ≤ n) with 1 − xi with probability 1/n.

In the analysis of the (1+λ)EAand the simple islandmodel,wemakeuse ofMarkov
chain mixing times to bound the probability that the algorithm is in a particular state
(i. e., has a particular individual as x∗) after a certain number of iterations. This has
been applied to ant colony optimization in [26] and to analyze the (μ + 1) EA on
Maze in [19]; for completeness, we repeat the definitions of mixing and coupling
times below, closely following the presentation from [26].

Definition 2 (Mixing Time) Consider an ergodic Markov chain over a state space Ω

with stationary distribution π . Let p(t)
x denote the distribution of the Markov chain t

iterations after starting in state x , and let

t (ε) := max
x∈Ω

min

⎧
⎨

⎩
t : 1

2

∑

y∈Ω

|p(t)
x (y) − π(y)| ≤ ε

⎫
⎬

⎭
.
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The mixing time tmix of the Markov chain is then defined as tmix = t (1/(2e)).

Definition 3 (Coupling Time) Consider a pair process
(
X (t),Y (t)

)
, where both X (t)

and Y (t), viewed in isolation, are instances of the same Markov chain. Coupling time
Txy is the random time until the two processes, initialized in states x and y respectively,
are in the same state for the first time:

Txy = min{t : X (t) = Y (t) | X (0) = x, Y (0) = y}.

The following theorem will be used to bound the mixing time, once a suitable
coupling has been established.

Theorem 4 (Relation Between Mixing and Coupling Time) The worst-case coupling
time is an upper bound on the mixing time:

t (ε) ≤ min

{

t : max
x,y∈Ω

P(Txy > t) ≤ ε

}

.

Additionally, the following multiplicative drift theorem is useful when considering
longer migration intervals. It is taken from [6], except for the final tail bound “P(T >

· · · ) < · · · ”, which stems from [5].

Theorem 5 (Multiplicative Drift) Let S ⊆ R be a finite set of positive numbers with
minimum smin > 0. Let {X (t)}t≥0 be a sequence of random variables over S∪{0}. Let
T be the random first point in time t ≥ 0 for which X (t) = 0.

Suppose there exists a δ > 0 such that

E(X (t) − X (t+1) | X (t) = s) ≥ δs

for all s ∈ S with P(X (t) = s) > 0. Then for all s0 ∈ S with P(X (0) = s0) > 0,

E(T | X (0) = s0) ≤ ln(s0/smin) + 1

δ
.

Moreover, it holds that P(T > (ln(s0/smin) + r)/δ) ≤ e−r for any r > 0.

Several lemmas throughout this paper state that “a specific event occurs with high
probability.” Definition 6 provides a more formal definition of this concept.

Definition 6 An event E is said to occur with high probability (with respect to the
problem size n) if, for every constant c > 0, P(E) = 1 − O(n−c).

As a matter of notation, we typically use the variables c, c1, etc., to reference local
positive constants which could be removed in asymptotic notation.

In general, we say that an algorithm is able to track the optimum of theMazewhen
it is able to construct the OPTn individual in polynomial time (with high probability).
Typically, this would correspond to maintaining at most a constant Hamming distance
to the OPTp intermediate optima during the oscillating phases.
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3 The (1+ λ) EA on Maze

In this section, we analyze the behavior of the (1 + λ) EA on Maze. As long as
λ is not too large (trivializing the problem by exploring the entire neighborhood of
Hamming distance 1 during every iteration), the EA is not able to track the optimum
of the Maze, and reverts to optimizing OneMax. This is formalized in the following
theorem, whose proof is inspired by the strategy taken in [19].

Theorem 7 The (1 + λ) EA with λ ∈ O(n1−ε), for any constant ε > 0, will with
high probability lose track of the optimum of Maze, i. e., with high probability it will
require an exponential number of iterations to construct OPTn.

We first note that the EA is able to find OPT0 = 1n successfully, but then has at
least a constant probability of ending each of the following n oscillating phases with
x∗ �= OPTp, and at least a constant probability of ending the next phase after at least
a constant fraction of such phases with x∗ = 1n ; if this occurs sufficiently late in
the optimization process, constructing an ALLp individual from 1n requires a large
simultaneous mutation, the waiting time for which is exponential with respect to n.

The following lemma already follows from amore general result in [7], which states
that the (1+λ) EA optimizes all linear functions in O((n log n)/λ+n) = O(n log n)

generations with high probability. Moreover, [9] shows the bound ((n log n)/λ +
n log λ/(log log λ)) = O(n log n) for the special case of the OneMax function,
which we consider here. For the sake of completeness, we give a simple proof of
the O(n log n) bound for this special case.

Lemma 8 The (1+λ) EA constructs OPT0 = 1n during phase 0 of theMaze, which
consists of t0 = O(n3 log n) iterations, with high probability.

Proof Phase 0 of the Maze consists of t0 = kn3 log n iterations during which the
Maze fitness function is equivalent to OneMax. It is left to show that the (1+ λ) EA
constructs theOneMax optimum in O(n log n) iterationswith high probability (where
the implicit constant in the O-notation would depend on the constant c chosen in
Definition 6); notably, t0 is asymptotically larger than n log n. Our simple proof uses
well-known arguments that are also valid for the case λ = 1, i. e., the (1 + 1) EA.
We note that while increasing λ may decrease the number of expected generations to
optimize OneMax, it does not decrease the expected number of function evaluations,
see [9].

To prove the claim that the (1 + λ) EA constructs the OneMax optimum in
O(n log n) iterations with high probability, we apply Theorem 5, defining X (t) as
the number of zero-bits in the bit string x∗ during iteration t , and considering the drift:

E(X (t) − X (t+1) | X (t) = x) ≥ x

n
(1 − 1/n)n−1 ≥ 1

ne
x .

This lower bound is obtained by analyzing the event that the first offspring flips a
zero-bit and does not flip any one-bits, which is sufficient to decrease the number of
zero-bits by at least 1 towards the next iteration.
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As at most n bits are wrong initially, the expected optimization time T is:

E(T | X (0) ≤ n) ≤ ln(n) + 1

1/(ne)
= ne ln(n) + ne.

Applying the tail-bound with r = c1 ln n yields an upper bound on the probability
of exceeding the expected number of iterations to reach Xt = 0 (i. e., to find the 1n

optimum) by more than c2n ln n additional iterations, where both c1, c2 are constants:

e−c1 ln n = n−c1 ,

i. e., 1n is constructed by the (1 + λ) EA in ne ln(n) + ne + c2n ln n = O(n log n)

iterations with probability 1 − n−c1 . �
Lemma 9 Given that x∗ ∈ ALLp at least cn/λ iterations before the end of phase i ,
and λ ∈ o(n), the probability that phase i ends with x∗ = OPTi is in Θ(1), and the
probability that phase i ends with x∗ = ALTp is also in Θ(1).

Proof Once an ALLi individual is constructed, only mutations which construct OPTi

or ALTi can be accepted during the remainder of the phase, with single-bit mutations
at specific iterations of the oscillation allowing the EA to switch between the two.

Let p1 be the probability of a specific single-bit mutation occurring in a single
iteration of the (1 + λ) EA, i. e., the probability that OPTi is constructed from ALTi

or vice versa:

p1 = 1 −
(
1 − (1 − 1/n)n−1 · 1/n

)λ = Θ(λ/n),

noting that λ/(2en) ≤ p1 ≤ λ/(2n) for n ≥ 2.
Consider the phase as a series of oscillations, each oscillation consisting of three

iterations. During the first two iterations of an oscillation, OPTn has a higher fitness
value than ALTn (and vice versa during the third and final iteration). Let pO be
the probability that the current individual switches from ALTi to OPTi during an
oscillation; in order for this to occur, OPTi has to be constructed via a specific single-
bit mutation of ALTi during either the first or the second iteration, and ALTi must not
be constructed via a specific single-bit mutation of OPTi during the third iteration of
the oscillation. Similarly, let pA be the probability that the current individual switches
from OPTi to ALTi during an oscillation; in order for this to occur, ALTi must be
constructed from OPTi via a specific single-bit mutation during the third iteration of
the oscillation. Recalling that p1 is the probability of a specific single-bit mutation
occurring at least once among λ offspring, these probabilities are:

pO = (p1 + (1 − p1)p1)(1 − p1)

= (2 − 3p1 + p1
2)p1 = Θ(λ/n)

pA = p1 = Θ(λ/n),
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observing that as p1 = Θ(λ/n) = o(1) as λ = o(n), the 2p1 term dominates when
bounding pO .

The identity of the current individual x∗ of the (1 + λ) EA, observed at the end
of each OPT-OPT-ALT oscillation can be modeled using a two-state Markov chain,
with one state corresponding to x∗ = OPTi , the other to x∗ = ALTi , and transition
probabilities between the states as above.

Let πO and πA = 1 − πO be the steady-state probabilities of x∗ = OPTi and
x∗ = ALTi respectively; per the definition of a steady-state probability:

πO pA = πA pO

πO p1 = (1 − πO)p1(2 − 3p1 + p1
2)

πO = 2 − 3p1 + p12

3 − 3p1 + p12
,

i. e., πO approaches a constant; we note that πO ≤ 2/3, and as λ ∈ o(n) and hence
p1 ≤ λ/(2n) ≤ 0.5, πO ≥ 3/7.

Over time, the probability of OPTi being the current individual at the end of an
oscillation will approach the steady-state probability πO . The number of oscillations
requires until this probability is within an ε of πO can be upper-bounded by the mixing
time of the Markov chain, which (by Lemma 4) in turn can be upper-bounded by its
coupling time, i. e., the maximum number of steps TAO until the probability that two
independent instances of the chain initialized in different states are in the same state
becomes sufficiently small:

P(TAO > t) = (pA pO + (1 − pA)(1 − pO))t

= (1 + 2pA pO − pA − pO)t

= (1 − p1(3 − 7p1 + 7p1
2 − 2p1

3))t

≤
(

1 − λ

2en

(

3 − 7λ

2n
+ 7λ2

4e2n2
− 2λ3

8n3

))t

<

(

1 − λ

2en

)t

,

by recalling that λ = o(n), and observing that the expression in the inner parentheses
is greater than 1 when λ/n ≤ 0.5. Then, an upper bound on the coupling time is:

t (ε) ≤ min
{
t : (1 − λ/(2en))t ≤ ε

}
.

After at most t (0.01) < 9.22en/λ steps of the Markov chain, i. e., at most 76n/λ

iterations of the (1 + λ) EA, the probability that x∗ = OPTi is therefore within
[πO − 0.01, πO + 0.01], and, as 3/7 ≤ πO ≤ 2/3, in Θ(1). Similarly, the probability
that x∗ = ALTi is within [1 − πO − 0.01, 1 − πO + 0.01], and therefore in Θ(1). �
Lemma 10 If a phase i > n/2 + 3 begins with x∗ /∈ ALLp satisfying f (x∗) >

n − p + 1, the (1 + λ) EA with offspring population size λ = O(n1−ε), for any
constant ε > 0, ends the phase with x∗ = 1n with at least constant probability.
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Proof At the start of phase i , x∗ contains strictly more 1-bits than any individual in
ALLi , and the Hamming distance between x∗ and the closest ALLi individual is at
least 1. Let pR ≤ p1 be the probability that an ALLi individual is constructed during
an iteration.

We want to consider the probability that the number of 1-bits in x∗ exceeds that
in any ALLi individual by at least 3 before an ALLi individual is constructed. An
individual with a greater OneMax value is constructed via a single-bit mutation with
probability at least pL :

pL ≥ 1 − (1 − n/2 · (1 − 1/n)n−1/n)λ

≥ 1 − 0.75λ ≥ 1/4,

as there are at least n/2 0-bits that can be flipped to increase OneMax value. We note
that after at most 2OneMax-improvements, constructing the closest ALLi individual
requires at least 3 1-bits to be flipped simultaneously.

Consider the probability that two OneMax improvements occur before an ALLi

individual is constructed. Let V be the event that a OneMax-improving single-bit
mutation occurs, and A be the event that an ALLi individual is constructed:

P(A | A ∨ V ) ≤ pR
pR + pL

≤ λ

2n
(

λ
2en + 1/4

)

= 2eλ

en + 2λ
∈ O(λ/n),

then, the probability that an ALLi individual is not constructed before two OneMax-
improving single-bit mutations occur is:

P(2 V s without A) ≥ (1 − P(A | A ∨ V ))2 ∈ Ω(1).

Once this occurs, constructing an ALLi individual requires at least 3 specific bits
to mutate simultaneously, which with high probability does not happen within the
time required to find 1n per Lemma 8. Thus, the (1 + λ) EA has at least a constant
probability of ending the phase with x∗ = 1n . �

These lemmas can then be combined to prove Theorem 7.

Proof (of Theorem 7) With high probability, OPT0 = 1n is found during phase 0
per Lemma 8. At the start of each subsequent phase p, f (x∗) > n − p, as only
individuals in the ALL sets of the preceding phases can be accepted while decreasing
the number of 1-bits in x∗, and the minimum OneMax value of any individual in sets
ALL0,…,ALLp−1 is n − p + 1. Furthermore, if x∗ /∈ ALLp, f (x∗) > n − p + 1, as
this excludes x∗ = OPTp−1, which had the lowest fitness value of all individuals in
the union of the previous ALL sets.

If x∗ �= 1n at the start of phase p ≥ n/2 + 3, the phase has at least a constant
probability of ending with x∗ �= OPTp per Lemma 9, and hence x∗ /∈ ALLp+1.
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If phase p + 1 begins with x∗ /∈ ALLp+1, it has at least a constant probability of
ending with x∗ = 1n per Lemma 10.

Thus, at least a constant fraction of Ω(n) phases beyond n/2 + 3 have at least a
constant probability of ending with x∗ = 1n ; i. e., with high probability, at least one
of those phases will end with x∗ = 1n . Constructing an ALLp individual from 1n in
future phases requires at leastΩ(n) bits to be flipped simultaneously, which with high
probability does not occur in polynomial time. �

We note that the proof of Theorem 7 relies on λ = o(n) primarily in the bounds on
p1 in Lemma 9, although, if λ is increased a little further to Ω(n log n), the behavior
described by Lemma 10would also no longer occur, allowing the (1+λ)EA to recover
from any phase which ends with an ALTp with high probability.

Lemma 11 The (1 + λ) EA with offspring population size λ ≥ c1n log n, where
c1 > 0 is a sufficiently large constant, is able to track the optimum of the Maze
function, constructing OPTn at the end of the Maze with high probability.

Proof Assume that each of the n oscillating Maze phases ends with x∗ = ALTp.
Consider the probability pr of constructing an ALLp+1 individual in the first iteration
of the next phase, which can be lower-bounded by the probability that a specific one-bit
mutation occurs (flipping the previously oscillating bit to a 0):

pr = 1 − (1 − (1 − 1/n)n−1/n)c1n log n

≥ 1 − (1 − 1/(ne))c1n log n

≥ 1 − e−c2 log n = 1 − n−c2 .

We can then use a union bound to lower-bound the probability pR that all n phases
construct an ALLp individual in their first iteration:

pR ≥ (pr )
n ≥ 1 − n1−c2 .

By picking a sufficiently large constant c1 in λ = c1n log n, we can ensure that the
(1+ λ) EA constructs an ALLp individual in the first iteration following every phase
transition with high probability. �

4 A Simple Island Model

Splitting the λ offspring onto λ islands, which only compare the fitness values of
their x∗ individuals periodically (for instance, every τ iterations, where τ > 0 is
the migration interval), allows the resulting island model to track Maze even with a
modest λ. In this section, we consider the effect of various migration schedules on
how the island model is able to track the Maze.
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4.1 With Appropriate Migration Policy

To begin with, consider an island model where migration occurs on the first iteration
of every phase, i. e., every τ = t0 iterations of the Maze. This ensures that an ALLp

individual migrates to all islands if any of the islands end the preceding phase with
x∗ = OPTp−1.

Theorem 12 An island model with λ = c log n islands, where c is a sufficiently large
constant, each island running a (1+1) EA, and migration occurring during the first
iteration of every phase (i. e., with migration interval τ = t0) is able to find the OPTn
optimum of the Maze with phase length t0 = kn3 log n in polynomial time with high
probability.

Proof We note that individually, the islands behave exactly like a (1+1) EA onMaze,
and the effects of migration are limited to selecting the best individual at the start of
each phase, and propagating it to all islands. Thus, as long as any island ends phase
p with x∗ = OPTp, all islands will receive an ALLp+1 individual during the first
iteration of phase p + 1.

The initial OneMax optimum, OPT0, is found during phase 0 on each island with
high probability. Lemma 9, applied with λ = 1, states that the probability that an
island that begins phase p with x∗ ∈ ALLp ends the phase with x∗ = OPTp with at
least constant probability; let ps = Ω(1) be a lower bound on this probability, and
p f ≤ (1 − ps)λ an upper bound on the probability that all λ islands end the phase
with x∗ �= OPTp. As long as the latter event does not occur, all islands will receive an
ALLp+1 individual at the start of the next phase, allowing the argument to be repeated
inductively. A union bound can then be used to upper-bound the probability of failing
in any of the n phases:

1 − (1 − p f )
n ≤ np f ≤ n(1 − ps)

λ ≤ ncc2 log n1 ≤ n1+c2,log c1

noting that for any constant c > 0, choosing c2 ≥ −(1 + c)/ log c1 (recall that
c1 ≤ p f < 1, so log(c1) is negative) results in p f ≤ n−c.

Thus, with λ = c2 log n islands, where c2 is a sufficiently large constant, at least
one island ends each phase with x∗ = OPTp with high probability; this individual
is propagated to all other islands at the start of the next phase, allowing OPTn to be
constructed and propagated to all islands at the end of the last phase. �

As the proof of Theorem 12 relies primarily on there being enough time between
migration and the phase transition for mixing due to mutation to occur on the islands,
migration can be allowed to occur more than once within each phase, as long as the
final migration within a phase is still sufficiently far from the phase transition.

Corollary 13 With themigration interval τ ≤ t0, λ = c1 log n islands are sufficient to
track the optimum of theMaze as long as migration occurs at least once during each
phase, and no migration occurs during c2n iterations preceding any phase transition,
where c1 and c2 are sufficiently large constants.
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Proof As before, the initial OneMax phase is successful with high probability.
Suppose that the final migration occurs t ≥ c2n iterations before the end of the

phase p. As long as at least one island had anALLp individual as its current solution, all
islands will have an ALLp individual as their current solution following the migration.

We can then apply Lemma 9 to each island (i. e., with λ = 1); per the Lemma,
the probability of an island ending phase p with x∗ = OPTp is at least a constant
greater than 0. Thus, the situation at the end of the phase returns to that considered
in Theorem 12: each of λ = Ω(log n) islands has at least a constant probability of
ending phase p with x∗ = OPTp.

When λ is large enough, it holds with high probability that at least one island
ends phase p with x∗ = OPTp, and hence at least one island will have an ALLp+1
individual as its current solution when migration occurs in the next phase, allowing
the argument to be repeated inductively for each of n phases. Using a union bound
to combine the failure probabilities, we can conclude that the island model is able to
track the optimum of the Maze with high probability in this setting. �

Thus, we have shown that λ = c2 log n islands running a (1+1) EA are sufficient to
track the optimum of theMaze with varying migration intervals, as long as migration
occurs at least c1n iterations before a phase transition, and any migration occurring
within c1n iterations prior to a phase transition occurs only while the OPT individual
has a higher fitness value than the ALT individual. In the following section, we will
consider how less-careful choices of migration policy policy can prevent the island
model from tracking the optimum of the Maze.

4.2 When the Migration Policy is Not Set Appropriately

We note that if migration is allowed to occur an ALT-favoring iteration during the
last Ω(n) iterations of a phase, and an island has ALT as its current solution at that
time (which, per Lemma 9, occurs with at least constant probability for each island
if OPT-favoring migration has not occurred during the last Ω(n) iterations), the ALT
individual will migrate to all other islands, and mutation may not reconstruct an OPT
individual in time for the next phase transition. An example of this setting is illustrated
in Theorem 14.

Theorem 14 There exist constants c1 > 0, c2 > 0, such that if migration occurs
on an ALT-favoring iteration within c1n iterations of the end of each phase, and
no two migrations occur within c2n iterations of each other, an island model with
λ = O(log n) islands will with high probability fail to track the optimum of theMaze.

Proof We will show that if phase i > n/2 + 3 begins with no island having a x∗ ∈
ALLi as its current solution, with at least constant probability, all islands will return
to the OneMax optimum. Additionally, we will show that there exist an expected
nΩ(1) phases which start in this configuration, and hence the islands will return to
the OneMax optimum before reaching the Maze global optimum at 0n with high
probability.

Consider the final migration within phase i , which occurs on an ALT-favoring
iteration. As all islands have been unaffected by migration for the preceding c2n
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iterations, the distribution of the current solutions of islands still tracking the oscillating
optimum is close to the steady-state distribution derived in Lemma 9: with at least
constant probability, x∗ �= OPTi holds for a given island. Hence, with at least constant
probability, all islands will have x∗ �= OPTi following the migration.

Before the phase transition occurs, at most (2/3)c1λn mutations are performed on
OPT-favoring iterations; the probability that none of these construct theOPT individual
is at least the probability that none of these are a specific 1-bit mutation, which, with
an appropriate choice of c1, can be made sufficiently large:

(1 − (1 − 1/n)n−1/n)2c1λn/3 ≥ (1 − 2/(en))n2c1λ/3 ≥ n−c′
,

where c′ > 0 is a constant which can be made arbitrarily small by decreasing c1. We
note that c′ ≤ 1/2 is sufficient: this results in at least an expected

√
n phases ending

without an OPTi individual among the islands, and a Chernoff bound can be used to
show that with probability 1 − e−Ω(

√
n), at least

√
n/4 phases beyond phase n/2 + 2

end without an OPTi individual on any island.
When phase i ends with no islands having the OPTi individual as their current

solution, phase i +1 starts with each island at least a Hamming distance of 1 from any
ALLi+1 individual. Following the argument of Lemma 10, with probability at least
(1−O(λ/n))2 ≥ 1−O(λ/n), an island is likely to revert to optimizingOneMax and
reach x∗ = 1n rather than rediscover the oscillating path of theMaze; the probability
that this occurs in all islands is then:

(1 − O(λ/n))λ ≥ e−Θ(λ2/n) = Ω(1)

as λ = O(log n).
Thus,with probability at least n−c′

, a phase i endswith no island having x∗ = OPTi ,
andwith at least constant probability, if no island has x∗ ∈ ALLi+1 at the start of phase
i + 1 for i > n/2 + 2, all islands return to the OneMax optimum, and do not return
to the oscillating path without a mutation simultaneously flipping at least n/2 specific
bits. With high probability, there are Ω(

√
n) phases that end without OPTi on any

island, and thus the probability that the island system is able to track the optimum of
the Maze through all n phases is at most 2−Ω(

√
n). �

While migration intervals longer than the Maze phase length are viable, τ should
not be set too high, as migration is required to repopulate any islands that lose track
of the Maze before all islands do so if the optimization process is to be successful.
We will show that if τ ≥ c t0 log λ, λ = O(log n) islands are no longer sufficient to
track the Maze.

Theorem 15 For τ = c1 t0 log λ, where c1 > 0 is a sufficiently large constant, λ =
O(log n) islands are not sufficient to track the optimum of the Maze.

Proof Consider an interval of c t0 log λ iterations during which no migration will
occur, where c1 ≥ c > 0 is a sufficiently large constant, starting at the beginning of
some phase p, such that n/2 + 3 < p < n − log λ. Assume that before the start of
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phase p, none of the λ = c log n islands lost track of the Maze, and thus all islands
begin phase p with at least a constant probability of having an ALLp individual per
Lemma 9.

Considering each island individually, each of the log λ phases in the interval has at
least a constant probability of ending with x∗ �= OPTp, causing the next phase to have
at least a constant probability of ending with x∗ = 1n ; let pL > 0 be a constant lower
bound on the probability of each phase ending with x∗ = 1n . Let X (t) be the number
of islands with x∗ �= 1n at the start of phase p + t (and X0 = λ); it then holds that:

E(X (t) − X (t+1) | X (t)) ≥ pL X
(t),

and hence also

E(X (t) | X (0)) = (1 − pL)t X (0).

Theorem 5 can then be applied: the expected number of phase transitions T =
mint {X (t) = 0} until all islands have lost track of the Maze (i. e., have x∗ = 1n) is:

E(T | X (0)) ≤ ln(X (0)) + 1

1 − pL
= O(ln λ),

and by setting r := c ln λ in the theorem, where c is a sufficiently large constant, we
lower bound the probability of all islands ending the interval with x∗ = 1n by 1/2
(if c1 is chosen large enough). As there are Ω(n/(log λ)) = Ω(n/(log log n)) such
intervals following phase p > n/2+3, the probability that the island model does lose
track of the Maze in at least one of these intervals is at least 1 − 2−Ω(n/log log n). �

5 Experiments

To supplement the asymptotic results expressed in Theorems 7 and 12, we have also
performed simulations of the island model (Algorithm 2) with τ = 1 (migration
occurring in every iteration) and τ = t0 (migration occurring at the beginning of each
phase) for n = 75, t0 = n3, and various choices of λ.

The results of the simulations are summarized in Fig. 1: λ = 10 is sufficient for
none of the 250 simulations to lose track of the Maze over the n + 1 phases when
τ = t0, while when τ = 1, all of the simulations performed lose track of the Maze
even when λ = 50. During the first few phases of Maze, it is possible for the islands to
reconstruct an ALLp individual by amodest simultaneous-bit mutation within a single
phase, slowing the failure rate of the first few phases; this becomes exponentially less
likely asMaze progresses. Notably, increasing λ does not have a strong positive effect
in the τ = 1 setting for the considered values of λ, perhaps because each phase ends
on an iteration where the ALT individual is assigned a higher fitness value.

In Algorithm 2, the migration topology is a complete graph: the best individual
among all islands in a given iteration is chosen to migrate to all islands. This does not
maintain any diversity atmigration points and is potentially dangerouswhenmigration
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Fig. 1 Number of simulations of Algorithm 2 with n = 75, t0 = n3, and various choices of λ and τ ,
having an individual with a better-than-OneMax value at the start of each Maze phase; 250 simulations
for each choice of λ. Only the first 25 phases are shown here, as there were no further changes observed in
the subsequent phases
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Fig. 2 With n = 75, t0 = n3, with various choices of λ, τ , and the migration topology (either a complete
graph or a directed ring); 250 simulations in each setting. For λ = 2, the ring and complete topologies are
equivalent

occurs frequently.We therefore wondered whether a sparser migration topologymight
be more beneficial with frequent migration. In an experiment, we have replaced the
complete topology with a directed ring: during migration, each island selects the best
individual among its current solution, and the current solution of its predecessor in the
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ring. Figure2 displays the results in the setting with n = 75, t0 = n3 and the directed
ring topology used with τ = 1, compared to the complete topology and τ = t0.
Experimentally, choosing τ = 1, λ > 2 and the ring migration topology appears
to yield better probability of tracking Maze than τ = t0, λ = 5 and the complete
migration topology.

6 Conclusions

We have presented a first runtime analysis of parallel EAs in dynamic optimization. A
simple island model with λ islands and length of the migration interval τ was studied
on the dynamic benchmark function Maze. In the case of extreme communication,
i. e., τ = 1, even a large number of islands does not allow efficient tracking of the
optimum. However, with a carefully chosen value for τ , already a logarithmic number
of islands was proven to be sufficient for efficient tracking. Finally, the relationship of
τ, λ, and the ability of the island model to track the optimum was investigated more
closely. Our results indicate that the careful choice of the migration policy, and more
generally, communication in parallel EAs, can be more advantageous than a large
offspring population. Negative results have also been rigorously proved, showing that
the island model will lose track of the optimum if it is not parameterized carefully.

Although most positive results heavily depend on a careful parametrization, our
island model is less sensitive to other properties of Maze than previously considered
approaches. In previous work, several approaches to optimizing Maze have been
considered, but they all have significant limitations: MMAS, an ant colony algorithm,
requires that the OPT individual is favored more often than the ALT individual in the
oscillating pattern; a (μ + 1) EA with genotype diversity exploits that the optimum
oscillates between very few individuals, but requires both genotype diversity and an
appropriate choice ofμ. The islandmodel we consider requires careful choice of when
migration is allowed to occur, but can, without additional changes, track the Maze
if OPT is favored less often than ALT, or if Maze is extended to a finite-alphabet
version.

In future work, the impact of the migration topology, something that we have only
investigated experimentally here, could be analysed rigorously. Our initial results in
this direction [18] rigorously prove, using a simplified model of Maze and the (1+1)
islands, that there is a benefit to using a less-dense migration topology. The considered
simplified model also relaxes the deterministic behaviour of the Maze oscillation,
bringing it closer to modelling a noisy fitness function.

Additionally, wewould like to study parallel EAs on different dynamic optimization
problems in order to understand the interplay of migration intervals and number of
islands more thoroughly. As our positive results are crucially dependent on a proper
choice of τ , it may also be worth studying adaptive or even self-adaptive choices of
the migration interval in order to automatically determine a good value for τ . Here the
adaptive model suggested in [20] is of interest.
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